Georgia Southern University Digital Commons@Georgia Southern

Interdisciplinary STEM Teaching & Learning Conference

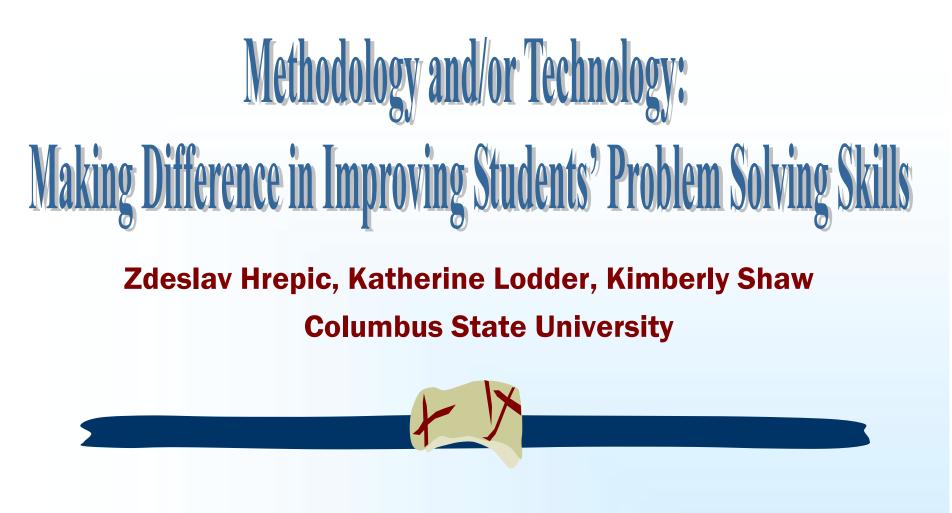
Mar 9th, 10:00 AM - 10:20 AM

Methodology and/or Technology: Making Difference in Improving Students' Problem Solving Skills

Zdeslav Hrepic *Columbus State University*

Katherine Lodder *Columbus State University*

Kimberly Shaw Columbus State University


Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem

Part of the <u>Curriculum and Instruction Commons</u>, <u>Educational Methods Commons</u>, <u>Higher</u> <u>Education Commons</u>, <u>Instructional Media Design Commons</u>, and the <u>Science and Mathematics</u> <u>Education Commons</u>

Recommended Citation

Hrepic, Zdeslav; Lodder, Katherine; and Shaw, Kimberly, "Methodology and/or Technology: Making Difference in Improving Students' Problem Solving Skills" (2012). *Interdisciplinary STEM Teaching & Learning Conference*. 61. https://digitalcommons.georgiasouthern.edu/stem/2012/2012/61

This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Georgia Scholarship of STEM Teaching and Learning March 2012

Georgia Southern University

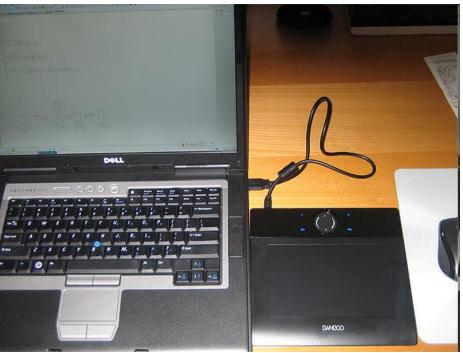
Motivation Eh, what's down Doc?

Session Goals

1. DEMO

to demonstrate the instructor-student classroom interaction dynamics enabled or facilitated by
DyKnow software and pen-input computers.

2. SELECTED RESEACH


•to present selected research findings associated with student learning with this technology.

Pen-Input Computing

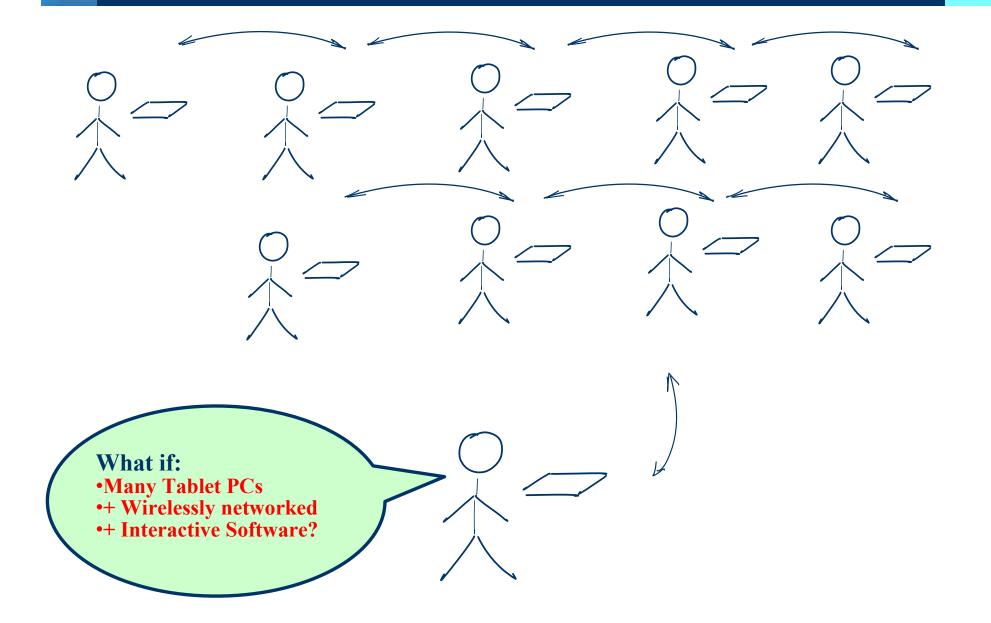
Tablet PC

Laptop w/ Wacom Bamboo

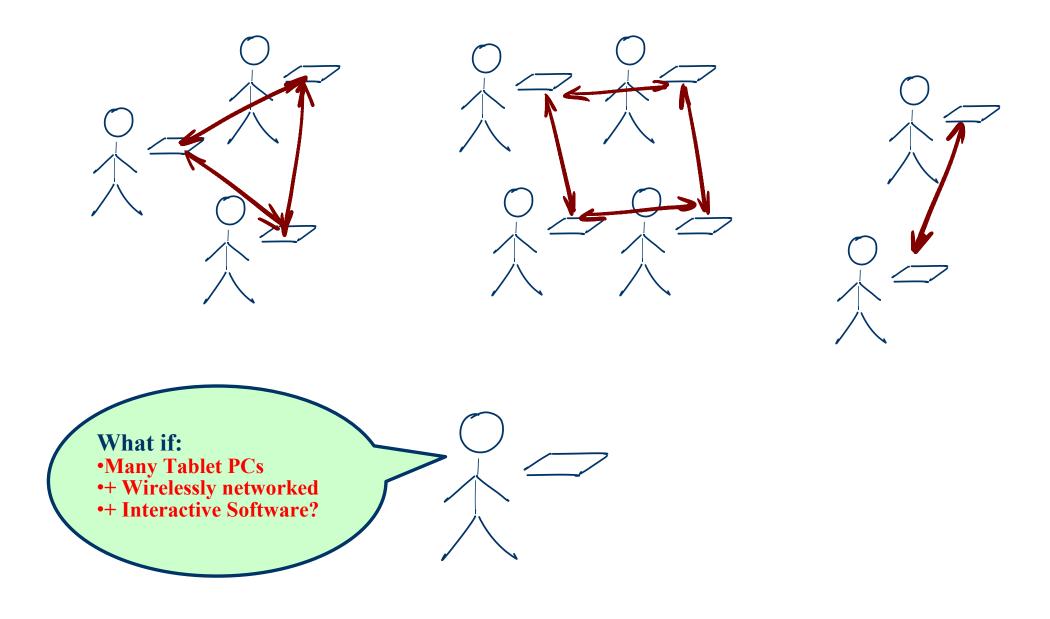
http://www.adopenstatic.com/cs/blogs/ken/archive/2007/11/28/14503.aspx

+ Slate Devices / iPad

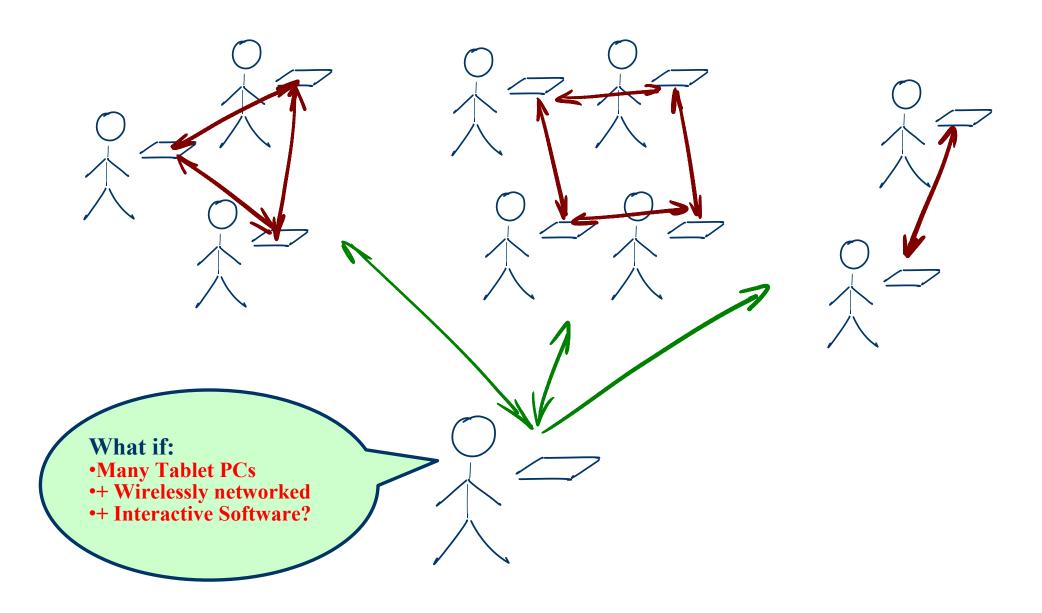
Pen in STEM

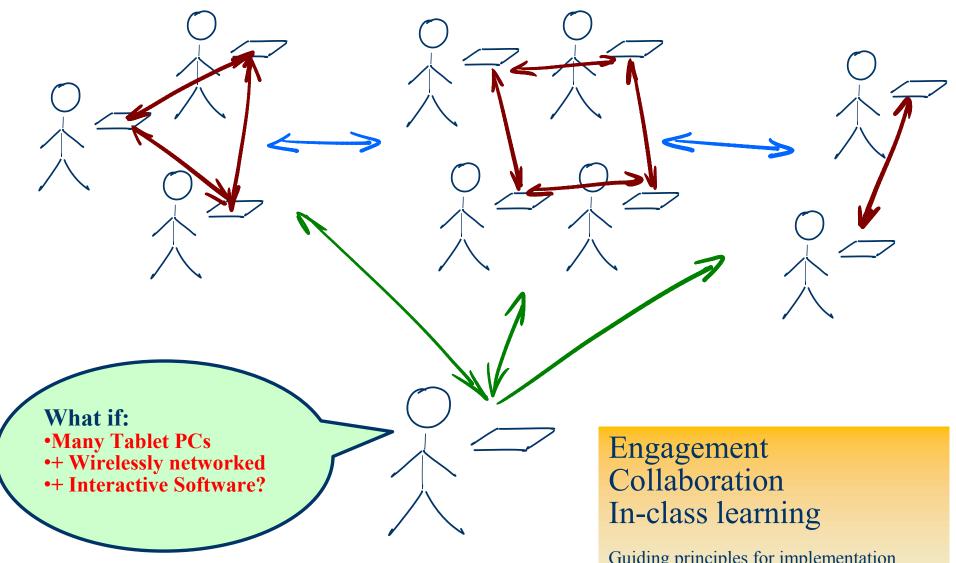

$$\frac{dx}{2|x^{3}+t|x^{2}} = \begin{bmatrix} 4x \\ x + e^{t} \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ 4x \\ x + e^{t} \\ x + e^{t} \\ x + e^{t} \end{bmatrix} = \begin{bmatrix} 4x \\ 4x \\ 4x \\ x + e^{t} \\ x + e^$$

Clock 2 at
$$X_{2}=L$$
; sharts at $t_{2}=\frac{L}{2c}$
D: $t_{1}' = \frac{t_{1}}{\sqrt{\frac{u^{2}}{C^{2}}}} = y\left(\frac{L}{2c}-0\right) = y \cdot \frac{L}{2c}$
 $t_{2}' = \frac{t_{2}-\frac{u^{2}}{C^{2}}}{\sqrt{1-\frac{u^{2}}{C^{2}}}} = y\left(\frac{L}{2c}-\frac{U}{c^{2}}\cdot L\right)$
 $\delta t' = t_{1}' - t_{2}' = y \cdot \frac{UL}{c^{2}}$

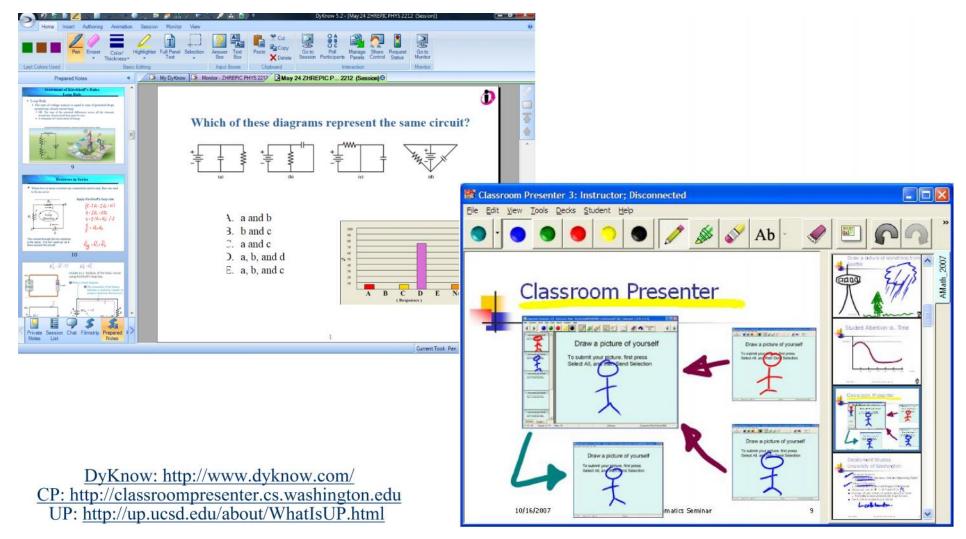

• Eg: A Young's interference experiment is performed with blue-green argon laser light. The separation between the slits is 0.500 mm, and the interference pattern on a screen 3.30m away shows the first maximum 3.40mm from the center of the pattern. What is the wavelength of argon laser light?

 $d = 0.500 \, \text{mm}$ Better: D = 3.30mFor mex: dsink = n R J_1Bright = 3.4 mm (M=1) $\mathcal{I} = \frac{dsin\mathcal{U}}{n} = \frac{0.500 \times 10^{-3} \text{ sin } \mathcal{U}}{1}$ $\eta = \gamma$ $J_{bright} = \frac{\mathcal{R}}{d} m$ l from $ton Q = \frac{\gamma}{D} = \frac{3.4 \times 10^{-9} \text{ m}}{3.30 \text{ m}}$ $m = 0, \pm 1, \pm 2$ $\lambda = \frac{y_m d}{m n} = 515 nm$

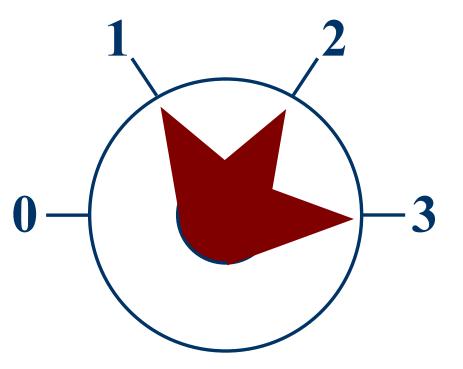

Above "Ordinary" Usage


Integrating Engagement, Collaboration and IN class learning

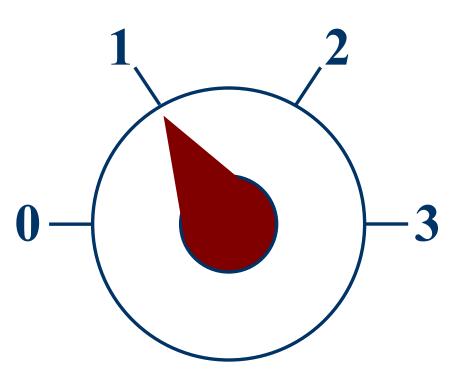
Integrating Engagement, Collaboration and IN class learning


Integrating Engagement, Collaboration and IN class learning

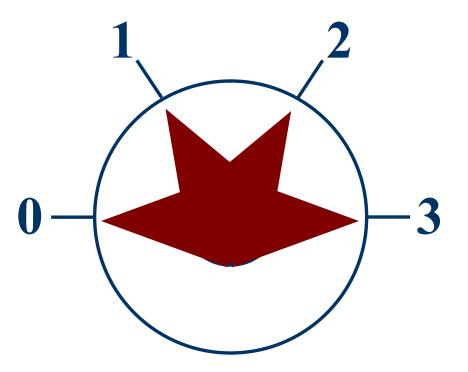
Guiding principles for implementation (2005)


Interactive Software Solutions

DyKnow; Classroom Presenter (Ubiquitous presenter)


Demo: DyKnow 3 levels above "ordinary Tablet usage"

- 0 -Tablet usage baseline
- 1 Step 1 up: New dynamics of the note taking
- 2 Step 2 up: Multiple channels of real-time feedback
- **3 Step 3 up:** All in control: Students in charge of the teaching/learning game
- Synergy of 1 & 2 & 3

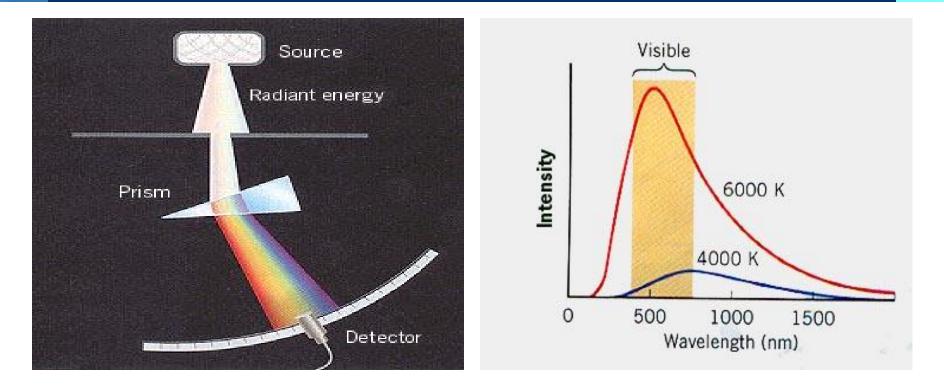

DyKnow – The solution found: 3 levels above "ordinary Tablet usage"

- 0 -Tablet usage baseline
- 1 Step 1 up: New dynamics of the note taking
- 2 Step 2 up: Multiple channels of real-time feedback
- **3 Step 3 up:** All in control: Students in charge of the teaching/learning game
- Synergy of 1 & 2 & 3

DyKnow – The solution found: 3 levels above "ordinary Tablet usage"

- 0 -Tablet usage baseline
- 1 Step 1 up: New dynamics of the note taking
- 2 Step 2 up: Multiple channels of real-time feedback
- **3 Step 3 up:** All in control: Students in charge of the teaching/learning game
- Synergy of 1 & 2 & 3

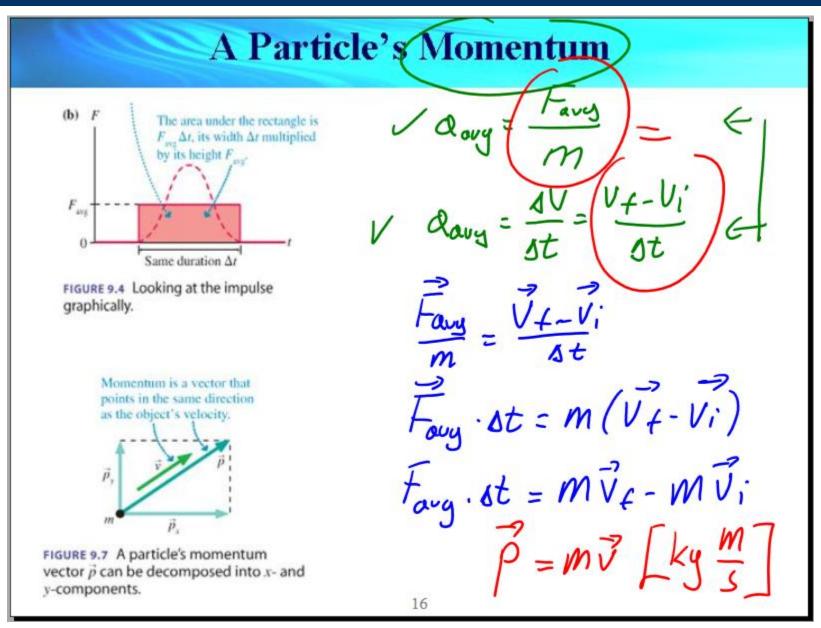
Usernames: demo1 ... demo7


6	2821	<u>/</u>) =			DyKnow	5.2 - [My DyKnow]				>
	Home Insert	Authoring Animation	View				~			
			1 T				\rightarrow	Cut Copy		
	Pen	Eraser Color/	Highlighter Full Panel		Line Rectand	le Straight Table /	Arrow Circle	Paste X Delete		
Las	t Colors Used		= Editing	Input Boxes		Shapes		Clipboard		
1	My DyKnow	Student Intro Notebool	k 5.2 🖸 02 DyKnow	Part						
M	Y DYKNOW	New Notebook Op	en Notebook		Help	8				
						Sign On				
				User	D					
				Pass						
						Sign On				
				New Us	a –	Communication Settings				
				Dogg	uord.					
	Password:									
			Chec	k Comi	nunic	ation s	settir	ησ.		
								\mathbf{U}		
		dvkn	OW: //	wdyn	00.11	lumh	USS	tate.e	edu	

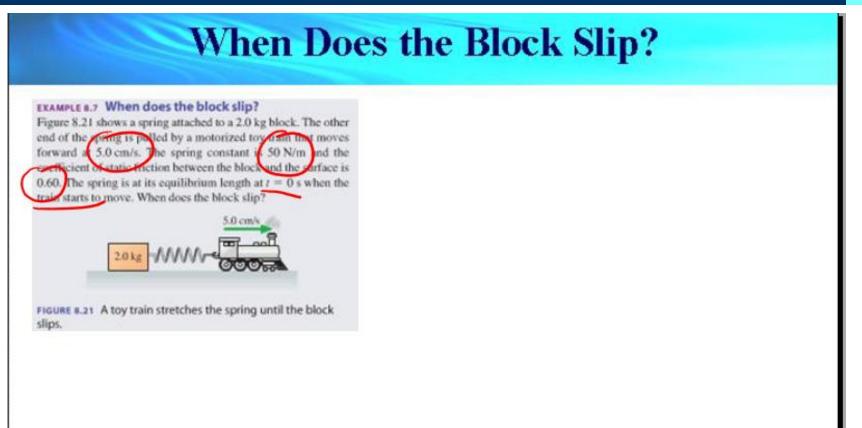
Join session	
DyKnow 5.2 - [My DyKnow]	
Home Insert Authoring Animation Session View	0
Pen Eraser Color/ Highlighter Full Panel Selection Answer Text Paste Submit Replay Find Last Colors Used Basic Editing Input Boxes Clipboard Participant Tools	
Student Intro Notebook 5.7 My DyKnow 3 Mar 12 Auburn DyKnow Class 2 02 DyKnow Part	
MY DYKNOW New Notebook Open Notebook Current Classee Previous Classe Offered Classes Auburn DyKnow Class Instructional Technology In Session Join Session Join Session Student Resource Page DyKnow EULA	
	Current Tool: Pen

Step 1 above ordinary: Note Taking (Home Tab)

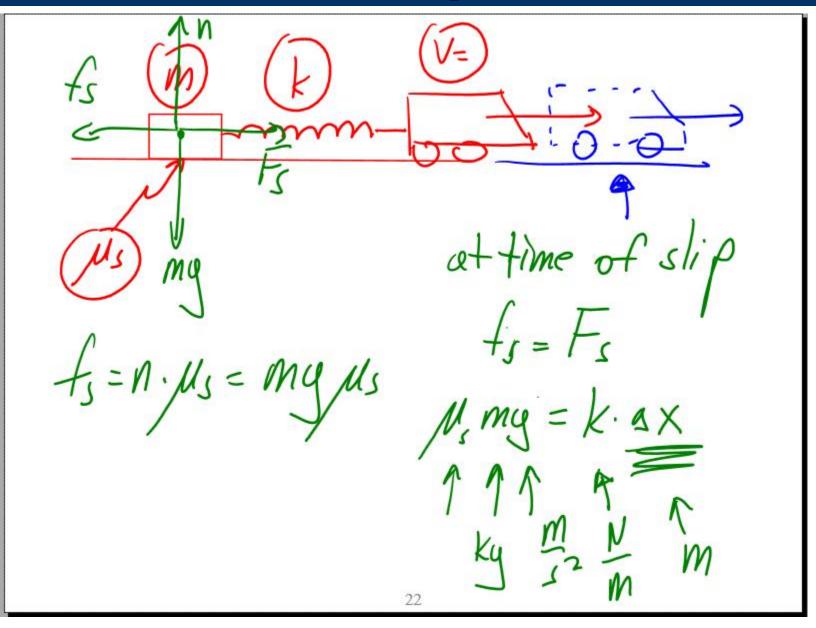
The Radiation Spectrum from Hot Objects

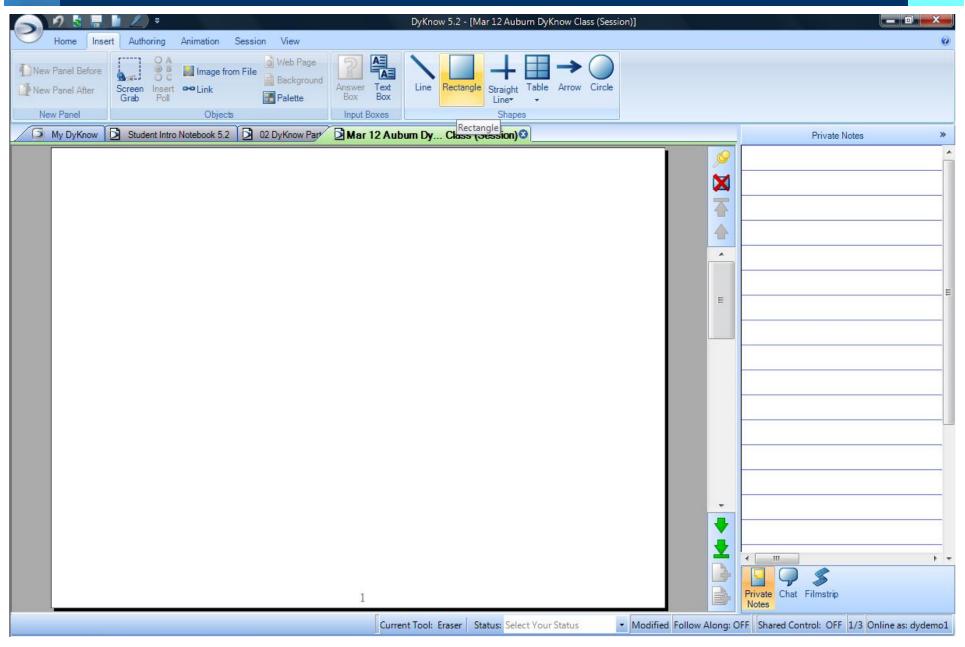


- Prism disperses


 electromagnetic energy into
 its component parts.
- Spectrum of wavelengths emitted by bodies at different temperatures

http://sol.sci.uop.edu/~jfalward/particlesandwaves/particlesandwaves.html


Feature set 1: New dynamics of the note taking Content Annotations

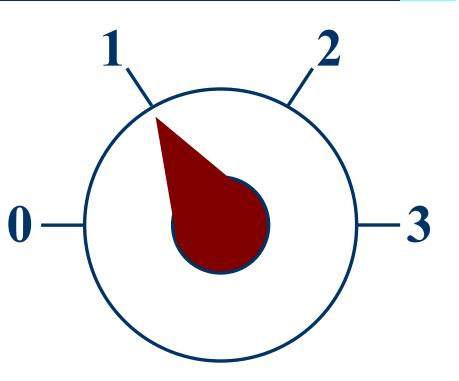

Feature set 1: New dynamics of the note taking Problem Solving

New dynamics of the note taking Problem Solving - Record

Feature set 1: Note Taking fancy tools (Insert Tab and other Tabs)

Postulating basic form of free particle de Broglie wave

$$(f(x,t) = A \sin(kx - \omega t))$$
 $k = \frac{25i}{2}$, $\omega = 25ii$
 \Rightarrow representing wave of amplitude A traveling in +x dir


Equivalent to
$$y(x,t) = A \sin(kx - \omega t) - string$$

 $\vec{E}(x,t) = \vec{E}_0 \sin(kx - \omega t) - \vec{E}_0 t \in HW$
 $\vec{B}(x,t) = \vec{B}_0 \sin(kx - \omega t) \rightarrow \vec{B}_0 t \in HW$

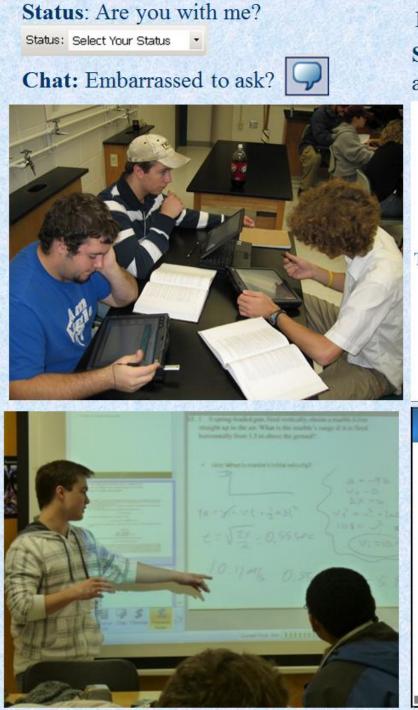
Consider time independent, stationary cose:

$$\Psi(x) = \Psi(x, t = 0)$$

 $\Psi(x) = A \sin kx$

Benefits of the new dynamics of the note taking

- Old dilemma resolved: Can have both: Notes + Understanding
- Time saving
- Accuracy
- Interaction/Discussion
- Monitoring
- Display of Students' slides



Other advantages when compared with Tablets + PowerPoint:

- Students' notes synchronized with instructor's: (all on same page & no copying)
- No double posting (before and after class)
- Playback slide problem solving gem
- Synchronization (On / Off option)

Step 2

of Multiple, distinctly different channels Real-time feedback

Pooling: Embedded Clickers Slide submission: Open-ended questions and numerical problems E Plane of charge Cross section of The total electric flux through this box is A. $6 \text{ Nm}^2/\text{C}$. 3. $4 \text{ Nm}^2/\text{C}$. C. 2 Nm²/C. $2.1 \text{ Nm}^2/\text{C}.$ E. $0 \text{ Nm}^2/\text{C}$. B C D N/A A Example (text problem 21.10) A hair dryer has a power rating of 1200 W at 120 V rms. Assume the hair dryer is the only resistance in the circuit. (a) What is the resistance of the heating element? (b) What is the rms current drawn by the hair dryer? (c) What is the maximum instantaneous power that the resistance must withstand? a) VERS=120V PAV = JEMS · VEMS P= 1200W JEMS = P VEMS = 1200W = 10 Amps PAV = JEMS = P VEMS = 1200W = 10 Amps PAV = JEMS 2 R => R = PAV = 1200W = [2.0] JEMS = P VEMS = 1200W = 10 A) Pmax = ImVm = Irms 12 · Vrmsv2 = 10A·52·120V. 52 = 2400 W

Step 2 up from ordinary: Multiple channels of real-time feedback

• **Status:** Are you with me?

Status: Select Your Status

http://www.youtube.com/watch?v=s2e_QL-QHpw

Step 2 up from ordinary: Multiple channels of real-time feedback

• **Status:** Are you with me?

Status: Select Your Status

• **Chat:** Embarrassed to ask?

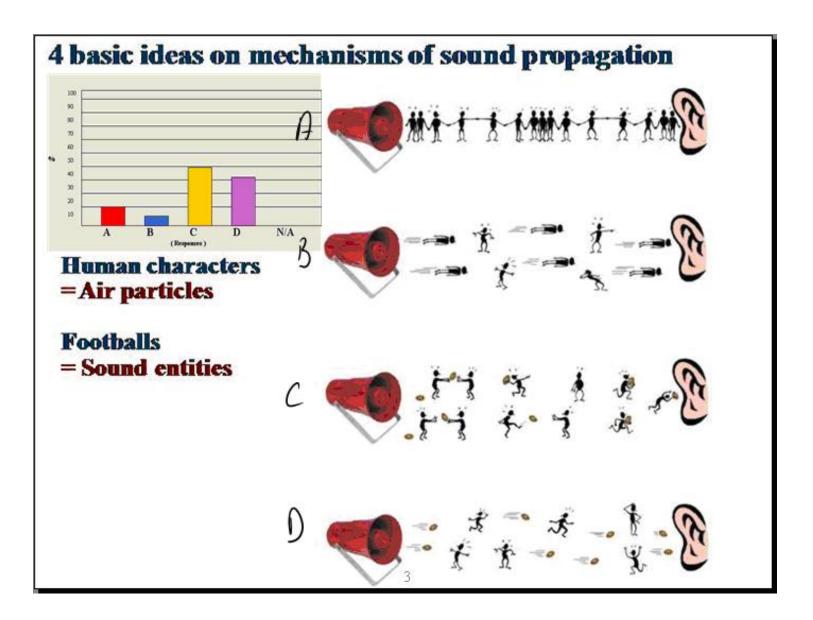
Channels of real-time feedback

• **Status:** Are you with me?

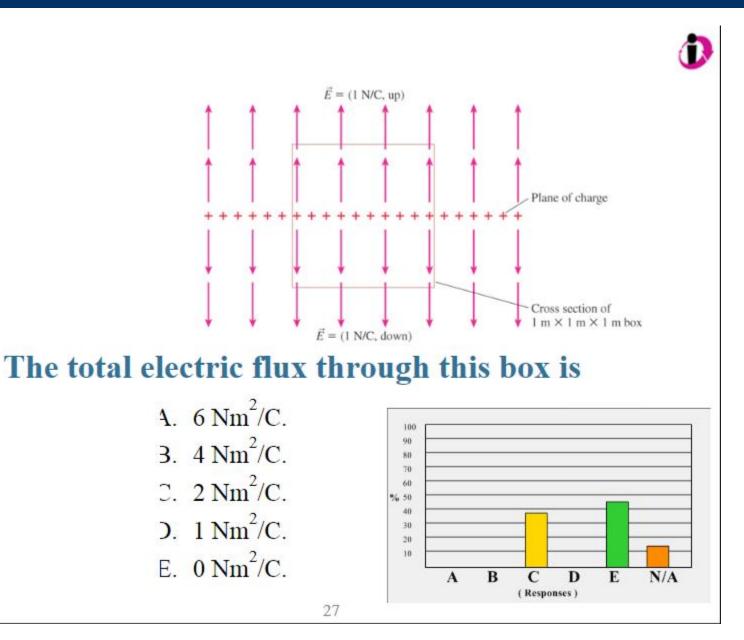
Status: Select Your Status

• **Chat:** Embarrassed to ask?

• **Pooling:** Embedded Clickers



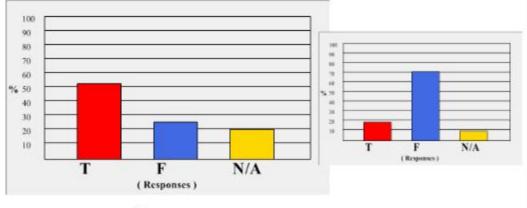
Quiz


DyKnow is a:

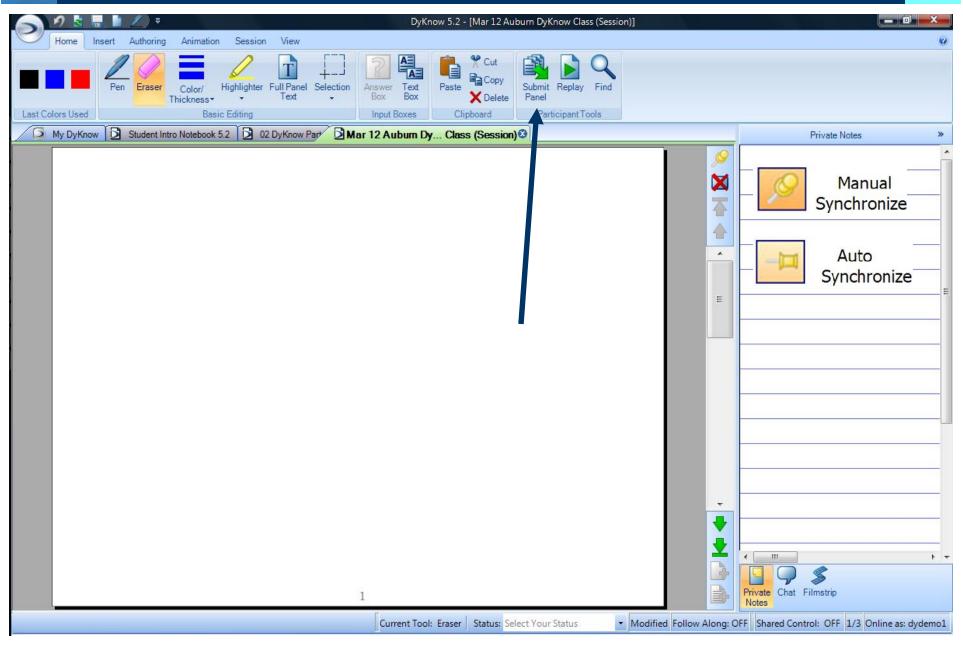
- a) Hair dying method
- b) Washer/Drier combo
- c) Software for interactive learning

A multiple-choice question and obtained distribution of students answers incorporated into the panel

A multiple-choice question and obtained distribution of students answers incorporated into the panel



Multiple channels of real-time feedback Pooling


Aristotle on Motion

- Any object in motion on earth requires a force to keep it going."
 - (The only exceptions were objects that were returning to their natural positions, such as a rock that is made of earth, falling out of air to its lower natural position.)

True False

Step 2 up from ordinary: Multiple channels of real-time feedback

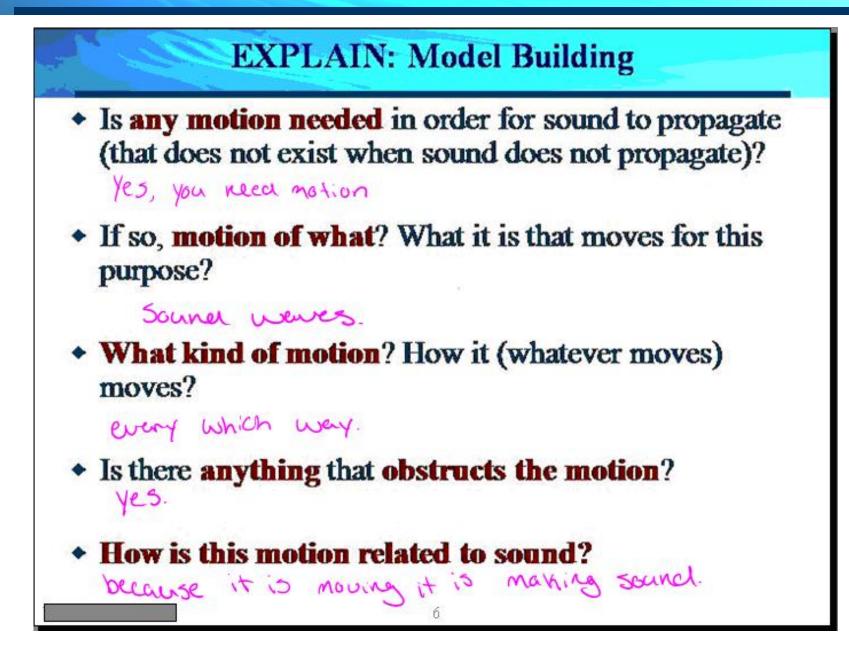
Step 2 up from ordinary: Multiple channels of real-time feedback

• **Status:** Are you with me?

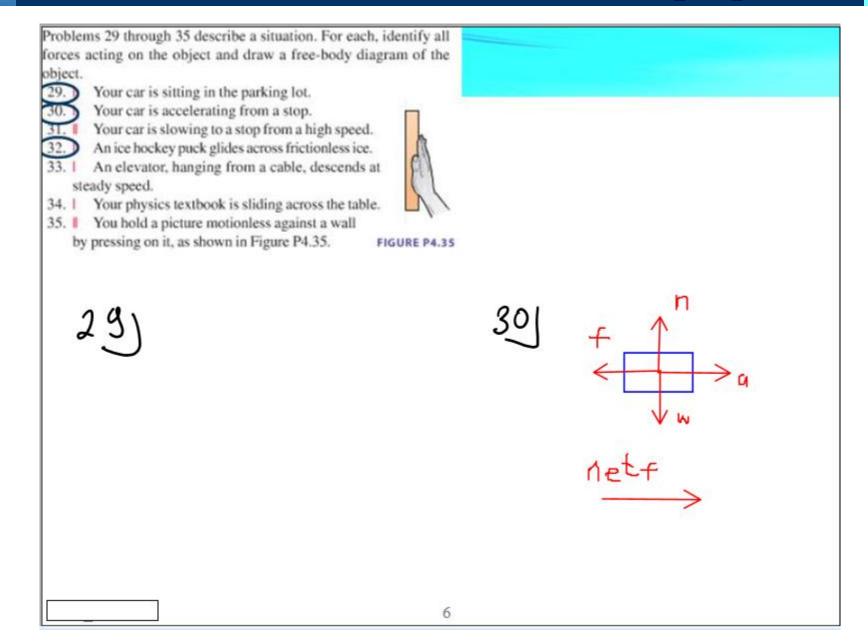
Status: Select Your Status

• **Chat:** Embarrassed to ask?

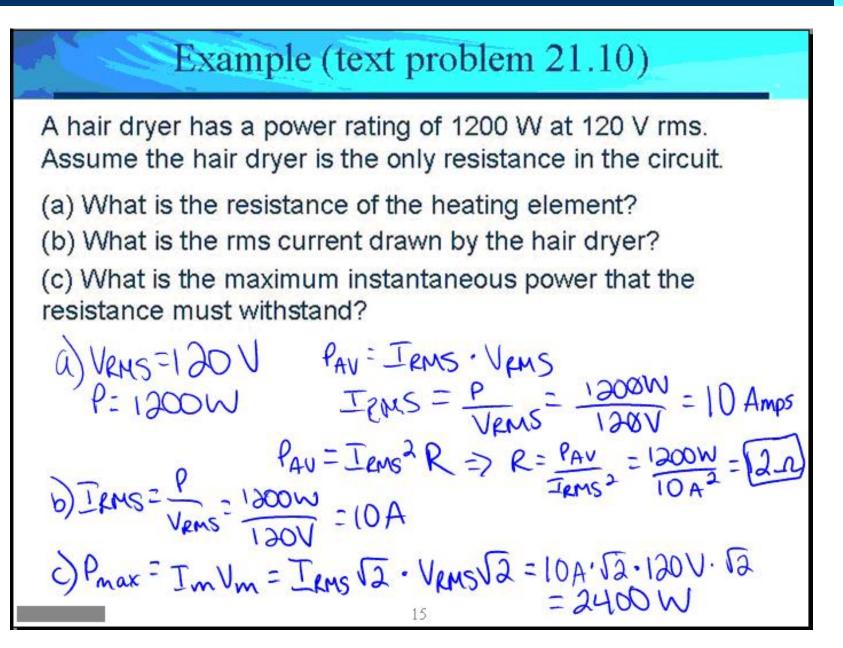
• **Pooling:** Embedded Clickers



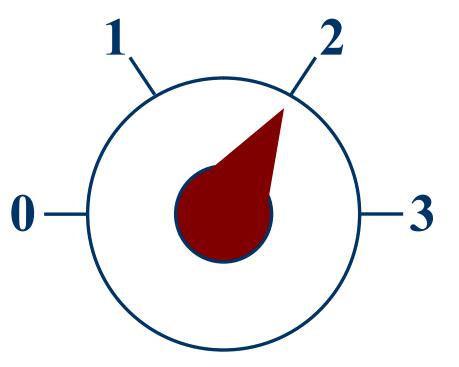
 Slide submission: Openended questions and numerical problems Write below the name of the most famous scientist of 20th century and submit the slide with answer:



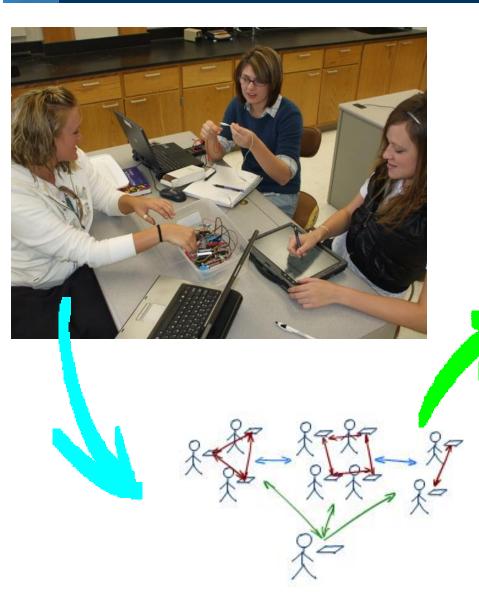
	Document to submit from Jan 17 XYZ CLASS (in session)							
>								
	Range of panels to submit Submit panels 1 🛨 through 1 🛨							
	Anonymous Submit Cancel							


Students submissions with handwritten input

Multiple channels of real-time feedback Student Slide Submissions - Laptop


Multiple channels of real-time feedback Student Slide Submissions - Tablet

Benefits:


Multiple channels of real-time feedback

- Heard without voice
- All benefits of formative assessment*
 - Engages students.
 - Gives **immediate feedback** to the teacher.
 - Enables the teacher to adjust the teaching before the exam rather than after it and according to specific needs of his/her students.
 - Facilitates interactive learning and peer instruction (especially in large enrolment classes).

* Summative vs. Formative assessment: Customer tastes the soup vs. Cook tastes the soup

Step 3 up - All in control Students in charge of the teaching/learning game

	Idea	IS:	ENG2 an		Questi	ons:	
A	The Cureent st betwee onnecting	in Hao	1,1100.	when to one when to 2 bulbs	light but hight but they don'	15 conve 10, bulb s connect	rected lights, led to
в	Series an SAME		al)e] -	both in	ou hoo I serie . soume	K up S at po	Bulbs
C 6	oes it ma ulbyou un bulbs (it	screw		How . Co builds wi one of	an you co th 2 bul f?	innect 3 Ibs lit a	3 nd
	iake 3 sept Circuits,			circuit are lit	un you ca where and the	inside b	albulbs 21 dilud
E	an you ma orighter th	en th	e other	brig	con you los to ht as	1 BULB	
ar -	ELABOR Between			U			
	A	1			-/	в	
Batt Volt [Vo	age Voltage lts] [Volts]	Current [Amps]	Ratio V/A	Battery Voltage [Volts]	Measured Voltage [Volts]	Current [Amps]	Ratio V/A
1.		.0078	192	1.5	2 73	-00548	260
					a.00	0001	121
4.	5 4.49	02.44	84	4.5	4.25	1234	1 X 10
4.		-02 11 -0322	184	4.5	4,35	.033 .033	184
		<u>0214</u> 0322	184		4,35	0334 .033	184
(6 Batt) 5.93 C rery Measured	<u>0214</u> <u>0322</u> Current	184 184 Ratio	(6) Battery	Measured	D Current	Ratio
Batt	() 5.93 (C) (ery Measured age Voltage	<u>, 03.22</u>	184	(6) Battery Voltage	Measured Voltage		Ratio V/A
(6 Batt	Exerv Measured age Voltage [ts] [Volts]	Current [Amps]	Ratio V/A	(6) Battery Voltage [Volts]	Measured Voltage [Volts]	Current	
Batt Volt [Vo	ery Measured age Voltage [ts] [Volts] 5 1.53	Current [Amps]	Ratio V/A (91	(6) Battery Voltage	Measured Voltage	Current	
Batt Volt [Vo	ery Measured age Voltage Its] [Volts] 5 1, 53	Current [Amps]	Ratio V/A	(6) Battery Voltage [Volts] 1.5	Measured Voltage [Volts]	Current	V/A

3	ENG. Ideas: an	
A	The Criteriant is being lost between the wine connecting the 2 bulbs.	When battery is connected to one light build, build lights, when battery is connected to 2 builds they don't whil
В	series and parallel same circuit	can you hook up Builds both in series of parallel in the soume circut?
С	Does it matter which build you unscrew to keep 2 builds [it.	How can you connect 3 bulbs with 2 bulbs lit and one off?
υ	make 3 seperate Circuits,	How can you create a series circuit where zoutside bulbs are lit and the inside bulb's not?
E	can you make I bulb brighter than the other 2?	How can you hook up 3 bulbs to be as bright as 1 bulb?

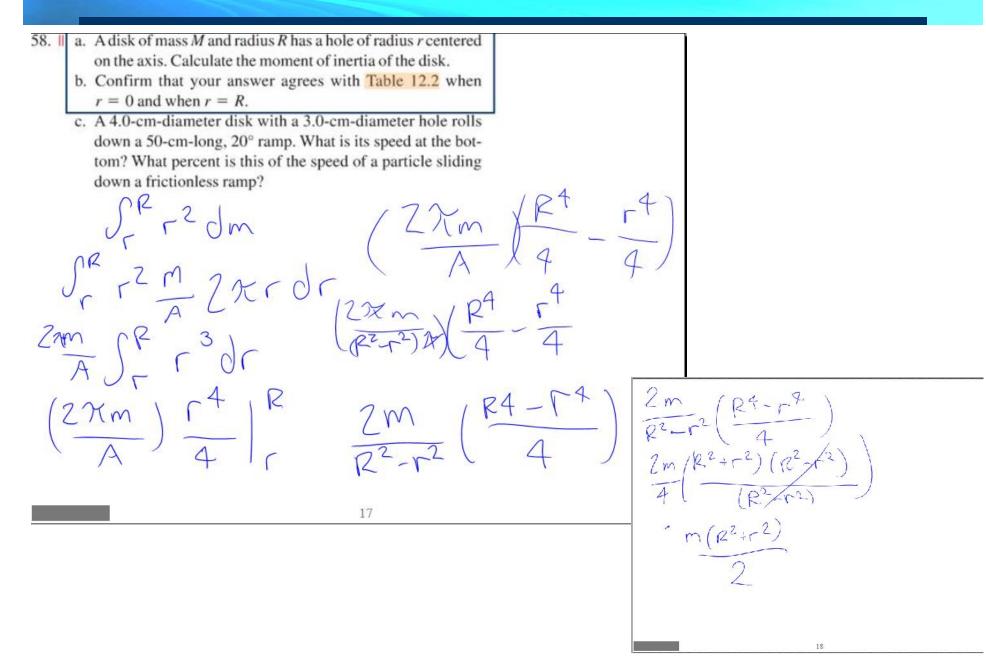
ELABORATE: Discovering the Relationship Between Current, Resistance, and Voltage

	A					в	
Battery Voltage [Volts]	Measured Voltage [Volts]	Voltage Current R		Battery Voltage [Volts]	Measured Voltage [Volts]	Current [Amps]	Ratio V/A
1.5	1.50	.0078	192	1.5	1,43	.00548	260
3	3.00	.0164	182	3	2.83	a1504	188
4.5	4.49	-0244	184	4.5	4,35	0234	186
(6)	5.93	.0322	184	(6)	6.07	.033	184

	C					D	
Battery Voltage [Volts]	Measured Voltage [Volts]	Current [Amps]	Ratio V/A	Battery Voltage [Volts]	Measured Voltage [Volts]	Current [Amps]	Ratio V/A
1.5	1.53	.008	191	1.5	1.49	.0089	177
3	2,96	,015	197	3	2.98	.0144	181
4.5	4.46	.024	186	4.5	4,54	,0251	181
(6)	5.96	.042	141	(6)	5.8	.0338	171

Problem: Although an excited atom can radiate at any time from t=0 to $t=\infty$, the average time after excitation at which a group of atoms radiates is called the lifetime, τ of a particular excited state.

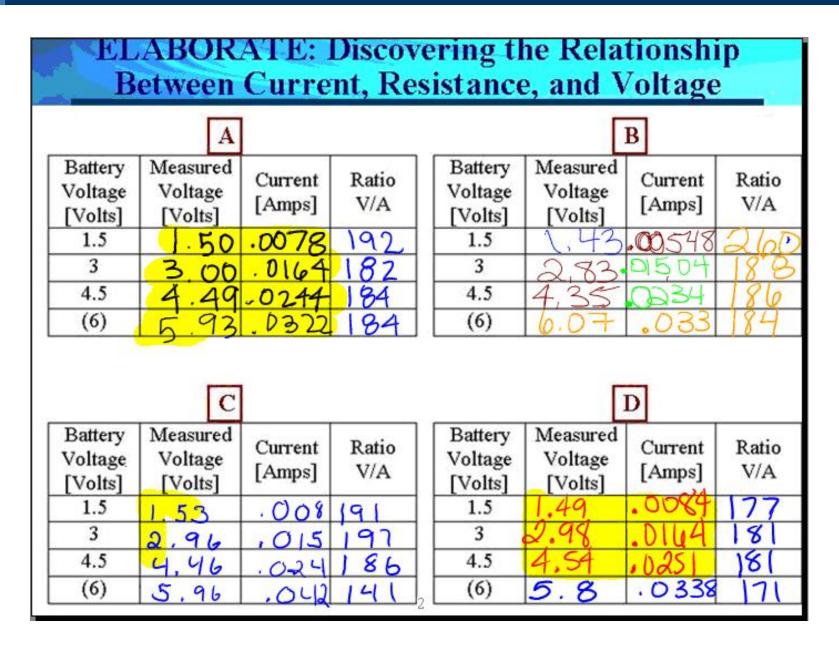
(a) If $\tau = 1.0 \times 10^{-8}$ s (a typical value), use the uncertainty principle to compute the frequency line width (Δf) of light emitted by the decay of this excited state?


(b) If the wavelength of the spectral line involved in this process is 500 nm, find the fractional broadening $\Delta f/f$?

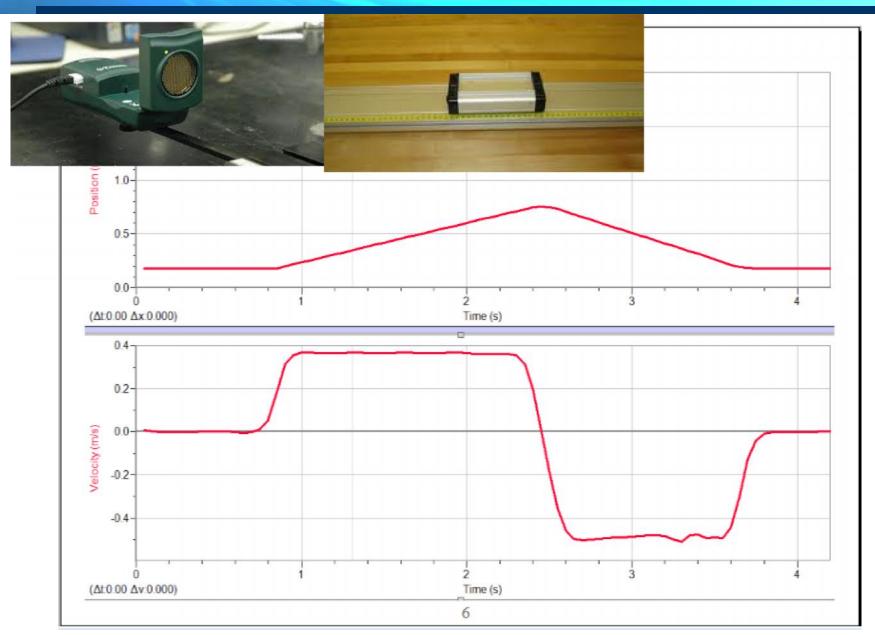
Multiple Computer Group problem solving Atomic Physics

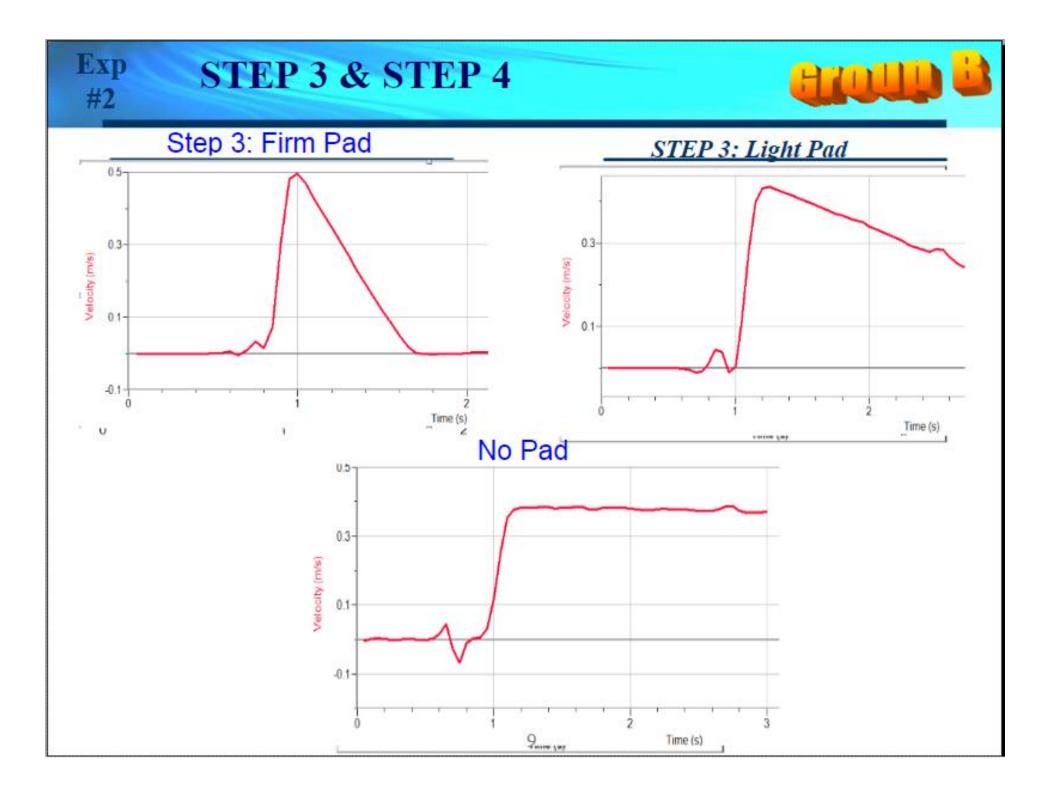
Student Slide Submission

Group Work and Group Annotations Experimental investigation Physical Science


Slides collaboratively annotated by whole class, with each group writing to their respective spaces

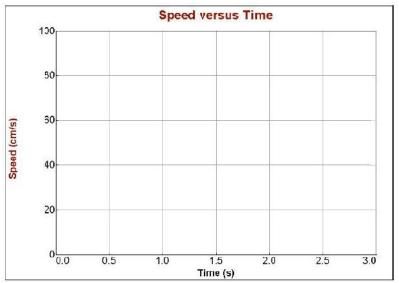
	ENG Ideas: an	
A	The current is being lost between the wine connecting the 2 builds.	When battery is connected to one light bulb, bulb lights, when battery is connected to 2 bulbs they don't why?
в	series and parallel same circuit	can you hook up Buibs both in series of parallel in the same circut?
C	Does it matter which bulbyou unscrew to keep 2 bulbs (it.	How can you connect 3 bulbs with 2 bulbs lit and one off?
	make 3 seperate Circuits,	How can you create a series circuit where coutside bulbs are lit and the inside bulbis
E	can you make I bulb brighter than the other 2?	How can you hook up 3 bulbs to be as bright as 1 bulb?


Group experimental investigation Physical Science

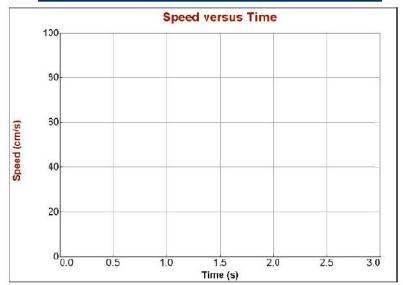


Slides collaboratively annotated by whole class, with each group writing to their respective spaces

All in control: Students in charge of the teaching/learning game + Technology Combo

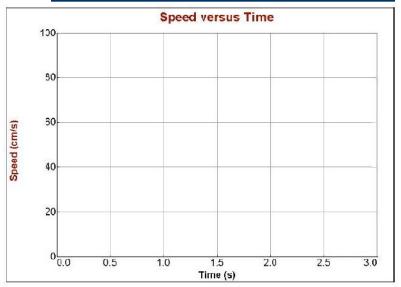


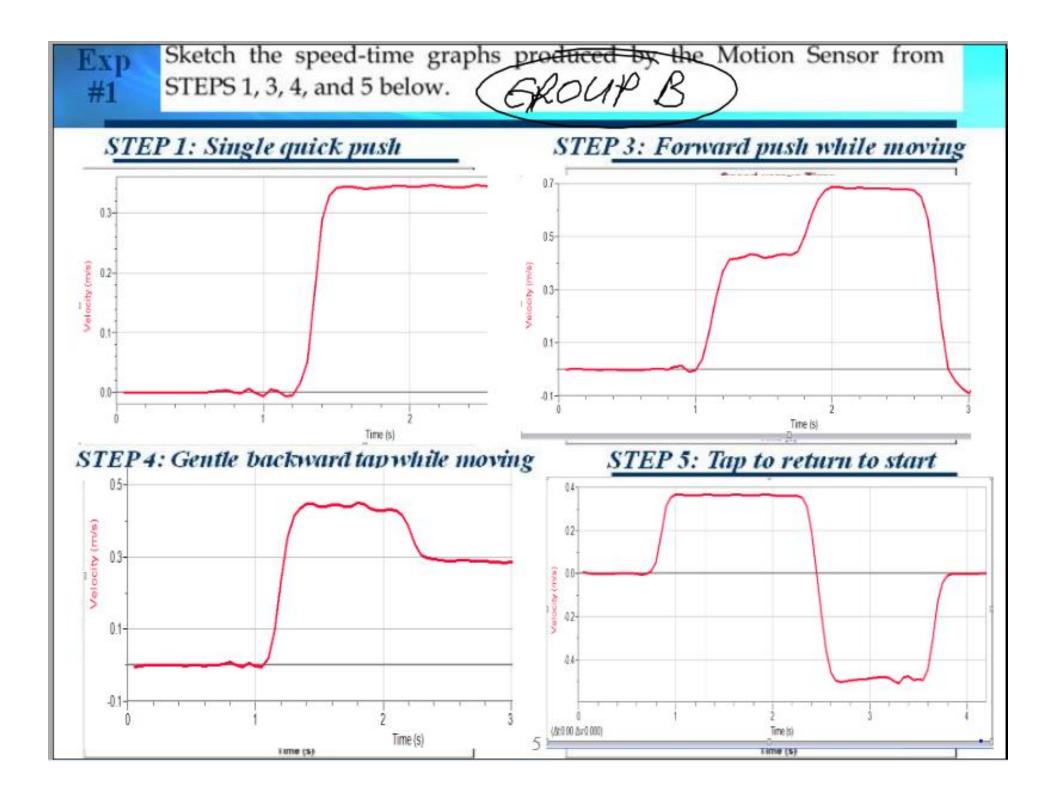
Sketch the speed-time graphs produced by the Motion Sensor from STEPS 1, 3, 4, and 5 below.


STEP 1: Single quick push

Exp

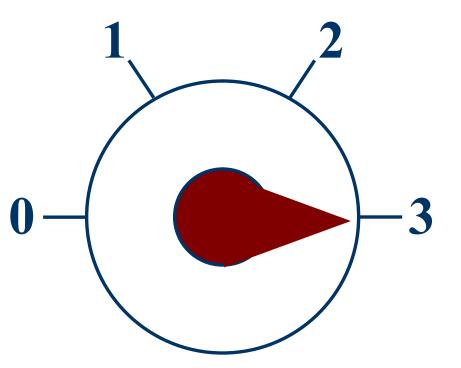
#1


STEP 4: Gentle backward tap while moving



STEP 3: Forward push while moving

STEP 5: Tap to return to start



Benefits: All in control: Students in charge of the teaching/learning game

Unprecedented interaction opportunities:

- Group problem solving
- Group experimental investigations
- Interaction and discussions within the group and class-wide
- Automatic "file" sharing results
- Brainstorming
- On-the-fly quizzes
- Monitoring and helping/correcting

Follow up Replay Slide – Sound recording

Save

• Lecture Recording automatic

Replay

Prominent Research Tablet PCs and DyKnow Software

 Sisson (2009; 2010) - allocated one of the three weekly class periods in introductory physics course to problem solving and deployed Tablet PCs combined with interactive software (DyKnow):

Sisson, C. J. (2009). Tablet-based recitations in Physics: Less lecture, more success. In D. A. Berque, L. M. Konkle & R. H. Reed (Eds.), *The impact of Tablet PCs and pen-based technology on education: new horizons* (pp. 133-139). West Lafayette, IN: Purdue University Press.

Research Tablet PCs and DyKnow Software

 Sisson (2009; 2010) - allocated one of the three weekly class periods in introductory physics course to problem solving and deployed Tablet PCs combined with interactive software (DyKnow):

	Conceptual Understanding	Problem Solving	Course Success
	(FCI)	(Final Exam)	(% A, B, C)
Algebra-based	7% increase	2% improvement	22% increase
Physics I	(p = 0.14)	$67\% \rightarrow 69\%$	$57\% \rightarrow 79\%$
(n = 39, Fall 07)		(p = 0.64)	(more than 2σ)
Calculus-based	3% increase	11% increase	10% increase
Physics I	(p = .99)	$56\% \rightarrow 67\%$	$56\% \rightarrow 67\%$
(n = 26, Fall 08)		(p = 0.05)	(more than 1σ)

Sisson, C. J. (2009). Tablet-based recitations in Physics: Less lecture, more success. In D. A. Berque, L. M. Konkle & R. H. Reed (Eds.), *The impact of Tablet PCs and pen-based technology on education: new horizons* (pp. 133-139). West Lafayette, IN: Purdue University Press.

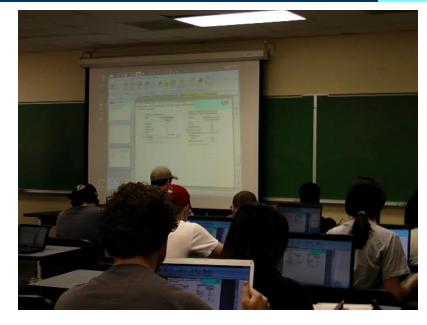
Studies on Tablet PC and DyKnow Software www.hrepic.com

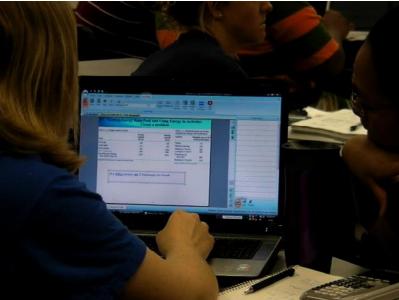
Modern Physics (Calculus-based, FHSU) Fall06 (Survey/Test N=9/10)

Physical Science (Concept-based, FHSU) Sum06–Fall08 (Survey/Test N=76/91)

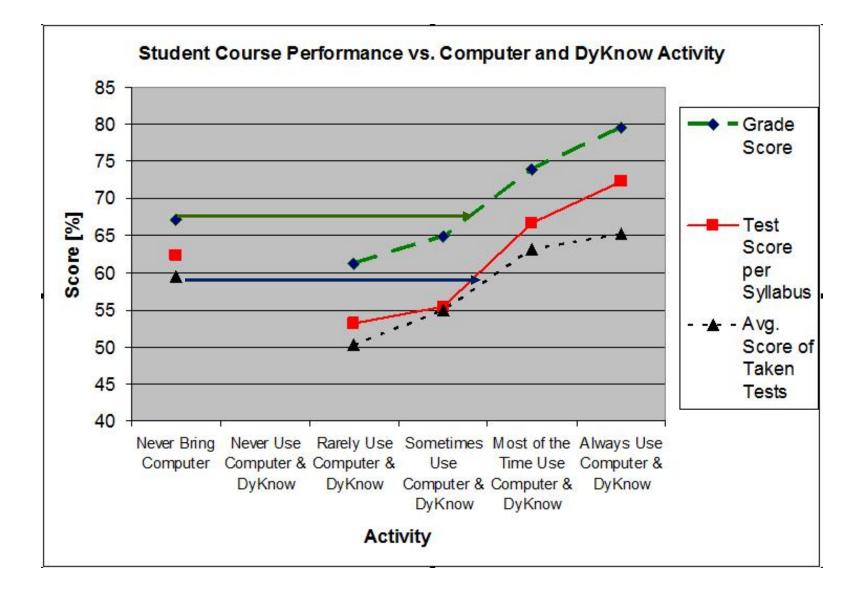
General Physics (Algebra-based, CSU) Spring10 (Survey/Test N=37/53)

General Physics (CSU) Spring10 Focus Group findings (N=34/53)


Advantages


- More interaction for the whole class
- •Easy to go back and review material
- •Helps students organize notes
- •Allows you to focus on content, not notetaking
- •Can check status button without embarrassment
- •Can telecommute to class

Disadvantages


•If you have **no computer**, you are at a **disadvantage**

- •Technical issues can eat up class time.
- Temptation to check email during class
- •Couldn't take notes by hand if using laptop in class

Figure 1: Student scores measured against Cumulative Computer Presence DyKnow Activity

Table 6: Comparison of Students' Computer & DyKnow Activity with Success Level

What about student background?

				Tests Taken	Tests Syla	Grade	SAT Math	HS GPA
I bring my	3 x week	N=12	Avg	69.6	74.9	81.3	552.5	3.27
			SD	18.1	18.1	16.0	60.3	0.33
physics class: (Table 2	Inconsistent	N=6	Avg	43.4	43.1	54.8	475.0	3.35
Subcategories)			SD	30.3	33.57	27.2	Math 552.5 60.3 475.0 88.3 500.0 111.8 520.0 21.9 530.9 97.9 500.0	0.55
	Never	N=5	Avg	58.4	61.0	51.0 67.7 500.0	3.22	
			SD	29.2	33.7	32.7	111.8	0.21
	Always	N=7	Avg	67.0	73.4	81.4	520.0	3.05
computer to physics class: (Table 2			SD	15.0	15.4	12.0	21.9	0.26
actively	Inconsistent	N=11	Avg	57	58.5	66.8	530.9	3.38
participate			SD	30.3	33.0	27.5	97.9	0.43
	Never	N=5	Avg	58.4	61.0	67.7	500.0	3.22
			SD	29.2	33.7	32.7	99.7	0.38

Tablet PC advantage? - Comparison of the Tablet PC owners other students: All students included

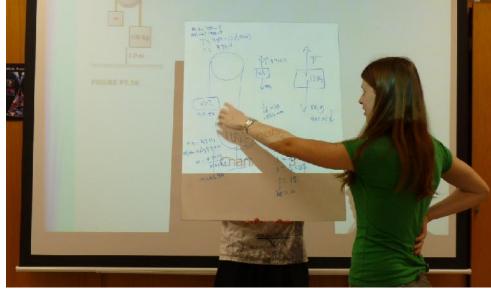
• In addition to three tablet PC owners who took the survey, one more student in class owned a Tablet PC (and was using it consistently). Comparing those four to the rest of the class:

		Cate- gory	All	All and Each Category				
The top	mobile computer I own	Code	N	Avg. %	SD			
Avg.	All	2	53	55.53	25.15			
Scores	Tablet	1	4	81.96	3.67			
Of	Other	0	49	53.38	24.93			
Taken Tests	Mann-Whitney (2 groups)			p=0.016	SD 25.15 3.67 24.93 SD 27.57 2.36			
The top	mobile computer I own	Code	N	Avg. %	SD			
	All	2	53	64.44	27.57			
	Tablet	1	4	90.29	2.36			
	Other	0	49	62.33	27.62			
Course Grade Result	Mann-Whitney (2 groups)			p=0.040				

Advantages and disadvantages of bringing the computer to classes – Survey Inputs

Advantages of bringing the computer to classes

- the ease of taking/obtaining notes (10), saving/accessing notes (7), personalizing slides (5).
- the ease of following the content (9).
- the ease of seeing the screen on computer (8)
- **being able to actively participate (4)** and to use DyKnow (4).
- A unique benefit to actively, and interactively, participate in a synchronous classroom experience via DyKnow software (with Skype if two way voice communication is desired).


Disadvantages of bringing computers to class:

- the inconveniences of physically carrying laptop (8)
- internet distractions (7).
- the inability to hand write notes on laptop (4), the issue with the space that the laptop takes on the desk (1)
- "a false feeling that it is not necessary to take notes" (2).
- issues with battery life (4) and technical problems with laptops or Internet (3).
- Some students specifically stated there are no disadvantages (4).

Current CSU Study Technology vs. Methodology

Current Project

Methodology and/or Technology: Making Difference in Improving Students' Problem Solving Skills

Table	1: Outline	of the E	xperimental	Design
-------	------------	----------	-------------	--------

	1 st third of semester	3 rd third of semester	
Section 1	Experimental (technology users)	Control (paper users)	By individual choice (either technology or paper user
Section 2	Control (paper users)	Experimental (technology users)	By individual choice either technology or paper user

Methods

- 1. quiz and test scores
- 2. pre-and post tests
- 3. the video timings
- 4. the online surveys mid-semester
- 5. three point observations

Methods

- 1. quiz and test scores
- 2. pre-and post tests
- 3. the video timings
- 4. the online surveys mid-semester
- 5. three point observations
- Preliminary data: No difference

Exam Comparisons

 Exam 1 average 	
 Thursday section 	70.9
 Friday section 	70.5
 Overall average 	70.7
 Exam 2 average 	
 Thursday section 	69.7
 Friday section 	69.3
 Overall average 	69.5

Student's Perceptions on Productivity of Using DyKnow Software in Teaching (FHSU and CSU Deployments)

	$\left(\right)$						\wedge					
Category of DyKnow Evaluation	Pos	neral vitive vects		eral Neg Aspects			ognitio	2	Commu	nication	Motiv	vation
Students (%) who Agree and Strongly Agree Statement: Using DyKnow	was enjoyable	made learning more fun	was very challenging	was very frustrating	was a waste of time	helped me take better set of notes	facilitated my learning	enhanced my understanding of the course material	enhanced my interaction with classmates	enhanced my interaction with the instructor	I was more attentive when DyKnow was used	I was more motivated when DyKnow was used
Modern Physics (Calculus-based, FHSU) Fall06 (N=9/10)	88.9	77.8	11.1	33.3	0.0	66.7	88.9	62.5	88.9	77.8	44.4	33.3
Physical Science (Concept-based, FHSU) Sum06–Fall08 (N=76/91)	<mark>92.1</mark>	90.8	10.5	5.3	3.9	61.8	<mark>89.3</mark>	82.9	77.6	86.7	69.7	70.7
General Physics (Algebra-based, CSU) Spring10 (N=37/53)	81.1	75.7	24.3	24.3	27.0	51.4	64.9	67.6	67.6	70.3	59.5	59.5
Weighted average across courses	88.5	85.3	14.7	13.1	10.6	59.0	<mark>81.</mark> 9	76.8	75.4	81.1	64.7	64.5

Student's Recommendations for Future Usage of DyKnow Software and Tablet PCs in Physics Courses They Took (FHSU and CSU Deployments)

Students (%) enrolled in	Recommend to keep in the Physics course:	Definitely Yes	Yes	Neutral	No	Definitel No
Modern Physics (Calculus- based, FHSU) Fall06 (N=9/10)	DyKnow	11.1	44.4	44.4	0.0	0.0
	Tablet PCs	22.2	66.7	11.1	0.0	0.0
Physical Science (Concept- based, FHSU) Sum06–Fall08 (N=76/91)	DyKnow	50.0	38.0	12.0	0.0	0.0
	Tablet PCs	50.0	41.7	6.3	2.1	0.0
General Physics (Algebra- based, CSU) Spring10 (N=37/53)	DyKnow	24.3	37.8	18.9	8.1	10.8
	Tablet PCs	24.3	27.0	29.7	13.5	5.4
Normalized average (to 100%) across courses	DyKnow	28.5	40.1	25.1	2.7	3.6
	Tablet PCs	32.2	45.1	15.7	5.2	1.8

Studies on Tablet PC and DyKnow Software www.hrepic.com

Conclusion

- Tablet PC technology accompanied by DyKnow software opened a plethora of new possibilities for greater and more efficient classroom interactions in all directions.
- In our experience a great majority of students like both, this hardware and the software (Hrepic, 2008-2011).
- However, still much an uncharted territory challenges as numerous as opportunities.
- Results may very substantially with student population even within the same institution and same class (major and seniority)
- Further rigorous research necessary to determine all the relevant factors associated with its effective usage and optimal ways of using it.

References

- Adams, P.E., Taggart, G. L., & Kallam, L. (1999). Fort Hays State University, NASA Project NOVA: Final Report. Hays, KS: Fort Hays State University
- Hake, R. R. (1997). Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. *Am. J. Phys, 66*, 64-74.
- Hrepic, Z. (2007). Utilizing DyKnow software and pen-based, wireless computing in teaching introductory modern physics. In M. Čičin-Šain, I. Turčić & I. Sluganović (Eds.), Proceedings of 30th jubilee international convention MIPRO, conference on computers in education (2007). Opatija, Croatia.
- Hrepic, Z. (2008). Exploring the role of pen-based computing in advancing knowledge society. In J. Langer, N. Alfirević & J. Pavičić (Eds.), *Proceedings from the international symposium "Alpe-Adria: Knowledge region" (2007)*. Frankfurt am Main, Germany: Peter Lang.
- Hrepic, Z., Adams, P., Zeller, J., Talbott, N., Taggart, G., & Young, L. (2005). Developing an inquiry-based physical science course for preservice elementary teachers. In P. Heron, L. McCollough & J. Marx (Eds.), *Proceedings of 2005 physics education research conference* (Vol. 818, pp. 121-124). Salt Lake City, Utah: AIP Conf. Proceedings.
- Louisiana State University. (2005). Operation primary physical science homepage. Retrieved June, 2005, from <u>http://www.phys.lsu.edu/dept/opps/opps_personnel.htm</u>
- Redish, E. F. (2003). *Teaching physics with the physics suite*. Hoboken, NJ: John Wiley & Sons, Inc.

More Information

Zdeslav Hrepic Katherine Lodder Kimberly Shaw

drz@columbusstate.edu hrepic.com

