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ABSTRACT

Recurrent events (RE) occur in many disciplines, such as biomedical, engineering,

actuarial science, sociology, economy to name a few. It is then important to develop

dynamic models for their modeling and analysis. Of interest with data collected in a RE

monitoring are inferential problems pertaining to the distribution function F of the time

between occurrences, or that of the distribution function G of the monitoring window,

and their functionals such as quantiles, mean. These problems include, but not limited to:

estimating F parametrically or nonparametrically; goodness of fit tests on an hypothesized

family of distributions; efficient of tests; regression-type models, or validation of models

that arise in the modeling and analysis of RE. This dissertation work focuses on several

inferential problems of significant importance with these types of data. The first one we

dealt with is the problem of informative monitoring. Informative monitoring occurs when

G contains information about F, and the information is accounted for in the inferential

process through a Lehman-type model, 1 − G = (1 − F )β, so called generalized Koziol-

Green model in the literature. We propose a class of inferential procedures for validating

the model. The research work proceeds with the development of a flexible, random cells

based chi-square goodness of fit test for an hypothesized family of distributions with

unknown parameter. The cells are random in the sense that they are cut free, are function

of the data, and are not predetermined in advance as is done in standard chi-square type

tests. A minimum chi-square estimator is used to construct the test statistic whose power

is assessed against a sequence of Pitman-like alternatives. The last problem we considered

is that of an efficiency, optimality, and comparison of various statistical tests on RE that

are derived in this work and existed in the literature. The efficiency and optimality are

obtained by extending the theory of Bahadur and Wieand to RE. Asymptotic properties of

the different estimators and or statistics are presented via empirical processes tools. Small

sample results using intensive simulation study of the various procedures are presented,

and these show good approximation of the truth. Real recurrent event data from the

engineering and biomedical studies are utilized to illustrate the various methods.
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1. INTRODUCTION

In life testing, medical follow-up studies, and other fields, it is often impossible to

observe the lifetimes of all experimental units in the study. What makes measuring dura-

tions difficult is time itself. In most cases, it is highly likely that all the events have not

been observed by the time one wants to make inferences about lifetimes. For example, a

medical professional will not wait fifty years for each individual in the study to pass away

before closing the study. He or she is interested in the effectiveness of improving lifetimes

after only a few years. The individuals in the study who have not died by the end of the

study period are labeled as right-censored: all information we have on these individuals

are their current lifetimes durations which is naturally less than their actual lifetimes. The

simplest kind of censoring is that of single censoring which occurs when all observations

are censored at the same time. There are two types of single censoring: Type I censoring

and Type II censoring. In Type I censoring, the censoring time is predetermined. Type

II censoring occurs if an experiment stops when a predetermined number of failures are

observed; the remaining subjects are then right-censored. In many studies, observations

are not censored at the same time, which is frequently referred to as arbitrary censored

data. For instance, in a clinical trial, censoring occurs because of event from causes that

are not related to what is being investigated in the study such as: self removal from study,

drop out.

Under the random censorship model, we assume that X1, X2, . . . , Xn are indepen-

dent nonnegative random variables with continuous distribution function

F (x) = P (X ≤ x). The censoring variables Y1, Y2, . . . , Yn are also nonnegative and are

assumed to be a random sample, drawn independently of the Xi’s from a population

with continuous distribution function G(y) = P (Y ≤ y). The Yis right-censored the Xis.

The observable random variables are Zi = min(Xi, Yi) and δi = I{Zi = Xi}, δi indicates

whether Zi is an uncensored observation or not. In this model, the Xis represent times to

an endpoint event (e.g., death, relapse, malfunctioning) and the Yis represent censoring

times. In the random censorship model, informative censoring occurs when the distribu-
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tion function G is informative about the distribution function F.

In recurrent events, we consider an event process of i = 1, 2, . . . , n units wherein

the jth event occurred at calendar time Si,j. Suppose that for unit i the recurrent events

are observed over a random interval [0, τi] where the τis are independent and identically

distributed (i.i.d.) with an absolutely continuous distribution function G(t) = P (τ ≤ t).

Let Ti,j = Si,j − Si,j−1 be the time between two occurrences of the event, so called gap

time, or inter-event time and these are assumed to be i.i.d with absolutely continuous

distribution function F (t) = P (Ti,j ≤ t). For the ith unit, the Ti,js could be viewed as the

time elapsed between the (j − 1)th and the jth occurrences. If Ki is the total number of

occurrences for unit i, then the observable for n units is n i.i.d. copies O1,O2, . . . ,On with

Oi = (Ki, τi, Ti,1, . . . , Ti,Ki , τi − Si,Ki , (Xi(s) : s ≤ τi)), (1.1)

Note that, the observation time τi − Si,Ki is redundant since it is determined by

the other observable variables. It is retained, however, to emphasize the fact that this

variable right-censors Ti,Ki+1. X = {Xi(s) : s ≥ 0} is a possibly m− dimensional time

dependent covariates vector associated with the unit. In reliability or engineering studies,

the components of this covariate vector could be related to environmental or operating

condition characteristics; in biomedical studies, they could be blood pressure, treatment

assigned, initial tumor size, etc. In biomedical studies, for example, the interoccurrence

times for a unit may be associated or correlated, possibly because of observed individual

biological variation Z or so-called frailties, thereby rendering the i.i.d. assumption of

interoccurrence times restrictive in biomedical studies. One obvious generalization allow-

ing association between interoccurrence times is a frailty model. We will not investigate

frailty modelling in this thesis. A pictorial representation of recurrent event data for the

ith unit is given in Figure 1.1, cf. Adekpedjou, A. [3].

Note that the components of the random vector (Ti,1, Ti,2, . . . , Ti,Ki , Ti,Ki+1) are

not anymore i.i.d. random variables from F, in particular, the distribution of Ti,Ki is

not anymore F. Indeed, the interocurrence times vector satisfies the sum-quota constraint
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Figure 1.1. A pictorial representation of recurrent event data.

given by
∑Ki

j=1 Ti,j ≤ τi <
∑Ki+1

j=1 Ti,j. Consequently, this recurrent event model has both

an informative censoring mechanism as well as a dependent censoring structure. We will

discuss informative censoring in detail in Section 4.

Recurrent event data frequently arise in a wide variety of settings including the

biomedical, psychiatry, engineering, social sciences, and economics. Examples of such

events in the health and biomedical sciences are drug abuse of teenagers or adults, recur-

rent hospitalization of patients with chronic diseases. In psychiatric studies the onset of

depression and dementia are instances of recurrent events, in engineering and reliability

settings, the break down of mechanical or electronic systems. In sociology, absenteeism

rate of employees and the recurrence of war and conflict in geographical regions. In actu-

arial science, such as keeping track of a claim from a given insurer, are potential examples

of these types of data.

Due to recurrent events high prevalence and importance in many diverse areas,

it is essential to develop stochastic models and statistical methods appropriate for an-

alyzing them. These analyses include, but not limited to: estimation of model param-

eters such as the survivor function F̄ (t) = 1 − F (t), the cumulative hazard rate func-

tion Λ(t) =
∫ t

0
λ(w)dw, where λ(w) is the hazard rate function of F given by λ(w) =
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f(w)/F̄ (w), f(w) = dF (w)/dw. Other major inferential problems include goodness of fit

tests pertaining to the distribution function F, along the lines of Kolmogrorov-Smirnov,

Cramér-von Mises, or the Pearson’s chi-square type tests.

There has been a sustain interest in the general problem of testing goodness of

fit for a parametric family of distributions, especially the development of chi-square type

tests, since the pioneering works of Pearson [27] and Pearson [28]. These interests and

motivation come from the fact that in survival analysis, for instance, there may be phys-

ical reasons of having a parametric family for the underlying failure time distribution. In

reliability studies, extreme values distributions such as Gumbel, Fréchet, or Weibull come

as limit of distributions of parallel or series systems. In actuarial science, if the parametric

distribution provide good fit to the data, they could be used for modeling large claims.

In the area of failure time data analysis-under valid assumptions-parametrically driven

estimates of relative hazard, survival time or their functionals such as mean or median,

tend to have smaller standard errors than they would in non-parametric settings.

Going back to the definition of right censored data, if we have full knowledge of

the data, then, the empirical distribution function given by F̂n(x) =
∑
I(Xi ≤ x)/n can

be used as an estimate for F . However, we have an incomplete data. Kaplan and Meier

(1958) developed a nonparametric estimator of F called F̂ = F̂KM , based on censored

data. The asymptotic properties of F̂KM were established by Efron [26], Breslow and

Crowley [17] and Gill [31], among others. If there is no censoring, F̂KM reduces to the

empirical distribution function F̂ , which is the basis of Pearson’s procedure. However, the

efficiency of KM estimator is lost if informative censoring is present. Koziol and Green [44]

proposed an appealing and convenient model to assess informative censoring in the single

event settings . In their model, they assume existence of some parameter β ≥ 0 such that

F and G are related via

Ḡ(·) = F̄ β(·),

and β was interpreted as the censoring parameter and we have P (Xi ≤ Yi) = 1
β
.

A similar result has been derived with recurrent event data. As pointed out in

Peña et al. [60], recurrent event data have additional features that require attention in
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performing statistical inference. Two of these important features are (i) because of the

sum-quota data accrual scheme, the number of observed event occurrences is informative

about the inter-event distribution even if G is unrelated to F ; and (ii) the variable that

right-censors the last inter-event time is dependent on the pervious inter-event times.

Thus, there is both an informative and dependent censoring in recurrent event data. If

both an informative censoring mechanism as well as a dependent censoring structure of

recurrent event data accrual are not properly accounted for, the efficiency properties may

be lost. This was demonstrated analytically and through simulation studies in Peña et

al. [60] and Adekpedjou et al. [5].

Adekpedjou et al. [5] generalized the Koziol-Green(KG) model (henceforth GKG)

to recurrent event data. They postulate the existence of a parameter β > 0 such that

Ḡ = F̄ β, where F̄ = 1−F and Ḡ = 1−G are the survival functions of the interoccurrence

times and τis respectively. The GKG model is equivalent to ΛG = βΛF , where ΛG and ΛF

are the cumulative hazard rate functions of G and F respectively. In this case, the pa-

rameter β determines the length of the monitoring period relative to the interoccurrence

times and a better interpretation is a monitoring parameter. More details on the GKG

model can be found in Adekpedjou et al. [5].

We now provide the specific aims of this dissertation.

1.1. SPECIFIC AIMS

1. To propose procedures for assessing the validity of the generalized Koziol-Green

model with recurrent events by comparing two competing estimators of the cumu-

lative hazard rate processes. To that end, a chi-square and Kolmogorov-Smirnov

type tests are developed in Section 4.

2. To derive a chi-square test based on random cells with recurrent event data for

testing a composite hypothesis F ∈ Fθ = {F (·,θ) : θ ∈ Θ ⊆ Rq}, θ unknown.

Random cells will allow flexibility in obtaining the bounds of the cells instead of

being pre-determined in advance. This is done in Section 5.
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3. By considering Pitman-type alternatives, we will investigate the asymptotic power

of the proposed chi-square test with random cells in Section 6.

4. The choice of the matrix used to scale the vector of differences between observed

and expected frequencies in proposed chi-square procedure tests is an interesting

and important problem. We investigate the optimality properties of three choices

on the basic of asymptotic approximate Bahadur slopes and asymptotic Pitman

efficiencies. This is done in Section 7.



2. PROBABILITY BACKGROUND AND NOTATION

2.1. SOME ORDER RELATIONS

We shall use some notation and results given by Mann and Wald [49] for stochas-

tic limits. Let {an} be a sequence of k−dimensional vectors, {Vn} be a sequence of

k−dimensional random vectors, {qn} a sequence of positive functions of n. The following

notation will be used.

an = o(qn) if lim
n→∞

‖an/qn‖ = 0,

an = O(qn) if ‖an/qn‖ < M, for all n, where M is some positive constant,

Vn = op(qn) if Vn/qn converges to zero in probability,

Vn = Op(qn) if Vn/qn is bounded in probability.

One can show that all the ordinary operation rules regarding O and o are also applicable to

Op and op. For examples, if Vn = Op(n
1
2 ) and Wn = op(1), or Vn = Op(1) and Wn = op(n

1
2 ),

then V ′nWn = op(n
1
2 ). Next, some basic probability results are listed below:

1. If V is a random variable and independent of n, then V = Op(1),

2. If Vn converges in distribution, then Vn+op(1) converges to the same distribution

as Vn,

3. If Vn converges to V in probability (Vn
p→ V ) and g is a continuous function,

then g(Vn) converges to g(V ) in probability. In other words, Vn− V = op(1),

4. If Vn converges to V in distribution (Vn
d→ V ) and g is a continuous

function, then g(Vn) converges to g(V ) in distribution.

2.2. PROBABILITY BACKGROUND

In this subsection, we describe some important results pertaining to the distribu-

tion of quadratic forms of k−dimensional random variables. Detail discussion and proofs

of the following results can be found in Chen [20].

7
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Lemma 2.1. If {Vn} is a sequence of k−dimensional random variables which converges

in distribution to V, then Vn = Op(1).

Lemma 2.2. Let {Vn} and V be defined as in Lemma (2.1) and {An} be a sequence of

k × k random matrices such that An
p→ 0, then V ′nAnVn

p→ 0.

Proof: Applying Lemma (2.1) and Landau rules, V ′nAnVn = Op(1).op(1).Op(1) = op(1),

the lemma follows. 2

Lemma 2.3. Let {Vn} be a sequence of k−dimensional random vectors such that Vn
d→

Nk(0,Σ), where Σ is a positive semi-definite symmetric constant matrix, and Σ− be a

generalized inverse of Σ. Then V ′nΣ−Vn
d→ χ2(s), the chi-square distribution with s =

rank(Σ) degrees of freedom.

Proof: Let the random vector V be distributed according to Nk(0,Σ), and define the

function g from Rk to R by g(V ) = V ′Σ−V. Since g(V ) is a polynomial and is a continuous

function of V, which implies basic probability results that g(Vn)
d→ g(V ). A well known

result is that V ∼ Nk(0,Σ), then V ′Σ−V ∼ χ2(s), where s = rank(V ). Hence g(Vn) =

V ′nΣ−Vn
d→ χ2(s). Chen [20]. 2

Lemma 2.4. Let {An} be a sequence of k × k random matrices, and A be some k × k

nonsingular constant matrix. If An
p→ A, then for any given ε > 0, there exists Nε such

that for n > Nε, P (Anis nonsingular) > 1− ε.

Lemma 2.5. Let {An} and A be defined as in Lemma 2.4, then An
p→ A implies that

A−1
n

p→ A−1.

Lemma 2.6. Let {Gn(y)} be a sequence of monotone random functions such that Gn(y)
p→

G(y), where G(y) is continuous over the closed interval [0, a]. Then for ε > 0 and δ > 0

there exits N(ε,δ) such that n > N(ε,δ),

P

(
sup

0≤y≤a
|Gn(y)−G(y)| ≤ δ

)
> 1− ε.
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Lemma 2.7. Let {Qn(y)} and {Gn(y)} be sequences of monotone random functions such

that {Gn(y)} are uniformly bounded, Qn(y)
p→ Q(y) and Gn(y)

p→ G(y), where Q(y) and

G(y) are bounded and continuous. Then, for arbitrary 0 ≤ a < b <∞,

∫ b

a

Qn(y) dGn(y)
p→
∫ b

a

Q(y) dG(y).



3. BACKGROUND ON RECURRENT EVENT MODELING

3.1. INTRODUCTION

The theory of counting processes via the intensity processes plays a vital role

in the modeling and analysis of survival data, in particular recurrent events. In this

section, we briefly review relevant stochastic processes that are used in the modeling of

recurrent events. We also include some important results pertaining to stochastic process,

martingale, and weak convergence. A detail discussion of this framework can be found in

Andersen et al. [65], Fleming and Harrington [29], Chung and Williams [24].

Let (Ω,F, P ) be a complete probability space and T = [0, τ ] ⊂ R be an interval of

time.

Definition 3.1. A filtration F = {Ft : t ∈ T} on (Ω,F, P ) is an increasing family of

σ−algebras, that is ∀t ≤ s,

Ft j Fs j F.

Definition 3.2. (Ω,F,F, P ) is called a filtered probability space or a stochastic basis.

Note here that in the case of a stochastic process, Ft could be taken to be all

information generated by the process up to time t, and is called the natural history of

the process. From now on, we denote by F the natural filtration associated with the

probability space (Ω,F, P ).

Definition 3.3. A stochastic process X = {X(t) : t ≥ 0} is called cadlag if its sample

paths are right continuous with left hand limits for almost all ω. Furthermore, the set of

all cadlag functions is called Skorohod space.

Definition 3.4. A stochastic process X is adapted to a filtration F if, for every t ≥ 0,

X(t) is Ft−measureable.

Definition 3.5. A counting process is a stochastic process {N(t) : t ≥ 0} adapted to a

filtration F with N(0) = 0 and N(t) < ∞ almost surely (a.s.), and whose paths are with

probability one right-continuous, piecewise constant, and have only jump discontinuities,

with jumps of size +1.

10
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Definition 3.6. Let X be a right-continuous stochastic process with left-hand limits and

F a filtration defined on a common probability space. X is called a martingale with respect

to F if

1. X is adapted to F

2. E(|X(t)|) <∞ for all t <∞

3. E(|X(t+ s)
∣∣Ft|) = X(t−) a.s. for all s ≥ 0, t ≥ 0

X is called a submarginale if item 3 in Definition 3.6 is replaced by

E(|X(t+ s)
∣∣Ft|) ≥ X(t) a.s.

and a supermarginale when item 3 is replaced by

E(|X(t+ s)
∣∣Ft|) ≤ X(t) a.s.

Lemma 3.7. Let F be a filtration and X a left-continuous real-valued adapted to F. Then

X is predictable.

One appealing characterization of a predictable process is based on its sample path

property.

3.2. BACKGROUND ON RECURRENT EVENT MODELING

We reconsider the recurrent event data as in (1.1), that’s

Oi = (Ki, τi, Ti,1, . . . , Ti,Ki , τi − Si,Ki , (Xi(s) : s ≤ τi)).

We now briefly review the relevant stochastic processes that are used in the modeling of

recurrent event data. For more details on these processes, notations, and some derivations,

we refer the reader to Peña, Strawderman, and Hollander [60]. We begin by defining the

calendar time processes. For a calendar time s, let

N †i = {N †i (s) : s ≤ τi}, Y †i = {Y †i (s) : s ≥ 0} and N τ
i (s) = I{τi ≤ s} (3.1)

where

N †i (s) =
∞∑
j=1

I{Sij ≤ s ∧ τi}, and Y †i (s) = I{τi ≥ s}, (3.2)
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for i = 1, . . . , n, s ≥ 0. For ith subject, the N †i process determine the event occurrences

up to time τi whereas the Y †i process determines if the unit is at-risk for a recurrent event.

The at-risk process associated with N τ
i (s) is Y τ

i (s) = I{τi ≥ s}, which is also equal to

Y †i (s). The renewal function associated with F is ρF (t) =
∑∞

n=1 F
∗(n)(t)I{t ≥ 0}, where

F ∗(n)(·) is the nth convolution of F, that is the distribution of Si,n =
∑n

k=1 Ti,k.

Let G = {gs : s ≥ 0} be a filtration such that {(N †i (s), Y †i (s)) : s ≥ 0} is

G−adapted. Let A†i (s) =
∫ s

0
Y †i (v)λ(v−SiN†i (v−))dv be the associated compensator of the

process N †i (s). The process M †
i (s) = N †i (s) − A†i (s), s ≥ 0 is a local square-integrable

martingale with respect to the filtration G. In particular, this result holds if one takes G to

be the natural filtration generated by gs = F0

∨
σ{(N †i (s), Y †i (s)) : v ≤ s, i = 1, . . . , n}.

We now introduce appropriate processes that are indexed by both calendar time

s, and gap time t. These are the basic processes considered in Peña, Strawderman, and

Hollander [60] and also Sellke [68] and provide the crucial connection between the gap

time formulation and that based on calendar time. Define the time elapsed since the last

event, so called ”backward recurrence time” by Ri(s) = s−SiN†i (s−), where s− is the time

just before s. Following Sellke [68], we define the doubly-indexed process Zi(s, t) by

Zi(s, t) = I{Ri(s) ≤ t} for i = 1, . . . , n.

Note that for fixed t, Zi(·, t) is a G−adpated, bounded, and has left-continuous paths,

hence is a G−predictable bounded process. The doubly indexed processes are:

Ni(s, t) =

∫ s

0

Zi(v, t)N
†
i (dv)

Ai(s, t) =

∫ s

0

Zi(v, t)A
†
i (dv)

Mi(s, t) =

∫ s

0

Zi(v, t)M
†
i (dv) = Ni(s, t)− Ai(s, t).

For the ith subject, Ni(s, t) determines the number of observed events occurring over the

calendar period [0, s] whose inter-event times (i.e., gap times) are at most t. Ai(s, t) is the

natural compensator of Ni(s, t) and therefore Mi(s, t) is a square integrable martingale

for fixed t with respect to the filtration G. For estimation purpose, a multiplicative form
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for Ai(s, t) is needed. This is given by

Ai(s, t) =

∫ t

0

Yi(s, w)λ(w)dw (3.3)

where Yi(s, t) is

Yi(s, t) =

N†i ((s∧τi)−)∑
j=1

I{Tij ≥ t}+ I{(s ∧ τi)− SiN†i ((s∧τi)−) ≥ t} for i = 1, . . . , n.

The aggregate processes over n units are then

N(s, t) =
n∑
i=1

Ni(s, t), A(s, t) =
n∑
i=1

Ai(s, t) and M(s, t) =
n∑
i=1

Mi(s, t). (3.4)

By (3.3), A(s, t) =
∑n

i=1 Ai(s, t) =
∫ t

0
Y (s, w)λ(w)dw where Y (s, t) =

∑n
i=1 Yi(s, t). The

following two results deal with the uniform convergence of Y (s, t)/n and Y τ (s)/n =∑n
i=1 Y

τ
i (s)/n as n→∞. We have

sup
v∈[0,s∗]

|n−1Y τ (v)− Ḡ(v)| p→ 0 and sup
(v,w)∈[0,s∗]×[0,t∗]

|n−1Y (v, w)− y(v, w; β)| p→ 0, (3.5)

where s∗ = maxi≤i≤n τi, t
∗ = maxTi,j and the function y(v, w; β) is given in Adekpedjou

et al. [5].

3.3. ESTIMATORS OF F AND Λ

Peña et al. [60] developed, based on the data in (1.1), a NPMLE of the survival

function F̄ (s, t)−which is a Kaplan-Meier type estimator, and given by

ˆ̄F (s∗, t) =
∏
w≤t

[
1− N(s∗, dw)

Y (s∗, w)

]
, (3.6)

where
∏

denotes product integration. Furthermore, they showed that, over an appropriate

Skorohod space
√
n[ ˆ̄F (s∗, t)− F̄ (t)]

d→ W, (3.7)
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where W is a zero-mean Gaussian process with some variance-covariance matrix Σ1(s∗, t).

A NPMLE of the cumulative hazard function of the gap times is given by

Λ̂(s∗, t) =

∫ t

0

J(s∗, w)

Y (s∗, w)
N(s∗, dw), 0 ≤ t <∞,

where J(s∗, w) = I{Y (s∗, t) > 0}.



4. A CLASS OF INFERENCES PROCEDURES FOR VALIDATING THE
GENERALIZED KOZIOL-GREEN MODEL

WITH RECURRENT EVENTS

4.1. INTRODUCTION

As we explained in Section 1, informative monitoring occurs in random censor-

ship model when the distribution function of the end of the monitoring period random

variable is informative about the distribution function of the failure times. One major

concern for researchers is how to model informative monitoring. There have been several

models suggested in the literature for dealing with the property. Link [48] proposed a

model where the censoring variable is related to the frailty of the individual. Wang et

al. [76] proposed various models where the occurrence of recurrent events is modeled by a

subject specific non-stationary Poisson process via a latent variable. Siannis [71] consid-

ered a parametric model where the parameter represents the level of dependence between

the failure and censoring process. In this section, we employ the generalized KG model

(henceforth GKG) for recurrent events discussed in section one.

The KG model has been utilized in studying efficiency aspects under informative

censoring in single event settings. Chen et al. [21] obtained exact properties of the Kaplan-

Meier estimator under the KG model, and Cheng and Lin [22] derived an estimator of the

survivor function utilizing the informative structure. With recurrent event settings, the

reference is Adekpedjou, Peña, and Quiton [5] where the GKG model has been used for

modeling informative monitoring with recurrent events thereby enabling the derivation

of an estimator of the cumulative hazard function and assessing efficiency loss when it

is ignored. In both settings, the conclusion that transpired is that ignoring informative

censoring/monitoring in the estimation process can lead to loss in statistical efficiency

and/or biased estimators. Although the model might seem only of technical relevance,

in many applications, such as biomedical studies, it is of substantial importance. See for

instance Koziol and Green [44] where the model was used to develop a Cramér-von Mises

type statistic to check cancer deaths among oestrogen patients. Henze [36], Herbst [37]

15
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and Kirmani and Dauxois [46] proposed procedures for checking the assumption of the

KG model in the single event settings. For a review of some of their proposed procedures,

see Kay [41].

To the best of our knowledge, no formal procedures have been proposed in the

literature for assessing the validity of the assumption of the GKG model with recurrent

events. In this section, we develop procedures for checking the validity of the informative

monitoring model based on the difference of two consistent estimators of the cumulative

hazard rate Λ(t). These procedures are based on the asymptotic properties of a scaled

difference of these estimators. The asymptotic property of the properly scaled process is

used to construct several inferential procedures for validating the aforementioned model.

4.2. ESTIMATORS OF THE CUMULATIVE HAZARD FUNCTION Λ

Estimators of the cumulative hazard function of the gap times that ignore infor-

mative monitoring denoted by Λ̃ and one that accounts for it, denoted by Λ̂ have been

proposed in Peña et al. [60] and Adekpedjou and Peña [6] respectively. The estimator

Λ̂ accounts for informative monitoring through the GKG model. With s? satisfying the

condition s? > max τi, the estimating equation for β (cf. Adekpedjou and Peña [6]) is

given by ∫ s?

0

{
βY τ (w)

Y (s?, w) + βY τ (w)

}
[N τ (dw) +N(s?, dw)] = N τ (s?).

Upon estimating β, the two estimators of Λ(t) are given by

Λ̃(s?, t) =

∫ t

0

J(s?, w)

Y (s?, w)
N(s?, dw) (4.1)

and

Λ̂(s?, t; β̂) =

∫ t

0

J(s?, w; β̂)

{
N(s?, dw) +N τ (dw)

Y (s?, w) + β̂Y τ (w)

}
, (4.2)

where J(s?, t) = I{Y (s?, t) > 0} and J(s?, t; β̂) = I{Y (s?, t) + β̂Y τ (t) > 0}. Asymptotic

properties such as consistency and weak convergence of β̂, Λ̂, and Λ̃, properly standard-

ized can be found in the aforementioned articles.
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4.3. ASYMPTOTIC PROPERTIES OF THE SCALED PROCESS

We want to check whether the GKG model is adequate for modeling informative

monitoring in a particular population. A graphical approach is based on the fact that

Λ̂(s?, t; β̂) and Λ̃(s?, t) both uniformly converge to the true cumulative hazard rate, Λ(t). If

the model is valid, then a plot containing both of these estimators should agree reasonably

well. Similar graphical checking procedures have been utilized by Nelson [56] and Nelson

[57]. Examples of applying this method in the single event settings are described in

Aalen [1]. However, a graphical comparison alone will not be enough for the purpose of

checking the validity of the GKG model. To construct a proper validating procedure, we

will work with a scaled difference of the estimators in (4.1) and (4.2) and derive asymptotic

properties of the resulting empirical process, thereby enabling the construction of several

goodness of fit procedures. We begin by defining the scaled process Zn(s?, t; β̂) by

Zn(s?, t; β̂) =
√
n(Λ̂(s?, t; β̂)− Λ̃(s?, t)). (4.3)

We wish to study the asymptotic properties of the empirical process {Wn(s, t; β̂) : s >

0, t ∈ [0, t?]} given by

Wn(s, t; β̂) =
√
n

∫ t

0

d{Λ̂(s, w; β̂)− Λ̃(s, w)}. (4.4)

Let at denote the transpose of a matrix or vector a and Dg(a) the diagonal matrix

formed from the vector a. To make notation compact, let Y(s, t) = Y (s, t) + β̂Y τ (t) and
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M(s, t) = [M(s, t),M τ (t)]t. From (4.1) and (4.2), we have

Wn(s, t; β̂) =
√
n

∫ t

0

d{Λ̂(s, w; β̂)− Λ̃(s, w)}

=
√
n

∫ t

0

{
(N(s, dw) +N τ (dw))

Y(s, w)
− N(s, dw)

Y (s, w)

}
=
√
n

∫ t

0

{
{M(s, dw) +M τ (dw)}

Y(s, w)
− M(s, dw)

Y (s, w)

}
=
√
n

∫ t

0

{
1

Y(s, w)
− 1

Y (s, w)

}
M(s, dw) +

√
n

∫ t

0

M τ (dw)

Y(s, w)

≡
√
n

∫ t

0

f(s, w; β̂)M(s, dw) +
√
n

∫ t

0

g(s, w; β̂)M τ (dw), (4.5)

where f(s, t; β̂) = 1
Y(s,t)

− 1
Y (s,t)

and g(s, t; β̂) = 1
Y(s,t)

. To obtain the asymptotic properties

of Wn(s, t; β̂), we need those of the vector of the martingale transform processes Un(s, t; β̂)

given by

Un(s, t; β̂) =
1√
n

∫ t

0

H(s, w; β̂)M(s, dw), (4.6)

where

H(s, t; β̂) =

 n
Y(s,t)

n
Y(s,t)

−n
Y (s,t)

0

 .
Processes of form given in (4.6) are a generalization of the process given in equation (A.1)

of Peña et al. [61]. With a view toward the asymptotic distribution of Un(s, t; β̂), we

require some regularity conditions.

Regularity Conditions:

1. The components {Hij(s, t; β̂) : 0 ≤ s ≤ s?; 0 ≤ t ≤ t?} of H(s, t; β̂) are left-

continuous and bounded in (s, t) for t? > 0.

2. There exist deterministic and bounded functions hij(s, t; β) with h(s, t; β) =

{h(s, t; β)}ij such that for all i and j, as n→∞,

sup
w∈[0,t?]

|Hij(s, w; β̂)− hij(s, w; β)| → 0.
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Theorem 4.1. Under the above regularity conditions, and as n → ∞, the vector-valued

process {Un(s?, t; β̂) : t ∈ [0, t?]} converges weakly on the product Skorohod’s space

D[0, t?]2 to a 2× 1 zero-mean Gaussian process {U∞(s?, t; β) : t ∈ [0, t?]} with covariance

matrix function given by

Σ(s?, t; β) =

∫ t

0

h(s, w; β)Dg(y(s?, w), βḠ(w))h(s, w; β)tλ(w)dw.

Proof: The regularity conditions along with the consistency of β̂n and the uniform

convergence given in (3.5) ensure that H(s?, t; β̂n) converges uniformly to h(s?, t; β).

Let H(s, t; β̂) = [H·1(s, t; β̂),H·2(s, t; β̂)], where H·1 and H·2 represent the first and

second column of H respectively with a similar definition for h. We may then write

Un(s?, t; β̂) = U1
n(s?, t; β̂) + U2

n(s?, t; β̂) where

U1
n(s?, t; β̂) =

1√
n

∫ t

0

H·1(s?, w; β̂)M(s?, dw),

and

U2
n(s?, t; β̂) =

1√
n

∫ t

0

H·2(s?, w; β̂)M τ (dw).

From Peña et al. [61], U1
n(s?, t; β̂) converges on D[0, t?] to a zero-mean Gaussian process

with covariance matrix function

Σ1(s?, t; β) =

∫ t

0

h·1(s?, w; β)⊗2y(s?, w)λ(w)dw.

By the martingale central limit theorem, U2
n(s?, t; β̂) converges on D[0, t?] to a zero-mean

Gaussian process with covariance matrix function

Σ2(s?, t; β) =

∫ t

0

h·2(s?, w; β)⊗2βḠ(w)λ(w)dw.

Since 〈M †
i ,M

τ
j 〉(dw) = 0 for all i and j, it follows that the asymptotic covariance of

Un(s?, t; β̂) is Σ1 +Σ2 which is the expression given in the statement of the theorem. 2
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The next corollary pertains to the asymptotic distribution of the statistics Wn(s?, t; β̂).

Corollary 4.2. As n→∞, the process {Wn(s, t; β̂) : t ∈ [0, t?]} converges weakly to

a zero-mean Gaussian process {W∞(s, t; β) : t ∈ [0, t?]} with covariance function given by

cov(W (s, t1; β),W (s, t2; β)) =

∫ t1∧t2

0

βλ(w)Ḡ(w)

y(s, w)y(s, w; β)
dw,

where y(s, t; β) = y(s, t) + βḠ(t).

Proof: We can write the two terms in the right hand side of (4.5) in a vector form as

Un(s, t; β̂) =
1√
n

∫ t

0

 f(s, w; β̂) 0

0 g(s, w; β̂)

M(s, dw).

Furthermore, let

ζn(s, t; β̂) =
√
n

∫ t

0

f(s, w; β̂)M(s, dw)

and ξn(s, t; β̂) =
√
n

∫ t

0

g(s, w; β̂)M τ (dw).

Convergence to a zero-mean Gaussian process of (ζn(s, t; β̂), ξn(s, t; β̂)) to (ζ∞(s, t; β),

ξ∞(s, t; β)) on D[0, t?]2 is guaranteed by Theorem 4.1. In addition, the finite dimensional

distributions of (ζn(s, t; β̂), ξn(s, t; β̂)) converge to those of (ζ∞(s, t; β), ξ∞(s, t; β)), that is

for any 0 ≤ t1 < t2 < ... ≤ tk ≤ t?, we have:

[
(ζn(s, t1; β̂), ξn(s, t1; β̂)), ..., (ζn(s, tk; β̂), ξn(s, tk; β̂))

]
d→

[(ζ∞(s, t1; β), ξ∞(s, t1; β)), ..., (ζ∞(s, tk; β), ξ∞(s, tk; β))] .

Define the map φ : D[0, t?]2 → D[0, t?] by φ(γ1(t1), γ2(t2)) = γ1(t1)−γ2(t2). The mapping

is measurable and continuous under the sup norm. It follows by the continuous mapping

theorem that φ(ζn(s, t; β̂), ξn(s, t; β̂))
d→ φ(ζ∞(s, t), ξ∞(s, t)). 2
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4.4. CLASS OF INFERENCES PROCEDURES

Corollary 4.2 gave the limiting distribution of the goodness of fit processWn(s, t; β̂).

The model should be rejected if Wn(s, t; β̂) is significantly different from zero. Many dif-

ferent goodness of fit statistics can be constructed as functionals of Wn(s, t; β̂). These

include the Kolmogorov-Smirnov and chi-square tests.

4.4.1. Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov test is con-

structed as functionals of the process Wn(s, t; β̂). The resulting test statistic is given by

Q
(n)
1 (s, t; β̂) = sup

w∈[0,t?]

|Wn(s, w; β̂)| (4.7)

The test in (4.7) is a function of the gap time and its null distribution is usually math-

ematically intractable. Before proceeding with the test statistic, we need a consistent

estimator of σ2(s, t; β) = Var(W∞(s, t; β)) given by

σ̂2(s, t; β̂) = n

∫ t

0

β̂Y τ (w)N(s, dw)

Y (s, w){Y (s, w) + β̂Y τ (w)}2
.

For t > 0, the process Wn(s, t; β̂) converges weakly to a time transformed Brownian

motion process, {B(σ2(s, t; β)); t ≥ 0}.

A test statistic can be constructed as

Q
(n)
3 (s, t?; β̂) =

sup
w∈[0,t?]

∣∣∣Wn(s, w; β̂)
∣∣∣√

σ̂2(s, t?; β̂)

d→
sup

w∈[0,t?]

|B(σ2(s, w; β))|√
σ2(s, t?; β)

d
= sup

t∈[0,1]

|B(0, t)|. (4.8)

Critical points can be obtained using well known facts about the distribution of the func-

tional sup
t∈[0,1]

|B(0, t)|. The test rejects if Q
(n)
3 (s, t?; β̂) > bα, where bα is the 1 − α upper

quantile of the distribution of sup
t∈[0,1]

|B(0, t)|. A derivation of the distribution of the supre-

mum of a Brownian motion process can be found in Billingsley [15] and a table is given

in Walsh [75]. See also Shorack and Wellner ( [69], page. 239).
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4.4.2. Chi-Square Test. Let 0 = t0 < t1 < ... < tk = t? be a subdivision of

the gap time interval [0, t?] into k cells Ii = (ti−1, ti], i = 1, ..., k. Consider the processes

Rn,i(s, Ii; β̂) =
√
n

∫
Ii

d{Λ̂(s, w; β̂)− Λ̃(s, w))}.

The vector Rn with elements Rn,i converges in distribution to R which is k-variate with

elements Ri. The convergence is to a k-variate normal distribution with covariance matrix

equal to Σ = Dg(σ2
11(s, t; β), ..., σ2

kk(s, t; β)) where for y(s, t; β) = y(s, t) + βḠ(t),

σ2
ii(s, t; β =

∫
Ii

βλ(w)Ḡ(w)dw

y(s, w)y(s, w; β)
, for i = 1, ..., k.

The chi-square test statistic is

X2
n = Rt

nΣ̂−nRn = (Rn,1, ..., Rn,k)
tΣ̂−n (Rn,1, ..., Rn,k). (4.9)

Now, X2
n

d→ X2 = RtΣ−1R ∼ χ2(k) by the continuous mapping theorem, where k =

Rank(Σ). The test rejects the GKG model if X2
n > χ2

k,α, the 1 − α upper quantile of a

chi-square distribution.

4.5. SIMULATION STUDY AND APPLICATION

4.5.1. Simulation Study: Type I Error Analysis. A simulation study was

conducted to investigate the finite null distribution of the proposed test statistics given

in equations (4.8) and (4.9). A Weibull intensity of the form λ(t; θ1, θ2) = θ1θ2(θ1t)
θ2−1

was considered. Therefore, under the GKG model, the censoring distribution will also be

Weibull with a scale parameter of [θ1β
−θ2 ]−1 and a shape parameter of θ2. We performed

1000 simulations with sample sizes n ∈ {30, 50, 100, 200} and parameter choices of θ1 = 1,

θ2 ∈ {.8, 1, 2}, and β ∈ {.3, .5, .7}. For the chi-square test (see equation (4.9)) we divided

the gap time into 5 cells based on the 20th, 40th, 60th, and 80th percentiles. Estimated type

I error rates were calculated based on the appropriate asymptotic upper 5th percentiles.

The results of this simulation study are given in Table 4.1. The estimated type I error

rates for both tests are conservative for small samples (n ∈ {30, 50}). The Kolomgrov-



23

Smirnov test statistic is more conservative than the chi-square test. Both tests reach the

appropriate type I error rate for larger sample sizes (n ∈ {100, 200}).

Table 4.1. Table of simulated type I error rates for the chi-squared and Kolmogorov-
Smirnov type tests. The respective estimated error rates are given in the
chi-square Test and KS-Test columns.
n θ2 β χ2-Test KS-Test n θ2 β χ2-Test KS-Test
30 0.8 0.3 0.032 0.017 200 1 0.5 0.053 0.053
50 0.8 0.3 0.049 0.026 300 1 0.5 0.051 0.052
100 0.8 0.3 0.036 0.034 500 1 0.5 0.055 0.054
200 0.8 0.3 0.053 0.049 30 1 0.7 0.022 0.022
300 0.8 0.3 0.050 0.051 50 1 0.7 0.028 0.033
500 0.8 0.3 0.051 0.050 100 1 0.7 0.037 0.044
30 0.8 0.5 0.017 0.013 200 1 0.7 0.048 0.051
50 0.8 0.5 0.037 0.033 300 1 0.7 0.048 0.049
100 0.8 0.5 0.035 0.044 500 1 0.7 0.050 0.051
200 0.8 0.5 0.048 0.051 30 2 0.3 0.017 0.012
300 0.8 0.5 0.049 0.051 50 2 0.3 0.032 0.027
500 0.8 0.5 0.051 0.050 100 2 0.3 0.036 0.047
30 0.8 0.7 0.013 0.014 200 2 0.3 0.048 0.048
50 0.8 0.7 0.029 0.022 300 2 0.3 0.047 0.047
100 0.8 0.7 0.042 0.035 500 2 0.3 0.051 0.051
200 0.8 0.7 0.049 0.051 30 2 0.5 0.030 0.018
300 0.8 0.7 0.055 0.053 50 2 0.5 0.032 0.028
500 0.8 0.7 0.051 0.052 100 2 0.5 0.039 0.039
30 1 0.3 0.034 0.020 200 2 0.5 0.049 0.048
50 1 0.3 0.030 0.022 300 2 0.5 0.048 0.053
100 1 0.3 0.045 0.033 500 2 0.5 0.047 0.052
200 1 0.3 0.051 0.047 30 2 0.7 0.030 0.028
300 1 0.3 0.047 0.052 50 2 0.7 0.035 0.033
500 1 0.3 0.048 0.052 100 2 0.7 0.049 0.043
30 1 0.5 0.017 0.017 200 2 0.7 0.051 0.053
50 1 0.5 0.034 0.030 300 2 0.7 0.048 0.048
100 1 0.5 0.030 0.038 500 2 0.7 0.050 0.051
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4.5.2. Simulation Study: Power Analysis. We investigated the power of our

proposed tests via a computer simulation study. The baseline intensity function has the

Weibull form as given in Section 4.1 with the scale parameter θ1 = 1 and shape parameter

θ2 ∈ {0.4, 0.6, 1.5, 2}. The censoring distribution was either unit exponential or a uniform

distribution over [0, θ] where θ ∈ {2, 4, 8}. Our sample sizes were n ∈ {30, 50, 100, 200}

and we performed 1000 simulation replications. Table 4.2 summarizes the results when

the censoring distribution is unit exponential. Overall as sample size increases so does

the power of both tests. The chi-square test is significantly more powerful than the

Kolmogorov-Smirnov test especially for values of θ2 ∈ {0.4, 0.6}. Both tests have very low

power when n = 30 and θ2 = 0.4 and this is also the case for the Kolmogorov-Smirnov test

when n = 30 and θ2 = 0.4. In these situations the sample size is small and the Weibull

intensity is decreasing producing relative few events per unit. Table 4.3 summarizes the

results when the censoring distribution is uniform. The results are similar to that of

the censoring distribution being unit exponential. As sample size increases so does the

power and the chi-square test outperforms the Kolmogorov-Smirnov test. Some cases exist

where power is very low for small sample sizes but overall the tests perform relatively well.

Simulation results for both the type 1 error analysis and the power strongly suggest that

the chi-square test is preferred over the Kolmogorov-Smirnov form.
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Table 4.2. Simulated powers for Weibull family with τ ∼ exp(1)

n θ2 Power-χ2 Power-KS
30 0.4 0.156 0.019
50 0.4 0.695 0.118

100 0.4 0.997 0.604
200 0.4 1.000 0.911
30 0.6 0.035 0.005
50 0.6 0.114 0.022

100 0.6 0.550 0.128
200 0.6 0.953 0.404
30 1.5 0.182 0.145
50 1.5 0.267 0.255

100 1.5 0.538 0.411
200 1.5 0.864 0.572
30 2.0 0.382 0.337
50 2.0 0.603 0.548

100 2.0 0.923 0.772
200 2.0 0.998 0.928

4.5.3. Application. To illustrate the different tests, we analyze the bladder

cancer data given by Byar [19] that is also utilized by Wei, Lin, and Weissfeld [77]. This

data came from a study conducted by the Veterans Administration Cooperative Urolog-

ical Research Group. Eighty five patients entered the study with bladder tumors that

were removed through a surgical intervention. Multiple recurrences of the tumors were

then observed for the patients with four being the maximum number of recurrences docu-

mented. Surgical intervention was applied each time there was a recurrence of the tumors.

Using the GKG model, we obtained an estimate of 0.778 for β. The Kolmogorov-Smirnov

test statistic is equal to 1.72. Comparing this value to the upper 5th percentile of the

supreme of a standardized Brownian motion results in there not being enough evidence

to reject the null hypothesis. For the chi-square test we divided the gap time into 5 cells

and obtained 38.72 for the test statistic. This results in a p-value of 2.7 × 10−5 < .05,

implying that the null hypothesis should be rejected. The conservative nature of the

Kolmogorov-Smirnov test helps to explain the different conclusions of these tests. We

also simultaneously plotted the estimated cumulative hazard functions obtained under
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Table 4.3. Simulated powers for Weibull family with τ∼ U(0,α)

n χ2 θ2 α n χ2 θ2 α n KS θ2 α n KS θ2 α
30 0.28 0.4 2 30 0.07 1.5 4 30 0.03 0.4 2 30 0.03 1.5 4
50 0.87 0.4 2 50 0.11 1.5 4 50 0.20 0.4 2 50 0.04 1.5 4

100 1.00 0.4 2 100 0.16 1.5 4 100 0.71 0.4 2 100 0.06 1.5 4
200 1.00 0.4 2 200 0.32 1.5 4 200 0.98 0.4 2 200 0.08 1.5 4
30 0.05 0.6 2 30 0.18 2.0 4 30 0.01 0.6 2 30 0.07 2.0 4
50 0.34 0.6 2 50 0.32 2.0 4 50 0.05 0.6 2 50 0.16 2.0 4

100 0.91 0.6 2 100 0.61 2.0 4 100 0.46 0.6 2 100 0.27 2.0 4
200 1.00 0.6 2 200 0.90 2.0 4 200 0.93 0.6 2 200 0.36 2.0 4
30 0.05 1.5 2 30 0.28 0.4 8 30 0.03 1.5 2 30 0.14 0.4 8
50 0.04 1.5 2 50 0.85 0.4 8 50 0.03 1.5 2 50 0.44 0.4 8

100 0.06 1.5 2 100 1.00 0.4 8 100 0.02 1.5 2 100 0.92 0.4 8
200 0.16 1.5 2 200 1.00 0.4 8 200 0.04 1.5 2 200 1.00 0.4 8
30 0.09 2.0 2 30 0.04 0.6 8 30 0.10 2.0 2 30 0.06 0.6 8
50 0.18 2.0 2 50 0.23 0.6 8 50 0.14 2.0 2 50 0.22 0.6 8

100 0.31 2.0 2 100 0.86 0.6 8 100 0.15 2.0 2 100 0.66 0.6 8
200 0.60 2.0 2 200 1.00 0.6 8 200 0.18 2.0 2 200 0.95 0.6 8
30 0.30 0.4 4 30 0.11 1.5 8 30 0.07 0.4 4 30 0.01 1.5 8
50 0.87 0.4 4 50 0.20 1.5 8 50 0.33 0.4 4 50 0.05 1.5 8

100 1.00 0.4 4 100 0.26 1.5 8 100 0.84 0.4 4 100 0.10 1.5 8
200 1.00 0.4 4 200 0.47 1.5 8 200 0.99 0.4 4 200 0.15 1.5 8
30 0.05 0.6 4 30 0.23 2.0 8 30 0.04 0.6 4 30 0.01 2.0 8
50 0.32 0.6 4 50 0.43 2.0 8 50 0.13 0.6 4 50 0.11 2.0 8

100 0.91 0.6 4 100 0.69 2.0 8 100 0.61 0.6 4 100 0.25 2.0 8
200 1.00 0.6 4 200 0.93 2.0 8 200 0.97 0.6 4 200 0.42 2.0 8

both the model considered in Peña et al. [60] and the GKG model. The plot given in

Figure 4.1 supports the conclusion of the chi-square test that the GKG model does not

hold.

4.6. CONCLUSION

In this section we have developed a class of inference procedures for validating the

GKG model based on scaled difference of two competing estimators of the cumulative haz-

ard possessing nice asymptotic properties. A class of validating procedures was developed

based on the asymptotic properties of the scaled process thereby enabling construction of

goodness-of-fit type tests. A weight process Kn(s, t; β̂) converging almost surely to some
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Figure 4.1. A plot of the estimated cumulative hazard functions for the bladder cancer
data of Byar [19] utilizing the generalized Koziol-Green model and that con-
sidered by Peña et al. [60].

deterministic function, could be included in the process in (4.4). Such inclusion could

lead to a more general type of process of the form

Wn(s, t; β̂) =
√
n

∫ t

0

Kn(s, t; β̂)d{Λ̂(s, t; β̂)− Λ̂(s, w)}.

However, because of technical difficulty with regard to the predictability of such a

process the weight has been taken to be one in the current work. We think the weight can

be approximated by a predictable process and will be investigated in future research. The

two estimators used here to develop the class of tests can be extended to include covariates.

Similar tests like those derived here that include covariates may then be obtained using

the same technique. Another extension to the current work is to relax the assumption of

the independence and allow the inter-event times to be dependent. Frailties can be used

to account for correlation among the inter-event times.



5. A RANDOM CELLS-BASED CHI-SQUARE TEST
WITH RECURRENT EVENT DATA

5.1. INTRODUCTION

With complete data, that is with no censoring, for testing ”goodness of fit” the

classical test is the chi-square goodness of fit test. Statistics of the chi-square types are

defined in terms of cells which are fixed prior to taking observations. The distribution

theory was originally developed for the multinomial distribution. Let N
(n)
1 , N

(n)
2 , . . . , N

(n)
k

be observed frequencies in a multinomial distribution with number of trials n and outcomes

probabilities p1(θ), p2(θ), . . . , pk(θ), θ ∈ Rq, and θ̂n be the maximum likelihood estimate

(m.l.e.) of the parameter θ, then the statistic

X2
n(θ̂n) =

k∑
i=1

(N
(n)
i − npi(θ̂n))2

npi(θ̂n)
(5.1)

is distributed in the limit as chi-square with k − q − 1 degrees of freedom.

We shall be testing the hypothesis that the distribution function (d.f.) of the

sample X1, X2, . . . , Xn belongs to a prescribed family Fθ = {F (·,θ) : θ ∈ Θ ⊆ Rq},

where Θ is an open subset of Rq. Dividing the range of values of the Xis into k cells, this

problem can be reduced to the classical chi-square goodness of fit test. But the resulting

test statistic in (5.1) can be applied directly only in the case when the cells are chosen

by using the actual observations and θ̂n, the m.l.e. of θ, is determined using the class

frequencies (N
(n)
1 , N

(n)
2 , . . . , N

(n)
k ). This m.l.e. is called a multinomial m.l.e (m.m.l.e.).

Furthermore, the statistic in (5.1) is distributed in the limit as chi-square distribution

with k− 1 degrees of freedom only if the parameter θ is considered to be known and this

remarkable result is due to Pearson [59].

Fisher [27] and Fisher [28] showed that if the parameter θ is estimated by the value

θ̄n minimizing the statistic X2
n(θ), then X2

n(θ̄n) is distributed in the limit as chi-square

with k− q−1 degrees of freedom. The estimator θ̄n of θ obtained in this fashion is called

the minimum chi-square estimator. It is important to note that Fisher’s result is valid only

28
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if θ is estimated by the minimum chi-square estimator or any estimator asymptotically

equivalent to it.

If one uses the m.l.e θ̂n of θ based on the original sample values X1, X2, . . . , Xn, not

on the frequencies (N
(n)
1 , N

(n)
2 , . . . , N

(n)
k ), then the statistic in (5.1) is no longer distributed

in the limit as chi-square but is distributed in the limit as

χ2
k−q−1 +

q∑
j=1

λj y
2
j

where the y1, y2, . . . , yq are normal (0, 1) random variables, mutually independent and

independent of χ2
k−q−1. The λ1, λ2, . . . , λq are scalers between 0 and 1 (cf. Chernoff and

Lehman [23]).

Instead of fixing the cells in advance, one can allow the cell boundaries to be

data dependent, that are cut free. Further, we require that the cells settle down as

the sample size increases. Cells obtained following this fashion are called random cells.

By doing so, the limiting distribution of the chi-square statistic will not depend on the

unknown parameter θ. This approach of constructing chi-square statistic is more flexible,

guarantees that the cell probabilities will not be small and is increasingly practicable.

The cell frequencies are no longer multinomial and the limiting distribution of the vector

of standardized frequencies is now obtained using empirical process techniques.

The problem of goodness of fit for censored data is to test the null hypothesis

that F is a member of the family Fθ = {F (·,θ) : θ ∈ Θ ⊆ Rq} of distribution functions

indexed by a parameter θ running over a space Θ. Since censored observations contain

only partial information about the underlying distribution of the data, one cannot use

the usual empirical distribution function F̂ (x) =
∑
I(Xi ≤ x)/n to calculate the cell

frequencies N
(n)
i in (5.1). Suppose now that we have an estimator F̂ of F with the

property that, whether or not the parametric model holds, we have

√
n (F̂ − F )

d→ W
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for some Gaussian process W, on an appropriate Skorohod space. With random censor-

ship model, the most commonly used nonparametric estimator for the survival function

F̄ = 1− F is the KM-estimator (cf. Kaplan and Meier [40]).

In the single events, the seminal papers dealing with the problem of chi-square

goodness of fit with fixed or data-dependent cells include those of Hjort [38], Kim [43], Li

and Doss [47], Habib and Thomas [33], Akritas [9], Hollander and Peña [39], Moore and

Spruill [52], Pollard [63], Mihalka and Moore [51], Ruymgaart [67], and Dahiya and Gur-

land [25] to name a few. Akritas proposed a chi-square test based on KM type estimator

of censoring time, while Hollander and Peña proposed a Pearson-type of test based on

KM estimator of failure times to test a simple null distribution. Asymptotic properties

of their proposed statistics were obtained using asymptotic properties of the KM estima-

tor given in Breslow and Crowely [17]. Li and Doss developed chi-square test based on

random cells for right-censored and left truncated data in the single event settings. In

fact, their test is applicable every time there exits an estimator F̂ (t) of F (t) satisfying the

asymptotic property (5.1), where W is a zero-mean continuous Gaussian process whose

variance-covariance matrix is non-singular. Other chi-square tests based on random cells

have also been developed by Moore [53], Pollard [63], among others. A discussion on the

use of random cells is given in Ruymgaart [67].

The situation where the event is recurrent has been dealt with, albeit not as thor-

oughly yet as in the single event. In recurrent event settings, the goodness of fit problem

has been considered by Presnell, Hollander, and Sethuraman [64], Agustin and Peña [7],

and Agustin and Peña [8], Stocker and Adekpedjou [73], Adekpedjou and Zamba [4]. Pres-

nell et al. [7] proposed tests for the minimum repair assumption in the imperfect repair

model. Agustin and Peña [8] proposed goodness of fit test for the Block, Borges, and Sav-

its [16] model whereas Agustin and Peña [8] developed goodness of fit test for an extended

Block et al. [16] model that include covariates. Stocker and Adekpedjou [73] developed a

class of tests for the hazard rate function that include chi-square, Kolmogorov-Smirnov,

Cramér-von Mises and obtained asymptotic properties of their tests using empirical pro-

cess techniques and Khmaladze transformation (cf. Khmaladze [42]). Adekpedjou and

Zamba [4] developed a chi-square goodness of fit for testing the hypothesis of completely
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known distribution with fixed cells based on a nonparametric maximum likelihood esti-

mator of F.

Assume that the inter-event times in a recurrent event setting are i.i.d. with a com-

mon absolutely continuous distribution function F (t;θ). The parameter θ ranges over an

open set Θ in Rq. The major goals of this section is to develop a chi-square goodness of fit

for testing the null hypothesis that F belongs to some parametric family of distributions.

The null hypothesis of interest is

H0 : F (·) ∈ Fθ = {F (·,θ) : θ ∈ Θ ⊆ Rq}. (5.2)

All the tests considered in recurrent event settings are based on fixed cell bound-

aries. In the one we propose, the cells are random and data-driven and generalized the

work of Li and Doss [47] to the situation where the event is recurrent. Furthermore, it

encompasses a wide range of tests including-fixed null with random cells, fixed cells with

composite hypothesis- and is different from those proposed in the literature of recurrent

events. We use the NPMLE of the distribution function of the inter-event time in (3.6)

to obtain the observed frequencies and we assume the asymptotic property (3.7) is in

force. The expected frequencies are obtained using the estimator of θ that minimizes a

quadratic form obtained from the suitably standardized vector of “ observed - expected ”

frequencies. The importance of using the minimum chi-square estimator in the construc-

tion of chi-square statistic is discussed in Harris and Kanji [35].

Let T = [0, t∗], where t∗ = maxi,j Ti,j is the largest gap-time. The set T could also

be taken to be [0, s∗]. Contrary to chi-square test based on fixed cells, we consider a sub-

division of [0, t∗] given by 0 = tn0 < tn1 < · · · < tnk = t? where the end-points are functional

of the data, namely tnj = tnj (Oi; i = 1, ..., n). The random cells are given by Ini = [tnl−1, t
n
l )

for l = 1, . . . , k, and we require them to settle down as sample size increases. That is

tnl
p→ tl and Inl

p→ Il = [tl−1, tl) as n → ∞, under F (·,θ0), where tl ∈ [0, t∗] and θ0 is

the true value of θ. Here the notation
p→ means convergence in probability.

Set tn = (tn1 , . . . , t
n
k−1) and t = (t1, ..., tk−1). The number of Ti,j falling in the lth random

cell Inl (l = 1, ..., k) by calendar time s, that is the observed cells frequencies using the
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NPMLE is defined by

p̂nl (s) =

∫
Inl

F̂ (s, dw) = F̂ (s, tnl )− F̂ (s, tnl−1). (5.3)

The expected random cell frequencies, that is the expected number of Ti,j falling in Inl is

given by

pnl (θ) =

∫
Inl

F (dw,θ) = F (tnl ,θ)− F (tnl−1,θ), (5.4)

and these are expected, as n→∞, to stabilize to

pl(θ) =

∫
Il

F (dw,θ) = F (tl,θ)− F (tl−1,θ). (5.5)

In the sequel, we introduce the corresponding vector of observed cells frequencies, expected

random cells frequencies, and limiting values of expected random cells frequencies by

p̂n(s) = [p̂nl (s)]k×1, pn(θ) = [pnl (θ)]k×1, and p(θ) = [pl(θ)]k×1, (5.6)

respectively. Let the lth element of a k × 1-vector Un(s, t;θ) of “observed-expected”

frequencies over the random cells Inl be defined by

U l
n(s, t;θ) =

√
n[p̂nl (s)− pnl (θ)], l = 1, ..., k. (5.7)

In general, a chi-square statistic has the form U′n(s, t;θn)Σ̂Un(s, t;θn), where a′

denote the transpose of a vector a, θn is an estimator of θ having some nice asymptotic

properties, and Σ̂ is a k × k matrix that could possibly depends on θn. The matrix Σ̂

is-most of the time- an estimate of the Moore-Penrose generalized inverse of a consistent

estimator of the in-probability limit of the variance-covariance matrix of the limiting

distribution of Un(s, t;θ). If one lets Σ̂ = Ik×k, this reduces to the classical chi-square

test proposed by Fisher [28]. At any rate, the true limiting matrix Σ is in general assumed

to satisfy some regularity conditions such as positive definite and non-singularity.

We now impose some assumptions that are crucial for the proof of our asymptotic

results. These are the classical conditions imposed on the hypothesized distribution and
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the expected frequencies under H0 for chi-square type tests -however slightly changed to

accommodate recurrent events.

Assumption I. There exists a neighborhood N (θ0) of θ0 on which F (t,θ) is continuous

and differentiable on [0, t∗] × N (θ0) and the derivative of all orders are continuous in t

and θ.

Assumption II. The k × q matrix

∇θ′p(θ) =


∇θ1p1(θ) · · · ∇θqp1(θ)

...
. . .

...

∇θ1pk(θ) · · · ∇θqpk(θ)


k×q

where ∇θ = ∂
∂θ
≡ (∂/∂θj, j = 1, 2, . . . , q)t and ∇θjpi(θ) = ∂

∂θj
pi(θ) is of rank q for all

θ ∈ Θ.

5.2. PRELIMINARY RESULTS

Our first result in this subsection pertains to the asymptotic distribution of Un(s, t;θ0)

under H0.

Theorem 5.1. Under H0, Un(s, t;θ0) converges in distribution to Nk(0,Σ) where Σ =

JΣ1(s, t;θ0)J ′ and the matrix J is given by

J =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

. . . . . .
...

0 0 0 · · · 1

0 0 0 · · · −1


k×(k−1)

Furthermore, rank(J) = k - 1.

Proof: Define the product-limit type process by Wn(s, t;θ0) =
√
n[ ˆ̄F (s, t) − F̄ (t,θ0)],

where as before θ0 is the true value of θ. With ξn = [Wn(s, tnj ;θ0)](k−1)×1, it is eas-
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ily shown that Un(s, t;θ0) = −Jξn. Define ξ(1)
n = [Wn(s, tj;θ0)](k−1)×1 and ξ(2)

n =

[Wn(s, tnj ;θ0) − Wn(s, tj;θ0)](k−1)×1. Then ξn = ξ(1)
n + ξ(2)

n . Observe that Wn(s, t;θ0)

is a type of process given in (3.7) and its weak convergence to say W (s, t;θ0) is obtained

by applying (3.7) to parametric distribution. Furthermore, Peña et al. [61] proved con-

vergence of finite dimensional distributions of W (s, t;θ0) to Gaussian distributions for

any t1 < t2 < · · · < tk−1. The proof is complete if we can show that ξ(2)
n converges in

probability to a (k − 1)- dimensional vector 0(k−1)×1. By the representation theorem of

Pollard (cf. Pollard [63]), there exists a new probability space (Ω̃, F̃ , P̃ ), new processes

W̃n(s, t;θ0) and W̃ (s, t;θ0) such that Wn(s, t;θ0)
d
= W̃n(s, t;θ0) [where

d
= means “equal

in distribution” ] and W (s, t;θ0)
d
= W̃ (s, t;θ0). Moreover, W̃n(s, t;θ0) converges weakly

to W̃ (s, t;θ0) and the new processes have the same finite distributions as the old ones

on their respective probability spaces. Since W̃ (s, t;θ0) has continuous sample paths, the

distribution equalities imply

sup
0≤t≤t?

|W̃n(s, t;θ0)− W̃ (s, t;θ0)| as→ 0

as n → ∞. Next, for l = 1, ..., k, introduce t̃nl = tnl (Õi : i = 1, ..., n), the counterparts of

tnl on (Ω̃, F̃ , P̃ ) such that t̃nl
d
= tnl . In addition, t̃nl

p→ tl since tnl
p→ tl. It then follows, for

large n that (we drop the argument θ0 for brevity)

|W̃n(s, t̃nl )− W̃n(s, tl)| ≤ |W̃n(s, t̃nl )− W̃ (s, t̃nl )|+ |W̃ (s, t̃nl )− W̃ (s, tl)|

+|W̃ (s, tl)− W̃n(s, tl)|

≤ 2 sup
0≤t≤t?

|W̃n(s, t)− W̃ (s, t)|+ |W̃ (s, t̃nl )− W̃ (s, tl)| (5.8)

= op(1).

as n → ∞, where the last inequality is obtained by using the continuous sample path

property of W̃ (s, t;θ0). Because W̃ (s, t;θ0) has continuous sample paths, an application

of the functional continuous mapping theorem implies that the right hand side of (5.8) is

negligible. Therefore, ξ(2)
n

p→ 0 and the result in the first part of the theorem follows by
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applying Slustky theorem. 2

Let Ξ(s, t;θ) be the square root of the Moore-Penrose generalized inverse of Σ(s, t;θ).

Then Ξ(s, t;θ) is a k× k symmetric matrix whose elements are function of (t,θ) for fixed

s. The variance-covariance matrix Σ1 of W in (3.7) is a non-singular matrix because the

process W is of the form F̄ V , where V is some Gaussian martingale (cf. Fleming and

Harrington [29])-and this is true even in the finite dimensional distributions case. We now

impose some conditions on Ξ(s, t;θ).

Condition 1: Ξ(s, t;θ) is continuous at (t,θ) for a fixed s.

Condition 2: Ξ−1(s, t;θ) exists and bounded on ([0, s∗]× [0, s∗]×Θ).

Condition 3: ∇θ(Ξ
2(s, t;θ)) exists at every (t,θ) ∈ (N(t) × Θ) and ∇θ(Ξ2(s, t;θ)) is

continuous at (t,θ0).

For brevity, let Ξ(s, tn;θ) ≡ Ξn(s,θ) be the matrix obtained with t replaced by the

random boundaries vector tn. Define

Vn(s, t;θ) = Ξn(s,θ)Un(s, t;θ). (5.9)

The limiting distribution of Vn(s, t;θ0) under H0 is straightforward from Theorem

5.1. Let {θ̄n(s∗, t∗) : n = 1, 2, ...} be the sequence of θ-values minimizing the sequence

of quadratic forms {V′n(s∗, t∗;θ)Vn(s∗, t∗;θ) : n = 1, 2, ...}. To proceed, we need an as-

sumption pertaining to the sequence {θ̄n(s∗, t∗) : n = 1, 2, ...}. Observe that θ̄n(s∗, t∗)

is a process that varies as calendar time progresses. Note that in the above θ̄n(s∗, t∗) is

the modified minimum chi-square estimator of θ. When t∗ →∞, the modified minimum

chi-square reduces to the minimum chi-square estimator θ̄n(s∗). In the most cases, closed

form solutions for zeros of V′n(s∗, t∗;θ)Vn(s∗, t∗;θ) do not exist, numerical methods such

as the Newton-Raphson algorithm or the Nelder-Mead (cf. Nelder and Mead [55]) will

be needed to minimize the quadratic form. In what follows, for a q × 1 vector a, let

‖a‖2
q =

∑q
t=1 a

2
t .

Assumption III ‖θ̄n(s∗, t∗)− θ0‖2
q = op(1) as n→∞.
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Remark 5.1. Assumption III is satisfied by any minimum chi-square estimator or an

estimator asymptotically equivalent to it. A minimum chi-square estimator is obtained

by using the minimum Hellinger distance estimator, the Kullback-Lieber separator, or

the Haldane discrepancy. All these methods of estimation provide estimators which are

consistent and asymptotically efficient and the resulting estimators are classified as min-

imum chi-square estimators (cf. Harris and Kanji [35]).

From now on, we abbreviate θ̄n(s∗, t∗) by θ̄n. The next two lemmas pertain to a

Taylor-type expansion around θ̄n for pn(θ̄n) and ∇θ′p
n(θ̄n). These two lemmas prove to

be crucial in most of our asymptotic proofs.

Lemma 5.2. Under the assumptions and conditions enumerated above, we have:

[i] pn(θ̄n) = p(θ0) + op(1) and [ii] ∇θ′p
n(θ̄n) = ∇θ′p(θ0) + op(1).

Proof: [i] Observe that for each l = 1, ..., k, adding and subtracting pnl (θ0) in pnl (θ̄n) −

pl(θ0), we get pnl (θ̄n)− pl(θ0) = pnl (θ̄n)− pnl (θ0) + pnl (θ0)− pl(θ0). Using (5.4) and (5.5),

we obtain

pnl (θ̄n)− pl(θ0) = [F̄ (tnl−1, θ̄n)− F̄ (tnl , θ̄n)]− [F̄ (tnl−1,θ0)− F̄ (tnl ,θ0)]

+[F̄ (tnl−1,θ0)− F̄ (tnl ,θ0)]− [F̄ (tl−1,θ0)− F̄ (tl,θ0)]

= [F̄ (tnl−1, θ̄n)− F̄ (tnl−1, θ̄n)]− [F̄ (tnl ,θ0)− F̄ (tnl ,θ0)]

+[F̄ (tnl−1, θ̄0)− F̄ (tl−1, θ̄0)]− [F̄ (tnl ,θ0)− F̄ (tl, θ̄n)]. (5.10)

An application of the mean value theorem to each bracket in the right hand side of (5.10)

yields

pnl (θ̄n)− pl(θ0) =
[
∇θ′F̄ (tnl−1, θ̄

∗
n)−∇θ′F̄ (tnl , θ̄

∗∗
n )
]

(θ̄n − θ0)

+∇tF̄ (t∗,θ0)(tnl−1 − tl−1)−∇tF̄ (t??,θ0)(tnl − tl),

where θ̄
∗∗
n and θ̄

∗
n both lie in the line segment between θ̄n and θ0, t? ∈ (tnl−1, tl−1) and

t?? ∈ (tnl−1, tl). Additionally, θ∗n
p→ θ0, θ??n

p→ θ0, t?
p→ tl−1 and t??

p→ tl. An application
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of Assumption I and consistency of θ̄n completes the proof of [i]. To prove part [ii], note

that by Assumption I again, ∇θp(t,θ) is continuous in θ and t. Because θ̄n
p→ θ0, the

result follows by an application of the continuous mapping theorem. 2

Remark 5.2. The above lemma is similar to assumption A4 of Pollard [63]. In the

single event setting, Li and Doss [47] observed similar result for the vector pn(θ̄n) and its

derivative, but did not provide a proof of them.

We now provide an intermediate result that will be used in the proof of the asymp-

totic distribution of the chi-square statistic. Introduce the k × q matrix B(s, t;θ0) with

(i, j)th entry equals to

Ξ(s, t;θ0)i,j
∂pi(t,θ0)

∂θj
(5.11)

for i = 1, ..., k and j = 1, ..., q, so that B(s, t;θ0) = Ξ(s, t;θ0)∇θ′0
p(t,θ0). The next

proposition deals with the negligibility of B′(s, t;θ0)Vn(s, t; θ̄n).

Proposition 5.3. Under the regularity conditions and assumptions, we have:

B′(s, t;θ0)Vn(s, t; θ̄n) = op(1).

Proof: Since θ̄n is the value of θ minimizing the quadratic form V′n(s, t;θ)Vn(s, t;θ), it

follows that for j = 1, ..., q

∇θj [V
′
n(s, t; θ̄n) ·Vn(s, t; θ̄n)] = 0, (5.12)

where the symbol · represents the dot operator. Using the definition of Vn(s, t;θ), (5.12)

is equivalent to

∇θj [U
′
n(s, θ̄n)Ξ2(s, θ̄n)Un(s, θ̄n)] = 0. (5.13)

Expending (5.13) and differentiating U′n(s, θ̄n) with respect to θj, we obtain

−2
√
n∇θj [p

′n(θ̄n)]Ξ2(s, θ̄n)Vn(s, θ̄n) + U′n(s, θ̄n)∇θj(Ξ
2(s, θ̄n))Un(s, θ̄n) = 0.
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By Condition II, Ξ−1(s, θ̄n) exists and is bounded, therefore, Un(s, θ̄n) =

Ξ−1(s, θ̄n)Vn(s, θ̄n). Furthermore, the asymptotic distribution of Un(s,θ0) yields

‖Un(s,θ0)‖ = Op(1). (5.14)

The statement of the proposition follows by applying the Landau rules of multiplication

of little o and big O by bounded elements. 2

Theorem 5.4. Under the null hypothesis H0 and Assumptions I and II above, we have

√
n(θ̄n − θ0) = [B′(s∗, t∗;θ0)B(s∗, t∗;θ0)]−1B′(s∗, t∗;θ0)Vn(s∗, t∗;θ0) + op(1)

Proof: Start out by adding and subtracting p(θ0) in (5.9) to obtain (we drop the gap

time argument in V and U for simplicity)

V(s, θ̄n) = Ξ(s, θ̄n)
√
n[p̂n(s)− pn(θ0)]− Ξ(s, θ̄n)

√
n[p̂n(θ̄n)− pn(θ0)]

= Ξ(s, θ̄n)U(s,θ0)− Ξ(s, θ̄n)
√
n[pn(θ̄n)− pn(θ0)].

Using (5.3), Assumption I, and Lemma 5.2, we obtain

Vn(s, θ̄n) = Ξ(s, θ̄n)Un(s,θ0)− Ξ(s, θ̄n)[∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0). (5.15)

An application of Condition I, Lemma 5.2 to Ξ(s; θ̄n), and by applying the Landau rules,

we have

V(s, θ̄n) = [Ξ(s,θ0) + op(1)]Un(s,θ0)− [Ξ(s,θ0) + op(1)][∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0)

= Vn(s,θ0) + op(1)Un(s,θ0)− [Ξ(s,θ0)∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0)

= Vn(s,θ0)− [B(s,θ0) + op(1)]
√
n(θ̄n − θ0) + op(1). (5.16)

Multiplying (5.16) by B′(s, t;θ0) and using the fact that B′(s, t;θ0)Vn(s, θ̄n) is negligible

by Proposition 5.3 gives the desired result. 2
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5.3. THE TEST STATISTIC AND LARGE SAMPLE PROPERTIES

With θ̄n being the minimum chi-square estimator, let Vn(s, θ̄n) be the value of

Vn(s,θ) at θ̄n. Furthermore, let A(s, t;θ) be the k × k matrix defined by

A(s, t;θ) = Ik −B(s, t;θ)[B′(s, t;θ)B(s, t;θ)]−1B′(s, t;θ).

Theorem 5.5. Under the regularity conditions and assumptions stated above, and under

H0, we have

Vn(s∗, t∗; θ̄n)
d→ Nk(0,Γ(s∗, t∗;θ0)),

where Γ(s∗, t∗;θ0) = A′(s∗, t∗;θ0)Ξ(s∗, t∗;θ0)ΣΞ(s∗, t∗;θ0)A(s∗, t∗;θ0).

Proof: From Theorem 5.1 and the definition of Vn(s∗, t∗;θ), the asymptotic distribution

of Vn(s∗, t∗;θ0) under H0 is given by

V(s∗, t∗;θ0)→ N(0,Ω(s∗, t∗;θ0)) (5.17)

where Ω(s∗, t∗;θ0) = Ξ(s∗, t∗;θ0)ΣΞ′(s∗, t∗;θ0). Taylor expending of Vn(s∗, t∗; θ̄n) around

θ0 and an application of Theorem 5.4 to
√
n(θ̄n − θ0) successively yields

Vn(s∗, θ̄n) = Vn(s∗,θ0)− [B + op(1)]
√
n(θ̄n − θ0) + op(1)

= Vn(s∗,θ0)− [B + op(1)][(BB′)−1B′Vn(s∗,θ0)] + op(1)

= [I −B(B′B)−1B′]Vn(s∗,θ0) + op(1).

Thus the limiting distribution of Vn(s∗, t∗; θ̄n) follows upon applying standard results

of multivariate normal distributions together with the limiting distribution of Vn(s∗,θ0)

under H0. 2

To obtain a statistic with limiting chi-square distribution, it suffices to find a

uniformly consistent estimator Γ̂(s, t;θ0) of Γ(s, t;θ0). We now provide a discussion on

the choice of a consistent estimator of Γ(s, t;θ0). We first present a consistent estimator

of Σ1(s, t;θ0). The limiting variance-covariance matrix Σ1(t1, t2, ..., tk−1) of the finite
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dimensional distributions of W for any 0 < t1 < t2 < · · · < tk−1 under H0 is given by

Σ1(s, t;θ0) =


Σ1(s, t1;θ0) Σ1(s, t1;θ0) · · · Σ1(s, t1;θ0)

Σ1(s, t1;θ0) Σ1(s, t2;θ0) · · · Σ1(s, t2;θ0)

...
...

. . .
...

Σ1(s, t1;θ0) Σ1(s, t2;θ0) · · · Σ1(s, tk−1;θ0)


;

where each Σ1(s, tj;θ0), j = 1, ..., k − 1 is given by (cf. Peña et al. [60])

Σ1(s, tj;θ0) = −F̄ 2(tj,θ0)

∫ tj

0

F̄ (dw,θ0)

F̄ (w,θ0)y(s, w;θ0)
. (5.18)

With Y (s, t) =
∑n

i=1 Yi(s, t) being the generalized at-risk process, it has been shown in the

aforementioned paper that a uniformly consistent estimator of y(s, t) is Ȳ (s, t). Therefore,

a natural estimator of Σ1(s, tj;θ0) under H0 for each j is

Σ̂1(s, tj; θ̄n) = −F̄ 2(t, θ̄n)

∫ tj

0

F̄ (dw, θ̄n)

F̄ (w, θ̄n)Ȳ (s, w)
. (5.19)

Lemma 5.6. Under H0, for j = 1, ..., k − 1, we have

sup
tj∈[0,t?]

∣∣∣Σ̂1(s, tj; θ̄n)− Σ1(s, tj;θ0)
∣∣∣ as→ 0

as n→∞.

Proof: This just follows from the continuity of F̄ (t,θ) and the consistency of the minimum

chi-square estimator. 2

Remark 5.3. It is desirable to obtain closed form expression for the components of

Σ1(s, tj;θ0). However, this may not be possible if the tested parametric family is different

from the exponential family, or gamma family because the expression of y(s, t;θ) involves

computing the renewal function ρ(t). Closed form expression for the renewal function

exists for exponential and Gamma distributions, consequently one may not be able to

obtain Σ1(s, tj;θ0). In those situations, Lemma 5.6 can be used. Suppose for instance
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F ∈ Fθ = {F (t,θ) = 1− exp(−θt) : θ > 0} and the τis are assumed to follow exponential

distribution with parameter µ. Under the two models, we have, as s→∞ y(∞, t;θ) =

(1 + θ0µ
−1)exp[−(θ0 + µ)t].

Hence, an expression of Σ1(∞, tj;θ0) is given by

Σ1(∞, tj;θ0) =
θ0µ exp(−2θ0tj){exp[(θ0 + µ)tj]− 1}

(θ0 + µ)2
.

A consistent estimator of Γ(s, t;θ0) is then obtained by just replacing θ0 by the

minimum chi-square estimator everywhere in Γ(s, t;θ0) and is given by Γ̂(s, t; θ̄n). Note

also that it is important that the two matrices (true and estimate) have the same structure.

This is critical for the Moore-Penrose generalized inverse of the aforementioned matrices

to converge in probability for large n.

The next result pertains to the rank of the matrices Γ(s, t;θ0) and Γ̂(s, t; θ̄n). This

will be used later to obtain the number of degrees of freedom of our chi-square statistic.

Theorem 5.7. Under the regularity condition and assumptions, we have

[i] rank(Γ(s, t;θ0)) = k − q − 1

[ii] P(rank(Γ̂(s, t; θ̄n)) = k − q − 1)→ 1 as n→∞.

Proof: [i] Abbreviate Σ1(s, t;θ0), Ξ(s, t;θ0), A(s, t;θ0) and Γ(s, t;θ0) by Σ1, Ξ, A and

Γ respectively. We begin by noting that because Σ1 is a positive definite matrix, there

exists a matrix T via Cholesky decomposition such that Σ1 = TT ′. Therefore,

rank(Γ) = rank[AΞJTT ′J ′ΞA] = rank[(AΞJT )(AΞJT )′],

and rank(Γ) reduces to rank[AΞJT ] (cf. Theorem 1.2.11 of Graybill [32]). The latter can

be further reduced to rank[AΞJ ] by a second application of the same theorem since T is

nonsingular. The proof of [i] will be completed if we can show that rank[AΞJ ] = k−q−1.

Using results from linear models theory, that amounts to showing that

rank(AΞJ) = dim C(AΞJ) = k − dimC⊥(AΞJ),



42

where C(AΞJ) is the column space spanned by the columns of the matrix AΞJ and

C⊥(AΞJ) is the space of all vectors orthogonal to C(AΞJ). Let B(s,θ) be the matrix with

(i, j)th defined in (5.11). It is clear that rank(B) = q and dim C(B) = q. Let e = Ξ−11,

where 1 is a k × 1 vector with (1)i = 1, for i = 1, ..., k. Then it is straightforward to see

that using matrix multiplication

B′e = ∇θ′ [1
′ · p(θ)]′ = 0. (5.20)

From (5.20), it follows that e is orthogonal to C(B) and consequently dim C[B, e] = q+ 1.

To complete the proof, we need to show that the space of all vectors orthogonal to C[B, e]

is C[AΞJ ]. Observe that

(AΞJ)′B = J ′ΞAB = J ′Ξ0 = 0, and

(AΞJ)′e = J ′1 = 0.

Therefore C(AΞJ) is orthogonal to C[B, e], hence C⊥(AΞ)J) ⊇ C[B, e]. In a similar way,

we can prove the inverse inclusion, and the result follows.

[ii] This part follows from part [i] and standard results on rank of uniformly consistent

estimator of matrices. 2

We are now ready to construct our test statistic. Let Γ−(s∗, t∗;θ0) and Γ̂−(s∗, t∗; θ̄n)

denote the Moore-Penrose generalized inverse of Γ(s∗, t∗;θ0) and Γ̂−(s∗, t∗; θ̄n) respec-

tively. From [i] and [ii] of Theorem 5.7, it follows that

Γ̂−(s∗, t∗; θ̄n)
p→ Γ−(s∗, t∗;θ0). (5.21)

The result in (5.21) is key to obtaining the asymptotic distribution of the chi-square

statistic, given in the next theorem.
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Theorem 5.8. Define Q̄(s∗, t∗) = V′(s∗, t∗; θ̄n)Γ̂−(s∗, t∗; θ̄n)V(s∗, t∗; θ̄n). Then, under

H0

Q̄(s∗, t∗)
d→ χ2(k − q − 1),

and the test reject the hypothesized family of distributions at level α if Q̄(s∗, t∗) ≥ χ2(k−

q − 1, α), where χ2(k − q − 1, α) is the upper α point of χ2(k − q − 1).

Proof: Result in (5.21) and Theorem 5.4 together with results on multivariate normal

distribution (cf. Moore [54]) provide the result. 2

5.4. SIMULATION DESIGN

We perform a Monte Carlo simulation study using the R software. The goal of

the simulation study is to assess estimation using minimum chi-square methods, and to

gauge the performance of our proposed random cells test with respect to nominal and

achieved significance levels. For the sake of brevity, we design our simulations using 3

random partitions (Il) of the monitoring period; although more than three partitions can

be considered. In order to carry out the simulation, recurrent event data must be gener-

ated during a study monitoring period [0, τ ]. To do so, we use a structure that reconciles

the interocurrence time survivor function F̄ and the length of the monitoring period τ -by

implication, the censoring distribution Ḡ. A well-known structure that reconciles F̄ and

Ḡ in the presence of recurrent event data is the generalized Koziol-Green (GKG) model

(Koziol & Green [44]). The GKG model for a recurrent event settings postulates the exis-

tence of a monitoring parameter β > 0 such that Ḡ(t) = F̄ (t)β. The parameter β controls

the events intensity over the monitoring period and is reasonably constrained to (0, 1] for

practical relevance-constraint that leads to more observed recurrences. We set the value

of β to 0.3 and consider estimating and testing within two parametric models: the Ex-

ponential and the Weibull parametric lifetime models. To find the minimum chi-square

estimator, the quadratic form V′(s∗, t∗;θ)V(s∗, t∗;θ) was used. It is to be noted that

any other estimator that is asymptotically equivalent to the minimum chi-square estima-

tor (MCSE) provides the same asymptotic result as the MCSE. In the case of recurrent

events, among the class of MCSE, the minimum Hellinger distance estimator (cf. Be-
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ran [13]) has proved to have consistently provided unbiased estimators of the parametric

family and has been shown to belong to the class of MCSE (cf. Berkson [14]). Moreover,

the minimum Hellinger distance estimator has also facilitated convergence issues related

to the quadratic form when generalized inverses are used. Its consistency and asymptotic

efficiency were discussed in Harris and Kanji [35].

Model I: The inter event time survivor function follows an exponential distribution with

parameter θ and F̄ (t, θ) = exp(−θt).

Model II: True inter event time survivor function follows a Weibull distribution; F̄ (t, θ) =

exp(−tθ), where the scale parameter is taken to be 1.

Estimation

For models I and II, we vary θ in {5.00, 3.00, 2.00, 1.75, 1.50, 1.00, .75, .50, .25}.

We view these values as ‘true’ parameters for the sake of simulation and to gauge how well

they are recuperated by our estimation methods. Under model I, the parametric values

range from convex-shape densities with lighter right tail than F̄ (t, θ = 1) (i.e all θ > 1),

to convex-shape densities with heavier tail than F̄ (t, θ = 1) (i.e for all θ < 1).

Under model II, the parameter values correspond to density functions with lighter tails

than F̄ (t, θ = 1), but starting out from concave-shape density and progressively moving

towards highly skewed and convex-shape densities. We consider small sample as well as

large sample estimation (n in { 20, 30, 50, 75, 100, 200}). For each combination of (θ,

n), we run 1000 replications to estimate the parameter and carry out the test. Figures

5.1-5.4 provide graphical displays of the distribution of the parameter estimates for var-

ious values of θ as sample size varies. From the figures, it is trivial and anticipated that

as n gets larger, the parametric family is better estimated with minimum bias. It is also

noteworthy that larger values of the parameter require larger sample sizes to benefit from

more accurate estimation. Tables 5.1 and 5.2 display the value of a ‘true’ parameter (i.e.

θ as set by the simulated data), the average value of the parameter across 1000 replica-

tions (θ̄), the median value of the parameter (θ̇) and the standard deviation around the
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estimation of θ̄. The recurrent event data are generated using these parameters as true

parametric settings. θ̄ and θ̇ are the estimated values from the simulation after we apply

the minimum chi-square framework. We found out that for the Weibull model, the more

concave shape densities (i.e θ � 1) are prone to bigger estimation errors than the convex

counterparts. Similar conclusions can be drawn about the exponential model where, rel-

ative to F̄ (t, θ = 1), heavier tail densities are better estimated than lighter tail densities.

In general though, the statistics from Tables 5.1 and 5.2 along with Figures 5.1-5.4 have

given us enough confidence to build a testing mechanism around the minimum chi-square

estimation approach.

Testing:

For testing the parametric family against the NPMLE, the estimated values of θ̄,

say θ̄n were plugged into the quadratic form of Theorem 5.8 to obtain test statistics that

are compared to the chi-square distribution with one degree of freedom. The test has been

set to reach a nominal significance level of 0.05. The achieved significance is represented

by the proportion of these quadratic forms that cross the upper .95 quantile of the limiting

chi-square distribution (i.e. 3.8415). Table 5.3 displays such results for selected values of

θ. We use two different tests based on two different estimations of Γ(s, t, θ̄n). The first

estimator is based on the parametric cumulative hazard functions as outlined in equation

(5.19). The resulting test is labeled Test1. The second estimator substitutes the para-

metric estimation of equation (5.19) by its non-parametric equivalent. The second test

is labeled Test2 on Table 5.3. For the exponential model, the tests are anti-conservative

in small samples and tend to be conservative as sample size increases. For Weibull para-

metric model, the same pattern is apparent; but the test built around a non-parametric

estimation of the integrated hazard is very conservative when the parameter is small. The

Weibull family with decreasing hazard reacts extremely conservatively to the test in large

samples than the Weibull family with increasing hazard. Anti-conservativeness remains

an issue in small samples; though more pronounced when the hazard increases in time.
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By and large, reliability growth suffers from small and large samples conservative-

ness while reliability deterioration suffers from small samples anti-conservativeness and a

large samples conservativeness of the test.

Table 5.1. Exponential Parametric Family: F̄ (t, θ) = exp(−θt)

n θ θ̄ SD θ̇ n θ θ̄ SD θ̇

20 0.25 0.26 0.03 0.26 75 0.25 0.25 0.01 0.25
0.50 0.53 0.06 0.53 0.50 0.50 0.03 0.50
0.75 0.79 0.09 0.79 0.75 0.75 0.04 0.75
1.00 1.05 0.12 1.05 1.00 1.00 0.06 0.99
1.25 1.32 0.15 1.32 1.25 1.25 0.07 1.24
1.50 1.58 0.18 1.58 1.50 1.50 0.08 1.49
1.75 1.84 0.21 1.84 1.75 1.75 0.01 1.74
2.00 2.10 0.24 2.11 2.00 2.00 0.11 1.99
3.00 3.16 0.36 3.16 3.00 3.00 0.17 2.98
5.00 5.26 0.59 5.27 5.00 5.00 0.28 4.97

30 0.25 0.26 0.02 0.26 100 0.25 0.25 0.01 0.25
0.50 0.52 0.05 0.52 0.50 0.51 0.02 0.51
0.75 0.78 0.07 0.77 0.75 0.76 0.04 0.76
1.00 1.04 0.10 1.03 1.00 1.01 0.05 1.01
1.25 1.30 0.12 1.29 1.25 1.26 0.06 1.27
1.50 1.56 0.15 1.55 1.50 1.52 0.07 1.52
1.75 1.82 0.17 1.80 1.75 1.77 0.09 1.77
2.00 2.07 0.20 2.06 2.00 2.02 0.10 2.03
3.00 3.11 0.30 3.09 3.00 3.03 0.15 3.04
5.00 5.19 0.50 5.15 5.00 5.05 0.25 5.06

50 0.25 0.25 0.02 0.25 200 0.25 0.25 0.01 0.25
0.50 0.51 0.04 0.50 0.50 0.50 0.02 0.50
0.75 0.76 0.06 0.75 0.75 0.75 0.03 0.75
1.00 1.01 0.08 1.00 1.00 1.00 0.04 1.00
1.25 1.26 0.09 1.25 1.25 1.25 0.05 1.25
1.50 1.52 0.11 1.50 1.50 1.50 0.06 1.50
1.75 1.77 0.13 1.76 1.75 1.75 0.07 1.74
2.00 2.02 0.15 2.01 2.00 2.00 0.08 1.99
3.00 3.03 0.23 3.01 3.00 3.00 0.12 2.99
5.00 5.05 0.38 5.02 5.00 5.00 0.19 4.98
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Table 5.2. Weibull Parametric Family: F̄ (t, θ) = exp(−tθ)

n θ θ̄ SD θ̇ n θ θ̄ SD θ̇

20 0.25 0.25 0.01 0.25 75 0.25 0.25 0.01 0.25
0.50 0.51 0.03 0.51 0.50 0.50 0.01 0.50
0.75 0.76 0.07 0.76 0.75 0.76 0.04 0.76
1.00 1.04 0.13 1.02 1.00 1.01 0.06 1.01
1.25 1.30 0.17 1.27 1.25 1.28 0.10 1.27
1.50 1.54 0.24 1.50 1.50 1.54 0.13 1.54
1.75 1.94 0.39 1.88 1.75 1.80 0.15 1.79
2.00 2.17 0.41 2.15 2.00 2.07 0.17 2.06
3.00 3.37 0.90 3.18 3.00 3.11 0.34 3.11
5.00 5.57 1.43 5.29 5.00 5.33 0.75 5.29

30 0.25 0.25 0.01 0.25 100 0.25 0.25 0.01 0.25
0.50 0.50 0.03 0.50 0.50 0.50 0.01 0.50
0.75 0.76 0.07 0.76 0.75 0.75 0.03 0.74
1.00 1.02 0.09 1.02 1.00 1.01 0.05 1.01
1.25 1.28 0.15 1.26 1.25 1.26 0.07 1.27
1.50 1.53 0.20 1.52 1.50 1.53 0.11 1.54
1.75 1.87 0.26 1.81 1.75 1.79 0.14 1.79
2.00 2.10 0.33 2.08 2.00 2.07 0.16 2.04
3.00 3.15 0.58 3.11 3.00 3.10 0.26 3.09
5.00 5.42 1.13 5.40 5.00 5.21 0.50 5.18

50 0.25 0.25 0.01 0.25 200 0.25 0.25 0.01 0.25
0.50 0.50 0.02 0.50 0.50 0.50 0.01 0.50
0.75 0.76 0.04 0.76 0.75 0.75 0.02 0.75
1.00 1.02 0.08 1.02 1.00 1.00 0.04 1.00
1.25 1.28 0.10 1.28 1.25 1.25 0.05 1.25
1.50 1.55 0.14 1.54 1.50 1.51 0.08 1.51
1.75 1.81 0.18 1.79 1.75 1.76 0.09 1.76
2.00 2.08 0.22 2.08 2.00 2.02 0.13 2.02
3.00 3.18 0.43 3.15 3.00 3.04 0.18 3.05
5.00 5.29 0.90 5.14 5.00 5.07 0.34 5.07
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Table 5.3. Observed Significance

e−θt e−t
θ

θ n Test1 Test2 Test1 Test2
20 0.090 0.100 0.030 0.001
30 0.120 0.100 0.010 0.010

0.5 50 0.070 0.070 0.001 0.001
75 0.050 0.050 0.001 0.001

100 0.060 0.050 0.001 0.001
200 0.030 0.030 0.001 0.001

20 0.090 0.100 0.110 0.100
30 0.120 0.100 0.120 0.100

1.0 50 0.070 0.070 0.070 0.070
75 0.050 0.050 0.050 0.050

100 0.060 0.050 0.060 0.050
200 0.030 0.030 0.030 0.040

20 0.090 0.100 0.190 0.100
30 0.120 0.100 0.140 0.110

3.0 50 0.070 0.070 0.070 0.060
75 0.050 0.050 0.040 0.020

100 0.060 0.050 0.020 0.010
200 0.030 0.030 0.020 0.001
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Figure 5.1. Minimum χ2 parameter estimation as function of n under the Weibull model.
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Figure 5.3. Minimum χ2 parameter estimation as function of n under Exponential model.
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5.5. APPLICATION

For our proposed test to be acceptable, its performance in real-life data setting

is desirable. The data we chose as illustrative example has surfaced in more than one

publication. The primary objective of the data collection was to obtain information

regarding the distribution of failure intervals for the air conditioning system of a fleet of

Boeing 720 jet airplanes. Successive failure times of the air conditioning (AC) system were

recorded for each member of the fleet. After roughly 2000 hours of service, the planes

received a major overhaul. The failure time interval containing the major overhaul is not

recorded in the data since the length of that failure time may have been affected by the

major overhaul (See Proschan [66]).

Figure 5.5. Air Conditioning Data, successive failures of AC machines for 13 jets.

In line with the goal of the data collection, once the distributional properties of the

inter event times are known, reliability predictions, maintenance scheduling and decisions

can be made regarding the entire fleet of Boeing 720 jets. Proschan [66] has demonstrated

evidence against an exponential fit to the pooled data and has argued for a decreasing

failure rate. Park and Kim [58] and Gaudoin et al. [30] suggested that these data may
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have come from a non homogenous Poisson process with a power law (Weibull) intensity

process. Our goal is to handle these data along the line of recurrent event analysis, identify

the NPMLE estimate of the survivor function, use the minimum chi-square parametric

estimation to find the parameter of the Weibull parametric family with little to no evi-

dence against the NPMLE, and suggest this parameter setting for maintenance scheduling

and prediction purposes. We apply the minimum chi-square method to the AC data to

estimate and test the parametric family most likely to represent these data.

We fit a two-parameter Weibull lifetime model (i.e. F̄ (t) = e−γt
θ
; shape parameter

θ and scale parameter γ) to these data. To be consistent with the current study, we de-

note the parameters by θ = (θ, γ) ≡ (θ1, θ2). The minimum chi-square approach based on

the Hellinger distance estimation has estimated the shape parameter as θ̂ = 0.868. The

scale parameter was estimated to be γ̂ = 0.01247. Figure 5.6. presents a pictorial repre-

sentation of an overlay of the non-parametric estimator of the inter event time survivor

function and the estimated parametric family as suggested by the minimum chi-square

estimation approach. With the scale parameter set to its value of 0.01247 and the shape

parameter value of 0.868 taken as a ‘true’ value, we mis-specify the shape parameter to

assess the robustness of the minimum chi-square approach to parameter mis-specification.

Test1 and Test2 are again used to assess this robustness. Table 5.3 presents the results

of our tests under parameter mis-specification. On the table, R stands for a decision to

reject the parametric family while A stands for a decision not to reject it. The message

contains in the table is that Test1 displays a symmetrically oriented robustness while Test2

displays a one-sided robustness.
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Table 5.4. Testing Under Mis-speciffied parameters
θ Test1 Decision Test2 Decision

0.06 50.357 R 0.860 A
0.16 32.534 R 0.858 A
0.26 20.830 R 0.853 A
0.36 13.191 R 0.844 A
0.46 08.228 R 0.828 A
0.56 05.006 R 0.797 A
0.66 02.904 A 0.735 A
0.76 01.510 A 0.608 A
0.86 00.581 A 0.367 A

0.96 00.086 A 0.080 A

1.06 00.002 A 0.003 A
1.16 00.044 A 0.082 A
1.26 00.112 A 0.297 A
1.36 00.426 A 1.603 A
1.46 03.583 A 1.91+01 R
1.56 9.2+01 R 7.50+02 R
1.66 1.5+04 R 1.68+05 R
1.76 3.2+07 R 5.04+08 R
1.86 3.0+12 R 6.88+13 R
1.96 8.3+19 R 2.65+21 R

5.6. CONCLUSION

We develop a chi square goodness of fit test for testing whether the distribution of

the time between failures for a recurrent event process belongs to some parametric fam-

ily of distributions. The chi square test developed is adaptive in the sense that its cells

boundaries are data dependent. The test developed is more flexible and guarantees that

cells probabilities will not be small as would have been the case if fixed cells probabilities

were chosen. A typical chi square test based on fixed cell probabilities is known not to

perform well when some of the cell partitions have little to no observation. The data-

driven cell partition is a way to address this shortcoming. Our test statistic is shown to be

asymptotically chi square and asymptotic results were demonstrated using the theoretical
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Figure 5.6. Overlay of non parametric estimate of the Boeing 720 air conditioning sur-

vivor function (step function) and the Weibull parametric estimate e−γt
θ
;

γ = 0.0124; θ = 0.868 (solid continuous line). The minimum chi-square
tests did not have enough evidence to reject the parametric survivor function.

tools of empirical processes. There are many ways of estimating the unknown parameter

of the underlying parametric distribution. The discussion in Berkson [14] can be applied

in this setting. We found the minimum chi square estimator appealing because of its nice

asymptotic properties and its equivalence to other estimators of θ in large sample. We

have assumed that the random cells converge in probability to deterministic values. This

assumption could be replaced by an assumption of tightness on cells boundaries. Addi-

tionally, asymptotic independence of Un(s, t; θ̄n) with the random cells will hold if the
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random cells converge to some random element on D[0, t∗]−which consequently ensures

the required independence.

We have not addressed the choice of the optimal number of cells (k) in current the

development. The optimal choice of k would undoubtedly reflects on the performance of

the test and on its achieved significance. There has been discussion in the literature about

how many class intervals should be chosen and how these intervals should be weighted for

optimal performance of the resulting chi square test. For example, Mann and Wald [50]

gave a mathematical formula relating the number of class to the significance level of the

test such that these class intervals are chosen with equal probabilities. However, their

procedure holds only for extremely large sample studies and its limitations have been

studied by many researchers. Williams [79] discussed the advantages and limitations of

Mann and Wald [50] approach and concluded that their approach required sample size

can be cut to half without greatly affecting the power of the test. Hamdam [34], in the

restricted case of normal distribution, approached the problem on the ground of maxi-

mizing the power of the test and concluded that a number of classes between 10 and 20 is

adequate to ensure a test with reasonable power. To our knowledge, there has not been

’one size fits all’ selection criterion that optimizes k in the setting of recurrent events as

many parameters are in play. For example, in the case of recurrent event data under the

generalized Koziol-Green model, the number of subject n, the monitoring parameter β

which controls the accumulation of events during the study period, the type of variance

estimator used, the significance level α, and the dimension of the parameter space (q) all

have a final say on the choice of k. However, the ideal solution to the number of partitions

would be to find a mathematical formula that optimizes k as a function of (α, β, n, σ, τ, q).

The issue around the choice of optimal k, in the presence of recurrent event data, needs

more rigorous treatment and more space than can be devoted to it here. On a short note

though, a heuristic approach is to choose k ≥ 2 + q; so the test asymptotic chi square

approximation can be carried.

Covariates were not included in the development of our test. Covariates are im-

portant in the process of having better knowledge of time to event, thereby goodness of fit

for a specific parametric family of distributions. It would be interesting to develop good-
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ness of fit for composite hypothesis when covariates are taken into consideration. Smooth

goodness of fits along the lines of those developed in Peña [62] can be extended to recur-

rent events using hazard based regression models of the form λ(t) = λ0(t)exp(β′X(t)),

where λ0(t) is a baseline hazard, β is a q−dimensional vector of regression coefficient and

X is a q−dimensional vector of covariates which are possibly time dependent.



6. POWER OF THE DATA-DEPENDENT CHI-SQUARE TEST FOR
RECURRENT EVENT DATA

6.1. INTRODUCTION

In Section 5, we considered the problem of goodness of fit test for testing the null

hypothesis

H0 : F (·) ∈ Fθ = {F (·;θ) : θ ∈ Θ ⊆ Rq}.

In this section, we study the local asymptotic power of our test. To that end, we embed

the family Fθ in a bigger family where η is a nuisance parameter, that is

H0 : F (·) ∈ F(θ,η0) = {F (·;θ,η0) : θ ∈ Θ ⊆ Rq, η0 ∈ Rs} ,

versus the alternative hypothesis

H1n : F (·) ∈ F(θ,ηn) =

{
F (·;θ,ηn) : θ ∈ Θ ⊆ Rq, ηn = η0 +

δ√
n

}
,

where η0 is a fixed known parameter vector in Rs and δ is an arbitrary vector in Rs.

We assume 0 < s ≤ q. By doing so, we consider (q + s)−dimensional parametric family

F(θ,ηn) and assume that when ηn = η0 the bigger parametric family corresponds to the

simpler q−dimensional family Fθ. We write F (t;θ,η0) = F (t;θ), when ηn = η0. Under

this model, the composite hypothesis becomes, a simple hypothesis as

H0 : ηn = η0 versus H1n : ηn 6= η0.

The local asymptotic power assessment via the sequence H1n is twofold: First, we

can easily investigate the power of our chi-square test under fixed alternative with respect

to the parameter η by treating the original null hypothesis as composite in θ. Next, we

can directly apply the concepts of the approximate Bahadur asymptotic relative efficiency

and the limiting asymptotic Pitman relative efficiency to compare test statistics for simple

59



60

hypothesis testing as we explain later in this section. Other important advantage of this

bigger parametric family with s−dimensional parameter η is that it allows us to cover

wider and common family of alternatives.

To develop the asymptotic power we need to establish the following result pertain-

ing to the distribution function F (t;θ,ηn). Taylor expansion of F (t;θ,ηn) give

F (t;θ0,ηn)
.
= F (t;θ0,η0) + ∇η′F (t;θ0,η0)(ηn − η0). (6.1)

Let φ(t;θ0) = ∇η′ logF (t;θ0,η0), then

φ(t;θ0) =
1

F (t;θ0,η0)
∇η′F (t;θ0,η0)∇η′F (t;θ0,η0) = F (t;θ0,η0)φ(t;θ0) (6.2)

From (6.1) and (6.2), we obtain

F (t;θ0,ηn) = F (t;θ0,η0)
(

1 + φ(t;θ0).
δ√
n

)
. (6.3)

6.2. PRELIMINARY RESULTS

Our first result in this subsection is on the asymptotic distribution of Un(s, t;θ0)

under H1n.

Lemma 6.1. Under H1n, Un(s, t;θ0) converges in distribution to Nk(∇η′p(θ0) · δ, Σ).

Proof: Start with

Un(s, t;θ0) =
√
n(pn(s)− pn(θ0,η0))

=
√
n(pn(s)− pn(θ0,ηn)) +

√
n(pn(θ0,ηn)− pn(θ0,η0))

= Un(s, t;θ0,ηn) +
√
n(pn(θ0,ηn)− pn(θ0,η0)) (6.4)
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Now consider the lth element of (pn(θ0,ηn)− pn(θ0,η0)),

(pnl (θ0,ηn)− pnl (θ0,η0)) =
[
(F (tnl ;θ0,ηn)− F (tnl−1;θ0,ηn))

−(F (tnl ;θ0,η0)− F (tnl−1;θ0,η0))
]

=
[
(F (tnl ;θ0,ηn)− F (tnl ;θ0,η0))

−(F (tnl−1;θ0,ηn)− F (tnl−1;θ0,η0))
]

Using (6.3), we have

(pnl (θ0,ηn)− pnl (θ0,η0)) =
[
F (tnl ;θ0,η0)φ(tnl ,θ0) · δ√

n

−F (tnl−1;θ0,η0)φ(tnl−1,θ0) · δ√
n

]
= ∇η′

[
F (tnl ;θ0,η0)− F (tnl−1;θ0,η0)

]
· δ√

n

= ∇η′p
n
l (θ0,η0) · δ√

n
.

An application of (6.4) leads to Un(s, t;θ0) = Un(s, t;θ0,ηn) + ∇η′p
n(θ0,η0) · δ.

Under the sequence of alternative hypotheses H1n, Un(s, t;θ0,ηn) converges in distribu-

tion to Nk(0, Σ). Therefore, under H1n, Un(s, t;θ0) converges to Nk(∇η′p(θ0,η0) ·δ, Σ).

2

The limiting distribution of Vn(s, t;θ0) is straightforward. From Lemma 6.1, under

H1n, Vn(s, t;θ0)
d→ Nk(Ξ(s, t;θ0)∇η′p(θ0,η0) · δ, Ξ(s, t;θ0)ΣΞ(s, t;θ0)).

Lemma 6.2. Under H1n, Vn(s, t; θ̄n) is distributed as Nk(µ, Γ(s, t;θ0)), where µ =

A(s, t;θ0)Ξ(s, t;θ0)∇η′p(θ0,η0) · δ.

Proof: Consider the equality Vn(s, t; θ̄n) = A(s, t;θ0)Vn(s, t;θ0) + op(1) from Section

5. From that equality, the limiting distribution of Vn(s, t; θ̄n) under H1n follows upon

applying standard results of multivariate normal distributions together with the limiting

distribution of Vn(s, t;θ0) under H1n. 2

We are ready to obtain the asymptotic power of the chi-square test proposed in Section

5. In what follows, χ2(r) will denote a central chi-square distribution with r degrees
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of freedom and its associated 100(1 − α)% percentile will be denoted by χ2(r, α), and

χ2(r, δ) will denote a non-central chi-square distribution with r degrees of freedom and

noncentrality parameter δ.

Theorem 6.3. If µ is in the range space of Γ(s∗, t∗;θ0), then under H1n,

Q̄(s∗, t∗)
d→ χ2(k − q − 1, µ′Γ−(s∗, t∗;θ0)µ).

Hence the local asymptotic power of Q̄(s∗, t∗) is

P
(
χ2(k − q − 1, µ′Γ−(s∗, t∗;θ0)µ

)
≥ χ2(k − q − 1, α)).

Proof: Observe that

B′A(s∗, t∗;θ0) = B′(Ik −B(B′B)−1B′)

= B′ −B′B(B′B)−1B′

= B′ −B′ = 0.

Clearly, we also have B′µ = B′A(s∗, t∗;θ0)Ξ(s, t;θ0)∇η′p(θ0)δ = 0. Therefore C(B) is

orthogonal to C(Γ(s∗, t∗;θ0)), where C(B) denotes the column space of matrix B. Denote

the orthogonal complement of C(B) by C⊥(B). Next, define e = Ξ(s∗, t∗;θ0)−11, where

1 is a k × 1 vector with (1)i = 1 for all i = 1, . . . , k. Recall that rank(Γ(s∗, t∗;θ0)) =

dim C(Γ(s∗, t∗;θ0)) = k − q − 1. Since B′e = 0, one can show that C⊥(Γ(s∗, t∗;θ0)) =

C[B, e] (See proof of Theorem 5.4). Furthermore, dim C[B, e] = q + 1 since rank(B) = q.

Then,

µ′e = (A(s∗, t∗;θ0)Ξ(s∗, t∗;θ0)∇η′p(θ0)δ)′e

= δ′∇′η′p(θ0)Ξ(s∗, t∗;θ0)A(s∗, t∗;θ0)e

= δ′∇′η′p(θ0)Ξ(s∗, t∗;θ0)((Ik −B(B′B)−1B′))e

= δ′∇′η′p(θ0)Ξ(s∗, t∗;θ0)e
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where the last equality is obtained using the fact that B′e = 0. Therefore

µ′e = δ′∇′η′p(θ0)Ξ(s∗, t∗;θ0)Ξ(s, t;θ0)−11

= δ′∇′η′p(θ0)1 = δ′(1′∇η′p(θ0))′

= δ′∇′η′(1′p(θ0)) = δ′∇′η′(1) = 0.

Since B′µ = 0 and µ′e = 0, we can conclude that µ is in C(Γ(s∗, t∗;θ0)). Hence the result

in the theorem follows from Lemma 6.2 and results about multivariate normal distribu-

tions. 2



7. COMPARISON OF TEST STATISTICS FOR RECURRENT EVENT
DATA

7.1. INTRODUCTION

In Section 5 and Section 6, we considered the problem of goodness of fit test for

testing the null hypothesis

H0 : ηn = η0 versus H1n : ηn 6= η0.

An important and interesting problem with data-dependent chi-square test is the

optimal choice for the matrix Ξ(s∗, t∗;θ0) that appears in Vn(s, t;θ). One may conjecture

that choosing Ξ(s∗, t∗;θ0) to be the square root of a generalized inverse of Σ will lead

to some optimality properties of the test statistic. In this section, we investigate some

optimality properties of test statistics obtained using different choices of Ξ(s∗, t∗;θ0) via

the approximate Bahadur efficiencies [10], [11], [12] and the limiting asymptotic relative

Pitman efficiencies [78].

7.2. SOME POSSIBLE CLASS OF TEST STATISTICS

We describe two possible classes of test statistics that can be obtained using two

choices for Ξ(s, t;θ).

Example 7.1. Let Ξ(s∗, t∗;θ0) = Ik be the identity matrix. Then Ξ(s∗, t∗;θ0) satisfies

Conditions 1 and 2 in Section 5. The test statistic Q̄1(s∗, t∗) is formed with Vn(s∗, t∗;θ) =

Un(s∗, t∗;θ). The resulting test statistic is given by

Q̄1(s∗, t∗) = V′(s∗, t∗; θ̄n)Γ̂−1 (s∗, t∗; θ̄n)V(s∗, t∗; θ̄n)

where Γ1(s∗, t∗;θ0) = A(s∗, t∗;θ0)ΣA(s∗, t∗;θ0). 2
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Example 7.2. Let Ξ(s∗, t∗;θ0) = Ξ1(s∗, t∗;θ0) = diag(p
−1/2
1 (θ), · · · , p−1/2

k (θ)). Then

Ξ1(s∗, t∗;θ0) satisfies Conditions 1 and 2. The test statistic Q̄2(s∗, t∗) is formed with

Vn(s∗, t∗;θ) = Ξ1(s∗, t∗;θ)Un(s∗, t∗;θ)

=
√
n Ξ1(s∗, t∗;θ)(p̂(s∗)− p(n)(θ))

=
(n p̂1(s∗)− n p(n)

1 (θ)

(n p
(n)
1 (θ))1/2

, · · · , n p̂k(s
∗)− n p(n)

k (θ)

(n p
(n)
k (θ))1/2

)
which is the vector used in the classical i.i.d Pearson-Fisher setting. The resulting test

statistic is given by

Q̄2(s∗, t∗) = V′(s∗, t∗; θ̄n)Γ̂−2 (s∗, t∗; θ̄n)V(s∗, t∗; θ̄n)

where

Γ2(s∗, t∗;θ0) = A(s∗, t∗;θ0)Ξ1(s∗, t∗;θ0)ΣΞ1(s∗, t∗;θ0)A(s∗, t∗;θ0). 2

The main advantage of the above examples is the simplicity. We need only minimize a

simple quadratic form to obtain an estimator for θ.

As explained earlier, these three test statistics differ only by the matrix Ξ(s∗, t∗;θ0).

In next section, we shall compare the asymptotic performance of test statistics Q̄(s∗, t∗),

Q̄1(s∗, t∗) and Q̄2(s∗, t∗) by using the approximate Bahadur efficiencies and the limiting

asymptotic relative Pitman efficiencies. Hence we investigate the optimal choice of this

matrix with respect to the relative efficiencies.

7.3. COMPARISON OF TEST STATISTICS

When two or more test statistics are available to test the same hypothesis, we are

faced with the problem of deciding which one to use. To make proper decision, one can

use asymptotic relative efficiency of two sequences of tests. There are various concepts of

asymptotic relative efficiencies for comparing the performance of two sequences of statis-

tical tests for a given hypothesis testing problem. In this section, we describe the concept

of the approximate Bahadur asymptotic relative efficiency, the limiting asymptotic Pit-

man relative efficiency, and the result of Wieand [78] that specifies condition under which
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the limit (as the alternative approaches the null hypothesis) of the Bahadur efficiency

coincides with the limit (as the level α tends to zero) of the Pitman efficiency. First, we

begin with the approximate Bahadur asymptotic relative efficiency.

7.3.1. Bahadur Efficiencies. The concept of the approximate Bahadur

asymptotic relative efficiency (ARBE) was first introduced by Bahadur [10], [11], [12]

and further analyzed by various authors. We briefly review the concept following the

expositions given in Bahadur [10]. Suppose that there is a set of probability measures

{Pη : η ∈ Ω} defined on a sample space (X,B). Let H0 be the hypothesis that η ∈ Ω0

where Ω0 is a subset of Ω. Let {Tn} be a sequence of real valued statistics, such that

large values of Tn are significant, based on a random sample of size n, defined on (X,B).

Bahadur [10] defined {Tn} to be a standard sequence if the following three conditions are

met:

B1. There exists a continuous probability distribution function F such that, for each

η ∈ Ω0 and x ∈ R, limn→∞ Pη(Tn < x) = F (x).

B2. There exists a constant a, 0 < a <∞, such that

log
(
1− F (x)

)
= −ax2

2

(
1 + o(1)

)
where o(1)→ 0 as n→∞.

B3. There exists a real valued function b(η) on Ω − Ω0 with 0 < b(η) < ∞ such that,

for each η ∈ Ω− Ω0

limn→∞ Pη

(∣∣∣ Tn√n − b(η)
∣∣∣ > x

)
= 0

for every x > 0.

Now suppose {Tn} is a standard sequence. Then Tn has the asymptotic distribution

F if H0 is true, but otherwise Tn → ∞ in probability. Consequently, large values of Tn

are significant for testing H0. Accordingly, for any given x, we define 1− F (Tn(x)) to be

the level attained by Tn in the given case n = 1, 2, . . . . In general, 1 − F (Tn(x)) is only
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an approximate level, i.e., for given n and α, it does not equal the probability of Tn being

as large as, or larger than Tn(x) when H0 is true.

In order to compare two tests based on standard sequences, Bahadur normalizes

the tests so that they both have the same limiting distribution under H0. For any standard

sequence, he defines Kn = −2log(1− F (Tn)). The asymptotic distribution of Kn is given

by

P (Kn ≤ v) = P
(
− log(1− F (Tn)) ≤ v

)
= P

(
F (Tn) ≤ 1− e−v/2

)
= 1− e−v/2 for every v > 0.

Therefore, Kn is asymptotically distributed as χ2
2 distribution with 2 degrees of freedom.

He also showed that Kn/n converges to ab2(η) in probability for η ∈ Ω−Ω0. The asymp-

totic or approximate slope of the sequence {Tn} is c(η) = ab2(η) and the approximate

efficiency of two standard sequences {T (1)
n } to {T (2)

n } is defined to be eB12(η) = c1(η)/c2(η).

Bahadur argued that the test based on T
(1)
n is asymptotically less efficient than that based

on T
(2)
n if c1(η)/c2(η) < 1 and asymptotically more efficient if c1(η)/c2(η) > 1. The ratio is

thus called the approximate Bahadur asymptotic relative efficiency (asymptotic Bahdur

ARE) of the sequence T
(1)
n relative to the sequence T

(2)
n . The theory of approximate slopes

and related concepts is discussed more extensively in Bahadur [10], [11], [12].

We apply the method described in Bahdur [10] for the determination of the ap-

proximate slopes of the goodness of fit statistics by showing that the sequence of the

square root of the test statistics are standard sequences.

7.3.2. Comparison of Test Statistics. Let us consider the model introduced

in Section 6.1. Recall that our goodness of fit testing problem is equivalent to testing

H0 : η = η0. Q̄(s∗, t∗) = V′n(s∗, t∗; θ̄n)Γ̂−(s∗, t∗; θ̄n)Vn(s∗, t∗; θ̄n) was the statistic used

back there. Let T1n =
√
Q̄(s∗, t∗). Since the square root function is one-to-one and

continuous function for nonnegative real numbers, one can easily show using transformed

methods that the square root of χ2 random variable with k − q − 1 degrees of freedom
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is distributed as a chi-distribution with the same degrees of freedom. Therefore T1n

converges in distribution to χk−q−1. Hence, there exists a continuous function F (x) such

that limn→∞ Pη(T1n < x) = F (x) for all x > 0 and η = η0. Therefore, T1n satisfies

condition B1. The distribution function of χ2
k−q−1 statistic satisfies B2 with a = 1. To

observe this, for each x ∈ R and η = η0, notice that

Pη0
(T1n ≤ x) = Pη0

(Q̄(s∗, t) ≤ x2) = F (x) from condition B1.

To obtain condition B2, consider

1− F (x) =

∫ ∞
x2

(
2r/2 Γ(r/2)

)−1
e−z/2 z

r−2
2 dz where r = k − q − 1

=
(
2r/2 Γ(r/2)

)−1
∫ ∞
x2

e−z/2 z
r−2
2 dz.

Using integration by parts, we write

1− F (x) =
(
2r/2 Γ(r/2)

)−1

[
2 e−x

2/2 xr−2 + 2

∫ ∞
x2

e−z/2
(r − 2

2

)
z( r−2

2
)−1 dz

]
.

Let w = z/2. Then the last equation reduces to

1− F (x) =
(
2r/2 Γ(r/2)

)−1
2

[
e−x

2/2 xr−2 + 2( r−2
2

) (r − 2)

∫ ∞
x2/2

e−w w( r−2
2

)−1 dw

]
.

Using the following relationship

∫ ∞
x2/2

e−w w

(
r−2
2

)
−1 dw = O

(
e−x

2/2
(x2

2

)( r−2
2

)
−1)

as x→∞,

we get

1− F (x) =
(
2r/2 Γ(r/2)

)−1
2

[
e−x

2/2 xr−2 + 2( r−2
2

) (r − 2) O
(
e−x

2/2
(x2

2

)( r−2
2

)
−1)]
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Algebraic manipulations reduce the previous step to

1− F (x) = e−x
2/2 xr−2

[
2
(
2r/2 Γ(r/2)

)−1
+O(x−2)

]
= e−x

2/2 xr−2 2
(
2r/2 Γ(r/2)

)−1 (
1 + o(1)

)
as x→∞.

Hence

log
(
1− F (x)

)
= −x

2

2
+ (r − 2) logx+ logC1 + o(1) as x→∞,

where C1 = 2
(
2r/2 Γ(r/2)−1

)
and we have

log(1− F (x)) = −x
2

2

[
1− 2 (r − 2) logx

x2
+ o(1)

]
as x→∞.

So the last equation finally reduces to the desired form

log
(
1− F (x)

)
= −x

2

2

[
1 + o(1)

]
as x→∞.

So conditionB2 is satisfied by T1n with a = 1. Since Vn(s∗, t∗; θ̄n)
as→ Ξ(s∗, t∗;θ0)(p(θ0,η)−

p(θ0,η0)) and Γ̂−(s∗, t∗;θn)
as→ Γ−(s∗, t∗;θ0) as n → ∞, T1n also satisfied condition B3

with

b(θ0,η) = [(p(θ0,η)− p(θ0,η0))′Ξ(s∗, t∗;θ0)Γ−(s∗, t∗;θ0)Ξ(s∗, t∗;θ0) ·

(p(θ0,η)− p(θ0,η0))]
1
2

for η 6= η0. Therefore {T1n} is a standard sequence. So the approximate Bahadur slope

b2(θ0,η) of Q̄(s∗, t∗) is

b2(θ0,η) = [(p(θ0,η)− p(θ0,η0))′Ξ(s∗, t∗;θ0)Γ−(s∗, t∗;θ0)Ξ(s∗, t∗;θ0) ·

(p(θ0,η)− p(θ0,η0))].
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Likewise, the approximate Bahadur slopes of Q̄1(s∗, t∗) and Q̄2(s∗, t∗) are given by

b2
1(θ0,η) = [(p(θ0,η)− p(θ0,η0))′Γ−1 (s∗, t∗;θ0)(p(θ0,η)− p(θ0,η0))]

and

b2
2(θ0,η) = [(p(θ0,η)− p(θ0,η0))′Ξ1(s∗, t∗;θ0)Γ−2 (s∗, t∗;θ0)Ξ1(s∗, t∗;θ0) ·

(p(θ0,η)− p(θ0,η0))]

respectively. We can now obtain the desired the approximate Bahadur efficiencies.

Theorem 7.3. For η 6= η0, the approximate Bahadur efficiency of Q̄(s∗, t∗) to

Q̄1(s∗, t∗) is

eB(Q̄, Q̄1) =
b2(θ0,η)

b2
1(θ0,η)

.

The approximate Bahadur efficiency of Q̄(s∗, t∗) to Q̄2(s∗, t∗) is

eB(Q̄, Q̄2) =
b2(θ0,η)

b2
2(θ0,η)

.

Thus, if two sequences of test statistics {Q̄(s∗, t∗)} and {Q̄′(s∗, t∗)} are such that

conditions B1, B2, and B3 hold, then their Bahadur ARE eB(Q̄, Q̄′) can be calculated,

acoording to Theorem 6.6. If eB(Q̄, Q̄′) > 1 for some η then we should prefer the sequence

{Q̄(s∗, t∗)} to {Q̄′(s∗, t∗)}.

7.3.3. Connection to Pitman Efficiency. Since we are using the approxi-

mate Bahadur slope for comparison of the tests, it is natural to see whether the limiting

asymptotic relative Pitman efficiency (ARPE) can be computed from the approximate

Bahadur slopes. For the definition of Pitman efficiency we will use that of Wieand [78].

Let T
(1)
n and T

(2)
n be two sequences of statistics used to form tests of size α for testing

H0 : η = η0 versus H1 : η = ηj where ηj 6= η0.

For 0 < β < 1 and sequences ηj → η0, β
(1)
j → β, and β

(2)
j → β, define N(i, j) to
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be the smallest integer so that for every N ≥ N(i, j)

Pηj

(
T

(i)
N > t

(i)
N

)
≥ β

(i)
j , i = 1, 2, j = 1, 2, . . .

where t
(i)
N is determined by Pη0

(
T

(i)
N > t

(i)
N

)
= α, i = 1, 2, and j = 1, 2, . . . . We define

the Pitman efficiency of sequences T
(1)
n with respect to T

(2)
n by

e12(α, β) = lim
n→∞

N(2, j)

N(1, j)

provided that the limit exists and is independent of the choice of the sequences ηj and

β
(i)
j . If this is not the case, let

e−12(α, β) = inf
Π

lim inf
j→∞

N(2, j)

N(1, j)
and e+

12(α, β) = sup
Π

lim sup
n→∞

N(2, j)

N(1, j)
.

Here supΠ (infΠ) represents the sup (inf) over all sequences {ηj}, {β(1)
j }, and {β(1)

j }, i =

1, 2 respectively and Π stands for any of above sequences.

Bahadur emphasizes that the most important property of a slope is its value in

the immediate vicinity of the null hypothesis. Because the approximate slope and the

exact slope of a test sequence typically coincide in a neighborhood of the null parameter,

the main conclusions relevant to power considerations available from exact slope (cf, Ba-

hadur [11]) also apply to approximate slope. Bahadur showed that for one-sided testing

problems, the limiting approximate Bahadur efficiency of two asymptotically normal test

sequences as the alternative parameter converges to the null value coincides with this

Pitman efficiency as the alpha (α) level approximates zero. Wieand [78] has general-

ized Bahadur’s remark to include test sequences with asymptotic distribution other than

normal, and those used in two-sided testing problems. Further, it can be shown that

Wieand’s condition holds for the version of the goodness of fit statistic with estimated

parameters given that it is satisfied by simple statistic, since limiting distributions do not

depend on values of the parameters. Furthermore rates of convergence remain unaltered

with asymptotically efficient estimators (See Koziol [45]). Wieand’s condition is given
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below.

Wieand’s (1976) Condition. Suppose for a standard sequence {Tn} there exists an

η∗ > 0 such that for every ε > 0 and δ ∈ (0, 1), there exists a C such that for all

η ∈ I(η0, η
∗) = (η0 − η∗, η0 + η∗) \ η0 and N > (C/b2(η)) we have

Pη{|TN/N
1
2 − b(η)| < εb(η)} > 1− δ.

Then TN is said to satisfy Wieand’s condition.

Remark 6.1

Note that in the above condition, C may depend on η∗ but is otherwise independent of

η. Wieand condition is somewhat stronger than Bahadur’s condition B3, since it requires

the convergence of Tn/
√
n in probability at a specified rate. As a consequence, if Wie-

and’s (1976) condition is verified for a standard sequence {Tn} and given function b(η),

Bahadur’s condition B3 is also satisfied.

Under conditions B1, B2 and Wieand (1976) condition with b(η)→ 0 as η → η0,

Wieand showed that the limiting approximate Bahadur efficiency as η → η0 equals to

the limiting asymptotic relative Pitman efficiency as the level of the test (α ) approaches

0. [See Wieand [78]]. Oftentimes, the verification of Wieand (1976) condition is not

straightforward, because in order to establish it, it is necessary to study the behavior of

the test statistics under H1n, and the knowledge of this behavior is often limited. The

following lemma from Wieand [78] sometimes facilitates the verification of Wieand (1976)

condition.

Lemma 7.4. Suppose there is a family of sequences of statistics Un(η), which satisfies

Pη(Un(η) < x) = Q(x) for every real number x where Q(x) is a continuous distribution

function and where the rate of convergence is independent of η in some neighborhood

N(η0, η
′) of η0. Then given any ε1 > 0 and δ1 ∈ (0, 1), there is a C ′ such that if η ∈

N(η0, η
′), b(η) < 1 and N > C ′/b2(η), then Pη(|Un(η)/

√
n| < ε1b(η)) > 1− δ1.
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