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ABSTRACT 

Three models are considered that have U-shaped hazard functions, 

and a fourth model is considered that has a linear hazard function. 

Several methods for esti111ating the parameters are given for each of 

these models. Also, various tests of hyrotheses are considet~ed in the 

cas e of t 11 e model \'I i t r 1 the l i n e a r h a z a r d f u n c t i on . 0 n e o f the r:1o del s 

with a U-shaped hazard function has a location and a scale parameter, 

and it is proved in general that any other parameters in a distriLution 

of this type are distributed independently of the location and scale 

parameters. 

A nevJ method used to estimate the parameters in the preceding 

distributions is also employed to estir.wte the parameters in the 

Logistic distribution, and comrarisons based on ~,1onte Carlo methods 

are made betvJeen these estimators and the r1aximum Likelihood estimators 

for n = 10, 20, 40, 80 and for complete samples and censoring from 

the right for r/n = .1, .3, .5 and .7. The distributions of the 

pivotal quantities ln(C - JJ)/o, /n(3/o- 1), and (C- JJ)/o + ko-;0, 

\vhere the estimates are the i1aximum Likelihood estimates, are obtained 

Gy 11onte Carlo sir11ulation for the sample sizes and level of censo~~ing 

given above, so that confidence intervals and tolerance lir.1its can 

be found. The means and variances of the estirlotors of reliability 

are given. 
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I. INTRODUCTION 

There are a number of distributions that have proven useful in 

describing the distribution of the time-to-failure of an item. Typical­

ly, the random variable x, which is the time it takes the item to fail 

is of the continuous type and has a ranqe from zero to infinity. Given 

that the probability density function is f(x), 0 ~ x < =, the cumulative 

distribution function is given by 

and is the probability that the item has failed by time x. The pro­

bability of an item failinq in the interval (x, x + L1x) is oiven by 

F(x + L1x)- F(x)~ so the average rate of failure in this interval is 

F(x + 6x) - F(x) 
6x 

and the average rate of failure qiven that the item has survived to 

time x is 

F ( X + L1x) - F ( X ) 
6x[l - F(x)] 

The instantaneous rate of failure is 

1 im 
b.x-+0 

F(x + 6x) - F(x) = f(x) 
b. X [ 1 - F ( X ) ] --:-1 ---'-==-'F (:.-x-.-) . ( 1) 

The probability that an item survives to timex is called the 

reliability and is given by R(x) = 1 - F(x). Therefore, (1) can be 

rewritten as 

f(x) _ -R • (x) 
RTXT- RTXT · 



If we let h(x) be the instantaneous rate of failure~ also referred 

to as the failure rate or the hazard function~ then 

or 

and 

h (x ) = -R ' (_x) 
R(x) 

R(x) exp[- ( h(u)du] 

F(x) = 1 - exp [- ( h(u)dj. 

f (X) = h (X ) eX p t ( h ( U ) d l} 

(2) 

(3) 

The most popular time-to-failure models have either a constant 

failure rate, which is the exponential model, or a monotonically in­

creasing or monotonically decreasing failure rate, such as with the 

Gamma or Weibull models. In this paper, more general models are con-

sidered so as to include models that have failure rates with U or 

2 

bath tub shapes. The purpose of this shape is to better describe items 

which initially have a hiqh rate of failure caused by some phenomenon 

such as faulty manufacturing, then have a useful life period in which 

the failure rate is at a minimum, and then have an increasing failure 

rate caused by wear out. 

Some general methods for constructing models with bath tub shaped 

failure rates will first be considered. The first method produces a 

model of the type referred to by Kao [1] as a mixed model (n fold). 

If F.(x),i=l, ... ,n is a cumulative distribution function for some 
1 



time-to-fail variable, then a new distribution function can be gener­

ated by forming the linear combination 

F(x) = L piFi(x), 0 <pi < 1, I pi = 1, 0 < x < = 

or 

F(x) = 1 - I p.R.(x) . 
1 1 

In this case, 

f(x) I p.f.(x) 
1 1 

and 

-I p.R~ (x) 
h(x) = 1 1 

I p.R.(x) 
1 1 

I p.R. (x)h. (x) 
1 1 1 

I p.R.(x) 
1 1 

Therefore, the failure rate is a linear combination of the original 

fai 1 ure rates. 
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Thus, one way to construct a distribution that has a U-shaped 

failure rate, using this general method, is to let F1(x) have a 

decreasing failure rate, and let F2(x) have an increasing failure rate, 

but such that F2(x) = 0, x < y, where y > 0 is the quarantee time, or 

the time before which the item will not fail. Kao [1] has used this 

method with two Weibull distributions, where 

x > 0, a 1 > 0, o < s
1 

< 1, 

and 



His purpose for choosing this model was to let F1(x) describe catas­

trophic or sudden failures and let F
2

(x) describe wear out or delayed 

failures in electron tubes. 

There are several difficulties with this model, includinq the 

fact that in general there would be many parameters to estimate, 

particularly since the p. would ordinarily be parameters. Also, since , 
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the probability density function is in general a sum of terms, standard 

methods involving the likelihood function, such as maximum likelihood 

estimation or the likelihood ratio for testing hypotheses become next 

to impossible to use. The method of moments has been used by Rider [2] 

to estimate parameters in a model of this type that is a mixture of two 

exponentials. He suqqests that a person try to avoid this model and 

that the results are mostly of an academic nature. In a later paper, 

Rider [3] gives the equations for estimatin0 the parameters of mixed 

Poisson, Binomial, and Weibull distributions by the method of moments. 

Kao [1] has given a graphical method for estimating the oarameters in 

the model that is a mixture of two Weibulls, and has applied this 

method to some empirical data on the time to failure of electron tubes. 

The second general method of construction qives whnt Kao [1] refers 

to as the composite model. In this model, the time interval is broken 

up, and different distributions are used for each interval. This qives 

F(x) = F i (X) 

f(x) = f;(X) ' 
and 

h(x) = h. (x) 
l 

, 

cS. 
1 

<X< 8. , - - , i=1,···,n , 8
0 

= 0 , 

8. l S X < cS. 
l- 1 

i=l,···,n , 80 

cS 
n CXl ' 

00 



To make these functions continuous, let 

F • ( o . ) = F . +l ( o . ) , i = 1 , . . . , n - 1 . 
1 1 1 . 1 

Then the oi•s will be expressed in terms of the parameters of the 

distribution functions, and so will not be independent parameters. 

As an example of a distribution constructed by this method with 

a U-shaped failure rate, consider the composite model of three 
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Weibulls, with the respective scale parameters a 1 ~ a 2 ~ and a 3 , and the 

first with s1 = ~' the second with s2 = 1, and the third with s3 = 2, 

to give a failure rate that is first decreasing, then constant, and 

finally increasing. To determine o
1

, let 

or 
1: 

1 - exp { -(o1;a1 ) 2
} = 1 - exp { -(o 1/a2)}. 

This gives o1 
2 

= a2/a1. Similarily, to obtain o2 , let 

1 - exp { -(o2/a2)} 

2 This gives o2 = a 3/a2. 

This model shares with the first model the problem of a large 

number of parameters. Kao [1] has given a graphical method for 

estimating the parameters in a model of this type consisting of two 

Weibulls and applies this method to the same data as he did the first 

model. 

A third general type is the components-in-series model. Suppose 



there is a system consisting of n independent components in series 

such that the failure of one component causes the failure of the 

entire system. Let x. be the random variable that characterizes the 
1 
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t . t f . 1 f th . th t 1me- o- a1 ure o e 1 componen . Then the time-to-failure of the 

entire system is Y =min {x1 , x 2, ... ,xn}. To find 

F(y) = P[Y .::_ y] 

we first note that 

1 - F(y) = P[Y > y] 

and so 

= P[x1 > y, x2 > y, ... xn > y] 

= IT P[x. > y] 
1 

=IT [l - Fi(y)], 

F(y) = l TI [1 - F;(y)] 

= l ITR.(y), 
1 

(4) 

where F.(y) is the cumulative distribution function of the ith random 
1 

variable. If the cumulative distribution function of each random 

variable is of the form 

F. (x) 
1 

1 - exo t I: hi ( u ) d u l 
then (4) becomes 



F(x) = 
X 

1 - exp [- I J 
0 

X 

h.(u)du] 
l 

= 1- exp [- J I hi(u)du] 
0 

and so the hazard function h(x) =I hi(x). 

Murthy and Swartz [4] consider two models, one of which may be 

considered as being of the component-in-series type. In this one, 

called Bath-Tub Model I, 

h (x) = a o 
~--=-- + yx ; 
1 + Sx a, S, y, 0 ~ 0 ' X :: 0 . 
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This corresponds to two components in series, the one component 

failing accordinq to the Parets distribution, f(x) = a(l+Bx)-(l+a/S), 

and the other according to the Weibull distribution. They give graphs 

of this failure rate function for various values of the parameters. 

A fourth qeneral type is the components-in-parallel model. In 

this case there is assumed a system of independent components in 

parallel such that the system fails when all components fail. Let 

x. be the random variable that characterizes the time-to-failure of 
1 

the ith component. Then the time-to-failure of the entire system is 

Y =max {x1 , x2 , ···, xn}. To find 

F(y) = P[Y ::: y] 

= P[max {x1 , x2, 

we note that for the maximum to be less than y, each must be less than 

y, and so we have 



and 

F(y) P[x 1 ~ y] • P[x2 ~ y] ••• P[xn < Y] 

IT Fi(y) 

R(y) = 1- IT F.(y) 
1 

This model would not ordinarily produce a distribution with a 
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U-shaped failure rate, however. To see this, consider a system of two 

components in parallel, where the system fails when both components 

fail. In this case, F(x) = F1 (x)F2(x), and 

h(x) 
f 1(x)F2(x) + f 2(x)F1 (x) 

1- F1(x)F2(x) 
(5) 

For h(x) to be U-shaped, h(O) f 0, which as can be seen from (5), 

would generally require that either F1 (o) f 0 or F2 (o) f 0, which 

appears to be an unrealistic assumption. However, a distribution with 

aU-shaped failure rate can be constructed if either F1 (o) f 0 or 

F2 (0) f 0. 

A fifth general method for finding a time-to-failure distribution 

with a U-shaped failure rate is simply to find a function h(u) that 

has a U-shape in the first quadrant, and express 

F(x) 

X 

1 - exp [- J h(u)du] . 

0 

(6) 

This is a general method that gives many other time-to-fail distribu­

tions, not just those with U-shaped failure rates. For instance, if 

h(x) = e, the exponential distribution is the result, whereas if 



a-1 
h r_x) a (x) 0 \.: =s s <x<oo 

the Weibull distribution is the result. Not all functions h(x) are 

eligible, however. It is necessary for J: h(x)dx = oo and h(x) ~ 0, 
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0 < x < oo. Both of these conditions are met when h(x) is U-shaped in 

the first quadrant. 

Murthy and Swartz [4] consider a model of this general type with 

their model called Rath-Tub Model II, where 

h(x) = a exp [-(Bx)]+ yx0; a, B, y, o > 0, x > 0. 

They qive the graph of this failure-rate function for a = 10, ~ = 10, 

y = .3, and o = 2.5. Although this appears to be a component failing 

according to the Gompertz distribution [5] and the second according 

to the Weibull distribution, this is not the case, since the hazard 

function of the Gompertz distribution is given by h(x) =a exp (bx). 

The function g(x) = a exp [-(Sx)];a, S >0 cannot be a hazarrl function 

since it does not meet the condition mentioned above that J: h(x)dx = oo 

However, the integral of the entire function given above by Murthy and 

Swartz in their Model II is equal to infinity, and it is also positive 

over the entire interval. Therefore, the entire function satisfies the 

conditions of being a hazard function. 

The three U-shaped hazard functions considered in this paper are 

h(x) = ax2 + bx + c; x ~ 0, a~ 0, c ~ 0, b > -2/aC 

h ( x) = be cosh b ( x - a) ; x > 0, I a I < oo, b, c > 0, 
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and 
a-1 (x/B)a 

h(x) = ~-(~} [1 + ye ], x .:::_0~ a~ s > o, 0 < y < 1. 

From (3), the corresponding density functions are 

f(x) 
2 3 b 2 

= (ax + bx + c) exp [-(a~ + -~ + ex)], 

f(x) = [be cosh b(x - a)] exp [-c sinh b(x - a)], 

and 
a-1 (x/B)Y x a (x/B)a 

f(x) =a(~) [1 + ye ] exp {-[(0 ) + y(e - 1)]} s f3 fJ 

respectively, where the ranges on the variable and the parameters are 

the same as above. 

The model with the polynomial as its hazard function is of the 

components-in-series type, where in this case, there are three com-

ponents, two failing according to the Weibull distribution, and the 

third according to the exponential distribution. It seems reasonable 

to consider polynomial hazard functions since in general nice functions 

can be approximated by truncated Taylor series. 

The model with the hyperbolic cosine as the hazard function fits 

into the fifth general category for constructing these time-to-fail 

distributions. Although this model did not develop from physical 

considerations, it appears to have an appropriately shaped hazard 

function. The third model was developed because it has a location 

and a scale parameter. This distribution is used to illustrate a 

generalized result about location and scale parameters in maximum 

likelihood estimation and maximum agreement estimation. 

A special case of the polynomial model mentioned above in which 
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a, the coefficient of ~2 , is zero is also considered in detail. This 

model has a linear failure rate 

h(x) = ax + b; x ~ 0, a > 0, b ~ 0 

and this would appear to be a useful generalization of the exponential 

model. It is of the components-in-series type, where the one component 

fails according to the Weibull distribution and the other component 

fails accordinq to the exponential distribution. This model appears 

useful for describing data that has an initial non-zero failure rate 

or has a hazard function that is increasing at a rate directly pro­

portional to time. In this case, using (3), the density function is 

given by 
2 

f(x) = (ax+ b) exp [-(a~ + bx)],x ~ 0, a~ 0, b ~ 0. 

Neither the second or the third model appears to have been con-

sidered before. However, the first model has been considered by 
n . 

Krane [5] in the more general form h(x) = ~ s.x 1 and the unknown 
. 1 1 1= 

parameters are estimated by regression techniques. Krane stipulates 

that s. > 0 for all i, so that h(x) cannot be U-shaped when it is a 
1 

quadratic function. The model with the linear failure-rate has been 

independently investigated by Kodlin [7] and Farmelo [8]. Kodlin gives 

a theoretical explanation for the usefulness of this model, and uses 

the method of maximum likelihood to estimate the parameters. He applies 

this model to some empirical medical data. Farmelo compares several 

methods for estimatinq the parameters of this distribution. Among 

the methods considered is the method of moments and the method of 

maximum likelihood. 
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Particular attention is given here to the estimation of parameters 

in these four models using the maximum likelihood procedure, and par­

ticular application of an estimation procedure refered to in this paper 

as agreement estimation, considered by Rain and Antle [9]. Also, 

various tests of hypotheses are considered in the case of the model 

with the linear failure-rate. 

The method of estimation refered to above as agreement estimation 

is also applied to estimating the parameters in the Logistic distri­

bution. Comparisons are made between these estimates and the maximum 

likelihood estimates using Monte Carlo techniques. Furthermore, the 

distributions of the pivotal quantities ln(0 - ~)/&, ln(&/o - 1) and 

(w - ~)/o + k o/o are obtained by Monte Carlo techniques for n = 10, 

20, 40, 80 and censoring from the right for r/n = .1, .3, .5, .7, 1., 

where the estimates are the maximum likelihood estimates, so that 

confidence intervals can be made on the parameters, and tolerance 

limits can be made on the distribution. Antle, Klimko, and Harkness 

[10] have considered this problem but found the distributions only 

for the case of complete samples. 
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II. Lir~Et\R FAILURE-RATE t·10DEL 

A. Range for the Parameters 

In this chapter the model vvi th the failure-rate h ( x) ax+ b vJill 

be considered. In this case 

f(x) (ax + b) exp 
2 

[-(~ + 
2 bx)]; x~O, a>O, b~O (1) 

2 
F(x) = 1 - exp [-(~ + bx)] ; 2 x~O, a>O, b>O 

and 

R(x) = exp [- (a~ 2 
+ bx)] ; x:O, a>O, b:O. 

It can be seen from (1) that b > 0, or else f(x) ~vill be negative 

for x = 0, \·Jhich is an impossibility. If b = 0, the model degenerates 

to the Weibull model. 

Although ordinarily one vJOuld be concerned vJith a~ 0, it is 

possible to have a < 0. In this case, the rate of failure is Jecreasing, 

which does not seem to lend itself to real-life situations. Furthermore, 

vvi th a < 0, the range becomes 0 ::; x ::; -b/ a, and it is necessary to 

multiply the probability density function by the constant 

b2 b2 -1 
k = {1 - exp [-(2a- -a)J} , 

so that J f(x) dx = 1. Of course, if a = 0, the model degenerates to 

the exponent i a l mo de 1 . The on l y case that vv i 11 be cons i de re J VJ i ll be 

with a > 0. 

The first two moments of this model are 

E(x) = A exp [(~:) {1 - P[Y < 2] }] ' 
ra 



and 

2
: E(x) , 

where Y ~ N(O,l). 

B. Maximum Likelihood Estimates 

The likelihood function in this case is 

L(x;a,b) = {IT(ax; +b)} exp - L(a;~ + bx;), 

and 

( ax~ ) 
ln L(x;a,b) = I ln(axi + b) - I ~ + bxi . 

Differentiating (2) with respect to a and b gives 

and 

3 1 n L 
3 a 

2 
X; L X; 

L ax. + b - -2-
1 

a ln L = \ __ 1_..,....- \ 
8 b L ax. + b - L Xi 

1 

The values a and 6 that satisfy 

and 

x. 
I A 

1 
A 

ax. + b 
1 

2 x. 
I-{= o 

- I x. = o 
1 

are the maximum likelihood estimates, if the values are in the 

parameter space and maximize L(x;a,b). Rewritina (5) as 
2 

X. 

I-{= o n - 6 I --1-- a 
A +A b ax. 

l 
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( 2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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and substituting from (6) 

I 1 I = x. 
"' + b l ax. 

l 

into (7), gives 

"' 2 
~I "' L X. n - x. - b = 0 

' 
(8) 

l l 

which can be rewritten as an explicit function of the one estimate in 

terms of the other. 

Rewriting (8) as 

A 1 
b = -- [n 

L X. 
l 

and substituting this into (6), gives 

a[2x.(I x./n) - (I x2
1
.;n)J I , 1 = o , 

{a[2x.(I x./n) - (L x2
1
./n)]} + 2 

1 l 

( 9) 

which can be rewritten as a polynomial in a of degree n [8]. It 

should be noted that a= 0 as in general not a solution to (9), since 

this would imply from (5) and (6) that 

which is not usually the case. Also, since (9) is a polynomial, it 

will not always have a unique solution. In this case the estimates 

must be substituted back into the likelihood function to see which 

estimates produce the maximum. 

Another problem that can develop from this method of estimation, 

is for certain estimates of a and b to be inadmissible. As an example, 
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consider a sample of size three with x1 
In this case, (9) becomes 

1.0, x2 = 2.0, and x3 = 3.0. 

-48.8s ~2 + 69.33 a+ 4o = o , 

and so (1.86, -1.67) and (-.44, 1.01) are the estimates for (a,b). It 

can be seen that (1.86, -1.67) is inadmissible since b must be ~reater 

than or equal to zero. The second pair is inadmissible since if 

a < 0, then 0 < x < -b/a or 0 < x < 2.3, which is not the case since 

x3 = 3. 

In general, the admissible estimates must lie in the region 
/'. A A 

bounded by b = 0 and a = -b/max{xi} in order to make ax+ b > 0, thus 

making f(x) > 0. If the estimates that maximize the likelihood function 

lie outside this region, then the estimates that are admissible lie on 

the boundary, since the likelihood function goes to zero as a and b 

become large. Since the likelihood function is zero if a = -b/max{x.}, 
l 

the boundary that will yield the maximum is along b = 0. In this case 

the likelihood function is 

L(x;a) n a
2 

\ 2 a IT X; exp - L X; 

ln L(x;a) = n ln a + I ln xi - %I 2 
X; ' 

and upon setting the partial of ln L(x;a) with respect to a equal to 

zero, 
A 

a 2 
2n/I X; 

In the particular example that we have been considerinq, 

(10) 

L(x;1.86, -1.67) = .0758, L(x;.44, 1.01) < 0, and usinq (10) qives 

a = .429 with L(x; .429, 0) = .0024. 



As another example, consider the sample with x
1 

and x3 = 1.1. In this case the polynomial becomes 

. 9, x2 = 1. 0, 

"'2 A 2.82 a + 11.68 a + 11.92 = 0 , 

17 

and the estimates for (a,b) are (2.32, -1.66) and (1.83, .08) with the 

corresponding likelihood function values L(x; 2.32, -1.66) = .489 and 

L(x; 1.83, .08) = .342. In this case also, the maximum is outside the 

admissible reqion and so (10) is used to qive a = 1.99 and 

L(x; 1.99, 0) = .387. 

Since complex roots of polynomials come in conjugate pairs, if 

n is any odd value, (9) will have two or more real solutions, and 

therefore the likelihood function will need to be evaluated for the 

various estimates to determine the maximum likelihood estimate. If 

one of the estimates is inadmissible because 5 < 0, the likelihood 

function should be evaluated for this estimate to see if this point 

is a maximum so that the admissible values that maximize the likelihood 
A 

function are on the bounda~y, that is, when b = 0. 

Monte Carlo work has led the author to believe that for large 

even n, there is a unique solution to (9). However, even if (9) has 

a unique solution, it is still a very difficult equation to solve. A 

systematic search procedure has Droven to be the only method that 

always works. 

If x
1

, ... , xr are the r smallest values from a random sample of 

size n, then the simultaneous equations that the maximum likelihood 

estaimtes a and b satisfy are r r · 



n-r x; 2 n-r x. 
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L A A 
- [ I , 

i=1 2 
+ 

r 2 
xn-r 

2 J 0 ( 11) 

and 

i=1 a x. + b 
r 1 r 

n-r 
1 L A A 

i=1 a x. + b r 1 r 

n-r x. -[ \ _,+ J 
L rxn-r . 1 2 1= 

0 ' 

if the estimates are in the parameter space and maximize 

(12) 

L(x; ar~ br). The case in which the censoring is from the smallest 

values, besides not appearing to be a very likely situation, does 

not yield very usable results, and so will be omitted. 

C. Maximum Agreement Estimates 

The method of estimation to maximize agreement according to some 

criterion between u(x) which is some function of the random variable 

x and E(u(x)) has been proposed by Bain and Antle [9]. In this case, 

in order to make the estimates computationally easy, we let 

u(x) = F(x), and use least squares as the criterion for maximizing 

agreement. 

Since u(x) is distributed uniformly, E(u(xi)) 

the problem reduces to minimizinq 

i 
n + 1 , and so 

A*(x;a,b) = 

2 ax. 
I {1- exp [-(~ + bxi)]-

i 2 
1 } n + 

(13) 

Equation (13) is not linear in the parameters and so, from a 

computational standpoint, would yield undesirable estimates of a and 

b. Therefore, since ln is a monotone function, we minimize instead 
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2 ax. 
1
. 2 A(x;a,b) =I [(~ + bxi) + 1n(1 - n+l)] . ( 14) 

Differentiating (14) \'.Jith respect to a and u gives 

2 2 
aA x. ax. 

2 \ - 1 
[ (~1 + bx.) + l n ( 1 - i )] 8a - L 2 2 1 n+l (15) 

and 

(16) 

A 

The values a and b that satisfy 

A 

~2 L x4
1
· + b L x~ + L x? ln (n+ 1-i) 0 

1 1 n+l (17) 

and 

(18) 

are maximum agreement estimates, which will be referred to as the first 

method. Using Cramer's method to solve (17) and (18) gives 

\ x~ \ x. ln(n+!ii) - \ x? \ x? ln(n+l-i) a _ L 1 L 1 n L 1 L 1 n+ 1 
2 - 2 4 3 3 I x. I x. - I x. I x. 

1 1 1 1 

(19) 

and 

Another approach to obtaining maximum agreement estimates, which 

wi 11 be referred to as the second method, is to 1 et u (x) 
2 

== ~ + bx 
2 

and then minimize 
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2 2 
A(x;a,b) = L [(a~ + bx) - E(a~ + bx)] 2 . (21) 

2 
To find E[~ + bx], first note that 

2 
-(~ + bx) 

v = 1 - e 2 

is distributed uniformly. Therefore, 

h(v) = 1 , 0 < v :s 1 

and so be letting w ~ 1 - v, and noting that ~~~~ ~ 1, we have 

and so, 

h(w) = 1 , 

2 
-(~ + bx) 

w = e 2 

is distributed uniformly. Therefore, -ln(w(x)) 

distributed as a standard exponential variable. 

2 
~ + bx is 

2 

The expected value of the ith order statistic from a sample of 

standard exponentials of size n is given by Epstein and Sobel [11] 

to be 
i 

E(i,n) = L [1/(n-j+1)] . 
j=1 

Harter [11] has calculated these values for n = 1(1)120 and all values 

of i , 1 : i < n. 

Differentiating (21) with respect to a and b, and setting the 

partials equal to zero qives 

-a2A L 4 Ab L 3 \ 2(E( )) 0 x. + x.- L x. x.,n = 
l 1 1 1 

(22) 
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and 

a 3 A 2 
2 LX; + b LX; - L x;(E(i ,n)) = 0 , (23) 

A A 

where a and b are the maximum agreement estimates of the second method. 

Using Cramer•s method to solve (22) and (23) gives 

I 2 I x~(E(i ,n)) I 3 L x;(E(i,n)) A x. x. a - 1 1 2-
2 4 3 3 I x. I X. - I X. I x. 
1 1 1 1 

and 

I 4 
I xi(E(i,n)) 3 L x~(E(i,n)) A 

x. - L X; 1 
b = 

4 2 I 3 3 L X; I x. - x. L X. 
1 1 1 

D. Cramer-Rao Lower Bound(CRLB) 

The Cramer-Rao Lower Round Matrix is given by 

-1 

1 -
n 

where L denotes the likelihood function. Differentiation of ln f 

yields 

a2lnf 2 
-X 

aa 2 (ax+b) 2 

a2lnf -1 (24) 
ab2 2 (ax+b) 

and 

a2lnf -X 
aaab (ax+b) 2 



Now, 

00 2 2 
J x (ax+b~ exp [-(a~ + bx)]dx 

0 (ax+b) 

2 exp(b /2a) 
2 

a 

exp(b2/2a) 
= 2 

a 

J
oo (ax+b) ;a b ) 2 

-2b (ax+b) exp [-(; 2 + l2a Jdx 
0 

= exp 

+b2 f 
0 

2 
[-(/%x+-b )] } 

/2a dx 
(ax+b) 

00 CXJ 

f exp(-y)dy - 2b J A exp{-/)cty 
b2 b 

b2 ( ex~(-t) dy + 2a 
2 y 

b 
2a 

2 
(X) (X) 

[-(Y)J 
I - 2bi2TI 

f 
exp 

-exp(-y) 
ra /2TI b2 b 

2a ra 

2 
- b2 Jl exp [-{¥a)Jdz 

2a z 
(X) 
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dz 



exp(:~/ 2 a) {exp [-(~:)]- 2b/¥ [1 - P[Z < b ]] 
ra 

- !{ [y + 
2a + ••• ] } 

= ~ {ex p ( - k ) - 4 /Til( [ 1-- P ( Z:: 12k) ] 
a 

k2 k3 
-k[y + log(k) - k + 2·2! - 3·3! + ···]1 ' 
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where y ~ .5772157, Z ~ N(0,1) , and k = b2/2a. The negative expected 

value of (24) is 

co 
2 

= J ax+b [-(~ + bx)]dx 
(ax+b)2 exp 2 

0 

b2 
co A b 2 

J 
(ax+b) 

= exp(2a) 2 exp [- ( 2 x + - ) ] dx 

0 
(ax+b) l2a 

b2 1 2 
-exp(2a) 

I 
exp [-(!?.3_)] 

2a dz = 2a z 
co 

b2 

[ y + 

2 2 b2 3 

+ ••• ] 
b 

-exp(2a) b2 b2 (2a) (2a) 
log(2a) -- + -= 2a 2a 2· 2! 3· 3! 

-ex12 k [y + log k - k 
k2 k3 ••• J = 2a + 2·2~ - 3·3! + 

where y ; .5772157 and k = b2/2a. 



Finally, 

00 

2 

J 
x(ax+b) -E[3 lnf] = 2 3a3b (ax+b) 

0 

2 exp(b /2a) = a 

2 exp(b /2a) 
= a 

2 
= 

exp(b /2a) 
a 

2 
exp [-{a~ + bx)]dx 

{f 
2 ~ b 2 (ax+b) exp [- ( 2 x + - ) ]dx 

(ax+b) 2 /2a 

-b J= ax+b exp [-(~ x + _b_ )2]dx l 
0 (ax+b)2 2 !2a f 

00 

AI 
b 

= 

/¥ J b 

ra 

1 

+ ~ J 2a 
= 

{ 1¥ [1 -

2 
exp - (~) 

2 

/2TI 

b2 
exp - <2a) 

z 

b P(Z < - )] -ra 

dz 

dz 

= 

-y 
_e_ dy 

y 

24 

b2 b2 
b2 2 

(z-a) 
b2 3 

(2a) 
+· 0 ·} 

+_Q__ y + ln(2a) -- + 2·2! - 3•3! 2a 2a 
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= ra ex~ ( k) { /2; [ 1 - p ( z < m) J 
a 

JK k2 k3 
+ 12 [y +log k- k + 2•2 ! - ~ + ···]}, 

where y 
• 2 

.5772157, Z ~ N(O,l), and k = b /2a. Table 1 gives a compar-

ison of the maximum likelihood estimates and the two maximum agreement 

estimators with the CRLB for a = 5, b = 1, and n = 20, 40. 

TABLE 1. Monte Carlo study comparing various estimates for 
n = 20, 40 with CRLB for a = 5, b = 1. 

Maximum likelihood 
E (a) 

Var (a) 

E (b) 

Va r (b) 

Maximum agreement 
E (a) 

Var (a) 
A 

E (b) 

Var (b) 

Maximum agreement 

E (a) 

Va r (a) 

E (b) 

Var (b) 

CRLB (a) 
A 

CRLB (b) 

- 1st method 

- 2n method 

20 

6.58 

11.08 

.75 

.70 

4.21 

11.14 

1.18 

.84 

5.65 

15.24 

.95 

1.04 

6.64 

.52 

40 

5.36 

3.38 

.88 

.36 

4.06 

5.16 

1.24 

.47 

5.10 

6.39 

1.04 

.54 

3.32 

.25 



E. Reparameterization of the Model 

If 

'x2 
f(x) = (a'x + b') exp [-(T- + b'x)] , 

then letting a2 = a' and c = u•;;;;r gives 

- ax2 
f(x) = a(ax + c) exp [-a(--2-- + ex)] . 

In this case, 

and 

L(x;a,c) 

2 ax. 
[IT a(axi +c)] exp [-a L (~ + cxi)] , 

2 ax. 
ln L(x;a,c) =I ln a(axi +c)- a I (~ + cxi) , 

8 ln L(x;a,c) 
8 a 

2l ln L(x;a,c) 
d c 

2ax. + c 2 I --=-2_1_~- - I ax; - I 
a x. + ac 

1 

I --::2=-----a- - I 
a x. + ac 

1 

ax. 
1 

ex. 
1 

26 

(25) 

(26) 

Setting (25) and (26) erJual to zero gives tile maximu111 likelihood 

estimates a and c, and ue letting y = ax, these equations can be 

rev~ri tten as 

2 Y• 1 A 2 A A 1 
\ -~1 --- ~ L Y· -£I Y· +~a L --~-- = 0 

aLA aa 1 a 1 "'2 A 

: Y; + c (~) Y; + ~ 2 

and 

1 L-A---
~ y. + c 
a 1 

A 

~ \ v. a L ~ 1 
0 . 
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Since y is distributed independently of a, this proves the 

following 
A 

Theorem: ~is distributed independently of a and has the same distri-

bution as a which is the maximum likelihood estimator of a when the l,c 

sampling is from a distribution with the probability density function 

y2 
f(y) = (y + c) exp [-(~ + cy)]. 

Although it has not been done here, with this theorem it becomes 
A 

possible to find the distribution of~ for various values of c and n a 
so that confidence intervals could be established for a. Furthermore, 

any scale invariant statistic, such as Ix~/(Ix.) 2 , will be distributed 
1 1 

independently of a. Therefore, since the distribution of any such 

statistic depends only on c and n, by finding the distribution of the 

statistic either analytically or by Monte Carlo techniques, tests can 

be made on the parameter c. A theorem in Chapter III shows that the 

maximum likelihood estimator 2 is distributed independently of a, so 

that 2 could also be used as the test statistic. 

F. Tests of Hypotheses 

1. Tests on the Parameter a with b Known 

A test for H0 : a = a0 versus H1 : a = a1 can be made using the 

statistic 

where x1 and x
2 

are the first two ordered observations. This test 

has the property that it can be made, even when a large amount of 

censoring has taken place. Also, under the special case when the test 

is Hn : a = 0 versus H
1 

: a = a
1 

> 0, the test can be made with b 
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unknown. 

If a and bare known, then y = (~2 x~ + bx.) id distributed as 
1 1 

the ith observation from the standard exponential distribution, if x. 
1 

is the ith ordered observation from the distribution under considera-

tion. Since 

g12 (y1 , y2 ) = n(n-1) exp [-(n-2)y2] exp [-y1] exp [-y2] 

= n(n-1) exp [-(n-1)y2J exp [-y1J 

since IJI = z2 . Inteqrating g12 (z 1 , z2) with respect to z2 by parts 

by letting u = z2 and dv = exp {-[(n-1)+z1]z2} gives 

91(z1) = n(n-1) 0 < z1 < 1 2 ' -
[(n-1) + z1] 

and 

G1(z1) = 
n z1 0 $ z1 :: 1 

[(n-1) + z1J 

Monte Carlo simulation showed that the statistic (27) is larqer under 

H
1 

than under H
0

, and so the critical region is taken from the ri9ht 

and 

C(a) = (n-1)(1-a) 
a+ (n-1) 

Thus H
0 

is accepted if (27) is less than or equal to C(a) and is 

rejected if (27) is greater than C(a). 

Another statistic that can be used for testing H0 a = a0 

versus H1 : a = a1 > a0 is 
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l r ao 2 ao 2 l 
2 L ( y x. + bx. ) + ( n - r) ( -2 xr + bxr) , 

i =1 1 1 
(28) 

where xi is the ;th ordered observation. This statistic has the 

advantage over the preceding statistic of being better suited for 

various levels of censoring as well as for complete samples. 

As in the preceding case, it is noted that y (~ x2 
+ bx) is 

distributed as a standard exponential. Since 

2 [ I y. + (n - r) y ] ~ x2 (2r) 
i=l 1 r 

where y. is the ;th ordered observation from a standard exponential 
1 

[12], a test can be made using this statistic. Chi-Square tables 

need to be used for obtaining the critical region, and Monte Carlo 

simulation has shown that the statistic is smaller under H1 than under 

H0 and so the critical region is taken from the left and H0 is 

rejected if the statistic is less than x2(2r). a 

A special case of the above test occurs when r = 1, since in this 

case, it is possible to compute the power of the test. When r = l, 
a 

it is simpler to use as the statistic ( 2° xi + bx 1). If a = a0 , 

fl(xl) = n(a0x1 + b) exp [-n 
ao 2 

0 (y x1 + bx1)], < xl < co - -

and the critical point C(a) can be found by setting 

C(a) 
ao 2 

J 
n(a0x1+ b) exp [-n (y xl + bx 1)]dx1 

0 

equal to a, and solving for C(a). This qives C(a) = [(-nb + 

~n2 b 2 - 2 a
0 

n ln (1- a) )/n a0]. The null hypothesis is accepted 
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if the statistic is greater than C(a), and is rejected otherwise. The 

power of this test is given by 

00 2 

J 

a
1

x 
n(a 1x +b) exp [-n{-2- + bx}]dx 

C(a) 

al 2 
= 1 - exp [-n{~ [C(a)] + b C(a)}] . 

In the special case where the test is H
0 

: a = 0 versus 

H1 a = a1 > 0, C(a) = -ln(l-a)/nb. 

The best test for the hypothesis H
0 

: a = a
0 

versus 

H1 : a = a1 > a
0 

is the test given by the Neyman-Pearson Lemma. This 

test is considered here to give a basis for comparison of the various 

tests. Under this test, H0 is accepted with probability a of a type 

I error if 

IT f(xi; a0 , b) 

IT f(xi; a1, b) 

< k ' 

and is rejected otherwise, where k is suitably chosen. 

(29) 

The problem with this test is finding k, and the only way seems 

to be by Monte Carlo simulation, finding k for various values of n, 

a, b, and a. This can be eased somewhat so that k need be determined 

2 for various values of the ratio a I b , n, and a. 

In order to do this, let y bx, 

The ratio (29) can be rewritten as 
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ao 
2 2 

II + 1] {-I 
a0 b x. 

b [ 2 (bx.) exp [ ___ 1] + bx.} 
b 1 02 2 1 

al 
2 2 

II + 1] exp {-I [ 
a

1 
b x. 

b [ 2 (bx.) 2-i-J + bx.} 
b 1 b 

1 

\'Jhi ch upon making the substitutions becomes 

2 y. 
IT [coY; + 1] exp {-I (co -+ + y i)} 

y? 
IT [ely; + 1] {-I 1 

exp (c12+y;)} 

which simplifies to 

II ( 1) 2 CoY; + \ Y; 
IT (clyi + 1) exp {-(c0-c1) L 2} (30) 

The random samples vJould come from a distribution v1ith a probability 

density function 
2 

cox 
f(x) = (c0x + 1) exp - (-2--- + x) 

and k would be chosen such that only a(lOO) percent of the time (30) 

is greater than k. 

2. Tests on the Parameter a with b Unknown. 

A test for a more specific hypothesis H0 a = 0 versus 

H
1 

a = a
1 

> 0 with b unknown is to use 

"' r 
bs = + L IY,· - Ys I I n k i=l s,r,n 

A 

VJhere s is chosen to minimize the variance of bs, ks,r,n is an 

unbiasing constant, Y; = ln xi, and x1 , x2 , ••• xr are the first r 

(31) 
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ordered observations. The estimator 

A 

b - -

was first proposed by Bain [13] for estimating the shape parameter in 

the Weibull distribution or the scale parameter in the Extreme Value 

distribution. This estimator was later modified by Bain and Engelhardt 

[14] to bs so that the unbiased estimator would be acceptable for all 

levels of censoring. The original estimator b had been good only for 

a high amount of censoring. 

Under H
0

, x. is distributed as an exponential, and y. = ln x. is 
1 1 1 

distributed as a variable from the extreme value distribution with 

scale parameter b = 1. Since b is distributed independently of all s 

parameters in the extreme value distribution, under H0 , bib = b s 

is distributed independently of all parameters, and approximately 
A 2 A 

h bs ~X (h) where h = 2/Var (bs). Table 3 in [14] gives values for 

h for the complete sample case, and Table 5 gives values for h in the 

censored sample case. Monte Carlo work was performed to determine 

that H
0 

is rejected if h Gs < X~ (h). 

The exact distribution of 

is derived for r 

A 

s = exp[-n k b/b] r,n 

r-1 
II (x./x )1/b 

. 
1 

1 r 
1= 

2, 3 by Bain [13]. For r = 2, and b 

which is the test statistic (27). 

1' 



Since the test H0 : a = 0 versus H1 : a = a1 > 0 is a test for 

exponentiality versus a linearly increasing failure rate, another 

logical choice for a statistic would be one that has proved good for 

testing exponentiality versus any distribution with an increasing 

failure rate, such as the Weibull when the exponent b > 1. Hager, 

Bain, and Antle [15] have considered this problem and concluded that 
A 
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both M = -2 [ L ln x. - n ln x] and b, the maximum liklihood estimator 
1 

of the parameter b from the Weibull distribution, suggested by Thoman, 

Antle, and Bain [16], perform better than the other statistics they 

considered for the case mentioned above and also for certain Gamma 

alternatives. Table 2 in [15] gives the critical values for the M' 

statistic for y = .90, .95, .98, .99 and n = 10, 20, 30, 50, 100 where 

~~· = exp [-(M/2n)]. The same tail is used for rejecting H0 as was used 

by Hager, Bain, and Antle [15] for their tests. 

is 

Another statistic for testing H0 : a = 0 versus H1 

2 I x. 
S1(n) = 1 2 . 

(L x.) 
1 

a = a1 > 0 

(32) 

Under H0 , f(x) = b exp (-bx),and if the transformation y = bx is made, 

the random variable y is distributed as a standard exponential. Since 

the statistic can be expressed in terms of the standard exponential, 

and so is distributed only as a function of n. Table 2 gives critical 

values for n = 5(1)10, 10(2)30, 30(5)60 and a= .01, .05, .1 based on 

1000 Monte Carloed samples. 
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TABLE 2. Cumulative percentage points of I x~ and L x~/(Ix.) 2 
1 1 1 

values 

of c1 such that -a,n 

P[Ix~/(Ix-)2 c1-a,n] and 2 2 
< = a P[b Ix- < c1 ] = a. 

1 1 1 - -a,n 

1-a .90 .95 .99 .90 .95 .99 

n 

5 .2429 .2311 .2115 1.9611 1.2192 .5922 

6 .2139 .1990 .1839 2.6124 1.6435 .9518 

7 .1871 .1783 .1669 4.080 2.7147 .9747 

8 .1670 .1582 .1426 4.6694 3.6470 1.9629 

9 .1507 .1432 .1293 5.9466 4.2175 2.2829 

10 .1415 .1342 .1267 6.6394 4.5573 2.3425 

12 .1166 .1121 .1060 9.3048 6.6974 3.9529 

14 .1048 .1010 .0931 11.7848 9.1271 5.0136 

16 .0927 .0883 .0798 13.5005 11.1445 6.9672 

18 .0827 .0790 .0737 14.8530 12.0681 7.9450 

20 .0764 .0736 .0675 18.3924 14.9023 11.1801 

22 .0710 .0680 .0632 20.1671 17.5530 12.6446 

24 .0658 .0622 .0554 24.8621 20.5711 13.2549 

26 .0510 .0576 .0527 27.4664 23.7874 15.4541 

28 .0564 .0543 .0508 28.9050 26.0775 19.7788 

30 .0534 .0512 .0480 32.5475 28.7153 22.8365 

35 .0458 .0443 .0415 39.7205 33.8480 25.4995 

40 .0410 .0390 .0368 46.6766 42.6221 32.4567 

45 .0365 .0353 .0334 57.4834 50.0298 38.5423 

50 .03320 .0321 .0298 61.2942 52.9768 38.8960 

55 .0305 .0295 .0281 71.1136 62.4577 51.1092 

60 .02838 .0274 .0254 78.6230 70.3753 52.2778 
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A similar statistic to s1(n) is 

(33) 

for testing H0 : a = 0 versus H1 : a = a1 > 0. Clearly, s2(n) is 

also distributed independently of b. However, to compute s2(n), b 

must be known. Table 2 gives critical values for n = 5(1)10, 10(2)30, 

30(5)60 and a= .01, .05, .1 based on 1000 Monte Carloed samples. As 

might be expected, Monte Carlo studies show that the test using s2 is 

more powerful than the test using s1. 

A more general test than H0 : a = 0 versus H1 : a = a1 > 0 would 

be a test for a constant failure-rate versus an increasin0 or 

decreasing failure-rate that is not necessarily linear. Gnedenko, 

et al [17] consider such a test and suggest the statistic 

r n 
(n-r) L [(n-i+1)(x.-x. 1)]/[r L (n-i+1)(x.-x. 1)] , 

i=1 1 1
- i=r+1 1 1

-

where the X; are ordered observations, x. 
1 :: xi+1' and the statistic 

distributed as an F with 2r and 2(n-r) degrees of freedom under H0 . 

Monte Carlo investigations by Fercho and Ringer [17] show this test 

with~; .5 to be most powerful, in general, among four tests for 
n 

is 

constant failure rate that they considered. Therefore, it would seem 

best to choose r such that~; 0.5, where it is noted that in this case 
n 

r does not refer to censoring, but instead refers to the computation 

of the statistic. 

3. Tests on the Parameter b 

A test for H0 : b = b0 versus H1 

either of the statistics 

b = b
1 

> b0 can be made usinq 



or 

r 
2 [ I X; + (n-r) xr] 

i=l 
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suggested for testing a, since the distribution of either of these 

statistics depends only on the fact that y = ~ x2 + bx is distributed 

as a standard exponential variable. Therefore, the same critical value 

is used, and the test is made in the same manner. 

A test for H0 : b = 0 versus H1 : b = b1 > 0 with a known can be 

made using any of the statistics mentioned for testing H0 : a = 0 

2 versus H1 : a = a1 > 0 with b known simply by letting yi = x;/2, since 

under H0 ,yi is distributed as an exponential variable just as xi is 

under H0 when testing H0 : a = 0 versus H1 : a = a1 > 0. The power of 

the test is of course changed. 

The test for H0 : b = b0 versus H1 : b = b1 > b0 using the Neyman­

Pearson Lemma has no simple conversion from the test on a, unless 

b0 = 0, in which case the methods of the proceeding paragraph apply. 

In the case that b0 ~ 0, H0 is accepted with probability a of a type 

I error if 

n (ax
1
• + b0 ) exp [-I(~2 x2

1
. + b0x.)] 

----------------------------
1
- : k ' (34) 

TI (ax; + b1) exp [-I(~ x~ + b1x;)J 

and is rejected otherwise, where k is chosen most likely after some 

Monte Carlo simulations. In order to make k a function of four 

instead of five (n, a, a, b0 , b1) variables, let d2 
= a and rewrite 



( 33) as 

b 
IT d(dx + _Q_) 

d 

b 
TI d(dx + -J-) 

I [( )2 + b0d(dx)Jl exp - L dx2 

I [( )2 + b1d(dx)]l ' exp - L dx2 

which upon letting y = dx, c0 = b0ld, and c1 = b11d becomes 

IT (y; + c0 ) exp 1- d 4 + c0y;) I 
ll(Y; + c 1 ) exp 1- I [ Y2~ + c 1yi )I 

which simplifies to 

The random sample would come from a distribution with a probability 

density function 

co 2 
f(x) = (c0 x + 1) exp [-(~ x + x)] . 
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A more general test than H
0 

: b = 0 versus H1 : b = b1 > 0 would 

be a goodness of fit test for the variable coming from the Weibull 

distribution versus some other distribution. iL Marm and E. Schuer 

[17] present such a statistic with 

m-1 l \' L(r, s, m, u) = L r . J=m-r 

where 

£.I[ l I 9v. J 
J s j=1 J 

£. = (x.+1 - x. ) I E(x.+1 - x,. n) 
1 1 ,n 1 ,n 1 ,n , 

i = 1, ••• n-1 , 
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the xi are ordered observations, the sample is censored at the rth of 

n observations, and r + x < m < n. They give values for the expected 

values for n = 3(1)25 and critical regions for various levels of 

significance, and censoring for m = 3(1)n. 

4. Comparisons of the Various Test Statistics 

Table 3 gives the resultinq powers of various tests obtained from 

a Monte Carlo simulation of 500 samples, each of size 20. The powers 

are for the test H0 : a = 0 versus H1 : a = a1 > 0 with the si~nifi­

cance level a = .05. To compare the oower for various alternatives, 

a1 = .01, .1, 1.0 and b = .01, .1, 1.0 were considered. From the 

results obtained from 250 samples which were generated under H0 , 

table 3 appears to be accurate to t 3%. 

From table 3 it can be seen that for all tests, as a is increased, 

the power of the test increases. Furthermore, if a is held fixed, the 

power decreases as b is increased. 

For all alternatives, the test which uses the statistic (27) 

appears to have the lowest power of all the tests. The test statistic 

(28) with only the first two observations has better power than the 

proceedinq. Of course, (27) has the advantaoe when H0 : a = 0 that 

the test can be made with b unknown. 

Of the two statistics (28) and (31) that can be readily used for 

all levels of censoring, (28) was found to consistently qive the 

higher power. The test (28) can be used for testinCJ H0 a = a0 

versus Hl a = a 
1 with b known, whereas the test (31) can only be 

used for testing H0 : a = 0 versus H1 : a ~ a1 > 0. 
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In complete sampling, the tests (28), (29), (32) and (33) were 

considered. The test (33) seems to be preferable to (28) but has the 

disadvantage of requiring special tables. For b unknown, the test 

(32) is quite satisfactory. 



TABLE 3. Power for various tests of H0 : a = 0 versus H1 : a > 0, a = • 01, . 1, 1. 0 and b = . 01, . 1, 1. 0 
with a = .05 and n = 20 based on 500 Monte Carloed samples* 

Test 
Statistic a = .01 a = .1 a = 1. 0 

b = .01 b = .1 b = 1. 0 b = . 01 b = .1 b = 1. 0 b = .01 b = .1 b = 1. 0 

(27) 10 7 5 7 5 4 9 7 5 

(28) r = 2 14 4 5 85 8 4 100 17 3 

(28) r 
- = .5 n 100 11 4 100 88 5 100 100 8 

(28) r = n 100 53 5 100 100 8 100 100 55 

(29) 100 70 6 100 100 9 100 100 83 

(31) r 43 8 5 58 25 4 64 45 8 - = . 5 n 

(31) r = n 88 27 6 95 69 10 96 87 24 

(32) 93 30 6 96 75 10 97 90 40 

(33) 100 66 3 100 100 8 100 100 68 

* ~ 

Power expressed as percent. 0 
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III. MODELS WITH U-SHAPED FAILURE-RATES 

A. Quadratic failure-Rate Model 

1. Range for the Parameters 

The model with the failure-rate function h(x) = ax2 + bx + c can 

yield U-shaped failure rates. Since h(x) must be non-negative for all 

positive x, the parameters a and c must be non-negative, and b can be 

non-neqative. However, if h(x) is to be U-shaped in the first quadrant, 

then it must have a minimum in this quadrant, which is equivalent to 

h' (x) = 0 for some non-negative x. In this case, h' (x) = 0 when 

x = -b/2a, so b < 0 when h(x) is U-shaped. However, when b < 0, 

b2 - 4ac < 0 or else there would be at least one root on the positive 

x-axis which would mean h(x) < 0 for some non-negative interval. This 

results in b > - 2~. Therefore, 

2 ax3 bx2 
f(x) = (ax + bx +c) exp[-(--3-- + --2-- + cx)];x > 0, a~ 0, c > 0~ 

b > -2/aC; 

F(x) = 1 [ ax
3 

bx
2 

)] b 2 r::;-;:: exp -(--3- + --2- +ex ;x > 0, a~ 0, c ~ 0, > - vac; 

and 

3 bx2 
R(x) = exp[-(a~-- + - 2-- +ex)]; x > 0, a 2:_ 0, c ~ 0, b >-2m 

2. Maximum Likelihood Estimates 

The likelihood function in this case is 
3 2 

2 
ax. bx. 

L(x;a,b,c) = {TI(axi + bx; +c)} exp [-~(~ + ~ + cx;)J 

and 



3 2 
1 ( 2 

ax. bx. 
ln L(x;a,b,c) = L: n._ax. + bx. + c) - E(-1 + _1 + 

1 1 3 2 

Differentiatinq ( 1 ) with respect to a, b, and c gives 

2 3 
8 l n L(x;a,b,c) x. l:X. 

I 1 1 = --3-8a 2 ax. + bx. + c 
1 1 

d ln L{x;a,b,c~ X. L:x.2 
I 1 1 

8b = 
2 --2-

ax; + bx. + c 
1 

and 8 l n L {x ;a, b ,c) = \ ----==--___:._ __ 
dC L 2 L:x. 

1 
ax~ + bx. + c 

1 1 

A 
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ex.). 
1 

( 1 ) 

(2) 

(3) 

(4) 

The values a, band c that satisfy (2), (3) and (4) when the partials 

are equated with zero are the maximum likelihood estimates. 

The above set of three equations in three unknowns can be reduced 

to a set of two equations in two unknowns by rewriting (2) as 

2 
1 ax; + bx. + c 
a: [l: 2 

1 

ax. + bx. + c 
1 1 

- I 
3 bx. + c Ex. 

1 1 1 - 0 2 ...~--3--' 

ax. + bx. + c 
1 1 (5) 

and substituting from (3) 

2 
x. L:x. 

1 - 1 2 --2-
ax. + bx. + c 

l 1 

into (5) to give 

2 \' 3 
1 

A L:x
1
. A ~x. 

[ J 1 - 0 ~ n - b - 2- - c L:X i - - 3- - '· ' 



which can be rewritten as 

or 

~ 2 3 
bL:x. aL:x. 

n - T- cL:xi - T == 0, 

b 2 a 3 
-- n - 2 r.xi - 3 L:xi e L:x. 

1 

Substituting (6) into (4) gives 

and substituting (6) into (3) gives 

X. 

L A 2 1 3 ~ 1 2 a((L:x.)x. - -3 L:x.) + b((L:x.)x. - -2 L:x
1
.) + n 

1 1 1 1 1 

( 6) 

(7) 

z=x? /2 
l --= 0. 

L:x. 
1 

(8) 
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An iterative procedure between (7) and (8), modifying first a and the 
A 

b until the equalities are sufficiently close and evaluatinq c from (6) 

seems to be the best procedure for obtaining the maximum likelihood 

estimates. 

3. Maximum Agreement Estimates 

Using the same technique as in the case of the model with the 

linear failure rate, the problem of estimating the parameters in this 

case becomes the problem of minimizing 

3 2 ax. bx. . 2 
A(x;a,b,c) =I [T + -T- +ex; + ln(l - n~l )] . (9) 

Differentiating (9) with respect to a, b, and c gives 
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'dA _
3
2 \ 3 [(a 3 b 2 ; 8a- LX; 3 Xi+ 2 Xi+ CX;) + ln (1- n+1)J 

'dA fi 2 [(a 3 b 2 ex.) + 1 n (1 n!1)] 31)- x. 3 Xi + 2 Xi + -
1 1 

and 

'dA [(~X~ b 2 
- n!l)] - = 2 I x. + 2 x. + ex.) + 1 n (1 'de 1 1 1 

A 

Therefore, the values a' b, and c that satisfy 

A 
A. 

~I 
6 

+ ~ I 5 A 

I 4 + I 3 
- n!l) X. x. + c x. x. ln (1 = 0 ' 1 1 1 l 

A A 

~I 
5 

+ ~ I 4 A 

I X~ + I 2 (1 n!l) X. x. + c x. ln - 0 ' 1 1 1 1 

and 
A A 

~I 
4 

+%I 
3 A L 2 ln (1 n!l) 0 X. x. + c x. + I x. -

1 1 1 1 

are the maximum agreement estimators. 
A 

This system can be solved for a, b, and 2 by various methods, 

including Cramer's method. 

Another approach to obtaining maximum aqreement esti~ates, which 

was referred to in Chapter II, Section Cas the second method, is to 
3 2 

let u(x) = ~ + ~ + ex and then minimize 
3 2 

3 2 3 2 ax. bx. ax. bx. 2 
A(x;a,b,c) = L [(~ + ~ + cxi) - E(~ +~+ex;)] . 

Following the steps of Chapter II, Section C yields the system 
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A 
/'\. i 

%I 
6 

+ ~ I 5 
+ 2 I 4 I 3 I 1 x. X. x. - [x. n-j+l] :: 0 1 1 1 1 ' j==l 

A /'\. i 

~I 
5 

+%I 
4 + 2 3 I 2 I 1 X. x. L X; - [x. n-j+l] :: 0 

1 1 1 ' j==1 

and 
A 

4 6 3 A 2 i 1 j- I X; + 2 L X; + c L X; - I [x. I n-j+l] == 0 
1 j==1 

.A A 

The values a' b, and 2 which satisfy the above system are the maximum 

agreement estimate by the second method. 

B. Model with Failure-Rate h(x) c cosh [b(x-a)] 

1. Maximum Likelihood Estimators 

If 

h(x) be cosh [b(x-a)]; x > 0 , a > 0 , lbl < oo , c > 0, 

then since 

and 

X 

J h(t)dt = c sinh [b(x-a)] , 
0 

F(x) = 1 - exp {-c sinh [b(x-a)]} , 

f(x) = be cosh [b(x-a)] exp {-c sinh [b(x-a)]} . 

The estimates of the parameters which maximize 

L(x;a,b,c) = (bc)n {IT cosh [b(xi-a)]} exp {-c I [b(xi-a)]} 

satisfy 

n n n n 
\ sinh b(x .-a) rr cosh b(x.-a)- 2 n cosh b (x.-a) L cosh b(x

1
.-a) = 0, 

j~l J i=1 1 i==1 1 i=1 
i~j 



and 

n A A A n A A A n A A 

nIT cosh b(x.-a) + b II (x.-a) sinh b(x.-a) II cosh b(x.-a) 
i=l 1 j=l ,l J i=l 1 

iij 

AA A A n A A A 

+ be cosh b(x.-a) I (x.-a) cosh b(x
1
.-a) = 0 

1 • 1 1 1= 

A n A A 

n - c > sinh b(x.-a) = 0 . 
i~l 1 

2. Aqreement Estimates 
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Using the same technique as in the case of the linear failure rate, 

we let 

u(x.) = 1 - exp {-c sinh[b(x.-a)]} 
1 1 

and the function that we want to minimize is 

. 2 
I [exp {-c sinh[b(xi-a)]}- (1 -n:1)J. 

As in the previous cases, since the function is not linear in the 

parameters and therefore does not yield estimates of the parameters in 

closed form, we consicter 

-1 1 1 2 
A(x~a,b,c) = I [b(xi-a) + sinh (c ln(l - n+l )J (10) 

since sinh-l is a monotone function. Since 

( 10) becomes 
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I [b (x1.- a) + 1 n{ 1 n( n~! ]; ) + /_l_n_Cn_~_~_l_; _) _+_c_2 2 
}] . (11) 

c 

Differentiatinq (10) with respect to a and b gives 

( 12) 

( 13) 

The values a and b that satisfy 

A A A 

b I [b(x.-a) + y.] = 0 
1 1 

( 1 4) 

and 
A A 

I x.[b(x.-a) 
1 1 + yi] = 0 ( 15) 

where 

} ( 1 6) 

are the maximum agreement estimators. 

If b ~ 0, (14) can be rewritten as 

A A 

b = Ly./(na - LX.) 
1 1 

( 17) 

and then substituting (17) into (15) gives 

2 
A LX· LY· - LX. LX·Y· 

1 1 1 1 1 a = LX· LY· - n LX.y. 
1 1 1 1 

( 18) 

Now for a given value of c', which is not necessarily the true value 

of c, a can be obtained explicitly from (18), and then b can be obtained 
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from (17). 

Two estimates of c, 

- I [sinh (b(xi-~)) ln(n~!li)J 
.A A, 2 

I Isinh (b(xi-aJ)] 
( 19) 

anrl 

n (20) 

L sinh (b(x.-~)) 
1 

were considered. The first estimator, (19), minimizes 

with respect to c, and the second estimator (20) is the maximum like-

lihood estimator. Some Monte Carlo runs were made to determine which 

estimator was preferable. The results were inconclusive, so (20) is 

probably the better choice since it is easier to compute. 

c. Model with Failure-Rate h(x) = a (~)a- 1 + QY (~)a-1 
6 B B B 

exo 

1. Range for the Parameters 

Another possibility for a hazard function that can have a U-shape 

is 

a-1 a-1 
h ( x) = ~ ( ~) + T ( i) exp ( i) a, [3, y > 0, x > 0. 

The corresponding density function is 

F(x) = 1- exp {-(~)a- y[exp (~)a- 1]}~ a, (3, -y>O, x > 0. 

This distribution can be thought of as describing two components in 
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series where the failure of either component causes the failure of the 

system. In this case, one component fails according to the Weibull 

distribution where 

F(x) = l - exp [-(~)a]; a, 13> 0, x > 0, 

and the other component fails accordinq to the distribution whose 

density function is 

a 
F(x) = l - exp [-(~) ];a~ 13 > 0, x > 0, 

and the other component fails accordinq to the distribution whose 

density function is 

F(x) = l - exp {- y[exp (i)a- 1]}; a, S, y > 0, x > 0. 

When a= 1.0, this becomes the Gompertz distribution [5]. Therefore, 

this distribution will be referred to as a Gompertz type. 

The parameter y serves the purpose of determining the mixture 

between the Weibull and the Gompertz type failure-rates. The closer 

y is to zero, the more the failure rate behaves like a Weibull, where 

as withy large, the failure rate behaves more like that from a 

Gompertz type distribution. Finally, it should be noted that 1/a 

and lnS are scale and location parameters respectively if the trans-

formation y = ln x is made. 

In order for h(x) to have a U-shape, it is necessary for 0 < a < 

so that the first term decreases as x increases. Furthermore, Y must 

be positive, and the larger y, the faster the curve will increase. 

The value of x for which 
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is the minimum point of the curve. 

2. Maximum Likelihood Estimators 

The likelihood function is given by 

x. a x. a 
n x. -1 (-1 ) x. a (-1 ) 

L(x;a,B,y) = (~) rr(i) [1 + ye 6 ] exp - I{(i) + [e 6 - 1]}] 

and the log of the likelihood function is given by 

ln L(x;a,S,y) = n ln a - n ln B + (a-1) L ln X. - n(a-1) ln B + 1 

x. a x. a 
(-1) x. a (-1) 

L 1 n [1 + ye B ] - l: [(i) + y(e (3 - 1)] 

The values &, §, and y which maximize (21) satisfy the equations 

8lnl=!!_+\l 1 L.. n x. - n n 8a a 1 

x. a 
x. a+1 (-1 ) 

y(-1) e 6 
B +I -.:..::...6 -----x. a 

(-1) 
1 + y e 6 

x. a 

(21) 

1 (_1) X. X. a X. a+ 
6 - L {ln(i)(i) + y[(i) e - 1]} = 0 (22) 

x. a 
x. a (-1) 

ln n(a-1) 
(- ~)(-1) e B 

d L -n + I 6 B = -s-- 6 (~)a 86 
1 + y e 6 

x. a 
x. a x. a (-1) 

- I [- a (-1) + y (- 9:_ (-1 ) e B - 1)] (23) 
6 6 6 6 
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and 

x. a 
(-,) x. a 

(-,) a ln L e S 
= I - I ( e S - 1) = 0 8y x. a (24) 

(-,) 
1 + y e S 

and are called the maximum likelihood estimators. 

Since ln S and 1/a may be regarded as location and scale para-

meters, respectively, if the transformation y = ln x is made, by 

employing the theorem of Antle and Bain [18], it follows that 

/'... ~ """" (1/a)/(1/a), (ln S- ln S)a and (ln S- ln S)& have distributions 

that are independent of the parameters. By the invariance property 

of maximum likelihood estimators, a/&, (B/S)&, and (B/S)& are also 

distributed independently of all parameters. Therefore, it is possible 

to Monte Carlo random samples from this distribution and compute the 

maximum likelihood estimates so that the distributions of a/&, (S/S)& 
A 

A a 
and (SIS) can be approximated to enable one to make various confidence 

intervals and tests of hypotheses. 

If a and S are known, then the distribution of y could be approxi-

mated by Monte Carlo techniques as a function of y and n, and confidence 

intervals and tests of hypotheses could be made on y. Furthermore, as 

the following general theorem shows, y is distributed independently of 

a and B even if they are unknown, so that confidence intervals can be 

determined for y even in this case by approximating the distribution 

of y. 
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Theorem: Let x1, x be a random sample from a distribution where 
n 

x is a continuous variate whose density is of the form 

f(x;a,S,y) = t g((x-a)/B,y), 

-oo < a < 00 , 0 < s 
y E r is a vector 

(i.e., a and G are location and scale parameters, respectively). For 

the likelihood function given by 

L ( x ; a , B , y) = II f ( x . ; a , S , y) 
1 

A 

the maximum likelihood estimator y is distributed independently of a 

and s. 

Proof: The maximum likelihood estimators of a, B, ~are the values 
A 

&, B, y which satisfy 

or 

This is the same as 

which is 

L(x;&,s, y) = max L(x;a,S,y) 
~ 

max 
~ 



or 

max 
Q 

* * where a = (a-a
0

)/S
0

, S B/B
0 

and zi = (xi-a
0

)/B
0

, and a
0 

and B
0 

* 

53 

are the true values of the parameters. Since Q = ~' a
5 

and B
5 

cor-

respond to the maximum likelihood estimators of a and B when the 

sampling is actually on the standardized variate z .. Therefore y is 
1 

distributed independently of a and B. 
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IV. ESTIMATION AND INFERENCES ON THE LOGISTIC DISTRIBUTION 

A. Estimation of the Parameters of the Logistic Distribution 

The problem of estimating the parameters of the Logistic distri­

bution has been considered by a number of authors. Harter and Moore [19] 

have considered the problem of obtaining the maximum likelihood esti-

mates from censored samples using a computer. Gupta, Qureishi, and 

Shah [20] have considered best linear unbiased estimators for samples 

of n < 25. 

Here the method of maximum agreement will be considered. This 

method has the desirable features of being very easy to compute, of not 

requiring any tables, and of working for censored sampling. 

One possible set of maximum agreement estimators would be the 

particular values which minimized 

where 

2 
A= I {F(xi) - E[F(xi)]} 

1 F (x) = --------
{1 + exp [-(x-~)/a'] 

' a' 

( 1 ) 

13 =-a. 
n 

Since finding these particular values would prove very difficult, (l) 

is modified by first taking the reciprocal and then the natural 

logarithm of each term to obtain 

1 
. 2 

A= I {x-~ + ln(n+.- 1
)} . 

a' 1 
(2) 

The estimators which minimize (2) are not actually maximum agreement 

estimators in that the agreement function is not of the form u(x)- E(u(x)) 

but it will be shown that these estimators compare very favorably with 

one maximum agreement estimator. 



To find the values Hhich minimize A vJith respect to f-1 and a•, 

the partials 

"'A -2 (x1.-w) 1 · 
a [ + 1 n ( n+. -1 ) J 
d1J == 0' 0 1 

and 

are set to zero to give the t\vo simultaneous equations 

and 

I (x.-0) 2 
1 

A 
+ a• 

\ A \ (n+1-i) L x . - nw + a • L 1 n . = 0 
1 1 

I x · 1 n ( n+ ~- i ) - 0~ I l n ( n+ ~- i ) 
1 1 1 

Solving (4) for a' gives 

[0 \ ln cn+~-i)- \ x. ln cn+~-i)J 
L 1 L 1 1 

and substituting this into the first equation gives 

0 . 

\ (x
1
. -0) 2 

L ] \ ln (n+~-i) 0 \ X· - n0 + [ 1 · L • 
L 1 0 L 1 n ( n+ ~- i ) - L xi l n ( n+ i _, ) 

This can be simplified to 
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( 3) 

(4) 

(5) 

( n+ 1.-; ) \ \ 1 ( n+ ~- i ) + n ;; \ 1 ( n+ 1- i ) 
- ll L x i L 1 n 1 - L xi L xi n , f-4 L x i n ~-;-
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Solving for ll gives 

I x. x. 1 n (n+~-i) 2 ln (n+~-i) x. I - I I A l l 1 l l 
1J = (6) 

n I (n+~-i) (n+~-1) x. ln - I x. I ln 
l 1 l l 

/'. 
Upon obtaining D from (6), 0' can be obtained from (5). 

To compare the above modified maximum agreement estimators with 

true maximum agreement estimators, the aoreement function 

(7) 

was considered. Taking the partials of (7) with respect to w and 

o', setting these equal to zero, and solvinq the two equations simul-

taneously in a manner similar to the above, gives 

1\ 
o' 

x.-o x.-o 
I x. E(+-) - ll L E(~) 

1 o' 0' 

and 
A A 

2 x.-w x.-w 
I x. I E ( l ) - I X. I x. E ( l ) 

l ~ l 1 ~ 
0 0 

= ll A A 

x.-lJ x.-w 
I X; I E(*) - n L X; E(-,-) 

cr' ~ 

Gupta and Shah [21] have given the exact moments of the kth order 

statistic for n < 10 from a standard Logistic distribution so that 

x.-0 
E(~) can be obtained. 

o' 
The need for tables is one disadvantage of this estimator. 

Furthermore, several Monte Carlo studies were undertaken to compare 

these estimates with the modified maximum agreement estimators, and 
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it was found that the modified maximum agreement estimator for a had both 

a smaller variance and less bias than the agreement estimator, and the 

variance and bias for ~ was the same for both estimators. Table 4 gives 

a comparison between the modified maximum agreement estimators and the 

maximum likelihood estimators based on a Monte Carlo study of 950 

samples for sample size n = 10, 20, 40, 80 and censoring from the right 

for r/n = 1.0, .7, .5, .3. 

B. Statistical Inferences for the Logistic Distribution Based on Max­

imum Likelihood Estimators. 

l. Confidence Intervals for~ and o 
A A 

For both complete and censored sampling (~-w)/o and o/o are 

pivotal quantities whose distributions are independent of unknown 

parameters. Therefore, the percentage points m , where y 

A A 

P[ln(~-~)/o < m ] = y 
y 

and the percentage points sy where 
A 

P[ln(o/o- 1) < S] = y y 

can be determined by Monte Carlo simulation. Table Al and Table A2 

respectively, give these percentage points for n = 10, 2n, 40, 80 for 

censored sampling from the right for r/n = .3, .5, .7, .9, 1 ., and for 

y = .01, .025, .05, .10, .25, .5, .75, .90, .95, .975 and .99. ,L\11 the 

Monte Carlo results are based on 4000 samples for n ~ 80 and 8000 

samples for n = 10, 20 and 40. 

These tables can be used to determine confidence intervals for both 

~and o. For example, to obtain a 95% confidence interval for~' 

A A 

P[m_ 025 < /in(~-~)/o < m_ 975J = .95 



TABLE 4. Monte Carlo study comparing maximum agreement estimators with maximum likelihood 
estimators for the standard Logistic distribution 

r/n 1. 0 . 7 n 
/\ 

Var(~) 
/\ /\ A 

Var (~) E (~) Var(~) E(JJ) E(cr) Var(cr) E(1-l) 

Max. L i k. 10 
-.01 . 10 .95 .07 -.03 . 10 .90 .09 

Max. Agree. .01 . 10 1 . 31 . 14 .05 .04 1 .40 .23 

Max. L i k. 20 .00 . 05 .97 .03 -. 01 . 05 .94 .05 
Max . .l\gree. .00 .05 1 . 19 .06 .03 .02 1 . 22 .1 0 

Max. L i k. 40 -.00 .02 .99 .02 -. 01 .02 . 98 .03 
Max. Agree. -.00 .03 1 . 13 .03 .02 . 01 1 . 15 .05 

Max. L i k. 80 
. 00 . 01 .99 . 01 . 00 . 01 .99 . 01 

t~ax. Agree. .00 . 01 1. 08 . 01 .02 .00 l. 09 .02 

rjn 
n .5 . 3 

A A /\ 

var(o) 
1'\ 

A 

Var(~) E ( 11) Var(11) E(cr) E ( 11) var(w) E (a) 

Max. L i k. 10 
-.09 . 13 .84 . 13 -.26 .23 . 71 .22 

Max. Agree. .06 .57 l. 41 . 31 .03 . 01 l. 32 .33 

Max. L i k. -.04 . 06 . 91 .07 -. ll . 12 .85 . 12 
~ax. Agree. 20 .04 . 01 1. 23 . 13 .03 .00 1 . 19 . 13 

Max. Lik. 40 
-.02 .03 . 96 .04 -.06 .06 .93 .06 

Max. /',gree. .03 .00 1 . 16 .06 .02 .00 1 . 14 .06 
U"l 

Max. L ik. -. 01 . 01 .98 .02 -.02 . 03 .97 .03 o::> 

Max. Agree. 80 .02 .00 1. 09 .03 . 01 .00 1. 01 .03 



and 
A A 

P[~ - m_ 975a!ln < ~ < ~ - m_ 025a;/n]= .95. 

Similarily, to obtain a 95% confidence interval for 0, 

and 

A 

P[S_ 025 < /n(a/0- 1) < s_ 975] = .95 . 

p [--___:_0 __ _ < 0 < 
0 -----] 

1 + s.025/Irl 

2. Point Estimation of ~, 0, and R(t) 

.95 
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The means and variances of the maximum likelihood estimates, ~0 
and 0

0
, were obtained from the Monte Carlo simulation of 4000 samples 

for n = 80 and 8000 samples for n = 40, 20, 10 for w = 0 and 0 = 1 
A A 

and these are in Table A3. Since E(w
0

) = E(w-w)/o, the bias of w is 
A A A A 

Also, E(o/a) = E(0 ), so that E(0)/E(a) is an unbiased 
0 0 

estimator of a. 
A 

The means and variances of the point estimator R(t) were obtained 

from the same Monte Carloed simulations for R(t) = .5, .7, .9, .95 and 

are presented in Table A4. 

3. Tolerance Limits 

Let x
1

, ... , xn be a random sample from a distribution with 

cumulative distribution function F(x) and let ~S be the point such that 

A function ... , xn) is a lowery tolerance limit 

for proportion B ;f P[L(x1, ... , xn) :s:_ ~B] = y. If the distribution 

has a location and scale parameter, then ~B can be expressed in the 

form w - k(B)a. In the case of the Logistic distribution, k(B) = 
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13 B ) -nln (1_6 · Haas (22] shows that for a distribution with a location 

and scale parameter, there always exists a function t (S,n) such that 
y 

for all ~and 0. 

A A 

P[~ - t (B,n)0 < ~ - k(B)0] = y y -

The function t (S,n) is chosen such that 
y 

P[~~~ + k(B) ~ < t (S,n)] = y 
0 0- y 

Simple manipulation shows that these two probability statements are 
A 

equivalent. The importance of this is that~+ k(B) ~ is distributed 
0 0 

independently of w and 0 and so dependsonly on Band n, thus making it 

convenient to obtain t (B,n) by Monte Carlo simulation. The lower 
y 

"' 
(y,S) confidence limit therefore is given by L(x) = G- ty(S,n)0 and 

"' "' 
by U(x) = p + t (B,n)o. Values of t (S,n) based on a ~~ante Carlo y y 

simulation of 1000 samples for n = 80 and of 2000 samples for n = 40, 

20, 10 is given in Table A5 forB= .500(.025).975; y = .75, .85, .90, 

.95, .99 and r;n = 1.0, .7, .5 and .3. 



61 

V. NUMERICAL TECHNIQUES 

A. Generation of Random Samples 

It is well known that if x is a continuous random variable with 

cumulative distribution function F(x), then U = F(x) has a uniform 

distribution over the interval (0,1) [23]. Using the random number 

generator subroutine found in the IBM Scientific Subroutine Package 

for the IBM 360 to obtain a random sample of size n from the uniform 

distribution, and then solving to obtain x
1 

= F- 1 (ui) gives a s3mple 

from the desired distribution. 

In the case of the model with the linear failure-rate, 
2 ax. 

ui = 1 - exp [-(~ + bxi)] 

so that x. is the positive root to the quadratic equation 
1 

since x. > 0. 
1 

2 ax. 
~ + bxi + 1 n ( l - u i) = 0, 

In the case of the model with the quadratic failure-rate, 

3 2 ax. bx. 
Ui = 1 - exp [-(~ + ~ + CX;)J, 

so that x. is the positive real root to the cubic equation 
1 

3 2 ax. bx. 
- 1 + - 1 + ex + i n ( 1 - u . ) = 0 

3 2 i 1 

It can be shown that there is only one positive real root to this 

equation. 

For the case when the failure-rate function 



h(x) 
a-1 

= a (~) 
[3 !3 

a-1 
+ r;£L (X) 

B B 

a-1 
ui = 1 - exp - [% (~i} 

X; a-1 x. a 
+ T ( S ) exp Cj) ] 

so that xi satisfies 

a-1 x. 
a (-1) 
S B 

a-1 X. 
+ ~(-,) s s 

x. a 

exp Clf) + ln(l - ~i) = 0 
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Many simulations have shown that the positive root to the above equa­

tion can almost always be obtained using the Newton-Raphson method 

with an initial guess for x. equal to zero. 
1 

B. Numerical Solution of the Maximum Likelihood Equations for the 
Logistic Distribution 

Let x1 , ••• ' X r 
be the r smallest ordered observations from a 

sample of size n from the Logistic distribution. Harter and Moore [19] 

give the maximum likelihood function for censoring from both sides and 

the first and second partial derivatives with respect to~ and o of 

this function. These equations can be simplified by using the fact 

that the hazard function h(x) = f(x)/(1-F(x)) = (rr;/3 cr) F(x) to give 

3 1 n L 
dO 

32ln L 
d]J2 

3ln L 
d~ 

n-r 
= (rr;/3 o)[2 ~ F(z;) + rF(zn-r) - (n-r)], 

i=l 

n-r n-r 
(l/o)[2_~ z;F(zi) + rzn-rF(zn-r) - L: z. - (n-r)] = 1 

1=1 i=l 

2 n-r 
= -rr2 {2 L: F(x;)[l-F(zi)] + rF(z )[1-F(z )] } ' n-r n-r 

3a i=l 

( 1 ) 

(2) 



and 

1 n-r 2 2 
= :z {-2 I z.F(z.)[l-F(z.)] - rzn F(zn )[1-F(z )] 

0 i=l 1 1 1 -r -r n-r 

n-r 

z. + (n-r)} 
1 

= ~TI 2 {2 I z.F(z.)[l-F(z.)] + rz F(z ) 
1 1 1 n- r n- r 

v30 i=l 

n-r 
[1-F(zn-r)] + 2 I 

i=l 
F(z.) + rF(z ) - (n-r)} , 

1 n-r 

where zi = n(x-~)/1:3 0 and F(zi) = 1/[1 + exp (-z;)]. 

The maximum likelihood estimators D and a are the values which 
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(3) 

(4) 

satisfy the equations a ln L/a0 = 0 and d ln L/d~ = 0. There does not 

appear to be a closed form solution to these equations. Harter and 

Moore [19] suggest an iterative estimation procedure estimating the 

parameters one at a time, in the cyclic order u, o. At each step, the 

one parameter is estimated by the method of false position while the 

latest estimate of the other parameter is substituted in the equation. 

This method a1ways converges, and usually in a reasonable number of 

iteration. However, care must be taken to prevent successive estimates 

of ~ from getting too close to zero since this causes the equations to 

blow up because of division by a very small number. Also, it is 

possible for a negative value of 0 to satisfy the equations, which is 

of course, a meaningless result. 

An alternative method which converges considerably faster to the 

estimates C and ; when it converges is the Newton-Raphson method for 
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two equations in two unknowns. If~. 1 = ~· + h and = + k 1+ 1 °i+l 0i 
are the ith and (i + l)th iterations of~ and~ then the problem is 

to find h and k from the simultaneous linear equations 

d ln Ll 2 2 

d1J + d ln} th) + d ln L tk) = 0 

~=~. d1J A. 
d~dO . A 

=Jl. -ll 
A, ,-...1 -A i 

o=0. 0=0. 0=0. 
1 1 1 

and 

d ln 

L L=~. 
21n L 2 

3o + 
dlJ dO 

(h) + ln2L tk) = 0, 
d0 A 

lJ=lJi =lJ. A, 
A 

A., 
o=0. 0=0. 0=0. 1 1 1 

where the partials are given by (1), (2), (3), and (4). Table 5 

gives the number of times this method diverged for 4000 Monte Carloed 

samples of size n = 80 with r/n = 1.0, .9, .7, .5, .3 and for 8000 

Monte Carloed samples of size n = 40, 20, 10 with r/n = 1 .0, .9, .7, .5, 

.3. The starting values for n = 80 and r/n = 1.0 were the true values 

for 1-1 and o. The starting values for the other cases were the pro-

ceeding Maximum Likelihood estimates. As might be expected, the 

method is better for larger more complete samples. Another possibility 

for starting values would be the Maximum Agreement estimates since these 

are easy to obtain. 
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TABLE 5. Number of times Newton-Raphson method failed to converge 

number of 
n samples r/n = l. 0 .9 . 7 . 5 . 3 

80 8000 0 0 0 0 82 

40 4000 67 0 14 106 741 
20 4000 509 2 129 613 1811 

10 4000 650 81 626 1560 3344 
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VI. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS 

Although various methods for estimating the parameters of the model 

with the linear failure-rate have been suggested, none of the methods 

appear to be as easy to use as does the method of maximum agreement. 

Furthermore, this method of estimation gives easy to use estimators 

for other distributions, such as the Logistic distribution, and as 

Table 3 indi:ates, these estimators appear to be relatively unbiased with 

reasonable variance. Besides providing easy to use estimators for the 

linear failure-rate model, tests for various hypotheses are now available. 

Various specific models with U-shaped failure rates have been pre­

sented so that the person with reason to believe that his data is best 

described with a distribution of this type, now has several more al­

ternatives to try. Besides, relatively simple estimators are presented 

for each model. 

The Logistic distribution has been made more useful for the applied 

statitician, first by presenting easier to use estimators, in that the 

maximum agreement estimators are easy to compute and do not require 

tables. Also, the unbiasing constants for the maximum likelihood esti­

mators for various sample sizes and levels of censoring are presented 

as are confidence intervals and tolerance limits. 

Tests of hypotheses, confidence intervals, and tolerance limits 

are still largely unavailable for a model with a U-shaped failure-rate. 

One approach to this problem would be to continue development on a model 

with a location and scale parameter along the lines of the work done on 

the Logistic distribution. 
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/\PPENDIX 1\ 

TABLES FOR H~FERENCES OF THE LOGISTIC DISTRI8UTIO;J 



~:. j __ : .: 1. 'J a h ~? s n f ··· s j( ~ t ~ d t P [ vn Cil- 1-1) I a < m v J = r 

r / r-. n 
-- -· ---·-- ·-·- --- -- --·-.. ~ --·-- ~ · - --- ---------- -- . ----- ··-- ... - -----~-------- .. - - --- --·-- ... - -

. 0 l 1)?:: . flS . 10 '): .SfJ .7S '9 f) .95 .975 00 
• J- .. 

• :... 1 . ~ ~ 
------------- -------- -·- -- --- -- - --·-. ---- --- ·--- ·-·-------· 

10 -2.78 -2.2! -l. 81 -1.37 - . 71 .00 .70 1. 37 1. Sl 2.24 2. 78 
21) -2. 51 -2.08 - l . 70 -1 . 30 - . 5R .00 .68 1. 30 1. 70 2.08 2.51 

1.0 40 -2.39 -1 '95 - 1.64 -1.25 rr .00 .65 1. 25 1. 64 1. 96 2.39 - . :n 

80 -2.28 -l. 93 -1.60 -1.23 - . 55 .00 .65 1. 23 1. 60 1. 93 2.28 
-2. 22 -1. 87 -l. 57 -1.2?. - . ~ 11 .00 .64 1. 22 1. 57 1. 87 2.22 

10 -2. 89 -2.35 - 1. 90 -1 .40 - . 7() .00 .72 1. 42 1. 84 2.28 2.83 
20 -2.61 -2.14 -1.74 -1.32 - . 58 . 01 .69 1. 31 1. 71 2.06 2.48 

.9 40 -2 .43 -2. ()1) - 1.66 -1. 26 - . 65 - .01 .65 1. 26 1. 6.3 1. 95 2.39 
80 -2. 30 -1.96 -1.60 -1.23 - . 64 .00 .67 1. 24 1.62 l. 90 2.31 
·r -2.22 -1. 87 -1.57 -1 .22 - . 64 .00 .64 1. 22 1. 57 1. 87 2.22 

10 -3.98 -3. 04 -2.40 -1.70 - . 85 - .08 .68 1.40 1. 86 2.33 2.84 
20 -3.08 -2.47 -2.00 -1.48 - . 77 - .04 .66 l. 29 1.69 2.05 2.48 

.7 40 -2.64 -2.19 -1.80 -1.37 - . 70 - .04 .63 1. 24 1. 63 1. 93 2.38 
80 -2.38 -2. 1)4 -1. 67 - 1.31 - .68 - . 01 .66 1. 24 1. 60 l. 90 2.33 
.,. -2.26 -1.91 -1.60 -1. 25 - . S6 .00 .66 1. 25 1.60 1. 91 2.26 

10 -7.84 -5. 71 -4.08 -2.92 -1.39 - .28 .57 1.30 1.77 2.28 2.83 
20 -4. 63 -3.68 -2.88 -2.10 -1.07 - . 17 .59 1. 26 1. 66 2.03 2.42 

. 5 40 -3.60 -2.90 -2.38 -1.81 - . 93 - .12 .61 1. 24 1. 61 1. 96 2.37 

80 -3.16 -2.55 -2.06 -1.61 - .84 - .04 .66 1. 26 1.66 l. 97 2.30 
· :· -2. 51 -2. 11 -1. 77 - 1.38 - . 73 .00 .73 1. 38 1.77 2.11 2.51 

to -16.19 -9.78 -4.43 -1.30 .25 1.14 1. 63 2.12 2.64 

20 -12 .55 -9. 04 -6.76 -4.70 -2. 34 - .69 .51 1. 34 1. 75 2.08 2.43 

.3 40 -7.40 -5.58 -4.56 -3.33 -1.73 - .44 .63 1.43 1.85 2.19 2.57 

80 -5.60 -4.43 -3.67 -2.78 -1.45 - .21 .78 1. 56 1. 96 2.36 2. 73 
-.....! 

-3. 59 -3.03 -2. 54 -1 .98 -1. 04 .00 1.04 1. 98 2.54 3.03 3.59 ...... 



TABLE A2. Values of s such that P[ln(~/cr-1) < s ] = y. y y 

r/n n y 

.01 .025 .05 .10 .25 .50 .75 .90 .95 .975 .99 

10 -1.81 -1.59 -1.40 -1.18 - . 76 - .24 .33 .89 1. 28 1. 61 2.02 
20 -1.86 -1.62 -1.40 -1.13 - . 71 - .18 .39 .95 1. 31 1.62 2.01 

1.0 40 -1.91 -1.63 -1.41 -1.12 - . 67 - .12 .45 1.00 1. 34 1.66 2.05 
80 -1.93 -1.66 -1.42 -1.13 - . 67 - .08 .48 1.03 1. 35 1. 65 1.94 
00 -1.95 -1.64 -1.38 -1.07 - . 56 .00 .56 1.07 1. 38 1.64 1.95 

10 -1.91 -1.69 -1.49 -1.26 - . 81 - .26 .32 .91 1. 29 1. 69 2.11 
20 -1.96 -1.70 -1.47 -1.22 - . 76 - .20 .39 .99 1.37 1. 74 2.18 

. 9 40 -1.97 -1.71 -1.49 -1.20 - . 71 - .14 .45 1.04 1.38 1. 74 2.11 
80 -2.04 -1.68 -1.46 -1.17 - . 69 - .09 .50 1.06 1.39 1.65 1.97 
00 -2.04 -1.72 -1.44 -1.12 - .59 .00 .59 1.12 1.44 1. 72 2.04 

10 -2.16 -1.96 -1.75 -1.50 -1.03 - . 41 .30 .97 1.43 1.81 2.36 
20 -2.25 -1.98 -1.75 -1.47 - . 92 - . 29 .41 1.08 1. 56 1. 93 2.43 

. 7 40 -2.28 -2.03 -1.75 -1.43 - .87 - . 20 .50 1.16 1. 59 1.98 2.42 
80 -2.28 -1.97 -1.72 -1.39 - .82 - .14 .55 1.24 1.65 1.98 2.28 
00 -2.36 -1.99 -1.67 -1.30 - .69 .00 .69 1. 30 1.67 1.99 2.36 

10 -2.53 -2.34 -2.14 -1.87 -1.36 - . 65 .19 1.04 1.62 2.04 2.79 
20 -2.70 -2.40 -2.15 -1.84 -1.22 - .46 .38 1. 27 1.78 2.26 2.99 

.5 40 -2.77 -2.46 -2.18 -1.81 -1.12 - .32 .54 1.36 1.88 2.35 2.95 
80 -2.81 -2.45 -2.09 -1.71 -1.03 - . 24 .64 1.48 1.98 2.43 3.01 
00 -2.91 -2.45 -2.06 -1.60 - .84 .00 .84 1.60 2.06 2.45 2.91 

10 -2.98 -2.87 -2.73 -2.52 -2.00 -1.23 - .18 1.00 1. 78 2.58 3.70 
20 -3.41 -3.16 -2.89 -2.51 -1.78 - .83 .29 1.47 2.25 3.04 3.78 

.3 40 -3.62 -3.27 -2.88 -2.42 -1.62 - .60 .57 1. 72 2.46 3.12 3.97 
80 -3.68 -3.24 -2.88 -2.34 -1.48 - . 39 . 75 1.89 2.65 3.22 3.89 
co -3.94 -3.32 -2.78 -2.17 -1.14 .00 1.14 2.17 2.78 3.32 3.94 -......J 

N 
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TABLE A3. Means and variances of the maximum likelihood estimators of 
the paramete~s of the Logistic distribution (E(00 ) denotes 
the mean of y for the standard logistic, ~ = 0, o = 1). 

E(&/o) 

n r/n 1.0 .9 .7 . 5 .3 1. 0 . 9 . 7 . 5 .3 

10 .000 .000 -.021 -.078 -.256 .943 .943 .899 .839 .702 

20 .000 -.001 -.010 -.039 -.120 .971 .966 .951 .920 .858 

40 .000 -.001 -.006 -.020 -.060 .986 .983 .975 .960 .929 

80 .000 .000 -.001 -.007 -.026 .992 .991 .988 .981 .967 

10 

20 

40 

80 

= 

.93 

.94 

.91 

.91 

.91 

.93 

.94 

.91 

.91 

.91 

nV(&)!o2 

.98 1.22 2.36 .67 .73 .95 1.35 2.10 

.99 1.21 2.43 .68 .76 1.00 1.46 2.50 

.95 1.18 2.38 .70 .77 1.03 1.52 2.68 

.94 1.18 2.37 .70 .76 1.03 1.56 2.76 

.95 1.16 2.39 .70 .77 1.03 1.56 2.87 
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TABLE A4. Means and variances of R 

E(R) V(R) 

R .5 . 7 .9 .95 .5 . 7 .9 .95 

r/n n 

10 .502 .707 .902 .948 .0208 .0160 .0049 .0021 
20 .501 .704 .901 .949 .0103 .0083 .0026 .0011 

1.0 40 .500 .702 .900 .949 .0049 .0040 .0013 .0006 
80 .501 .702 .901 .950 .0024 .0020 .0007 .0003 

10 .485 .705 .906 .951 .0259 .0193 .0054 .0023 
20 .493 .703 .903 .951 .0118 .0090 .0029 .0013 

. 7 40 .496 .702 .902 .950 .0053 .0042 .0015 .0007 
80 .499 .702 .901 .950 .0025 .0020 .0008 .0004 

10 .441 .683 .909 .954 .0374 .0294 .0062 .0025 
20 .471 .695 .905 .952 .0163 .0112 .0032 .0014 

.5 40 .485 .698 .903 .951 .0072 .0048 .0016 .0007 
80 .494 .700 .902 .951 .0033 .0022 .0008 .0004 

10 .324 .572 .892 .954 .0614 .0753 .0192 .0054 
20 .407 .647 .903 .954 .0340 .0266 .0047 .0016 

. 3 40 .452 .678 .903 .953 .0158 .0087 .0019 .0008 
80 .478 .691 .902 .951 .0071 .0034 .0009 .0005 



TABLE AS. Tolerance factors t such that L(x) = 0 - t &, U(x) = 0 + t &, y y y 

n 10 20 y = •75 40 

r/n 1.0 .7 . 5 . 3 1.0 . 7 .5 . 3 1.0 . 7 .5 .3 1.0 
-
s 

.500 .22 .20 .16 .06 .15 .15 .13 .12 .096 .093 .089 .092 .077 

.525 .28 .26 .22 .12 .21 .21 .19 .17 .153 .149 .146 .149 .133 

.550 .34 .33 .29 .19 .27 .27 .25 .23 .209 .205 .203 .205 .188 

.575 .41 .40 .35 .26 .33 .33 .31 .29 .266 .265 .260 .262 .245 

.600 .47 .47 .43 .33 .39 .39 .37 .35 .325 .325 .319 .319 .304 

.625 .54 .54 .52 .41 .45 .46 .44 .41 .384 .384 .380 .377 .364 

.650 .61 .62 .59 .49 .52 .52 .51 .48 .446 .447 .443 .440 .427 

.675 .68 .69 .67 .59 .59 .59 .58 .55 .513 .516 .509 .506 .490 

.700 .75 .77 .76 .68 .65 .66 .65 .63 .581 .585 .578 .575 .557 

.725 .84 .86 .85 .79 .73 .74 .73 .71 .654 .656 .651 .647 .627 

.750 .92 .95 .95 .90 .81 .82 .82 .80 .732 .735 .731 .722 .703 

.775 1.01 1.05 1.06 1.02 .89 .91 .92 .89 .812 .817 .819 .804 .784 

.800 1.10 1.16 1.19 1.15 .99 1.01 1.02 1.00 .900 .910 .915 .901 .869 

.825 1. 21 1. 28 1.32 1.34 1.09 1.12 1.14 1.11 .997 1.009 1.018 1.005 .961 

.850 1. 34 1.42 1.48 1. 57 1. 20 1.24 1. 26 1. 26 1.109 1.121 1.139 1.129 1.070 

.875 1.48 1. 59 1.66 1.82 1. 34 1.38 1. 41 1.43 1.236 1.252 1.274 1. 272 1.193 

.900 1.66 1. 79 1.89 2.14 1. 50 1. 56 1. 59 1.64 1.385 1.407 1.438 1.447 1. 338 

.925 1.88 2.04 2.18 2.61 1.70 1.77 1.82 1.90 1. 571 1.603 1.642 1.667 1. 519 

.950 2.19 2.39 2.60 3.18 1. 97 2.06 2.15 2.28 1.835 1.872 1. 926 1.980 1.770 

.975 2.71 2.96 3.28 4.25 2.44 2.54 2.69 2.92 2.265 2.321 2.404 2.507 2.190 

. 7 

.072 

.129 

.187 

.244 

.303 

.363 

.425 

.490 

.557 

.628 

.704 

.783 

.871 

.970 
1.077 
1.200 
1.349 
1.534 
1.786 
2.206 

80 

. 5 . 3 

.076 .088 

.131 .142 

.187 .195 

.243 .249 

.300 .303 

.359 .363 

.420 .424 

.485 .484 

.553 .550 

.625 .623 

.702 .699 

.786 .781 

.876 .872 

.971 .972 
1.082 1.079 
1. 211 1.210 
1. 365 1.358 
1. 551 1.551 
1. 816 1.830 
2.254 2.286 

'-.I 
U1 



TABLE AS. (continued) 

y = .85 

n 10 20 40 

r/n 1.0 .7 .5 .3 1.0 . 7 .5 .3 1.0 . 7 .5 
-
s 

.500 .33 .32 .30 .21 .24 .23 .21 .21 .153 .151 .147 

.525 .39 .38 .36 .28 .30 .29 .28 .27 . 210 .209 .201 

.550 .46 .45 .43 .36 .36 .35 .34 .33 .267 .266 .259 

.575 .53 .52 .50 .44 .42 .41 .40 .39 .327 .325 .318 

.600 .60 .60 .58 .51 .48 .48 .47 .45 .387 .386 .380 

.625 .66 .67 .65 .58 .55 .55 .53 .52 .449 .449 .443 

.650 .73 .75 .74 .67 .61 .61 .60 .58 .514 .515 .507 

.675 .81 .84 .83 .76 .68 .69 .68 .66 .579 .580 .577 

.700 .90 .93 .94 .87 .75 .77 .76 . 74 .646 .652 .648 

.725 .98 1.03 1.06 1. 01 .83 .85 .85 .83 .719 .726 .729 

.750 1.08 1.14 1.18 1.16 .91 . 94 .94 .91 .796 .808 .812 

.775 1.18 1.26 1. 30 1. 34 1.00 1.03 1.04 1.02 .879 .896 .900 

.800 1. 29 1.38 1.44 1. 51 1.10 1.13 1.15 1.15 .970 .993 .999 

.825 1.42 1. 51 1. 59 1. 72 1. 21 1.24 1.28 1.29 1.069 1.096 1.107 

.850 1. 55 1.66 1.78 2.01 1. 33 1.38 1.42 1.45 1.181 1. 215 1.228 

.875 1. 72 1.84 2.02 2.36 1. 47 1. 53 1.60 1.66 1. 311 1.345 1. 373 

.900 1. 91 2.07 2.29 2.79 1. 64 1. 70 1.80 1. 90 1.463 1. 512 1. 553 

.925 2.15 2.35 2.65 3.38 1. 85 1. 93 2.06 2.22 1.658 1. 716 1.765 

.950 2.48 2.74 3.11 4.24 2.15 2.27 2.43 2.68 1.936 2.003 2.080 

.975 3.05 3.39 3.91 5.69 2.65 2.82 3.05 3.43 2.398 2.484 2.595 

. 3 1.0 .7 

.176 .114 .115 

.228 .171 .170 

.282 .227 .227 

.336 .286 .285 

.390 .345 .344 

.449 .405 .405 

.509 .467 .468 

.575 .530 .534 

.648 .597 .600 

.717 .669 .672 

.800 .742 .747 

.891 .822 .827 

.992 .911 . 917 
1.108 1.008 1.015 
1.235 1.116 1.125 
1.386 1.243 1. 254 
1. 573 1.394 1.406 
1.811 1.582 1.599 
2.144 1.842 1.866 
2.725 2.275 2.317 

80 

.5 

.113 

.167 

.225 

.283 

.343 

.401 

.468 

.531 

.600 

.670 

.746 

.828 

.918 
1.026 
1.146 
1.274 
1. 431 
1.631 
1. 912 
2.373 

.3 

.139 

.189 

.243 

.297 

.353 

.411 

.472 

.535 

.599 

.671 

.746 

.826 

.917 
1.021 
1.137 
1.275 
1.435 
1. 648 
1. 936 
2.432 

'-l 
OJ 



n 10 

r/n 1.0 . 7 .5 . 3 1.0 .7 
-
B 

.500 .44 .43 .39 .33 .30 .30 

.525 .50 .50 .46 .40 .35 .35 

.550 .56 .58 .54 .46 .41 .41 

.575 .63 .65 .62 .53 .48 .48 

.600 .70 . 72 .70 .61 .54 .54 

.625 .77 .80 .79 .71 .60 .61 

.650 .85 .89 .89 .82 .67 .68 

.675 .93 .98 .98 .93 .75 .76 

.700 1. 01 1.07 1.09 1.05 .82 .84 

.725 1.10 1.16 1. 21 1.22 .91 .93 

.750 1.19 1.28 1. 35 1.42 .99 1.02 

.775 1. 30 1.40 1. 50 1.60 1.08 1.13 

.800 1. 41 1. 53 1.68 1.82 1.18 1.24 

.825 1. 54 1.67 1.87 2.11 1. 29 1. 36 

.850 1.69 1.86 2.07 2.46 1.42 1. 50 

.875 1.86 2.05 2.29 2.86 1.56 1.66 

.900 2.07 2.31 2.60 3.43 1. 73 1.8S 

.925 2.33 2.61 2.98 4.18 1. 95 2.09 

.950 2.70 3.02 3.53 5.29 2.27 2.42 

.975 3.32 3.74 4.46 7.13 2.78 2.99 

TABLE A5. (continued) 

y = .90 

20 40 

.5 . 3 1.0 .7 .5 .3 

.28 .29 .190 .190 .189 .229 

.34 .35 .251 .249 .248 .280 

.40 .40 .314 .308 .304 .328 

.46 .46 .371 .369 .363 .380 

.53 .52 .430 .430 .427 .434 

.61 .59 .493 .495 .488 .492 

.68 .66 .556 .562 .555 .553 

.76 .74 .620 .633 .630 .618 

.84 .82 .690 .707 .705 .691 

.93 .91 .762 .783 .784 .772 
1.03 1. 01 .842 .864 .871 .859 
1.15 1.13 .929 .951 .963 .953 
1. 27 1. 27 1.024 1.050 1.065 1.058 
1. 40 1.43 1.126 1.160 1.179 1.172 
1. 55 1. 61 1.242 1.290 1.308 1.309 
1. 73 1.83 1.378 1.434 1.461 1.469 
1. 95 2.09 1.542 1.609 1.642 1.669 
2.23 2.45 1. 744 1.827 1. 872 1. 927 
2.60 2.96 2.023 2.133 2.195 2.288 
3.25 3.85 2.493 2.640 2.740 2.909 

1.0 . 7 

.146 .140 

.202 .198 

.258 .257 

.314 .313 

.371 .373 

.432 .434 

.495 .496 

.561 .560 

.626 .628 

.699 .702 

.772 .777 

.850 .858 

.938 .950 
1.033 1.049 
1.144 1.164 
1. 272 1.292 
1.426 1.450 
1. 617 1. 653 
1.887 1.926 
2.333 2.385 

80 

.5 

.140 

.195 

.250 

.309 

.367 

.430 

.494 

.559 

.627 

.699 

. 776 

.865 

.956 
1.056 
1.173 
1. 313 
1.479 
1.687 
1. 974 
2.459 

.3 

.177 

.228 

.280 

.334 

.389 

.443 

.503 

.566 

.635 

.703 

.776 

.861 

.950 
1.052 
1.171 
1. 316 
1.487 
1.698 
2.017 
2.546 

'-..J 
.........., 



TABLE AS. (continued) 

y = .95 

n 10 20 

r/n 1.0 . 7 . 5 .3 1.0 . 7 .5 .3 1.0 . 7 
-
B 

.500 .58 .58 .54 .51 .37 .37 .36 .39 .262 .260 

.525 .64 .64 .62 .58 .43 .43 .43 .44 .321 .321 

.550 .71 .72 .71 .65 .49 .50 .49 .50 .378 .377 

.575 .79 .80 .80 .75 .56 .57 .56 .56 .438 .441 

.600 .86 .90 .89 .84 .63 .64 .63 .62 .499 .498 

.625 .94 1.00 1.01 .96 .70 .72 .71 .69 .561 .562 

.650 1.03 1.10 1.11 1.10 .77 .79 .79 .76 .628 .628 

.675 1.11 1. 20 1. 24 1.27 .85 .88 .88 .85 .693 .699 

.700 1.20 1.32 1.38 1.42 .92 .96 .98 .95 .766 .775 

.725 1. 30 1.43 1. 52 1.62 1.00 1.05 1.08 1.07 .842 .863 

.750 1. 41 1. 55 1. 69 1.88 1.10 1.15 1.20 1.20 .925 .954 

.775 1.54 1.69 1.85 2.20 1.20 1.26 1.32 1.35 1.014 1.050 

.800 1.68 1.86 2.05 2.59 1. 30 1. 39 1.46 1.53 1.108 1.154 

.825 1.82 2.03 2.23 3.03 1.43 1. 51 1.62 1. 70 1. 217 1.266 

.850 1. 96 2.21 2.45 1. 56 1.65 1. 79 1. 92 1.345 1. 395 

.875 2.14 2.43 2.76 1. 71 1. 83 2.01 2.19 1.490 1.544 

.900 2.37 2.71 3.13 1.90 2.04 2.26 2.53 1.665 1.726 

.925 ·2.64 3.06 3.60 2.15 2.34 2.58 2.93 1.880 1. 952 

.950 3.03 3.56 4.23 2.48 2.73 3.00 3.57 2.186 2.263 

.975 3.70 4.36 5.42 3.02 3.38 3.71 4.65 2.689 2.786 

40 

.5 .3 1.0 .7 

.252 .292 .183 .183 

.313 .341 .239 .239 

.370 .391 .297 .297 

.430 .447 .354 .355 

.490 .505 .412 .413 

.554 .562 .473 .472 

.623 .622 .536 .537 

.697 .696 .602 .602 

.777 .766 .671 .667 

.859 .851 .737 .739 

.949 .940 .815 .814 
1.046 1.042 .899 .901 
1.157 1.161 .991 1. 001 
1.278 1.303 1.091 1.101 
1.424 1.447 1.202 1. 219 
1.582 1.637 1.335 1.356 
1.778 1.862 1.494 1. 517 
2.014 2.143 1.691 1.722 
2.360 2.561 1.965 2.005 
2.954 3.224 2.417 2.477 

80 

. 5 

.184 

.235 

.290 

.349 

.409 

.469 

.528 

.596 

.666 

.737 

.816 

.907 
1.004 
1.112 
1.233 
1. 375 
1.547 
1.769 
2.066 
2.562 

. 3 

.228 

.277 

.329 

.378 

.433 

.487 

.544 

.608 

.675 

.742 

.816 

.903 
1.002 
1.106 
1.235 
1.385 
1.582 
1.813 
2.140 
2.717 

"""-.~ 

OJ 



TABLE AS. (continued) 

y = .99 

n 

r/n 1.0 . 7 .5 .3 1.0 . 7 .5 .3 1.0 . 7 .5 .3 1.0 . 7 .5 .3 
-
B 

l'~ 
.500 .89 .91 .95 .84 .56 .55 .54 .53 .362 .369 .375 .398 .240 .239 .246 .328 (,.) 

tj .525 .96 1.01 1.04 .99 .62 .64 .61 .60 .428 .432 .432 .455 .285 .294 .296 .375 
.550 1.04 1. 09 1.15 1.11 .69 .71 .69 .68 .497 .491 .490 .507 .343 .343 .352 .425 

~ .575 1.12 1. 20 1. 24 1.29 .77 .79 .78 .77 .556 .558 .550 .559 .406 .405 .411 .470 
~ .580 1.21 1.30 1.37 1.50 .85 .88 .87 .87 .624 .621 .620 .622 .470 .469 .472 .514 

.625 1. 30 1. 41 1. 52 1.83 .92 .97 .97 .97 .694 .692 .693 .699 .529 .535 .536 .566 

.650 1. 39 1. 51 1. 67 2.04 1. 01 1. 07 1.07 1.07 .764 .772 .778 .779 .592 .598 .599 .621 
.. 675 1.49 1.62 1.91 2.25 1.09 1.14 1.17 1.18 .835 .857 .860 .856 .658 .676 .672 .683 
.700 1.60 1. 76 2.13 1. 20 1. 23 1.29 1.29 .916 .946 .939 .935 .738 .752 .750 .755 
.725 1. 70 1. 96 2.37 1. 31 1. 36 1. 42 1.45 1. 014 1.036 1. 025 1. 016 .819 .834 .825 .827 
.750 1.86 2.12 2.58 1. 41 1.50 1.55 1.62 1.104 1.122 1.121 1.127 .899 .916 .913 .915 
.775 2.00 2.30 1. 52 1.63 1. 70 1.82 1.198 1. 210 1. 231 1.266 .984 1.004 1.006 1.010 
.800 2.18 2.48 1. 66 1.81 1.87 2.12 1.300 1.320 1.359 1.420 1.085 1.099 1.106 1.111 
.825 2.34 2.69 1.80 1. 95 2.06 2.41 1.416 1.447 1.487 1.609 1.191 1.208 1. 218 1.226 
.850 2.56 2.99 1.96 2.15 2.30 2.68 1.542 1.592 1.643 1.809 1.308 1.328 1.342 1.371 
.875 2.81 3.29 2.13 2.36 2.53 1.692 1. 774 1.838 2.031 1.435 1.476 1.495 1.546 
.900 3.08 3.68 2.35 2.60 2.87 1.875 1.977 2.081 2.310 1.581 1.644 1.688 1.779 
.925 3.46 4.19 2.60 2.93 3.28 2.109 2.247 2.358 2.644 1. 788 1.867 1.923 2.035 
.950 3.98 4.80 2.97 3.38 3.89 2.437 2.620 2.758 3.150 2.069 2.190 2.255 2.401 
.975 4.84 5.84 3.63 4.19 4.90 2.979 3.209 3.432 4.063 2.530 2.714 2.819 3.058 

'-l 
~'"') 
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