
Journal of Computer Science and Cybernetics, V.32, N.1 (2016), 45–58

DOI: 10.15625/1813-9663/32/1/5772

HEURISTIC ALGORITHM FOR FRAGMENTATION AND
ALLOCATION IN DISTRIBUTED OBJECT ORIENTED

DATABASES

MAI THUY NGA1, DOAN VAN BAN2

1Information Technology Department, Thang Long University, mai nga@yahoo.com,
2Institute of Information Technology, Vietnam Academy of Science and Technology

∗Corresponding author: MAI THUY NGA; mai nga@yahoo.com

Abstract. Class fragmentation and allocation are important techniques to improve the perfor-

mance of distributed object oriented database systems. A class fragmentation schema, which is to

split a class into smaller pieces in distributed databases, intends to reduce the unnecessary data ac-

cess, while an allocation algorithm is to locate fragmented classes into sites in a connected network

in such the way that minimizes the cost of data transmission. A class in object databases consists of

attributes describing the characteristics of the object, methods describing the behavior and relation-

ships with other classes. With such characteristics, class fragmentation and allocation in distributed

object oriented database systems are more complex than those in relational databases. Fragmentation

techniques applied in distributed object-oriented databases often do not take into account commu-

nication costs between sites; fragments are allocated to the site after completing a fragmentation

option of data objects. This paper proposes an algorithm of simultaneous class fragmentation and

allocation in which the costs of data communication between the sites are used for fragmentation to

reduce communication costs when processing and querying distributed data.

Keywords. Object oriented database, distributed database, distributed object-oriented database,

fragmentation, allocation, class fragmentation, class allocation.

1. INTRODUCTION

Object-oriented databases (OODBs) have been widely used in practice and have overcome the limita-

tions of relational databases. However, with the basic characteristics of object-oriented technologies

such as encapsulation, inheritance, class hierarchies, OODBs require new techniques and effective

data management [1]. OODBs were developed in network environments then made up of distributed

object-oriented databases (DOODBs). In DOODBs, data is distributed over sites in a computer

network, while applications have to access and process data at different sites. In fact, how to design

DOODBs effectively in order to improve their overall system performances has recently received great

interest from numerous researchers.

The problem of DOODB design is divided into two phases: (1) data fragmentation to split the

data into smaller pieces, and (2) data allocation to allocate such data pieces into the respective

sites. Fragmentation in DOODB is performed on object classes by using two techniques: vertical

and horizontal fragmentation. Vertical fragmentation aims at dividing a class into smaller fragments,

c© 2016 Vietnam Academy of Science & Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229076445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.15625/1813-9663/32/1/5772
mailto:mai{_}nga@yahoo.com

46 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

each of which includes a number of attributes and methods. Horizontal fragmentation is to divide

objects in the same class into different fragments; each fragment is composed of some objects. Our

work focuses on vertical fragmentation algorithm.

Many algorithms for vertical fragmentation have been proposed for relational model, such as the

algorithms presented in [1–5]. In object models, fragmentation raises few other issues due to the

complex characteristics of object-oriented methods; Karlapalem and Li [6] introduced a partition

scheme for OODBs, Ezeife and Barker [7] presented a vertical fragmentation algorithm for each case

of attributes and methods, Lee and Lim [8] presented a fragmentation algorithm based on attributes

and Saravanan and Rajan [9] proposed a vertical fragmentation algorithm using intelligent agents.

The allocation problem in the DOODBs has been studied in [10–12] as well.

In the aforementioned approaches, the fragmentation and allocation are conducted in two conse-

quence phases, fragmentation is executed first, then locating fragments into corresponding sites. The

fragmentation phase does not use data transimission cost information between sites. This information

can be exploited for a more effectively fragmenttaion-solution for DOODBs.

Inspired by the approach from Hui Ma and Markus [13] applied to relational database, a new

heuristic algorithm to fragment and allocate classes simultaneously in DOODBs is proposed. The

method considers the costs of information transmittion between sites during querying information

in order to generate a plan for vertical fragmentation and allocation. This heuristic approach can

increase the effectiveness of DOODBs.

This paper consists of six sections. Section 2 introduces the vertical fragmentation and allocation

in DOODBs. Section 3 presents the required information which will be used for fragmentation and

allocation. Section 4 introduces the cost model, referring to the cost calculation formula as a basis

for decision heuristic option. Section 5 proposes the algorithm with an illustration. The last section

concludes the paper and discusses future developments.

2. CLASS VERTICAL FRAGMENTATION AND ALLOCATION

2.1. OODB Model

The data in the OODBs consists of a set of objects to be encapsulated, each of which includes

attributes and methods. The object is instanced from the class, inherited in the hierarchy level. A

class in a hierarchical relationships is represented by C = (K, A, M, I), where K is the set of

identifiers, A is the set of attributes, M is a set of methods and I the set of objects as defined by A
and M [7].

Attributes of a class are divided into two categories: simple and complex. Simple attribute is the

attribute that has a value domain of primitive types such as int, long, float, double, boolean, char,

string, ... Complex attribute has a value domain that is not primitive but is a reference to other

objects through their identity.

Methods of a class are also divided into two categories: simple and complex. Simple method does

not invoke or refer to other methods while complex method invokes other methods in the same class

or methods of other classes.

2.2. Vertical fragmentation

The goal of vertical fragmentation of classes is to break them up into smaller pieces (called class

fragments), each containing only some of the attributes and methods. Vertical fragmentation of class

C =(K,A,M, I) is the set of fragments {F1, F2, ..., Fn}, each fragment Fv = {K,Av,Mv, I},

MAI THUY NGA, DOAN VAN BAN 47

v = 1, ..., n, where Av is a subset of A, Mv is a subset of M . In vertical fragmentation, it is to

concentrate only attributes and methods of classes, the remaining factors including identifiers and

objects are considered in horizontal fragmentation.

Vertical fragmentation has to ensure the following three rules.

• Completeness: Each data item (attribute or method) of class C is found in one or more fragment

Fv.

• Reconstruction: Class C can be reconstructed from its fragments

• Disjointedness: Only identifiers and methods accessing identifiers are typically repeated in all

its fragments, each other data item of class C is only in one fragment Fv.

The class fragmentation enables the application to execute on a certain number of fragments

instead of accessing to the whole class as the other fragments are not necessary for these application’s

queries. Vertical fragmentation splits attributes and methods into groups that has the highest possible

access frequency and thus optimizes the application’s query execution time.

The class is encapsulated the access is only executed on methods without manipulating directly

to attributes. To find a suitable fragmentation, first the authors group methods based on query

information and once the fragmentation is complete, the authors add to each method group all

attributes accessed by methods of group...

2.3. Allocation

Allocation in DOODBs is to locate and distribute class fragments into respective sites in a connected

network. Assuming the database is divided into fragments F = {F1, ..., Fv} and a distributed system

consists sites S = {s1, ..., sk} on which a set of application Q = {q1, . . . qh} is running. The allocation

problem is to find the “optimal” distribution of F to S.

The allocation problem in DOODBs involves the allocation for both methods and classes. The

problem of method allocation is almost the same as the class allocation problem due to the encapsu-

lation characteristic of object-oriented methods. The allocation for methods that accesses multiple

classes at different sites is a difficult problem; this problem has been proven to be NP-complete [6].

The application accessing to the attributes and methods of a class C is divided into three cate-

gories:

• Applications execute directly on the class C.

• Applications execute on subclasses of the class C.

• Applications execute on methods of other classes in the database and use methods of the class

C.

The approach to the allocation problem is to reduce the cost of data allocation in distributed

systems. Cost allocation is the sum of all cost components: the cost of data storage, the cost of query

processing and the cost of data transmission between the sites

48 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

3. INFORMATION REQUIREMENTS FOR VERTICAL
FRAGMENTATION AND ALLOCATION

3.1. Database Information

Database information is a collection of classes, their structures and relationships. Relationships in

OODBs are inherited and composite. Composite relationships present complex attributes. Each class

in the OODBs encapsulates attributes and methods; a method is one interface of an object to interact

with other objects outside the class. A method that uses only attributes of the class called the simple

one whereas a method that calls methods in the same class or another class considered complex

Example: Assuming object database has following classes: Person, Professor, Staff, Visiting-
Prof, Faculty and Course with the following characteristics:

Class Professor and class Staff are inherited from class Person, class VisitingProf is inherited

from class Professor.

Class Faculty contains an attribute which is a collection of class Professor and class Professor
contains an attribute which is a collection of class Course.

All classes in this example are structured with methods and attributes as below

• Person={{ssno, name, birth, addr}, {getSsno(), getName(), getBirth(), getAddr()}}

• Professor = {{profID, profType, facultyOf, courses}, {displayID TypeOfProf(), getFaculty(),

displayCourses(), calculateTeachingHours()}}

• VisitingProf = {{organisation}, {getOrg()}}

• Staff = {{staffID, unit}, {getStaffID(), getUnit()}}

• Faculty = {{name, addr, head}, {getName(), getAddr(), getHead()}}

• Course = {{ID, hours}, {getID(), getHours()}}

Class Faculty is a class that contains class Professor because the attribute head is one object of

class Professor ; similarly class Professor contains class Course. Class Professor contains method

calculateTeachingHours() which is referenced in method getHours() of class Course.

Methods use the class’s attributes to execute necessary calculations, and such attribute usage by

different methods in one class can be formed up a matrix called MAU (Method Attribute Usage)

[8]. In matrix MAU, the title of rows and columns as the methods and attributes, a cell value of 1

indicates the method (in a row) accessing to that attribute (in the respective column of the cell), the

opposite is 0. Table 1 is an example of a matrix MAU of the class Professor.

Table 1. Matrix MAU of Class Professor

a1 a2 a3 a4
(ProfID) (ProfType) (facultyOf) (Courses)

m1 (displayID TypeOfProf()) 1 1 0 0

m2 (m.getDept()) 0 0 1 0

m3 (displayCourses()) 0 0 0 1

m4 (calculateTeachingHours()) 0 0 0 1

MAI THUY NGA, DOAN VAN BAN 49

3.2. Network Information

As said in above section, the different aspect of this paper is to take the cost of communication into

account during the fragmentation and allocation. The additional following matrix represents the cost

of communication between sites called SSC (Site Site Cost). An example of a cost matrix between

sites is in Table 2.

Table 2. Matrix SSC

s1 s2 s3
s1 0 50 70

s2 50 0 30

s3 70 30 0

In the previous approaches, site information is only used in the allocation phase, in this research

the site information will be also used in fragmentation phase.

3.3. Application information

As the object encapsulation characteristic the application is only able to query objects via methods.

The method used by the query is represented by the value of QMU (Query Method Usage).

QMU (qi,mj) with value 1 if the query qi uses the method mj , otherwise QMU (qi,mj) has a

value of 0. Suppose there are 3 queries q1, q2, q3 accessing to class Professor.

• q1: give the social security number and courses list of one professor with the specific ID

• q2: give ID and type of all professors who work for a specific faculty.

• q3: find all professors who have less than 50 teaching hours.

Matrix QMU of class Professor is in Table 3.

Table 3. Matrix QMU of class professor

m5 m6

m1 m2 m3 m4 (Person.getSsno()) (Course.getHours())

q1 1 0 1 0 1 0

q2 1 1 0 0 0 0

q3 0 0 0 1 0 1

Information about Access frequency of queries to sites is represented by the value QSF (Query

Site Frequency). QSF(qi, sl) is the access frequency of query qi to site sl, an example about access

frequency matrix sites are shown in Table 4.

Matrix QMU and matrix QSF of that application at sites in the database are shown in Figure

1. Note that queries into 2 classes Professor and Satff will inherit some methods from the super-

class Person, so the matrix QMU of class Professor and Satff will have to add those methods.

50 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

Table 4. Matrix QSF of class Professor

s1 s2 s3
q1 10 5 10

q2 5 40 0

q3 25 15 5

Figure 1. Matrice QMU and QSF of classes.

Matrix QMU of class Professor has 6 columns. The first 4 columns show the four access methods

m1,m2,m3,m4 of that class Professor, the fifth column shows the access to method m5 of the class

MAI THUY NGA, DOAN VAN BAN 51

Person, the last column shows the access method m6 of the class Course. Suppose that there is

no query in class Satff. In Figure 1, methods are not primitive methods of that class are italicized.

Also note that indexes of methods and queries belongs to each separated class (mi of class Person
is different from mi of class Professor, qi of class Person is different from qi class Professor).

4. COST MODEL

4.1. Cost Model

The most significant cost in DOODBs is the cost of data transmission between sites. The cost function

needs identifying to calculate the total cost of method invocation on the remote site. Cost of calling

a method is represented by the total cost of the communication between the sites that contains the

method being called (used) and the site that makes a call to the other site. Also, on calculating the

time taken by any method, its type will need to be determined first. If it is a simple method, the

cost only consists of transmission cost of method resulting from the method to the calling site. If it

is a complex method, it is required add the cost of the method that is invoked. It must be noted

further about the communication required by a remote object, this happens when a method requires

the object on a remote site to perform so the cost of communication objects should be added. In

summary, the cost of any method also includes:

- Cost of data result returned from calling site.

- Cost of the method that is invoked.

- Cost of remote communication objects.

In the database with many classes, to distinguish the parameters of each class we need to add

index of the class, for example mi
j to indicate the method mj in class Ci. The symbols used are

described in Table 5.

Table 5. Usage symbols

Symbol Description

C Set of classes (database)

Ci ithclass of data base.

M i Set of methods of Class Ci.

mi
j jthmethod of class Ci.

Ai Set of attributes of Class Ci.

aij jthattribute of class Ci.

Qi Set of queries of class Ci.

qij jth query of class Ci.

S Set of sites.

sk kth site.

MAUi Method Attribute Usage matrix of class Ci.

QMUi Query Method Usage matrix of class Ci.

QSFi Query Site Frequency matrix of class Ci.

SSC Site Site Cost Matrix.

F i Fragments Set of class Ci

F i
j jthfragment of class Ci.

52 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

In this paper, it is to extend the formula of Hui Ma and Markus [13] applied to relational model

to calculate the cost. The request of a method mi
j at a site sk is the total access frequency of all

queries at the site sk accessing the method mi
j , this value can be calculated as follows

requesti(sk,m
i
j) =

∑
qil∈Qi

QSF i(qil, sk) ∗QMU i(qil,m
i
j)

Request value is calculated based on the following parameters: queries frequency at sites and

methods usage of queries. These two parameters are modified belong to the relationships in OODBs

(inheritance, complex attribute, complex method), algorithms 1, 2, 3 in subsection 4.2 indicate this

modification. To set up accessing cost for each method of class Ci from the site the matrix request i

will be built, this matrix is the product of two matrices QSFi và QMUi

Cost for locating method mi
j into site sk is the cost of accessing this method mi

j from all other

sites sl 6= sk, that is defined as follows:

payi(sk,m
i
j) =

∑
sl∈S

requesti(sk,m
i
j) ∗ SSC(sk, sl)

Pay value is calculated based on Request value and network information, so Pay value depends

on queries frequency, method usage of queries, and communication cost between sites. To set up

cost for locating each method of class Ci into sites the matrix pay i will be built, this matrix is the

product of two matrices request i and SSC.

Based on the matrix pay i to define a plan to locate methods of class Ci, the authors propose a

heuristic algorithm that aims to locate method mi
j into site sk with value of payi(sk,m

i
j) smallest.

4.2. Modification of method usage and site access frequency

Before calculating the value of a request by the formula (1) it is required to transform matrices QMU

and QSF according to relationships in DOODBs because these relationships affect the fragmentation

and allocation. The following relationships are considered for the modification process: inheritance

and include relationships and complex method.

Firstly, consider about the inheritance relationship. Queries on inherited classes can fully use

methods from superclasses, so it is needed to provide this additional information about the queries

into QSF and QMU matrices of the superclass. Algorithm 1 describes this modification.

Algorithm 1: Modify QMU i and QSF i according to the inheritance relationship
Algorithm Modify 1(Ci)
Input: Set of class C, Class Ci need fragmented in database of classes, and their matrices

QMU and QSF.
Output: QMU i and QSF i.
Algorithm Steps:
for each Ch ∈ C do

if Ch inherited from class Cido
for each qhk ∈Qh do //queries on class Ch

if qhk uses methods mi
j of class Ci

begin
//Add a row corresponding qhk to QMUi;
//Add a row corresponding qhk to QSFi;

MAI THUY NGA, DOAN VAN BAN 53

AddRow(qhk , QMUi, QSFi);
end {if qhk}

end {for qhk}
end {for Ch}
end {Algorithm 1}

Next is to consider include relationship, also called “container” (in classes with complex at-

tributes). Queries on the container class possibly use the methods of the class are contained within,

so we need provide these additional information about these queries into QSF and QMU matrices of

contained class. Algorithm 2 describes this modification.

Algorithm 2: Modification QMU i and QSF i according to the include relationship
Algorithm Modify 2(Ci)
Input: Set of class C, Class Ci need fragmented in database of classes, and their matrices

QMU and QSF.
Output: QMU i and QSF i.
Algorithm Steps:
for each Ch ∈ C do

if Ch is a container of class Ci

// Ch has one attribute which is an object of class Ci

for each qhk ∈Qh do //queries on class Ch

if qhk uses methods mi
j of class Ci

begin
//Add a row corresponding qhk to QMUi;
//Add a row corresponding qhk to QSFi;
AddRow(qhk , QMUi, QSFi);

end {if qhk}
end {for qhk}

end {for Ch}
end { Algorithm 2}

Finally consider the complex methods, this is a case that a method in one class can invoke

methods of this class or another class. Queries on the class containing complex method can fully use

methods from other classes, so it is needed to provide this additional information about these queries

into QMU and QSF matrices of the class containing methods which is called. Algorithm 3 describes

this modification.

Algorithm 3: Modification QMU i and QSF i according to the complex method
Algorithm Modify 3(C i)
Input: Set of class C, Class Ci need fragmented in database of classes, and their matrices

QMU and QSF.
Output: QMU i and QSF i.
Algorithm Steps:
for each Ch ∈ C do

for each mh
j ∈ Mh do

if mh
j invokes mi

l //method of Ch invoke method of Ci

for each qhk ∈ Qh do //queries on class Ch

54 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

if qhk uses methods mh
j of class Ch

begin
//Add a row corresponding qhk to QMUi;
//Add a row corresponding qhk to QSFi;
AddRow(qhk , QMUi, QSFi);

end {if qhk}
end {for qhk}

end {for mh
j }

end {for Ch }
end {Algorithm 3}

Algorithm 0 describes the addition a row corresponding qhk to QMUi and QSFiwhich is used in

three algorithms above.

Algorithm 0: Add a row corresponding qhk to QMUi and QSFi

Algorithm AddRow(qhk ,QMUi, QSFi)
Input: qhk , QMU i and QSF i

Output: QMU i and QSF i.
Algorithm Steps:
Qi = Qi ∪ {qhk}
for each mi

j ∈ Mi do

if qhk use mi
j

QMUi(qhk ,mi
j) = 1;

else
QMUi(qhk ,mi

j) = 0;

end {if qhk}
end {for mi

j}
for each sl ∈ S

QSFi(qhk ,sl) = QSFh(qhk ,sl)
end {for sl}
end {Algorithm 0}

5. ALGORITHM OF FRAGMENTATION AND ALLOCATION
SIMULTANEOUSLY

5.1. Algorithm development

Fragmentation and allocation algorithm proposes the heuristic approach as follows: Based on the

matrix pay i, allocating methods mi
j to site sk where the communication cost is the smallest. Propose

a plan for allocation, then clustering methods in the same site in one fragment. In each fragment,

with each method the authors will determine attributes that these methods used then put them into

this fragment. Algorithm of fragmentation and allocation is simultaneously constructed as follows.

Algorithm 4: Fragmentation and Allocation
Algorithm Frgamentation Allocation(Ci)
Input: Class Ci need fragmented in database of classes, matrices MAU, QMU, QSF of classes,

matrix SSC.
Output: Vertical fragmentation and allocation for class Ci.

MAI THUY NGA, DOAN VAN BAN 55

Algorithm Steps:

//Step 1: Modify matrices QMU and QSF of class Ci according to //relationships

Modify 1(Ci);

Modify 2(Ci);

Modify 3(Ci);

//Step 2: Build matrix requesti of class Ci by multiplying 2

//matrices QMUi and SQFi(SQFi is transposed matrix of QSFi).

requesti = Multiple2Matrix (QMUi, SQFi);

//Step 3: Build matrix payi of class Ci by multiplying 2 matrices

//requesti and SSC.

payi = Multiple2Matrix (requesti, SSC);

//Step 4: Determine the allocation plan based on matrix pay i

//Find the smallest value in each column of matrix payi

for each mi
j ∈ Mi do

begin
Find sk which payi(sk,m

i
j) is the smallest;

Allocate mi
j into site sk;

Add mi
j to Fk;

//Based on matrix MAU, add attributes to fragments

for each ai
l
∈ Ai do

if (MAU(mi
j , ai

l
) = 1) and (ai

l
is not in a fragment)

begin
Add ai

l
to fragment that has mi

j

Allocate ai
l

into the site that mi
j is allocated

end {if}
end {for ai

l
}

end {for mi
j}

Add identifier to each fragment.

Add method accessing identifier to each fragment.

end {Algorithm 4}

5.2. Algorithm illustration

This example just creates fragmentation for class Professor so the upper index of parameters is

temporarily removed.

When considering queries to the class VisitingProf, q1 and q2 queries have access to methods m1

and m3 of class Professor, therefore it will add two rows to QMU matrix corresponding to q4 and

q5 (which are q1 and q2 of class VisitingProf). When considering queries to class Faculty, query q2
has access to the method m1 of class Professor so it will add one row to QMU matrix corresponding

to q6 (which is q2 of class Course).

Matrix QSF is also added 3 rows correspondingly for the queries considered above. Matrices

QMU and SQF (SQF is transposed matrix of QSF) of class Professor in Table 3 and Table 4 will be

changed as Tables 6 and 7. Multiple matrix SQF with matrix QMU to build matrix request as Table

8. Multiple matrix SSC in Table 2 with matrix request to have matrix pay as Table 9.

56 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

Table 6. Matrix QMU after modification

m1 m2 m3 m4 m5 m6

q1 1 0 1 0 1 0

q2 1 1 0 0 0 0

q3 0 0 0 1 0 1

q4 1 0 0 0 0 0

q5 1 0 1 0 0 0

q6 1 0 0 0 0 0

Table 7. Matrix QSF after modification (order by column vs Table 4)

q1 q2 q3 q4 q5 q6
s1 10 10 20 10 10 0

s2 15 15 15 15 15 15

s3 5 0 5 5 5 5

Table 8. Matrix request

m1 m2 m3 m4 m5 m6

s1 40 10 20 20 10 20

s2 75 15 30 15 15 15

s3 20 0 10 5 5 5

Table 9. Matrix pay

m1 m2 m3 m4 m5 m6

s1 5150 750 2200 1100 1100 1100

s2 2600 500 1300 1150 650 1150

s3 5050 1150 2300 1850 1150 1850

The allocation plan is as follows: m1 is located in s2,m2 located in s2,m3 located in s2,m4

located in s1,m5 located in s2, and m6 located s1. Thus m4 and m6 are grouped to the same

fragment, m1,m2,m3, and m5 are grouped to the 2nd fragment. Because m1 is the method accessing

identifier, m1 is added to the fragment containing m4 and m6.

So these methods are fragmented vertically into two fragments:

F1= {m1,m4,m6}, F2 = {m1,m2,m3,m5}.
Based on matrix MAU in table 1, the algorithm continues allocating a1, a2, a4 to F1, and a1, a2, a3,a4
to F2. The final result is F1= {a1, a2, a4,m1,m4,m6}, F2= {a1,a2, a3, a4,m1,m2,m3,m5}.

5.3. Algorithm Evaluation

Fragmentation algorithm is correct because it satisfies the three basic rules of fragmentation: Each

attribute or method of a class is in one fragment; the class can be re-structured from its fragments

because all of its fragments have the same identifier and identifier-accessing method; except identifier

and identifier-accessing method, the remaining attributes and methods belong to just one fragment.

The maximum number of fragments according to this algorithm is only as the number of sites.

This algorithm complexity is defined as follows. If a class that need fragmented has set of

MAI THUY NGA, DOAN VAN BAN 57

attributes A, set of methods M , set of queries Q and set of sites S then the complexity of algorithm

1 and algorithm 2 is |C| ∗ |Q|, the complexity of algorithm 3 is |C| ∗ |M | ∗ |Q|. The complexity

of multiplying two matrices (step 3 of algorithm 4) is |M | ∗ |Q| ∗ |S|. The complexity of step 4 of

algorithm 4 is |M |∗|S|+|M |∗|A|. The complexity of algorithm 4 is (|C|∗|Q|+|C|∗|Q|+|C|∗|M |∗
|Q|+ |M |∗ |Q|∗ |S|+ |M |∗ |S|+ |M |∗ |A|) which can simplify to (|C|∗ |M |∗ |Q|+ |M |∗ |Q|∗ |S|).

Moreover, the algorithm of multiplication of two N ∗N matrices is currently enhanced [14] to achieve

the complexity at approximately N2.38, so the complexity of algorithm 3 is only N2.38, of which N

is the max value of the following 3 values: |M |, |Q|, |S|.
The key note in this algorithm is that it is able to complete both phases of fragmentation and

allocation with this complexity meanwhile other algorithms are able to complete only one phase, e.g.

the complexity of Ezeife [7] algorithm for vertical fragmentation is |C| ∗ |Q| ∗ |M | + |M | ∗ |M | +
|F | ∗ |M | ∗ |A| and Barker & Bhar [12] algorithm for allocation is |S|3|Q|+ |F |3/|S|3whereas |F |
is the number of fragments (so it is certain that |F | > |C|).

The authors have conducted the experiment on some test data and get the same fragmentation

result as the algorithm [7] without spending any cost for allocation algorithm. The authors have also

implemented the testing with The OO7 benchmark [15] and get the same fragmentation result as the

algorithm [16].

In conclusion, there are some advantages of this heuristic approach:

• Only the method accessing the identifier is repeated in all fragmentations

• Information of queries and network is used in both fragmentation and allocation. In [13], Hui

Ma et al presented examples about queries information (including the site that the query is

executed) affecting the optimized plan for the fragmentation and allocation.

• The algorithm’s complexity is low and depends on the number of classes, methods, queries,

and sites.

• The maximum number of fragments according to this algorithm is only as the number of sites.

6. CONCLUSIONS AND FUTURE DEVELOPMENT

Most algorithms ever divide fragmentation and allocation to two separated phases, fragmentation

completed before coming to allocation. The fragmentation phase does not consider cost for com-

munication between sites, this cost is determined only when performing allocation. However, the

allocation is only able to be optimized when the fragmentation takes into account the cost of com-

munication between sites to achieve the least cost. The study proposes a heuristic algorithm that

has both fragmentation and allocation performed simultaneously hence makes object fragmentation

more efficiently. The algorithm has considered all of the class structure and relationships between

the classes in the OODBs.

In the future, the authors will focus on the queries processing in distributed object oriented

databases.

REFERENCES

[1] M. T. Özsu and P. Valduriez, Principles of distributed database systems. Springer Science &
Business Media, 2011.

58 HEURISTIC ALGORITHM FOR FRAGMENTATION AND ALLOCATION

[2] M. R. Shamkant B. Navathe, “Vertical partitioning for database design: a graphical algorithm,”
in Proceedings of the 1989 ACM SIGMOD international conference on Management of data.
ACM, 1989, pp. 440–450.

[3] J. A. Hoffer and D. G. Severance, “The use of cluster analysis in physical data base design,” in
Proceedings of the 1st International Conference on Very Large Data Bases. ACM, 1975, pp.
69–86.

[4] S. M. T. R. R. Ladan Golshanara and H. Shah-Hosseini, “A new vertical fragmentation algorithm
based on ant collective behavior in distributed database systems,” Knowledge and Information
Systems, vol. 30, no. 2, pp. 435–455, 2012.

[5] R. M. Al-Sayyed, F. A. Al Zaghoul, D. Suleiman, M. Itriq, and I. Hababeh, “A new approach for
database fragmentation and allocation to improve the distributed database management system
performance,” Journal of Software Engineering and Applications, vol. 7, no. 11, p. 891, 2014.

[6] K. Karlaplem and Q. Li, “Partitioning schemes for object oriented databases,” in Research Issues
in Data Engineering, 1995: Distributed Object Management, Proceedings. RIDE-DOM’95. Fifth
International Workshop on. IEEE, 1995, pp. 42–49.

[7] C. Ezeife and K. Barker, “Distributed object based design: Vertical fragmentation of classes,”
Distributed and Parallel Databases, vol. 6, no. 4, pp. 317–350, 1998.

[8] L. Soonmi and L. Haechull, “Attribute partitioning algorithm in doodb,” in Parallel and Dis-
tributed Systems, 1997. Proceedings., 1997 International Conference on. IEEE, 1997, pp. 702–
707.

[9] R. John and V. Saravanan, “Vertical partitioning in object oriented databases using intelligent
agents,” IJCSNS, vol. 8, no. 10, p. 205, 2008.

[10] S.-M. Lee, Y. Ha, and H.-S. Park, “Allocation of classes in distributed object-oriented databases,”
in Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Comput-
ing, 2009. SNPD’09. 10th ACIS International Conference on. IEEE, 2009, pp. 237–242.

[11] A. Sarhan, “A new allocation technique for methods and attributes in distributed object-oriented
databases using genetic algorithms.” Int. Arab J. Inf. Technol., vol. 6, no. 1, pp. 17–26, 2009.

[12] S. B. Ken Barker, “Agraphical approach to allocation class fragments in distributed object-
oriented base systems,” Distributed and Parallel Databases, vol. 10, no. 3, pp. 207–239, 2001.

[13] H. Ma, K.-D. Schewe, and M. Kirchberg, “A heuristic approach to fragmentation incorporating
query information,” in Proceedings of the 2007 conference on Databases and Information Systems
IV: Selected Papers from the Seventh International Baltic Conference DB&IS’2006. IOS Press,
2007, pp. 103–116.

[14] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proceedings of the 39th inter-
national symposium on symbolic and algebraic computation. ACM, 2014, pp. 296–303.

[15] M. J. Carey, D. J. DeWitt, and J. F. Naughton, The 007 benchmark. ACM, 1993, vol. 22, no. 2.

[16] F. Baião, M. Mattoso, J. Shavlik, and G. Zaverucha, “Applying theory revision to the design of
distributed databases,” in Inductive Logic Programming. Springer, 2003, pp. 57–74.

Received on October 04 - 2014
Revised on August 31 - 2015

	INTRODUCTION
	CLASS VERTICAL FRAGMENTATION AND ALLOCATION
	OODB Model
	Vertical fragmentation
	Allocation

	INFORMATION REQUIREMENTS FOR VERTICAL FRAGMENTATION AND ALLOCATION
	Database Information
	Network Information
	Application information

	COST MODEL
	Cost Model
	Modification of method usage and site access frequency

	ALGORITHM OF FRAGMENTATION AND ALLOCATION SIMULTANEOUSLY
	Algorithm development
	Algorithm illustration
	Algorithm Evaluation

	CONCLUSIONS AND FUTURE DEVELOPMENT

