
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Conference on Case Histories in 
Geotechnical Engineering 

(2008) - Sixth International Conference on Case 
Histories in Geotechnical Engineering 

13 Aug 2008, 5:15pm - 6:45pm 

Settlement Analysis of Axially Loaded Piles Settlement Analysis of Axially Loaded Piles 

Hoyoung Seo 
Purdue University, West Lafayette, IN 

Monica Prezzi 
Purdue University, West Lafayette, IN 

Rodrigo Salgado 
Purdue University, West Lafayette, IN 

Follow this and additional works at: https://scholarsmine.mst.edu/icchge 

 Part of the Geotechnical Engineering Commons 

Recommended Citation Recommended Citation 
Seo, Hoyoung; Prezzi, Monica; and Salgado, Rodrigo, "Settlement Analysis of Axially Loaded Piles" (2008). 
International Conference on Case Histories in Geotechnical Engineering. 27. 
https://scholarsmine.mst.edu/icchge/6icchge/session_01/27 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/icchge
https://scholarsmine.mst.edu/icchge
https://scholarsmine.mst.edu/icchge/6icchge
https://scholarsmine.mst.edu/icchge/6icchge
https://scholarsmine.mst.edu/icchge?utm_source=scholarsmine.mst.edu%2Ficchge%2F6icchge%2Fsession_01%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=scholarsmine.mst.edu%2Ficchge%2F6icchge%2Fsession_01%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/icchge/6icchge/session_01/27?utm_source=scholarsmine.mst.edu%2Ficchge%2F6icchge%2Fsession_01%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

Paper No. 1.56                                                                                               1 

INTRODUCTION 
 
Pile design has traditionally relied on calculations of ultimate 
resistances reduced by factors of safety that would indirectly 
prevent settlement-based limit states.  While pile design is 
often done without explicit settlement checks, analyses that 
can accurately calculate settlement for a given load will offer 
opportunities for more cost-effective design in the future.  In 
this paper, we will examine the analytical basis for calculating 
the pile head settlement of nondisplacement piles subjected to 
axial loads.  
 
Available settlement analyses either assume that the soil 
resistance can be represented by a series of disjointed springs 
(the spring stiffness is determined through theoretical, 
experimental or empirical means) or that the soil is a 
continuum.  The approach with springs (Seed and Reese 
1957; Coyle and Reese 1966; Murff 1975; Randolph and 
Wroth 1978; Kraft et al. 1981; Armaleh and Desai 1987; 
Kodikara and Johnston 1994; Motta 1994; Guo and Randolph 
1997; Guo 2000) has the advantage that approximate 
analytical or simple numerical solutions of pile settlement can 
be obtained (Randolph and Wroth 1978; Armaleh and Desai 
1987; Motta 1994).  The continuum approach has 
traditionally required expensive numerical techniques, such as 
the boundary integral method, the finite layer method or the 
finite element method, to obtain solutions (Poulos and Davis 
1968, Mattes and Poulos 1969, Butterfield and Banerjee 1971, 
Poulos 1979, Rajapakse 1990, Lee and Small 1991). 
 

Efforts were made over the last decade to solve the problem of 
axially loaded piles in multilayered soil with mathematical 
rigor. Vallabhan and Mustafa (1996), based on the principle of 
minimum total potential energy, proposed a simple closed-
form solution for an axially loaded, nondisplacement pile 
installed in a two-layer elastic soil medium. Lee and Xiao 
(1999) expanded the solution of Vallabhan and Mustafa 
(1996) to multilayered soil and presented semi-analytical 
solutions. Recently, Seo and Prezzi (2007) obtained explicit 
analytical elastic solutions for a pile in multilayered soil.  
The advantage of this continuum-based analysis is that it 
captures the three-dimensional nature of the pile-soil 
interaction and produces the pile load-settlement response in 
seconds; this analysis is detailed next. 
 
 
ANALYSIS 
 
Problem definition and basic assumptions 
 
The analysis considers a single circular pile embedded 
vertically into a multilayered elastic soil deposit (Fig. 1).  
There are altogether N discrete soil layers, and the bottom 
(base) of the pile rests at the interface of the mth and (m+1)th 
layer (m < N).  The pile has a length Lp with a diameter B 
(=2rp, where rp is the pile radius) and is subjected to an axial 
load Qt at the pile head, which is flush with the ground surface.  
A cylindrical coordinate system (r-θ-z) is used.  The z axis 
coincides with the pile axis, and the positive z direction points 
downward. 
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ABSTRACT 
 
In pile design, settlement controls the design in most cases because, by the time a pile has failed in terms of bearing capacity, it is very 
likely that serviceability will have already been compromised.  This notwithstanding, pile foundations are often designed based on 
the calculations of ultimate resistances reduced by factors of safety.  This is in part due to the lack of accessible realistic analyses for 
estimation of settlement, especially for piles installed in layered soil.  This paper presents a new settlement analysis method for 
axially loaded piles in multilayered soil and analyzes two case histories for which load tests were performed on nondisplacement piles. 
The analysis follows from the solution of the differential equations governing the displacements of the pile-soil system obtained using 
variational principles.  The input parameters needed for the analysis are only the pile geometry and the elastic constants of the soil 
and pile.  A user-friendly spreadsheet program (ALPAXL) was developed to facilitate the use of the analysis. 
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Fig. 1. Geometry of the pile-soil system 
 

Hi denotes the vertical distance from the ground surface to the 
bottom of any soil layer i (the subscript i denotes the ith layer); 
thus, the thickness of layer i is given by Hi – Hi-1 with H0 = 0. 
All soil layers extend to infinity in the horizontal direction, 
and the bottom (Nth) layer extends to infinity downward in the 
vertical direction.  The soil medium is assumed to be elastic 
and isotropic, homogeneous within each layer, with elastic 
properties described by Lame’s constants λsi and Gsi.  The 
pile is assumed to behave as an elastic column (i.e., an elastic 
axial compression element) with Young’s modulus Ep.  There 
is no slippage or separation between the pile and the 
surrounding soil or between the soil layers.  The horizontal 
soil displacements in the soil mass due to the axial load Qt are 
neglected in the analysis because, in general, these are very 
small compared with the vertical soil displacements. 
 
 
Soil displacement 
 
The vertical displacement uz at any point within the soil mass 
is assumed to be a product of two separable variables and is 
represented as follows: 
 

uz(r,z) = φ(r)w(z)                 (1) 
 
where w(z) is the axial pile displacement function, and φ(r) is 
a dimensionless soil displacement decay function varying 
along r; this function describes the decrease in the soil 
displacement with increasing horizontal distance from the pile 
axis.  The φ(r) is assumed to be equal to one at the pile-soil 
interface (r = rp).  This ensures proper pile-soil contact.  
Furthermore, the displacements in the soil must vanish at 
infinite horizontal distances from the pile; therefore, φ(r) is 
assumed to be zero at r = ∞. 

 
Principle of minimum potential energy 
 
With the assumed displacement fields of Eq. (1), strains are 
calculated and subsequently related to stresses using elasticity 
theory.  The soil potential energy density is expressed in 
terms of the elastic constants and strains.  Since the strains 
can be expressed in terms of the displacement functions w(z) 
and φ(r), the expression of the potential energy Π contains 
these functions (Seo and Prezzi 2007).  Applying the 
principle of minimum potential energy (according to which the 
first variation δΠ of the potential energy is equal to 0 at 
equilibrium) yields the governing differential equations. 
 
 
Soil displacement decay function 
 
The governing differential equation for the soil displacement 
decay function is obtained by taking the variation of φ and 
then equating the coefficients of these variations to zero: 
 

22
r

2

d 1 d 0
dr r dr r

γφ φ ⎛ ⎞+ − φ =⎜ ⎟
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              (2) 

 
where 

sr

p s

nγ =
r m

                     (3) 

 
and ms and ns are given by: 
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Solution of the differential equation of φ gives (Seo and Prezzi 
2007): 
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          (6) 

 
where K0(·) is the modified Bessel function of the second kind 
of zero order. 
 
 
Pile displacement 
 
The form of the differential equation governing pile 
displacement w(z) is given as follows: 
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where Ai = Ap; Ei = Ep for i = 1… m; Ei = λsi + 2Gsi for i = 
m+1… N; and 
 

[ ] [ ]
[ ]

2 22
1 r r 0 r r 1 r

i si 2
0 r

K (γ ) γ K (γ ) (γ 1) K (γ )
k = πG

K (γ )

+ − +      (8) 

[ ] [ ]
[ ]

2 2
1 r 0 r2

i p si si 2
0 r

K (γ ) K (γ )1t = πr (λ 2G )
2 K (γ )

−
+        (9) 

 
where K1(·) is the modified Bessel function of the second kind 
of first order.  The constants ki and ti represent the shear and 
compressive resistances offered by the soil mass against pile 
settlement. The general solution of Eq. (7), which is a second-
order linear differential equation, is given by: 
 

i iζ z ζ z
i i iw (z) = B e C e−+                 (10) 

 
where ζi = [ki/(EiAi+2ti)]0.5 and Bi and Ci are integration 
constants.  The axial force Qi(z) in the pile shaft at a depth z 
in the ith layer is obtained from: 
 

i iζ z ζ zi
i i i i i i i i

dwQ (z) = (E A 2t ) = a B e a C e
dz

−− + − +        (11) 

 
where ai = ζi(EiAi+2ti) = [ki(EiAi+2ti)]0.5.  The integration 
constants Bi and Ci can be determined analytically from the 
boundary conditions (Seo and Prezzi 2007). 
 
 
Modification of soil moduli 
 
One of the assumptions of the analysis described above is that 
there is zero horizontal displacement in the soil.  Therefore, 
because of this assumption, the analysis predicts a stiffer pile 
response than is expected in reality. In Eqs. (5) and (9), the 
term (λsi + 2Gsi) represents the soil constrained modulus, 
which approaches infinity as the soil Poisson’s ratio 
approaches 0.5.  This creates an artificial stiffness that can be 
eliminated by using a modified value for the shear modulus (a 
similar procedure was proposed by Randolph (1981) for 
laterally loaded piles and Basu et al. (2007) for axially loaded 
piles with rectangular cross section).  First, we make λsi = 
Esiνsi/[(1+νsi)(1-2νsi)], where Esi is the soil Young’s modulus of 
the ith layer, equal to zero (which is equivalent to making the 
soil Poisson’s ratio νsi = 0).  We then replace Gsi by a 
modified shear modulus Gsi

* in the analysis.  Finally, we 
match the results for the pile response obtained from our 
analysis with those obtained from finite element analysis 
(FEA) performed for identical pile and soil conditions using 

ABAQUS.  The following expression for Gsi
*:results: 

 
( )* 2

si si siG 0.75G 1 1.25ν= +             (12) 

 
 
Iterative solution scheme 
 
The γr parameter in Eqs. (8) and (9), which depends on the pile 
settlement w and its derivative dw/dz (Eqs. (4) and (5)), must 
be determined before we calculate the parameters ki and ti, 
which, in turn, are needed in the solution of Eq. (7) for the pile 
displacement.  Hence, an iterative solution scheme is 
required.  In the first iteration, an initial value is assumed for 
γr, and the pile displacement and its derivative (obtained from 
the axial force) are calculated.  At the end of the iteration, a 
new γr value is obtained using the calculated pile displacement 
and the values of its derivative; the calculated value of γr is 
compared with the assumed initial value.  If the difference is 
greater than the prescribed tolerance, iterations are continued, 
with the calculated value of  γr taken as the new input in the 
calculations.   Successive iterations are continued until the 
value of γr obtained from two consecutive iterations falls 
below the prescribed limit. This iterative solution scheme is 
provided in the form of a flow chart in Fig. 2. 
 

Assume initial value for γr (=γr,old)

Calculate ki, ti, ζi, and ai

Input Lp, B, Ep, Hi, m, N, Gsi, νsi,  Qt

Calculate Bi and Ci

Calculate ms and ns

Calculate w(z) and Q(z)

Calculate γr,new

γr,old = γr,new

No

Yes
Save all valuesSave all values

|γr,old – γr,new| < 10-5

 

Fig. 2. Flowchart for the iterative procedure 
 
 
Development of a user-friendly program (ALPAXL) 
 
To facilitate the use of our analysis, a user-friendly 
spreadsheet program (ALPAXL) was developed.  This 
program is based on the solution scheme presented above and 
uses built-in functions of EXCEL.  ALPAXL provides the 
results of the analysis, the deformed configuration of the pile-
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soil system and the load-settlement curve in seconds.  Figure 
3 shows screenshots of ALPAXL.  It can be downloaded at 
http://cobweb.ecn.purdue.edu/~mprezzi. 
 

 

(a) 

 

(b) 
Fig. 3. Screenshots of the spreadsheet program ALPAXL: (a) 
input section; (b) output section 
 
 
RESULTS 
 
 
Comparison with previous pile settlement studies 
 
We compare the results from our study with numerical or 
analytical solutions available in the literature (Poulos and 
Davis 1980; Fleming et al. 1992; Mylonakis 2001). Figure 4 
shows normalized pile head stiffness KN (KN = Qt/(wtEpB)), 
where wt = settlement at the pile head) as a function of 
normalized pile length (Lp/B) for an ideal end-bearing pile.  
The pile-soil modulus ratio Ep/Gs is equal to 3000.  The pile 
base is assumed to rest on a rigid layer; the soil above the rigid 
layer is homogeneous with a shear modulus Gs and a Poisson’s 

ratio νs = 0.5.  The curves shown in Fig. 4 were obtained 
with the analysis presented in this paper and from previous 
studies by Poulos and Davis (1980), Fleming et al. (1992) and 
Mylonakis (2001).  Fleming et al. (1992) did not specifically 
address the case of ideal end-bearing piles. However, by 
considering the shear modulus below the base to tend to 
infinity in the equation for the magical radius rm (Randolph 
and Wroth 1978), the results in Fig. 4 can be obtained.  
Figure 4 shows that, for Ep/Gs = 3000, the normalized pile 
head stiffness decreases with increasing Lp/B and that the 
results of the analysis presented in this paper are in good 
agreement with those from the previous studies. 
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Fig. 4. Comparison of normalized pile head stiffness versus 
normalized pile length of ideal end-bearing piles (Ep/Gs = 

3000) 
 
 
CASE STUDIES 
 
We compare the results of our analysis with two case studies 
reported in the literature. The analysis was carried out using 
ALPAXL. 
 
 
Micropile (Italy) 
 
Russo (2004) presented a case history on micropiles used for 
underpinning a historical building in Naples, Italy.  The 
micropiles were installed in a complex soil profile (there are 
thick layers of man-made materials accumulated over 
millennia at the site). The soil profile and representative values 
of cone resistance qc for each soil layer are shown in Fig. 5. 
 
According to Russo (2004), the micropile installation steps 
were: 1) drilling of a 200-mm-diameter hole using a 
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continuous-flight auger, 2) inserting a steel pipe equipped with 
injection valves, 3) filling the annular space between the pipe 
and the soil with grout, 4) grouting the pile shaft through each 
valve using a double packer, and 5) filling the steel pipe with 
grout.  A micropile (0.2m in diameter and 19m in length) was 
load-tested.  Two anchor piles were used to provide reaction 
to the loading frame, and the compressive load was applied on 
the test pile with a hydraulic jack.  The vertical displacement 
of the pile head was measured by LVDT's, and the axial strain 
along the shaft was measured by vibrating-wire strain gages. 
 

12 m

21 m

Ep = 27GPa
B = 0.2m

Ancient made ground
qc = 6.5 MPa

Cohesionless pozzolana
qc = 7.1 MPa

Depth (m)

19 m

Recent made ground
qc = 3.2 MPa

 

Fig. 5.  Soil profile at the micropile test site. 
 
Russo (2004) compared the pile load test results with those 
obtained from finite element analysis. The Young’s moduli of 
each soil layer were back-calculated from the FEA.  
Although Russo (2004) did not provide information on the 
geometry and properties of the steel pipe left inside the 
micropile, its outer diameter and inner diameter were assumed 
to be 33.4mm and 25.4mm, respectively.  Accordingly, 
assuming that the Young’s moduli of the steel and grout are 
200GPa and 25GPa, the equivalent Young’s modulus of the 
composite steel-grout cross section is calculated to be 
approximately 27GPa. Table 1 shows the input values used in 
the analysis. We used four soil layers in the analysis with the 
bottom of the second layer flush with the base of the pile. The 
Poisson’s ratio was assumed to be 0.3 for all the soil layers. 
 
Table 1. Input values for the analysis of the microplile load-
tested in Italy (B = 0.2m; Lp = 19m; Ep = 27GPa) 
 

Layer Hi (m) Esi (MPa) νsi 
1 12 50 0.3 
2 19 117 0.3 
3 21 117 0.3 
4 50 138 0.3 

 
Figure 6 shows both the measured and calculated load versus 
settlement curves.  Figure 7 shows measured and calculated 
load-transfer curves for applied loads equal to 51, 253, and 
542kN.  These figures show that there is very good 

agreement between the calculated and measured values, 
although the calculated values for the pile head settlement 
become smaller than the measured values for loads greater 
than about 400kN. 

8

6

4

2

0

Se
ttl

em
en

t (
m

m
)

0 100 200 300 400 500 600

Load (kN)

This study
Measured

 
Fig. 6. Load-Displacement curve at the pile head (Italy case) 
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Fig. 7. Load-transfer curves for applied loads equal to 51, 253 

and 542 kN (Italy case) 
 
Figure 8 shows the calculated vertical soil displacements at the 
level of the pile head and base. There is practically no 
settlement at the level of the pile base for a pile head 
settlement of 2% of the pile diameter because of the high 
compressibility of the micropile because of its high-
slenderness ratio. 
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Fig. 8. Calculated vertical soil displacement as a function of 
radial distance from the pile axis at the level of the pile head 

and base (Italy case) 
 
 
Drilled shaft in rock (Singapore) 
 
Chang and Wong (1987) reported the results of instrumented 
load tests on drilled shafts installed in weathered sedimentary 
rocks of the Jurong Formation in Singapore. The test pile J2 
(diameter B = 1.0m) was located next to a river.  The top two 
meters of the soil consisted of a soft silty clay (Navg = 2, where 
Navg represents the average of the SPT blow counts for the 
layer), which was underlain by a soft, peaty clay (Navg = 2.5) 
layer extending down to a depth of 14.5m.  The pile was cast 
in a cased hole drilled through the soft clay layers and 
embedded in a weak, highly weathered shale (Navg = 100 ~ 
150). The pile extended down to a depth of 28m below the 
ground surface. Figure 9 shows the pile and subsurface profile. 
The pile was instrumented with six pairs of vibrating-wire 
strain gages.  The representative Young’s modulus of the pile 
was 52 MPa.  The pile was designed to carry an axial load of 
3500 kN and tested to 2.5 times the design load two weeks 
after its installation using the slow maintained-load test 
method. 
 
The elastic properties of the soil and rock layers were not 
available in the original paper by Chang and Wong (1987).  
For the rock layers, input values for the Young’s moduli were 
obtained from Kim et al. (1999) since they reanalyzed the pile 
load test results reported by Chang and Wong (1987) to 
develop load-transfer functions for drilled shafts installed in 
weathered rock.  The Young’s modulus values of the upper 
and lower shale used in their analysis were 3000 and 2000 
MPa, respectively (Kim et al. 1999).  For the clay layers, the 
Young’s modulus was estimated from the undrained shear 

strength su, which, in turn, was estimated from the NSPT values 
following Stroud (1974); the estimated su for the upper and 
lower clay layers were 12 and 15 kPa, respectively.  
According to Calanan and Kulhawy (1985), values for the 
Es/su ratio generally range between 200 and 900, with an 
average value of 500.  Using Es/su=500, Es values for the 
upper and lower clay layers were determined to be 6 and 7.5 
MPa, respectively. The Poisson’s ratio was assumed to be 0.5 
for the clay layers and 0.15 for the rock layers. The input 
values used in the analysis are summarized in Table 2. 
 

14.5 m

20 m

Depth (m)

28 m

Soft Silty Clay
Navg = 2

B = 1 m
Ep = 52 GPa

Soft Peaty Clay
Navg = 2.5

Weak Highly Weathered Shale
Navg = 150

Weak Highly Weathered Shale
Navg = 100

2 m

 
Fig. 9. Soil profile and test pile (Singapore case) 

 
Table 2. Input values for the analysis of the drilled shaft J2 
load-tested in Singapore (B = 1.0m; Lp = 28m; Ep = 52GPa) 
 

Layer Hi (m) Esi (MPa) νsi 
1 2 6 0.5 
2 14.5 7.5 0.5 
3 20 3000 0.15 
4 28 2000 0.15 
5 60 2000 0.15 

 
Figure 10 shows the predicted and measured load-settlement 
curves for the test pile.  The results from our analysis are in 
good agreement with the measured data. In particular, at the 
design load level (Qt = 3500kN), the calculated settlement was 
almost the same as the measured value.  Figure 11 shows the 
predicted and measured load-transfer curves. The results from 
both the load test and our analysis indicate that most of the 
applied load was carried by shaft friction along the pile-rock 
interface.  Although the load-transfer curves obtained from 
the analysis deviates from the measured data as the load 
increases, overall there is reasonable agreement. 
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Fig. 10. Load-pile head settlement curve (Singapore case) 
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Fig. 11. Predicted and measured load-transfer curves 

(Singapore case) 
 
 
SUMMARY AND CONCLUSIONS 
 
Pile design has relied on calculations of ultimate resistances 
reduced by factors of safety that would indirectly prevent 
settlement-based limit states.  This is in part because of the 
absence of realistic analysis tools allowing calculation of 
settlement given an axial load on the pile.  Analyses that can 
accurately calculate settlement for a given load offer an 
opportunity for more cost-effective design in the future. 

 
In this paper, a new analysis to estimate pile settlement in 
multilayered soil was presented. This analysis is based on the 
solution of the governing differential equations for pile and 
soil displacements obtained using the principle of minimum 
potential energy and calculus of variations.  The analysis 
produces pile displacement and axial force as functions of 
depth and vertical soil displacement as a function of the 
horizontal distance from the center of the pile if the following 
are known: the pile cross-sectional dimensions and length, 
thicknesses of the soil layers, Young’s modulus of the pile 
material, the Young’s moduli and Poisson’s ratios (or any 
elastic pairs) of the soils in the various layers, and the 
magnitude of the applied axial force.  A user-friendly 
spreadsheet program (ALPAXL) was developed to facilitate 
the use of the analysis. 
 
Comparisons were made with the numerical or analytical 
solutions available in the literature.  The results from our 
analyses for end-bearing piles showed good agreement with 
those from previous studies.  Furthermore, two case histories 
were analyzed.  The predicted pile head settlement and load-
transfer behavior compared well with the measured data. 
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