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This paper presents the results of experimental investigations into the performance of a well-designed layer of sand, and layer of sand
mixed with shredded tire (rubber) as low cost base isolators. The building foundation is modeled by a 200 mm by 200 mm and 40 mm
thick rigid plexi-glass block. The model footing is placed in the middle of a 1m by 1m tank filled with sand. The selected base isolator
is placed between the footing and the sand foundation. The whole setup is mounted on the shake table and subjected to sinusoidal
motion with varying amplitude and frequency. Acceleration values at the shake table, inside the isolation material, and on top of the
footing are measured. The displacement of the footing is also measured. The sand is found to be effective only at very high amplitude
(> 0.65g) of motion. Among all the different percentage of shredded tire in sand tested, the performance of a layer of 50% shredded
rubber tire and sand placed under the footing is found to be most promising as a low cost effective base isolator.

INTRODUCTION

To find an economical and feasible way of designing new
structures or strengthening existing ones for protection from
the damages during an earthquake is one of the challenges in
civil engineering. The conventional approach to seismic
hazard mitigation is to design structures with adequate
strength and ability to deform in a ductile manner. Over the
past two decades, newer concepts of structural vibration
control including seismic isolation, installation of passive and
active/semi-active devices (Soong (1988), Jangid and Datta
(1995), Nagarajaiah (1997), Ehrgott and Masri (1994)) have
been growing in acceptance. Traditionally, earthquake-
resistant design of low- to medium-rise buildings is
particularly important, as their fundamental frequencies of
vibration are within the range where earthquake-induced force
(acceleration) is the highest as found during Mexico City
Earthquake (Kelly (1990)). One possible mean to reduce the
degree of amplification is to make the building more flexible
(Paulay and Priestley (1992)). In a low-to-medium-rise
building, this necessary flexibility can be achieved by the use
of base isolation techniques.

The primary mechanism for the reduction of shaking level in a

base isolation method is energy dissipation. The concept of
low-cost and effective earthquake protection techniques using
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natural material like sand was looked at by Qamaruddin and
Ahmad (2007), Qamaruddin et al. (1992) and Feng et al.
(1993). The use of a synthetic liner consisting of an ultra
molecular weight polyethylene nonwoven geotextile, placed in
the foundation of a structure, was also found to be an effective
way of reducing seismic ground motion by Yegian and
Kadakal (2004), and Yegian and Catan (2004). Soil
reinforced with rubber demonstrates a tremendous increase in
energy dissipation capability (Edil and Bosscher (1994)). The
feasibility of using shredded rubber mixed with sand as a
natural base isolator was investigated theoretically by Gray et
al (1996) and Tsang (2008). This paper presents results of
experimental investigations into the performance of a layer of
sand and composites like sand mixed with various proportions
of shredded rubber tire as low cost base isolation systems.

EXPERIMENTAL SETUP

The laboratory model tests are performed on a 1m by 1m
shake table. The table is shaken in a uniaxial horizontal
direction by specifying a sinusoidal motion of given amplitude
and frequency. The details of the shake table and its



calibration can be found in Giri and Sengupta (2009). In the
laboratory model tests, the building foundation or footing is
assumed to be square and modeled by a 200mm by 200mm
and 40mm thick, rigid plexi-glass block. The surcharge load
(normal load) on the foundation due to the super structure is
imparted by a number of steel plates (weights) bolted on top of
the plexi-glass block. In all the cases, the surcharge load is
15kg. A coarse sand paper is glued to the bottom side of the
block to model the roughness of the model footing. In the
laboratory shake table tests, the model footing is placed inside
a 1000mm by 1000mm and 500mm high, open plexi-glass
container or tank. The plexi-glass container is made up of 12
mm thick plexi-glass sheets and reinforced with steel angles at
all the corners and edges. About 30mm thick thermocol sheets
are glued to all the sides of the container except one to
minimize the reflection of waves at the ends. One side of the
plexi-glass container is kept clear to monitor the behavior of
the model footing during a test. The whole setup is placed on
top of the shake table and securely clamped to it to ensure no
relative movement. The test container is then filled with sand
up to 200mm height and compacted to the required density.
Details of shake table arrangement are shown in Figure 1
below.

Figure 1. Shake table test setup.

The first series of tests are performed with the model footing
placed on top of the sand layer at the middle of the container.
The second series of the tests are performed with composites
made of shredded rubber tire and sand in different proportions
as base isolator under the model footing. Before these second
series of tests, a 20mm deep square excavation in the sand of
the same size as that of the model footing is constructed. This
excavation is then filled with the shredded rubber tire and sand
mixture. The model footing is then placed over the shredded
tire and sand mixture. Several proportions of shredded tire in
the shredded rubber tire-sand mixture have been considered.
But only the performances of sand mixed with 20%, 30% and
50% shredded rubber tire have been reported here.

BASE MOTIONS

The shake table along with the experimental setup is shaken in
horizontal direction by a sinusoidal motions of amplitude
0.15g, 0.3g, 0.4g, 0.6g and 0.8g. The frequency of the motion
is varied from test to test to study the effectiveness of the
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seismic isolators at different frequency of motion. The
different frequencies considered are 1.5, 3.5, and 4.5Hz. For
each specified motion, vertical and horizontal acceleration of
the shake table in addition to those on top of the foundation
sand layer, and on top of the model footing are also recorded.
Each of the motions is continued for at least 5 numbers of
cycles to ensure the system had reached a steady state
condition. A typical input base motion is shown in Figure 2.
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Figure 2. A typical input base motion.
In all the cases, the results for the first few cycles are only
shown for the clarity of the presentations. In all the cases, the
results for the first few cycles are only shown for the clarity of
the presentations.

EXPERIMENTAL RESULTS

Model footing resting on top of foundation sand

The performance of sand as a base isolator has been studied
for the given base motions mentioned earlier. In this case, the
model footing is resting directly on top of 200 mm deep sand
layer within the test tank. The sand used in the study is a local
uniform medium sand (Kansai River sand). It is classified as
poorly graded sand (SP) as per Unified Soil Classification
System. The specific gravity of the sand is 2.7. The maximum
and minimum dry unit weights are 16.6 and 14.1 kN/m®
respectively. In all the tests, the relative density of the sand
foundation within the test chamber is maintained at 65%. The
shear strength (effective cohesion, ¢’ and effective friction
angle, ¢’) of the sand, as obtained from the laboratory direct

tests, are given by ¢’=0 and ¢’ =36, Figure 3 shows the
transmitted peak accelerations at the top of the footing resting
on sand with respect to the peak acceleration of the base
motion for different amplitude of motions (keeping the
frequency constant at 3.5 Hz). The figure shows that at and
around 0.6g amplitude of base motion, the sand beneath the
model footing starts to dampen the base motion. This is
accompanied by a sliding movement of the model footing.
This back and forth sliding movement of the model footing is
around 3mm in case of 1g motion of the shake table.
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Figure 3. Footing response for different base motions with
constant frequency of 3.5Hz.

It is clear from the above figures and tables that the sand layer
in the foundation behaves as an effective base isolator only at
high amplitude (above 0.6g in these cases) of base motions.

Model footing resting on top of shredded rubber tire and sand

In this case, a 20 mm thick layer of sand and shredded rubber
tire mixture is placed between the model footing and the
foundation sand layer within the test tank. The shredded
rubber tire is obtained from a local shop. The average length
of a thread of shredded tire is 10 mm and the average diameter
is 1 mm. Figure 4 shows a magnified view of shredded rubber
tire and sand mixture.

Figure 4. Magnified view of sand and 50% shredded rubber
tire mixture.

Three different proportions (by weight) of shredded rubber tire
— 20%, 30% and 50% in sand have been utilized in this study
as potential low cost base isolators under the model footing.
The direct shear strength of dry sand mixed with various
proportion of shredded rubber tire is given in Figure 5.

The shear strength (effective cohesion, ¢’ and effective friction
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angle, ¢’) of the sand is found to be given by ¢’=0 and ¢’=360.
The shear strength of sand mixed with 20% (by weight) of

shredded rubber tire is given by ¢’=0 and ¢’=340.
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Figure 5. Results of direct shear tests on sand and shredded
rubber tire mixtures.

The same for sand with 30% shredded rubber tire is c’=20kPa
and ¢’:320. The shear strength for sand with 50% shredded

rubber tire is found to be ¢’=30kPa and <|>’=300 from the above
figure. Thus the effective cohesion of the sand-shredded
rubber tire composite is found to be increasing while the
effective friction angle is decreasing with the percentage
increase in shredded rubber tire.

Before the shake table tests, a 20 mm deep square excavation
in the sand of the same size as that of the model footing is
constructed. This excavation is then filled with the shredded
rubber tire and sand mixture in correct proportion. The model
footing is then placed over the shredded tire and sand mixture
(Figure 6). As done for the previous cases, in this case also the
whole test setup is shaken on the shake table for the previously
stated sinusoidal motions.

Figure 6. Model footing resting on shredded rubber and sand
mixture.



Model footing resting on top of 20% shredded rubber tire and
sand

The comparison between the peak acceleration at the top of
the model footing resting on sand mixed with 20% of
shredded rubber tire and the peak acceleration of the input
(measured during the tests) base motions for a base motion of
amplitude 0.3g and frequency 3.5 Hz are shown in Figure 7.
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Figure 7. Footing response to a 0.3g amplitude and 3.5Hz
frequency base motion.

The footing response to various frequencies of motion keeping
the amplitude at 0.3g is shown in Tablel. Table 2 shows the
response of the footing to various amplitude of motion
keeping the frequency constant at 3.5Hz.

Table 1. Variation of peak acceleration at the top of footing
and shake table for different frequencies of base motions with
constant amplitude of 0.3g.

Frequency(Hz) Peak Base Peak Transmitted
Acceleration(g) | Acceleration(g)
15 0.3 0.29
2.5 0.3 0.30
3.5 0.3 0.31
4.5 0.3 0.28

Table 2. Variation of peak acceleration at the top of footing
and shake table for different amplitude of base motions with
constant frequency of 3.5 Hz.

Frequency Peak Base Peak Transmitted
(H2) Acceleration(g) Acceleration(g)
3.5 0.15 0.16
3.5 0.3 0.27
3.5 0.4 0.38
3.5 0.5 0.48

The response of the model footing resting on sand and 20%
shredded rubber tire exhibit a little damped behaviour when
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compared with those for the footing on sand. The effect of
frequency is not at all clear in these tests. The displacement of
the footing is found to be 1mm for a base motion of magnitude
0.3g and frequency 3.5Hz.

Model footing resting on top of 30% shredded rubber tire and
sand

In this case, the model footing is resting on a composite
consisting of sand and 30% shredded rubber tire. Figure 8
shows the response of the footing to a base motion of 0.3g and
3.5Hz.
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Figure 8. Footing response to a 0.3g amplitude and 3.5Hz
frequency base motion.

The footing response to various frequencies of motion keeping
the amplitude at 0.3g is shown in Table3. Table 4 shows the
response of the footing to various amplitude of motion
keeping the frequency constant at 3.5Hz.

Table 3. Variation of peak acceleration at the top of footing
and shake table for different frequencies of base motions with
constant amplitude of 0.3g.

Frequency(Hz) Peak Base Peak Transmitted
Acceleration(g) | Acceleration(g)
15 0.3 0.28
2.5 0.3 0.27
3.5 0.3 0.28
4.5 0.3 0.26

The response of the model footing resting on sand and 30%
shredded rubber tire exhibit better behaviour as a base isolator
when compared with those for the footing on sand and on sand
and 20% shredded tire. The effect of frequency is again not at
all clear in these tests. The displacement of the footing is
found to be 1.5mm for a base motion of magnitude 0.3g and
frequency 3.5Hz. The performance of the base isolator
improved significantly at higher magnitude of base motions.



Table 4. Variation of peak acceleration at the top of footing
and shake table for different amplitude of base motions with
constant frequency of 3.5 Hz.

Frequency(Hz) Peak Base Peak Transmitted
Acceleration(g) Acceleration(g)
3.5 0.15 0.15
3.5 0.3 0.28
3.5 0.4 0.35
3.5 0.5 0.45
3.5 0.6 0.51
3.5 0.7 0.59

Model footing resting on top of 50% shredded rubber tire and
sand

In this case, the model footing is resting on a composite
consisting of sand and 50% shredded rubber tire. Figure 9
shows the response of the footing to a base motion of 0.3g and
3.5Hz. The displacement of the model footing during the test
is shown graphically in Figure 10. The maximum footing
displacement is 1.8mm in this case.
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Figure 9. Footing response to a base motion of amplitude 0.3g

and frequency 3.5Hz.
Bl
g
g e
§1.5
[t 9
lsl
AN
§ ——
g 05 \/\/ \/J
=
=T
s.ls\/\/ \/J
£ L
2 2
&Y 0 0.1 0.2 03 04 05 D& 07 08 09 1
Time (Sec)

Figure 10. Relative displacement of the footing for a base
motion of 0.3g and 3.5Hz frequency.
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The comparison of the peak transmitted acceleration on top of
the footing is also compared graphically with peak base
acceleration in Figure 11.
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Figure 11. Comparison of the peak transmitted acceleration
on top of the footing resting on 50:50 sand-shredded rubber
tire mixture.

The test results show that, unlike in sand, even at small
amplitude of base motion, the response of the model footing is
remarkably less than the original base motion. This indicates
that the isolating layer consisting of sand mixed with 50%
shredded rubber tire is quite effective in dampening the cyclic
motions. Figure 11 attests to the effectiveness of the sand
mixed with 50% shredded rubber tire as a base isolator for
cyclic motions.

The response of the model footing resting on 50% shredded
rubber tire and sand mixture to 0.3g base motions at various
frequencies is shown in Table 5. The effect of frequency on
the response of the footing is not so clear for these cases also.

Table 5. Variation of peak acceleration at the top of footing
and shake table for different frequencies of base motions with
constant amplitude of 0.3g.

Frequency(Hz) Peak Base Peak Transmitted
Acceleration(g) | Acceleration(g)
15 0.3 0.2
2.5 0.3 0.25
3.5 0.3 0.23
4.5 0.3 0.22

Table 6 shows the response of the footing to base motions of
various amplitudes keeping the frequency constant at 3.5Hz.
The positive effect of the base isolation is very clear from this
table even at small amplitude of motion. The composite
consisting of sand and 50% shredded rubber tire is found to
yield the best results as a base isolator under the model footing
among all the cases looked at in this study. The displacement



of the model footing is found to be increasing with the
increase in the percentage of shredded rubber tire in the base
isolator.

Table 6. Variation of peak acceleration at the top of footing
and shake table for different amplitude of base motions with
constant frequency of 3.5 Hz.

Frequency(Hz) Peak Base Peak Transmitted
Acceleration(g) Acceleration(g)
3.5 0.2 0.15
3.5 0.3 0.23
3.5 0.4 0.32
3.5 0.5 0.43
3.5 0.6 0.48
3.5 0.7 0.52

The shake table test conducted with higher than 50% shredded
rubber tire in sand shows instability even at very small
amplitude of base motion. The model footing with 15kg
surcharge load on top starts to wobble at the very initial stage
of this test and the test is discontinued.

CONCLUSIONS

The sand in the foundation of the model footing is found to be
ineffective as a base isolator at low amplitude (<0.6g) of base
motion. However at higher amplitude (> 0.6g) of motion, it is
quite effective in reducing the motion transmitted to the
footing. At 0.8g and 1g, the accelerations at the top of the
model footing show a remarkable decrease and this decrease
in response is also accompanied by back and forth
displacement of the footing over the sand foundation. At 1g of
motion, the amplitude of this displacement is observed to be
about 4mm.

The shake table tests with the model footing resting on a
20mm layer of sand and shredded rubber tire show that the
proportion of shredded rubber tire should be 50% (by weight)
to yield a significant favorable results. When the proportion of
the shredded rubber tire is 50%, the response of the model
footing is found to be significantly less than the motion of the
foundation and shake table. The displacement of the footing
during the cyclic motion is found to be increasing with the
increase in the percentage of shredded rubber tire in the sand.
When the percentage of shredded rubber is increased beyond
50%, the model footing is found to wobble (unstable) at 0.3g
motion.

A base isolating system can be effective in two ways- 1) by

reducing the input motion that the structure is subjected to,
and 2) by shifting the predominent frequency of the structure
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from that of its base motion, so that resonance of frequency
can not be achieved. This paper only addresses the base
isolation by dampening of the input motion. Since all the input
motions of the shake table are sinusoidal with a given
frequency, the shifting of the frequency of the model footing
during a test could not be studied. It is hoped to study this
important aspect of the base isolation system in the next phase
of the study.
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