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calibration can be found in Giri and Sengupta (2009). In the 
laboratory model tests, the building foundation or footing is 
assumed to be square and modeled by a 200mm by 200mm 
and 40mm thick, rigid plexi-glass block. The surcharge load 
(normal load) on the foundation due to the super structure is 
imparted by a number of steel plates (weights) bolted on top of 
the plexi-glass block. In all the cases, the surcharge load is 
15kg. A coarse sand paper is glued to the bottom side of the 
block to model the roughness of the model footing. In the 
laboratory shake table tests, the model footing is placed inside 
a 1000mm by 1000mm and 500mm high, open plexi-glass 
container or tank. The plexi-glass container is made up of 12 
mm thick plexi-glass sheets and reinforced with steel angles at 
all the corners and edges. About 30mm thick thermocol sheets 
are glued to all the sides of the container except one to 
minimize the reflection of waves at the ends. One side of the 
plexi-glass container is kept clear to monitor the behavior of 
the model footing during a test. The whole setup is placed on 
top of the shake table and securely clamped to it to ensure no 
relative movement. The test container is then filled with sand 
up to 200mm height and compacted to the required density. 
Details of shake table arrangement are shown in Figure 1 
below. 
 

 
Figure 1. Shake table test setup. 

The first series of tests are performed with the model footing 
placed on top of the sand layer at the middle of the container. 
The second series of the tests are performed with composites 
made of shredded rubber tire and sand in different proportions 
as base isolator under the model footing. Before these second 
series of tests, a 20mm deep square excavation in the sand of 
the same size as that of the model footing is constructed. This 
excavation is then filled with the shredded rubber tire and sand 
mixture. The model footing is then placed over the shredded 
tire and sand mixture. Several proportions of shredded tire in 
the shredded rubber tire-sand mixture have been considered. 
But only the performances of sand mixed with 20%, 30% and 
50% shredded rubber tire have been reported here. 
 
 
BASE MOTIONS 
 
The shake table along with the experimental setup is shaken in 
horizontal direction by a sinusoidal motions of amplitude 
0.15g, 0.3g, 0.4g, 0.6g and 0.8g.  The frequency of the motion 
is varied from test to test to study the effectiveness of the 

seismic isolators at different frequency of motion. The 
different frequencies considered are 1.5, 3.5, and 4.5Hz. For 
each specified motion, vertical and horizontal acceleration of 
the shake table in addition to those on top of the foundation 
sand layer, and on top of the model footing are also recorded. 
Each of the motions is continued for at least 5 numbers of 
cycles to ensure the system had reached a steady state 
condition. A typical input base motion is shown in Figure 2. 
 
 

 
 

Figure 2. A typical input base motion. 

In all the cases, the results for the first few cycles are only 
shown for the clarity of the presentations. In all the cases, the 
results for the first few cycles are only shown for the clarity of 
the presentations. 
 
 
EXPERIMENTAL RESULTS 
 
Model footing resting on top of foundation sand 
 
The performance of sand as a base isolator has been studied 
for the given base motions mentioned earlier. In this case, the 
model footing is resting directly on top of 200 mm deep sand 
layer within the test tank. The sand used in the study is a local 
uniform medium sand (Kansai River sand). It is classified as 
poorly graded sand (SP) as per Unified Soil Classification 
System. The specific gravity of the sand is 2.7. The maximum 
and minimum dry unit weights are 16.6 and 14.1 kN/m3, 
respectively. In all the tests, the relative density of the sand 
foundation within the test chamber is maintained at 65%. The 
shear strength (effective cohesion, c’ and effective friction 
angle, ’) of the sand, as obtained from the laboratory direct 

tests, are given by c’=0 and ’ =36
o
. Figure 3 shows the 

transmitted peak accelerations at the top of the footing resting 
on sand with respect to the peak acceleration of the base 
motion for different amplitude of motions (keeping the 
frequency constant at 3.5 Hz). The figure shows that at and 
around 0.6g amplitude of base motion, the sand beneath the 
model footing starts to dampen the base motion. This is 
accompanied by a sliding movement of the model footing. 
This back and forth sliding movement of the model footing is 
around 3mm in case of 1g motion of the shake table. 
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Figure 3. Footing response for different base motions with 
constant frequency of 3.5Hz. 

 

It is clear from the above figures and tables that the sand layer 
in the foundation behaves as an effective base isolator only at 
high amplitude (above 0.6g in these cases) of base motions. 
 
 
Model footing resting on top of shredded rubber tire and sand 
 
In this case, a 20 mm thick layer of sand and shredded rubber 
tire mixture is placed between the model footing and the 
foundation sand layer within the test tank. The shredded 
rubber tire is obtained from a local shop. The average length 
of a thread of shredded tire is 10 mm and the average diameter 
is 1 mm. Figure 4 shows a magnified view of shredded rubber 
tire and sand mixture. 
 

 
 

Figure 4. Magnified view of sand and 50% shredded rubber 
tire mixture. 

 
Three different proportions (by weight) of shredded rubber tire 
– 20%, 30% and 50% in sand have been utilized in this study 
as potential low cost base isolators under the model footing. 
The direct shear strength of dry sand mixed with various 
proportion of shredded rubber tire is given in Figure 5. 
 
The shear strength (effective cohesion, c’ and effective friction 

angle, ’) of the sand is found to be given by c’=0 and ’=36
o
. 

The shear strength of sand mixed with 20% (by weight) of 

shredded rubber tire is given by c’=0 and ’=34
o
. 

 

 
Figure 5. Results of direct shear tests on sand and shredded 

rubber tire mixtures. 
 
The same for sand with 30% shredded rubber tire is c’=20kPa 

and ’=32
o
. The shear strength for sand with 50% shredded 

rubber tire is found to be c’=30kPa and ’=30
o
 from the above 

figure. Thus the effective cohesion of the sand-shredded 
rubber tire composite is found to be increasing while the 
effective friction angle is decreasing with the percentage 
increase in shredded rubber tire. 
 
Before the shake table tests, a 20 mm deep square excavation 
in the sand of the same size as that of the model footing is 
constructed. This excavation is then filled with the shredded 
rubber tire and sand mixture in correct proportion. The model 
footing is then placed over the shredded tire and sand mixture 
(Figure 6). As done for the previous cases, in this case also the 
whole test setup is shaken on the shake table for the previously 
stated sinusoidal motions.  
 

 
 
Figure 6. Model footing resting on shredded rubber and sand 

mixture. 
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Model footing resting on top of 20% shredded rubber tire and 
sand 
 
The comparison between the peak acceleration at the top of 
the model footing resting on sand mixed with 20% of 
shredded rubber tire and the peak acceleration of the input 
(measured during the tests) base motions for a base motion of 
amplitude 0.3g and frequency 3.5 Hz are shown in Figure 7.  
 

 
 

Figure 7. Footing response to a 0.3g amplitude and 3.5Hz 
frequency base motion. 

The footing response to various frequencies of motion keeping 
the amplitude at 0.3g is shown in Table1. Table 2 shows the 
response of the footing to various amplitude of motion 
keeping the frequency constant at 3.5Hz. 
 

Table 1. Variation of peak acceleration at the top of footing 
and shake table for different frequencies of base motions with 

constant amplitude of 0.3g. 

Frequency(Hz) Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

1.5 0.3 0.29 

2.5 0.3 0.30 

3.5 0.3 0.31 
4.5 0.3 0.28 

 

Table 2. Variation of peak acceleration at the top of footing 
and shake table for different amplitude of base motions with 

constant frequency of 3.5 Hz. 

Frequency 
(Hz) 

Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

3.5 0.15 0.16 

3.5 0.3 0.27 

3.5 0.4 0.38 

3.5 0.5 0.48 

 

The response of the model footing resting on sand and 20% 
shredded rubber tire exhibit a little damped behaviour when 

compared with those for the footing on sand. The effect of 
frequency is not at all clear in these tests. The displacement of 
the footing is found to be 1mm for a base motion of magnitude 
0.3g and frequency 3.5Hz. 
 
 
Model footing resting on top of 30% shredded rubber tire and 
sand 
 
In this case, the model footing is resting on a composite 
consisting of sand and 30% shredded rubber tire. Figure 8 
shows the response of the footing to a base motion of 0.3g and 
3.5Hz. 
 

Figure 8. Footing response to a 0.3g amplitude and 3.5Hz 
frequency base motion. 

 
The footing response to various frequencies of motion keeping 
the amplitude at 0.3g is shown in Table3. Table 4 shows the 
response of the footing to various amplitude of motion 
keeping the frequency constant at 3.5Hz. 
 
 

Table 3. Variation of peak acceleration at the top of footing 
and shake table for different frequencies of base motions with 

constant amplitude of 0.3g. 

Frequency(Hz) Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

1.5 0.3 0.28 

2.5 0.3 0.27 

3.5 0.3 0.28 

4.5 0.3 0.26 
 

The response of the model footing resting on sand and 30% 
shredded rubber tire exhibit better behaviour as a base isolator 
when compared with those for the footing on sand and on sand 
and 20% shredded tire. The effect of frequency is again not at 
all clear in these tests. The displacement of the footing is 
found to be 1.5mm for a base motion of magnitude 0.3g and 
frequency 3.5Hz. The performance of the base isolator 
improved significantly at higher magnitude of base motions. 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.5 1 1.5 2

Time (sec)

A
cc

el
er

at
io

n 
(g

)

Base Footing



 

Paper No. 4.10b              5 

Table 4. Variation of peak acceleration at the top of footing 
and shake table for different amplitude of base motions with 

constant frequency of 3.5 Hz. 

Frequency(Hz) Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

3.5 0.15 0.15 

3.5 0.3 0.28 

3.5 0.4 0.35 

3.5 0.5 0.45 

3.5 0.6 0.51 

3.5 0.7 0.59 
 
 
Model footing resting on top of 50% shredded rubber tire and 
sand 
 
In this case, the model footing is resting on a composite 
consisting of sand and 50% shredded rubber tire. Figure 9 
shows the response of the footing to a base motion of 0.3g and 
3.5Hz. The displacement of the model footing during the test 
is shown graphically in Figure 10. The maximum footing 
displacement is 1.8mm in this case. 
 
 

 

Figure 9. Footing response to a base motion of amplitude 0.3g 
and frequency 3.5Hz. 

 

Figure 10. Relative displacement of the footing for a base 
motion of 0.3g and 3.5Hz frequency. 

 

The comparison of the peak transmitted acceleration on top of 
the footing is also compared graphically with peak base 
acceleration in Figure 11.  

 

 

 

 

 

 

 
 

Figure 11. Comparison of the peak transmitted acceleration 
on top of the footing resting on 50:50 sand-shredded rubber 

tire mixture. 
 
The test results show that, unlike in sand, even at small 
amplitude of base motion, the response of the model footing is 
remarkably less than the original base motion. This indicates 
that the isolating layer consisting of sand mixed with 50% 
shredded rubber tire is quite effective in dampening the cyclic 
motions. Figure 11 attests to the effectiveness of the sand 
mixed with 50% shredded rubber tire as a base isolator for 
cyclic motions. 
 
The response of the model footing resting on 50% shredded 
rubber tire and sand mixture to 0.3g base motions at various 
frequencies is shown in Table 5. The effect of frequency on 
the response of the footing is not so clear for these cases also. 

 
 

Table 5. Variation of peak acceleration at the top of footing 
and shake table for different frequencies of base motions with 

constant amplitude of 0.3g. 

Frequency(Hz) Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

1.5 0.3 0.2 

2.5 0.3 0.25 

3.5 0.3 0.23 

4.5 0.3 0.22 
 

Table 6 shows the response of the footing to base motions of 
various amplitudes keeping the frequency constant at 3.5Hz. 
The positive effect of the base isolation is very clear from this 
table even at small amplitude of motion. The composite 
consisting of sand and 50% shredded rubber tire is found to 
yield the best results as a base isolator under the model footing 
among all the cases looked at in this study. The displacement 
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of the model footing is found to be increasing with the 
increase in the percentage of shredded rubber tire in the base 
isolator. 
 
 

Table 6. Variation of peak acceleration at the top of footing 
and shake table for different amplitude of base motions with 

constant frequency of 3.5 Hz. 

Frequency(Hz) Peak Base 
Acceleration(g) 

Peak Transmitted 
Acceleration(g) 

3.5 0.2 0.15 

3.5 0.3 0.23 

3.5 0.4 0.32 

3.5 0.5 0.43 

3.5 0.6 0.48 

3.5 0.7 0.52 
 
 
The shake table test conducted with higher than 50% shredded 
rubber tire in sand shows instability even at very small 
amplitude of base motion. The model footing with 15kg 
surcharge load on top starts to wobble at the very initial stage 
of this test and the test is discontinued. 
 
 
CONCLUSIONS 
 
The sand in the foundation of the model footing is found to be 
ineffective as a base isolator at low amplitude (<0.6g) of base 
motion. However at higher amplitude (> 0.6g) of motion, it is 
quite effective in reducing the motion transmitted to the 
footing. At 0.8g and 1g, the accelerations at the top of the 
model footing show a remarkable decrease and this decrease 
in response is also accompanied by back and forth 
displacement of the footing over the sand foundation. At 1g of 
motion, the amplitude of this displacement is observed to be 
about 4mm. 
 
The shake table tests with the model footing resting on a 
20mm layer of sand and shredded rubber tire show that the 
proportion of shredded rubber tire should be 50% (by weight) 
to yield a significant favorable results. When the proportion of 
the shredded rubber tire is 50%, the response of the model 
footing is found to be significantly less than the motion of the 
foundation and shake table. The displacement of the footing 
during the cyclic motion is found to be increasing with the 
increase in the percentage of shredded rubber tire in the sand. 
When the percentage of shredded rubber is increased beyond 
50%, the model footing is found to wobble (unstable) at 0.3g 
motion. 
 
A base isolating system can be effective in two ways- 1) by 
reducing the input motion that the structure is subjected to, 
and 2) by shifting the predominent frequency of the structure 

from that of its base motion, so that resonance of frequency 
can not be achieved. This paper only addresses the base 
isolation by dampening of the input motion. Since all the input 
motions of the shake table are sinusoidal with a given 
frequency, the shifting of the frequency of the model footing 
during a test could not be studied. It is hoped to study this 
important aspect of the base isolation system in the next phase 
of the study. 
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