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ABSTRACT 

This research proposes a domain independent method to build and assess systems 

of systems (SoS) architecture models.  A simplified binary, meta-architecture containing 

each component system’s participation and a first order, system-to-system interface is 

proposed.  The method describes how to elicit desired SoS attributes from stakeholders.  

Measures of the attributes depend on systems’ participation, characteristics and 

interfaces, that is, on the SoS architecture.  The goal is to model a realizable SoS 

configuration, optimized over multiple attributes.  Key attribute measures are combined 

in a fuzzy inference system to assess an overall fitness measure for any SoS within the 

meta-architecture.  A genetic algorithm is used to find ‘good’ SoS architectures with a 

fitness that depends on the participation framework.  This research illustrates a method to 

define architecture sensitive attributes and build the fuzzy assessor.  These are two 

segments of the Missouri S&T developed, nine part Flexible Intelligent Learning 

Architectures for SoS (FILA-SoS) research approach to architecting SoS.  A desirable 

SoS architecture found this way may be handed off to an agent-based model to examine 

the impact of various negotiation behaviors or policies on realization of the SoS.  The 

final configuration may evolve over several development epochs as desired in the wave 

model. 

The method is demonstrated on SoS in several domains to illustrate its broad 

generality.  Two intelligence, surveillance and reconnaissance (ISR) SoS, a search and 

rescue (SAR) SoS, two versions of the MITRE Toy problem, and a validation using an 

actual SoS for a large training program are analyzed.  The method provides researchers 

and designers with a novel way to think about the effects of imprecise stakeholder 

desires, sensitivity to inputs, and acquisition policies on SoS architecting.  
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1. INTRODUCTION 

1.1 RESEARCH INTO ACKNOWLEDGED SYSTEMS OF SYSTEMS (SoS) 

The aims of this research are to develop and explore a model building method that 

can handle the inherent ambiguities of designing a System of Systems (SoS) comprised 

of pre-existing, independent systems.  The method then uses a fuzzy genetic algorithm 

(GA) approach to find ‘good’ SoS compositions among a universe of possibilities.  The 

method itself is domain independent; it is applicable across a wide range of domains with 

very little tuning required.  Missouri University of Science and Technology (Missouri 

S&T) researchers developed an approach called Flexible Intelligent Learning 

Architectures for Systems of Systems (FILA-SoS), comprised of nine segments to 

explore the SoS design problem space.  This research makes up two of the nine segments 

of FILA-SoS shown in Figure 1.1.  A secondary goal of the method is to increase the 

understanding of relevant trade-space issues and possibilities for modeling components 

and capabilities in the design of SoS under multiple objectives from an acquisition 

viewpoint.  FILA-SoS starts with a simplified, binary meta-architecture for the 

participation of each potential system, and the presence of each system’s interface with 

every other system.  The method of generating and assessing SoS designs within this 

meta-architecture comprises the following steps:  

 Developing an SoS concept, nominating potential systems, and collecting 

domain data  

 Eliciting desired SoS attributes and their relative values from the stakeholders 

  Hypothesizing, documenting, and implementing algorithms (models) for 

evaluating each attribute from the SoS meta-architecture 



  2 

   

 Finding a rule based combination of attribute values for an overall SoS 

assessment, or fitness, through a fuzzy inference system 

 Checking the attribute models against the SoS meta-architecture to ensure 

closure (which may cause a repeat of previous steps as far back as step two if 

the checks are not satisfactory)  

 Selecting a satisfactory architecture with the fuzzy genetic algorithm (GA) 

 After other segments of the FILA-SoS approach find a potentially sub-optimal 

‘realizable’ and agreed to design through negotiations, the fuzzy assessor is 

exercised again to provide a measure of the fitness of the final architecture for 

that epoch, or wave, in the wave model of SoS evolution (Dahmann, et al. 

2011).   

The method is demonstrated on several hypothetical SoS tuned to show the 

feasibility of the approach in general, on variations of a classic MITRE ‘Toy’ SoS using 

functional dependency network analysis (FDNA) as a different problem formulation, and 

on a large, customer provided (proprietary) existing live, virtual, constructive (LVC) 

training SoS for validation on a real-world example. 

1.2 SOCIOTECHNICAL SYSTEM COMPLEXITY 

There can be no question that today’s civilization and its component systems are 

far more complex than in previous times (Wai 2012).  Travel, trade, commerce, 

education, technology, nation states, financial networks, populations, legal frameworks, 

volume of information, magnitude of risk, political systems, interconnectedness and 

interdependency – all these facets of society have expanded tremendously in scope and 
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Figure 1.1.  Focus: two segments of the FILA-SoS approach 

reach over recent centuries.  The systems that allow, or control (depending on the 

viewpoint), these facets of civilization are called sociotechnical systems.  It is only 

recently, however, that humanity’s systems have become so powerful and interconnected 

that we can no longer afford avoidable mistakes.  Society’s ability to know, and to do, 

more and more have almost kept pace with its desires.  There have always been problems 

associated with growth; there have always been unintended consequences of decisions, 

even with the best intentions and significant care by decision makers.  The downside risk 

inherent in the most powerful societal systems has grown too large.  One need look no 

further than nation-states’ nuclear weapons establishments, the recent worldwide 

financial collapse, the too numerous environmental disasters, or widespread ethnic 

cleansing to find examples of this downside risk.  Almost every large system is now a 
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sociotechnical system, meaning that both human and technological aspects are deeply 

entwined.  This implies that they are more difficult to analyze as well.  Almost every 

large socio-technical system is now both complex and adaptive, meaning that results:   

 Are not always predictable,  

 Could be strongly influenced by small perturbations, and  

 Can develop in ways neither contemplated by designers nor understood by 

users.   

Further, many of these societal systems are in fact Systems of Systems (SoS).  

Systems of Systems Engineering (SoSE) is becoming a significant area of specialization 

within the profession of Systems Engineering (SE).  Changes inevitably occur in 

society’s institutions, technologies, governments, and patterns of life; other changes 

inevitably need to be made to accommodate the first changes.  Society’s ability to 

analyze SoS, and to understand the implications of change, needs to improve beyond 

current practice to avoid costly mistakes and errors that might realize the downside risks 

mentioned above.   

Complex SoS structures, with divergent stakeholder viewpoints on what 

constitutes success and multiple, frequently contradictory, objectives, are the norm in 

large, modern socio-technical enterprises.  These SoS will be expected to do things never 

attempted before; to be safe, effective, efficient, to have little environmental impact, to be 

easy to understand, to never fail, to work in conditions far removed from those for which 

they were designed, and above all, to be inexpensive to build and operate.     

An acknowledged SoS is any simultaneously semi-voluntary and partially 

regulated combination of systems with a centralized goal, but a less than complete central 
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authority.  These include:  multi-jurisdictional construction projects (canals, tunnels, 

bridges or dams), non-governmental organization (NGO) relief efforts, airports, seaports, 

multimodal transportation systems, security architectures (both physical and cyber), 

supply chains, and health care as an enterprise.  The method described here can be used 

as a starting point for understanding some of the possible trade space in acknowledged, 

DoD style SoS, as well as many non-military, complex, multi-stakeholder SoS constructs. 

Society requires the ability to better understand how acknowledged SoS develop, evolve, 

and thrive, so as to better manage organizations, resources, and change in the future. 

1.3 NEED FOR IMPROVED METHODS OF ARCHITECTING 

As civilization grows, the need for larger, more complex systems also grows.  

Many of the newest, most complex systems are better described as systems of systems 

(SoS), in which existing, independently developed and managed major systems are 

brought together to achieve additional capabilities not possible through the component 

systems’ continued independence.  Examples of this include  

 Ballistic missile defense, in which existing warning radars, communication 

systems, and shelters are combined with new technology interceptor and 

decision systems  

 A modern multimodal transportation system would certainly qualify as an SoS 

– not merely an interstate highway system, for example; but also feeder roads; 

airports; seaports; tugs; canals; rivers; barge, rail, trucking, bus, and cab 

companies; automobiles; aircraft; ships; warehousing; hotels; rest stops; travel 

and liability insurance; fuel and repair stations; traffic laws, courts, taxes, 

tolls, customs, tariffs, and so on  
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 Governments, the internet, the world economic system and multinational, 

conglomerate corporations may be characterized as systems of systems to 

varying degrees, and with varying ranges of central control. 

New possibilities from new technologies, as well as from new ideas about ways to 

use existing technologies and systems, allow society to pursue many paths not previously 

discoverable.  However, the growth of possibilities is currently outstripping the 

availability of resources, even as fast as the availability of resources within the world 

economy has grown in the last couple of centuries.  Examples of this include:   

 The US Apollo program of the 1960’s, had access to nearly unlimited 

resources and reached the moon, but the US would have difficulty duplicating 

the feat today due to competing priorities. 

 The Space Shuttle, developed in the 1970s, operated as the nation’s space 

transportation system for the next three decades with enormous technical 

success over hundreds of flights (except the two disasters and cost overruns). 

However, the replacement program decision was postponed repeatedly until 

after the shuttle was retired, leaving a gap in launch capability.  NASA’s 

budget has barely kept pace with inflation for the last 20 years.  

 ‘Big physics’ provides another example of decline.  Another program that 

started with nearly unlimited resources in the Manhattan Project, followed by 

larger and larger particle accelerators.  This led to a better understanding of 

deep physics and collaboration with astrophysics.  The eventual rejection of 

the proposal for the U.S. Superconducting Super Collider in the 1990s as 
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being too expensive for an unknowable return (in addition to environmental 

concerns) is a sign of society’s inability to continue down that promising path. 

 Very large tunnels, such as the Channel Tunnel, the Sendai Tunnel, or the 

“Big Dig” in Boston qualify as projects started in an era of relative abundance 

(1980s and 1990s); they all resulted in huge overruns and repeated 

bankruptcies of the sponsor corporations.  These were all large, complex 

projects involving many investors, governmental jurisdictions, government 

agencies, subcontractors, specialists, and regulators working as an SoS.   

None of these projects, nor numerous other proposed large construction projects, 

could possibly get started in today’s economic environment.  Author and futurist Neal 

Stephenson famously bemoaned “our far broader inability as a society to execute on the 

big stuff” (Stephenson 2011). 

Very large projects, invariably SoS, not only are expensive and difficult to 

manage by definition, but almost invariably overrun in cost and schedule.  While one 

reason might be that if reasonable (instead of over optimistic) cost and schedule estimates 

were originally presented, no one would ever choose to start these projects.  It is 

generally regarded as self-defeating to acknowledge realistic costs when trying to get a 

large project started.  However, if the proponents do get a project started, it is highly 

likely that it will contend with many problems and repeated upward revisions to the 

estimate to completion.  Although business schools teach that sunk costs are not a reason 

to continue investing in a project (Krugman and Wells 2009), the emotional attachment to 

the sunk cost is practically impossible to ignore.  In society’s defense, it is seldom the 

case that it would be cost effective to start a large project over from the beginning. 



  8 

   

Another compelling reason for delays and cost overruns is that larger projects 

typically have an impact on larger numbers of stakeholders.  They have a ‘bigger 

footprint,’ i.e., they may benefit many stakeholders, but they likely also impinge on 

numerous stakeholders in a negative way, leading to strong reasons for obstructionism by 

larger numbers of opponents.  Note:  the reason for starting an SoS is to do some new 

task, or an old task in a far better way.  This means changes to the pre-existing way of 

doing things; hopefully, big changes!  Woodrow Wilson once said, “If you want to make 

enemies, try to change something” (Shaw 1918).  Smaller projects are easier to manage in 

newer and more efficient ways, because less of everything is at risk.  But big projects are 

what society frequently needs.  In addition to increasing societal desires over time, 

numerous other rapidly increasing factors are nevertheless quite compelling: 

 Public expectations of being able to do better today than ever before 

 Demands from customers and stakeholders to do more with less 

 Population growth requires additional social services, such as food, water, 

energy, transportation, sewage, and sanitation 

 The apparent growth of the potential of technology, systems and networks 

 Rapidity of technological change 

 Global competition 

 Threats, whether ‘simply’ competitive, or security/existential in origin 

While these factors tempt society to pursue larger projects with greater goals, 

there are factors that oppose: 

 Limitations of resources, especially when the projects are large 



  9 

   

 The ‘cost of regret’ for projects forgone, when significant resources are 

committed to one project over other potentially desirable projects 

 Lack of large numbers of fully trained personnel to manage development and 

operate the otherwise realizable systems 

 A changing regulatory environment  

 Rapidly rising public demand for less risk, increased safety, and zero 

environmental impact 

 Inability to accurately predict performance, schedule or costs in the face of 

complexity and uncertainty 

 Inability to test all (or even sufficient) combinations of inputs and 

environments on the operation of complex systems 

 Complexity (non-intuitiveness and unpredictability) of the effects of 

interconnectedness of society’s institutions 

Civilization has reached a point where there is a significant need to develop better 

ways to envision, and to evaluate future possibilities before devoting substantial 

resources to potential solutions.  When the decision is to proceed, one might expect a 

wise civilization to choose more efficient utilization of existing but finite resources, 

whether they be capital, work force, time, natural resources, or political support.  The 

trend demands that society architect its possibilities with improved understanding over 

what was available in the past.  Better tools must be combined with improvements in 

modeling techniques to make this possible. 
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1.4 ACKNOWLEDGED SoS 

Very few SoS are actually under the ‘tight central control’ typically attributed to 

military organizations by nonmilitary members.  On the continuum of ‘degree of central 

control’ of SoS described in the SE Guide for SoS, ranging from extremely tight to near 

anarchy, almost no SoS exist at either of the far ends of the scale (Director Systems and 

Software Engineering, OUSD (AT&L) 2008).  Most SoS exist near the center of the 

scale, as acknowledged SoS; where there is some recognized central authority, but not 

complete, centralized control, authority, or budget.  Even in the military, authority is 

broadly delegated.  Staff coordination among nearly autonomous functional areas is 

strongly enforced, implying that most serious decisions are through consensus. 

The definition of an acknowledged SoS is an overlay on existing component 

systems that have independent existence outside the proposed SoS.  Components of SoS 

are usually ‘legacy’ systems, having their own well developed architectures, missions, 

stakeholders, and funding sources (Bergey 2009).  Moreover, successful managers of 

acknowledged SoS understand that their potential component systems work best if they 

are perturbed as little as possible to meet the new requirements necessary to contribute to 

the incipient SoS.  That is, the component systems’ architectures are primarily left to the 

systems engineering and architecture professionals at the systems’ hierarchy level.  It is 

in the best interest of the SoS manager to coordinate and guide individual systems to join 

the SoS team, rather than attempt to issue commands or demands.   

On one hand, the component (existing, independently managed) systems have no 

need to accede to an acknowledged SoS manager’s requests/demands, nor to officially 

report through SoS management staff teams.  On the other hand, there may be numerous 

reasons to cooperate with the SoS manager’s desired changes to their systems.  These 
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include the opportunity (or excuse) to break open their architecture to make those minor 

adjustments required to join the SoS – this could allow an opportunity to fix some 

ongoing problems that do not, on their own merit, justify such ‘breakage.’  Another 

reason might be to stretch out the life of the program (and its constituency of stakeholders 

and contractors) with fresh, new tasking, when the system would otherwise be 

approaching its end of life, decommissioning, disposal and end of the program office’s 

life.  A system might already be planning to make changes to its architecture that could 

easily accommodate the desired SoS changes, but the new SoS opportunity could be a 

bonus source of funds or the basis of further upgrades to make the system more relevant 

within its own domain. 

There is no assumption that existing missions of the component systems would 

not suffer from a decision to participate in the SoS.  The most general case is that there 

will be negative impacts to existing missions.  In spite of this, there are many potential 

ways to persuade a system to participate.  The nature of these ways may change 

depending on where each system currently is within its life cycle.  Sometimes the small 

changes required in a system to be able to participate in an SoS may also improve its 

ability to perform its existing missions.  The SoS manager typically has a small budget to 

help make these changes, so they can be implemented at no net cost to the system.  

Sometimes there is a backlog of changes planned for the next upgrade of the system; 

however, without an impetus such as the need for a change to accommodate the SoS, the 

system is reluctant to initiate the implementation of those minor upgrades.  Some reasons 

for this may be that it is embarrassing to acknowledge the need for a change in a 

deployed system, the changes are planned (and budgeted) to occur in a specific sequence, 
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or the proposed funding and schedule seem unrealistic.  On the other hand, the system 

program office (SPO) may be eager for an excuse to ‘piggyback’ some of its more critical 

backlog of changes on an outside request from the SoS.  A system early in its deployment 

may welcome an excuse to add a change to its baseline, if only to give it more time to 

meet its own requirements, if not also providing justification for minor changes of its 

own as well.  A system late in its lifecycle may welcome the chance to stay relevant 

longer by joining the new SoS.  Many times, the minor changes to accommodate a new 

interface can make an existing system more flexible, or even improve its legacy mission 

capabilities, but those changes were not judged worthy on their own merits.  Madni 

discusses both the pros and cons of increasing interoperability (Madni and Sievers 2014).  

It is possible that the overarching SoS mission is important enough that stakeholders of 

the individual systems’ missions agree to the minor degradation to their systems’ 

capability to be able to contribute to the SoS capability.  Finally, in the type of 

acknowledged SoS under discussion, a SPO is free to refuse to participate if the potential 

degradation to its current capabilities would be undesirable or unjustified by the value of 

the successful SoS, or not reimbursed enough for making changes necessary to join the 

SoS. 

The above noted issues about impacts to legacy systems are adjudicated during 

the negotiation phase of FILA-SoS.  Motives for the systems’ behavior and environment 

may be modeled there as well.  The optimization process may reject participation of a 

system or interface because its presence diminishes the evaluation of at least one of the 

attributes.  During the architecture planning phase, the SoS manager has only estimates of 
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cost, performance, and other input data to calculate the attribute evaluations.  After a first 

draft of the SoS model is created and tuned to provide potentially good SoS designs,  

 The GA finds a good SoS architecture chromosome 

 The SoS design is handed over to negotiation where the domain input data 

may be adjusted  

 The input domain data is improved with negotiated values (including the 

effects of degradation (or improvement) to individual systems’ capabilities 

from required minor changes to participate and interface with the 

remainder of the SoS. 

 A better, validated model of the system’s contribution to the SoS attributes 

may be used to re-evaluate the selected or negotiated architecture. 

1.5 THE SoS ENVIRONMENT 

This modeling framework is offered for an acknowledged SoS, where each 

component system is a fully functioning, independently funded and managed system 

represented by the (SPO) that manages the program.  A high-level (SoS level) official 

envisions an opportunity to achieve a needed, new capability by using combinations of 

existing systems in a new way such that component systems can be left largely 

unchanged, or incorporated with relatively minor changes.  The acknowledged SoS 

approach is only useful if it can achieve the new capability under either or both of the 

following constraints:  

 A reduced cost compared to a separate, new ’purpose built‘ system, and/or  

 A reduced time to field such a new capability.   
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Defense Secretary Rumsfeld famously said “…you go to war with the army you 

have, not the army you might want or wish to have…” (Suarez 2004).  Therefore, the 

concept of the acknowledged SoS meta-architecture is that the major capabilities are built 

into the systems already, but small, quick changes can be made to interfaces to enhance 

existing capabilities when used in a cooperative manner.  The proposed method uses a 

novel, binary system and interface architecture, that will be called the meta-architecture 

throughout this document.  It will guide the SoS architecture development through a 

wave model evolution in capabilities over time (Dahmann, et al. 2011) with incremental 

improvements after it begins operation. 

The new capabilities being sought in the SoS are achieved by combining mostly 

existing system capabilities and/or adding new capabilities that arise in conjunction with 

other systems (i.e., through new interfaces) (CJCSI 6212.01F 12 Mar 2012).  If simply 

throwing more systems (with their individual capabilities) at the problem were sufficient, 

there would be no need to create the SoS.  Therefore, all successful acknowledged SoS 

architectures need to invest in the relationships (i.e., interfaces) between the systems 

composing the SoS.  Furthermore, improvements in typical SoS attributes such as 

performance, availability, affordability, reliability, etc., must arise from the interfaces.  

Otherwise, there is no advantage over simply adding individual systems’ capabilities.  

The nature of the acknowledged SoS implies that the SoS manager does not have 

absolute authority to command system participation (nor interoperability changes). 

Instead, she must ’purchase’ the component systems’ participation and modifications, not 

merely with funding but also through persuasion, the strength of the vision of the SoS, 

quid pro quos, the bully pulpit, appeals to good sense, and whatever other means are 
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legitimate and effective (Director Systems and Software Engineering, OUSD (AT&L) 

2008).  Individual systems remain free to decide not to participate in the SoS, although 

that choice may cost those systems something as well.  That cost comes not only from the 

withholding of SoS funds, but also as the missed opportunity to participate in a successful 

SoS, missed opportunity to make a related change, or as earning a reputation for 

uncooperativeness for the common good. 

Additionally, some of the desired systems may not be available to the SoS during 

a particular operational period of need even though they made required interface changes.  

They may be down for maintenance, assigned to a higher priority mission, or 

geographically distant on their day-to-day missions and therefore, not able to contribute.  

Some of the required capabilities and interfaces may already exist in the systems, 

meaning they are free and fast for development, but those systems may have a significant 

cost to operate in a fielded SoS.  This may be a reason term of art school.  All right to ask 

them to participate.  Some systems may have enough capability that the SoS can tap their 

spare capability while they pursue their original tasks, so they are essentially free to 

operate.  Other capabilities may need minor (compared to a ‘new start’ major program) 

development efforts, either within the system or by developing a new interface with 

another system.  The performance capabilities of the SoS will generally be greater than 

the sum of the capabilities of its parts (Singh and Dagli 2009).  If this were not the case, 

there would be no need for the SoS.  Changing the way the systems interact, i.e., tactics 

alone, with no physical modifications, typically would not improve the SoS capabilities 

as much as providing completely new ways of interacting through new interfaces.  It is 

assumed that tactics changes do not require an SoS approach.  Systems architecting in the 
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overall context of the SoS must address all the attributes of groups of disparate systems 

as well as crucial issues affecting their collective behavior.   

An instance of an acknowledged SoS might be a military command and control 

SoS that has transitioned from a tightly knit group of a few systems to an acknowledged 

SoS that now includes many more previously independent systems.  This could be due to 

a change in the implementation or importance of the missions currently being supported, 

or of a change of importance and increase in complexities of potential cross-cutting (new) 

SoS capabilities (Dahmann, Baldwin and Rebovich 2009).  Another acknowledged SoS 

might be a regional air traffic control (ATC) system that crosses national boundaries.  

National ATCs are independent, but find it strongly in their interest to cooperate and 

interface with the regional ATC. 

One way to develop better tools for predicting performance in various attributes is 

to use proposed new tools on a very simple model, where the results can be calculated 

independently.  Exploring the working of a tool on simple models can build confidence 

that the tool does what it is intended to do.  Another way to build confidence is to choose 

a model that can be extended in a very straightforward manner to more complex 

situations.  Actual SoS may have very complex architectures, but at the most basic level, 

they may be boiled down to ‘are the systems here or not, and which of them interface 

with each other.’  If they do not interface with each other, they are not an SoS, but simply 

a collection of systems. This simple, generic model of the SoS is the basis of the FILA-

SoS meta-architecture. 
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1.6 THE SoS META-ARCHITECTURE 

A meta-architecture is an organization or pattern by which other architectures 

may be described.  The SoS meta-architecture for this analysis consists of a list of all the 

potential component systems, followed by the first order interfaces of each system with 

every other system.  Associated with each of these labeled elements is a single bit 

representing presence (1) or absence (0) in a particular architecture instance.  The meta-

architecture is the empty framework, or bit string, with the positions identified as to their 

meaning.  An instance of the meta-architecture occurs when the framework is filled with 

ones and zeroes.  An instance of the meta-architecture is also called simply an 

architecture or an SoS.  One binary bit indicates the presence of a system, other binary 

bits indicate the presence of the interfaces between that system and each other system.  

The string of bits representing an architecture is used later in a genetic algorithm, where 

each string is called a chromosome.  An instance of the meta-architecture is a particular 

arrangement of the ones and zeroes in the string of bits; it is a particular architecture 

showing which systems with their interfaces are participating in the SoS.  The terms 

architecture, instance, chromosome and SoS are used interchangeably to represent a 

particular design of an SoS as discussed further below. 

The interfaces are assumed to be bidirectional for simplicity; an interface of 

system i with system j is the same as the interface from system j to system i.  

Furthermore, in this ‘participation architecture’ – the presence of the system is equivalent 

to the decision by the SPO to participate and is represented as a ‘1’ in the architecture.  

The decision by the system (used interchangeably with the term SPO) to have an 

interface with another system is also represented by a ‘1.’  If the system or interface is not 

present (not participating), it is represented by a zero.   



  18 

   

Figure 1.2 and Figure 1.3 show an SoS architecture as a long string of bits (Xi, 

where X is a one or zero) where the position determines which element is indicated.  

There are m(m-1)/2 interfaces for an SoS with m systems, plus the m systems 

themselves, so the total number of bits in the meta-architecture with m systems is 

m(m+1)/2.  The meta-architecture consists of all possible bit strings of this length. 

 

 

X1 X2 Xi  … Xm X1 with 2 X1 with 3 X1 with m X2 with 3 … Xi with j … X(m-1) with m 

Systems Interfaces 

Figure 1.2.  Linear representation of the generalized SoS meta-architecture 

 

Figure 1.3.  Partial linear display of an SoS chromosome extending far to the right 

The linear representation of the chromosome representing one instance of an 

architecture as shown in Figure 1.2 or Figure 1.3 is relatively cumbersome.  It is difficult 

to decide what any particular bit represents without extensive counting, labeling, or other 

efforts to keep track of it.  An alternative representation of the chromosome was found to 

be an upper triangular matrix.  The advantage of the form shown in Figure 1.4 is that the 

interfaces may be identified ‘by their conventional matrix element row and column 

position labeling.  This form of representation is close to, but not the same as, what is 

sometimes called an adjacency matrix.  The interfaces could be considered a non-directed 

graph where the nodes are the systems.  Usually, the diagonal of the adjacency matrix 
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would be zeroes, but there are advantages to putting the systems on the  diagonal in this 

representation, so it is not quite the same as an adjacency matrix. 

The FILA-SoS meta-architecture allows the representation of many network 

architectures.  The well-known star, ring, fully-connected mesh, partly-connected mesh, 

and hierarchical ‘branch and leaf’ network connection topologies are shown with a 

corresponding representation within the meta-architecture in Figure 1.5.  Ones in 

interface regions of the matrices are shaded, zeroes are not.  The second row of matrices 

shows the effect of numbering the nodes from a different starting position or in a 

different sequence but they are equivalent from an meta-architecture point of view.   

 

Figure 1.4.  SoS meta-architecture layout 

The proposed meta-architecture framework may be used to represent any 

acknowledged SoS.  All candidate component systems are represented along the 
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diagonal, and all potential undirected interfaces are represented in the elements in the 

upper triangular matrix above the diagonal.  Large numbers of component systems and 

interfaces may need to be examined in designing a typical SoS.  A system or an interface 

may be excluded by fixing a zero in the appropriate place in the matrix.  Systems or 

interfaces may be required by fixing a one.  In the GA approach, most or all of the 

elements may take on either a one or a zero. 

 

Figure 1.5.  Network connection topologies shown in upper triangular form 

Resource availability may limit the installation of interfaces by their cost (whether 

measured in money, downtime, weight, drag, etc.), or limit the use of interfaces by 

restricting their bandwidth, detectability, or power consumption for example.  Those are 

only a few of the most easily imagined limitations.  In choosing appropriate attributes to 

measure the SoS value proposition, one must consider the most important or significant 

limitations in the algorithms if they depend on the SoS architecture.  The problem in 
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designing an SoS is to select from the very large range of possibilities while 

simultaneously trading off among the numerous, important criteria that participants and 

sponsors need to be satisfied about to support the SoS.  Finding the balance of how many 

considerations to count while keeping the algorithms simple enough to understand and 

explain, is an art.  There may also be potential goodness in some new interfaces outside 

the existing ones in an imagined SoS – the systems might open themselves up to 

accomplishing other missions more effectively, either alone or in another SoS to which 

they contribute some of their capabilities.  It is the facilitator’s task to ferret these 

possibilities out of stakeholder and subject matter expert (SME) interviews.  These types 

of issues certainly impact the cooperativeness of a system when negotiating its joining 

this SoS.   

The solution approach must aid the understanding of the impacts of tradeoffs 

among the various elements and attributes of the SoS.  The solution must also account for 

the behavior of the individual component systems and their motivations in negotiating to 

participate in, and contribute to, the SoS.  Many stakeholders, each with their own 

system’s day-to-day as well as strategic, management issues, are involved with the issues 

that affect these decisions.  Some stakeholders care about multiple systems or even larger 

SoS issues.  They naturally have at least slightly different perceptions of what is 

important, and even the definitions of the terms used to describe the attributes of the SoS, 

their own systems, and others.  One way to handle the ambiguous linguistic terms 

commonly used by the stakeholders to describe their needs and wants is to use fuzzy 

logic.   
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A partial membership function overlap is one way to handle the uncertainties at 

the edges and overlaps of these ambiguous usages.  Fuzzy approaches are often used in 

decision support problems (Pedrycz, Ekel and Parreiras 2011), but have not previously 

been widely used in SoS architecting.  Commercial architecting tools such as Core, 

Sparx, MagicDraw, Rhapsody, or Aris, working in the unified modeling language 

(UML), systems modeling language (SysML), or business process model and notation 

(BPMN), for example, do not generate alternative architectures, but the system 

description and data to be modeled must be provided to them (Hunt, Lipsman and 

Rosenberg 2001) (Sumathi and Surekha 2010).  The proposed method provides an 

approach to meeting many of the ambiguity and uncertainty concerns for the variety of 

architectures, key performance attributes (KPAs), and stakeholders possible within an 

SoS.  In this method, the KPAs, which make up the evaluation criteria of the SoS, are 

defined in terms of the meta-architecture of possible combinations of systems and 

interfaces.  The method must hypothesize an algorithm for each attribute using the 

chromosome and information about the selected systems and interfaces to produce an 

SoS attribute evaluation from the system/interface participation.  The various attribute 

algorithms are explained and vetted among the stakeholders to reach consensus on their 

definition.  The rules for combining KPA evaluations to arrive at the SoS assessment are 

discovered, explained, and vetted through interaction with the stakeholders in the same 

way.  At the end of the method, all stakeholders should understand how the model works 

and how architectures are assessed. 

There is a need for an approach to handle the ambiguities in the selection of the 

SoS design based on consensus on the KPAs quality assessments over the majority of 
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their range.  Few disagreements occur for the very, very bad or the very, very good 

assessments.  Disagreements typically occur at the edges of the granularity regions.  This 

is an excellent application of the partial membership function principle of fuzzy logic.  

Some people think a particular KPA value is very bad; others think it is simply far below 

par, or perhaps only at the low end of average.  The solution:  let that point have 

proportionate membership in each evaluation. 

An advantage of representing the SoS in the form of a binary string is that the 

chromosome may be used in a genetic algorithm (GA) approach to explore the 

evaluations of various instances of the SoS architecture.  Optimization might be a bit too 

strong of a word for what the genetic algorithm can do in this case.  Due to the multiple 

layers of uncertainty in: 

 The cost and performance estimates for various aspects of the systems 

 The truncated binary (fully present or completely absent) nature of the 

model 

 The simplifications inherent in the high level of abstraction used in the 

KPA algorithms. 

The GA approach primarily helps one explore, in an unbiased way, the influence 

of rule or component changes.  Some KPAs of the SoS remain ambiguous even after 

extensive discussions among the stakeholders.  Fuzzy logic approaches may be used to 

compare relative scores among many attributes, criteria, and alternatives through 

algorithms using the presence or absence of the systems and interfaces as input.  If an 

attribute cannot be described in such a way that it depends on the meta-architecture, then 
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it may not be useful in describing the value of the makeup and organization of the SoS as 

represented by the meta-architecture. 

Finally, there is an inherent difficulty simply in the size of the mass of data about 

the systems, interfaces, attributes, and the resultant desired versus delivered SoS.  It is 

difficult to comprehend and analyze this mass of data for even one, much less for many, 

proposed SoS architecture alternative.  The modular fuzzy genetic approach proposed 

here allows simplified models to be used to explore relationships and improve 

understanding so that one can know where the benefit of improving the fidelity (and 

possibly the complexity) of individual attribute models and rule sets lies in future efforts.  

1.7 AIMS OF THIS RESEARCH 

The aims of this research are to develop, document, refine, explore, and 

demonstrate a method for planning, coordinating, assessing and building successful, 

acknowledged SoS.  The overall approach offers a new way of thinking about many 

design issues for SoS by combining numerous simple models in a meta-architecture 

framework.  The application of fuzzy genetic algorithms in the SoS wave model 

acquisition environment makes several difficult areas more tractable.  The research 

should help practitioners quantify potential gains from netcentric interoperability, 

evaluate SoS lifecycle costs, and explore the impact of high-level policies on SoS 

concepts. 

1.8 PROPOSED MODELING APPROACH 

Since acknowledged SoS are typically complex, with multiple stakeholders and 

continuing missions for the component systems, a multi-objective optimization (MOO) 
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approach is used to recommend an architecture from the meta-architecture framework.  A 

fuzzy genetic approach is one form of MOO that may be applied in the creation and 

analysis phases of an acknowledged SoS development over a wide range of problem 

domains.  This approach lends itself to handling the evolution of an SoS over multiple 

epochs as proposed in the wave model, which is currently a problem of great interest 

(Dahmann, et al. 2011). 

The architecture selected by the GA may be used to begin negotiations between 

the SoS manager and the selected component systems’ managers to find a realizable SoS 

architecture.  In the next epoch of the wave model, the solution may be further developed 

to evolve the design of the SoS.  The current state of the art in system of systems 

engineering (SoSE), fuzzy linguistic analysis, multi-objective optimization and the gaps 

that this research fills are detailed in the literature review in chapter 2. 

The method is a decision making aid for the SoS manager.  It does not so much 

find the best solution to designing an SoS as help the manager explore the influence of 

the various constraints on the shape of a reasonable solution.  The method starts, as 

shown in Figure 1.6, from the SoS context and goals using the simplified binary meta-

architecture, including the full range of candidate systems and their interfaces.  Guided 

interviews uncover the SoS purpose, characteristics of candidate systems, key attributes 

that characterize the SoS, and methods for measuring the SoS in each of these attributes.  

The key attributes generally lend themselves to linguistic characterization and ranges of 

measures that may be handled through fuzzy logic.  A subset of the characteristic 

capabilities of the component systems is categorized and documented.  Estimated costs, 

schedules and performance goals are established for the systems, interfaces, and SoS as a 
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whole.  When the attribute models are combined in the SoS model, it is ‘end-around’ 

checked for consistency.  At this point in the model development, adjustable parameters 

typically need to be adjusted in trial runs until the model is self-consistent but also in 

accord with stakeholders’ goals.  The completed model must be able to evaluate any 

proposed SoS instance within the meta-architecture for its KPA values and provide an 

overall assessment of the SoS.  The relative worth of each attribute evaluation is 

described in the membership functions.  The rules of the fuzzy inference system 

described how attribute values are combined for an overall SoS assessment.  Visualizing 

the results of the characterization of the KPAs, the other inputs, the combination of 

systems, and the buildup of SoS capabilities from the component systems is the most 

useful part of the method for the SoS manager and stakeholders.  Variations of all inputs, 

assumptions, rules, etc. may be examined to identify the most influential characteristics 

within the problem and to insure the formulation of the problem and solutions are proper 

and helpful.  This approach can be used search for Pareto surfaces or other frontiers 

within the input and output spaces. 

Figure 1.6 shows generalized steps for how to derive the set of attributes by which 

to evaluate the fitness of a selected arrangement of the systems and their interfaces to 

provide required capabilities to the SoS.  The method determines the fitness of each 

architecture, or system + interface SoS arrangement, from the meta-architecture and 

domain dependent information.  Attributes desirable in the completed SoS architecture 

are elicited from stakeholders through linguistic analysis of guided interviews with 

stakeholders.  Having developed the attributes of interest, the possible ranges of 

evaluation in each attribute are separated into an agreeable number of gradations of 
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goodness or badness (defining the membership functions for fuzzy sets) with some 

overlap due to ambiguities in linguistic representation.  The relative value of 

combinations of performances in each attribute is developed into fuzzy rules through a 

series of stakeholder hypothetical tradeoff exercises.  The multiple objective optimization 

(MOO) problem of finding a good architecture over many dimensions may be solved by 

finding an architecture that maximizes the single fuzzy SoS fitness assessment.  The 

method initially regards the independent variable to be the number of ones in a 

chromosome with randomly positioned ones and zeroes in it.  The dependent variable is 

SoS fitness or overall quality.  Exploring the architecture ‘space’ by evaluating a few 

hundred chromosomes with varying percentages of randomly placed ones provides 

insight into whether a solution within the constraints is possible.  The rules and fuzzy 

membership function edges may need to be adjusted to find a set of tunable parameters 

that closes on itself (i.e., a set of parameters that produces solutions dependent on the 

architecture).  When some good solutions are found to exist, a genetic algorithm 

approach is used to find a near-optimal arrangement from the meta-architecture.  It is 

certainly possible to design a problem for which no acceptable solutions exist.   

Combining all these steps into an organized method has not previously been 

applied to SoS.  Because of the many simplifications in the method, it is not expected to 

directly provide final solutions but to give insight into behaviors of possible real solutions 

in response to changes in rules, definitions of capabilities, performance models, 

membership function shapes, environment, budgets, etc. that drive aspects of the 

development and evolution of SoS. 
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Figure 1.6.  Overview of the contributions to the assessment model 

1.9 SUMMARY OF FINDINGS 

The proposed method was successfully demonstrated to find SoS architectures for 

a hypothetical intelligence, surveillance and reconnaissance (ISR) SoS in a Gulf War 

scenario, for an operation other than war (OOTW) scenario, for a search and rescue 

(SAR) scenario, for variations to a previously studied SoS model from MITRE called the 

Toy problem, and for an actual SoS of a large training program.  Several variations of the 

method were used to look for Pareto surfaces, to conduct sensitivity analyses across a 

number of tunable parameters in the attribute models, and to examine the impact of 

changing parameters within the GA.  Several useful visualization techniques were 

successfully implemented during the research.  SERC Research Tasks 37, 44c and 109 

An Advanced Computational Approach to System of Systems Analysis & Architecting 

using Agent Based Behavioral Modeling, sponsored this (and related) research into a 

wave model for acquisition of DoD acknowledged SoS (Dahmann, et al. 2011) (Dagli, et 

al. 2013).  The evaluation and assessment algorithm portion of FILA-SoS was used on 
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architecture chromosomes developed by other members of the FILA-SoS team (using a 

non-gradient descent method instead of a GA), as well as by a Purdue/SERC team 

working on a counterfeit parts SoS.  Other team members studied negotiation techniques 

to agree on a configuration under a range of environmental conditions between the 

systems and SoS manager.  The part of the SERC research effort in this document 

describes the method to produce an SoS assessment method, and select a desirable 

architecture design for starting the negotiations to realize an SoS design to meet 

stakeholders needs. 

1.10 CHAPTER ORGANIZATION 

Chapter 1 introduced the importance and the need for methods to produce better 

models and to improve our understanding of issues involved in exploring the trade space 

when building an acknowledged SoS.   

Chapter 2 is a literature review discussing what has been explored in the areas of 

fuzzy decision support tools, using fuzzy analysis to handle ambiguity in evaluation 

criteria, multi-criteria and multi-objective optimization, fuzzy genetic algorithms, and 

visualization in SoS architecting.  There is no previous combined treatment of modular 

model building, coupled trade space visualization, meta architecture exploration and 

parameter tuning, and fuzzy genetic selection of architectures from an SoS meta-

architecture.   

Chapter 3 describes the model building method in detail, with worked out 

illustrations of the steps across several domains.  The method of piecewise linear 

mapping the real attribute values to the fuzzy domain so that fuzzy models may be reused 
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is described.  Use of the Matlab fuzzy inference system to describe membership function 

shapes and sizes is explained. 

Chapter 4 discusses the results developed by using the method on the example 

SoS mentioned above.  The FILA-SoS effort was transitioned to a large SoS problem 

proposed by Army Training Command in conjunction with system architects from 

MITRE.  The model itself is proprietary (marked FOUO), but a sanitized version with 

system and capability names anonymized is included. 

Chapter 5 contains some conclusions and a summary of the status of FILA-SoS 

with suggestions for future research. 

The appendices contain an example of a more detailed ISR scenario, all the 

Matlab code for the attribute evaluations, the fuzzy inference system rules and 

membership functions, the input, output and display functions, a short explanation of 

DoDAF 2.0 model viewpoints, and additional illustrations of the input and output data for 

special cases. 
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2. LITERATURE REVIEW 

2.1 SYSTEMS OF SYSTEMS (SoS) 

Most of the work on understanding or developing SoS has ‘approached from the 

side,’ or looked at relatively narrow aspects of the problem as opposed to trying to 

understand SoS in their entirety.  One of the problems with understanding SoS is that 

they frequently cross traditional domain boundaries.  Either they address a broad new 

problem area that is not traditionally understood as being connected, or they develop 

because of changes in technology that allow for novel connections and unprecedented 

capabilities.  Either way, analyzing this type of problem requires extensions to the old 

ways of thinking about problems.  Simply describing the characteristics, boundaries, 

expectations, or governance of an SoS is difficult, being fraught with no commonly 

accepted terms for the new capability, little agreement on what constitutes success, nor 

even a good theory of SoS (Trans-Atlantic Research and Education Agenda in Systems of 

Systems (T-AREA-SOS) Project 2013).  The acknowledged SoS that is the focus of this 

effort only exacerbates these problems because of the inherent limits in the responsibility, 

authority and accountability between the SoS manager and the system program offices 

that participate in the SoS formation (Director Systems and Software Engineering, OUSD 

(AT&L) 2008), (Pitsko and Verma 2012).  The literature describing SoS engineering 

(SoSE) is growing in coverage, but it is still relatively sparse.  

The differences between SoSE and systems engineering are discussed by 

Flanagan and Brouse (Flanagan and Brouse 2012), pointing out that different sorts of 

trade spaces open up in SoS.  Some of the concepts about flexibility used here in section 

3.6 trace to the discussion of options and limiting risk in DoD programs from Giachetti 
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(Giachetti 2012).  Countering some of these difficulties in describing SoS architectures 

are the advances in describing complex systems with fuzzy sets (Gegov 2010). 

There have been few attempts to describe architecting methods for acknowledged 

SoS.  One such approach is based on the federated architecture (FA) (Ahn 2012).  FA is a 

pattern that describes the construction of a meta-architecture.  This approach emphasizes 

features to allow interoperability and information sharing between component systems 

and the centralized controller.  Another approach has been to model the 

interdependencies of systems and impacts of failures using Bayesian networks.  An 

example is the outcomes of the Bayesian analysis with failure rates modeled as beta 

distributions providing a knowledge base for decision makers to control risk in 

development of an SoS with complex interdependencies (Han and DeLaurentis 2013).  

These examples still look at relatively narrow aspects of the SoS development problem. 

Warfield introduced the concept of using binary matrices to describe system 

components’ relationship with each other (Warfield 1973).  That paper described how to 

construct reachability matrices using graphs representing directed interfaces, and a 

number of mathematical techniques to find compact regions in a general system 

representation of subsystems, but the last few paragraphs mention that this approach 

could also be used to show “objectives, events, activities, motors, generators, radars, 

etc.”, or in this case, capabilities of elements of the SoS, or non-directed interfaces.  

There is undoubtedly more that can be done by extending the present research to directed 

graphs, however, the concept was borrowed for use here only to do the display of a much 

simpler approach to SoS architecting.   
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The SoS acquisition environment may be affected by external factors such as 

changes in the national priorities, changes in the SoS funding, or changes in threats to the 

nation, the business climate, or existing commercial arrangements.  Clearly, foreseeable 

events should be accommodated through planning.  The environmental changes spoken 

of herein are changes outside the framework of expectations.  One traditional way to be 

ready for unexpected change is to have an abundance of spare capacity or capability, but 

that costs something.  It costs something not only in resources devoted to carrying and 

maintaining the capacity beyond immediate need, but also in opportunities forgone.  

Introduction of this method may help allocate scarce resources better in the future cost 

constrained environment. 

2.2 SoS ATTRIBUTES 

Systems engineers call the areas of engineering design that require detailed 

knowledge and detailed analysis tools ‘specialty engineering’ areas (INCOSE 2011).  

These types of areas may also be called attributes of an SoS.  Just as a measure of 

‘reliability’ or ‘availability’ may require very detailed analyses at many levels within a 

system design, but result in a single overall number to characterize the design in that 

specialty area, the attributes of an SoS may require detailed analyses, but result in a 

single characterizing number.  The attributes or specialty areas are sometimes be called             

‘-ilities;’ they are the subject of continuing, intense research, especially in the area of 

SoS.  Large lists of the attributes, many with several definitions, are being catalogued and 

organized in several on-going efforts (Mekdeci, et al. 2014) (Ross 2014) (Ross, Rhodes 

and Hastings 2008).  Just as that single number characterizing a system in a specialty area 

may have numerous conditions limiting its applicability, the attribute measures 
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characterizing the SoS will probably be valid over a limited range of scenarios.  To 

understand the implications of a particular measure, one needs to know about all those 

conditions.  Simply presenting that data in an intelligible format is a challenge.  Finally, 

since the specialty engineering areas typically have well-known algorithms and 

procedures for evaluating combinations of subsystems that are easily extended to 

combinations of systems, this effort attempts to deal with more appropriately SoS 

specific attributes.  These SoS attributes might be described as the ones which depend 

more heavily on the SoS systems and interfaces, which is detailed in the chromosome. 

2.2.1 Attributes Commonly Found in the Literature. A key feature of the 

attributes of either systems or SoS is that they frequently pull in different directions.  For 

example, improving speed may reduce range, both key attributes of overall technical 

performance.  Improving reliability may increase cost, thereby reducing acquisition 

affordability, but possibly increasing operations and maintenance affordability.  

Numerous other candidate attributes of SoS exert pulls along different directions in the 

multi-dimensional design or architecture space.  The selected architecture must satisfy the 

most unhappy stakeholder at least enough to avoid a veto.  The stakeholders’ concerns 

are represented in the attributes selected to grade the value of the proposed architectures.  

The models used to evaluate the attributes must be fully described and open to 

stakeholders so they can assure themselves the competition among architectures is fair.  

The weighting between attributes must be open and fair as well. 

Pitsko and Verma (Pitsko and Verma 2012) describe four principles to make an 

SoS more adaptable.  They spend a large part of their time describing what adaptable 

means to various stakeholders, that different stakeholders may continue to have slightly 
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different concepts of what adaptability means, that the definition is probably dynamic – 

changing over time, and that this ambiguity likely will apply to many other SoS 

attributes.  Schreiner and Wirthlin discuss a partial failure to fully model a space 

detection SoS architecture, but learned a lot about how to improve the approach the next 

time they try it (Schreiner and Wirthlin 2012).  The point is that people are not modeling 

according to a well-developed theory of SoS and then reporting on the success or failure:  

they are still attempting to define the theory. 

There are numerous approaches in the literature attempting to describe useful 

attributes, as well as how to measure them, to help understand or predict the value of 

various architectural arrangements.  These include evolvability and modularity almost as 

complementary attributes (Clune, Mouret and Lipson 2013), while Christian breaks 

evolvability into four components described as extensibility, adaptability, scalability and 

generality (Christian III 2004).  Christian introduces the concept of complexity to overlay 

on these attributes because ‘too simple’ a system cannot evolve.  Kinnunen reviews at 

least four definitions of complexity (Kinnunen 2006) before offering his analysis of one 

definition related to the object process methodology (OPM) of Dori.  Mordecai and Dori 

extend that model to SoS specifically for interoperability (Mordecai and Dori 2013).  Fry 

and DeLaurentis also discussed measuring netcentricity (interoperability within the SoS), 

noting also the difficulty of pushing the commonly used heuristics too far, because the 

Pareto front exists in multiple dimensions (Fry and DeLaurentis 2011), not merely two 

dimensions, as it is commonly depicted.  Ricci et al. discuss designing for the 

evolvability of their SoS in a wave model and playing it out several cycles in the future, 

evaluating cost and performance (Ricci, et al. 2013).  Because SoS are complex, there are 
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many ways to look at them, with no dominant theory yet.  This is why this direction of 

research is interesting and worth pursuing (Acheson, et al. 2012). 

Slightly different definitions for some of the SoS attributes were chosen for this 

work, especially for flexibility and robustness.  Lafleur used flexibility in the operational 

context of changing a system after deployment (Lafleur 2012), which is to narrowly a 

system viewpoint to be used for the SoS.  Robustness is used here in a different way than 

Deb and Gupta’s classic notion of robustness (Deb and Gupta 2006), that is shifting the 

optimum point (defined as narrowly better performance), rather than accepting lower 

performance across a wider front – the path taken here.  Singer used robustness in a 

different operational context (Singer 2006), that of losing a node in a network, rather 

more like losing a system or an interface from the SoS as described here.  Gao et al. 

discussed a concept of robustness as the ability to withstand hacker attacks for ‘networks 

of networks’ with varying degrees of interconnectedness (Gao, et al. 2011).  The concept 

of the flexibility attribute used here is more attuned to giving the SoS manager flexibility 

during development, when selecting systems to supply all the desired capabilities.  This 

falls right in line with some recent discussions of resilience and sensitivity analyses, 

although they use the terms resiliency or robustness for it (Smartt and Ferreira 2012) (Yu, 

et al. 2011) (Jackson and Ferris 2013).  The point is that there are many possible ways to 

describe the attributes of systems and even more ways for SoS, depending at a minimum 

on circumstances, organizations, and stakeholders’ preferences.  Many of these ways of 

thinking depend directly on the architecture of the system of interest.  This dependency 

on interconnectedness fits into the framework of the architecture meta-model used here.  

If an attribute does not depend on the SoS architecture in any way, then it will not be 
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useful to help select between potential architectures.  It is not necessary that a useful 

ranking algorithm be very accurate in its relationship to the measured attribute, only that 

it be reasonably well correlated to reality and nearly monotonic in its ranking.  That is 

sufficient to be useful in this approach. 

For purposes of this research effort, the following key attributes for a family of 

ISR SoS were defined by a group of subject matter experts (SMEs) during the SERC 

research task RT-44 (Dagli, et al. 2013): 

 Performance:  Generally, the sum of the performance in required capabilities 

of the individual component systems, with a small boost in performance due 

to increased coordination through interfaces.  This is explained further in 

section 2.3 on netcentricity. 

 Affordability:  Roughly the additive inverse of the sum of the development 

and operation costs of the SoS.  The performance factor above is occasionally 

applied in a different way to the affordability to change its shape as a function 

of the number of interfaces, but also to be somewhat related to superior 

performance.   

 Developmental Flexibility:  This is roughly the additive inverse of the number 

of sources that the SoS manager has for each required sub capability.  If a 

required capability is available from only one component system, then the SoS 

manager’s flexibility is very small; they must have the only system that can 

provide a required capability as part of the SoS.  On the other hand, if each 

capability is available from multiple systems within the SoS, the manager has 

far more developmental flexibility. 
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 Robustness:  This is the ability of the SoS to continue to provide performance 

when any individual participating system and all its interfaces is removed.  

Generally, having a very high performing system as part of an SoS is a good 

thing; however, if that system is ever absent, the performance of the SoS may 

be degraded substantially.  Therefore, it may be useful to have the 

contributions of the individual system capabilities more widely dispersed, so 

that the loss of one system does not represent as great a percentage loss to the 

SoS (Pape and Dagli 2013). 

2.2.2 Correlation of Attributes. There is a tendency for the quality attributes of 

systems (or SoS) to be correlated.  A ‘good’ system or SoS by definition has many good 

attributes.  This is not necessarily a natural condition; it takes considerable effort.  Good 

architecting and design processes should result in this condition.  Program managers with 

a good ‘feel’ for their problem area, whether systems or systems of systems (SoS) can 

often deliver good results.  That ‘feel’ is difficult to duplicate or teach.  This research is 

an effort to provide a way for a larger audience to be able to break down the problem to 

smaller, more understandable elements, and to build up the solution in a way that a wider 

group of stakeholders can understand and accept the discovered implications in the 

modeling. 

If two attributes are highly positively correlated, then this is equivalent to 

counting one of them twice in the overall assessment.  In an otherwise balanced design, 

counting one attribute twice is unfair to the other attributes, and may skew the design 

away from optimum.  If their correlation is highly negative, then they tend to cancel each 

other out in an overall assessment, giving more weight to the remaining attributes than 
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they deserve.  An ideal set of individual attributes would be strongly de-correlated, so 

they are measuring essentially different and independent aspects of the SoS.  In 

mathematical terminology they would be orthogonal.  It is part of the architect’s art to 

select appropriate attributes.  That is, to define them smartly, derive evaluation 

algorithms for them that depend on the architecture, and socialize all of this across the 

stakeholder community.  This includes finding out what attributes the stakeholder 

community value, as well as discovering the relative strength of preferences among them. 

This act of discovery and elicitation can only occur through extensive discussion and 

focused probing.  It also includes finding ways to calculate values for each selected 

attribute in a way that depends on the architecture.  Not all attributes depend on the 

architecture, but many do.  Only those attributes that depend on the architectural 

arrangements of the desired SoS should be included in the discussion of what SoS 

architecture is best.  Attributes that do not depend on the architecture should be excluded 

from this portion of the planning. 

The point of having different aspects in the SoS assessment is to achieve a 

balance among those different aspects.  Furthermore, even if some variables are highly 

correlated, it need not imply that there are no differences between them.  The fact of 

some modest correlation among the attributes does not mean that there are not still 

important differences, nor that there does not exist a ‘sweet spot’ that is the best 

compromise position among the conflicting desires of the stakeholders.  This is also part 

of the fuzzy assessment process, where each of the proposed evaluation algorithms are 

explored across the range of values possible within the meta-architecture, to insure that 

they measure what is being sought.  Additionally, appropriate membership function 
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names must be matched to the appropriate ranges of values, and the approach vetted 

among all stakeholders and subject matter experts.  The modeling must tell a story, and 

appropriate, easy to assimilate, and to remember names for the parts help in this effort.  

Typically, this requires several model design iterations, with trial algorithms and 

adjustments to the boundaries between the quality attribute levels, or even trying different 

attributes,  to get acceptable levels of fidelity.  Equally important is to be able to explain 

the impact of having correlated attributes among the evaluation criteria of the SoS.  

Examples of how small changes in the architecture could change the evaluation by 

relatively large measures are relatively easy to find.  An example of a very small change 

to the architecture could be removing one communications channel.  That change of one 

bit in the chromosome would change many interfaces to infeasible from feasible, thereby 

changing the performance or the robustness very significantly.  Showing these examples 

to stakeholders (and being able to explain them), are important elements of the 

socialization process to get prospective members of the SoS (or other stakeholders) to 

agree to support not only the SoS, but the modeling process.  The member systems must 

support the values of the SoS analysis, because they typically give up something 

(hopefully small) within their original mission performance to be able to support the new 

SoS.   

For example, improving one quality attribute, modifiability, might adversely 

affect another quality attribute, performance through increased latency, then the range of 

acceptable values where modifiability induced latency does not adversely affect 

performance must be defined, along with how a layered architecture, which might impact 

modifiability, also impacts latency.  Other architecture properties could also impact 
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latency as well, such as volume of data being exchanged or capacity of the 

communications link.  The proposed method addresses this in the step for modeling the 

attributes as a function of any selected architecture (within the meta-architecture 

framework).  The correlation might be negative, but acceptable values of both 

(simultaneously with other attributes) must be achieved to have a viable SoS architecture.  

The SoS architecture description and domain dependent system data should show how 

the different aspects of the design (attributes) impact each other, are self-consistent, and 

most importantly, are simultaneously achievable.   

There are many ways to illustrate the impact of attribute values on the SoS 

quality.  The data must be conveyed to decision makers, whether architects, designers, 

managers, or key stakeholders.  An impediment to correctly ranking the overall 

architecture based on several attributes is shown in Figure 2.1 and Figure 2.2 when some 

attribute values are better smaller.  Lists of values, stacked bar charts, or a Kiviat chart, 

such as those shown here for example.  Both these examples show some attributes (e.g., 

cost) that are better when smaller, and others (performance) that are better when larger.  

Figure 2.2 shows relative architecture comparisons on a scale of 10 as the desired value.  

An important part of the architects’ skill is to find a way to show all attributes better in 

the same direction.  This is shown in Figure 2.3, where costs have been transformed into 

affordability; one can much more easily determine that Alternate B exceeds desires in all 

areas except affordability, and the very affordable Alternate C is less than desired in all 

other attributes.  None of these displays clearly identifies a ‘best’ alternative.  That is still 

very much a subjective decision, even in Figure 2.3.  Neither do they indicate the 

sensitivity of an attribute between the alternatives.  For example, perhaps one could trade 
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some performance or modifiability for affordability in Alternate B.  When the sample 

alternatives being compared are SoS architectures, much information is necessarily 

hidden in these views, yet any of these views are relatively difficult for decision makers 

to comprehend.  This is why the proposed method includes significant effort to discover, 

understand, document, and socialize the meaning of terms and evaluation algorithms used 

throughout the model.  Gentry Lee, chief engineer of the Jet Propulsion Laboratory, says 

“The systems engineer must know the partial of everything with respect to everything 

else” (NASA 2007).  This includes quality attributes, technical data, performance 

predictions, implications of proposed changes, costs, schedule and customer valuations.  

In areas of confusion, uncertainty or disagreement, the sensitivities can more easily be 

explored to find the ‘best’ (or at least a close to best) architecture because the method 

creates and records the open algorithms and data to evaluate all the attributes for any 

configuration within the meta-architecture.   

If an acceptable and achievable SoS is not found, then analysis should help one 

decide how close or far any particular instance is from acceptability or achievability.  The 

analysis should also give indications of which attributes must be improved to be 

acceptable, as well as what changes to the architecture could move it in the ‘right’ 

direction.  Kiviat charts (or in Excel, radar charts) allow one to see several project 

measures simultaneously; but even with a well-designed chart, it may be difficult to 

decide which is better between two (or more) alternatives with this visualization method.   
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Figure 2.1.  Absolute architecture comparison illustration 

Attribute Alt A Alt B Alt C Budg/Need

Initial Cost $M 42 60 24 50

Performance 60 65 40 50

Lifetime 20 25 15 20

Maint $/yr 70 40 60 50

Modifiability 50 70 30 60
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Figure 2.2.  Relative architecture comparison  

Attribute Alt A Alt B Alt C Budg/Need

Initial Cost $M 8.4 12.0 4.8 10.0

Performance 12.0 13.0 8.0 10.0

Lifetime 10.0 12.5 7.5 10.0

Maint $/yr 14.0 8.0 12.0 10.0

Modifiability 8.3 11.7 5.0 10.0
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Figure 2.3.  Properly scaled architecture comparison; still not conclusive 

Attribute Alt A Alt B Alt C Budg/Need

Affordability 11.6 8.0 15.2 10.0

Performance 12.0 13.0 8.0 10.0

Lifetime 10.0 12.5 7.5 10.0

Maint Afford 6.0 12.0 8.0 10.0

Modifiability 8.3 11.7 5.0 10.0
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The practice of creating a series of simplified functional relationships between the 

meta-architecture presence or absence of the systems and interfaces, represented in the 

chromosome for each of the key attributes is the key to the proposed assessment method.  

It can demonstrate to the stakeholders the implications of systems’ choices to participate 

and how many interfaces to pursue.  The process of randomly filling in the meta-

architecture with ones and plotting the resultant attribute values allows everyone (from 

analysts to program managers, to funding stakeholders) to see values or costs of 

participation.  By sorting the plots by the number of ones in the SoS meta-architecture, 

the process illustrates how changes in each part of the model contribute to the overall SoS 

quality:  systems count, interfaces, definitions of capabilities, how individual capabilities 

are joined to build the SoS capability and performance, as well as attributes, membership 

functions, and rules for combining the attributes.  Furthermore, by exposing the inner 

workings of the component models to everyone, the strength of the architecture model 

construct is far stronger than the historical practice of PowerPoint engineering through 

even the formal architecture tradeoff analysis method (ATAM) practice of having outside 

SMEs comment on risky parts of the architecture.  At least ATAM provides a series of 

checklists for items to review about the architecture.   

Figure 2.4 shows the impact of changing the number of ones in a population of 

5000 chromosomes for the ISR case described in section 4.1.1 with 22 systems.  There 

are clear trends in many of the quality attributes, but also much variation within them, 

even from one chromosome to the next in the series (ordered by the total number of ones 

in the chromosome).  The same number of ones could be distributed differently between 

systems and interfaces, as well as between different sets of systems, or different 
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arrangements of interfaces for the same set of systems.  Only the total number of ones in 

the chromosome is tracked as the independent variable in this portion of the analysis. 

Table 2.1 shows the correlation coefficients between all the variables plotted in 

Figure 2.4, which is a relatively thorough exploration of the ISR SoS meta-architecture 

space.  It seems remarkable that the highest correlation between an attribute 

(performance, labeled ‘perf’ in column 4 of the table) and overall SoS quality (labeled 

‘sos’ in row 3 of the table) is as weakly correlated as it is (0.1459).  The only relatively 

high cross-correlation between any of the quality attributes is between flexibility (‘flex’ 

in row 5) and affordability (‘afford’ in the last column), at about r = 0.8; this doesn’t even 

qualify as strongly correlated (r2 > 0.8).  Furthermore, affordability and flexibility are not 

closely linked in the way they are calculated, so even the slightly more than weak 

correlation that is seen here is questionable. 

The rule-based fuzzy inference system approach provides a mathematically 

rigorous method to make architecture comparisons.  This hinges on the individual 

attribute evaluation algorithms being well defined, and on the fuzzy inference system 

(FIS) for combining the attribute measures to the overall SoS assessment.  The 

assessment is a single, composite, characteristic SoS value from the multiple attributes.  

This transforms the multi-objective problem into a single valued SoS function that can be 

optimized.  The attributes and the FIS are developed through facilitated individual 

stakeholder discussions, including the SoS manager, then are vetted and socialized across 

the stakeholder community.  The method is ideally suited to sorting through many 

candidate SoS instantiations from a meta-architecture of potential SoS designs in a way 

that is traceable and understandable to all the stakeholders.   
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Figure 2.4.  Exploring the meta-architecture space with varying participation ratios 

Table 2.1.  Correlation coefficients between attributes in Figure 2.4 are shaded 

 

 

pop # i/f sos perf flex maxloss sys penalty cost afford

pop # 1 0.9915 -0.0176 0.3663 0.8352 -0.5671 0.9318 0.6565 0.9749 0.8955

i/f 0.9915 1 -0.0283 0.3515 0.8471 -0.5555 0.9306 0.6519 0.9796 0.9104

sos -0.0176 -0.0283 1 0.1459 0.0779 -0.0049 0.0451 -0.0372 0.0133 -0.0337

perf 0.3663 0.3515 0.1459 1 0.3625 0.0395 0.5595 -0.2584 0.4491 0.0734

flex 0.8352 0.8471 0.0779 0.3625 1 -0.4544 0.8664 0.5124 0.8725 0.8023

maxloss -0.5671 -0.5555 -0.0049 0.0395 -0.4544 1 -0.5368 -0.6598 -0.5235 -0.593

sys 0.9318 0.9306 0.0451 0.5595 0.8664 -0.5368 1 0.5385 0.9683 0.8261

penalty 0.6565 0.6519 -0.0372 -0.2584 0.5124 -0.6598 0.5385 1 0.6051 0.8439

cost 0.9749 0.9796 0.0133 0.4491 0.8725 -0.5235 0.9683 0.6051 1 0.8949

afford 0.8955 0.9104 -0.0337 0.0734 0.8023 -0.593 0.8261 0.8439 0.8949 1
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2.3 NETCENTRICITY OF SoS 

The acknowledged SoS being considered herein are inherently netcentric.  

Information is the primary resource exchanged across an interface.  This approach 

heavily weights the presence of interfaces to promote interoperability and collaboration 

in addition to simply summing the systems’ individual capabilities.  The purpose of the 

concept of netcentricity is to achieve increases in performance greater than linear in the 

number of systems (Alberts, Garstka and Stein 1999).  In other words, the SoS exploits 

the potential synergy of the combined systems to achieve greater performance through 

their working in a coordinated way.  This coordination comes through exchanging 

information on sensor data, intentions, positions, etc., between systems, so that 

previously independent systems can coordinate their activities to be more effective 

(Alberts 2011) (Cloutier, Dimario and Polzer 2009).  This concept may flow into other 

types of acknowledged SoS such as supply chains, intermodal transportation systems, 

health care, etc.  In general, more interconnections mean more powerful synergies in the 

SoS (not taking this argument to the point of clogging the network/roads/etc. with too 

much traffic –that is a different issue than having the pathway merely exist between the 

nodes).  One way to handle this improvement in performance from interconnections is to 

have very detailed models of every system and interface.  Another way is to treat the 

interfaces generically and assume each one helps the overall SoS performance by a tiny 

fraction.  If one does not count the interfaces at all, the SoS performance, PSoS, is simply 

the sum of the individual system performances, ΣPSystems.  Allowing a slight 

improvement, 𝜖, in the performance of the SoS from each interface in the meta-

architecture is quite simple, as shown in equation 1.  It is not a very accurate model, but it 
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makes some intuitive sense and shows a general trend of increased performance through 

improved interoperability.   

 𝑷𝑺𝒐𝑺 = (∑ 𝑷𝑺𝒚𝒔𝒕𝒆𝒎𝒔) ∗  (𝟏 +  𝝐)(∑ 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔) (1) 

Whatever performance the systems can bring individually, the performance of the 

SoS is increased by a small amount when multiple systems act cooperatively through 

interfaces.  Epsilon is a small fraction, approximately 0.1% to 1% of increase in the 

simple sum of the systems capabilities before accounting for interoperability.  The sum of 

the interfaces can be scaled by a constant if the number of systems grows large.  

Adjusting both the scaling factor and epsilon allows fine control of the total netcentric 

improvement effect.  This does not seem unreasonable.  The addition of one interface 

does not change an overall SoS performance very much.  However, when larger numbers 

of component systems are considered, potential interfaces increase proportionally to the 

square of the number of systems.  Therefore, the impact of large numbers of interfaces 

within the SoS can be significant.  This is the basic premise of the netcentric warfare 

movement, even though it ignores several criticisms and problems  (Alberts, Garstka and 

Stein 1999).  It has the advantage for this research of providing a performance difference 

in the model that depends significantly on the meta-architecture.  If better models of the 

impact of adding systems and interfaces are developed or available, they can be 

substituted into this very simplified, generalized, but also moderately nonlinear SoS 

performance attribute model.   

2.3.1 Achievable Interfaces Through Communication Systems. To prevent 

this SoS analysis method from being a simple counting exercise, a further complication is 

introduced through a new concept of ‘achievable interface.’  Here, achievability means 
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requiring a common communication link to enable the interface between systems to be 

achieved.  In this way, the concept of a netcentric performance improvement is modified 

by only rewarding the use of achievable interfaces.  Attempted use of unachievable 

interfaces, , that is, by having a ‘1’ bit in an interface position in the architecture that is 

not supported by the appropriate communications link and interfaces, is now penalized.  

The reward or penalty depends both on the intention of having an interface (a ‘1’ in the 

meta-architecture between systems), but also on the existence of a common 

communication link through which an information exchange takes place.  The possible 

communication links are enumerated both as component systems within the SoS and as 

capabilities within the systems.   

The meta-architecture is filled with random bits during the genetic algorithm 

approach to exploring the SoS architecture space, so there may be ‘interfaces’ that are not 

supported by communication links – therefore they are unachievable.  Within a real SoS, 

a SPO may have spent resources to develop an interface.  They might install equipment, 

antennas, make software changes, test the new configuration, etc.  If the system on the 

other end of that interface did not also install the interface, there is not a real interface 

there.  If both systems do the development work for the interface but the communications 

system is not available during operation, due to jamming, not having a relay system, or 

lack of cryptographic compatibility on that day, then again – there is no real interface, 

i.e., no information exchange is achievable over that interface.  The communication 

system might be down for maintenance, filled with higher priority messages, 

compromised by hackers, a system might lack the encryption keys they need to use it, or 

any number of other problems prevent the use of an interface.  In all these cases of 
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unachievable interfaces, any equipment a system carries to make this link possible also 

carries a penalty to normal performance.  A size, weight, power, cooling, fuel, payload, 

range, throughput, or memory penalty is paid to carry the unusable interface.  Therefore, 

having the performance reward or penalty increment depend on the achievability of the 

interface seems quite reasonable. 

In netcentric SoS, the interfaces are normally through communication links.  The 

communication links are a special type of system within the meta-architecture.  Since the 

location and number of ones in the chromosome are the independent variable in the GA 

approach, a pair of systems may say they have an interface, when there is no possibility 

of achieving it, because there is no common communication system between them.  

Therefore, the ‘achievable’ interface is one where the two systems must interface through 

a communication system in common.  In order to get credit for an interface as a 

performance improver, both systems must be present, their interface bit must be a one, 

and in addition, both systems must have an interface with a communications system in 

common, as shown in Table 3.1 and in Figure 2.5. 

 

Figure 2.5.  ‘Achievable interface’ has a communication system path in common 

feasible and used

not feasible, no system 3

1 1 1 … 0 1 … 1 System 1

1 0 … 1 1 … 1 2

0 … 1 0 … 1 3
… … … … …

feasible 1 0 … 1 i

but not used 1 … 0 j not feasible; no row  'j'

… …     communications i/f

1 m

m  = a Comm system



  53 

   

2.3.2 Special Treatment for ‘Linking’ Systems. One of the primary ways that 

systems interface with each other is through communications links, this depends on the 

domain of the SoS.  A transportation SoS may link through switching yards or intermodal 

transshipment points; a chemical refinery SoS might interface through manifolds and 

valves.  These elements could be considered systems in their own right, or nodes in the 

graph of a network.  Most of the systems considered herein accomplish their interfaces by 

exchanging information.  The acknowledged SoS is normally created by joining 

independent, existing, mobile systems that achieve an interface primarily by exchanging 

information.  Therefore, they do so through communications links.  Most systems can use 

multiple communication systems, as well.  The simple, general meta-architecture model 

discussed so far is modified by adding a rule for placement of the communications 

systems, and another rule for the interfaces between the remaining systems as follows: 

1. Gather the communication systems to the bottom in the list of systems 

2. Insist that a ‘claimed’ interface between system i and system j (Xij =1 in Figure 

1.4)  be supported by mutual interfaces to a common communications link 

(system k) from both system i and system j ( ∃ k, Xkk=1, Xik=1, Xjk=1).  If so 

supported, Xij =1 is called a achievable interface; if not so supported, it is 

unachievable.   

Rule 2 allows postulating an increase in the measure of an attribute for using 

achievable interfaces in the netcentric SoS, and penalties for unachievable interfaces.  

This conception of the interface matrix separates even further from the adjacency matrix 

paradigm, because it is not a simple graph with the addition of the second rule.  It might 
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be possible to break the matrix into separate simple graphs, but this is not a graph-

theoretic discussion, so there will be no further speculation in that direction.   

Given the meta-architecture as described in section 1.6, with the above additional 

rules on interfacing through a communication system, the netcentric SoS as defined here 

is a reasonable model of an acknowledged SoS.  Using the concept of achievability 

described above, a reward or penalty function may be defined to recognize the impact of 

netcentricity (or implemented interoperability) on performance or other attributes of the 

SoS.  This allows for an evaluation of useful SoS attributes directly from the meta-

architecture.  This approach is not previously found directly in the literature. 

2.3.3 Improved Netcentric Performance Equation. Interfaces can have either 

positive or negative impact on PSoS, due to the concept of achievability.  In addition, the 

ratio of penalty to reward for each type of interface is one of the adjustable parameters in 

the performance attribute model.  But, performance is not the only factor in suitability of 

an SoS.  Adding new interfaces always costs something, so they detract from 

affordability whether feasible or infeasible.  The impact on overall SoS assessment, by 

the addition or subtraction of an interface from the chromosome (see section 2.6) is 

difficult to predict for the other attributes, because an individual interface is not strictly 

nor straightforwardly linked to the other attributes in a simple way that can be 

interpolated. 

A systems engineer, designer, or architect can use this information is to guide 

their exploration of the trade space in the SoS meta-architecture.  They may use it to 

challenge assumptions, policies, or any of the component pieces of data in the model.  In 

the examples it is used to look at correlations between selection of individual systems, 
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changes in input data, rules of how long operations costs count, membership function 

boundaries, or changes in the algorithms for evaluating each attribute, in the overall SoS 

assessments. 

Even with no interfaces, adding individual system performances increases the 

performance of the SoS, PSoS, linearly.  However, since the performance of the SoS is 

affected by the number of interfaces, it is possible that performance may be improved 

even more through interfacing a fixed number of systems than by adding more systems 

alone.  The actual performance algorithm of a new SoS may be as simple or as 

complicated as required; there is no requirement that it take this form.  The purpose of 

using this particular performance equation is to have something complicated enough to 

fully exercise the modeling method.  It is representative of potential SoS performance 

measures.  It is non-linear, which was a self-imposed goal to show the method works for 

non-linear combinations of systems and interfaces.  The equation for the demonstration 

performance of the SoS should more properly be written as follows: 

𝑷𝑺𝒐𝑺 = (∑ 𝑷𝑺𝒚𝒔𝒕𝒆𝒎(𝒊)

𝑚

𝑖

) ∗  

         (𝟏 −  𝝐)(𝑷𝒆𝒏𝒖𝒑∗∑ 𝑼𝒏𝒂𝒄𝒉𝒊𝒆𝒗𝒂𝒃𝒍𝒆 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔 − 𝑷𝒆𝒏𝒅𝒏∗∑ 𝑨𝒄𝒉𝒊𝒆𝒗𝒂𝒃𝒍𝒆 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔)  (2) 

 

Where Penup is the scale factor for increasing the penalty for using an 

unachievable interface, Pendn is the scale factor for decreasing the penalty for an 

achievable interface (or increasing the reward for a good interface).  The sign of the 

netcentric boost, ϵ, was reversed from equation 1 to fit the penalty/reward paradigm 
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instead of a pure reward paradigm of equation 1.  The sums of the achievable and 

unachievable interfaces are simply counted from within the chromosome. 

After the initial introduction of the netcentric concept, the explanation should 

have continued on to say the exponent in the PSoS factor consists of the sum of the 

achievable interfaces, minus the sum of the unachievable interfaces in the chromosome as 

shown above.  The additional tunable parameters Penup and Pendn allow the 

improvement ratio of feasible to infeasible performance to be altered depending on the 

scenario.  The factor can now go negative in the exponent, causing a loss in overall 

performance of the SoS when infeasible interfaces outnumber feasible interfaces (or not, 

if the Penup to Pendn ratio is not one-to-one).   

The point of the exercise was to have a representative function for performance 

that depended in a reasonable way on the degree to which the architecture was 

interconnected.  There is a considerable body of study in the Command and Control 

Research Program (CCRP) Network Centric Warfare (NCW) series (Alberts and Hayes 

2005) (Alberts 2011) on how connecting an SoS can allow it to self-organize and 

improve its performance well beyond the simple sum of individual system performances.  

There is no agreement on what the improvement factor should be in general, because that 

would be highly system and scenario dependent.  A factor of two to three improvement in 

effectiveness, however, seems eminently reasonable in the generic case.   

In a real world validation problem using the Army training system from MITRE 

(see section 4.1.5), there were no key performance attributes (KPAs) that used the 

netcentric form of performance dependence, so it most emphatically is not required for 

the method.   
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2.3.4 Why Not Graph Theory. The FILA-SoS meta-model chromosome looks 

similar to the upper half of an adjacency matrix.  An adjacency matrix of the graph G, 

written A(G), is the n-by-n matrix in which entry aij is the number of edges in G with 

endpoints {vi, vj }, where G is a loopless graph with vertex set V(G) = {v1, …, vn} and 

edge set E(G) = {e1, …, en } (West 2000).  An adjacency matrix is symmetric, so 

occasionally notation is used that ignores the lower half just as the upper triangular form 

of the chromosome does. 

In the FILA-SoS approach, the nodes would be the potential systems of the SoS 

(along the diagonal of the matrix) and the edges would be the interfaces between systems 

(in the upper triangular portion of the matrix).  A ‘one’ in an interface position makes the 

two systems potential graph ‘neighbors,’ but there is a twist to that simple interpretation 

required by the condition that potential systems may choose not to participate in the SoS.  

The interfaces alone could be represented by an adjacency matrix, which either ignored 

or removed the diagonal (and assumed the diagonal was filled with ones).  Since the 

diagonal represents all potential systems and some may not participate, it is important to 

have both the ones and zeroes in the diagonal.  The adjacency matrix represents edges 

(connections) between existing nodes (systems).  That interpretation assumes all the 

nodes in the graph exist.  By introducing the concept that some of the potential nodes 

may not exist in the SoS, the straightforward interpretation of the upper triangular matrix 

(above the diagonal) as being the upper half of the adjacency matrix, is lost.   

If one were to keep the simple graph interpretation of the interface as being an 

edge of the graph, and forced the system (node) interconnections (edges or interfaces) to 

be through the special intermediate nodes of communication systems, one could interpret 
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an interface as a collection of two edges with the special communications system node 

between them.  This would still not account for missing nodes represented by the zeroes 

along the diagonal.  Leaving the unachievable nodes in the graph allows the genetic 

algorithm (GA) to be implemented very easily.  The introduction of the ‘interface through 

a communications system’ concept also complicates the otherwise simple interpretation 

of the matrix as described next. 

At the end of the list of component systems is a special class of systems that also 

count as capabilities – these are the communications systems, or ‘linking’ systems.  Other 

systems may have the communication links as capabilities or sub-systems, but also 

require an interface with the communication link system to count in my formulation of 

achievable interfaces.  In today’s environment, many communications links are 

accomplished through networks as opposed to being point to point.  Two systems could 

even be connected through the same waveform, on the same network, but not within the 

same community of interest or secure subnet; therefore, they would still not be able to 

communicate.  Therefore, to complicate the otherwise simple notion of a bipartite graph 

of the interfaces, a requirement is introduced that systems that claim an interface must 

both also have a valid, common, communications system interface as well.  It might be 

possible to squeeze the situation back into a graph theory interpretation by rearranging 

portions of the meta-architecture matrix into two different graphs, one having only non-

communication systems and the other containing the communications systems, where the 

communications system graph was not bi-partite.  This seemed to be an overly 

complicated approach, and was abandoned. 
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The concept of the achievability of the interface accounts for situation of a ‘down’ 

communication system.  Two systems may claim to be connected (by having a 1 in the 

architecture chromosome representation at the correct place for the interface), and be 

prepared to use any information shared with each other.  Yet the systems will still not be 

able to do so unless they also have a common, working communications link.  While an 

adjacency matrix would show which systems are connected to each other in the same way 

that the FILA-SoS meta-architecture shows the first order interfaces, it does not aid this 

second check through the communications link interconnections for each interface.  The 

last column in Figure 2.5 shows the interfaces with a communications system, system m 

in the mth row (and column).  In order to decide if a 1 in an interface position of another 

row system is achievable, one must proceed both right to the communications system 

interface with that system, as well as down to the other system on the diagonal, then right 

to the communications interface with the second system.  If both systems have a 1 for 

their interface with the communications system, then the original interface is 

‘achievable.’  Having an achievable interface is good.  Having an unachievable interface 

in the chromosome is bad.  Essentially, it means one or both of the systems prepared for 

an interface, possibly modifying software or displays, or adding a radio or antenna, but 

still cannot exchange data with the intended partner for their trouble.  It is a waste of 

resources, in both development and operation.  Figure 2.6 shows the achievable and 

unachievable interfaces in an example chromosome, and whether they are used 

(represented by a 1) or not used (by a 0) through the color coding. 

Because this achievability factor is added to the matrix, it changes from a 

straightforward 1st order interface representation between systems to something more 
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complicated, and at least is no longer simply 1st order for some of the interfaces.  This 

breaks the simple connection to an adjacency matrix representation.  This is not to say 

that an adjacency matrix representation couldn’t be used, only that it seems easier not to 

do the problem in graph theory notation, instead using the matrices as place holders for 

similar and closely aligned, but different types of information. 

 

Figure 2.6.  Achievable/unachievable, and used/unused interfaces 

The systems vs. capabilities matrix of the required input domain data is indeed an 

incidence matrix, showing which systems have which capabilities, examples shown in 

Figure 2.7 and Figure 2.8.  
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Figure 2.7.  Incidence matrix for systems vs. capabilities for the ISR SoS 

 

Figure 2.8.  Incidence matrix for systems vs. capabilities for the SAR SoS 

The advantage of having the architecture composition problem formulated in 

graph theory, with the matrix representations actually being adjacency matrices would be 

that a large body of graph theory mathematics already exists for manipulating, 

understanding, and applying the matrices in certain classes of problems that would no 

doubt be useful in solving SoS architecting problems.   

2.3.5 Why this is Not a Simple Assignment Problem. One could interpret 

capabilities as tasks and systems as doers of tasks in the classical assignment problem 

formulation to approach this problem.  In the entire FILA-SoS architecture approach, the 

systems get to negotiate adjustments to how much they will participate, given a decision 

to participate, and also have freedom to withdraw completely.  This is very different than 

the classical assignment problem.  The assignment problem seems to be more oriented 

toward centrally controlled systems than the loose confederation of the acknowledged 

SoS.  However, the fuzzy GA architecture selection part only recognizes the freedom to 

choose not to participate by the presence of zeroes in the chromosome.  It might be 

possible to formulate this part of the problem as an assignment problem but there did not 

CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

EO/IR 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SAR 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Exploit 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Comm 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

IR – range 3 nm 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Night Vision – range 3 nm 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Visual – range 3 nm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Maritime Radar – range 30 nm 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

RF Direction Finding – range 70 nm 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Deliver Medical Aid (Deliver Paramedic too specific)1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Remove survivor(s) to Emergency Medical Care1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Speed 300 mph 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Speed 15 mph 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Communication 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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seem to be away to assign the constraints in the assignment problem format with 

potentially missing systems, or non-linear performance based on the participation.  There 

are ways to formulate a multi-objective assignment problem by combining the multiple 

objectives in exactly the same way as the fuzzy assessor (De and Yadav 2011), but that 

paper still assumed a one-to-one connection of tasks and performers.  Furthermore, the 

way the capabilities of individual systems are joined together in the SoS is not as 

straightforward as in a typical assignment problem.  It is not simply assigning systems to 

tasks (or capabilities) on a one-to-one basis.  The way that capabilities are joined in an 

SoS could be quite nonlinear, and vary depending on which systems bring which of their 

possible multiple capabilities together.  A method could not be determined for how to 

assign dummy tasks in the assignment problem formulation for missing systems or 

interfaces.  It may be possible, but did not seem to be a general way to do it.  The GA 

approach was much easier to formulate on the meta-architecture. 

At any rate, the purpose of the proposed method is not to provide a final, truly 

optimum design for the new SoS.  The purpose is to explore the impacts of policy 

changes, different environment situations, changing choices of acceptable levels of the 

key performance attributes, choosing entirely different KPAs, or valuing KPAs 

differently within the fuzzy rules, on the selection (through genetic optimization 

methods) of ‘good’ architectures.  The design analyses permissible with this very 

simplified model with many adjustable parameters is limited to evaluating instances of 

the meta-architecture.  Given a set of input data, the meta-architecture is limited to a 

binary presence or absence of the possible systems, and first order direct interfaces 

between each of those systems.  The number of possible architectures (or chromosomes) 
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with this formulation is 2m(m+1)/2.  Even if numerous heuristics are employed to help 

select a ‘good’ architecture, it is very difficult to do this for multiple KPAs 

simultaneously.  For example, it’s not hard to write rules (heuristics) to select high-

performing systems with low costs (i.e., good affordability); however, these choices 

perform poorly in the attributes of robustness (still good performance with a missing 

system) or flexibility (multiple systems can provide each capability).  The method was 

developed to be as heuristic free as possible, because it is not understood what the right 

solution to this problem will be yet, and therefore one cannot know which heuristics will 

be the useful or appropriate ones.   

Heuristics clearly can help find solutions more quickly, and the discovery of 

heuristics is important to finding better and/or faster solutions to many types of problems 

(Maier and Rechtin 2009).  However, by definition, the reason a heuristic works is not 

strictly known (Blanchard and Fabrycky 2010).  Heuristics may bias the discovered 

solution by discarding possibilities in unknown ways.  Even though many heuristics are 

known to be biased, they are used both intentionally and unconsciously (Taleb 2004).  

There are no guarantees that any particular heuristic will continue to be useful (as it has 

been in the past) on a new type of problem.  Heuristics are common sense derivations 

from experience in solving similar problems, but if the reason they worked were fully 

understood, they would be part of the formal solution method and not classed as an 

heuristic.  The methods worked out here attempt to limit heuristics because the nature of 

a ‘good’ SoS solution is not yet understood well enough to trust any heuristics.  The 

example problems are not large enough to require extensive use of heuristics to reach a 

reasonable solution in quite reasonable times, either, which is a standard reason for 
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relying on an heuristic:  to narrow the search space and reduce the time to compute a 

solution (Blanchard and Fabrycky 2010).  In the proposed method, heuristics might be 

unintentionally embedded in the attribute definitions, evaluation algorithms, membership 

function shapes, and fuzzy rules, but every attempt was made to avoid heuristics.   

2.4 FUZZY LOGIC. 

2.4.1 Just Enough Fuzzy Logic. The fuzzy logic systems used in this research 

are quite basic.  Simple Type I fuzzy sets are used throughout (Zadeh 1975) (Mendel 

2013) (Dauby 2011).  The intent was to discover and demonstrate the usefulness of a 

fuzzy logic approach in reasoning about finding ‘good’ SoS instances from a simplified, 

binary meta-architecture.  For this reason, the simplest possible triangular membership 

functions were used at the beginning (Singh 2011).  As the research progressed, it 

became clear that trapezoidal membership functions were equally simple to use within 

the Matlab Fuzzy Toolbox and were also more nearly a match for SoS acquisition and 

design reality.  Matlab ‘.fis’ files that detail the fuzzy membership and rule bases of each 

file are shown in Appendix C. 

2.4.2 Impact of Recent Advances In Fuzzy Logic. The approach used in 

FILA-SoS was limited in many ways.  The first way was that the meta-architecture 

included only binary (i.e., fully in or fully out) participation by the systems, and 

secondly, only first order, non-directed interfaces.  Only Type I fuzzy systems were used, 

with limited ranges of overlap of the degree of membership in adjacent Gaussian rounded 

trapezoidal membership functions.  The rule sets in the fuzzy inference system 

implementations were kept to a minimum, while allowing enough non-linearity to show 

that linearity was not necessary, but no more.  The purpose was to demonstrate the 
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validity of the fuzzy assessor concept working with the genetic algorithm over the 

simplified meta-architecture.  The examples produced ‘good’ architectures over a wide 

range of input data values. 

More recent concepts being developed within fuzzy logic could certainly be used 

to make better models.  For example, if there were still discrepancies in the common 

understanding of the meaning of the attributes and various membership functions among 

the stakeholders, then it might be more appropriate to use Type II membership functions.  

This would allow the edges and/or shape of the membership functions to have an 

uncertainty or probabilistic character.  This is one way of handling that type of 

uncertainty.  Golkar suggests a number of ways to elicit information from SMEs in cases 

of large ambiguity (Golkar and Crawley 2014) which could mesh with either Type II 

fuzzy systems or interval valued fuzzy systems.  Using interval fuzzy sets would allow 

the uncertainties of the membership functions (MFs) to vary over their shape.  In other 

words, the degree of uncertainty could vary along the abscissa of the MF shape.  This 

could improve the modeling if there is both sufficient data and disagreement among 

stakeholders at that very detailed level – to the extent of varying uncertainty within the 

individual membership functions.  For the SoS examples used, not much difference 

occurred when varying the entire MF shapes between trapezoidal and triangular.  The 

modeling of the rest of the system, such as the strength of a capability contributed by an 

individual system, and how the capabilities are used together to achieve more capability 

at SoS level, would have to be improved as well to make this a worthwhile effort.  

Having the models all be at a roughly equal and appropriate level of fidelity is not 

necessary, but it avoids wasting effort.   
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The use of computing with words to find loci of commonality within stakeholder 

discussions when trying to establish the meaning of attributes and membership functions, 

is very similar to what is currently being done in ‘big data,’ and is very appropriate for 

the suggested modeling methods.  Evaluating the relative value of individual SME inputs 

as suggested by Eggstaff, et al. could certainly be included in the modeling (Eggstaff, 

Mazzuchi and Sarkani 2014).  Computing with words is at least 15 years old, but using it 

in conjunction with big data techniques is relatively recent.  With many stakeholders and 

many conversations in a large SoS, finding principal components with the type of big 

data analysis used on Twitter, and computing with words approaches to define Type II 

fuzzy membership functions is quite feasible.  Whether it significantly enhances the 

accuracy of the models depends on all the modeling components being done to the same 

level of rigor. 

Intuitionistic fuzzy sets (IFS) are not a new addition to fuzzy logic, being at least 

30 years old, but recently the concepts of interval valued IFS (IVIFS) and geometric 

aggregation operators have been introduced in a way that can make decision theory 

problems more realistic.  These do not seem to be necessary or even helpful to the FILA-

SoS approach, given the severe simplifications in the remainder of the model, but they 

could be used to improve the modeling of future, very complicated attribute functions, or 

if they required more complicated chromosomes to describe the architecture.  Once again, 

due to the severe simplifications imposed by the binary meta-architecture approach, there 

do not seem to be advantages from incorporating relatively newer fuzzy logic topics such 

as topological fuzzy spaces, or continuity or separation characteristics of IFS. 
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2.4.3 Fuzzy Linguistic Analysis for Discovering SoS Attributes. Mendel 

notes that there are numerous fuzzy approaches to allow ‘computing with words’ and to 

extract meaning even from the degree of our lack of knowledge to be included in the 

solution of a large variety of problems (Mendel 2013).  Some problems with highly 

nonlinear relationships from many potential noisy inputs may be approached with fuzzy 

methods (Lin, et al. 1998).  Li and Chiang (Li and Chiang 2013) introduce the concept of 

complex fuzzy sets, which even replace the ‘if-then’ rules of Mamdani fuzzy systems.  

Selva and Crawley use fuzzy sets to describe system attributes, along with artificial 

intelligence style rule based systems (up to hundreds of rules) to reason about potential 

architectures, but still largely see the result as binary – i.e., meeting requirements or not 

(Selva and Crawley 2013).  They also recognize that the stakeholders themselves as part 

of the process, as well as being able to report results to them in easily understandable 

form, are important to the process.  In systems acquisition, capabilities are usually the 

purpose of contractual requirements.  Systems are traditionally acquired through 

contracts, and it is unreasonable to change the legal process.  However, in acknowledged 

SoS, the capabilities are mostly already available, with only small changes potentially 

being contracted to add interfaces.  The agreements to participate between system 

program offices (SPOs) and the SoS manager are usually not contractual but informal, 

such as in Memoranda of Understanding (MOU) or Agreement (MOA).   

Many of the techniques mentioned above are more applicable to extremely large 

data sets, such as those of ‘big data’ in social media where sampling a huge population 

can detect trends and shifts in public opinion on the time scale of hours.  Using them on a 

few dozens of SME opinions on engineering tasks or even the list of slightly more 
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numerous  stakeholders discussed later seems inefficient, but they remain a viable 

approach for larger and smaller problems.  Simpler, more basic techniques were used for 

this first modeling demonstration, leaving the obvious extensions to improved techniques 

for later (Agarwal, Pape and Dagli 2014).  The attributes were selected and defined 

during weekly brainstorming sessions for a year among eight SMEs, with facilitation to 

determine consensus on fuzzy membership function shapes and bounds. 

Much of the recent literature on fuzzy systems deals with treating uncertainty 

explicitly with Type 2 fuzzy systems.  Type 2 systems treat the thickness of the 

membership function edges as an additional parameter in fitting a solution.  There is a 

contention that adding parameters (and rules) to Type 1 fuzzy systems can be made 

equivalent to the extra degrees of freedom that Type 2 systems allow for describing 

solutions (Cara, et al. 2013).  Several of these concepts were used in the definition of the 

membership functions and variable maps from real world variables to fuzzy variables 

here.   

For the types and sizes of systems, capabilities, and missions involved in a typical 

SoS, there are substantial numbers of stakeholders and SMEs who would be interviewed, 

and numerous discussions to be undertaken over a wide range of facets of the proposed 

SoS.  These discussions should provide a reasonable amount of data upon which to 

exercise the linguistic fuzzy analysis (Pape, Giammarco, et al. 2013).  Wang and Zhang 

provide a possible approach to include the degree of uncertainty in the derived 

membership function definitions with Antonov’s intuitionistic fuzzy sets (Wang and 

Zhang 2013).  These concepts helped shape the discussion herein, but definitions were 
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kept as simple as possible to remain focused on the development of the overall method 

rather than fine points of possible improvements. 

2.5 MULTI-OBJECTIVE FUZZY OPTIMIZATION 

Satisfying the desires of many stakeholders over many attributes of the SoS is a 

multi-objective optimization (MOO) problem.  A common method in the literature for 

solving a MOO problem is to use a genetic algorithm approach with a fuzzy fitness 

assessor as the chromosome sorter between generations (Pedrycz, Ekel and Parreiras 

2011).  Good chromosomes are more likely to be propagated to the next generation in 

most GA implementations.  This technique solves multi-objective or multi-criteria 

problems by changing them into a single equation that can be optimized more easily.  The 

combination of MOO with fuzzy approaches is discussed by Cara et al. (Cara, et al. 

2013).  Their problem was to fit surfaces with minimum error and minimize fuzzy rules 

while comparing Type-1 vs. Type-2 fuzzy sets.  Several of their ideas are incorporated 

here, such as minimizing the number of rules in the fuzzy rule base.  This has the 

advantage of making the architecture of the SoS easier to explain to stakeholders.  (Type 

2 fuzzy sets add uncertainty bands around the edges of the membership functions.)  They 

also showed that Type 1 fuzzy systems are better in low noise (except for the input itself) 

situations, and Type-2 works better where the noise comes from the rest of the system.  

This effort uses the simpler Type 1 fuzzy systems, but an obvious extension to noisier, 

real world stakeholder linguistic inputs is possible.  Wang and Zhang discuss incomplete 

information and weighted sets, but also include the concept of the penalty function as a 

more subtle method to push the fuzzy set solution off unwanted or infeasible solutions 

(Wang and Zhang 2013).  A penalty function is incorporated in the FILA-SoS approach.  
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Sanz et al. (Sanz, et al. 2013) present the method used here of tuning the membership 

functions and rules to fit the data as the first part of their paper.   

This method for selecting SoS architectures attempts to simplify and modularize 

the treatments of  

 The SoS description - purpose, goals, constraints, etc.  

 The definition of what is important to the stakeholders and how consensus is 

reached 

 Selecting SoS attributes for evaluation  

 Development process and funding within each system (cost and schedule are 

always a factor)  

 Interactions between contributing systems when the SoS is fielded, and  

 The negotiation between the SoS manager and the systems managers or SPOs 

to develop a realizable SoS.   

A major effort was the segmentation of the models in an intelligent way, so that a 

variety of techniques could be tested with each other by ‘dropping in’ compatibly 

interfaced performance, evaluation, or display modules with different functionality.  This 

was done by using well defined data files to exchange information between segments of 

the method.  The modularity was also desired because it was not known which techniques 

would work best together, nor if different types of problems would require partially 

different approaches.   

A fuzzy associative memory (FAM), normally generated by a fuzzy inference 

system (FIS), is a method of decision support that can satisfy, or select a compromise for, 

many objectives simultaneously.  The multiple objectives may be thought of as 
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dimensions of a curve fitting problem.  One common way to illustrate comparisons 

between approaches to a problem is by using a Kiviat chart (Microsoft Excel calls it a 

Radar chart), shown for example in Figure 2.9.  The FAM is designed so that all possible 

combinations of attribute values can be ranked – this is the assessment at the SoS level.  

When created from the consensus stakeholders needs/desires through the method 

described in Chapter 3, the FIS is more justifiable than attempting to decide which of the 

two irregular polygons in Figure 2.9 is better.  Genetic algorithms can explore such a 

‘space’ very effectively, possibly without depending nearly as much on heuristics to 

simplify the solution approach.  Minimizing heuristics is discussed further in section 3.9.  

When the space is the meta-architecture of a new SoS, the combination of 1) a fuzzy 

treatment for evaluating the attributes elicited by the method, 2) combining them to the 

overall assessment of the SoS architecture, and 3) the GA approach for finding a near 

optimum architecture, is a small step forward in the area of SoS engineering.  The next 

sections discuss a fuzzy genetic approach to meeting some of the societal needs 

mentioned above. 

   

Figure 2.9.  Kiviat charts are sometimes used to show the satisfaction of multiple 

objectives 
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2.6 GENETIC ALGORITHM APPROACH TO THE PROBLEM 

There are numerous genetic algorithm techniques (Fogel 2006) (Sumathi and 

Surekha 2010), from the very simple constant mutation rate on all chromosome members 

of the population, to random length transpositions at random positions, to sexual 

crossover at random positions, to variable size but ‘gene’ specific transpositions.  In 

selecting chromosomes for reproduction to the next generation, techniques range from 

simple tournament selection of the best few, to roulette based ‘higher fitness gives a 

greater chance of random selection (but not a guarantee)’ for reproduction (Sumathi and 

Surekha 2010).   

Some key drivers for the selection of a modeling approach are:   

 The choice of representation of the problem  

 The size of the domain  

 Whether the gene components of the chromosome are possible (or worth it) to 

distinguish and treat differently   

 The form of the fitness function used to select ‘good’ chromosomes from each 

generation.   

The meta-architecture structure for the SoS problems addressed here was selected 

in FILA-SoS.  With one small exception for the communication systems initialization, 

discussed in section 2.3.2, there are no privileged gene components in the SoS meta-

architecture.  One could treat the systems separately from the interfaces, as two genes 

within the chromosome, or certain combinations of systems’ interfaces as a gene 

deserving special treatment.  In many conceivable real SoS, this could be very useful and 

appropriate.  However, this was not found to be necessary in this initial treatment.  The 
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remaining driver to a solution is the choice of membership function shapes.  The fuzzy 

logic system approach is well suited to the type of judgments made about ‘good’ SoS 

architectures (Pedrycz, Ekel and Parreiras 2011), but certainly not the only possible 

approach.  In fact, other members of the FILA-SoS research group worked on several 

other methods of optimizing the architecture, including non-gradient descent methods 

and multi-level modeling.   

Numerous programs or subroutines are published in C++ and Matlab for solving 

problems with GAs.  Due to the fact that that the FILA-SoS established the file 

interchange format for the various elements of the overall approach to modeling the 

evolution of the SoS, a unique set of routines was coded for assessment and incorporated 

into a special purpose GA.  These codes are included in Appendix B.  Matlab Code.  

Most of the examples shown in Chapter 4 were computed using a hybrid of several GA 

techniques including tournament selection of the top 20% of the chromosomes in the 

population, replacement of the last 3 of those chromosomes with chromosomes from the 

lower ranked elements of the population, then replication of that top quintile portion 4 

times:  sexual crossover of random lengths of bits at random locations between quintile 2 

and 3 was applied, transposition of random lengths of bits within each chromosome in 

quintile 4, and double the mutation rate of each bit in quintile 5 of the next generation 

population.  Delta was specified mutation rate per bit, and also controlled the random 

location and length for crossovers and transposition.   

Later in the research, a ranked roulette wheel selection algorithm was 

implemented in the GA.  The literature suggested that this could be a better, faster, more 

effective GA approach (Kumar and Jyotishree 2012).  This also demonstrated that the 
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fuzzy assessor approach was modular enough to be able to work with multiple GA 

approaches. 

2.7 EVOLUTION OF THE SoS IN SUCCESSIVE WAVES  

Another purpose of the FILA-SoS approach is to model the evolution of the SoS 

in successive steps called waves.  After providing the suggested architecture to the other 

elements of FILA-SoS, negotiations are simulated between the systems and the SoS 

manager.  The number of systems that choose to participate are typically less than all 

those invited.  The realized architecture is assessed for quality, and plans for the next 

budget cycle (epoch) are implemented.  Technology may change, new systems may come 

on line, and the opportunity to add systems, either from the same list or an amended list 

of systems occurs again in the next epoch.  Participating systems from the previous epoch 

are protected; they have made the investments (and commitment) to participate already.  

These systems and their interfaces are protected from the random changes during 

optimization in the GA.  After the GA operates through transpositions and mutations, any 

already participating systems and interfaces that might have been removed are replaced, 

so the evolutionary pressures occur only on the new systems for the next epoch.  The 

protected systems are noted in input data to the GA. 

2.8 SoS ARCHITECTING CHALLENGES 

The first challenge is getting agreement on what constitutes an SoS.  There is a 

continuing debate on this in systems engineering (SE) social media (such as the LinkedIn 

Community of Practice:  Systems Engineering), over whether an SoS is merely a larger 

system, and even a debate over whether an SoS must be a complex system.  This might 
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have been slightly less of a challenge if systems engineers could decide what systems 

engineering itself is.  There has apparently never been an INCOSE International 

Symposium, or Workshop, over the past 25 years where the definition of the SE 

profession did not become a significant topic of conversation.  There is a definition in the 

INCOSE Handbook, but many practitioners are dissatisfied with it; it gets at least slightly 

adjusted with each version release of the handbook.  If the premier professional SE 

organization cannot satisfy themselves about what SE means, what hope is there of 

deciding what SoS Engineering is?  There is a subargument that even if SoS may be 

slightly different from systems, there is no need to change normal SE processes because 

‘pure’ SE is robust enough to take any differences into account.   

This challenge can be answered by the authority of the US Department of 

Defense, an organization familiar enough with SoS to have a valid opinion, through their 

release of Systems Engineering Guide for Systems of Systems (Director Systems and 

Software Engineering, OUSD (AT&L) 2008).  They describe a continuum of types of 

SoS, from tightly, centrally controlled (such as a military formation like a naval battle 

group) to extremely loosely controlled, voluntary, collaborative groups.  They use the 

term ‘virtual’ for this end of the spectrum, but that term has taken on additional 

connotations since the Guide’s publication, so that it requires clarification for this 

context.  The Guide addresses many differences between what might have been 

considered a simple (but large) system, such as a weapons system in acquisition, and an 

SoS.  The European Union is also firmly behind efforts (to the tune of millions of euros 

of research investment) to develop methods for handling SoS, such as through the 

COMPASS (Coleman, et al. 2012) and DANSE (Arnold, Boyer and Legay 2012) 
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programs.  The European programs have the stated goal of becoming the premier 

practitioners of SoSE research and implementation in the world. 

The next challenge is to attempt to describe and/or model an SoS in a succinct yet 

sufficient manner, especially to non-experts.  SoS are almost always large and 

complicated, implying that it takes a correspondingly large amount of information to 

adequately characterize and explain them.  Three key features of the proposed method 

help limit the problems inherent in this challenge:   

1. The treatment is limited to only that type of SoS called ‘acknowledged (section 

1.4),  

2. The meta-architecture is limited to a binary participation model of systems and 

their interfaces, and  

3. The purpose of this SoS analysis is limited in time and space to a single or at least 

a small range of scenarios.   

The purpose of keeping the applicability of the method limited in this way is to 

see what one can learn from a simplified approach.  Methods for collecting and 

organizing data for component systems, capabilities and interfaces are devised, with 

relatively simple models for performance and related ‘-ilities’ used to evaluate and 

compare arbitrary SoS architectures.  This method is intended to be modular, so that 

competing or better models may easily be substituted.  Other challenges for SoSE include 

crafting display techniques for architectures in different domains and evaluation criteria 

for SoS in those domains, displaying solutions, exploring sensitivity of the solutions to 

small perturbations, as well as summarizing relevant data for component systems in a 

concise presentation suitable for all stakeholders.   
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The International Council on Systems Engineering (INCOSE) initiated an SoS 

Working Group in 2012 to address some of the specific challenges of SoSE.  Dr. Judith 

Dahmann, co-chair of the INCOSE SoS Working Group (WG), has consolidated seven 

‘SoS Pain Points ‘over a period of several years, in conjunction with the National 

Defense Industry Agency (NDIA) SE WG, annual Conference on Systems Engineering 

Research (CSER), the Complex Adaptive Systems Conference (CAS), and the Trans-

Atlantic Research and Education Agenda in System of Systems (T=AREA-SoS) (J. 

Dahmann 2014).  While this research does not answer all the pain points in general, it 

does at least address some facet of each of them as shown below in Table 2.2. 

Table 2.2.  Proposed method's approach to SoS Pain Points 

SoS Pain Points Questions FILA-SoS Approach 

SoS Authorities What are effective 

collaboration patterns in 

SoS? 

First order undirected interfaces, 

but counts communication links 

as systems too 

Leadership What are the roles and 

characteristics of effective 

SoS leaders? 

SoS Manager is the creator of 

the SoS vision & controller of a 

small budget for minor system 

changes;  

SPO managers negotiate for 

available/needed development 

funds 

Constituent Systems What are effective 

approaches to integrating 

constituent systems? 

Assumed to be through 

information exchanges over 

communications links which are 

regarded as component systems 

Capabilities & 

Requirements 

How can SE address SoS 

capabilities and 

requirements? 

An MBSE-like documentation 

approach to algorithmically 

account for system capability 

contributions to the SoS 
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Table 2.2.  Proposed method's approach to SoS Pain Points (cont.) 

SoS Pain Points Questions FILA-SoS Approach 

Autonomy, 

Interdependencies & 

Emergence 

How can SE address the 

complexities of SoS 

interdependencies and 

emergent behaviors? 

Flexibility attribute asks for 

multiple contributors to each 

SoS capability 

Robustness attribute accounts 

for single missing systems 

Emergence arises from 

netcentric reward/penalty 

Testing, Validation 

& Learning 

How can SE approach SoS 

validation, testing, and 

continuous learning in SoS? 

Costs, capability contributions, 

membership functions, and 

fitness rules may be varied for 

sensitivity analysis;  

Observed performance could be 

inserted into attribute evaluation 

algorithms to improve fidelity  

Wave model evolution can be 

explicitly modeled as 

systems/capabilities are added 

over time 

SoS Principles What are the key SoS 

thinking principles? 

Fuzzy multi-objective 

optimization can handle large 

numbers of attributes 

Negotiations for realization of 

the suggested architecture 

Sensitivity analysis of input 

conditions, attribute 

membership function definitions 

and SoS assessment rule base 

 

2.9 OTHER ARCHITECTURAL ANALYSIS METHODS 

The Software Engineering Institute (SEI) at Carnegie Mellon University 

developed the ATAM, along with several related approaches such as Attribute Driven 

Design (ADD) to try to improve the quality of software programming (Nord, et al. 2009).  

It was primarily a way to get early expert review of the plans for large software projects 

to identify and prioritize any risky areas in the plan.  This was in response to the 
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widespread and disturbing trend for large software projects to overrun their plans by very 

large ratios in both cost and schedule.  At the same time this trend was becoming 

unmistakable, software was becoming the major component of most large and complex 

systems.  This made it especially annoying to funding stakeholders, necessitating that 

“something must be done.”  ATAM, along with a number of other SEI initiatives were 

one result (Software Engineering Institute, Carnegie Mellon University 2015).  They now 

have a Systems Architecture Tradeoff Analysis Method (SATAM), and an SoS 

Architecture Evaluation Method (SoSAEM), starting with Mission Thread Workshops 

(MTWs) that work through how the system will be used, that include the following steps: 

“An SoS architecture evaluation  

 uses outputs of the MTWs, including augmented mission threads and 

SoS architecture challenges 

 incorporates the expertise of a trained evaluation team and SoS 

stakeholders, including the SoS and system architects 

 probes architecture at the areas where the systems interact to identify 

risks 

 organizes the individual risks into risk themes that can be 

comprehended (and mitigated later) by program management 

 assesses the sufficiency of architecture documentation 

 identifies potentially problematic systems for focused follow-on 

evaluations using the specific augmented mission threads” (Software 

Engineering Institute, Carnegie Mellon University 2015) 
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However, the following line on their website notes that the method is “ready to be 

piloted,” i.e., not universally in practice yet.   

ATAM is intended to be a high level, total system evaluation, very oriented to 

finding risky areas within the planned system architecture.  Two other architecture 

evaluation methods are very closely related to ATAM:   

1. Active Reviews for Intermediate Designs (ARID), also from the SEI, looks at 

portions of the architecture at milestone points as the system is developed.  

The key focus by highly experienced, typically outside, subject matter experts 

is again on the impact of architecture choices on quality attributes of the 

system, but ARID reviews are more focused, to only a portion of the total 

system, and only for the specific review being conducted (Software 

Engineering Institute, Carnegie Mellon University 2015).   

2. Architecture-Centered Software Project Planning (ACSPP) is an approach 

where architecture documentation is provided to several experienced 

designers, they are allowed a limited time to prepare a plan to implement 

selected architectural elements, using the architecture documentation as 

inputs, identifying resources and time required.  By comparing the resultant 

plans, differences in interpretation and clarity of the architecture description 

are highlighted by differences in the plans.  Very high estimates of required 

resources or schedule are also interpreted as problem areas with the 

architecture descriptions (Paulish and Bass 2001).   

Kruchten’s ‘4+1’ method for software architecting identifies four ‘views’ of the 

architecture:  Logical, Development, and Physical.  The ‘+1’ is at least one (or more) 



  81 

   

scenarios for using the planned system (Kruchten 1995).  There are numerous ‘question’ 

methods in the literature, where objective subject matter experts are asked to answer a list 

of questions from the architecture documentation alone.  If the questions cannot be easily 

answered, the architecture description, if not the architecture itself, obviously needs to be 

improved.   

This research are was disappointed in several ATAMs in which he participated.  

There seem to be a lack of depth of architectural detail, with an ad hoc nature to the 

architecture presentations.  Criticisms offered by the participants seemed focused on only 

the most obvious risk areas within the selected architecture.  Subtle or in depth analysis 

seemed quite beyond the group of objective subject matter experts (SMEs), perhaps 

because they were not well-versed in details of the architecture under discussion; they 

never approached the problem as a systems architecture review, but only commented in 

their narrow SME domains.  This means that one must be careful to explain sufficiently 

when conducting the ATAM, facilitate helpfully, and keep the conversation at the 

architecture level.  However, there did not seem to be a project commitment to do 

anything as a result of the risk areas identified in the ATM.  Certainly, no thought was 

given to actually modifying the architecture as a result of the ATAM.  Not every ATAM 

may be that superficial, but the process is certainly not immune to the superficiality 

observed.  This is one of the criticisms levied on the ATAM approach, especially now 

that it has become institutionalized.  It is common corporate practice for an ATAM to be 

required to allow a project to proceed, but a commitment to fix any highlighted problems 

as a hard requirement of the process snot always happen.  Other methods identified above 

are also heavily dependent for success on the participation of highly skilled subject 
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matter experts with a systems approach.  FILA-SoS assumes similar extensive SME 

participation in the generation of the attributes, evaluation models, and definition of 

acceptable ranges.  It is the intent that this knowledge be better documented and more 

open than in some of the other evaluation methods.  FILA-SoS seems to be following the 

dictates of ISO 42010 in this regard (IEEE S2ESC – Software and Systems Engineering 

Standards Committee) 2011). 

There are few other ‘architecture evaluation’ methods per se.  There are a growing 

number of architecture documentation and management methods.  The US Defense 

Department has the DoDAF, which is oriented toward complex but still only a single 

system Program of Record (POR) (in the U.S. Congress acquisition terminology) style 

acquisition and design; Ministry of Defense has MODAF, NATO has an architecture 

framework, also oriented toward single (including complex) system procurements.  

DoDAF and MODAF have merged to become the Unified Profile for DoDAF/MODAF 

(UPDM).  TOGAF, from the Object Management Group, is oriented toward enterprise 

architectures, not necessarily either systems or SoS, but possibly larger in scope than 

either.  All these frameworks specify ways that the architecture description must be 

documented, with the sincere hope that any holes will somehow become obvious, and yet 

a further hope that they will be fixed, as well.  The Architecture Analysis and Design 

Language (AADL) (now SAE Standard AS5506B) is another way of describing an 

architecture, concentrating on the interfaces as the most likely risk areas.  This approach 

also helps point out holes in a proposed architecture that should then obviously be fixed.  

Steven Dam’s proposal for a Life Cycle Modeling Language (LML) is designed to insure 

that entire life cycle concerns are included in the architecture description of a system 

http://standards.sae.org/as5506b/
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from early in its design, and is relatively easily extended to SoS (Dam and Vaneman, 

2015).  Although some modeling language tools are in the early stages of making 

architectural diagrams ‘executable,’ this is fairly experimental and certainly not widely 

used in practice.  FILA-SoS has a module using Dori Dov’s Object Process Modeling 

methodology (Blekhman and Dori 2011), and also Colored Petri Nets, both of which use 

the collected architecture data to create a discrete event model that may be used to test 

various hypotheses about the architecture, such as  

 Does it have enough bandwidth? 

 Is the latency of messages small enough under various usage conditions? 

 Is there coverage throughout a shift, or a day, or a month, with this many units?  

There are other discrete event modeling tools that can be used to examine the 

same types of questions with many other types of models than those built under the 

FILA-SoS approach.  Recent European Union projects specifically oriented toward SoS 

include COMPASS – Comprehensive Modelling for Advanced Systems of Systems; 

DANSE – Designing for Adaptability and Evolution in System of Systems Engineering; 

DYMASoS – Dynamic Management of Physically Coupled Systems of Systems; 

AMADEOS – Architecture for Multi-criticality Agile Dependable Evolutionary Open 

System-of-Systems; and MONDO – Scalable Modeling and Model Management on the 

Cloud (COMPASS 2015) (European Commission's FP7 2015) (DYMASOS 2015) 

(MONDO Project 2015), all these approaches seem more oriented toward describing the 

architecture of, or managing an existing, SoS project, not so much as evaluating the 

architecture, although some do analysis of an existing architecture.  There is a small 

portion of each of these efforts directed toward understanding where the project is now 
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(or will be in the near future).  This is again, more of a hope that problems will make 

themselves obvious when describing the project in each of the above named method’s 

terms than a direct evaluation of the architecture.  The Systems Engineering Leading 

Indicators Guide from the International Council of Systems Engineering (INCOSE) 

(jointly with the Lean Advancement Initiative (LAI), the Systems Engineering 

Advancement Research Initiative (SEAri), and Practical Software and Systems 

Measurement (PSM)) also suggests to look at trends of metrics far more than at the 

absolute values of the suggested measures of health of an entire project (not merely at the 

architecture of the project).  Another European suggested approach is the A3 size 

architecture overview method (A3AO) (Kooistra, Bonnema and Sko 2012).  This is 

another method that highlights defining the architecture, distilled down to a single, 

moderate sized sheet of paper, with a relatively standard template of information to be 

included.  Holes in the architecture description become glaringly obvious, one may hope, 

as noted previously. 

Other architecture assessment methods have been proposed specifically for 

software, and many of these could be applied to SoS, with minor wording changes.  

Patterns have been proposed as a framework for evaluating aspects of software 

architectures.  Patterns may be found in SoS, as well.  Basically, they ask if certain 

problem patterns are present, and if they’ve been solved previously.  If so, then patterns 

of previously successful solutions should be able to be deployed on similar problems in 

new architectures.   

Functional dependency network analysis (FDNA) from Garvey and Pinto is 

another approach to architecture evaluation when the SoS is networked (Garvey and 
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Pinto 2009).  It was primarily developed for supply chain types of analysis, which could 

be considered similar to an acknowledged SoS.  This method of analysis is intended to 

find and understand risks in the supply chain.  Many architecture analysis methods are 

oriented toward reducing risk in development or operation of an SoS.   

SERC Research Task 108 on the SoS Analytic Workbench from Purdue 

University brings together several other methods for evaluating architectures.  These 

include Bayesian Network analysis, Robust Portfolio Options, Approximate Dynamic 

Programming, and Stand-In Redundancy methods for evaluating SoS architectures.  

Another related method is Database Centric Architectures.  All the above methods help 

expand the ways that architects think about, examine, analyze and select prospective 

architectures for complex systems in general, and SoS in particular.   

All the above named approaches do help build better architectures.  Most of them 

evaluate an architecture by finding risky places within it, or obvious (after being 

highlighted by application of the method) holes in the architecture.  The SoS Analytic 

Workbench is more analysis focused than most.  All the alternative methods focus 

attention on the architecture, and this is good.  They do not ‘evaluate an architecture 

numerically’ as much as provide a path to improving it by suggesting areas to examine 

more closely.  With the FILA-SoS approach, for each of the desired attributes, there is a 

documented model and score from the freely shared algorithms operating on each 

architecture instance.  Even though the method maps those scores into fuzzy, qualitative 

measures, developed by analyzing a broad group of SME and stakeholder opinions, and 

the actual score is frequently on an arbitrary scale, or for only a short list of possible SoS 

scenarios, it provides something slightly more focused on the end result than some of the 
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evaluation methods in the literature.  FILA-SoS adds value by combining the various 

attribute scores to an overall SoS assessment through the rule based fuzzy inference 

system, which can rigorously select between the Kiviat style representations in Figures 1-

3.  It also allows a more thorough exploration of the entire meta-architecture ‘space,’ as 

well as the ability to quickly assess any stakeholder’s suggestions for improvement. 

2.10 SCARCITY OF DOCUMENTED SoS EXAMPLES FOR STUDY 

Institutional pressures make it difficult to find discussions of what works and 

what does not work in SoS.  For one thing, such frankness is relatively rare.  DoD 

examples of SoS typically:  

 Do not follow the normal DoDI 5000 series management processes, so normal 

reporting is not always enforced, and therefore detailed records are unusually 

sparse 

 Are not POR, so there is less than normal oversight by watchdog agencies 

 Have relatively small budgets, or are started as pilot programs, not entailing 

the detailed oversight normally given to the bigger ticket items such as PORs 

 Begin in an ad hoc way or as quick reaction efforts, so if they don’t work, they 

are simply abandoned quickly for another ad hoc but more promising 

approach 

 May be classified or have significant classified components, which make it 

exceedingly difficult both to record as well as to discover what happened in an 

accessible format 

Commercial SoS efforts frequently fall under proprietary disclosure rules, which 

makes finding documented examples difficult in that arena, as well.  Studies of failures 
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are infrequently objective, more commonly regarded as ‘the search for scapegoats;’ the 

participants surveyed after the fact frequently sense that agenda, and consciously or 

unconsciously, become reticent to share or even recall their part in the failure.  Another 

barrier to finding good post-mortems on ‘problem’ projects is that those ‘lessons’ might 

be embarrassing to those most likely to know what occurred, so they frequently are not 

reported with full disclosure to protect the reputation of the organization or management 

chain.  All these facets of SoS projects make it difficult to conduct accurate, reliable 

system case studies, or to find valid SoS lessons learned.  The INCOSE SoS WG is 

actively engaged in finding SoS examples on which to do case studies, but even if they 

succeed, this will inevitably be a small sample.   

Finally, it is often the case that no one really knows why a large project fails or 

succeeds.  SoS are by definition complicated, therefore hard to understand, and normally 

have authority issues.  The personnel assigned to the independent component systems 

have little motivation to understand the overall SoS architecture and purpose, hoping only 

to adequately fulfill their part (as they understand even that).  The relatively few SoS 

engineers are normally sent off to other assignments as soon as an SoS failure is declared.  

No one stays around long enough to conduct a proper post mortem.  It may simply be that 

an SoS success was an idea whose time had finally come, as much as one would like to 

ascribe to it a more helpful lesson of cause and effect, or even a rare example of excellent 

management.  Another reason for success/failure might be that key stakeholder’s 

personalities made the project work (or not).  It is a painful yet obvious truth that 

personalities have a great deal to do with success in complex projects.  The next chapter 
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explains more of the unique underpinnings for applying the very simplified meta-

architecture model to acknowledged SoS. 

2.11 SUMMARY OF LITERATURE REVIEW 

None of the concepts presented in this dissertation are particularly new or unique, 

with the exception of exploring the binary interface/participation meta-architecture and 

applying the fuzzy genetic MOO to SoS.  The following concepts and different 

application of existing concepts do represent an addition to the growing body of 

knowledge in system of systems architecting: 

 Development and demonstration of the method to create architecture based 

assessment models of the SoS that can quickly rank thousands of potential 

architectures 

 Directly handling the ambiguity inherent in combining multiple systems into 

an acknowledged SoS, with its distributed authority and non-contractually 

binding requirements, with the fuzzy logic approach to attribute evaluation 

and SoS assessment 

 Extending the application of DoDAF system oriented concepts to 

acknowledged Systems of Systems 

 Using the upper triangular matrix representation of the binary participation in 

the SoS meta-architecture chromosome 

 Treatment of the communication links between systems as elements of the 

SoS component systems 
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 Creating the concept of achievable and unachievable interfaces and 

connecting that to reward and penalty functions for the SoS netcentric 

improvement factor 

 Using fuzzy, linguistic analysis on discussions with stakeholders to help 

define key performance attributes and explicitly handle the ambiguity in 

acknowledged SoS due to the sheer number of stakeholders and the lack of 

strong central control 

 Providing a method to display the SoS interoperability architecture data 

including the concept of achievability 

 Translating between fuzzy and real world representation of the attribute values 

through piecewise linear mappings to the membership functions 

 Biasing the number of ones in the initial population of the genetic algorithm to 

explore a representative region of the meta-architecture space 

 Applying the developed method across a number of SoS in different domains, 

addressing each of the seven SoS Pain Points to some extent 
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3. PROPOSED METHOD FOR DEVELOPING AN SoS EVALUATION MODEL 

3.1 USE CASE MODEL OF THE DOMAIN INDEPENDENT METHOD 

The method for developing an architecture evaluation model of an SoS is the 

same regardless of domain.  Key features of the method are shown in the use case 

summary diagram of Figure 3.1.  In this figure, dashed lines are for information; solid 

lines represent ‘responsible for,’ or active involvement; this portion of the effort excludes 

the Negotiate Achievable SoS use case  The SoS manager is a key player, along with the 

SoS stakeholders, in forming a vision of the desired, acknowledged SoS capabilities.  

Information from potential component systems also contributes to the SoS vision.  The 

vision of the SoS informs the model facilitator for exploring ways to model the desirable 

SoS attributes.  This may include what fraction of the system capabilities the SoS will 

require, defining the meaning of the attributes and SoS missions in context, and 

establishing trade space limits to explore within the SoS meta-architecture.  Other inputs 

include estimated costs for modification and operation of the systems within the SoS, 

which ideally would come from system stakeholders or SMEs, but usually start as 

estimates from the SoS manager.  The modeler works with the model facilitator and 

various SMEs to develop attribute evaluation models that depend on the meta-

architecture structure.  These individual attribute evaluation models are combined 

through a fuzzy logic rule based system to assess the overall SoS.  With this assessment 

tool, sample architectures represented in the meta-model may be evaluated for relative 

fitness as an entire SoS.   

This fitness assessment tool is precisely what is needed by a GA to sort the better 

architectures within a mutating population of trial chromosomes searching out the meta-
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architecture space.  Sensitivity analyses can be run by the modeling team in consultation 

with the SoS manager.  The consensus SoS design may then be presented by the SoS 

manager to the SPO managers for negotiation about any minor changes required to join 

the SoS.  The documentation developed during the modeling effort is even more 

important for SoS explanation than for the legal and regulatory prescriptions of the 

DoDAF for official POR systems, because the SoS is outside the pre-existing design and 

training of the component systems.  Results of the negotiations also need to be well 

documented, because SMEs may provide additional information to the negotiations, and 

stakeholders will want to know what capabilities their systems agree to provide to the 

SoS. 

 

Figure 3.1.  Use case diagram for developing an SoS Architecture 
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The list of data required, and the variable names used throughout this effort, for 

the generic SoS model is shown in Table 3.1.  This is a simplified, binary model of the 

systems’ presence or absence from the SoS, and the non-directed interfaces between each 

pair of systems.  

Table 3.1.  List of SoS and component systems’ variable meanings within the meta-

architecture 

Name or description of variable Expression 
 

Name of SoS:   sos 1 

Number of potential systems:   m 2 

Number of types of systems:   t 3 

Names of system types:   sys_typi : i ϵ {1,…t} 4 

Number of component capabilities:   n 5 

Names of component capabilities:   sys_capi  : i ϵ {1,…n} 6 

Binary meta-architecture upper 

triangular matrix:   
Aij : i ϵ {1,…m},  j ϵ {i,…m} 7 

Individual systems of the SoS 
Aij : i ϵ {1,…m},  j =i , also sometimes 

written as  Aii , or simply  Ai 
8 

Achievable interface 

Aij : i ϵ {1,…m},  j > i , and  

Ajk = 1, Aik = 1, Aii =1, Ajj=1, Akk = 1 , 

where Akk is any communications 

system 

9 

SoS main capability:   C  10 

SoS performance in its large capability:   PSoS 11 

Component capabilities of systems:   
cij ::  i ϵ {1,…n capabilities}, j ϵ 

{1,…m systems} (binary matrix) 
12 

Performance of a particular system in its 

key capability:   
Pi

Ss  :  i ϵ {1,…m},  Ss is each system 13 

Estimated funding to add an interface to 

an individual system:   
FIFi

Ss :  i ϵ {1,…m},  Ss is each system 14 

Deadline for developing new interface(s) 

on a system:   
Di

Ss  :  i ϵ {1,…m},  Ss is each system 15 

Estimated funding for operation of all 

the participating systems during an SoS 

operation:   

FOPi
Ss :  i ϵ {1,…m},  Ss is each 

system 
16 
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Table 3.1.  List of SoS and component systems’ variable meanings within the meta-

architecture (cont.) 

Name or description of variable Expression 
 

Function describing the advantage of 

close collaboration within an SoS as a 

function of participating systems and 

interfaces:   

F (Aii,  Aij, j≠i,  ) :  i ϵ {1,…m},  j ϵ {i,…m} 17 

Function for combining system 

capabilities into SoS capability C:   
𝐶 =  ∑ ∑ 𝐴𝑖𝑖

𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

Number of individual attributes the 

stakeholders want to evaluate the SoS 

over:   

g 19 

Attribute names to evaluate SoS 

architectures against  (e.g., cost, 

performance, flexibility):   

Attk :  k ϵ {1,…g attributes} 20 

Number of gradations of each Attribute 

that become fuzzy Membership 

Functions (MF):   

hk  :  k ϵ {1,…k gradations within the 

attributes} 
21 

Fuzzy membership function names 

within each attribute (granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk gradations},  b ϵ 

{1,…g attributes} 
22 

Fuzzy membership function boundaries 

(cross over points) for each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  b ϵ {1,…g} 

a=1 is lower bound of universe of 

discourse, a ϵ {2,…h+1} is upper bound 

of MF(a-1)b because Matlab can’t handle 

matrix subscripts of zero 

23 

Overall SoS performance in an 

Attribute 
( ∑ ∑ 𝐴𝑖𝑖

𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F (Aii,  Aij, j≠i,  )  24 

Total cost of developing and using an 

SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 

Parameters for controlling the 

netcentric performance factor 

 Increment per interface 

 Penalty inc for unachievable 

 Penalty decrement for 

achievable i/f 

 

 

Epsilon ϵ 
Penup 

Pendn 

26 

Parameters for controlling the GA: 

 Mutation Rate 

 Number in Population 

 Number of Generations 

 

Delta 

P 

G 

27 
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Figure 3.2 shows an alternate view of the method as a process flow with emphasis 

on the individual steps, without concern for who performs them. 

 

Figure 3.2.  Domain Independent Process Method for SoS Model building 

3.2 DOMAIN INDEPENDENT MODEL CREATION 

The SoS model includes all the information available to it from the sources 

gathered from the participants identified in Figure 3.1, but it still must be cast in terms of 

the binary participation model of the meta-architecture.   

The first step, regardless of domain, is to identify the reasons for the SoS and the 

desired capabilities.  The SoS manager, and the facilitator, must always develop some 

background and vocabulary within the domain so that meaningful discussions may be 

held among stakeholders.  At this point one can begin to create domain specific models of 
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development schedules, costs, performance, and other attributes to be used in evaluating 

an SoS architecture.  The steps of the general method, however, are the same regardless 

of the domain of the model as shown in Figure 3.2.  Many modeling approaches in the 

literature assume the architecture is already defined.  This is similar to SE methods that 

assume the requirements are well defined – nice and clean, but neither realistic nor 

adequate.  The DoDAF, Ver. 2.02, to its credit, begins at the proper place when it 

describes a domain independent six-step process for how to build an architecture model 

for a large DoD system:   

1. Determine Intended Use of Architecture 

2. Determine Scope of Architecture 

3. Determine Data Required to Support Architecture Development 

4. Collect, Organize, Correlate, and Store Architectural Data 

5. Conduct Analyses in Support of Architecture Objectives 

6. Document Results in Accordance with Decision-Maker Needs 

(ASD(NII) 2010) 

This research extends the DoDAF system oriented model to SoS, adding detail on 

how to create, document and use a similar model building process for an SoS.  This will 

form a basis to help designers and managers choose SoS architectures more wisely in the 

future. 

The DoDAF viewpoints may be extended to the buildup of any SoS (military, 

civil or commercial) in nearly exactly the same way it is intended to be used to document 

the vision, plans, capabilities, and workings of a complex weapons system.   
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3.2.1 Establishing a Vision of the SoS. An SoS is by definition a group of 

independently capable systems, collaborating for a greater purpose, in other words, to 

deliver a larger capability.  Within some range, systems may be present in varying 

numbers (or not at all) for a particular application of the SoS.  The concept for the SoS 

must be articulated, captured, and agreed to among the stakeholders in relation to this 

variability in participation.  Some SoS, after being developed, are on stand-by until called 

on to perform; others may implement a new capability that is operating all the time.  The 

ideal SoS provides an acceptable range of capabilities over a broad range of 

compositions.  Typically, the SoS manager (or management group) creates a vision 

statement to guide development of the concept for the SoS.  The vision includes a high 

level description of the goals of the SoS, the potential types of participants and their 

capabilities, and the mission(s), threat(s), and a description of how the SoS arrangement 

will improve existing capabilities, or provide new ones.  The architecture model of the 

SoS captures this vision but also provides the framework for decomposing the vision to 

manageable components as well as for building up the SoS out of legacy, new, or 

modified systems.  The SoS manager must start with information such as that shown in 

Table 3.2 that corresponds to the DoDAF AV-1 Overview and Summary Information.  

(Corresponding roughly to Step 1 of the DoDAF 2.02 6-Step Architecture Development 

Process.)   

Table 3.2.  Example SoS evaluation model building questionnaire for creating an AV-1 

Overarching 

Purpose Of SoS 

A DoDAF OV-1 style description is often helpful; text should 

accompany it 
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Table 3.2.  Example SoS evaluation model building questionnaire for creating an AV-1 

(cont.) 

Unique Value 

Of SoS 

What makes it better than simply adding another legacy system 

SoS Measures 

Of 

Effectiveness 

How will everyone know how good it is? 

Issues That 

Might Limit 

Effectiveness 

Are changes of procedure necessary?  Are there legal, regulatory, or 

bureaucratic impediments to the creation of the SoS?  

SoS Features 

That Might 

Greatly Increase 

SoS 

Effectiveness 

Can changes in procedures help?  What is the innovation? 

Desired 

Effectiveness 

What would be considered really good, what’s adequate, what’s 

inadequate? 

Rom Budget: 

Development 

As appropriate 

Rom Budget: 

Operations 

As appropriate 

Desired 

Schedule 

As appropriate 

Attributes Of 

The SoS/Range 

Limits For 

Fuzzy 

Evaluation 

What might be ‘tradeable’ – Suggestions for fuzzy rules, e.g., is 

extra performance worth more budget?  Is extra flexibility worth 

more?  How much?  Is lack of flexibility OK?  etc. 

Capabilities Of 

Contributing 

Systems 

How do they combine? Top level description of synergies 

Component 

Legacy Systems 

Type/ 

Category 

Capabilities Time to 

Develop/ 

Equip 

Costs 

$M- 

Dev and 

Ops 

Notes 

(Incompatibilities, 

Constraints, 

Characteristics, 

etc.) 

      

      

     etc. 
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An Operational View (OV-1) high level operational concept.  The type of 

information that the SoS manager must have for the ‘Vision of the SoS’ is at least one 

example of how the SoS would be used (or a list of examples with all their context).  The 

example must discuss expected participants in a rough picture (whether in graphics or 

text) of what the SoS will do in operation.  Initial draft of this information may be 

summarized in one or two pages as shown in Table 3.2 for the All Viewpoint.  This may 

be expanded to the OV-1 Operational Overview that describes how the system will be 

used in slightly greater detail.  It can be a graphic with accompanying text showing the 

overall concept of use of the SoS as shown in Figure 3.3.  Every term used in the 

descriptions is defined in the All View 2, the Integrated Dictionary (AV-2).  Major 

component systems, data or resource exchanges, and effects are depicted iconically to 

present an overall, high level impression of how the SoS may be dispatched, controlled, 

employed, and recovered, for example, as shown in Figure 3.3.  For an SoS, support is 

normally presumed to be supplied by the system operators in their continuing 

independent missions, unless significant changes are imposed by the SoS configuration.  

Major mission segments are shown are shown in the OV-1.  The unifying SoS Integrated 

Dictionary (AV-2) is started with the OV-1, building outward so that all terms, 

components, activities, and interfaces are defined in one place.   

Tracking the sources of definitions is more necessary for an SoS than for a 

system.  Differences in usage of similar terms between component system stakeholders, 

model developers and operational users should be flagged in the AV-2 by noting multiple 

definitions for the same or similar terms within their proper contexts.  This is 

significantly important in an acknowledged SoS because the nominally independent 
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component systems may have their own unique acronyms, terms or usages.  The OV-1 

establishes the scope of the SoS.  A key component of most SoS is mission flexibility – 

the ability to pivot to different postures or missions as conditions change.  A discussion 

of the range of likely activities of the SoS should be included in the textual explanation of 

the OV-1, or even as multiple graphics for different missions if that is part of the SoS 

charter.  The OV-1 of an SoS must also include a discussion of priority between the SoS 

mission versus the original and continuing missions of the component systems.  It should 

also include a generalized discussion of how deeply the SoS architecture will be allowed 

to control the component systems.  That is, to what extent major interfaces enabling the 

SoS need to be controlled by (or at least communicated to) the SoS manager through the 

architecture, as well as where existing systems may continue control of their own 

configurations.  (An extension of Step 2 of DoDAF 2.02 to handle the SoS.) 

 

Figure 3.3.  Sample OV-1 for ballistic missile defense (ASN/RDA 2009)   
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3.2.1.1 SoS Collecting descriptive domain information. Identifying the 

numerous stakeholders and their concerns, and gathering data about component systems 

and their missions are key parts of developing the required domain knowledge to build an 

SoS model.  This process step is the same regardless of domain.  The method is domain 

independent, but the data gathered is now domain dependent data.  An initial rough level 

of knowledge is needed to allow a facilitator to make plans for stakeholder interviews.  

Identification of key discussion points and possible areas of tradable concepts within the 

early SoS construct are made at this point.  However, until detailed discussions with the 

stakeholders are held, a facilitator must not jump to conclusions about what is valuable or 

tradable, nor even what the SoS framework looks like.  Facilitated discussions with the 

stakeholders must draw out the following features of the SoS:   

• Desired and composable capabilities, with expected or desired levels of 

performance 

• Concepts of operation for the desired new SoS capabilities 

• Likely scenarios for the employment of the SoS 

• Key performance parameters, with expected or desired levels of performance 

• Possible algorithms to combine component capabilities into SoS capabilities 

• Shared (as well as conflicting) judgments about potential evaluation criteria 

for SoS attributes 

• Relative ranking of, and expected values of, attributes of the SoS by groups of 

stakeholders 
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• Rough estimates of cost, schedule, and performance changes for required 

minor changes to existing systems to achieve desired SoS interfaces, or 

performance 

• And to get an overall ‘feel’ for how the SoS might work in practice.   

An important part of developing an SoS architecture is to define all the 

component systems’ ownership, missions, and priorities in case some current mission 

capabilities must be ‘hijacked’ to support the SoS.  Identifying all affected stakeholders is 

the second part of the facilitation exercise.  Inside the Pentagon, this part of the effort is 

called identifying the coordination required to ‘staff a position paper.’  Since SoS 

normally include systems both from multiple domains, as well as across a range of stages 

of their life cycle, affected stakeholder identification requires careful and extensive 

coordination.  As the stakeholders are identified, they should be placed in a hierarchy of 

command, tasking, and funding chains.  This network is the basis of the Organizational 

Relationships Viewpoint (OV-4), which serves as an excellent template for SoS in any 

domain, not only military ones.  In normal DoDI 5000.02 system development, this is 

nominally within one service, and most of the relationships are obvious.  In an SoS, 

whether military, civil, or commercial, the effort to develop the hierarchies may require 

special attention and care to achieve successful coordination across major organizational 

boundaries (Director Systems and Software Engineering, OUSD (AT&L) 2008).  Major 

concerns of each stakeholder must be discovered, recorded, tracked and updated over 

time, to aid in the coordination of initial tasking as well as changes to the goals of the 

SoS over its lifecycle.  An ideal place for this information is in the OV-4 part of the 

DoDAF.  Capability managers (or at least communities of interest) may be defined in the 
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Capability Taxonomy viewpoint (CV-2).  These are cross-referenced and mapped in the 

Capability Dependencies viewpoint (CV-4) among the component systems and 

stakeholders.  An ideal SoS would have a variety of ways to achieve each of its required 

capabilities, perhaps with varying efficiencies.  Having only a single way to achieve a 

required capability is an exceedingly poor way to design an SoS; due to the independent 

nature of the component systems’ missions, there is no guarantee that all possible systems 

will always be made available to the SoS.  The concerns expressed in terms of the US 

DoD programs are equally applicable to any complex set of entrenched bureaucracies, 

such as companies in supply chains, divisions of corporations, or elements of 

intergovernmental enterprises. 

The desired capabilities of the SoS, as well as those of the component systems 

must be carefully defined and accounted for both as a function of participating numbers 

of systems but also over time, as the SoS plans to mature.  An ideal architecture should 

handle not only incremental improvements over time as capabilities evolve, but also a 

range of numbers of component systems.  This accounts not only for technological 

improvements but also for the availability of systems.  The number of systems can 

change on any particular day due either to logistic availability or to higher priorities 

outside the SoS.  The attribute models of the SoS must be developed as functions of these 

variables.  A SysML approach could allow parametric definition of capabilities and 

effectiveness to be explicitly built into the model.  Other approaches may require 

additional math models, which ideally will be based on architectural data from the SoS 

model and the participation represented in the meta-architecture model. 
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3.2.1.2 Deducing attributes. Linguistic analysis of the stakeholder discussions 

(‘computing with words’) (Singh and Dagli 2010) allows one to deduce a set of 

attributes, potential membership function shapes, and rules for combining attribute values 

to create an overall SoS fitness evaluation.  It may be necessary to iterate definitions of 

membership function shapes and rules to get a reasonable set that works together.  

Working together here means that the attribute measures do not overlap, nor correlate too 

well, among themselves (i.e., they are orthogonal, or nearly so).  If they were duplicative, 

it would tend to give too much weight to a subset of issues, instead of optimizing over the 

broadest range of attributes. 

Attribute characteristics and desirable ranges identified in the linguistic analysis 

are combined with fuzzy evaluation and a set of rules to derive a meta-architecture based, 

overall fitness value from the participating systems and interfaces.  Level setting and 

model checking runs may need to be performed to insure the story is self-consistent.  

Then the model can be sampled across a range of percentage of ones for stakeholders’ 

validation.  These steps are as shown in Figure 3.4 and Table 3.1. 

3.2.2 Understanding Stakeholders Views. A DoD acknowledged SoS is a very 

large, complex endeavor.  SoS by definition create cross-functional organizations.  They 

bring together functions that may have been built up through separate, large systems (and 

their program offices) that were developed over many years for many reasons, and only 

recently appear to have the potential to improve the effectiveness of a process or create a 

new capability by the joining together of these previously disparate systems.  The new 

capability is highly desired, but not of overriding importance in the acknowledged SoS.   
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Figure 3.4.  Data sources and analysis steps for applying the method 

Many stakeholders are inevitably involved in an SoS.  The stakeholders include at 

least the following recursive classes of interested parties:   

 Component Systems (System Program Offices (SPOs) in the DoD or 

management agencies or corporations, and all the single system stakeholders 

that they represent) 

 The SoS Manager or management agency 

 Payers/funders (typically Congressional Committees, DoD, and Services for 

military systems, but also finance offices of other state or federal agencies, or 

CEOs of corporations) 

 Congressional committees/watchdog agencies 

 National or Theater Command Authority for military 

 Users/beneficiaries of the SoS 
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 Operators of the SoS 

 Competitors of the SoS 

 Enemies/threats/targets of the SoS 

 Allies of the U.S. 

 Press/public opinion 

A similar list could be made for other types of SoS in the civil or commercial 

domains.  Occasionally individual stakeholders may be members of several groups 

simultaneously.  Additional stakeholders may be professional organizations, industry 

groups, standards organizations, municipalities, rulemaking agencies, shareholders of 

corporations, charities, entrenched bureaucracies, unions, non-governmental 

organizations, etc.  ‘Due diligence’ is the term for doing the work to identify the 

stakeholders of a proposed SoS, their degree of influence, and their level of concern 

about changes to their existing systems to make the SoS work.   

3.2.2.1 Relationships to established decompositions:  Task Lists, Joint 

Capability Areas, ISO Standards. When the domain is military, the Universal Joint 

Task List, the Service specific task lists, and the Joint Capability Areas provide excellent 

vocabulary for defining the missions and capabilities required for military tasks, 

independent of the systems used to achieve them (Joint Staff 2010) ( 

j7jcaa@js.pentagon.mil 2009).  This vocabulary of capabilities and tasks (activities in 

UML or SysML style modeling) is aggregated in the SoS AV-2 and model behavior 

definitions, so that each time that a term, word or concept is used in the architecture, 

reports, or performance models, it is consistent and clear to every stakeholder or 

participant.  Other domains than military typically have manuals, corporate, industry or 



  106 

   

government standards, scholarly, or professional guidance documents, or even textbooks 

to provide this background of vocabulary and definitions.  The ISO-10303 series of 

standards is another source of guidance, particularly AP233, Systems Engineering Data 

Representation.  In fact, there are usually so many possible sources that it is highly 

advisable to maintain source tracking within the AV-2, with priorities assigned to each 

source to prevent confusion when a term is overloaded by multiple definitions depending 

on context. 

The DoD task lists contain suggested very high level definitions of measures of 

effectiveness for evaluating the performance of the capabilities.  These are potentially 

valuable sources for determining membership function shapes and edge values.  These 

are typically ‘improved upon’ for specific system solutions, but they serve as an excellent 

starting point for drafting evaluation criteria for the SoS, especially in performance.  For 

the first pass through a fuzzy analysis, the membership function shapes are not too 

important; triangular or trapezoidal shapes work well enough to get started.  At the 

preliminary stage of analyzing choices with crude, initial models, it is more important to 

get the terminology, ordering, and trade space rules agreed to among the stakeholders 

than to have highly accurate membership function shapes. 

Other ‘-ilities’ models may contribute to SoS attributes – reliability, availability, 

affordability, survivability, flexibility, adaptability, agility, ability to be redirected, 

autonomy, precision, among many others (Mekdeci, et al. 2014) , may be useful in 

evaluating characteristics of a particular SoS meta-architecture.  SoS attributes should be 

created through reasonable extrapolations of the component systems’ capabilities in each 

area, with a small improvement factor for self-coordination.  (If the SoS has no advantage 
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over the simple sum of component systems’ capabilities, then there is no need for the SoS 

– simply send more systems to do the task.)  By the time one has defined the vision, 

capabilities, stakeholders, components, and measures of effectiveness, there should be 

enough of a basis to decide what additional data will be required to develop the 

architecture evaluation models.  (Step 3 of DoDAF 2.02.) 

3.2.2.2 Capability improvement of a proposed SoS.   The concept in the FILA-

SoS for the buildup and even emergence of capabilities within the SoS is that capabilities 

are brought to the SoS basically intact by the component systems as currently existing.  

Typically, the SoS improves the sum of the individual component system capabilities by 

a change in the way they work together to provide some unique or even greatly improved 

capability.  Assume the interfacing of those systems together in a new way can be made 

to improve performance by a small multiplier for each connection.  This is a typical 

approach introduced as the concept of netcentricity by Alberts, Garska and Stein in the 

late 1990s (Alberts, Garstka and Stein 1999).  This is equivalent to the small change in 

performance for each used-achievable interface.  It is a greatly simplified notion to regard 

the performance improvement to be a simple exponential function of the number of 

interfaces; there is undoubtedly a plateau effect on the lower end whereby a minimum 

number of systems must be interfaced to be able to see the effect.  On the high end there 

is no doubt also a limit to improvement by the introduction of the concepts of information 

overload, latency, and bandwidth limits.  The simplifying assumption that more interfaces 

is better is nevertheless quite reasonable over a broad range between the two extremes, 

especially since it is limited to a small fraction for each interface. 
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3.2.2.3 Decomposition of capabilities to functions and logical views.   The high 

level capabilities described in the AV-2 and OV-1 can be decomposed to lower level 

actions and/or functions allocable to the potential component systems.  This continues 

iteratively, exactly as in normal/standard systems engineering, until both a functional 

hierarchy and behavioral description can be attributed to component systems.  Some 

systems may need upgrades to be compatible with the SoS architecture.  The phasing and 

organization of the capabilities must be agreed to by both the systems and the SoS 

manager, with performance, funding and schedules.  The time phasing of capabilities 

development is shown in the Capability Phasing Viewpoint (CV-3).  If some systems’ 

capabilities were to be ready before others and they could be used together, the 

timeframes would be noted and this would become a Capability Vision Viewpoint (CV-

1) that shows how the deployed capability is built up (ASN/RDA 2009).  Mapping 

capability development to operational activities is shown with the Capability to 

Operational Activities Mapping Viewpoint (CV-6).  If some activities are not possible 

without the developing capabilities, then there will be some operational changes over 

time, as well.  Some functions may be logically grouped because they can be reused to 

support other missions; some might be grouped because they are unique to the SoS 

mission and configuration.  Training and tactics may have to be developed to use new 

capabilities, or even to get the systems to work together operationally if the systems don’t 

already do so in existing, joint missions.  These constraints may be shown in several of 

the capability views, but especially in the Capability Dependencies (CV-4) and 

Capability to Organizational Development (CV-5) viewpoints. 
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The decomposition of capabilities to functions, and the aggregation of functions 

to higher levels of abstraction, eventually to capabilities, are inverse processes.  

Sometimes it is easier to decompose downward, other times it is easier to aggregate 

upward.  This depends on what information is available when one starts the process.  The 

important point is to fill in the Capability Taxonomy Viewpoint (CV-2), so that it is 

complete and makes sense to all stakeholders (or at least is accepted by all) as the 

operative definition for the SoS.  The capability taxonomy is a subset of the Integrated 

Dictionary definitions, with the addition of the item’s location within the hierarchy.  

Naturally, it is best to think through the implications of the definitions for the whole 

lifecycle of the SoS.  This also implies that the vision should be sufficient to sustain a 

lifecycle view for the SoS, not merely the initial use of it.  In practice, this sufficiency of 

vision is rare. 

Many SoS, in spite of being complicated arrangements, are also started as quick 

reaction responses to environmental changes.  Therefore, many SoS are short time frame 

exercises.  “Make the required changes quickly, and get them deployed!” is the prevailing 

attitude in this case.  In this extreme, there is scant thought given to planned upgrades, 

phased deployment, or building for growth.  Here, all the changes or new interfaces need 

to be developed in one time period (usually a budget period, called an epoch in FILA-

SoS).  When there is planning for development over several epochs, the ‘in-work’ 

interfaces are regarded as not participating until their delivery epoch.   

The development of the Architecture Views must be an ongoing, continually 

updated process extending throughout the program life cycle.  The simplest cocktail 

napkin draft to the most detailed, data base driven, multiply approved, fully vetted, 
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graphical interface control definition should be documented within a “model,” as the 

single source of data.  Many of the remaining DoDAF viewpoints can be derived from 

basic Operational Activity Model Viewpoints (OV-5b) activity diagrams if they contain 

both activities allocated to swim lanes (denoting the various participants/elements/actors) 

and sequenced data flows between elements.  This is an addition to the basic (minimalist) 

definition of an activity diagram, but adding these two items is an important step in 

defining how the SoS will operate.  One can vary the amount of back up text residing in 

each object in the model.  This is dependent on the amount of detail required and 

available at each stage of the architecture development.  However, the AV-2 works most 

brilliantly if two conditions are fulfilled:  all participants assiduously define their terms in 

it, and a facilitator continually edits its contents for clarity and consistency.  Consistency 

is sustained if the rest of the documentation uses the AV-2. 

An architecture of the SoS will exist, whether or not it is defined, planned, or 

understood.  It will be a far more useful architecture (and a better SoS) if the architecture 

is developed intentionally, and well documented.  That the documentation might be in a 

standard, organized framework, and maintained throughout the life of the SoS in a central 

repository, could make it useful to new hires, visitors, and the engineers and managers 

attempting to upgrade, maintain, or use the SoS in the future.  (Step 4 and 6 of DoDAF 

2.02.) 

The Integrated Dictionary (AV-2) is the authoritative source for definitions of all 

elements of the architecture and program descriptions.  All acronyms, terms of art, and 

important concepts must be defined there, and the source of the definition is maintained 

to give context for understanding arcane, duplicative, or cross program usages (frequent 
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occurrences in SoS).  Example architectural element definitions found in an AV-2 are 

shown in Table 3.3. 

Table 3.3.  Example AV-2, Integrated Dictionary 

Phrase Acronym Definition Source 

Computing 

Infrastructure 

Readiness 

CIR Provides the necessary computing 

infrastructure and related services to allow the 

DoD to operate according to net-centric 

principles. It ensures that adequate processing, 

storage, and related infrastructure services are 

in place to respond dynamically to computing 

needs and to balance loads across the 

infrastructure. 

DoD IEA v2.0 

Concept of 

Operations  

 A clear and concise statement of the line of 

action chosen by a commander in order to 

accomplish his mission. 

Std I/F UCS 

Nato 

STANAG 

4586-3 

Conceptual 

Data Model 

DIV-1  The required high-level data concepts and their 

relationships. 

DoDAF 2.02 

Condition  The state of an environment or situation in 

which a Performer performs. 

DoDAF 2.02 

Confidentiality  Assurance that information is not disclosed to 

unauthorized entities or processes. 

DoD IEA v2.0 

Configuration  A characteristic of a system element, or project 

artifact, describing their maturity or 

performance. 

INCOSE Sys 

Eng Hndbk 

v3.2.1 

 

 

3.2.2.4 Conducting analyses of SoS behavior. The SoS manager and 

development facilitator must at this point be doing some mental estimation of where the 

required SoS capabilities could be obtained and for what cost.  They must be designing 

questions to elicit both responses and thought from the stakeholders about what could be 

of value in building the SoS.  The stakeholders extend both up and down the chain of 
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responsibilities with the SoS manager in the middle.  Are there potential multiple sources 

for most required capabilities?  Are there new ways of putting pieces together in different 

ways to accomplish necessary tasks or functions?  Do new technologies allow for 

anything more easily that previously envisioned?  If something did work in a new way, 

how much better would it be?  What functional relationships could be described to 

evaluate the SoS?  What ranges of values of performance would be outstanding, pretty 

good, acceptable, poor, or awful?  Answering these questions will allow models to be 

built that will allow new designs of an SoS to be evaluated.  (Step 5 of DoDAF 2.02.  

Step 6 is documenting the viewpoints in a self-consistent model, which is done during all 

the previous steps.) 

3.2.3 Review of the Method Steps. Yet another way to look at this model 

development process is shown in Figure 3.5, using the binary participation meta-

architecture model as a starting point.  A vision of the SoS, facilitated stakeholder 

discussions, produces a plethora of linguistic terms and definitions.  Linguistic analysis of 

these discussions may be used to distill the SoS attributes that are important to the 

stakeholders.  Linguistic analysis also may be used to establish ranges of values for the 

attributes that are considered excellent, good, or very bad, as well as the strength of the 

stakeholders, feelings about each of these ranges.  The modeler gets to play a role at this 

point by writing trial algorithms that work on the meta-architecture to deliver an initial 

trial measure of each attribute.  These measures should depend significantly on the meta-

architecture, because they are used to evaluate the goodness of the architecture of the 

SoS.  Given this information, establishing membership functions to fit the fuzzy 

evaluation measures is relatively easy.  Rules for combining attribute valuations are also 
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developed from stakeholder interviews and discussions.  The rules are embodied in a 

Mamdani fuzzy inference system or fuzzy associative memory in the form seen in Table 

3.5 in paragraph 3.6.  The measures are used to improve the selection of the SoS 

architecture within the genetic algorithm approach.  The optimized architecture is then 

proposed for implementation and negotiation between the component systems and SoS 

manager.  The negotiations require a reasonably good starting point to have any chance 

of success, and that is what this research is designed to provide – the starting architecture 

for the agent based modeling part of the problem.  The system negotiations are the key to 

getting a realizable, implementable architecture for the SoS, because the systems cannot 

be forced into the SoS in the case of an acknowledged SoS.  

It is important to devise a method to visualize how the component systems’ 

capabilities (ci) of various architecture instantiations come together to create the SoS 

capabilities (C).  This helps during the level setting exercises, but is vital to describing 

both the approach and the results to stakeholders as well.  Finally, there must be clear 

explanations of the limitations of the modeling approach.  The numerous simplifications 

mean that the model is not likely to match reality very well in detail; the best this model 

can do is match in terms of broad, general trends in comparing high-level architectural 

impacts between different approaches to constructing the SoS. 

For every SoS there will be requirements for component system and capability 

descriptions.  Capabilities of each system are denoted by ci, and the way those 

capabilities are combined into the SoS capability C must be described and captured in the 

model.  When the information is gathered and organized, then the domain specific model 
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Figure 3.5.  How the steps of the method result in a good SoS architecture 

is described, but the fact that there must be some way to build up the required capability 

as a module in the model is domain independent.  For our meta-architecture, there may be 

sets of capabilities from each system, a combination algorithm to describe how the SoS 

capability is built up from the systems, and costs for development of either new 

capabilities or interfaces, with schedules and costs for operations of the systems in the 

SoS.  More detailed models could be used, for example if the cost of discovering and 

codifying new doctrine or tactics, and training in the new configurations is known or can 

be estimated.  Other desirable attributes and ways of measuring and combining them may 

be discovered during the stakeholder discussions; these may be added to the SoS 

evaluation, but there must be some process such as this regardless of domain.  Initial draft 

runs of the model may also lead the modelers to changes and improvements in the model 

Binary Meta-
Architecture

•Systems and their interfaces are present (1), or not (0)

•An instance of the meta-architecture is a "chromosome" representing one particular arcchitecture

Stakeholder 
Discussions

•Facilitated interviews to draw out input data and value judgments from key stakeholders

•Model building and validation iterations proceed toward consensus

Evaluation 
Model

•Fuzzy SoS attributes created from stakeholder concerns, performance algorithms of collaborating systems, and 
advantages from interfacing

•Fuzzy model can evaluate multiple attributes for each SoS chromosome to arrive at an overall SoS 'fitness' 
assessment

Genetic 
Algorithm

•Can explore large volumes of the potential architecture space

•Can optimize with respect to many attributes using overall fuzzy fitness
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modules.  This method of discovering the domain dependent data that goes into the 

model is domain independent.  It should work for any domain. 

3.2.3.1 Choosing the SoS key attributes.   The facilitators and model builders 

need some basic knowledge of the domain of the SoS.  Without that, they will not be able 

to ask intelligent questions of the stakeholders and SMEs.  Conversely, if the facilitators 

know too much about a domain, they may unconsciously pre-select a solution, biasing the 

way they ask questions.  An example questionnaire form for directing the interviews with 

stakeholders is shown in Table 3.2.  This is only a very high level starting point; it should 

be adjusted for any specific SoS application. 

Questions such as those in Table 3.2 are intended to elicit from the stakeholders 

the key attributes (or key performance parameters (KPPs)) that they care about for the 

development and use of the SoS.  The questions are asked from the point of view, and 

with the intention, of developing relatively simple evaluation algorithms that depend 

strongly on the participating systems and their interfaces and how they interconnect in 

operation.  At the initial stage of development, these algorithms may be fairly 

approximate, using rough estimates.  The goal is to have some kind of broadly achievable 

architecture with which to begin the analysis leading to negotiations between SoS 

manager and individual systems for an agreed to SoS.  It is fully expected that individual 

systems’ performance, cost, schedule and other attributes would be adjusted during 

negotiations.  On the other hand, attribute evaluation algorithms are designed to be 

modular, so that if better models become available, they may be substituted in at any 

time.  Well documented, traceable information trails are invaluable when reviewing, 
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improving, correcting, or extending the models (or the SoS itself).  These documented 

traces are well described by DoDAF style views. 

3.2.3.2 Visualizing domain model data.   There is a great deal of information 

potentially available about the components of the SoS – each system may be complex in 

its own right.  The architect must find a better way to share SoS data with analysts and 

stakeholders than dozens or hundreds of columns of numbers.  Color coded and textured 

graphs, multiple and rotatable viewpoints into multi-dimensional data, slices, smart 

filtering, correlations, time series analyses, and animations may all be used to aid the 

understanding of the very large sets of data produced by SoS modeling (Yi, et al. 2007).  

Both large scale trends and significant but tiny artifacts in the data must be easily and 

quickly discoverable in the way the data is conveyed to reviewers.  One needs to be 

careful of the color palette chosen to display results, since different display or printer 

devices may represent them differently, sometimes in surprising ways.  Some in the 

audience will usually be color blind to various degrees, as well.  One must be careful not 

to assume that color coding data artifacts makes them obvious to others.  (For those 

interested, the website http://www.vischeck.com/examples/ simulates for people with 

normal color vision the way colorblind people see, and suggests alterations to color 

palettes that allow more people to see an image in a similar way). 

3.2.4 Architecture Space Exploration. This modeling method uses a genetic 

algorithm (GA) approach to explore the architecture space.  A population of 

chromosomes is evaluated and sorted to select the better ones for propagation to future 

generations with genetic modifications.  The ones and zeroes in the chromosomes are 

generated at random during the first generation.  This is normal GA procedure.  However, 

http://www.vischeck.com/examples/
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to avoid getting an average of 50% ones in the entire initial generation of chromosomes, a 

bias is applied to the random number generator so that the probability of any bit in a 

chromosome of that generation being a one depends on the chromosome’s position in the 

population.  The number of chromosomes in a population for one generation of the GA is 

variable.  Typically, a few tens to a few hundred chromosomes are used in the population 

in each generation.  For the initial generation, chromosome number 1 has only a few 

ones, with mostly zeroes.  The last chromosome in a population has mostly ones with 

only a few zeroes.  Typically, low numbers of ones in the chromosome (meaning 

participating systems and/or interfaces) is associated with lower cost and lower 

performance.  The other attributes could be better or worse, depending on their 

definitions.  Higher numbers of participating systems and interfaces are usually 

associated with higher performance and higher cost (equation 24 and 25 in Table 3.1).  

Costs/affordability and overall performance are almost universally necessary SoS 

evaluation attributes.  Since there is normally a desire for higher performance and lower 

cost, one hopes for a sweet spot between the extremes, where there is adequate 

performance, and adequate affordability (nearly the inverse of cost) as well as acceptable 

values of the other attributes.   

A key feature of the method is to do an exploration of the architecture space with 

a few hundred or a few thousand sample chromosomes, which cover a large range of 

participating systems and interfaces.  Each of the chromosome’s attribute evaluations is 

plotted against the membership functions for that attribute.  The membership function 

shapes and/or the algorithms for evaluating the attributes may need to be adjusted several 
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times in an iterative process that may include discussions with stakeholders to arrive in 

acceptable SoS model.  This is explained further in section 3.8 

The meta-architecture and associated data model being proposed so far contains 

many features that mimic real-life:   

 There may be multiple copies of the same system 

 There may be slight differences between the otherwise similar systems 

 Each system may have multiple capabilities 

 There is a minimum number of component capabilities required to make up 

the SoS capability.   

If a proposed architecture does not have the minimum capabilities, a penalty is 

tacked on to its performance, to enhance the chances of discarding its chromosome in the 

fitness comparisons at each generation of the genetic algorithm.  No population member 

or bit position is pre-selected for discarding before evaluating it for all attributes. 

3.3 INDIVIDUAL SYSTEMS’ INFORMATION 

3.3.1 Cost, Performance and Schedule Inputs of Component Systems. The 

models used here treat the cost of developing a new capability or adding an interface 

separately from the cost of operating the system during a deployment of the SoS.  In real 

life these costs are potentially paid for from different categories of funds, such as 

acquisition vs. operations budget lines in DoD, or current vs. future funds.  The 

development cost is normally a one-time cost, while the operations cost of the system is a 

continuing cost each time the SoS is called into action.  Performance enhancement is 

normally on the order of a few percent for the modification requested to fit into the SoS.  

For adding an interface, it might require a new radio and antennas to be installed on a 
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vehicle, or extending the software database of messages that can be handled by an 

existing system on a vehicle.  There can be significant costs for a minor modification to 

accomplish retesting of functions that might be affected by any changes to fielded 

systems (called regression testing), in addition to testing of the change itself.  Whatever 

the change, in addition to time to develop and test the change, the system hosting it will 

be ‘down for maintenance’ during the installation of the change.  The time to develop, 

install and test a change is the development time.  This is generally one epoch, or time 

period, in the wave model described in Chapter 1.  If a capability already exists, such as 

ability to use a specific radio on a platform, the development cost and time for that 

system for that capability will be zero in the domain input data.  However, development 

of the other end of the interface on a different system may still be required and will count 

toward the cost of the interface.  Some complex modifications might take two or more 

epochs to develop.  In this case, since the development is not complete at the end of the 

first epoch, it is as if the system chose not to participate, because it delivers no capability 

yet.  However, one is still spending funds on that development, for which one receives 

nothing until the development is complete.  The bottom of Table 3.2 shows a simplified 

template to start gathering the estimated individual system cost and performance data.  

Figure 3.6 and Figure 3.7 show a typical arrangement of the input data required to 

perform the individual attribute evaluation model calculations.  Figure 3.7 is in the latest 

graphic user interface format.  Columns have been added for the protection of existing 

systems and for the negotiation behavior; the remainder of the columnar information is 
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the same.  Heading information has been modified to allow a few more adjustable 

settings in the data input file.   

3.3.2 Membership Functions. Membership functions (MF) map the fuzzy 

values to the real world values and show the fuzziness of the boundaries between the 

granulations or grades within each attribute.  The Matlab Fuzzy Toolbox has a number of 

built in shapes for membership functions.  Triangular, trapezoidal, and the Gaussian 

smoothed corners of trapezoidal shapes are available among others; only the Gaussian 

rounded trapezoidal shape shown in Figure 3.8 was used in this analysis.  It is very 

common when evaluating large projects to have a band of acceptability for each grade in 

each attribute.  A familiar example is the Contractor Performance Assessment Reporting 

System (CPARS).  It assigns one of five colors to a series of common measures of project 

status.  It is also common to have multiple reviewers provide a grade in each area, which 

is then averaged to get the final grade (Department of the Navy 1997).  This is intended 

to avoid the issue of unconscious bias or error of interpretation of the data by a single 

reviewer on a borderline issue.  This process is very similar to the mathematically more 

precise fuzzy logic process.  Other MF shapes show similar characteristics, but the 

nonlinearities in the output surface display the concepts better with the slightly rounded 

MF shapes shown in Figure 3.8.  All the variables in the Fuzzy Tool Box are scaled the 

same way.  In real space, a further scaling is required to the individual variables.  The 

MFs cross each other at the 50% level between each of the numbers in the granularity 

scale from 1 to 4.  For this fuzzy inference system (FIS), 1 = Unacceptable, 2 = Marginal, 

3= Acceptable, and 4 = Exceeds (expectations) for each attribute:  Performance,  

 



  121 

   

 

Figure 3.6.  Example domain data input for 29 system SAR SoS 

Name SAR

NumSys 29 com1 26

NumCap 10 attr 4 mfnum 4

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 7 0.03 2 12 1

2 Cutter 7 0.03 2 12 1

3 Helicopter 6 0.1 2 20 1

4 Helicopter 6 0.1 2 20 1

5 Aircraft 8 0.1 5 10 1

6 Aircraft 8 0.1 5 10 1

7 UAV 1 0.1 0.1 7 1

8 UAV 1 0.1 0.1 7 1

9 UAV 1 0.1 0.1 7 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 UAV 1 0.1 0.1 7 1

14 UAV 3 0.1 0.1 7 1

15 UAV 3 0.1 0.1 7 1

16 UAV 3 0.1 0.1 7 1

17 UAV 3 0.1 0.1 7 1

18 Fish Vessel 3 0.03 0.5 4 1

19 Fish Vessel 3 0.03 0.5 4 1

20 Fish Vessel 3 0.03 0.5 4 1

21 Fish Vessel 3 0.03 0.5 4 1

22 Fish Vessel 3 0.03 0.5 4 1

23 Civ Ship 7 0.05 2 8 1

24 Coord Ctr 5 0.05 0.5 5 1

25 Coord Ctr 5 0.05 0.5 5 1

26 Communications 10 0.02 0.03 1 0

27 Communications 10 0.02 0.03 1 0

28 Communications 10 0.02 0.03 1 0

29 Communications 10 0.02 0.03 1 0
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Figure 3.7.  Updated input data format for characteristics of the component systems 

Affordability, (Developmental) Flexibility, and Robustness.  There is no requirement that 

the scaling be the same for different attributes.  In fact, the Matlab Fuzzy Tool Box 

allows the MFs to be scaled to real values, and it might have been clearer to use that 

facility, but the graphical user interface (GUI) for changing the values is rather tedious, 

so a method to apply the scaling outside the GUI was developed.  The process of 

SoS Description ISR

Total Systems in SoS 22 probtypeISR

Number of Characteristics 6 linearinput 1

Number of System Types 22

Max negotiation rounds 4

ProtectNeg Behavior Perf OpsCost IFcost DevTime

fighterA1 0 2 10 10 0.2 1

fighterA2 0 2 10 10 0.2 1

fighterA3 0 2 10 10 0.2 1

RPA1 0 2 10 2 0.4 1

RPA2 0 2 10 2 0.4 1

RPA3 0 2 10 2 0.4 1

RPA4 0 2 10 2 0.4 1

U-2 0 2 3 15 0 0

DSP 0 2 8 0.1 1 1

fighterB1 0 2 15 10 0.7 1

fighterB2 0 2 15 10 0.7 1

fighterB3 0 2 15 10 0.7 1

JSTARS 0 2 40 18 0.1 1

ThExp1 0 2 10 10 2 1

ThExp2 0 2 10 10 2 1

ConUS 0 2 15 0.1 0.2 0

CmdCont1 0 2 12 2 1 1

CmdCont2 0 2 12 2 1 1

LOS1 0 2 10 0.1 0.2 1

LOS2 0 2 10 0.1 0.2 1

BLOS1 0 2 10 3 0.5 1

BLOS2 0 2 10 3 0.5 1



  123 

   

translating real values to fuzzy values is called fuzzification or fuzzifying.  Multiple 

criteria are combined through the rules in fuzzy space, and the output fuzzy value is de-

fuzzified to a crisp value for the SoS assessment.  In this fuzzification scheme, values are 

rounded to the nearest integer value for each fuzzy gradation.  In the example in Figure 

3.8, a fuzzy value of 2.35 would fall on the sloping line for Marginal membership at a 

value of about 65%, higher than on the line for membership in Acceptable, where it is 

about 35%.  The crossover points between membership functions are fixed at the half 

integer point in fuzzy space, but need not be mapped linearly to real space.  The next 

section discusses how the real values are mapped to the fuzzy scale. 

 

Figure 3.8.  Matlab Fuzzy Toolbox display of typical membership function shapes 

3.3.3 Mapping Attribute Measures to Fuzzy Variables. The generic 

membership function range is the ‘universe of discourse.’  This typical range, discussed 

in section 3.3.2, must be mapped to the real world values of the domain specific SoS.  
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The mapping can be done inside Matlab so that Figure 3.8 would be scaled in real units, 

but that requires working in a tedious GUI.  It can also be done by mapping the key shape 

points of the scaled MF to the real world values.  In a real problem, this mapping of 

ranges for each attribute would come from the problem definition and the stakeholders’ 

beliefs and desires discovered during the model building step of the method.  Examples 

could be estimated values for cost of the SoS, or performance in terms of square miles 

searched per hour, or tons of freight delivered per day in another type of problem.  The 

probability of success, or the number of shipments, or other attributes would have desired 

thresholds that define the levels of performance in each attribute, such as:  unacceptable, 

marginal, acceptable, or exceeds expectations in a four part granularity for each attribute.  

The judging criteria may take on a wide variety of terminology and of forms, depending 

on the domain.  Any degree of granularity is possible.  An even number of gradations 

were chosen in this instance to avoid the possibility of an evaluation question being 

answered in the middle.  Odd numbers of gradations tend to allow stakeholders to answer 

too many valuation questions disproportionately in the middle during the interview 

process, while even numbers of gradations force the choices to be above or below 

average.  This depends on one’s problem and particular stakeholders, of course. 

Figure 3.9. shows a typical mapping between real world values on the left, and the 

fuzzy variable on the bottom.  Note that there is no requirement for the mappings to be 

linear.  Figure 3.10 shows affordability and robustness mapped to their fuzzy values.  All 

the attribute membership function values need to be a matched set, with a matched set of 

attribute models.  In this case, robustness depends on the range of the values of 

performance.  Therefore, if the maximum performance doubles due to a change in the 
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model, then the real world robustness map would need to change as well.  The real world 

values for affordability are dollars, and robustness is the maximum loss of performance 

when removing any system, but they are mapped as negative values here, because less is 

better.  This allows the fuzzy attributes to be plotted as monotonically increasing.  Minor 

kinks in the mapping lines show that the slopes of the membership function maps do not 

need to be constant. 

 

Figure 3.9.  Map from fuzzy variable on horizontal axis to probability of detection on left 
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Figure 3.10.  Attribute values, mapped to fuzzy variables 

3.3.4 Exploring the Meta-Architecture Space to Set MF Crossing Values. 

To explore the entire meta-architecture space for the demonstration of the method, a 

novel approach to defining the membership function sizes is used.  After defining the 

draft attribute calculation algorithms to depend on the meta-architecture, a random 

selection of chromosomes with a wide variation in the number of ones is evaluated.  The 

range of attribute values is examined to re-set the edge values of each fuzzy gradation of 

evaluations in each attribute to allow a solution.  The MF edge values also need to be 

adjusted for attributes that depend on other attributes, such as robustness being dependent 

for absolute size on the performance range.  With real world data, for a given set of rules, 

there is no guarantee that a solution is possible.  In order to demonstrate the method, there 

must be achievable solutions.  By exploring the values of each attribute over a range of 

chromosomes, the modeler may be able to find compromises that will work.  This may 

require changes to the rules or desired values in the outcome.  With real world problems, 
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another round of discussions with the stakeholders may be required to vet the model, rule, 

or MF definition changes required to make the solution method converge.  This is called 

the value exploration phase of the model development.  An example of this exploration 

approach is shown in Figure 3.11, with the explanation of the graphs in Table 3.4.  These 

charts show that there are achievable solutions within this architecture model:   

 A general trend toward more performance, robustness, and affordability with 

increasing numbers of interfaces 

 The penalty peaks in the middle of the range 

 There are several good starting points on the graphs. 

 

Figure 3.11.  Setting the membership function edges for the attributes with value 

exploring 
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Table 3.4.  Explanation of value exploring graph pages during early model efforts 

1) On the first row of graphs, the number of ones in the whole chromosome (in 

blue) and five times the number of systems in the chromosome (in red) plotted 

together on the same scale  

2) The overall SoS assessment on the 1 to 4 scale of unacceptable to exceeds 

expectations 

3) The performance of each of the population chromosomes, with dashed lines of 

different colors representing the edges of the membership functions 

4) The flexibility attribute evaluation of each chromosome 

5) On the second row of graphs, the maximum loss in performance by successive 

individual system removal of each participating system – that is, the robustness 

attribute 

6) The value of the penalty/reward function for using unachievable/achievable 

interfaces for each chromosome in the population 

7) The total cost for each chromosome, and  

8) The affordability attribute, which is the total cost modified by (one minus 

epsilon) raised to the penalty/reward power, as described in section 2.3 above.   

 

 

By running a few thousand random chromosomes (with the biased total number of 

ones, but still randomly selecting systems and interfaces) through the fuzzy evaluation 

subroutine, one can settle on adequate values for the membership function edges to show 

there are good solutions possible within the model as shown in Figure 3.11.  This is not 

yet the ‘finding the best chromosome’ part of the method, but only finding a set of 

membership function edges so that one can be sure of finding some acceptable 

chromosomes during the GA from which to select better mutations from each generation.  

One can also see similar shapes of the functions for each of the attributes and the penalty 

function.  One important feature is that tiny changes in the chromosome can have wide 

swings in the values of each of the attributes.  The search for a ‘good’ chromosome is 
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really that, a search for it – it is not obvious that there will be a single optimum from the 

model so far. 

It takes only a few minutes to run 1000 ‘almost’ random chromosomes through 

the exploration phase.  Several iterations on selecting the mapping values for the 

boundaries between membership functions may be required.  If one selects values that are 

too tight, such as demanding a high performance, the robustness limits may need to be 

adjusted.  When the membership function edges change, the input domain specific costs 

and performances, and the limits for the robustness function are selected so that there are 

at least some chromosomes that are performing well, the next step is to run the full fuzzy 

model through the GA for 60 to 100 generations, as discussed in section 3.6.   

3.4 NEED FOR MULTI-OBJECTIVE OPTIMIZATION (MOO) 

Since there are so many stakeholders in SoS, there might be dozens to hundreds 

of concerns that must be tracked, traded among, and optimized to create an acceptable 

SoS architecture.  Using the proposed meta-architecture, the independent variable is the 

presence or absence of the system or the interface.  The architecture may be changed only 

by either adding or subtracting a system or interface.  System costs or other input 

characteristics may be changed, or the algorithms for modeling the attributes may be 

changed, but that is a secondary effect compared to changing a one to a zero in the meta-

architecture.  The SoS evaluation may be changed in highly non-linear and discontinuous 

ways by the change of a single bit in the architecture.  For most of the analysis, the total 

number of one bits in the chromosome is used as a shorthand for the independent 

variable.  One could pursue this sorting in other ways, such as number of systems, 

number of interfaces, or exactly which bits change, but it seemed the most real to have an 
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individual system or its interface be present or absent either during development (when 

an irrevocable decision is made for this epoch whether not to participate in the 

negotiation phase of SoS development) or independently again during employment due to 

the operational concerns mentioned above.  Even if a system manager decides to 

participate during acquisition and development, on the day the system is needed by the 

SoS it may still be unavailable due to maintenance or being assigned to another mission, 

for example.  This problem is more likely in acknowledged SoS composition, where the 

systems still have their continuing missions as individual systems or components of 

overlapping SoS missions competing for resources.   

It is not feasible to try to find or construct Pareto dominant surfaces under these 

conditions, while holding ‘other variables’ constant.  On the other hand, some variables, 

such as how much increase in performance might arise by increasing interfaces among 

component systems, may be analyzed in this way, but the desired performance (a 

measure of effectiveness) may also need to be adjusted for the model make sense.  This is 

because the range of possible performances could change so much for small changes in 

NCO advantage epsilon discussed section 2.3.  This again violates the ‘all other things 

the same’ assumption that one makes for describing a Pareto front.  Finding the Pareto 

non-dominated solutions within a small region of the input space is difficult because it is 

hard to know what one means by ‘within a small region’ in the meta-architecture.  Shall it 

be defined as being within a small Hamming distance:  by changing the ones present 

within one or two rows and columns of each cell in the upper triangular matrix of 

interfaces within a chromosome?  Alternatively, is it within a Hamming distance by 

allowing bits anywhere in the starting chromosome to change?  If one of the bits being 
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changed represents a system, then whole rows of interfaces change from being achievable 

to unachievable or vice versa.  If the bit represents a communication system, then many 

more interface bits may change from achievable to unachievable, or the reverse.   

3.5 NON-LINEAR TRADES IN MULTIPLE OBJECTIVES OF SOS 

Fuzzy logic can be used to fit highly nonlinear surfaces even with a relatively 

small rule base.  The commonly cited problem of dimensionality for fuzzy logic systems 

in fitting arbitrarily large input sets (Gegov 2010) does not arise in this problem because 

the number of inputs are small – limited to the KPAs of the SoS design problem.  The 

combination of membership function shapes and combining rules allows one to fit quite 

nonlinear surfaces in the several required dimensions of this problem.  Furthermore, the 

input variables are generally monotonic, increasing in value from the fuzzy value of 

‘worst’ to ‘best.’  All the membership functions used in this effort (input and output) have 

been scaled from 1 to 4 for simplicity of display in this document, but that scaling is 

purely arbitrary.  The actual scaling is through linguistic variables discovered through the 

interactions of the facilitator, SMEs, and stakeholders.  They are typically terms such as 

“very bad,” “good,” “excellent,” etc.  For most attributes, there is a further mapping of 

the linguistic terms, such as ‘excellent affordability is a cost between $8M and $10M,’ or 

‘acceptable affordability is cost between $10M and $12M.’  If the attribute evaluation 

elements can be categorized in such fuzzy terms as this, then relatively simple rules for 

combining them can result in a straightforward overall SoS evaluation from the resultant 

fuzzy inference system or fuzzy rule based system.  Figure 3.12 to Figure 3.14 show how 

quite complicated assessment shapes can be represented through the combination of MF 

shapes and the combining rules of the FIS.  Figure 3.12 shows the SoS fitness surface 
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versus affordability and performance in the ISR example.  Figure 3.13 shows the impact 

on the fitness surface of changing the membership function shapes; the left example is 

four triangular MFs with four rules; the right example is four trapezoidal MFs with 10 

rules.  Figure 3.14 illustrates a very different shape for the SoS assessment surface for the 

large training SoS validation problem, with seven MFs and 18 rules, showing that very 

complicated function shapes can be represented by the combination of FIS rules and MF 

shapes. 

 

Figure 3.12.  Nonlinear SoS fitness surface of the ISR fuzzy inference system (FIS) 



  133 

   

  

Figure 3.13.  Alternate fitness shapes for different domain problems 

 

Figure 3.14.  Fitness surface from the large training SoS validation problem 
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3.6 COMBINING SoS ATTRIBUTE VALUES INTO AN OVERALL SoS 

MEASURE 

A Mamdani fuzzy inference system allows the combination of as many input 

attributes as desired (Fogel 2006).  Each attribute is equivalent to an objective or 

dimension in a multi-objective optimization problem.  Gegov expanded this concept to 

include networks of fuzzy systems, to cover deep and complicated problems with many 

dimensions (Gegov 2010), and uncertainties extending to Type II fuzzy sets.  

Nevertheless, if rules of the form discussed below (which are symmetrical), are combined 

with rules of the form ‘if attribute one and attribute four are excellent, but attribute five is 

marginal, then the SoS is better-than-average,’ etc., which allows for asymmetry or non-

uniform weighting among attributes, then very complex evaluation criteria may be 

described for the SoS.  Using membership function shapes other than those shown in 

Figure 3.8 also allows considerable tuning of the mapping of input attribute values 

(depending on the SoS architecture or chromosome structure in the model) to the output 

of the overall SoS quality or fitness. 

A Mamdani Type I fuzzy rule set may also be called a Fuzzy Associative Memory 

(FAM) to combine the attribute values into the overall SoS fitness score.  Attribute 

measures are converted to fuzzy variables from the mappings explained in section 3.3.3, 

the rules are followed to form a fuzzy measure for the SoS architecture (represented by a 

chromosome).  That measure may be de-fuzzified back to a crisp value for final 

comparison in the GA through an equivalent mapping in the output space.  The rules 

should be kept simple for two reasons:  primarily it is easier for the analyst to understand 

and to explain them to the stakeholders, but also because a few rules within the fuzzy 

logic system can be very powerful in defining the shape of the resulting surface.  Still, 
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some sensitivity analysis can be done on the rule sets, and results of minor changes in the 

rules may be displayed for comparison, all other things being kept the same.  Rules are 

typically of the form: ‘if all attributes are good, then the SoS is superb,’ ‘if all attributes 

except one are superb, then the SoS is still superb,’ ‘if any attribute is completely 

unacceptable, then the SoS is unacceptable.’  A dozen or so of these rules can give an 

excellent estimate of the stakeholders’ intentions, including significant nonlinearities and 

complexity (Gegov 2010).  The Mamdani FIS does its best to satisfy contradictory rules 

simultaneously by simply including them both in the calculation of the resultant output 

value for optimization in the GA. 

The linguistic form of some of these rules may be easier to express than the 

mathematical form.  For example, ‘if any attribute is unacceptable, then the SoS is 

unacceptable’ can be expressed linguistically as a single sentence, but mathematically a 

separate rule for each attribute is tested alone to implicate the unacceptability of the SoS.  

If the rule can be expressed as a single sentence linguistically, as in Table 3.5, it will be  

Table 3.5.  Example of a few powerful Fuzzy Inference Rules for combining attribute 

values  

Five Plain Language Rules 

If    ANY   single attribute is Unacceptable, then the SoS is Unacceptable   

If     ALL    of the attributes are Marginal, then the SoS is Unacceptable 

If     ALL    the attributes are Acceptable, then the SoS is Exceeds 

If    (Performance  AND  Affordability )   are Exceeds, but    (Dev.  Flexibility and 

Robustness) are Marginal, then the SoS is Acceptable 

If   ALL   attributes EXCEPT ONE are Marginal, then the SoS is still Marginal 
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counted as only one rule.  The rules come out of linguistic analysis of the stakeholder 

interviews, with some normative smoothing by the facilitator.  At worst, if consensus 

cannot be reached on a rule statement among the stakeholders, a version of the analysis 

with the rule expressed both ways can be compared for sensitivity to that rule.  This 

approach can also help explain the issue to the stakeholders. 

3.7 EXPLORING THE SoS ARCHITECTURE SPACE WITH THE GENETIC 

ALGORITHM (GA) APPROACH 

Having developed a method of evaluating architectures based on presence or 

absence of any combination of systems and interfaces within the meta-architecture, this 

evaluation may be used as the fitness measure for selection for propagation to a new 

generation within an evolutionary algorithm.  One class of evolutionary algorithm is the 

genetic algorithm (GA).  The key feature of a GA approach is to evaluate the overall 

fitness of a series of chromosomes in a ‘population.’  One then sorts the chromosomes by 

their fitness, and proceeds to a next generation through mutations, crossovers, or ‘sexual 

reproduction’ of a fraction of the better fitness chromosomes in that generation.  Mutation 

rates, crossover points, special rules for certain sections of the chromosome (genes), or 

deciding which parents are combined, can all be varied as part of the GA approach.   

The GA first generation starts with a population of random arrangements of 

chromosomes built from the meta-architecture, which spans the search space, then sorts 

them by fitness.  A fraction of the better performing chromosomes is selected for 

propagation to the next generation through mutation and/or transposition.  A few poorly 

performing chromosomes may also be included for the next generation, to avoid the 
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danger of becoming stuck on a purely local optimum, although proper selection of 

mutation and transposition processes can also help avoid this problem.   

3.8 COMBINING THE FUZZY APPROACH WITH THE GA APPROACH 

In order that the GA work with any string of bits within the meta architecture, the 

algorithms for evaluating each attribute must work for any string of bits.  The results of 

individual attribute evaluations may take on a large range of values.  When the desired 

and tradable values of the attributes, and the algorithms for evaluating them, are 

determined from the SoS stakeholder interviews, the range of values of each attribute is 

pre-determined.  The entire range of possible values is the ‘universe of discourse.’  In 

each dimension or attribute, the entire range is mapped contiguously to the granularity 

described by the membership functions.  There is no guarantee that any arrangement of 

systems and interfaces will be found to be acceptable.  Because this effort was to develop 

and explore the method, and the example SoS were largely fictional, all the model 

parameters could be adjusted to find examples that would work.  The key to this adjusting 

process was to plot the attribute evaluations against the number of ones in the 

chromosome.  Figure 3.15 and Figure 3.16 show changing the MF edges for small, 25 

chromosome population examples.  The shapes of the attributes are similar, but the fuzzy 

value maps are adjusted. 

Biasing the random number generator to produce a population of chromosomes 

with varying numbers of ones allowed an exploration of chromosomes from various 

regions of the meta-architecture.  By iterating adjustments of the attribute membership 

function edges against a population of randomly generated (but biased in the number of 
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ones) initial populations of chromosomes, an acceptable picture of the SoS behavior 

could be determined. 

When a few hundred chromosomes are present in the exploratory population, one 

can get a very good idea of the shape of the behavior of the meta-architecture space as a 

function of the number of interfaces between systems of the SoS, shown in Figure 3.17.  

More systems and interfaces generally leads to more of all the attributes:  performance, 

flexibility, robustness, but to more cost as well (= less affordable).  However, one can 

also see that the trends are noisy, and not perfectly correlated as shown in the ISR model 

in Figure 3.17.  In the example on the left, too many good SoS are found because the MF 

edges are set too low.  There is not enough discrimination in the combination of MF 

values, attribute evaluation algorithms and fuzzy inference system rules.  On the right, 

performance, robustness and affordability MFs are mapped better; fewer SoS are in the 

exceeds range The exploration phase allows the setting of the MF edges to take 

advantage of the variability in the evaluations to drive the GA search toward regions that 

look more likely to produce a decent compromise from among the competing attributes. 

One needs to be in a reachable region of the SoS attribute space, or the universe 

of discourse, defined by the MF edges of the fuzzy inference system when it is mapped 

back to the real world.  It is of little value to have an architecture that produces $100M 

solutions when the only acceptable value is less than $50M.  Therefore, some level 

setting of expectations, tuning of algorithms, and of the input domain data may all be 

necessary to reach a reasonable ‘space’ within which to attempt optimization with the 

GA.  This is the function of the exploration phase of the process and includes going back 
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Figure 3.15.  Exploring the meta-architecture - 25 chromosomes, 22 systems, Example 1 

to the stakeholders to attempt to adjust their thinking when they have completely 

unrealistic expectations. 

3.9 HEURISTICS 

Heuristics may help find solutions more quickly, and the discovery of heuristics is 

important to finding better and/or faster solutions to many types of problems (Maier and 

Rechtin 2009).  However, by definition, the reason a heuristic works is not strictly known 

(Blanchard and Fabrycky 2010).  Heuristics may bias the discovered solution by 
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Figure 3.16.  Exploring the meta-architecture to map membership function edges, 

Example 2 

  

Figure 3.17.  Exploring biased, but still random populations to set the membership 

function edges 
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discarding possibilities in unknown ways.  Even though many heuristics are known to be 

biased, they are used both intentionally and unconsciously (Taleb 2004).  There are no 

guarantees that any particular heuristic will continue to be useful (as it has been in the 

past) on a new problem.  Heuristics are common sense derivations from experience in 

solving similar problems, but if the reason they worked was fully understood, they would 

be part of the formal solution method and not classed as an heuristic.  The methods of 

solution worked out here attempt to avoid heuristics because we do not yet understand the 

nature of a ‘good’ SoS solution well enough to trust any heuristics.  The example 

problems are not so large as to require extensive use of heuristics to reach a reasonable 

solution in quite reasonable times, either, which is a standard reason for relying on an 

heuristic to narrow the search space and reduce the time in computing a solution 

(Blanchard and Fabrycky 2010). 

3.10 DISPLAYING THE RESULTS OF COMPLEX SoS ANALYSES 

A key feature of understanding problems of this nature is to be able to visualize 

the solution.  While the architecture framework was easy to describe in text, and even to 

draw pictures of what was meant, until the upper triangular visualization was discovered, 

it was difficult to see patterns or to compare two solutions in a meaningful or easy to use 

manner.  Figure 3.18 shows the format of a chromosome, color coded to show 

used/unused systems and interfaces as colored versus the dark brown color for unused.  

The red and green colors show where ones exist; Green for an achievable and used 

interface or system.  Red is for attempting to use an unachievable interface, and blue is 

for an unused interface that would have been achievable, if it were used.  Figure 3.19 

shows this display for the 29 system SAR SoS.  It is not automatically true that the 
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overall fitness of a chromosome would be enhanced if the blue interfaces were used.  It 

costs money and time to develop interfaces (normally), so the cost could go up if they 

were used.  It is difficult to predict how the other attributes would be affected by using 

the blue (achievable but unused), or deselecting the red (unachievable but selected) 

interfaces.  Another reason not to discard selected interfaces arbitrarily is that the model 

is intended to be used to mimic the wave model evolution of the SoS over several epochs, 

when new systems might be persuaded to join, or longer term modifications come to 

fruition, and previously unachievable interfaces now switch to achievable ones. 

 

Figure 3.18.  Upper triangular form of chromosome, with color codes for used and 

achievable (or feasible) interfaces 

The four representations in Figure 3.20 are equivalent ways for showing identical 

participating systems and interfaces in an SoS.  The upper triangular matrix on the upper 
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Figure 3.19.  Color coded achievable/unachievable interfaces for a SAR SoS 

left also shows the achievability/unachievability of the interfaces through color-coding.  

The ‘ojo de dios’ display, sometimes called the ‘circle’ display, in the upper right shows 

the systems’ presence by the number at a vertex, while the interfaces are shown by the 

connecting lines between the vertices.  The triangular matrix at the lower right shows 

only the presence of the systems or interfaces through the color coding, ignoring the 

achievability.  Finally, the linear representation at the bottom shows the highly 

compressed systems and interfaces presence by the color coded downward pointing 

‘teeth’ where there is a one.  The alternating color bands along the top show the systems 

on the far left and the interfaces of each system in the same order as the rows of the 

triangular matrices.  The triangular matrix representation is far superior for identifying 

the position of the interfaces (a key element of defining the architecture) when the 

number of systems becomes large.   
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Figure 3.20.  Four equivalent methods of showing the systems and interfaces in an SoS 

3.11 MODULARIZING THE METHOD 

Each component of the FILA-SoS approach, and each attribute model was 

designed to be modular, so that if the definition of performance or other evaluation 

factors, such as cost, time to deliver, etc. changes due to new information or the 

development of an improved algorithm, the other components do not need to be changed.  

If it seems that reasonable results are produced through the process from simple models, 

model parts may be replaced with more accurate models, or models validated by a 

standards agency.  The combined model, with its input data, algorithms for combining 

system capabilities to SoS capabilities, evaluation criteria, and GA tuning factors must be 

independently validated, then tested together to insure that the whole process produces 

reasonable SoS architectures.   

This part of the FILA-SoS effort produces architectures to be handed off via a 

well-defined Excel spreadsheet interface to the negotiating team of agent-based models to 

achieve a realized SoS each epoch.  Those models test various negotiation strategies and 
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policy incentives in the creation of the final SoS from the suggested component 

system/interface architectures produced here. 

3.12 VALIDATING THE DEVELOPED MODEL 

Validation is the agreement from the customer that the system (or SoS) does in 

fact provide a solution to the problem it is intended to solve.  Verification is the 

furnishing of proof that the designed system is what was produced.  If systems 

engineering was done correctly throughout the program, customer involved design 

reviews at several stages should have validated that the design should produce a system 

that will satisfy the customer.  However, with the type of acknowledged SoS in 

discussion here, already produced (legacy – sometimes long out of production systems 

that are in the sustainment phase of their life cycle) are being slightly modified (if at all) 

to meet the new need.  Much of the normal life cycle validation process for a system 

development has been skipped over when the SoS is composed mostly from legacy 

systems.  Validating the FILA-SoS component models is accomplished by a series of 

steps from the very beginning of the concept development through the ‘end’ of the SoS 

design process.  The ‘end’ of the process is really only the start of the next wave in the 

wave process of SoS evolution, when the process starts over, possibly with minor 

changes in the environment, goals, or component systems.  The model validation steps 

include: 

 The first validation step is that domain SMEs must help write the original goal 

statement for the SoS.  They use the appropriate vocabulary to begin the concept 

development, and begin the documentation process with equivalent descriptions 

to the DoDAF all-view viewpoints 
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 The fact that this method is intended for an acknowledged SoS means that the 

component systems are persuaded, not directed to join.  They must ‘buy in’ to the 

SoS concept and their part in it, the same way that all the other stakeholders do.  

Only one other element is more important to validation 

 The management staff of the SoS must be open to suggestions, questions, and 

issues being raised by the prospective and committed participating systems’ 

personnel to the purpose, goals, plans, integration methods, evaluation algorithms, 

or proposed testing for how they will contribute to the SoS.  This is the only way 

that an acknowledged SoS, with peer component systems, can work.   

One of the keys to achieving validation is for the SoS management to be ‘honest 

brokers’ of information, that is, actively seeking constructive criticisms and suggestions, 

and following up on action items from all interactions  Regular reviews with the 

community of SoS participants aid the following goals:  

 To judge progress 

 Encourage completion of development and integration of the interfaces demanded 

by the choice to participate 

 To adjust and socialize (i.e., get consensus on) plans, whether things are better or 

worse than the last accepted joint SoS plan. 

The best way to validate the SoS modeling effort requires: 

 Openly sharing information with all the stakeholders 

 Actively asking for inputs, suggestions, and criticisms 

 Making it a collaborative effort 

 Getting everyone to agree, or at least not object. 
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In short, it requires an open culture of using the ‘exploration’ analysis phase of 

the SoS architecting process to socialize what participation, combined with domain data 

and attribute definitions, together mean to an overall SoS quality result.  This is what is 

called for in current SE standards (ISO/IEC/IEEE 2011) (ISO/IEC/IEEE 2008).  

3.13 HOW TO KNOW WHEN ONE HAS A GOOD SOLUTION 

There are several ways to check on the validity of solutions from the fuzzy GA.  

The first step is to examine the selected chromosome to determine if it makes sense on its 

face.  This consists of at least the following steps: 

 Check the evaluation of individual attributes to ensure the model algorithms seem 

to be working properly  

 Check that the fuzzy inference system rules are being properly applied 

 Make a few conscious mutations in the solution chromosome to see if either the 

KPA evaluations or the SoS assessment can be improved 

 Socialize the solution among stakeholders and SMEs to find out if they agree that 

it is a good solution 

The validity of the process may be checked by the following steps: 

 Alter some of the input data, such as operations costs, or performance values, and 

see if the new solution seems to take those changes into account properly 

 Alter the membership function edge mapping to see if those changes move the 

solutions in an appropriate direction 

 Change the relative value of reward and penalty for achievable/unachievable 

interfaces 
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 Membership function basic shapes may be changed between trapezoidal, 

Gaussian rounded trapezoidal, triangular, and Gaussian. 

All these validity checks were performed numerous times on the all the example 

solutions from the fuzzy GA.   

3.14 USING THE SoS ASSESSMENT WITH NEGOTIATION MODELS 

In addition to the architecture definition itself, budget, schedule, and performance 

functions are assigned to the individual systems.  The chromosome tells each system 

what interfaces to develop.  The performance, budgets and schedules in the input data are 

the SoS manager’s best estimate with limited knowledge.  It is assumed the systems may 

know better what performance they can deliver within the proposed funding and 

schedule.  Therefore, the systems negotiate with the SoS manager to update the existing 

cost, performance, or other attribute estimates.  The negotiation model assumes the 

individual systems do not share information with other systems during negotiations.  

Individual systems may be negotiating for funds to create an interface with another 

system, while the other system may be refusing to participate in this epoch.  It is another 

simplification to not allow systems to share information during negotiations, but not that 

far removed from reality, either.  System modification possibilities and funding are 

frequently closely held information, or even classified, so that normally the systems do 

not freely share that information among themselves.  The negotiations attempt to achieve 

the GA proposed SoS architecture.  Sometimes the systems decide they cannot agree to 

the proposed funding for a performance commitment, and drop out, or become non-

participants.  Sometimes they decide they can actually deliver a little more performance 

than was requested, or for less funding.   
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If updates are made to the systems’ cost, performance and schedule inputs during 

negotiations, those should be fed back to the evaluation inputs.  At first order, one can 

simply rerun the original evaluation model with the negotiated systems and interfaces, 

because any negotiated changes are generally small changes to the initial estimates and 

any particular system’s data forms only a small contribution to the answer. 

The next chapter will show how the method was applied to the selection of an 

architecture for several interesting SoS of different styles and sizes to create the input 

domain data files.  Several outputs are demonstrated, with a discussion of sensitivity 

analysis to input data variations. 
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4. APPLICATION OF THE METHOD 

4.1 DOMAIN DATA GATHERING 

The method developed in Chapter 3 was originally employed on an intelligence, 

surveillance and reconnaissance (ISR) example inspired by history.  The SoS attributes, 

their definitions, ranges of values used for membership functions and their definitions, 

and some of the evaluation algorithms were developed over a year in weekly meetings of 

a subject matter expert (SME) group.  The group included academics, military members, 

and SoS SMEs from government.  The OOTW example of section 4.1.2 was created to 

test the method on a similar size but slightly larger SoS, with different capabilities but 

differently purposed and differently performing group of systems and evaluation 

algorithms.  The fuzzy assessor for OOTW was the same as ISR with the exception of 

adjusted membership function edges.  The SAR example in section 0 was selected to 

show the method and code worked on SoS with different number of systems and 

capabilities.  Completely new attribute evaluation algorithms were used, even though the 

same attributes were used in the fuzzy assessor.  Two fuzzy assessors were used on SAR, 

one still using trapezoidal membership functions, the other with triangular membership 

functions.   

The MITRE ‘toy’ problem was used because it had been studied previously.  The 

original toy problem is only five systems, and all are used all the time.  This did not fit 

the FILA-SoS paradigm, so MS&T researchers created a 22 system toy problem, with 

multiples of each type of the five systems.  Another MITRE suggested very large 

validation problem of a live, virtual, constructive training SoS is described in section 

4.1.5.  The method of Chapter 3 was applied to a DoDAF description of the architecture, 
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arriving at a model with 111 systems and 74 capabilities.  Seven attributes with five 

membership functions were defined for this problem.  Section 4.1.6 discusses how the 

method could be applied to the extremely large problem of global air traffic management. 

4.1.1 Historical Example – Gulf War ISR Domain Model. A guiding 

physical example is taken from relatively recent history.  During the 1991 Gulf War, Iraqi 

forces used mobile SCUD missile launchers called Transporter Erector Launchers 

(TELS) to strike at Israel and Coalition forces with ballistic missiles.  Approximately 50-

60 TELs were hidden in the western Iraqi desert, from which Iraqi forces launched 

somewhere between 100 – 200 missiles during the 43-days of intense combat.  The Iraqi 

forces had developed new techniques called ‘shoot and scoot’ that allowed them to 

reduce the TEL vulnerability time to half an hour.  This included the time to come out of 

hiding, set up, launch, and return to their hiding places.  This was only one third of pre-

war intelligence estimates of 90 minutes, and a great surprise to Coalition planners 

(Thompson 2002).  While the relatively inaccurate Scuds were not a tactically significant 

factor in the war, their potential for carrying chemical or biological warheads meant that 

they had a significant strategic impact on morale and cohesiveness of the Coalition.  

Israel had been persuaded to stay out of the conflict, but that decision was threatened by 

Scud attacks on their cities.  The Coalition included many Arab countries, who threatened 

to withdraw if Israel joined the conflict.  It was, in fact, a very successful tactic for the 

Iraqi forces, deflecting significant combat and diplomatic power from the central purpose 

of the Coalition.  Therefore, the TELs became a “high value, fleeting” target for Coalition 

forces (Rostker 2000).  
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Existing intelligence, surveillance, and reconnaissance (ISR) assets and processes 

at that time were inadequate to find the TELs during their shortened setup and knock 

down time of visibility.  The ‘uninhabited and flat’ terrain brought to mind by the term 

‘western desert’ was in fact neither of those things, with a significant population of 

Bedouin herders and their families, significant traffic (100,000 vehicles), and thousands 

of wadis with culverts and bridges in which to conceal the TELs and obscure their 

movement.  In addition, the Iraqi forces produced some very fine camouflage and 

realistic decoys, again surprising Coalition planners (Rosenau 1991).  Even though 

several thousand sorties were flown against hundreds of TEL firing opportunities, TELs 

were spotted only 11 times, and the contacts were lost before completing an attack eight 

of those 11 times.  The average time between spotting and arriving at a potential target  

with a strike aircraft was about 90 minutes, which might have been marginally acceptable 

before development of the shoot and scoot tactic (Thompson 2002).  This offers a clear 

example of existing systems being inadequate to address a highly important mission.  

Potentially, some relatively low cost, quick changes, and the joining together of existing 

systems might have been able to create an SoS capability to perform the mission better. 

Applying the method described in Chapter 3 above to a slightly fictionalized 

version of the Gulf War ISR problem with a small team of subject matter experts (SMEs) 

resulted in the following hypothetical input domain parameters for treating this as an SoS 

problem.  The characteristics of the SoS reached by consensus of stakeholders and SMEs 

are listed in Table 4.1.  Most of the suggested important requirements of the ISR SoS was 

distilled down through the SME discussions to the following four attributes, measurable 

by operations on the chromosome describing the SoS: 
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 Performance is simplified to the sum of the square miles of terrain able to be 

searched by the SoS divided by the total search area; equivalent to targets found 

per day.  A marginally good performance for reasonable SoS would be a 

probability of finding and destroying a single TEL per day.  This is far better than 

the actual performance during the war.  An original performance model was 

developed in great detail, but the details were regarded as too arcane for most 

reviewers.  The original performance model is detailed in Appendix A as an 

example of a reasonably sufficient operational performance model.   

 Affordability depends on the sum of the total cost ranges of development and 

operation of the SoS; less cost is more affordable.  Occasionally affordability had 

the inverse of the netcentric boost applied to it, to make it a little more nonlinear. 

 Flexibility in terms of development – multiple sources (systems) are available for 

each required capability contributed to the SoS; less sources means less 

flexibility. 

 Robustness, defined as the smallest maximum loss of performance by successive 

removal of each participating system (Pape and Dagli 2013) (Deb and Gupta 

2006) 

Performance and affordability are adjusted by a netcentric factor in the exampled 

to keep them from being too linear, depending on the interconnectedness (number of 

interfaces), and proper use of achievable interfaces, as represented in the chromosome. 
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Table 4.1.  ISR SoS domain example characteristics 

Overarching 

Purpose of SoS 

ISR & Targeting of Gulf War Iraqi Scud Missile TELs 

Unique value of SoS Existing non-networked systems not doing the job 

SoS Measures of 

Effectiveness 

Probability of successful engagement per day 

Issues that might 

limit effectiveness 

SCUD TEL concealment and countermeasures 

Short time of exposure of TEL before and after launch 

SoS features that 

might greatly 

increase 

effectiveness 

Improved probability of detection in presence of concealment 

Significantly Improved speed of response 

Desired 

Effectiveness 

About 1 successful engagement per day or more 

Stakeholders Operating commands, system operators/crew/maintainers, 

intel agencies, coalition partners, regional states, system 

program offices, troops in theater, contractors, Congress, 

DoD, enemy forces 

ROM Budget: 

Development 

About $40 Million 

ROM Budget: 

Operations 

About $40 Million 

Attributes of the 

SoS, and range 

limits for fuzzy 

evaluation 

Performance – from about 0.5 to 1.0 successful targetings per 

day 

Affordability – a few dozens of millions of dollars 

Robustness – less than 15% loss of capability for loss of one 

system 

Flexibility – prefer no single sources for component 

capabilities 

Capabilities of 

contributing systems 

EO/IR     Command & Control 

Synthetic Aperture Radar  Communications 

Exploitation 

 

 

The capabilities of the ISR SoS, contributed by the component systems, were 

broken down into the following five elements: 

 Electro-Optic/InfraRed (EO/IR) search capability 

 Side looking, synthetic aperture radar (SAR) 

 Command and control facilities 
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 Exploitation centers (smaller ones in theater and a large one in the continental US. 

(CONUS)) 

 Communication capabilities, both line of sight (LOS) limited to in-theater, and 

beyond line of sight (BLOS) for reachback to CONUS 

Taking some poetic license with respect to the historical example, the following 

are the proposed types of systems within this SoS, with the non-communication systems 

limited to one primary capability plus communications. 

 Fighters, some equipped with an EO/IR capability, some with SAR 

 Remotely Piloted Aircraft (RPA), equipped with better EO/IR capability 

 U-2 aircraft, primarily equipped with EO/IR capabilities, but limited to film, so 

that system is not timely, but can help reduce the overall search area for the other 

systems, if it participates 

 Defense Support Program (DSP) satellite system, that can surveil the entire area, 

but only provide notice on actual launch, reducing the time for the fighters to 

arrive before the TELs are hidden again 

 JSTARS, with large SAR 

 Control Stations for the RPAs or Air Operations Center (AOC) 

 ISR data Exploitation and fusion centers 

 Communication systems, LOS and BLOS, that enable the interaction between 

systems that make the SoS work. 

A possible set of capabilities and costs of systems and interfaces for an SoS to 

address the Gulf War TEL problem are shown in Table 4.2.  This resulted in an ISR SoS 

model with 22 potential systems of nine types, with five different capabilities among 
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them, with at most two capabilities per system.  Later examples had more capabilities per 

platform, with more complicated performance models, but the ISR SoS model allowed a 

reasonable level of complexity to start. 

Table 4.2.  Domain model data for SoS with 22 Systems:  Capabilities, Costs, and 

Schedules 

System Type 

Sub-

Sys- 

tem 

Cap- 

ability 

Num- 

ber 

Coverage 

sq mi/hr;  

Develop 

$M/ 

epoch/ 

interface 

Operate 

$K/hr per 

system 

Time to 

Dev-

elop, 

Epochs 

Num- 

ber 

possi- 

ble in 

SoS 

Sys- 

tem 

Num- 

ber 

Fighter EO/IR 1 500 0.2 10 1 3 1-3 

RPA EO/IR 1 2000 2 2 1 4 4-7 

U-2 EO/IR 1 50000 0 15 0 1 8 

DSP IR 1 100000* 

.01 

1 1 1 1 9 

Fighter Radar 2 3000 0.7 10 1 3 10-12 

JSTARS Radar 2 10000 0.1 18 1 1 13 

Theatre Exploit 4 5000 2 10 1 2 14-15 

CONUS Exploit 4 25000 0.2 0 0 1 16 

Control 

Station/ 

AOC 

Cmd 

& 

Con- 

trol 

5 1 1 2 1 2 17-18 

LOS 

Link 

Com

m 

3 1 0.2 0 1 2 19-20 

BLOS 

Link 

Com

m 

3 1 0.5 3 1 2 21-22 

 

 

The inputs from Table 4.2 were adjusted slightly to simplify the model by scaling 

all the capability contributions to be relative to square miles searched per hour.  This 

allowed a simplified performance algorithm to be implemented in the fuzzy fitness 

assessor.  The equivalent input data from Table 4.2 are shown in the Excel input sheet 

shown below in Figure 4.1.  The modularity suggested in section 3.11 allows higher 
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fidelity models for either capabilities or attributes to be substituted relatively easily if 

they are available, after demonstrating the approach is viable with simpler models as used 

here.  See Appendix A for a representative more detailed performance model.  Table 4.3 

shows how the membership function significant points were entered in the Excel 

spreadsheet of input data.  Table 4.4 matches the input data to the mathematical 

explanations in Table 3.1. 

 

Figure 4.1.  ISR domain specific input data 

Table 4.3.  Trapezoidal Membership Function crossover values 

    Lower Bound 

Attributes 

1 

Unacceptable 

1.5 

Marginal 

2.5 

Acceptable 

3.5 

Exceeds 

4 

(upper) 

Performance 0.4 0.75 1.5 2 5 

Affordability -200 -100 -85 -65 -40 

Flexibility 1 1.5 2.5 3.5 4 

Robustness -0.9 -0.6 -0.4 -0.2 -0.05 

Name ISR

NumSys 22 m 

NumCap 5 n sys has capability, costs, perf, deadline 1 2 3 4 5

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime EO/IR SAR Exploit C2 Comm

1 fighter 1 0.2 10 10 1 x x

2 fighter 1 0.2 10 10 1 x x

3 fighter 1 0.2 10 10 1 x x

4 RPA 1 0.4 2 10 1 x x

5 RPA 1 0.4 2 10 1 x x

6 RPA 1 0.4 2 10 1 x x

7 RPA 1 0.4 2 10 1 x x

8 U2 1 0 15 3 0 x

9 DSP 1 1 0.1 8 1 x

10 ftrSAR 2 0.7 10 15 1 x x

11 ftrSAR 2 0.7 10 15 1 x x

12 ftrSAR 2 0.7 10 15 1 x x

13 JSTARS 2 0.1 18 40 1 x x

14 ThExp 3 2 10 10 1 x x

15 ThExp 3 2 10 10 1 x x

16 ConUS 3 0.2 0.1 15 0 x x

17 CmdCont 4 1 2 12 1 x x

18 CmdCont 4 1 2 12 1 x x

19 LOS 5 0.2 0.1 10 1 x

20 LOS 5 0.2 0.1 10 1 x

21 BLOS 5 0.5 3 10 1 x

22 BLOS 5 0.5 3 10 1 x
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Table 4.4.  Mathematical definition of variables for ISR domain example 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for ISR Model 

Name of SoS:   sos 1 ISR 

Number of potential 

systems:   
m 2 22 

Number of types of 

systems:   
t 3 11 

Names of system 

types:   
sys_typi : i ϵ {1,…t} 4 

sys_typ1 = fighter 

sys_typ2 = RPA 

sys_typ3 = U2 

sys_typ4 = DSP 

sys_typ5 = ftrSAR 

sys_typ6 = JSTARS 

sys_typ7 = ThExp 

sys_typ8 = CONUS 

sys_typ9 = CmdCont 

sys_typ10 = LOS 

sys_typ11 = BLOS 

Number of component 

capabilities:   
n 5 5 

Names of component 

capabilities:   
sys_capi  : i ϵ {1,…n} 6 

sys_cap1 = EO/IR 

sys_cap2 = SAR 

sys_cap3 = Exploitation 

sys_cap4 = Cmd & Control 

sys_cap5 = Communication 

Binary meta-

architecture upper 

triangular matrix:   

Aij : i ϵ {1,…m},  j ϵ 

{i,…m} 
7 

Selection of systems and 

interfaces between them 

Individual systems of 

the SoS 

Aij : i ϵ {1,…m},  j =i , 

also sometimes written 

as  Aii , or simply  Ai 

8 
Numbered systems  up to 

m=22 

Achievable interface Aij : i ϵ {1,…m},  j > i , 

and  

Ajk = 1, Aik = 1, Aii =1, 

Ajj=1, Akk = 1 , where 

Akk is any 

communications system 

9 Depends on both system 

interfaces with joint 

communications systems, 

and systems’ presence in the 

architecture 
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Table 4.4.  Mathematical definition of variables for ISR domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for ISR Model 

SoS main capability:   C 10 Detection of TELs 

SoS performance in its 

large capability:   
PSoS 11 

Expressed as probability per 

day of finding a TEL 
(∑ 𝑎𝑖𝑖

𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Component 

capabilities of 

systems:   

cij :  i ϵ {1,…n},       

       j ϵ {1,…m} (binary) 
12 

Whether each system 

posseses each capability 

Performance of a 

particular system in its 

key capability:   

Pi
Ss  :  i ϵ {1,…m} 13 

Depends on the system; 

simplified down to a single 

gestalt number for this 

example; shown in Figure 

4.1 

Estimated funding to 

add an interface to an 

individual system:   

FIFi
Ss :  i ϵ {1,…m} 14 

∑ (∑ 𝑎𝑖𝑗

𝑖−1

𝑗=1

𝑚

𝑖=1
∗ 𝐹𝐼𝐹𝑗

𝑆𝑠 + 

∑ 𝑎𝑗𝑖 ∗ 𝐹𝐼𝐹𝑗
𝑆𝑠

𝑚

𝑗=𝑖+1

) 

Deadline for 

developing new 

interface(s) on a 

system:   

Di
Ss  :  i ϵ {1,…m} 15 Shown in Figure 4.1 

Estimated funding for 

operation of all the 

participating systems 

during an SoS 

operation:   

FOPi
Ss :  i ϵ {1,…m} 16 ∑ 𝑎𝑖

𝑚

𝑖=1

∗ 𝐹𝑂𝑃𝑖
𝑆𝑠 

Function describing 

the advantage of close 

collaboration within an 

SoS as a function of 

participating systems 

and interfaces:   

F (Aii,  Aij, j≠i,  ) :  i ϵ 

{1,…m},  j ϵ {i,…m} 
17 

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠 ∗   

 

(1 + 𝜖)(∑ 𝐴𝑐ℎ𝑖𝑒𝑣.  𝐼/𝐹−∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣.  𝐼/𝐹) 
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Table 4.4.  Mathematical definition of variables for ISR domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for ISR Model 

Function for 

combining system 

capabilities into SoS 

capability C:   

𝐶 =  ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓) 

Number of individual 

attributes the 

stakeholders want to 

evaluate the SoS over:   

g 19 4    

Attribute names to 

evaluate SoS 

architectures against  

(e.g., cost, 

performance, 

flexibility):   

Attk :  k ϵ {1,…g} 20 

Performance 

Affordability 

Flexibility 

Robustness 

Number of gradations 

of each Attribute that 

become Fuzzy 

Membership Functions 

(MF):   

hk  :  k ϵ {1,…g} 21 4 Each 

Fuzzy membership 

function names within 

each attribute 

(granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk},  b ϵ 

{1,…g} 
22 

a=1:  Unaceptable 

a=2:  Marginal 

a=3:  Acceptable 

a=4:  Exceeds  

For all b 

Fuzzy membership 

function boundaries 

(cross over points) for 

each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  

b ϵ {1,…g} 

a=1 is lower bound of 

universe of discourse, a ϵ 

{2,…h+1} is upper 

bound of MF(a-1)b 

because Matlab can’t 

handle matrix subscripts 

of zero 

23 See Table 4.3 
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Table 4.4.  Mathematical definition of variables for ISR domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for ISR Model 

 Overall SoS 

performance in 

an Attribute 

( ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F 

(Aii,  Aij, j≠i,  ) 
24 

Flexibility:  ∑ (𝑐
𝑖𝑗

𝑚
𝑖=1 ×

𝑎𝑖𝑖′) ≥ 𝑥, 𝑥 = 0, 1…m,  

where 𝑥 is the number of 

systems providing each 

capability 

Robustness:  (orig perf. – 

min (perf. stepping through 

with each different 

participating system 

removed)  ) 

 Total cost of 

developing and 

using an SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 
Cost = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡 (eq 

16) +  development cost (eq. 
14) 

Parameters for 

controlling the 

netcentric performance 

factor 

 Increment per 

interface 

 Penalty inc. for 

unachievable 

 Penalty dec. for 

achievable i/f 

 

 

 

Epsilon ϵ 
 
Penup 

 

Pendn 

26 

 

 

 

.02 

 

1 

 

1 

Parameters for 

controlling the GA: 

 Mutation Rate 

 Number in 

Population 

Number of 

Generations 

 

Delta 

p 

 

g 

27 

 

.02 

100 

 

50 

 

 

The binary matrix of capabilities contributed by systems is shown in Figure 4.2.  

It is equivalent to the x’s in the cells on the right side of Figure 4.1.  The ISR model with 

22 systems is implemented further in the Agent Based Model (ABM) portion of the  
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FILA-SoS wave development model (Acheson, et al. 2012).  Results of the GA operating 

on each of the domain examples of an SoS introduced in section 4.1 are discussed further 

in section 4.2. 

 

Figure 4.2.  Binary matrix of capabilities vs. systems for ISR example 

4.1.2 Operations Other Than War (OOTW) Counterinsurgency ISR 

Example. This is a mission with some similarities to the Gulf War ISR mission in Iraq, 

discussed in section 4.1.1 – not demanding immediate close combat, but more heavily 

oriented toward surveillance to keep the peace of the assigned area with the possibility of 

requiring force, but more likely being able to prevent trouble with a show of force.  

Because the mission and military service is different, the SoS consists of a different set of 

systems than the Gulf War scenario, with 25 systems and 10 capabilities, with input data 

as shown in Figure 4.3.  Here one can see that some systems have many capabilities, but 

all still require communications of some sort. The OOTW membership function 

crossover points are shown in Table 4.5.  The OOTW SoS description and characteristics 

data is shown in  

Table 4.6 and Table 4.7.  This example was used with one of the operational 

modeling components of the FILA-SoS project that included scheduling operations and 

maintenance activities to ensure that the SoS could achieve its mission tasks in a 

reasonable way. 

Capability CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 EO/IR 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 SAR 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

3 Exploit 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

4 C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

5 Comm 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 4.3.  OOTW IS2 systems and capabilities 

 

Table 4.5.  MF edge crossover points for OOTW model 

    Lower Bound 
Attributes 

1 
Unacceptable 

1.5 
Marginal 

2.5 
Acceptable 

3.5 
Exceeds 

4 
(upper) 

Performance 0.24 0.49 0.63 0.8 1 

Affordability -10 -8 -6 -4 -2 

Flexibility 0 1 2 3 4 

Robustness -0.2 -0.15 -0.11 -0.07 -0.03 

 

Table 4.6.  OOTW IS2 SoS domain example characteristics 

Overarching 

Purpose of SoS 

Peace Keeping ISR in Operations Other Than War 

Unique value of SoS Efficient way to perform the tasks required for Peace keeping 

SoS Measures of 

Effectiveness 

Area of territory closely monitored per day 

Ability to detect and monitor trouble areas early 

Ability to accurately direct fire or air support to trouble spots 

 

Name COIN ISR SOS For watching an occupied area with counter insurgency.A

NumSys 25 com1 19

NumCap 10 1 2 3 4 5 6 7 8 9 10

SysNo Type Capability I/FDevCostOpsCost/moPerf DevTime EO IR Radar CC SurveillanceExploitation CtrFusion CoordinationFires LOS BLOS

1 Shadow 1 0.01 0.06 85 1 1 0 0 0 0 0 0 0 1 0

2 Shadow 1 0.01 0.06 85 1 1 0 0 0 0 0 0 0 1 0

3 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

4 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

5 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

6 Gray Eagle 3 0.1 0.3 150 1 1 1 1 0 0 0 0 0 1 1

7 Gray Eagle 3 0.1 0.3 150 1 1 1 1 0 0 0 0 0 1 1

8 Apache 8 0 0.2 200 1 1 1 1 0 0 0 0 1 1 0

9 Apache 8 0 0.2 200 1 1 1 1 0 0 0 0 1 1 0

10 CC Surveillance 4 0.03 0.09 30 1 0 0 0 1 1 1 1 0 1 1

11 CC Surveillance 4 0.03 0.09 30 1 0 0 0 1 1 1 1 0 1 1

12 Exploitation Ctr 5 0 0.1 100 1 0 0 0 0 1 1 0 0 0 1

13 Exploitation Ctr 6 0 0.1 100 1 0 0 0 0 1 1 0 0 0 1

14 artilllery 8 0.01 0.2 50 1 0 0 0 0 0 0 0 1 1 0

15 UAV Ctrl 7 0.005 0.25 40 1 0 0 0 0 0 0 1 0 1 1

16 UAV Ctrl 7 0.005 0.25 40 1 0 0 0 0 0 0 1 0 1 1

17 Voice/Chat 7 0 0 30 1 0 0 0 0 0 0 1 0 1 1

18 Voice/Chat 7 0 0 30 1 0 0 0 0 0 0 1 0 1 1

19 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

20 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

21 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

22 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

23 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1

24 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1

25 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1
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Table 4.6.  OOTW IS2 SoS domain example characteristics (cont.) 

Issues that might 

limit effectiveness 

of the SoS 

Bad weather 

Large number of areas to monitor 

Deception by enemy forces 

Ability of guerillas to operate in the civilian community 

SoS features that 

might greatly 

increase 

effectiveness 

Ability to monitor many areas frequently during both day & 

night 

Improved overwatch and backup for patrols/convoys 

Immediate close air support from armed ISR platforms 

Communications relay for LOS equipped patrols 

Desired 

Effectiveness 

Multiples of full coverage of area of responsibility (AOR) per 

day 

Ability to prevent ambush/emplacement of IED in AOR 

Stakeholders Patrolling troops, Local commander(s), System operators, 

Civil authorities, Higher echelons of command, Local 

population 

ROM Budget: 

Development 

About $40 Million 

ROM Budget: 

Operations 

About $40 Million 

Attributes of the 

SoS, and range 

limits for fuzzy 

evaluation 

Performance – multiples of full coverage of AOR/day 

Affordability – a few dozens of millions of dollars 

Robustness – less than 15% loss of capability for loss/absence 

of one component system 

Flexibility – prefer no single sources for component 

capabilities 

Capabilities of 

contributing systems 

EO/IR                                                    Radar 

CC Surveillance                                    Exploitation 

Fusion                                                   Command & Control 

Coordination                                         Fires 

LOS Communications                          BLOS 

Communications 

Table 4.7.  Mathematical definition of variables for OOTW domain example 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for OOTW Model 

Name of SoS:   sos 1 IS2 

Number of potential 

systems:   
m 2 25 
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Table 4.7.  Mathematical definition of variables for OOTW domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for OOTW Model 

Number of types of 

systems:   
t 3 10 

Names of system types:   sys_typi : i ϵ {1,…t} 4 

sys_typ1 = Shadow 

sys_typ2 = Gray Eagle 

sys_typ3 = Apache 

sys_typ4 = C&C 

Surveillance 

sys_typ5 = Exploitation 

sys_typ6 = Artillery 

sys_typ7 = UAV Control 

sys_typ8 = Voice/Chat 

sys_typ9 = LOS 

sys_typ10 = BLOS 

Number of component 

capabilities:   
n 5 10 

Names of component 

capabilities:   
sys_capi  : i ϵ {1,…n} 6 

sys_cap1 = EO/IR 

sys_cap2 = SAR 

sys_cap3 = Exploitation 

sys_cap4 = Cmd & Control 

sys_cap5 = Communication 

Binary meta-

architecture upper 

triangular matrix:   

Aij : i ϵ {1,…m},  j ϵ 

{i,…m} 
7 

Selection of systems and 

interfaces between them 

Individual systems of 

the SoS 

Aij : i ϵ {1,…m},  j =i , 

also sometimes written 

as  Aii , or simply  Ai 

8 
Numbered systems  up to 

m=25 

Achievable interface 

Aij : i ϵ {1,…m},  j > i , 

and  

Ajk = 1, Aik = 1, Aii =1, 

Ajj=1, Akk = 1 , where 

Akk is any 

communications system 

9 

Depends on both system 

interfaces with joint 

communications systems, 

and systems’ presence in 

the architecture 

SoS main capability:   C 10 
Detection of insurgency 

activity 

SoS performance in its 

large capability:   
PSoS 11 

Expressed as fraction of 

AOR covered by ISR each 

half day 

Component capabilities 

of systems:   

cij :  i ϵ {1,…n},  

j ϵ {1,…m}  (binary) 
12 

Shown in Figure 4.3.  

OOTW IS2 systems and 

capabilities 
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Table 4.7.  Mathematical definition of variables for OOTW domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for OOTW Model 

Performance of a 

particular system in its 

key capability:   

Pi
Ss  :  i ϵ {1,…m} 13 

Depends on the system; 

simplified down to a single 

gestalt number for this 

example; Shown in Figure 

4.3.  OOTW IS2 systems 

and capabilities 

Estimated funding to 

add an interface to an 

individual system:   

FIFi
Ss :  i ϵ {1,…m} 14 

Shown in Figure 4.3.  

OOTW IS2 systems and 

capabilities 

Deadline for developing 

new interface(s) on a 

system:   

Di
Ss  :  i ϵ {1,…m} 15 Shown in  

Estimated funding for 

operation of all the 

participating systems 

during an SoS 

operation:   

FOPi
Ss :  i ϵ {1,…m} 16 

Calculated for each 

chromosome 

Function describing the 

advantage of close 

collaboration within an 

SoS as a function of 

participating systems 

and interfaces:   

F (Aii,  Aij , j≠i,  ) :  i ϵ 

{1,…m},  j ϵ {i,…m} 
17 

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠

∗  (1 + 𝑑𝑒𝑙𝑡𝑎)
(∑

𝐹𝑒𝑎𝑠.  𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠  − 
∑ 𝐼𝑛𝑓𝑒𝑎𝑠.  𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠) 

Function for combining 

system capabilities into 

SoS capability C:   

𝐶 =  ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

See the Matlab code in 

Appendix B 
(∑ 𝑎𝑖𝑖

𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓) 

Number of individual 

attributes the 

stakeholders want to 

evaluate the SoS over:   

g 19 4 

Attribute names to 

evaluate SoS 

architectures against  

(e.g., cost, performance, 

flexibility):   

Attk :  k ϵ {1,…g} 20 

Att1 = Performance 

Att2 = Affordability 

Att3 = Flexibility 

Att4 = Robustness 
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Table 4.7.  Mathematical definition of variables for OOTW domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for OOTW Model 

Number of gradations 

of each Attribute that 

become Fuzzy 

Membership Functions 

(MF):   

hk  :  k ϵ {1,…g} 21 hk = 4  for all k 

Fuzzy membership 

function names within 

each attribute 

(granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk},  b ϵ 

{1,…g} 
22 

a=1:  Unaceptable 

a=2:  Marginal 

a=3:  Acceptable 

a=4:  Exceeds  

For all b 

Fuzzy membership 

function boundaries 

(cross over points) for 

each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  

b ϵ {1,…g} 

a=1 is lower bound of 

universe of discourse, a ϵ 

{2,…h+1} is upper 

bound of MF(a-1)b 

because Matlab can’t 

handle matrix subscripts 

of zero 

23 
See  

Table 4.6 

Overall SoS 

performance in an 

Attribute 

( ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F 

(Aii,  Aij, j≠i,  ) 
24 

Flexibility:  ∑ (𝑐
𝑖𝑗

𝑚
𝑖=1 ×

𝑎𝑖𝑖′) ≥ 𝑥, 𝑥 = 0, 1…m,  

where 𝑥 is the number of 

systems providing each 

capability 

Robustness:  (orig perf. – 

min (perf. stepping through 

with each different 

participating system 

removed)  ) 

Total cost of 

developing and using 

an SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 

Cost = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡  +  

development cost 

Ops cost  =  ∑ 𝑎𝑖
𝑚
𝑖=1 ∗

𝐹𝑂𝑃𝑖
𝑆𝑠 

Dev cost = ∑ (∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1

𝑚
𝑖=1 ∗

𝐹𝐼𝐹𝑗
𝑆𝑠 + ∑ 𝑎𝑗𝑖 ∗𝑚

𝑗=𝑖+1

𝐹𝐼𝐹𝑗
𝑆𝑠) 
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Table 4.7.  Mathematical definition of variables for OOTW domain example (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for OOTW Model 

Parameters for 

controlling the 

netcentric performance 

factor 

 Increment per 

interface 

 Penalty inc. for 

unachievable 

 Penalty dec. for 

achievable i/f 

 

 

 

Epsilon ϵ 
 

Penup 

 

Pendn 

26 

 

.0035 

 

0.5 

 

0.2 

Parameters for 

controlling the GA: 

 Mutation Rate 

 Number in 

Population 

Number of Generations 

 

 

Delta 

P 

 

G 

27 

0.03 

40 

 

40 

 

 

4.1.3 Search and Rescue (SAR) Domain Example. The method as applied in 

section 4.1 was applied to a non-military ISR domain to insure the fuzzy evaluation and 

GA would continue to work as hoped.  A Coast Guard Search and Rescue (SAR) problem 

serving the Alaskan coast region was selected.  When there is a vessel in distress, the law 

of the sea requires other mariners to go to its aid, which means that a large number of 

disparate systems join in an ad hoc SoS.  The Coast Guard has numerous systems with 

differing capabilities such as cutters, aircraft, helicopters, communication systems, and 

control centers available from several stations in the area.  In addition, fishing vessels, 

civilian craft, and commercial vessels join in this ad hoc SoS to provide assistance when 

a disaster strikes.  To develop improved services in the face of budget cutbacks and 

changing technologies, it is assumed that adding some communication systems to fishing 
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boats with their now ubiquitous UAVs to provide better search capability for less total 

funding.  Background information was gathered from numerous Coast Guard documents 

and news stories about maritime rescues; several SMEs were consulted (Deputy Minister 

of National Defence and Commissioner, Canadian Coast Guard 1998).  A sample SAR 

SoS with 29 systems of 9 types, with 10 total capabilities, with as many as 9 capabilities 

per system was constructed as shown in Table 4.9 and Figure 4.6 below.  The concept 

graphic or OV-1 is shown in Figure 4.4. 

 

Figure 4.4.  Operational View 1 for Search and Rescue scenario 

The Search and Rescue (SAR) mission aims to minimize loss of life, injury, and 

property damage or loss at sea by finding and providing aid to those in distress.  The SAR 

mission framework is inclusive of many activities from conducting search planning and 
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coordinating SAR response, actual searching for, locating, and rescuing mariners and 

others in distress, providing necessary medical advice, assistance, or evacuation, and 

provide, when necessary, persons in distress safe transport to shore.  Various 

components, such as Coast Guard cutters and helicopters, commercial and private sea 

vessels, Unmanned Vehicles (UVs), and private pilots and aircraft have some 

reconnaissance capability that may be brought together in a mixed dedicated and ad hoc 

SoS construct to assist in this ever evolving mission; (Contag, et al. 2013) (Johnston, et 

al. 2013). 

“As defined in the National Search and Rescue Plan, ref (a), and 

Supplement, ref (b), participating search and rescue organizations may 

obtain permissible assets within the required SAR regions at any notice. 

These regions include all waters subject to U.S. jurisdiction and 

international waters in the Atlantic, Pacific, and Arctic Oceans and the Gulf 

of Mexico. Additional regions include identified Department of Defense 

(DoD) Area of Responsibilities (AORs).  Partnerships exist among 

maritime industry in the Automated Mutual-Assistance Vessel Rescue 

(AMVER) system, and coordination among Federal, state, local, and tribal 

authorities to coordinate SAR operations is extensive.  This section 

describes an example operational context for SAR missions, for which 

optimal SoS configurations can be determined given specific mission 

parameters and tradeoffs among SoS attributes such as performance, 

flexibility, robustness, and affordability.”  
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Use of the Bering Sea and the Arctic by commercial fisheries, oil exploration, 

ecology and climate science is increasing.  With the rise of the number of people and 

vessels in the area, the likelihood increases of a large SAR scenario occurring.  Possible 

missions related to this setting may include those in Table 4.8.  The corresponding 

domain information overview is shown in Table 4.9, MF crossover points in Table 4.10, 

mathematical model definitions in Table 4.11, and computer data input in Figure 4.6 

below. 

Table 4.8.  Possible SAR scenarios 

Possible SAR Scenarios  

1 

A large sinking ship, cruise liner, or commercial freighter.  

Rescue of passengers, and/or a potential exposure of 

hazardous material (oil). 

2 A ship stuck in the ice in the arctic ocean. 

3 A private or commercial plane crash with survivors. 

4 An oil rig disaster (fire, explosion, medical emergency, etc.). 

 

 

The basic conceptual radius of operation for the purposes of this application will 

include the Bearing Sea and the Gulf of Alaska as represented in Figure 4.5 below.  This 

is the actual area of responsibility of the US Coast Guard District 17.  Evolving extended 

loiter radii for airborne ISR mission profiles may extend the conceptual SAR mission 

profile to include the North Pacific Ocean, Chukchi Sea, Beaufort Sea, and Arctic Ocean.  

Scientific expeditions and mineral exploitation efforts are growing in this larger area as 

well, so this is a useful exercise. 
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Figure 4.5.  Conceptual SAR Operating Radius (Google Maps, 2013) 

Table 4.9.  Characteristics of a SAR SoS 

Overarching 

Purpose of SoS 

Maritime Search & Rescue (SAR) of Bering Sea; small airliner 

crash at sea 

Stranded Cruise Ship in ‘Other Territorial’ Waters 

Find two people in a small boat 

Unique value 

of SoS 

Greatly enhanced SAR Capability 

SoS Measures 

of 

Effectiveness 

Time to search 100,000 Sq Mi 

Probability of detection of survivors within 2 hours or within 12 

hours, depending on the scenario 

Issues that 

might limit 

effectiveness 

of the SoS 

Weather 

Availability of participant systems 

Language barriers 

Number of Survivors 

Sovereignty questions 

SoS features 

that might 

greatly 

increase 

effectiveness 

Speed of discovery 

Improved coordination of resources 

Ability to prioritize resources(?) at time of event, or during 

development 

Desired 

Effectiveness 

Find someone very fast and/or help lots of people relatively fast 
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Table 4.9.  Characteristics of a SAR SoS (cont.) 

Stakeholders Federal, State, Local, Tribal governments NGOs, Foreign Nation, 

Crews, Mariners, travel/shipping/fishing/oil/research/insurance 

corporations, Survivors, Military, Coast Guard, Public 

ROM Budget: 

Development 

Around $15M 

ROM Budget: 

Operations 

Around $10M 

Attributes of 

the SoS, and 

range limits for 

fuzzy 

evaluation 

Performance – time to find and pick someone up before death by 

exposure or injury 

Affordability – budgetary pressures, small civilian investment 

Robustness – still works with only partial complement of systems 

Flexibility -  many choices of partners 

Capabilities of 

contributing 

systems 

EO/IR 

Night Vision 

Maritime Radar 

Emergency Locator Beacon System Tracking 

RF direction finder 

Deliver Paramedic/medical aid 

Remove survivor(s) to Emergency Medical Care 

Provide major medical capability 

Speed – Fast (around 300 kt)/Slow (around 15 kt) 

Time on Station 

Command and Control/Coordination 

Communications 

 

 

Costs for developing the interfaces are assigned to each system, as well as a cost 

for operating the system for a month in the case of the ISR SoS, or for 3 days in the case 

of the SAR SoS.  The deadline for development of an interface was assigned one of three 

values:   

 0 – ready now,  

 1 – will be ready by the end of this epoch, or  

 2 – won’t be ready this epoch, but the next.   
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Figure 4.6.  The fuzzy assessor model inputs for the SAR SoS 

Table 4.10.  MF edge crossover points for SAR 

Lower Bound 

Attributes 

1 

Unacceptable 

1.5 

Marginal 

2.5 

Acceptable 

3.5 

Exceeds 

4 

(upper) 

Performance 0 0.12 0.24 0.36 0.45 

Affordability -50 -40 -33 -22 -10 

Flexibility 0 1 2 3 4 

Robustness -0.25 -0.18 -0.12 -0.06 -0.01 

Table 4.11.  Mathematical definitions for SAR model 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for SAR Model 

Name of SoS:   sos 1 SAR 

Number of potential 

systems:   
m 2 29 

Number of types of 

systems:   
t 3 8 

Name SAR A

NumSys 29

NumCap 10 1 2 3 4 5 6 7 8 9 10

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime IR – range 3 nmNight Vision – range 3 nmVisual – range 3 nmMaritime Radar – range 30 nmRF Direction Finding – range 70 nmDeliver Medical Aid (Deliver Paramedic too specific)Remove survivor(s) to Emergency Medical CareSpeed 300 mphSpeed 15 mphCommunications

1 Cutter 7 0.03 2 12 1 x x x x x x x x

2 Cutter 7 0.03 2 12 1 x x x x x x x x

3 Helicopter 6 0.1 2 20 1 x x x x x x x x x

4 Helicopter 6 0.1 2 20 1 x x x x x x x x x

5 Aircraft 8 0.1 5 10 1 x x x x

6 Aircraft 8 0.1 5 10 1 x x x x

7 UAV 1 0.1 0.1 7 1 x x x x x x

8 UAV 1 0.1 0.1 7 1 x x x x x x

9 UAV 1 0.1 0.1 7 1 x x x x x x

10 UAV 1 0.1 0.1 7 1 x x x x x x

11 UAV 1 0.1 0.1 7 1 x x x x x x

12 UAV 1 0.1 0.1 7 1 x x x x x x

13 UAV 1 0.1 0.1 7 1 x x x x x x

14 UAV 3 0.1 0.1 7 1 x x x x x x

15 UAV 3 0.1 0.1 7 1 x x x x x x

16 UAV 3 0.1 0.1 7 1 x x x x x x

17 UAV 3 0.1 0.1 7 1 x x x x x x

18 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

19 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

20 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

21 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

22 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

23 Civ Ship 7 0.05 2 8 1 x x x x x x

24 Coord Ctr 5 0.05 0.5 5 1 x x x x

25 Coord Ctr 5 0.05 0.5 5 1 x x x x

26 Communications 10 0.02 0.03 1 0 x

27 Communications 10 0.02 0.03 1 0 x

28 Communications 10 0.02 0.03 1 0 x

29 Communications 10 0.02 0.03 1 0 x
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Table 4.11.  Mathematical definitions for SAR model (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for SAR Model 

Names of system 

types:   
sys_typi : i ϵ {1,…t} 4 

sys_typ1 = Cutter 

sys_typ2 = Helicopter 

sys_typ3 = Aircraft 

sys_typ4 = UAV 

sys_typ5 = Fish Vessel 

sys_typ6 = Civ Ship 

sys_typ7 = Coord Ctr 

sys_typ8 = Communications 

Number of component 

capabilities:   
n 5 10 

Names of component 

capabilities:   
sys_capi  : i ϵ {1,…n} 6 

sys_cap1 = IR 

sys_cap2 = Night Vision 

sys_cap3 = Visual 

sys_cap4 = Maritime Radar 

sys_cap5 = RF Dir Find 

sys_cap6 = Deliver Med Care 

sys_cap7 = Remove Survivor 

sys_cap8 =Speed 300 kt 

sys_cap9 =Speed 15 kt 

sys_cap10 = 

Communications 

Binary meta-

architecture upper 

triangular matrix:   

Aij : i ϵ {1,…m},  j ϵ 

{i,…m} 
7 

Selection of systems and 

interfaces between them 

Individual systems of 

the SoS 

Aij : i ϵ {1,…m},  j =i , 

also sometimes written 

as  Aii , or simply  Ai 

8 
Numbered systems up to 

m=29 

Achievable interface 

Aij : i ϵ {1,…m},  j > i , 

and  

Ajk = 1, Aik = 1, Aii =1, 

Ajj=1, Akk = 1 , where 

Akk is any 

communications system 

9 

Depends on both system 

interfaces with joint 

communications systems, and 

systems’ presence in the 

architecture 

SoS main capability:   C 10 Find and rescue survivors 

SoS performance in its 

large capability:   
PSoS 11 

Torrent problem toy problem 

Expressed as probability of 

finding a survivor within 2-12 

hours in frigid temps 

Component 

capabilities of 

systems:   

cij :  i ϵ {1,…n},  

j ϵ {1,…m}  (binary) 
12 Shown in Figure 4.6 
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Table 4.11.  Mathematical definitions for SAR model (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for SAR Model 

Performance of a 

particular system in its 

key capability:   

Pi
Ss  :  i ϵ {1,…m} 13 

Depends on the system; 

simplified down to a single 

gestalt number for this 

example; shown in Figure 4.6 

Estimated funding to 

add an interface to an 

individual system:   

FIFi
Ss :  i ϵ {1,…m} 14 Shown in Figure 4.6 

Deadline for 

developing new 

interface(s) on a 

system:   

Di
Ss  :  i ϵ {1,…m} 15 Shown in Figure 4.6 

Estimated funding for 

operation of all the 

participating systems 

during an SoS 

operation:   

FOPi
Ss :  i ϵ {1,…m} 16 

Calculated for each 

chromosome 

Function describing 

the advantage of close 

collaboration within 

an SoS as a function 

of participating 

systems and 

interfaces:   

F (Aii,  Aij , j≠i,  ) :  i ϵ 

{1,…m},  j ϵ {i,…m} 
17 

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠

∗  (1 + 𝑑𝑒𝑙𝑡𝑎)
(∑

𝐴𝑐ℎ𝑖𝑒𝑣.  𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠− 
∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣.  𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠) 

Function for 

combining system 

capabilities into SoS 

capability C:   

𝐶 =  ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 * (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓) 

Number of individual 

attributes the 

stakeholders want to 

evaluate the SoS over:   

g 19 4 

Attribute names to 

evaluate SoS 

architectures against  

(e.g., cost, 

performance, 

flexibility):   

Attk :  k ϵ {1,…g} 20 

Att1 = Performance 

Att2 = Affordability 

Att3 = Flexibility 

Att4 = Robustness 
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Table 4.11.  Mathematical definitions for SAR model (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for SAR Model 

Number of gradations 

of each Attribute that 

become Fuzzy 

Membership 

Functions (MF):   

hk  :  k ϵ {1,…g} 21 hk = 4  for all k 

Fuzzy membership 

function names within 

each attribute 

(granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk},  b ϵ 

{1,…g} 
22 

a=1:  Unaceptable 

a=2:  Marginal 

a=3:  Acceptable 

a=4:  Exceeds  

For all b 

Fuzzy membership 

function boundaries 

(cross over points) for 

each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  

b ϵ {1,…g} 

a=1 is lower bound of 

universe of discourse, a 

ϵ {2,…h+1} is upper 

bound of MF(a-1)b 

because Matlab can’t 

handle matrix subscripts 

of zero 

23 
See Table 4.10.  MF edge 
crossover points for SAR 

Overall SoS 

performance in an 

Attribute 

( ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F 

(Aii,  Aij, j≠i,  ) 
24 

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘+ 𝑃𝑖

𝑆𝑠𝑐𝑖𝑘)𝑛
𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 

* (1 − 𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓 −
∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓) 

 Total cost of 

developing and 

using an SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 

Ops cost  =  ∑ 𝑎𝑖
𝑚
𝑖=1 ∗ 𝐹𝑂𝑃𝑖

𝑆𝑠 

Dev cost = ∑ (∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1

𝑚
𝑖=1 ∗

𝐹𝐼𝐹𝑗
𝑆𝑠 + ∑ 𝑎𝑗𝑖 ∗ 𝐹𝐼𝐹𝑗

𝑆𝑠𝑚
𝑗=𝑖+1 ) 

Cost = operations cost  +  

development cost 
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Table 4.11.  Mathematical definitions for SAR model (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for SAR Model 

Parameters for 

controlling the 

netcentric performance 

factor 

 Increment per 

interface 

 Penalty inc. for 

unachievable 

 Penalty dec. 

for achievable 

i/f 

 

 

 

 

Epsilon ϵ 
 
Penup 

 

Pendn 

26 

 

 

 

 

0.008   &  0.005   &  0.01 

 

0.4              0.3           0.3 

 

0.6              0.2           0.8 

Parameters for 

controlling the GA: 

 Mutation Rate 

 Number in 

Population 

Number of 

Generations 

 

 

Delta 

p 

 

g 

27 

 

 

0.02     &  0.005  &  0.01 

80               80          300 

 

50               50            50 

 

 

A system may spend funds on an interface that will not be ready until the next 

epoch, but they will get no performance increment from that interface until it is complete.  

An overall ‘relative’ performance value was assigned to each system based on its key 

capability.  The costs for development were rough figures similar to what may be seen in 

official and informal budgetary estimates for interfacing with communications systems 

and integrating the mission systems to be able to interoperate.  The costs to operate 

aircraft or other systems were determined similarly, in units of thousands of dollars per 

flight hour.  The units are chosen to result in numbers usually between 0.1 to 100 because 

it makes comparisons more intuitive and easier to keep straight in one’s head. 
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4.1.3.1 A model building basis for SAR. New tools are being developed that 

could make the integration of the SoS exploration and analysis tools developed here even 

easier to use.  When building the SAR model, autogenerating the domain input data from 

a more general descriptive model of a system or SoS was examined.  It does appear 

possible, but additional development would be required.  The activity diagram in Figure 

4.8, built using classes that equate to the types of systems used in SAR, is an example of 

the way that today’s SoS architects are being taught at the Naval Postgraduate School.  

This is the way analysts and graduate systems engineers are being trained to think and 

communicate architecture concepts among themselves and to others.  This relatively new 

tool can already autogenerate an execution timeline such as that shown in Figure 4.7 

(SPEC Innovations 2015).  The point of this is not to recommend a tool, but to note that 

newer tools are evolving to be able to support the types of representation and analysis 

that will make architecting future SoS far more effective and efficient.  Competitive 

pressure will move all the tool vendors in this direction. 

4.1.3.2 Additional features of recent tool versions. Multiple executions can be 

set up in Monte Carlo simulations to obtain analysis statistics of a model architecture as 

well.  This type of connection between tools, architectures and analysis might be fruitful 

to pursue in future work.  The activity diagram shown in Figure 4.8 shows swim lanes, 

serial step sequences, data exchanges between steps, loops, and parallel paths. 

4.1.4 MITRE “Toy” Problem. MITRE presents what they call the Toy SoS 

problem that has been studied fairly extensively within the government (DeLaurentis, et 

al. 2012) and academically (Guariniello and DeLaurentis 2014).  This SoS problem was  
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Figure 4.7.  Execution timeline example generated directly from the SAR model 
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Figure 4.8.  Activity diagram matching the CONOPS of the SAR model 

recast in the format used in FILA-SoS, but the original Toy problem in Figure 4.9 is too 

small to work properly in FILA-SoS, because all component systems must be included 

and they all have only one capability in the original formulation – there is nothing to 

select.  Therefore, there is really no opportunity to trade different numbers of system 

types or combinations of systems and interfaces among themselves as FILA-SoS does.  

Additionally, the network connection graph is directed in the Toy problem, whereas in 

FILA-SoS only undirected graphs were used.  Finally, the performance attribute in the 

Toy problem was calculated using the functional dependency network analysis algorithm, 

so a very different form of input domain data is required (Garvey and Pinto 2009).  

FDNA assumes the links are always associated with each system, not counted separately 

as in FILA-SoS, but it adds to the model by including a ‘criticality of dependency’ 

(COD) and a ‘strength of dependency’ (SOD) value for each link.   
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For purposes of having a few more systems to choose from, the Toy problem was 

initially reconfigured as shown in Figure 4.10.  The corresponding input domain data is 

shown in Figure 4.11.  The additional Missouri modification input COD and SOD data is 

on pages 316-317 of Appendix E.  The MF data shown in Table 4.12 uses the ratio of 

original COD data to the COD as the key measure when systems are reduced in 

efficiency by maintenance failure or by attack.  The remaining Toy problem data is 

shown in Table 4.13 and Table 4.14.  The affordability MF limits are set in this version 

so that too many or too few systems will be discarded from the solution by the GA. 

 

Figure 4.9.  MITRE Toy SoS problem as originally proposed 
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Figure 4.10.  Reconfigured Toy problem for Missouri Toy FILA-SoS approach 

 

Figure 4.11.  Input domain data for FILA-SoS configured Toy problem 

Name TOY A

NumSys 22 com1 23

NumCap 5 sys has capability, costs, perf, deadline 1 2 3 4 5

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime Ground SatA UAV SatB Carrier

1 Ground 1 0 1 100 0 x

2 SatA1 2 0 1 100 0 x

3 SatA2 2 0 1 100 0 x

4 SatA3 2 0 1 100 0 x

5 SatA4 2 0 1 100 0 x

6 SatA5 2 0 1 100 0 x

7 SatA6 2 0 1 100 0 x

8 SatA7 2 0 1 100 0 x

9 SatA8 2 0 1 100 0 x

10 UAV0 3 0 1 100 0 x

11 UAV1 3 0 1 100 0 x

12 UAV2 3 0 1 100 0 x

13 UAV3 3 0 1 100 0 x

14 UAV4 3 0 1 100 0 x

15 UAV5 3 0 1 100 0 x

16 SatB1 4 0 1 100 0 x

17 SatB2 4 0 1 100 0 x

18 SatB3 4 0 1 100 0 x

19 SatB4 4 0 1 100 0 x

20 SatB5 4 0 1 100 0 x

21 SatB6 4 0 1 100 0 x

22 Carrier 5 0 1 100 0 x
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Table 4.12.  MF edge crossover points for TOY problem 

         Lower Bound 
Attributes 

1 1.5 2.5 3.5 4 

Performance Ratio 0 0.8 0.9 0.98 1 

Affordability -50 -6 -5.5 -5 -4.8 

Flexibility 0 0.25 0.5 1 2 

Robustness -0.25 -0.18 -0.12 -0.06 -0.01 

Table 4.13.  MITRE Toy problem SoS domain datasheet 

Overarching 

Purpose of SoS 

Relay commands and ISR data from ground station and UAV to a 

Carrier Battle Group 

Unique value 

of SoS 

Provide redundant paths for data important to the Carrier Battle 

Group (CBG) 

SoS Measures 

of 

Effectiveness 

Reliability of data links 

Latency of data 

Issues that 

might limit 

effectiveness of 

the SoS 

Weather 

Availability of participant systems 

Cyber attacks on elements of system 

Jamming of communications links 

SoS features 

that might 

greatly increase 

effectiveness 

Similarity of data link formatting 

Over the horizon communications links 

Frequency diversity 

Redundant messages 

Desired 

Effectiveness 

99.999% up time for end to end communications 

Full bandwidth availability 

Stakeholders Carrier Battle Group Users  Information Generators 

Satellite operators   Other potential Users of links 

UAV controller   Ground Station Operators 

UAV owner 

ROM Budget: 

Development 

About $10M 

ROM Budget: 

Operations 

About $5M 
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Table 4.13.  MITRE Toy problem SoS domain datasheet (cont.) 

Attributes of 

the SoS, and 

range limits for 

fuzzy 

evaluation 

Performance – redundancy of communications links (individual 

links all perform the same in Toy problem) 

Affordability – budgetary pressures, small investment (basically all 

acceptable for Toy problem) 

Robustness – still works with only partial complement of systems 

Flexibility -  many choices of partners 

Capabilities of 

contributing 

systems 

Ground station uplinks 

Relay capability of satellites 

Relay capability of UAV 

Receive capability of Carrier Battle Group 

Table 4.14.  Mathematical definition of variables for Missouri Toy problem 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for Toy Model 

Name of SoS:   sos 1 TOY 

Number of potential 

systems:   
m 2 22 

Number of types of 

systems:   
t 3 5 

Names of system 

types:   
sys_typi : i ϵ {1,…t} 4 

sys_typ1 = Ground 

sys_typ2 = SatAx, x ϵ (1 - 8) 
sys_typ3 = UAV x, x ϵ (0 - 5) 
sys_typ4 = SatB x, x ϵ (1 - 6) 
sys_typ5 = Carrier 

Number of component 

capabilities:   
n 5 5 

Names of component 

capabilities:   
sys_capi  : i ϵ {1,…n} 6 

sys_cap1 = Ground 

sys_cap2 = SatA 

sys_cap3 = UAV 

sys_cap4 = SatB 

sys_cap5 = Carrier 

Binary meta-

architecture upper 

triangular matrix:   

Aij : i ϵ {1,…m},  j ϵ 

{i,…m} 
7 

Selection of systems and 

interfaces between them 

Individual systems of 

the SoS 

Aij : i ϵ {1,…m},  j =i , 

also sometimes written 

as  Aii , or simply  Ai 

8 
Numbered systems  up to 

m=22 
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Table 4.14.  Mathematical definition of variables for Missouri Toy problem (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for Toy Model 

Achievable interface 

Aij : i ϵ {1,…m},  j > i , 

and  

Ajk = 1, Aik = 1, Aii =1, 

Ajj=1, Akk = 1 , where 

Akk is any 

communications system 

9 

All achievable except the 

Ground system does not 

interface with the Carrier,  

and systems of type SatA do 

not interface with type Sat B 

SoS main capability:   C 10 

Performance ratio of 

Connection Ground to 

Carrier 

SoS performance in its 

large capability:   
PSoS 11 Continuity of connection 

Component 

capabilities of 

systems:   

cij :  i ϵ {1,…n},  

j ϵ {1,…m}  (binary) 
12 

Whether each system 

posseses each capability 

Performance of a 

particular system in its 

key capability:   

Pi
Ss  :  i ϵ {1,…m} 13 

COD and SOD for each 

system are shown on page E-

13 of Appendix E for initial 

solution; the general solution 

used COD/SOD in Figure 64-

65 

Estimated funding to 

add an interface to an 

individual system:   

FIFi
Ss :  i ϵ {1,…m} 14 

Shown in Figure 4.1; all the 

same 

Deadline for 

developing new 

interface(s) on a 

system:   

Di
Ss  :  i ϵ {1,…m} 15 

Shown in Figure 4.1; all the 

same 

Estimated funding for 

operation of all the 

participating systems 

during an SoS 

operation:   

ΣFOPi
Ss :  i ϵ {1,…m} 16 

Calculated for each 

chromosome’s selected 

systems 

Function describing 

the advantage of close 

collaboration within 

an SoS as a function of 

participating systems 

and interfaces:   

F (Aii,  Aij , j≠i,  ) :  i ϵ 

{1,…m},  j ϵ {i,…m} 
17 

FDNA implementation of 

COD and SOD matrices 

Function for 

combining system 

capabilities into SoS 

capability C:   

𝐶 =  ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

See the Matlab code in 

Appendix B pg 21, file 

evalsos.m and fdn22Atoy.m 

for the Toy problem 
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Table 4.14.  Mathematical definition of variables for Missouri Toy problem (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for Toy Model 

Number of individual 

attributes the 

stakeholders want to 

evaluate the SoS over:   

g 19 

1; other attributes are used 

only to select out undesired 

chromosomes for initial 

solution 

4 were used in the second, 

general FDNA 

implementation 

Attribute names to 

evaluate SoS 

architectures against  

(e.g., cost, 

performance, 

flexibility):   

Attk :  k ϵ {1,…g} 20 

Att1 = PerformanceRatio 

(before and after attacks); 

same for both 

implementations 

Att2 = Affordability 

Att3 = SinglePtFailure 

Att4 = StrengthOfDepen 

Number of gradations 

of each Attribute that 

become Fuzzy 

Membership Functions 

(MF):   

hk  :  k ϵ {1,…g} 21 hk = 4  for all k 

Fuzzy membership 

function names within 

each attribute 

(granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk},  b ϵ 

{1,…g} 
22 

a=1:  Unaceptable 

a=2:  Mediocre 

a=3:  AboveAvg 

a=4:  VeryGood 

For all b 

Fuzzy membership 

function boundaries 

(cross over points) for 

each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  

b ϵ {1,…g} 

a=1 is lower bound of 

universe of discourse, a 

ϵ {2,…h+1} is upper 

bound of MF(a-1)b 

because Matlab can’t 

handle matrix subscripts 

of zero 

23 

See Table 4.12.  MF edge 

crossover points for TOY 

problem 

Overall SoS 

performance in an 

Attribute 

( ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F 

(Aii,  Aij, j≠i,  ) 
24 

See the Matlab code in 

Appendix B pg 21; it is 

unique for the generalized 

Toy problem 

 

  



  188 

   

Table 4.14.  Mathematical definition of variables for Missouri Toy problem (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for Toy Model 

Total cost of 

developing and using 

an SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 

See the Matlab code in 

Appendix B; used only to 

confirm a feasible 

chromosome in first solution, 

when only one of each type is 

chosen (no costs); 

General formulation of 

FDNA evaluator included 

multiple systems of each 

type, so cost counted 

Parameters for 

controlling the 

netcentric performance 

factor 

 Increment per 

interface 

 Penalty inc for 

unachievable 

 Penalty 

decrement for 

achievable i/f 

 

 

 

Epsilon ϵ 
 
Penup 

 

Pendn 

26 

 

 

 

 

N/A 

 

N/A 

 

N/A 

Parameters for 

controlling the GA: 

 Mutation Rate 

 Number in 

Population 

 Number of 

Generations 

 

Delta 

p 

 

g 

27 

 

 

0.02 

40 

 

50 

 

 

4.1.5 Large Live-Virtual-Constructive (LVC) Model. MITRE and the Army 

supplied a very large, proprietary training SoS problem for validation of the method on a 

realistic problem.  It was broken down to 111 systems with 74 capabilities after exploring 

architecture description information from relatively complete DoDAF compliant 

information on the SoS in several proprietary documents and stakeholder summary 
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presentations.  A sanitized version of the SoS domain data is shown in Table 4.15, with 

the mathematical definitions for the LVC problem in Table 4.16. 

Table 4.15.  MITRE Proprietary LVC problem SoS domain datasheet 

Overarching 

Purpose of SoS 

Enable, and enhance the value of, Live, Virtual, Constructive 

training 

Unique value 

of SoS 

Allows many existing automated and operator in the loop training 

simulations, and live participants to train simultaneously 

SoS Measures 

of 

Effectiveness 

Proprietary 

Issues that 

might limit 

effectiveness of 

the SoS 

Latency 

Mistranslation of data between different systems 

Lack of centralized truth data 

SoS features 

that might 

greatly increase 

effectiveness 

Establishment of central truth data 

Common interfaces among participating systems 

Improved sense of reality to training simulations 

Allowing any mix of live, virtual, and constructive participants 

Desired 

Effectiveness 

Proprietary 

Stakeholders Trainers and trainees (both users of the systems), funders, system 

developers 

ROM Budget: 

Development 

Proprietary 

ROM Budget: 

Operations 

Proprietary 

Attributes of 

the SoS, and 

range limits for 

fuzzy 

evaluation 

Seven Proprietary attributes 

Capabilities of 

contributing 

systems 

Communications 

Displays 

Simulations of numerous tasks to be trained 
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Table 4.16.  Mathematical definition of variables for LVC validation problem 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for LVC Model 

Name of SoS:   sos 1 LVC 

Number of potential 

systems:   
m 2 111 

Number of types of 

systems:   
t 3 18 

Names of system 

types:   
sys_typi : i ϵ {1,…t} 4 Proprietary 

Number of component 

capabilities:   
n 5 74 

Names of component 

capabilities:   
sys_capi  : i ϵ {1,…n} 6 Proprietary 

Binary meta-

architecture upper 

triangular matrix:   

Aij : i ϵ {1,…m},  j ϵ 

{i,…m} 
7 

Selection of systems and 

interfaces between them 

Individual systems of 

the SoS 

Aij : i ϵ {1,…m},  j =i , 

also sometimes written 

as  Aii , or simply  Ai 

8 
Numbered systems  up to 

m=111 

Achievable interface 

Aij : i ϵ {1,…m},  j > i , 

and  

Ajk = 1, Aik = 1, Aii =1, 

Ajj=1, Akk = 1 , where 

Akk is any 

communications system 

9 Proprietary 

SoS main capability:   C 10 Training  

SoS performance in its 

large capability:   
PSoS 11 Training effectiveness 

Component 

capabilities of 

systems:   

cij :  i ϵ {1,…n},  

j ϵ {1,…m}  (binary) 
12 

Whether each system 

posseses each capability 

Performance of a 

particular system in its 

key capability:   

Pi
Ss  :  i ϵ {1,…m} 13 Proprietary 

Estimated funding to 

add an interface to an 

individual system:   

FIFi
Ss :  i ϵ {1,…m} 14 Proprietary 

Deadline for 

developing new 

interface(s) on a 

system:   

Di
Ss  :  i ϵ {1,…m} 15 Proprietary 
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Table 4.16.  Mathematical definition of variables for LVC validation problem (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for LVC Model 

Estimated funding for 

operation of all the 

participating systems 

during an SoS 

operation:   

ΣFOPi
Ss :  i ϵ {1,…m} 16 

Calculated for each 

chromosome’s selected 

systems 

Function describing the 

advantage of close 

collaboration within an 

SoS as a function of 

participating systems 

and interfaces:   

F (Aii,  Aij , j≠i,  ) :  i ϵ 

{1,…m},  j ϵ {i,…m} 
17 Not Used 

Function for combining 

system capabilities into 

SoS capability C:   

𝐶 =  ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘     18 

See the Matlab code in 

Appendix B for LVC 

problem 

Number of individual 

attributes the 

stakeholders want to 

evaluate the SoS over:   

g 19 7 

Attribute names to 

evaluate SoS 

architectures against  

(e.g., cost, 

performance, 

flexibility):   

Attk :  k ϵ {1,…g} 20 Proprietary 

Number of gradations 

of each Attribute that 

become Fuzzy 

Membership Functions 

(MF):   

hk  :  k ϵ {1,…g} 21 hk = 5  for all k 

Fuzzy membership 

function names within 

each attribute 

(granulation = a, 

attribute = b):   

MFab  a ϵ {1,…hk},  b ϵ 

{1,…g} 
22 Proprietary 
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Table 4.16.  Mathematical definition of variables for LVC validation problem (cont.) 

Name or description 

of variable 

Expression or Variable 

Name 

Eq. 

no. 
Value for LVC Model 

Fuzzy membership 

function boundaries 

(cross over points) for 

each of b SoS 

attributes: 

Boundab  a ϵ {1,…h+1},  

b ϵ {1,…g} 

a=1 is lower bound of 

universe of discourse, a 

ϵ {2,…h+1} is upper 

bound of MF(a-1)b 

because Matlab can’t 

handle matrix subscripts 

of zero 

23 Proprietary 

Overall SoS 

performance in an 

Attribute 

( ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘  ) * F 

(Aii,  Aij, j≠i,  ) 
24 

See the Matlab code in 

Appendix B; it is unique for 

the LVC problem; e.g., 

AU = ∑ (∑ 𝑎𝑖𝑖
53
𝑗=2

90
𝑖=60 𝑐𝑗𝑖 +

∑ 𝑎𝑐ℎ𝑖𝑒𝑣. 𝑎𝑖𝑗 +𝑚
𝑗=𝑖+1

∑ 𝑎𝑐ℎ𝑖𝑒𝑣. 𝑎𝑗𝑖
𝑖−1
𝑗=1 ) 

 

Total cost of 

developing and using 

an SoS 

𝑇𝐶 =  ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗  

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘   

25 Proprietary 

Parameters for 

controlling the 

netcentric performance 

factor 

 Increment per 

interface 

 Penalty inc for 

unachievable 

 Penalty 

decrement for 

achievable i/f 

 

 

 

Epsilon ϵ 
 
Penup 

 

Pendn 

26 

 

 

 

 

0.0015 

 

1 

 

1 

Parameters for 

controlling the GA: 

 Mutation Rate 

 Number in 

Population 

 Number of 

Generations 

 

Delta 

p 

 

g 

27 

 

0.003 

40 

 

50 
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4.1.6 How To Use the Method on Global Air Traffic Management. Global 

Air Traffic Management (GATM) is one of the largest SoS problems in existence.  

NextGen is a concept for modernizing air traffic control (ATC) in the United States to 

improve efficiency and reliability of control, and therefore the safety, of air travel, even 

in the face of more crowded skies in the future.  Reducing delays, allowing more direct 

routing to improve fuel burn (for both efficiency and the environment), and reducing 

separation standards to allow more aircraft in the same space, while improving safety are 

the top level goals of NextGen (Federal Aviation Administration 2014).  NextGen 

consists of 6 major POR level programs: 

“Automatic Dependent Surveillance-Broadcast (ADS-B) is FAA's 

satellite-based successor to radar. ADS-B makes use of GPS technology to 

determine and share precise aircraft location information, and streams 

additional flight information to the cockpits of properly equipped aircraft. 

Collaborative Air Traffic Management Technologies (CATMT) is 

a suite of enhancements to the decision-support and data-sharing tools 

used by air traffic management personnel. These enhancements will 

enable a more collaborative environment among controllers and operators, 

improving efficiency in the National Airspace System. 

Data Communications (Data Comm) will enable controllers to 

send digital instructions and clearances to pilots. Precise visual messages 

that appear on a cockpit display can interact with an aircraft's flight 

computer. Offering reduced opportunities for error, Data Comm will 

https://www.faa.gov/nextgen/adsb
https://www.faa.gov/nextgen/catmt
https://www.faa.gov/nextgen/datacomm
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supplant voice communications as the primary means of communication 

between controllers and flight crews. 

National Airspace System Voice System (NVS) will supplant 

FAA's aging analog voice communication system with state-of-the-art 

digital technology. NVS will standardize the voice communication 

infrastructure among FAA facilities, and provide greater flexibility to the 

air traffic control system. 

NextGen Weather will help reduce weather impact by producing 

and delivering tailored aviation weather products via SWIM, helping 

controllers and operators develop reliable flight plans, make better 

decisions, and improve on-time performance. NextGen Weather is 

accomplished through collaboration between FAA, NOAA and NASA. 

System Wide Information Management (SWIM) is the network 

structure that will carry NextGen digital information. SWIM will enable 

cost-effective, real-time data exchange and sharing among users of the 

National Airspace System” (Federal Aviation Administration 2015). 

Although NextGen is the US plan for ATC upgrades, European airspace is even 

more crowded and has additional issues due to the numerous sovereign national systems.  

Single European Sky (SES) is their master plan for ATM (EUROCONTROL - The 

European Organisation for the Safety of Air Navigation 2015), and SESAR (Single 

European Sky ATM Research) is the technology and systems portion of their ATC 

upgrade plans (European Commission of Transport 2015) (SESARJU 2015).  Curiously, 

their website’s audio says that the environment is the top goal, but the written materials 

https://www.faa.gov/nextgen/nvs
https://www.faa.gov/nextgen/wx
https://www.faa.gov/nextgen/swim
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cite safety, efficiency, predictability and reduced cost for providing air traffic 

management (ATM) (what they call ATC) as the top goals, not bothering to cite 

environment at all.   

In the Pacific region, which actually has slightly more passenger-miles flown than 

either North America or Europe, the current plan for improving ATM is under the 

auspices of the International Civil Aviation Organization (ICAO), embodied in the 

Asia/Pacific Seamless ATM Plan (Group, Asia/Pacific Seamless ATM Planning 2013).  

The number one, key attribute in that document is interoperability between different 

ATM regions, followed by safety, seamlessness of flight services between different 

regions, then efficiency.  A secondary concern is simultaneity of changes in service 

modes among the regions.  The Asia/Pacific region treats its member systems more like 

an acknowledged SoS than NextGen and SESAR.  NextGen is slightly more in the strong 

central authority end of the spectrum of control, due to the principal participation of the 

federal government in ATC and tightly controlled certification for flight processes in the 

US.  SESAR is about midway between Asia/Pacific and US in degree of central control 

for an SoS.   

These details illustrate the necessity of reaching agreement on what to call the 

appropriate key attributes, along with careful definition of their meaning and how to 

measure them among all the stakeholders.  Additional discussion of issues with NextGen 

is available in Haimes & Anderegg (Haimes and Anderegg 2015).  This top-level 

agreement is key to making any analysis or recommendation useful to the broad group of 

stakeholders.  This is especially true when close collaboration is necessary to achieve one 

of the key goals, such as the extremely technical goal of improved safety.  If there is 



  196 

   

anyone not following the agreed upon rules, safety inevitably suffers.  When tackling this 

sort of global issue, it is extremely difficult to find the common ground without over-

simplifying some issues; also difficult to agree on attribute definitions among all the 

competing voices in the discussion.  Frequently the lofty goals suggesting themselves at 

first blush on seeing a problem get cut back in the hope of keeping all the member 

systems ‘in the fold.’  Establishing the dictionary and achieving stakeholder ‘buy in’ 

would have to be the initial priority for GATM.  It would be very difficult in this arena.  

Nevertheless, harmonizing and improving GATM is a greatly to be desired, overarching 

goal, which everyone supports to some extent.  That extent is largely determined by the 

affordability of the improvements.  That is why affordability seems always to be a key 

attribute in evaluating the SoS.   

Another problem for using the FILA-SoS approach on global ATM is that the 

structure of the participation is not at a peer to peer level, as it was in all previous 

examples of acknowledged SoS.  There is a much more hierarchical nature to the 

systems’ organization within ATM.  Getting an airline company or a government to 

provide (or use) ATM services or capabilities in the desired way can stepwise add dozens 

or hundreds of aircraft (or flights – we still have to decide what the unit of system 

measure should be), or large coverage areas to the SoS, while the general aviation sector 

will require tedious, individual system co-option into the SoS.  The FILA-SoS approach 

might have to be substantially modified to handle a hierarchical organization of systems, 

where some interfaces are still peer to peer, and others are up or down a hierarchical tree 

structure. 
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Selecting how to partition the numerous possible systems, as well as how to 

enumerate the possible capability elements, will also be a significant challenge for the 

goal of upgrading ATM globally.  Civil air includes airlines of many sizes with many 

types of equipment, both fixed and rotary wing, as well as general aviation with many 

types and vintages of aircraft.  There is also military and other government aircraft to 

consider.  Ground facilities include airports, passenger and cargo facilities, maintenance 

(daily: such as fueling, minor inspection, remove & replace, and major:  such as 

modifications and overhaul) as well as terminal and en route ATM control facilities.  

Space systems such as GPS, Inmarsat, or Iridium satellites may also have to be included.   

Enumerating and partitioning the classes of systems and capabilities would certainly need 

to be iterated with attribute selection and evaluation modeling approaches to be effective.   

The various communications systems that provide the links between components 

will fit nicely into the achievable/unachievable interface formulation.  Upgrading 

capabilities to include new digital radios would work well with the FILA-SoS 

negotiations framework and the time component of the development of capabilities over 

multiple epochs.  So there are some factors about the global ATM problem that would fit 

quite well with the FILA-SoS approach, even if some parts present great difficulties. 

There are large, detailed analyses underway by each ATM region on how to 

maintain safety while making the changes needed to upgrade the infrastructure of ATM 

systems, and how to implement changes piecemeal in the many, many components of the 

SoS.  Safety as one of the primary goals is a difficult attribute to model.  It is absolutely 

not considered adequate to have a ‘rough’ model of safety (one of the key thrusts of the 

FILA-SoS approach), but instead to require the most detailed and accurate modeling 
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possible to be able to prove any changes will be as safe as the existing systems.  If the 

FILA-SoS approach is used to analyze policies, efficiency, timetables, or rough costs, it 

might do well.  Attempting to use or even create ‘rough’ models of safety as an attribute 

would be very likely to discredit the approach entirely.  However, the FILA-SoS 

approach is modular, so if a large scale, validated model could be made to work with the 

other components, one could theoretically use it within a FILA-SoS type approach. 

4.2 RESULTS OF IMPLEMENTING THE METHOD 

In the discussion of the results in this section, the definitions of the eight sub-

graphs presented in Table 3.4 for each run during the GA have been changed as follows: 

 The third graph on the top now has both the performance and flexibility 

attributes plotted in different colors to make room for the heat map  

 The fourth graph now has a ‘heat map’ presentation of the frequency of ones 

in each chromosome position for the better performing half of the population. 

 The penalty graph was removed to make room for the best chromosome graph 

of the current generation 

 The last graph now has the best chromosome of the current generations’ 

population plotted in the color coded upper triangular form 

Later examples sometimes have a slightly different form of display because that 

subroutine was changed to be able to handle varying numbers of attributes and MFs, 

controlled entirely by the input data, using the same code for all types of problems. 

4.2.1 Sensitivity Analysis. The ranges of items that were varied for sensitivity 

analysis included the following: 
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 The value of the netcentric performance increment (epsilon); from about 0.1% 

to 2% per achievable interface; ratio of penalty to reward was also varied 

through a range of 0.3 to 3. 

 Changing epsilon requires adjustments to penup and pendn, as well as 

membership function limits to account for changes to average performance of 

SoS architectures, as well as the robustness limits because they correlate 

moderately with performance. 

 Cost and performance inputs for various system elements, over a range of 

about 0.5 to 2 for the ratio of changes of key systems contributors. 

 Protecting prior negotiated systems during mutation in the GA, to model a 

succeeding epoch of the wave model of SoS development where some 

systems with their interfaces had already negotiated their inclusion in the SoS 

and were not open to random selection.  These are shown in pages E1-E11 of 

Appendix E, Supplementary Figures. 

 Mutation rate was varied between 0.5% and 10% with no noticeable impact.  

The population size was varied from 20 to 5,000.   

 The number of generations in the GA was varied from 20 to 500. 

 Minor rule changes in the way attributes values contributed to SoS assessment 

were also varied over the course of the research. 

In addition, coefficients of correlation between the number of systems, number of 

interfaces, all attribute evaluations, and the SoS assessment were run for each example.  

None of the variations made significant changes to the overall pattern of results, although 

convergence rate of the GA was occasionally different. 
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4.2.2 Results of Gulf War ISR Modeling. Representative generational 

snapshots in a GA run of 50 generations is shown in Figure 4.12 and Figure 4.13 for the 

first ISR model.  All population graphs have been sorted by the overall SoS fitness, 

which is shown in the second graph in the top row of each snapshot.  One can see the 

gradual improvement of the SoS fitness for the whole population from generation to 

generation in the four snapshots.  The first generation still has the distribution forced 

from a few to many ones, but when sorted by the fitness, the correlation to chromosome 

number within the population is lost.  In subsequent generations distribution of the 

number of ones is not forced, but governed by the mutation rate about the better 

chromosomes (with a few ‘sports’ from lower in the sort) that were selected for 

propagation to the next generation  

 

Figure 4.12.  Intermediate progress through GA generations showing SoS fitness 

improvement 
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Figure 4.13.  Typical 50th generation output graphs for GA of the ISR 

Some GA optimization runs were made with relatively large populations and 

many generations.  A population size of 300, is shown in Figure 4.14.  The convergence 

plot in Figure 4.15 shows an improvement at generation 150 of 200.  Most runs had no 

improvement after about 20 to 30 generations.  A few still had some improvement as late 

as generation 70, but that was quite rare.  The green line at the bottom of Figure 4.15 

shows the assessment of the chromosome at the 20th percentile of overall fitness within 

the population in that generation.  This example has relatively few top performing 

chromosomes, with about 30% of the population in a plateau at about 98% of the best 

value, as shown in the second subgraph on the top row of Figure 4.14.  The best 

chromosome after this 200 generation run is shown in Figure 4.16. 
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Figure 4.14.  An ISR run of 200 gens with 300 in population 

 

Figure 4.15.  This convergence plot shows an ISR assessment still improving at 

generation 150 
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Figure 4.16.  Final ISR SoS chromosome display for 200 generations 

4.2.3 Results of OOTW Scenario Model. Figure 4.17 shows the result of a 

small valueExplore.m run to ensure that the MF edges are set in reasonable areas for each 

attribute, and that even with only a few chromosomes in this example, there are some 

acceptable SoS assessments. 

The correlation coefficients between all the variables for this exploration run are 

shown in Table 4.17.  Correlations between the position in the population, the number of 

systems and interfaces, the overall SoS assessment, each attribute evaluation, and the 

penalty for unachievable interfaces (I/Fs in the table) are shown.  The relatively small 

correlation of each of these variables to the overall SoS assessment means that the SoS 

assessment does not weight any element more heavily than it should.  Most attribute 

evaluations are not significantly cross-correlated, either.  The highest correlation of any 

attribute evaluation with SoS assessment is only 26%.  This means that the fuzzy assessor 
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is correctly picking architectures that satisfy several of the desires simultaneously, as 

intended. 

 

Figure 4.17.  Biased number of ones in a small population explores the space adequately 
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Table 4.17.  Correlation coefficients among all the OOTW attribute variables 

 Pop # Sum I/F SoS 

Assess 

Perf Flex Robust Sum Sys Penalty Total $ Afford-

ability 

Pop # 1.000 0.9936 0.0331 0.8718 0.7502 0.4615 0.9347 0.4904 0.9874 0.9691 

Sum I/F  1.0000 0.0327 0.8718 0.7582 0.4453 0.9338 0.4816 0.9921 0.9756 

SoS Assess   1.0000 0.1324 0.2658 0.0625 0.1340 0.1483 0.0490 0.0699 

Performanc
e 

   1.0000 0.7719 0.6656 0.9562 0.1847 0.9070 0.8217 

Flexibility     1.0000 0.4600 0.7912 0.2999 0.7789 0.7513 

Robustness      1.0000 0.5608 0.0496 0.4840 0.4113 

Sum 

Systems 

      1.0000 0.3846 0.9584 0.9169 

Penalty        1.0000 0.4573 0.6247 

Total $         1.0000 0.9755 

Afford-

ability 

         1.0000 

 

 

The first generation, a randomized population (by the number and placement of 

ones in the chromosomes), when the GA was run on the OOTW model, showed fewer 

relatively good chromosomes than the other models, but otherwise behaved very 

similarly to the others.  When large numbers (>50) were used in the population, there 

tended to be faster and smoother convergence to the ultimate arrangement.  Since the 

early version GA implementation kept the top 20% including the best one and three other 

‘stray’ chromosomes to build the next generation, populations less than 20 could not be 

used.  Forty was the smallest population used in this research.  That allowed a minimum 

of four of the better chromosomes (aside from the best one) to be kept for replication, 

mutation, crossover and transposition.  Populations of 80, 100, or 120 were frequently 

used; a few times 1000 or even 5000 members were used, such as in the population for 

the OOTW problem.  Figure 4.18 consists of snapshots of the GA for the OOTW 

problem; Figure 4.19 shows convergence (blue line) takes about the same number of 

generations for the smaller population sizes, but not as smoothly, and does not reach quite 
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to the same level as the larger population examples (the bumpy green line is the 20th 

percentile chromosome down from the fittest in each generation). 

 

Figure 4.18.  OOTW SoS GA snapshots with population =100, total generations = 50 



  207 

   

 

Figure 4.19.  OOTW convergence with generations and population = 40 

4.2.4 Results of SAR Modeling. The SAR model did not have exactly the same 

characteristics as the ISR model in the GA as shown in Figure 4.20 and Figure 4.21.  

There seemed to be a plateau of SoS assessments at the average level.  The remainder of 

the evaluation functions operated quite similarly to the other SoS examples.  With the 

most commonly used systems being the highest performing systems and the lowest cost 

systems.  Figure 4.22 shows an example of implementing the second wave of SAR SoS 

development; it is not as good as the first wave because more systems joining in the 

second wave cost more, causing affordability to go down by a large amount. 

The original inputs for the exploration portion of the method for SAR is shown in 

Figure 4.23; the result of changing the membership function ranges to get more attribute 

results into the ‘above average’ or ‘acceptable’ MF is shown in Figure 4.24.  SoS 

assessment values on the left in the original do not exceed 2.6 on the scale of 4; but after 

easing the robustness MF limit (lower left graph), the example on the right has many 
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more population members around an SoS assessment of 3.6.  The simple adjustment to 

the robustness MF mapping makes the SoS evaluation improve so much because it 

widens the choices available in the other attributes.  In a real example, coordination 

among the stakeholders would be necessary to alter the membership function edges this 

way, but for demonstration purposes, it was only necessary to slightly alter the robustness 

MF edge to get different results in the valueExplore.m function, confirming that the GA 

could then be run far more successfully.  

  

   

Figure 4.20.  Snapshots of typical GA generations of 29 system SAR convergence 
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Figure 4.21.  Convergence and final SAR SoS configuration, first wave epoch 

 

Figure 4.22.  First wave on bottom; second wave on top 

A different version of the fuzzy inference system with fewer rules and triangular 

membership functions was also used on the SAR problem.  Figure 4.25 shows a selected 

chromosome very similar to that seen in Figure 4.20 and Figure 4.21 , with the original 

fuzzy inference system formulation.  The alternate formulation appears to have slightly 

larger variations in the attribute evaluations per generation, but the plateaus in the SoS 
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assessments within a population are still there and the overall architecture suggestion is 

quite similar.  In either formulation, improvement is not seen beyond approximately 

generation 20.  More research is probably indicated to discover better ways to select 

appropriate MF shapes along with the crossover points between them for the attributes 

they characterize.  This was merely a demonstration of the impact of choosing different 

MF shapes (trapezoidal vs. triangular in this case). 

   

Figure 4.23.  Robustness MF edges are changed between these two runs 

   

Figure 4.24.  SAR runs show impact of robustness MF change in Figure 4.23 



  211 

   

   

  

Figure 4.25.  Alternate SAR formulation provides a similar architecture 

4.2.5 Results of Toy Modeling. The toy model used functional dependency 

network analysis (FDNA) introduced by Pinto and Garvey to examine supply-chain 

problems (Garvey and Pinto 2009).  It is a very different modeling paradigm than the ISR 

and SAR problems.  Instead of a netcentric factor in the performance, evaluation, it uses a 

very complicated network application of strength of dependency (SOD) and criticality of 

dependency (COD) for each interface between nodes.  The initial toy model was solved 

for choices of only one system from each type of system, with different SOD and COD 

values for each interface.  Later, the FDNA problem was solved in general.  Then, any 

number of each type of system was allowed in the SoS. 

4.2.5.1 Initial Toy model results. The original implementation of the Missouri 

Toy problem admitted only a few choices; it required one of each of the five types of 
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systems; there were only choices for the 3 central systems:  SatA, UAV, and SatB.  There 

were only 8x6x6 = 288 choices possible.  These were easy to exhaustively list and 

evaluate, as shown in Figure 4.26 to Figure 4.28.  Here the chromosome has successive 

selections of SatA1 – SatA8, UAV0 – UAV5 and SatB1-SatB6, selected in a nested loop 

to run through all 288 chromosomes.  The input SOD and COD of each component is 

shown on page E13 of Appendix E.  The selection of different single systems provide 

different strength and criticality of dependency of the resulting five member SoS.  The 

output at the Carrier is the green line on each of the graphs.  When Ground has all its 

capability of 100 in Figure 4.26, there is no dependence on selection of intermediary 

systems in the result.  When Ground capability is reduced, as in Figure 4.27 and Figure 

4.28, then one can see there is impact to the result at the Carrier that is dependent on 

selected path, frequently showing large changes for a single system’s different choice. 

 

Figure 4.26.  Output performance for Ground station input performance of 100 
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Figure 4.27.  Output performance for Ground station input performance of 75 

 

Figure 4.28.  Output performance for Ground station input performance of 25 

4.2.5.2 Generalized FDNA implementation results. With the change to allow 

any number of each of the three central system types in the Toy problem, it now looks 

much more like the other SoS problems, with numerous potential systems and interfaces.  
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Neither the concept of netcentricity nor achievability of interfaces apply to the Toy 

problem; all the interfaces are possible to the chromosome, but only some have SOD and 

COD values that provide connectivity in the correct places for the problem.  Interfaces 

with no corresponding SOD/COD values are ignored.  Allowed SOD and COD values 

were filled with random numbers in the appropriate ranges, as shown in Figure 4.29 and 

Figure 4.30 through color-coding.  

 

Figure 4.29.  COD values for generalized Toy problem 
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Figure 4.30.  SOD values for generalized Toy problem 

The exploration of the generalized, modified Missouri Toy problem architecture 

can now be seen in Figure 4.31.  This shows how the random chromosomes fit within the 

attribute evaluation membership functions allowing for the SoS assessment to work well.  

Several snapshot views of the GA generations are shown next in Figure 4.32, and the 

final chromosome with convergence is shown in Figure 4.33, with much similarity to the 

previous SoS examples.  The correlation coefficients between SoS assessment and 

attribute evaluations in the Toy problem in Table 4.18 are all less than 0.6 except 

affordability, which was artificially manipulated to control the selection of multiple 

systems.  This would not be regarded as significant in most cases. 



  216 

   

 

Figure 4.31.  Exploration of the space with 300 biased Toy chromosomes 

Table 4.18.  Cross correlation matrix for the Toy problem shows minor correlation 

      q            i/f           5*sys         crisp        'PerfRatio'    'Afford'    'SingPtFailure'   'StrOfDepen' 

       1       0.99009        0.92912    -0.33646    -0.46849    -0.93025     0.82492    -0.57218 

 0.99009           1          0.92976    -0.37072    -0.46607    -0.93175     0.81132    -0.57316 

 0.92912     0.92976           1         -0.38345    -0.52782    -0.99021     0.85458    -0.60375 

-0.33646    -0.37072    -0.38345           1          0.28594     0.38387   -0.066851    0.49082 

-0.46849    -0.46607    -0.52782     0.28594           1          0.52006    -0.35869     0.46165 

-0.93025    -0.93175    -0.99021     0.38387     0.52006           1         -0.85366     0.58332 

 0.82492     0.81132      0.85458   -0.066851  -0.35869    -0.85366           1         -0.51362 

-0.57218    -0.57316    -0.60375     0.49082     0.46165     0.58332     -0.51362           1 
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Figure 4.32.  Early generations of Toy problem GA run shows selected interfaces 

changing 

4.2.6 Validation with a Large, Real World Example.  Propriety data from the 

Army and MITRE were used to validate the method with a large SoS problem.  The 

architecture generation method seems to be capable of dealing with increased SoS size.  

The computational scalability of the method seems to be quite good.  Matrices are used 

primarily for keeping track of the model data and relationships.  No matrix inversions or 

large matrix multiplies are required that might cause a programming implementation to 

run out of memory.  The fuzzy GA runs in a few seconds to a few minutes in Matlab on a 

high-end PC, depending on population size and number of generations.  The most time 

consuming computational task is reading and writing to Excel spreadsheets within  
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Figure 4.33.  Final generation of Toy problem; convergence plateaued around generation 

seven of 50 

Matlab for interoperability with the other segments of FILA-SoS.  The validation 

problem from MITRE had 111 systems, with 74 capabilities as shown in Figure 4.34.  

The figure shows 111 systems with costs and performance (down the left) and 74 

capabilities (across the top); shaded areas at intersections represent the capabilities of 

each system.  It had seven KPAs with five levels of granularity in the membership 

functions.  The fuzzy inference system had 18 rules, shown in Figure 4.35, compared to 

the 11 rules in the four attribute ISR, OOTW, SAR, and Toy problems.  The SARone 

example with triangular MFs had only 4 rules.  The principal and most time-consuming 

things that had to be changed in the software for the much larger validation problem were 

the display subroutines.  These were successfully modified to be quite general now, as 

shown in Appendix B. 
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The approach and process steps in the domain independent portion of the method 

worked quite well.  The most risky area for expansion is communication with and level 

setting among all the systems, capabilities and stakeholders in a larger SoS.  Gathering 

the other domain dependent data such as cost and schedule estimates, deciding what 

minor changes could be made, deconstructing system capabilities, and developing 

attribute evaluation algorithms is more time-consuming for the greater number of 

systems.  However, with that many systems, patterns emerge and many elements might 

be filled in rapidly.   

Growth in the number of KPAs would significantly drive the amount of analysis 

required to create evaluation algorithms, choose membership function shapes for each 

one, and check their validity.  Growth in the number of KPAs would very likely also 

drive a larger number of rules in the FAM.  When all these model parameters grow in 

number, the number of iterations in the sampling runs can increase substantially to insure 

everything is correctly coded for all the combinations.  The coordination and SME 

reviews grow with the number of systems.  On the other hand, as the number of systems 

grows, the impact of individual systems is more diffuse; therefore, the need for every 

system to be modeled very accurately (as well as errors in modeling the impacts of each 

bit in the chromosome) diminishes.  Therefore, there are several straightforward linear 

factors that increase the time and effort it takes to create, socialize, and vet the larger 

model, but the experience in the FILA-SoS validation problem shows this could be fairly 

reasonable if the stakeholder community cooperates.   

The attributes definitions and the granularity of each attribute were provided by 

the customer in the validation problem.  Once again, the population evaluations were not 
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strongly correlated, as shown in Table 4.19, although more highly correlated than the 

prior ‘made up’ examples in the Table 4.17 and Table 4.18.  This means that the 

stakeholders had chosen good attributes for their problem.  Finally, the upper triangular 

matrix form of the architecture as shown in Figure 4.36, is starting to show bands of 

unselected systems where they were relatively expensive, even though those systems 

could provide many capabilities; many of those capabilities were available from the other 

systems as well.  This is a reasonable way to select an arrangement of systems and 

interfaces for an SoS 

 

Figure 4.34.  Very large input data matrix for the LVC problem (gray cells contain ‘1’) 
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Figure 4.35.  18 fuzzy rules with seven attributes on the left, compared to 11 rules and 

four attributes of other models  

Table 4.19.  Correlation coefficients for the LVC problem 

 

Pop 

Seq 

# 

# of 

I/F 

# 0f 

Sys 

SoS 

Asses

s 

Attr 1 Attr 2 Attr 3 Attr 4 Attr 5 Attr 6 Afford 

Pop Seq # 1 0.997 0.984 0.637 0.935 0.997 0.861 0.536 0.98 0.67 -0.996 

# of I/F  1 0.988 0.633 0.944 1 0.87 0.564 0.984 0.674 -0.999 

# 0f Sys   1 0.622 0.946 0.988 0.862 0.569 0.994 0.683 -0.988 

SoS 

Assess 
   1 0.514 0.634 0.692 0.657 0.62 0.589 -0.632 

Attr 1     1 0.944 0.747 0.396 0.952 0.689 -0.945 

Attr 2      1 0.87 0.564 0.984 0.674 -0.999 

Attr 3       1 0.67 0.854 0.589 -0.871 

Attr 4        1 0.559 0.312 -0.561 

Attr 5         1 0.687 -0.985 

Attr 6          1 -0.678 

Afford           1 
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Figure 4.36.  Example 111 system example shows bands of less selected systems  

  



  223 

   

5. CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

A fuzzy genetic method for modeling, assessing, testing and improving SoS 

architectures was developed using the FILA-SoS meta-architecture.  This method 

generally follows the architecture development method of the DoDAF 2.02 for systems, 

extended to SoS.  Several hypothetical but reasonable examples of various sizes were 

analyzed by following the method to show its viability through application.  It should 

come as no surprise that modeling an SoS architecture is a lengthy and complex task.  

The approach of eliciting key attributes through conversations with stakeholders, and 

building, sharing and vetting models of those attributes that depend on the SoS 

architecture produces a high payoff in understanding.  This understanding extends to the 

problem domain, potential SoS solutions, and numerous issues facing the SoS designers.  

Combining the attribute evaluations through a fuzzy inference system, also based on 

discussions with stakeholders, is a powerful tool to help stakeholders understand trade 

spaces, impacts of their demands, and opportunities not previously apparent. 

Several new techniques were pioneered in this research.  The usefulness of the 

upper triangular form of the meta-architecture, something that seems so obvious now, 

took a long time to discover.  A definition of robustness (for SoS) involving the least loss 

of functionality for the SoS, after losing participation of any single system, was 

developed and implemented.  This definition of robustness could easily be extended by 

recursing it to the loss of any number of systems.  A generic algorithm for solving the 

extended FDNA Toy problem was found.  All the Matlab code for the implementation of 

these techniques is listed in Appendices B and C. 
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The research showed that building models of acknowledged SoS architectures 

may be accomplished using the generalized method in a real world system example in the 

proprietary LVC training SoS.  The method is helpful in discovering and defining issues, 

exploring ways to satisfy conflicting stakeholder needs, and in showing the impact of 

policies (through the rules) on architecture selection and evolution.  Key performance 

attributes that depend on participation in the meta-architecture can be discovered through 

facilitated interactions with stakeholders and SMEs.  The modeling approach can be 

reused across similar SoS domains with minor modifications.  A subset of all, but a still 

useful group, of KPAs can be defined such that they do depend strongly on the 

participation in the meta-architecture.  Relatively simple fuzzy rule-based systems can 

combine the KPA evaluations to an overall SoS assessment.  The fuzzy genetic approach 

has been demonstrated to be viable for finding good solutions to several SoS architecting 

problems under a restrictive meta-model of simple, undirected network graphs 

representing the system interfaces.  This was extended to the directed network in the 

extended FDNA MITRE Toy problem.   

Setting the boundaries of the membership functions, and scaling them 

independently, is a good way to get rapid understanding about the SoS architecting 

problem.  Because it is tedious to reprogram the Matlab Fuzzy Toolbox with new 

boundaries, the variable scaling discussed in section 3.3.3 shows how a type of mapping 

between fuzzy and real world variables can be accomplished quickly and easily in 

different but related problem domains.  This also allows reused solutions which appear 

similarly shaped in the fuzzy domain but mapped differently in the real domain.  By 

following the map, switching between fuzzy and real values provides a rapid approach 
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for answering questions about an architecture analysis, or for presenting results to 

stakeholders in the most understandable way tailored to their specific concerns. 

5.2 FUTURE WORK 

Extensions of the method in the areas of partial (or perhaps half-hearted) 

participation by the systems, instead of binary (all or nothing) participation seems to be 

possible and a fruitful area to investigate.  Introducing more uncertainty in the attribute 

membership functions through use of Type II fuzzy sets or by differently shaped 

membership functions seems promising for certain types of problems.  The process of 

finding ‘good’ suggested architectures through application of the fuzzy genetic approach 

appears to be useful for proposing an SoS architecture.  When following the wave model 

of evolution of an acknowledged SoS, assessing the realizable, negotiated SoS 

architecture can aid the update plan for the next epoch.  Investigations into finding the 

‘best’ shape for membership functions either from the stakeholder discussions or from 

additional exploration of the trade space seem well warranted. 

FILA-SoS research continues by building improved negotiation models and an 

attractive graphic user interface for building the SoS model.  These steps will allow the 

software to be used in a new SERC sponsored SoS virtual laboratory.  The fuzzy assessor 

approach continues to be used in the latest series of SERC research tasks on an SoS for 

control of counterfeit parts risk to major DoD weapons systems.  The systems in this SoS 

include, among others:  original equipment manufacturers, vendors in supply chains, 

parts brokers, part retesting standards, the FBI, the Customs service, the military services, 

and the Justice Department.  Making more practitioners aware of the entire FILA-SoS 

approach, and how to implement the approach on common problems is proposed through 
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short courses for industry and tutorials that could be provided at several annual systems 

engineering conferences and workshops.  Additionally, the FILA-SoS approach is being 

used in a graduate-level systems architecting course at Missouri S&T.



   

   

APPENDIX A 

 

DETAILED GULF WAR PERFORMANCE MODEL 
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Performance – for the Gulf War ISR Domain example is made up of surveillance 

coverage in area per hour and wavelength region, combined with ability to reach the site 

of a discovered but fleeting high value target before it disappears.   

 Background Assumptions:  100,000 square miles in which to hide; 30 minutes 

from start to finish for an operational launch; on the order of 60 TELs operational; 

an individual TEL might hide for several days, so the probability of an individual 

TEL popping out to make a launch is only about 10% per day. 

Rules for combining capabilities into performance: 

 Fighters can provide modest capability in non-traditional ISR with on board 

sensors, and deliver several weapons types, but they cost more to operate than 

many other systems and are relatively poor at ISR tasks 

 Remote Piloted Aircraft (RPAs) can provide better ISR capabilities with 

somewhat less speed and single weapon capabilities, but also require a control 

station for each 2 RPAs.  They are considerably cheaper to operate than fighters 

 JSTARS can provide considerable radar ISR capability, and LOS and BLOS 

relay, but no weapons 

 DSP can provide reliable notice of an actual launch over the entire search area, 

which means there definitely was a TEL in the open at that launch point, but it 

does not provide very precise localization of the launch point, meaning some 

search is still required upon an armed vehicle’s arrival in the vicinity, and it takes 

a few minutes to receive the data from DSP.  The TEL can hide quickly after 

launch, leaving not much time to arrive there, find and attack it before it 

disappears again.  In the performance model, the DSP coverage was multiplied by 
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0.01 to account for the likely lack of closure from a DSP detection.  DSP is 

basically free to operate, because it is used for other purposes 

 U-2 or Satellite can cover a large area with high resolution, but turnaround time is 

hours; participation of U-2 or Satellite effectively decreases total area to be 

searched by other ISR platforms by a reasonable percentage by ruling out certain 

areas, but does not affect real time surveillance success   

 The area to be covered is divided into sectors by the number of participating 

surveillance systems 

 Time to arrive is proportional to the square root of the sector area being covered 

by each type of system, plus some time for transmitting data to, and double 

checking by, the ‘exploit’ systems to insure the target is valid and not in a 

restricted area 

 Probability of successful engagement is defined as 50% if the coverage rate is the 

total area in half an hour by all the systems, and the time to arrive for an attack 

after detection is less than 10 minutes.  Fighters or RPAs making the discovery 

are able to attack relatively quickly, transit time is typically less than 5 min for 

fighters airborne in the adjacent sector, 10 min for RPAs; other types of detection 

require transit time for the attack vehicle which may be longer if it is in a different 

sector.  



APPENDIX B 

 

MATLAB CODE 
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Figure B-1.  Structure of genetic algorithm and fuzzy assessor Matlab code: 

i  

 

 

Setup<fname>.m

EvalOne.m

evalsos.m

Attribute Model 
Evaluations

filename.fis

Feas/Achievable Display

GAwave.m 

GA Optimizer

Matlab FuzzyToolbox 
builds filename.fis

SoS Designer.exe for building 
domain data file 

<fname>.xlsx
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Table B-1.  Structure of input data and Matlab files 

• <fname>.xlsx Domain input data file. 

Filled in by hand to start, but now there is a GUI 

program to fill it in easier with previews of the data to 

reduce typos 

Input data parameters may need to be tweaked 

together with mapfuz membership function edge 

inputs to get a reasonable model. 

5 to 7 specifically named sheets must be included in 

the input data file 

• GAwave.m Returns a GA ‘optimized’ good architecture instance 

(chromosome) in excel file  <fname>.xlsx 

• evalsos.m Inputs a chromosome, and probem type; outputs the 

crisp assessment and evaluation of each individual 

attribute  

• Feas.m Calculates the achievability matrix using the system 

number of the first of the common communications 

systems at the bottom of the systems list 

• Attributes List of items to evaluate an architecture against; 

combined in rules of fuzzy inference system, and 

named in the domain input file 

• SoSRules Embedded in Matlab fuzzy inference system files 

Fuzzeval44.fis, lvc.fis, sumonly.fis, 

ToyProb.fis  

Very simple…don’t pick any worst ones; all good is 

excellent;  performance and affordability trump 

robustness & flexibility. 

• Dispfech.m Input a chromosome and a achievability matrix; output 

is a graph of systems & interfaces, and assessment 
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• mapfuz Input matrix that maps the range of each attribute 

gradation to the fuzzy values;  currently uses g +1 

values for g gradations;  

• EvalOne Reads in the input domain file with a chromosome, 

outputs the linear chromosome, attribute evaluations, 

and overall SoS assessment to the same file 

• fdn22Atoy.m Generic FDNA solver called inside evalsos.m 

• ReadIn.m Reads in five Excel sheets of information; system 

characteristics, capabilities, either or both the upper 

triangular and the linear form of the chromosome, and 

a control sheet for the fuzzy inference system and 

genetic algorithm 

• setup<fname>.m Sets the filename for ReadIn.m, and the number of 

chromosomes to try in valueExplore.m 

• penalty.m Provides a penalty/reward for the exponent of the 

netcentric boost in the performance 

• valueExplore.m Biases the chromosomes in a population from few to 

many randomly placed ones to help explore the SoS 

design space; plots the data out similar to the GA 

 

 

INITIAL GA MUTATION PROCESS 

Early work on the GA routine was done with a ‘try a little of everything’ 

approach.  Two mutation processes are imposed on the sorted population of 

chromosomes.  The single best chromosome is always retained, along with less good 

chromosomes down to about the 20th percentile of the population.  The lowest three 

retained chromosomes are replaced by the chromosome at the 40th, 60th, and 80th 

percentile.  Position of the chromosomes in this adjusted quintile is then randomized.  
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This group of chromosomes is then replicated four times to fill out the next generation’s 

starting population.  A selectable parameter, Delta, typically around 1% or 2%, is the 

threshold for a uniformly distributed random number generator to decide to mutate each 

bit of each chromosome in the first quintile of the population.  In the second quintile, the 

decision to mutate a bit is made twice as likely (rnd < (2 times Delta).  Sexual crossover 

is performed at a random position for a random length substring of bits between the third 

and fourth quintile of chromosomes to generate the population segments for the next 

generation.  In the last quintile of the population, a string of random length, starting at a 

random position, is transposed with the following bit string within each chromosome.   

Any reason for preferring any bit positions or genes within the meta-architecture 

chromosome, such as the first m bits representing the systems, fell apart in the definition 

of robustness, where any entire system would be removed as part of the evaluation.  The 

choice of all three methods of mutation was deemed appropriate to insure a broader 

exploration of the space by the GA.  The size of Delta, Population and number of 

Generations may be selected to complement each other to provide quicker execution or 

fuller coverage of the space.  It is felt that the selection of a linearly biased number of 

‘one’ bits in the initial population speeds up the convergence over a purely random set of 

initial chromosomes. 

FINAL RANKED ROULETTE GA ALGORITHM 

Some of the GA literature suggests that a ranked roulette based algorithm, with 

higher fitness valued chromosomes having a higher likelihood of propagating, may be a 

faster converging GA approach (Kumar and Jyotishree 2012).  The current version of 

GAwave.m uses the ranked roulette based algorithm.  Only the highest fitness 
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chromosome is guaranteed to be in the next generation.  In the initial version of the GA 

algorithm, a greater proportion of the higher ranked chromosomes in each generation 

were propagated to the next generation.  This change did not seem to change the rate of 

convergence, but it does seem to lower the average assessment of the remainder of the 

population using the new algorithm. 

The remainder of this appendix is a listing of all the Matlab Code used in the 

project.  Each Matlab function or subroutine starts on a new page. 
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function [chdisp, mov] =dispfech(ch1,fe,crisp); 
% version 1 aug 2015    Lou Pape    FILA-SoS 
% creates a color coded display of an m system chromosome square, 

w/evaluation,  
% and a frame of a movie 
% given a chromosome, the feasibility matrix, and the evaluation 
warning('off'); 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

       
xywh=zeros(1,4);   % size of display screen array set up 
dia=zeros(1,m);    % more array setup... 
dia=1:m; 
chdisp=zeros(m);   % size the color grid to display 
grn=0;             % set counters to zero 
rd=0; 
bl=0; 

  
for i=1:m          % check feasibility & usage of each interface 
    for j=i:m 
        if fe(i,j)==0 
            if ch1(i,j)==0 
                chdisp(i,j)=64;%good - dark brown, unused and 

infeasible-good 
            else 
                chdisp(i,j)=55;%bad -red, used but infeas 
                rd=rd+1; 
            end 
        else 
             if ch1(i,j)==0 
                chdisp(i,j)=12;%toobad, could have done better - blue 
                bl=bl+1; 
            else 
                chdisp(i,j)=40;%just right, yellow/Green, ideal 
                grn=grn+1; 
             end 
        end 
    end 
end 

  

  
xywh=get(gcf,'Position');  %this gets the size of the window, if it's 

been changed 
set(gcf, 'Position',xywh); %this "sets" the window size for the 

getframe below 

  
image(chdisp);             % shows the color codes for each sys & 

interface 
hold on                    % then type labels & summ. data about this 

chrom on it 
typ= systyp{1}(1:3); 
     widx=xywh(3)-xywh(1); 
     hty=xywh(4)-xywh(2); 
for i=1:m-1 
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  if ~strcmp(systyp{i}(1:3),typ) % if type changes, then print 
      text(m+(m/26),i,systyp(i),'BackgroundColor',[.7 .9 

.7],'FontSize', (xywh(4)/(2.5*80)) );  %rt lable 
      text(  i-(length(char(systyp{i}))/7)-1.5  , i 

,systyp{i},'BackgroundColor',[.7 .9 .7],'FontSize', xywh(4)/(2.5*80) );  

%lft lbl 
      typ=systyp{i}(1:3); 
  end   
end 

  
plot(dia,dia);             % a reminder line on the systems (diagonal) 

  
text(.2*m,.8*m, num2str( crisp ),'BackgroundColor',[.7 .9 

.7],'FontSize', (xywh(4)/120) ); 
             %now print how many green(used, feas) interface, bad( 

used, infeas), & 
             %could be better (unused but feasible) interfaces...and 

print them 
text(.16*m, .95*m, [ num2str(grn) ' us-f;   ' num2str(rd) ' us-inf;   ' 

num2str(bl) ' un-f']... 
       ,'BackgroundColor',[.7 .9 .7],'FontSize', (xywh(4)/170) ); 
hold off 
mov=getframe(gcf);         %save a movie frame for each gen's or 

iteration's picture 
end 
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%Eval and assess One Chromosome, write out chrom, evaluations & 

assessment to 
%sheet Architecture_Chromosome 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
    CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin prot; 

       
mm2=m*(m+1)/2; 

  
[chrom]=Readin(fname); 

  
[mf mff crisp]=evalsos(chrom); 

  
%% write the chromosome & evaluations out to the chromosome sheet 
blk=['c7:' num2col(2+mm2) '7']; 
xlswrite(fname, chrom, 'Architecture_Chromosome', blk );  %fuzzy 

numbers 
xlswrite(fname,[mff'] ,'Architecture_Chromosome',['b9:b' num2str(8+g)] 

) ; 
xlswrite(fname,crisp,'Architecture_Chromosome','b7') ; 

  
attrlabe=cell(2,1); 
attrlabe=cellstr(['Arch';'Qual']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','b5:b6') ; 
attrlabe=cell(1,1); 
attrlabe=cellstr(['Architecture']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','a7') ; 
attrlabe=cellstr(['Fuzzy']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','b8') ; 
attrlabe=cellstr(['Real']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','c8') ; 

  
attrlabe=cell(g,1); 
attrlabe=cellstr(attr);   %attribute names in a column... 
xlswrite(fname,attrlabe,'Architecture_Chromosome',['a9:a' num2str(8+g) 

]); ; 

  
xlswrite(fname,[mf'],'Architecture_Chromosome',['c9:c' num2str(8+g)] ) 

; 
%           real values, col c     

  
attrlabe=cell(3,1);   %GA control vars 
attrlabe=cellstr(['gens';'popu';'delt']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','f9:f11') ; 
xlswrite(fname,[gens ; pop ; mu  ],'Architecture_Chromosome','e9:e11') 

; 

  
xlswrite(fname,[clock],  'Architecture_Chromosome','h9:m9') ; % put the 

date/time of the run on it, too 
xlswrite(fname,cellstr(fname), 'Architecture_Chromosome', 'h10'); 

  
fclose('all'); 
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function [mf, mff ,crisp]=evalsos(chro) 
%%evaluates each attribute for the chromosome and other input domain 

data 
warning('off'); 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
fismat=readfis(fisfile{1}); 
% fdna attributes are:  perfratio, afford (inv of cost), sod, 

singleptfail... 
% SAR, ISR, attr are perf, afford, flex, robust 
% LVC attr are AU   Ext   FaSupt    NetRead TrCap   ExerSupted  

Affordability 

  
mm2=m*(m+1)/2; 
sc=lin2sc(chro,m); 
fe=feas(sc); 
%%                   now the case statements for each type of problem 
switch probtype 

  
    case 'SAR' 
%%        
%performance... 
cover=0; 
maxcover=sum(capsys(:,:)*perf(:,1)); 

  
for i=1:m 
    for j=1:n 
       cover=cover+chro(i)*capsys(j,i)*perf(i,1); 
       if perf(i,5)==j    % add a double helping for the main 

capability 
           cover=cover+chro(i)*perf(i,1)*capsys(j,i); 
       end 
       end 
end 
per=cover/maxcover;  %fraction of all ones for systems perfsum 

(capsys(:,:)*perf(:,1)) 
per=per*(1-bump)^penalty(fe,sc); 
%% 

  
%affordability 
cost=0; 

  
for i=1:m 
    cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i)); 
    %     sum of ops cost of system plus interface ccost for each 

interface 
    %     (minus counting the system twice in sum of i/f row & col        
end 
%% 

  
%singlept failure in sources of capability test for flexibility 



  240 

   

flx=capsys*chro(1:m)';  % how many systems with each capability 
flex=0; 
for i=1:n 
    if flx(i)<2 
       flex=flex+1; 
    end 
end 
%% 
%robustness - steps through repetitively to subtract a system and all 

it's interfaces, recheck 
%performance... 

  
maxloss=0; 
loss=zeros(m,1); 
for k=1:m 
  test=sc;  %start with original 
  test(:,k)=0; 
  test(k,:)=0;  %sets the kth sys & it's interfaces to zero 

   
  fe=feas(test); 
  cover=0; 
   for i=1:m 
       for j=1:n 
       cover=cover+test(i,i)*capsys(j,i)*perf(i,1); 
       end 
   end 
   perr=cover/maxcover; 
   perr=perr*(1-bump)^penalty(fe,test); 
loss(k)=per-perr;  % per should usually be bigger than perr 
end 
maxloss=max(loss); 

  
mf=zeros(h,1); 
mff=mf;  %also zeroes 
mf=[per, -cost,  -flex, -maxloss ];  %real world values, negative if 

better closer to zero 
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 

  
mf=[per, -cost, -flex, -maxloss]; 
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 

  
crisp=evalfis([mff],fismat);  %ending in f is scaled to 0-h (# of mf's) 

  

  

    
%% 
    case 'ISR' 

  
        cover=0; 
maxcover=sum(capsys(:,:)*perf(:,1)); 

  



  241 

   

for i=1:m 
    for j=1:n 
       cover=cover+chro(i)*capsys(j,i)*perf(i,1); 
    end 
end 
per=cover/maxcover;  %fraction of all ones for systems perfsum 

(capsys(:,:)*perf(:,1)) 
per=per*(1-bump)^penalty(fe,sc); 
%% 

  
%affordability 
cost=0; 
sc=lin2sc(chro,m); 
for i=1:m 
    cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i)); 
    %     sum of ops cost of system plus interface ccost for each 

interface 
    %     (minus counting the system twice in sum of i/f row & col        
end 
%% 

  
%singlept failure in sources of capability test for flexibility 
flx=capsys*chro(1:m)'; 
flex=0; 
for i=1:n 
    if flx(i)<2 
       flex=flex+1; 
    end 
end 
%% 
%robustness - steps through repetitively to subtract a system and all 

it's interfaces, recheck 
%performance... 

  
maxloss=0; 
loss=zeros(m,1); 
for k=1:m 
  test=sc;  %start with original 
  test(:,k)=0; 
  test(k,:)=0;  %sets the kth sys & it's interfaces to zero 

   
  fe=feas(test); 
  cover=0; 
   for i=1:m 
       for j=1:n 
       cover=cover+test(i,i)*capsys(j,i)*perf(i,1); 
       end 
   end 
   perr=cover/maxcover; 
   perr=perr*(1-bump)^penalty(fe,test); 
loss(k)=per-perr; 
end 
maxloss=max(loss); 

  
mf=zeros(h,1); 
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mff=mf; 
mf=[per, -cost,  -flex, -maxloss ];  %real world values 

  
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 

  
crisp=evalfis([mff],fismat);  %ending in f is scaled to 0-h (# of mf's) 

  

  
%% 
    case 'LVC' 
    switch m    %22 systems requires different evaluation algorithm 

than 111 
        case 22 

        
            %% calculate au's real value 

  
au=0; 
for i=15:20   %only the au systems 
    %add together sys present, capabilities of each, plus feasible 
    %interespces;  do we add a multiplier, or subtract infeasible 
    %interespces?? 

     
    for j=1:4    %add first: all the capabilities not controller, not 

comm sys 
        if sc(i,i)==1     %system is present 
           au= au+capsys(j,i) ; 
        end 
    end     %then add the feasible interfaces to anywhere 
    for j=i+1:m   %sum the row of interespces; could do till com1... 
        au=au+sc(i,j)*fe(i,j);  %not feasible, don't count 
    end 
    for j=i-1:-1:1  %sum the column of interfaces going up 
        au=au+sc(j,i)*fe(j,i); 
    end 
end 

  
%%  calculate extens 

  
ex=0; 
for i=1:m     %now count everything hooked to hi capacity comms; cap * 

fe interface 
    for j=i+1:m 
        %for k=60:61   %hla=97, dis=98 as systems 
        k=4; 
           if capsys(k,i)==1 ||  capsys(k,j)==1 
             ex=ex+sc(i,j);%*fe(i,j);  removed the feasibility 
          % end 
        end 
    end 
end 

  

  
%% fact support    does not consider feasibility 
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fac(1,4)=zeros; 

  
for i=4:5 % large groups 
  if sc(i,i)==1 
          for j=i+1:com1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
          for j=i-1:-1:1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
  end 
end 
for i=8:9 %med large groups 
  if sc(i,i)==1 
          for j=i+1:com1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
          for j=i-1:-1:1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
  end 
end 
for i=10:10   % mid level 
  if sc(i,i)==1   
    for j=i+1:com1 
        fac(1)=fac(1)+sc(i,j)*fe(i,j); 
    end 
    for j=i-1:-1:1 
        fac(1)=fac(1)+sc(i,j)*fe(i,j); 
    end 
  end 
end    % fac(1) now has feasible interfaces with large & med 

  
for i=1:2 
  if sc(i,i)==1 
    for j=i+1:com1 
        fac(2)=fac(2)+sc(i,j)*fe(i,j); 
    end 
    for j=i-1:-1:1 
        fac(2)=fac(2)+sc(i,j)*fe(i,j); 
    end 
  end 
end    % fac(2) now has feasible interfaces with outside groups 

  
for i=6:7 
   if sc(i,i)==1 
      for j=i+1:com1 
        fac(3)=fac(3)+sc(i,j)*fe(i,j); 
      end  
      for j=i-1:-1:1 
        fac(3)=fac(3)+sc(i,j)*fe(i,j); 
      end 
   end 
end    % fac(3) has feasible interfaces with different outside groups 
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for i=10:com1-1 
     if sc(i,i)==1 
      for j=i+1:com1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end  
      for j=i-1:-1:1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end 
     end 
end 

  
%fac(4) has all the remaininig interfaces 
fa=0; 
if fac(1)>3   %traditional 
    fa=fa+1; 
    if fac(2)> 3    %new combined;  can't get to higher one unless you 

have enough below 
       fa=fa+1; 
       if fac(3) >5   % outside groups 
           fa=fa+1; 
           if fac(4) >30   %everyone 
               fa=fa+1; 
           end 
       end 
    end 
end     

  
%fa now has 4 if everyone has sufficient interfaces 

  

  
%% netreadiness 

  
nr=0; 
nr=sum(sum(sc .* fe));   %% sum of used feasible interfaces 
nr=2*nr*(1+bump)^penalty(sc, fe); %give it a netcentric bump for 

feasible interfaces (again?) 
nr=nr/mm2; 

  
%%  training capabilities 

  
tc=0; 
for i=1:com1 
    tc=tc+sc(i,i)*perf(i,1); 
end   %sum of present systems times their relative value in the input 

domain data 

  

  
%% exercises supported 

  
es=0; 
esp=zeros(1,4); 
%if sc(1,1)==1 
for i=15:19 
    esp(1)=esp(1)+sc(i,i);   %counts au's, too;  
end 



  245 

   

for i=4:5 
    esp(2)=esp(2)+sc(i,i);  % large 
end 
for i=1:2:3 
    esp(3)=esp(3) +sc(i,i);   % hq 
end 
for i=2:2 
    esp(4)=esp(4)+sc(i,i);   %counts facts present (not talking to them 

tho) 
end 
for i=6:7 
    esp(4)=esp(4)+sc(i,i);   %counts facts present (not talking to them 

tho) 
end 
esp(4)=esp(4)+sc(2,2);  %adds other groups 

  
if esp(1)>0  %     can't get to next level unless enough of lower 
    es=es+1; 
    if esp(2)> 0    % high level 
       es=es+1; 
       if esp(3) >0    % mid level 
           es=es+1; 
           if esp(4) >0   % outsiders 
               es=es+1; 
           end 
       end 
    end 
end     % es now must have some of each below to get one above 
%end   %can only get exercises supported if exercise monitor is there! 
%% affordability 
af=0; 
for i=1:m 
    af=af+sc(i,i)*perf(i,3);       %counts operating cost for systems 
    for j=i+1:m 
       af=af+sc(i,j)*perf(i,2);    %counts interfacing cost per 

interface 
    end 
end 

  
%summarizing: 
[mf]=[au, ex, fa, nr, tc, es, -af]; 
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 
crisp=evalfis([mff],fismat);  %ending in f is scaled to 0-h (# of mf's) 

        
        case 111 

             
            %% calculate au's real value 

  
au=0; 
for i=60:90   %only the au systems 
    %add together sys present, capabilities of each, plus feasible 
    %interespces;  do we add a multiplier, or subtract infeasible 
    %interespces?? 
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    for j=2:53    %add first: all the capabilities not controller, not 

comm sys 
        if sc(i,i)==1     %sys is present 
           au= au+capsys(j,i) ; 
        end 
    end     %then add the feasible interfaces to anywhere 
    for j=i+1:m   %sum the row of interespces; could do till com1... 
        au=au+sc(i,j)*fe(i,j);  %not feasible, don't count 
    end 
    for j=i-1:-1:1  %sum the column of interfaces going up 
        au=au+sc(j,i)*fe(j,i); 
    end 
end 

  
%%  calculate extens 

  
ex=0; 
for i=1:m     %now count everything hooked to hi capacity comms; cap * 

fe interface 
    for j=i+1:m 
       for k=60:61   % hi cap comm sys 
           if capsys(k,i)==1 ||  capsys(k,j)==1 
             ex=ex+sc(i,j);%*fe(i,j);  removed the feasibility 
           end 
        end 
    end 
end 

  

  
%% fact support    does not consider feasibility 

  
fac(1,4)=zeros; 

  
for i=21:25 % large groups 
  if sc(i,i)==1 
          for j=i+1:com1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
          for j=i-1:-1:1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
  end 
end 
for i=28:32 %med large groups 
  if sc(i,i)==1 
          for j=i+1:com1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
          for j=i-1:-1:1 
            fac(1)=fac(1)+sc(i,j)*fe(i,j); 
          end 
  end 
end 

  
for i=2:9 
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  if sc(i,i)==1 
    for j=i+1:com1 
        fac(2)=fac(2)+sc(i,j)*fe(i,j); 
    end 
    for j=i-1:-1:1 
        fac(2)=fac(2)+sc(i,j)*fe(i,j); 
    end 
  end 
end    % fac(2) now has feasible interfaces with all if's 

  
for i=10:20   % mid level 
  if sc(i,i)==1   
    for j=i+1:com1 
        fac(3)=fac(3)+sc(i,j)*fe(i,j); 
    end 
    for j=i-1:-1:1 
        fac(3)=fac(3)+sc(i,j)*fe(i,j); 
    end 
  end 
end    % fac(3) now has feasible interfaces with large & med 

  
for i=26:27 
     if sc(i,i)==1 
      for j=i+1:com1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end  
      for j=i-1:-1:1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end 
     end 
end 

  
for i=33:com1-1 
     if sc(i,i)==1 
      for j=i+1:com1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end  
      for j=i-1:-1:1 
        fac(4)=fac(4)+sc(i,j)*fe(i,j); 
      end 
     end 
end %fac(4) has all the remaininig interfaces 

  
%fac(4) has all the remaininig interfaces 
fa=0; 
if fac(1)>0   %traditional 
    fa=fa+1; 
    if fac(2)> 0    %new combined;  can't get to higher one unless you 

have enough below 
       fa=fa+1; 
       if fac(3) >0   % outside groups 
           fa=fa+1; 
           if fac(4) >0   %everyone 
               fa=fa+1; 
           end 
       end 
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    end 
end     

  
%fa now has 4 if everyone has sufficient interfaces 

  

  
%% netreadiness 

  
nr=0; 
nr=sum(sum(sc .* fe));   %% sum of used feasible interespces 
nr=2*nr*(1+bump)^penalty(sc, fe); %give it a netcentric bump for 

feasible interfaces (again?) 
nr=nr/mm2; 

  
%%  train capabilities 

  
tc=0; 
for i=1:com1 
    tc=tc+sc(i,i)*perf(i,1); 
end   %sum of present systems times their relative value in the input 

domain data 

  

  
%% ex supported 

  
es=0; 
esp=zeros(1,4); 
%if sc(1,1)==1 
for i=15:19 
    esp(1)=esp(1)+sc(i,i);   %counts au's, too;  
end 
for i=4:5 
    esp(2)=esp(2)+sc(i,i);  % large 
end 
for i=1:2:3 
    esp(3)=esp(3) +sc(i,i);   % hq 
end 
for i=2:2 
    esp(4)=esp(4)+sc(i,i);   %counts facts present (not talking to them 

tho) 
end 
for i=6:7 
    esp(4)=esp(4)+sc(i,i);   %counts facts present (not talking to them 

tho) 
end 
esp(4)=esp(4)+sc(2,2);  %adds other groups 

  
if esp(1)>0  %     can't get to next level unless enough of lower 
    es=es+1; 
    if esp(2)> 0    % high level 
       es=es+1; 
       if esp(3) >0    % mid level 
           es=es+1; 
           if esp(4) >0   % outsiders 
               es=es+1; 
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           end 
       end 
    end 
end     % es now must have some of each below to get one above 
%end   %can only get exercises supported if exercise monitor is there! 
%% affordability 
af=0; 
for i=1:m 
    af=af+sc(i,i)*perf(i,3);       %counts operating cost for systems 
    for j=i+1:m 
       af=af+sc(i,j)*perf(i,2);    %counts interfacing cost per 

interface 
    end 
end 

  
%summarizing: 
[mf]=[au, ex, fa, nr, tc, es, -af]; 
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 
crisp=evalfis([mff],fismat);  %ending in f is scaled to 0-h (# of mf's)             

             
    end 

        
    case 'FDN' 

  
        % fdna attributes are:  perfratio, afford (inv of cost), sod, 

singleptfail... 

  
%perfrat: 
[cod,sod,p25]=fdn22Atoy( CoD_mat, SoD_mat , 25, chro); 
[cod,sod,p100]=fdn22Atoy( CoD_mat, SoD_mat , 100, chro); 
prat=p25(m)/p100(m); 

  
%affordability 
cost=0; 

  
for i=1:m 
    cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i)); 
end 

  
%sod 
sd=sod(m);  %it was calculated in fdn22toy, above 

  
%singlept failure 
sing=capsys*chro(1:m)'; 
spf=0; 
for i=2:n-1 
    if sing(i)<2 
       spf=spf+1; 
    end 
end 
mf=zeros(h,1); 
mff=mf; 
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mf=[prat, -cost, -spf, -sd ];  %real world values 
for i=1:g    %for each attribute 
    mff(i)=map2fuz(mapf(i,:),  mf(i) ); 
end 

  
crisp=evalfis([mff],fismat);  %ending in f is scaled to 0-h (# of mf's) 

       
end 

         
%% 
end 
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function [cod,sod,P]=fdn22Atoy(CoD_mat,SoD_mat,P1,chro) 
%% chro is the fila-sos linear chromosome 
%SoD_matx is input as strength of dependency, 0<element<1, and controls 

for 
%loops in the sod matrix, not the chromosome, which can be random 
%where for sys i, interface (i,j)i<j, i is a feeder node to j, and 

feeding goes  
%clockwise, and j depends on i [i<j is the upper triangular portion] 
%if j depended on i, then the dependency would appear in the lower 

portion 
%of the full matrix in SOD and COD 
%    if no dependency, then perf of the node is in the input domain or 
%    characteristics sheet under the system performance 
%m is the number of systems 
% 
warning('off'); 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
arch=lin2sc(chro,m);      %an upper tri matrix, random interfaces, 

input matrix to evaluate 
full=arch+triu(arch,1)';  %make into adjacency matrix by filling out 

the bottom 
COD=CoD_mat.*full;    %cod & sod matrix design protect from loops 
SOD=SoD_mat.*full;    %not having a 1 in the interfaces deletes the 

cod/sod 
%% 
%I'm a receiver node if I have any entries in my vertical interfaces 
% column; figure out how much I receive with sod & cod... 
P=perf(:,1);     % from system characteristics in input domain data 
P(1)=P1;    % vary start node performance as input 
for k=1:4             % because I use original Perf values, and they're 

recalculated during FDNA 
                      % at line 63-74 
feedn=zeros(m,1); %column matrix 
sod=zeros(m,1);   %column matrix 
sodp=zeros(m,1);   %column matrix 
cod=zeros(m);     % square 

  
%piter=zeros(m,11);   % used only for troubleshooting during 

development 
%piter(:,1)=P(:); 
%% 
for j=1:m                                %col 1 of sod should be zeroes 
    for i=1:j-1 
        if SOD(i,j)~=0 && chro(i)~=0  && chro(j)~=0  %then sys i feeds 

j 
            feedn(j)=feedn(j)+1;         % how many feed j that are 

less than j? 
                                         % found an i that feeds j, add 

one 
                                         % to count of items that feed 

j 
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            sodp(j)=sodp(j)+SOD(i,j)*P(i);%100*(1-SoD_mat(i,j));  % sum 

will be divided by number in feedn 
            sod(j)=sod(j)+SOD(i,j); 
            cod(i,j)=P(i)+COD(i,j);  % cod is a new efficiency based on 

criticality 
                                         % it will be used later to 

find the 
                                         % minimum, for the new P(i) 
        end 
    end 
    for i=j+1:m 
        if SOD(i,j)~=0   && chro(i)~=0  && chro(j)~=0  % then j feeds i 
            feedn(j)=feedn(j)+1;        % how many feed i that are 

greater than i 
            sodp(j)=sodp(i)+SOD(i,j)*P(i);%+100*(1-SoD_mat(i,j));  % 

sum will be divided by number in feedn 
            sod(j)=sod(j)+SOD(i,j); 
            cod(i,j)=P(i)+COD(i,j);  % cod is a new efficiency based on 

criticality 
                                         % it will be used later to 

find the 
                                         % minimum, for the new P(i) 
        end 

         
    end       

  
    c2d=cod(:,j);        % whole list of feeders with criticality to 

receiver j 
                         % for taking minimum of to continue   

                         
    if feedn(j)>0 
        if min(size(c2d(c2d~=0)))>0 
           P(j)=min((sodp(j)/feedn(j))+(1-sod(j)/feedn(j))*100,  min( 

c2d(c2d~=0) )   ) ; 

            
        else 
           P(j)=(sodp(j)/feedn(j))+((1-sod(j)/feedn(j))*100); 

            
        end 
    else 
        P(j)=min(P(j), 100); 

         
    end 
    if feedn(j)~=0 
        sod(j)=sod(j)/feedn(j);     % think this is necessary 
    end 
end 
%piter(:,k+1)=P(:);     % used during development 
end 
%% sum(piter)             % used during development 
end 
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function fe=feas(sch); 
%% 
% modified for fdna problems 30 Jul 2015 
% this works right; checked on small files 10Jul13 
% fe will be the feasibility matrix, generated from common 

communication 
%      systems interfaces among the other systems, or for fdna if sod 
%      exists 
% m is the number of systems in the chromosome 
% sch is the square chromosome matrix itself 
% com is first comm system number; comm systems are in the right hand 
% columns 
warning('off'); 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
fe=zeros(m);               % also, if none work, zeroes going back 
if probtype=='FDN'     % then they can feed and receive, somewhere 

    
  for i=1:m 
     for j=1:m 
        if (sch(i,i)==1 && sch(j,j)==0) && (CoD_mat(i,j)~=0 && 

SoD_mat(i,j)~=0) 
            fe(i,j)=1;   %sod, cod  equal 0, then no connection 
        end 
     end 
  end     

    
else     % feas depends on comm unit interfaces with other systems 
         % and not on CoD     
  for i=1:m; 
    fe(i,i)=sch(i,i);  %systems are copied over; if they exist, they're 

feasible 
  end      

  
  for i=com1:m; 
    if sch(i,i)==1 ;    %comm system i is present then feas is 

possible, else not 
        for j=1:com1-1; 
           for k=(j+1):com1-1 ;      
             if (sch(j,j)==1) && (sch(k,k)==1) ; %both systems are 

present 
               fe(j,k) =fe(j,k) || sch(j,i)*sch(k,i);% 'or' the other 

comm links 
                        %   both sys also i/f to comm a||b||etc, then 

fe=1 
             end 
           end 
        end   
    end 
end 

  
for j=com1:m;          % finish up with within the comm systems 
   for k=1:j-1; 
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       if (sch(j,j)==1) && (sch(k,k)==1)  %both system and comm sys are 

present 
          fe(k,j) =fe(k,j) || 1;% 'or' the other comm links both 1, 

then fe=1 
       end 
   end 
end 

  
end 

  
end 
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%% a genetic algorithm routine to find the best chromosome  
%fname is the excel file for the "good" chromosome, and attribute 

evaluations 
%    and crisp assessment of the SoS 
% fname is also the domain data file with all the SoS system data 
%  
% Offer_Status.xlsx is the negotiated member systems (first wave, 

all=0) 
% file, in the first column, but the participating systems is NOW also 

in the 
% first column of the Characteristics sheet for running the optimizer 

or 
% the single chromosome assessor (GAwave.m or evalsos.m) 
%   The following variables control the architecture: 
% m is number of systems 
% n is number of component capabilities 
% probtype three letter code, and linearinput for a chromosome  in the 

linear 
%  form (1) or upper triangular matrix form (0) 
% system names, types (if used), major capability (if used), interface 

develop cost,  
%   operations cost, performance in the major capability, and 

development  
%   time are all in the Characteristics sheet of fname.xlsx in named 
%   columns 
% - system vs. capability matrix and number of capabilities, are on the 
%   Capabilities sheet 
% - when not in linear form, the input chromosome is on sheet 

Interfaces 
%   (the chromosome is always output to sheet Architecture_Chromosome 
% - mutation rate, delta is the probability of mutating each bit - (1% 

to 5%  
%   seems about right) but also used for deciding how long and where to  
%   transpose; bump is the interoperability/netcentric boost, amount of  
%   penalty increase for infeasible/unachievable interface, penup &  
%   decrease (reward) for achievable/feasible interface, pendn; are all 

on 
%   sheet FuzzyGA, with the .FIS filename, the number of attributes, 

and 
%   the number of membership functions.  com1 is the system number of 

the 
%   first communication system (should always be grouped at the end of 

the 
%   list) 
% - p is the number of chromosomes in a population for one generation 
% - gens is the number of generations to run 
% - mapf is the matrix of attributes and fuzzy membership function 
%  crossing points - fuzzy values are 0 (bad) to number of MFs (best) 
%    now includes interfaces from negotiations, too, by reading 

offerstatus 
%   and keeping any interfaces associated with kept systems 
% - reads in the offer status file for next waves; all zeroes for first 

wave 

  
% Lou Pape,  2015oct5 
% 
tym=now; 
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warning('off'); % it interferes with making it an executable 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
[initch]=Readin(fname); % reads in all the system/capability data, and 

neg chromosome if it exists 
                        % in the Characteristics sheet; checks to see 

if 
                        % Offer_stat exists in addition to fname.xlsx 
                        % protected systems 

  
scrsz = get(0,'ScreenSize');  %set up plot figure size fairly large, 

but to fit the screen 
figure('Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); 
set(gcf, 'Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); %full 

window on double screen w/taskbar on left 

  
mm2=m*(m+1)/2; %number of total bits in chromosome 
numm=size(mapf); 
nummfs=numm(2)-1; 
attv=zeros(g,1); 
attvf=attv; 
chrom=zeros(pop,mm2); 
assess=zeros(pop,1); 
stat=zeros(gens,2);  % for plotting convergence at end 

  
% plotting constants 
heat=zeros(1,mm2);   % to store base of heatmap 
heattot=heat;        % for final,overall heatmap 
frac=.7;       % how deep to reach for plotting the heatmap from the 

best 
for ki=1:m 
     sip(ki)=11+ (44*ki/m); % total color range, from min to max 
end 
dia=zeros(1,m);    % for plotting a line through the 'system' squares 
dia=1:m; 
col=['k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b']; 
    r=2;             % sets up rows & columns of display screens 
    c=5;             % based on number of attributes in fuzzy evals 
  if g>5 
    r=3; 
  end 
pltsym=['-' '--' 'r' 'k' 'm' 'b']; 

  
%setup variables for later plotting 
plo=zeros(pop,g+7);     % iii or pop 

  
% this part handles the negotiated baseline from last wave - can't let 

that 
%  mutate and evolve! 
% add this in for waves...and interfaces - init ch is the starting 
%  negotiated chromosome read in from linear or interface UT form.  
%   prot is the systems negotiated from last wave 
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% create protection chromosome with any neg. system, and any interface 

from 
% input(negotiated, if > wave 0) that was present for a neg system 

  
keep=zeros(m); 
if sum(prot)>0  
  initsc=lin2sc(initch,m);  % output from Readin function is linear 

form,  
                            % this switches back to UTM 
  for i=1:m 
    if prot(i)==1 
        keep(i,i)=1; 
    end 
    for j=i+1:m 
        if prot(i)==1 || prot(j)==1  %if either system is negotiated in 
            if initsc(i,j)==1        %then if its interface is a one, 

keep it 
                keep(i,j)=1;         % should make this a switch to 

include  
                                     % protecting interfaces OR not... 
            end 
        end 
    end 
  end 
end 
  initch=sc2lin(keep,m);      % initch now has what must be kept from 

mutating 

            
clearvars mov;   %sets up to make a  movie of the generations if you 

want to watch later 
                 %  "implay(mov)" will let you step through it; 

"save(filename" 
                 %  saves the movie and everything else in a .mat file, 

if you like it 
%% This runs poprandom m system chromosomes through the fuzzy evaluator 
% and picks the best using roulette selection for sexual crossover 
% to replay the movie, use    implay(mov)    in the command window 
% it runs from within matlab  (ie, not executable) and includes the 
% plotting each generation 

  
ch1=zeros(m);        % single square chromosome matrix - plotting 

  

  
%% initialize a random population to start the GA   chrom (pop, mm2) 
for q=1:pop 
    for i=1:mm2 
 chrom(q,i)=round( q/pop*rand);  %  
    end 
     % seed the comm systems a little extra: 
       for i=com1:m 
           if (rand>.5) && (chrom(q,i)==0)  ; %give another .5 chance 

to be a one 
               chrom(q,i)=1; 
           end 
       end %seed extra comms 
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    %prevent selected (systems from negotiations) from being mutated 
    %away now...for initial wave, you must make offer_stat.xlsx all  

zeros (no 
    %systems selected from negotiations yet (or the first col of 
    %Characteristics sheet) 
  %  
      %***** this  includes the negotiated interfaces 
      for x=1:mm2 
          if initch(1,x)==1   % hold on to negotiated interfaces 
              chrom(q,x)=1;   % if other new, proposed by randoms or 

mutations, good! 
          end                 %if ever want to consider tiny percentage  
      end                     %systems or interfaces will quit, do it 

in this loop! 
      %end negotiated sys/interfaces  ... every member of the 

population has the right ones         
  end  % of q stepping through initial random ('cept for wave 

holdovers) population 

   
%  we now have a generally random population for generation 1 with 

varying numbers of ones 
%    AND we've protected any previous wave negotiated ones from being 

removed. 

  
%% generational loop - you already have the random starting population 

from above 
%     including negotiation results, which will be protected through 
%     mutations later... 
%% 
for gen=1:gens   % big outer loop for generations 

     

  
%   1) EVALUATE  whole pop;   2) SORT whole pop;  4) PLOT sorted pop 

statistics;   
%      3) rank pop by cum fitness;  5) crossover selected parents to 

make new pop of chroms;    
%       6) RE-LOOP to step 1 for next generation 
%      Start the sorting and plotting process of a population within 

each generation 
%      just above we randomly initialized the chromosome population 
%%    
for q=1:pop;   %   prepare to eval, sort then plot as we step through 

each member of the population 
    plo(q,1)=q;       %plo(1) is the plotting index 
    plo(q,2)=sum(chrom(q,m+1:mm2));   %2 is the total number of 

interfaes in a chromosome 
    plo(q,3)=5*sum(chrom(q,1:m)); %sum of participating systems   

     
   ch1=lin2sc( chrom(q,:),m ); %chrom is linear, ch1 is upper 

triangular 
   fe=feas(ch1);   
    %here's where you call the fuzzy evaluator for each member of the 
    %population 

    
   [attv , attvf, crisp]=evalsos(chrom(q,:));  % one at a time 
    plo(q,4)=crisp; 
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    plo(q,7+1:7+g)=attv(:); 

  

  
%%for plotting... not if you will be executing this file in the ABM 
 %[chdisp, mov(q)]=dispfech(m,ch1,fe,crisp);   future function... 

     
    %crisp is the fuzzy evaluation 

    

   
end 
% whole population is now evaluated and stored for sorting 

     
%% sort section  
heat=zeros(1,mm2); 
chrom=[chrom plo(:,4)]; %adds the fitness column to end of chrom in pop 

  
chrom=sortrows(chrom, -(mm2+1) );  % sorts the chromosome population on 

that column in descending order 
fitnorm=sum(chrom(:,mm2+1));  %adds column of sos fitnesses to do the 

normalization 
chrom(:,mm2+1)=chrom(:,mm2+1)/fitnorm;  %normalized fitnesses, highest 

fitness at top 

  
for ii=2:pop 
    chrom(ii,mm2+1)=chrom(ii,mm2+1)+chrom(ii-1,mm2+1);  %now the 

fitness column is the cumulative, normalized fitness 
end 
plo=sortrows(plo,-4);  %sorts all the plotted values in descending 

order of fitness, too 

  
plo(:,1)=1:pop;  % renumbers the index column for plotting all rows 

(pop)in order of fitness, not place in the generation 

  
%%  
%    now display the population plots for this generation 

  
%% plotting section 
set(gcf, 'Position',[60   scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); 

%full window on double screen w/taskbar on left 

    
subplot(r,c,1); 
plot(plo(:,1), plo(:,2),'-',plo(:,1), plo(:,3),'--'), title('Total I/F 

Ones, 5*# of Sys'); %number of total ones in chrom, systems+i/f's 
% 
subplot(r,c,2); 
   plo=sortrows(plo,4);  %sorts all the plotted values in ascending 

order of fitness, too 
   plo(:,1)=1:pop;  % renumbers the index column for plotting all rows 

(pop)in order of fitness, not place in the generation 
plot(plo(:,1), plo(:,4),'+'), title('Crisp SoS Assess'); %crisp output 

of evaluator/assessor 
   plo=sortrows(plo,-4);  %sorts all the plotted values in descending 

order of fitness, too 
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   plo(:,1)=1:pop;  % renumbers the index column for plotting all rows 

(pop)in order of fitness, not place in the generation 

  
hold on 
text(pop/20,.8*max(plo(:,4)),['g ' num2str(gen)],'BackgroundColor',[.7 

.9 .7] );  % put gen no near top left corner 
hold off 

     

  
% 
subplot(r,c,3);       % 3 heatmap, 4,5convergence, & best from each 

generation 
  %heat 
    heat=sum(chrom(1:round(pop*frac),1:mm2)); % add ones as deep as 

frac 
    heattot=heattot+heat; 
    if gen<gens 
      hot=max(heat); 
      cold=min(heat); 
    else      % we are on the last generation... 
      hot=max(heattot); 
      cold=min(heattot); 
      heat=heattot; 
    end 
   ext=hot-cold;   %blue is 12, red is 55, range = 43 
   heat=12. + ((heat-cold)/ext)*43. ; %scale min/max whole array to 

appropriate color 

    
   image( [lin2sc(heat,m) sip' sip'] );  % plots the values in the 

upper triang form, with scale on rt side 
hold on 
x=zeros(1,m); 
x(1,:)= m+.5; 
plot(x, dia);    %plots a line at the right edge of the heatmap 
plot(dia,dia),title('Heatmap'); 
text(m+2.3+(m/26),m,'More','BackgroundColor',[.7 .9 .7] );  % hot label 
text(m+2.3+(m/26),1,'Few','BackgroundColor',[.7 .9 .7] );  %cold label 
 text(-m/8,-m/7,['GA Optimized Arch Plots...  ' 

fname],'BackgroundColor',[.7 .6 .7] );  

  
hold off 
%end of heatmap 

  
% converg if appl would be best of each gen in plot slot 4 
stat(gen,1)=plo(1,4);   % best crisp of this gen 
stat(gen,2)=plo(round(pop/10),4);  % one tenth of the way down from 

best (top 10%) 

  
if gen==gens 
subplot(r,c,4); 
mg=min(min(.9*stat(:,1)) ); 
xg=max(max(stat)*1.05 ); 
rg=xg-mg; 
plot(1:gens,stat), axis([0 gens mg xg]), title('Convergence'); 
end     
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%% rest of the attributes, best chrom to worst.. . 

  
   plo=sortrows(plo,4);  %sorts all the plotted values in ascending 

order of sos fitness, for plotting 
   plo(:,1)=1:pop;  % renumbers the index column for plotting all rows 

(pop)in order of fitness, not place in the generation 

  
for j=1:g 
subplot(r,c,j+5); 
plot(plo(:,1), abs(plo(:,7+j)) ,pltsym(j) ), title(attr(j));   % all 

attributes in this loop 
hold on 
  for i=1:h+1           % now show mf boundary lines 
    plot([1 round(1.05*pop)], [abs(mapf(j,i)) 

abs(mapf(j,i))],'color',col(i),'LineWidth',2) 
  end 
hold off 
end 

  
   plo=sortrows(plo,-4);  %sorts all the plotted values in descending 

order of fitness, for selection in tournament  
   plo(:,1)=1:pop;  % renumbers the index column for plotting all rows 

(pop)in order of fitness, not place in the generation 

  

  
subplot(r,c,5); 
%plot color display of chromosome at end of each generation 
ch1=lin2sc(chrom(1,1:mm2),m); %best chrom in this gen (not cum, norm 

fitness column) 
fe=feas(ch1); 
crisp=plo(1,4);   %already know this one - best of the lot, top one 
[chdisp, mov(gen)]=dispfech(ch1,fe,crisp);  %makes a movie, too 

  

  
%% for next generation, get ready by creating next gen population from 

old roulette winners 

  
if gen<gens 
popu=zeros(pop+1,mm2); %size the new population array one bigger than  

P 
popu(1,:)=chrom(1,1:mm2);  %save the best one (not including rank col) 

  
for i=2:2:pop 
    cho=rand; 
     pt1=find(chrom(:,mm2+1)>=cho,1);  %chrom still sorted by rank 

column at end 
     p1=chrom( pt1,1:mm2);  %picks the first one with cum fitness >= 

rand() 
    cho=rand; 
     p2=chrom( find(chrom(:,mm2+1)>=cho,1),1:mm2);  %finds another one 

>=cho 
    cho=rand; 
     xo=max(1,round((mm2-1)*cho));  %at a random point in the 

chromosome.. . 
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     cho=rand; 
    if cho>.9 
        p1=1-p1;  %invert each BIT in one parent - on rare occasions,  
        % since number of bits is how I plot things; this would allow 

wider 
        % variations in number of bits, whereas transposition alone 

does not 
    end 
    popu(i,:) = [p1(1:xo) p2(xo+1:mm2)]; % cross over the parents parts 
    popu(i+1,:) = [ p1(xo+1:mm2) p2(1:xo)]; % to make 2 new offspring 
end 

  
%allow a chance to randomly mutate all but best one again 
for i=2:pop; 
    for j=1:mm2; 
        if rand > 1-delta; 
            popu(i,j)=1- popu(i,j);   %inverts a single bit 
         end 
    end 
end 
% oh - must set mutated positions back to negotiated ones, again - now, 

after 
% mutations, if they changed... 
  for i=1:pop  
    for x=1:mm2    % counting both systems - and interfaces... 
        if initch(1,x)==1  %first wave, initch is all zeroes, never 

happens 
            popu(i,x)=1; 
        end 
    end 
  end;  

   
  %%allowed them to mutate in popu generation, now returned them to 

proper belonging 

  
  chrom(:,1:mm2)=popu(1:pop,:);  %all pop rows of chrom and all chrom 

bits of pop for new generation 
  chrom=chrom(:,1:mm2);   % insures it deletes the pesky sos assess 

column at the end of chromosome for next gen 

  
end  % of if not enough generations yet 

  
end % of gens 
%%  

  

  

  

  
%%   format and write output files 
%% write the chromosome & evaluations out to the chromosome sheet 
 [attv , attvf, crisp]=evalsos(chrom(1,1:mm2)); %evaluates final best 

one again to write out the values 
blk=['c7:' num2col(2+mm2) '7']; 
xlswrite(fname, chrom(1,1:mm2), 'Architecture_Chromosome', blk );  

%fuzzy numbers 
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xlswrite(fname,[attvf'] ,'Architecture_Chromosome',['b9:b' 

num2str(8+g)] ) ; 
xlswrite(fname,crisp,'Architecture_Chromosome','b7') ; 

  
attrlabe=cell(2,1); 
attrlabe=cellstr(['Arch';'Qual']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','b5:b6') ; 
attrlabe=cell(1,1); 
attrlabe=cellstr(['Architecture']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','a7') ; 
attrlabe=cellstr(['Fuzzy']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','b8') ; 
attrlabe=cellstr(['Real']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','c8') ; 

  
attrlabe=cell(g,1); 
attrlabe=cellstr(attr);   %attribute names in a column... 
xlswrite(fname,attrlabe,'Architecture_Chromosome',['a9:a' num2str(8+g) 

]); ; 

  
xlswrite(fname,[attv'],'Architecture_Chromosome',['c9:c' num2str(8+g)] 

) ; 
%           real values, col c     

  
attrlabe=cell(4,1);   %GA control vars 
attrlabe=cellstr(['gens';'pop ';'delt']); 
xlswrite(fname,attrlabe,'Architecture_Chromosome','f9:f11') ; 
xlswrite(fname,[gens ; pop ; delta  

],'Architecture_Chromosome','e9:e11') ; 

  
xlswrite(fname,[clock],  'Architecture_Chromosome','h9:m9') ; % put the 

date/time of the run on it, too 
xlswrite(fname,cellstr(fname), 'Architecture_Chromosome', 'h10'); 

  
fclose('all'); 

  

  
tym=86400*(now-tym); 
disp(['it took ' num2str(tym) ' seconds']) 
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%%  if you want to spend the time (30-40 seconds) to label the 

chromosome output file 
% fname must already exist, and the linear chromosome must be the 

rightmost 
% sheet in Excel file 'fname' (all my attempts at using the sheet name 

result  
% in "index exceeds matrix dimensions".  it uses m, from input file, 

too. 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

       

  
    %%   format and write output lin chrom labels 
mm2=m*(m+1)/2; %number of total bits in chromosome 
labe=cell(1,mm2);   %*******creates the label values for the output 

chromosome Excel file 
k=0; 
for i=1:m; 
    k=k+1; 
    labe{1,k}=['S' num2str(i)];   % systems 
end 
 for i=1:m; 
     for j=i+1:m 
    k=k+1; 
    labe{1,k}=['i' num2str(i) '-' num2str(j)];   % interfaces 
     end 
 end   %**********************end of creating the label array for excel 

sheet 

  
%labels cells just above the chromosome with labe matrix just created 

above 
blk=['c6:' num2col(5+mm2) '6']; 
xlswrite(fname, labe, 'Architecture_Chromosome', blk);  % that's the 

big array of excel.cell labels 

  
fclose('all');  %don't have it already open for activex 

  
%% now label colors on top of labels from above 
%  Connect to Excel   all the active x in one place because it's not 
% compatible with xlswrite simultaneously  
Excel = actxserver('excel.application'); 
% Get Workbook object 
WB = Excel.Workbooks.Open(fullfile(pwd, fname),0,false); 
WB.Worksheets.Item(WB.Sheets.Count).Activate 

  
cel=2;  %arch qual - text is below 
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cel) '5:' 

num2col(cel) '6']).Interior.ColorIndex = 6;%bright yellow? 
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(9) ':' num2col(mm2) 

]).Columns.ColumnWidth = 3 ; 

  
cel=3;   %do the systems background color... 
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WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cel) '5:' 

num2col(cel+m-1) '6']).Interior.ColorIndex = 7;%purple? 
cel=m+2; 
col=4; 
for i=1:(m-1) 
    cels=cel+1; 
    for j=(i+1):m 
        cel=cel+1; 
    end %now cels is the first/start cell for the interface, cel is the 

last one 
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cels) '5:' 

num2col(cel) '6']).Interior.ColorIndex = col;% start green? 
    if col==4 
        col=8; 
    else 
        col=4; 
    end %alternates color at the end of each range of interfaces 
end %of overall nested loop on color alternates 
% Save Workbook 
WB.Save(); 
% Close Workbook 
WB.Close(); 
% Quit Excel 
Excel.Quit(); 

  
%% now the text labeling... 
 cel=3;   %systems... 
sysint=cell(1,1); 
sysint=cellstr(['Systems']); 
xlswrite(fname,sysint,'Architecture_Chromosome',[ num2col(cel) '5']) ; 

  
cel=m+2; 
for i=1:(m-1) 
    cels=cel+1; 
    for j=(i+1):m 
        cel=cel+1; 
    end %now cels is the first/start cell for the interface, cel is the 

last one 
sysint=cellstr(['Interfaces to Sys ' num2str(i) ]); 
xlswrite(fname,sysint,'Architecture_Chromosome',[ num2col(cels) '5']) ; 

    
end     %of overall nested loop on color alternates    
fclose('all'); 
%end 
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function sc = lin2sc(llin,m) 
% takes the linear chromosome of m systems and m(m-1)/2 interfaces 
% returns square matrix sc size m upper triangular with systems  
% on diagonal 
sc=zeros(m); 
for i=1:m 
    sc(i,i)=llin(i); 
end 
k=m; 
for i=1:m 
    for j=(i+1):m; 
        k=k+1;      %counter for position in the chromosome 
        sc(i,j)=llin(k); 
    end; 
end 

  
end   %of the function 
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function y=map2fuz(mfs, inpu)  % lowerlimit, then upperlimits of mfs 
%% version jul2015 for Serc Toy prob 
% maps to the fuzzy variable from the real variable input as inpu 
% mfs is the array of nummfs+1 MF upper bounds (except first element is 

lower bound) 
%  assume MF fuzzy values starts at zero, (count-1)=num of mfs 
% negative values if better is a lower abs value (nearer zero), such as 
% cost for affordability; lower cost is better 
quit=0; 
yy=0; 
numm=size(mfs); 
nummfs=numm(2)-1;  %how wide the mfs array is (starts at 0, so one more 

than) 
mf=mfs; 
inp=inpu; 

  
 if (inp) >=  (mf(nummfs+1) )% beyond high end 
    yy=nummfs; 
    quit=1; 
 end 
 if (inp) <=  (mf(1) )% beyond low end 
    yy=0; 
    quit=1; 
 end 

  
for i=1:nummfs   %mf(1)=lower limit, mf(5)=high end of mf(when 

nummfs=4) 
 if quit==0   %haven't exceeded a mf crossover point yet 
    if inp<(mf(i+1))   %inpu is less than the next larger crossover... 
       yy=(inp-(mf(i)))/((mf(i+1)-mf(i)))+(i-1);  %fuzzy vars are size 

1 
       quit=1; %after you find one, you're done; don't need to change 

anymore 
    end 
 end 
end 

  
y=yy; %return the value calculated in the fuzzy domain 
end 
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function [blkstr] = num2col(x) 
%calculates the column letterlabel in excel from the column number 
% 5 Jul 14 10pm version 
%Lou Pape, RT-109 
%up to  475255    26^4+26^3+26^2+26+1 
% it's math with no zero placeholder, like roman numerals 
b=26; % should you ever wish to change the base of the calculation 
b0=b^0;  % could just use one, thereby saving one run time 

comcputation,  
         % but this keeps the pattern 
b1=b^1;   % 26 
b2=b^2;   % 676 
b3=b^3;   % 17576 
b4=b^4;   % 456976 
b10=b1+b0;   %26 + 1 
b20=b2+b10;   %676 + 26 + 1 
b30=b3+b20;    
%b40=b4+b30; 
[blkstr]=char.empty(1,0); 
%this would be a nice place to do fancy error handling, but I simply 

return 
% an answer that is not nonsense 
x=fix(x); 
if x<1 
    [blkstr] =['A']; 
else 
    if x>(b30*b)   % too big; excel handles only 3 letters deep 
       [ blkstr]=[ 'WRONG']; 
    else   %now check the valid range 

  
if x>b20*b   % greater than AAAA-1, or ZZZ; and, too big for excel A - 

XFD 
    xx=x-b20;    
    xy=fix(xx/b3); % how many b^3 in thereafter removing zzz 
    [blkstr]=[blkstr char(64+xy)];  % blkstr starts out empty, this is 

leftest letter 
    x=x-xy*(b3);   %what's remaining after leftmost digit 
end 
if x>b10*b   %greater than AAA-1=zz; remaining after b3s are counted 
        xx=x-b10; 
        xy=fix(xx/b2); 
        [blkstr]=[blkstr char(64+xy)];  %adds next "digit" of column 

name 
        x=x-xy*(b2); 
end 
 if x>b 
     xx=x-1; 
     xy=fix(xx/b); 
     [blkstr]=[blkstr char(64+xy)]; 
     x=x-xy*(b); 
 end 
     [blkstr]=[blkstr char(64+x)]; 
end 
end        
end 
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function pen=penalty(fe,ch) 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
 pen=0; 
 for i=1:m; 
       for j=i+1:m;  % try only interfaces, not systems 
            if fe(i,j) > ch(i,j);   %it's feasible, you didn't use it 
               pen=pen+pendn*.5;       % blue color   mminor penalty - 

bad 
            else 
                if fe(i,j)==ch(i,j); 
                    pen=pen-pendn;  %you used feasibility rightly green 

- less penalty - good 
                else 
                    pen=pen+penup; %it's infeasible but you used it,  

the worst: red more penalty 
                end 
           end 
       end 
 end 
end    % big penalty, bad if 1-bump raised to it; more perf, better;  
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function [chrom]=Readin(fname) 
%% 
%reads in the domain data from the new GUI format 
%give it the filename as a parameter...that's all 
% reads following sheets of input domain data gui output: 
%  Characteristics, Capabilities, Initerfaces, Architecture_Chromosome, 

SOD, COD, 
%  FuzzyGA 
%reads all in at once, closes the file, then sorts it out to globals... 
warning('off'); 
[chnum chtxt]=xlsread(fname, 'Characteristics'); 

  
[canum catxt]=xlsread(fname, 'Capabilities'); 

  
if chnum(2,4)==1 % input is in linear format 
    [ionum iotxt]=xlsread(fname, 'Architecture_Chromosome'); 
else 
    [ifnum iftxt]=xlsread(fname, 'Interfaces'); 
end 

  
if chtxt{2,5}=='FDN' 
  [conum cotxt]=xlsread(fname, 'COD'); 
  [sonum sotxt]=xlsread(fname, 'SOD'); 
end 

  
[fnum ftxt]=xlsread(fname, 'FuzzyGA'); 
fclose('all'); 

  
%% 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

       
m=chnum(1,1);  %from Characteristics sheet 
nchar=chnum(2,1); 
n=canum(2,1); 
probtype=chtxt{2,5}; 
lin=chnum(2,4); 

  
systyp=chtxt(7:6+m,1); 
prot=chnum(6:5+m,1);      % if protected is from updated inputs (must 

be, if adding new systems) 
     neg=zeros(m,1); 
     [neg]=xlsread('Offer_Stat.xlsx'); 
     if sum(neg)>0        % if negotiations protect some systems, they 

will be non zero in offerstat   
                          % default offerstat has all zeros, so if 
                          % negotiations doesn't change it, then any 

protected 
                          % systems are from input domain data 
         prot=neg; 
     end 
perf=chnum(6:5+m,3:2+nchar);    % includes costs, too, now 
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capsys=canum(6:5+m,1:n)';  %from Capabilities sheet 
capname=catxt(6,2:1+n); 

  
if probtype=='FDN' 
    CoD_mat=conum(6:5+m,1:m); 
    SoD_mat=sonum(6:5+m,1:m); 
end 

  
if lin==1 
    chrom=ionum(6:6, 2:1+(m*(m+1)/2 ));  %the input chromosome, linear 

format 
else 
    chsc=ifnum(6:5+m,1:m);  %input chromosome is in UTmatrix form, in 

Interfaces sheet 
    chrom=sc2lin(chsc,m);   % force it into the linear form, but not in 

the excel sheet, yet 
end 

  
fisfile=ftxt(2,2); 
g=fnum(2,1);                % g is how many attributes 
attr=ftxt(7:6+g,1);         % attribute names 
h=fnum(3,1);                % # of MFs in each attribute 
mfname=ftxt(6,3:2+h); 
mapf=fnum(6:5+g, 1:1+h); 
com1=fnum(4,1); 
pop=fnum(1,7); 
gens=fnum(1,8); 
delta=fnum(2,7); 
bump=fnum(2,8); 
penup=fnum(3,7); 
pendn=fnum(3,8); 

  

  
end 
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function lin = sc2lin(sc,m); 
% takes the square matrix sc size m upper triangular with systems on 

diagonal 
% returns linear chromosome lin of m systems and m(m-1)/2 interfaces  
% (total  1 by m(m+1)/2 ) 
lin=zeros(1,m*(m+1)/2); 
for i=1:m ; 
    lin(1,i)=sc(i,i); 
end  ; 
k=m; 
for i=1:m ; 
    for j=(i+1):m; 
        k=k+1;      %counter for position in the chromosome 
        lin(1,k)=sc(i,j); 
    end; 
end; 

  
end   %of the function 
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='Toy24Jul15.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  
%[chrom]=Readfdna(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=160;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2; 
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%setup fila-sos  l pape   30 Jul 2015 
%% 
fname='Toy24Jul15one.xlsx' 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  

  
iii=300;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2;   

  

 

 



  275 

   

%setup fila-sos  l pape   30 Jul 2015 
%% 
fname='Toy24Jul15one2.xlsx' 

  
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  

  
iii=300;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2;   
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='isr.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

       
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=200;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2; 
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='LargeTrainingSoS.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

       
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=100;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2; 
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='LargeTrainingSoS111.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

       
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=200;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2; 
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='LargeTrainingSoS22.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

       
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=100;   %default number of random chromosomes for value explore 
mm2=(m+1)*m/2; 

  

 

 



  280 

   

%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='SAR29.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=150;   %default number of random chromosomes for value explore 

  

 

 



  281 

   

%setup fila-sos  l pape   30 Jul 2015 
%% 
fname='SAR29one.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  

  
iii=150;   %default number of random chromosomes for value explore 
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%setup fila-sos  l pape   30 Jul 2015 
%% 

  
fname='SAR29sum.xlsx' 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin; 

  
%[chrom]=Readin(fname); % reads in ALL the background data from GUI 

data input 

  

  
iii=250;   %default number of random chromosomes for value explore 

  

 

 



  283 

   

%not a function valueExplore(iii,fname); 
%% This runs    iii   random system chromosomes through the fuzzy 

evaluator  
   %  (set iii and fname before running this with the 'setupxxxx.m') 
% and plots them so you can set the values for the edges of the 

membership function 
% it takes about tenth of a second for each chromosome 
% run this, then check distribution of the membership function 

boundaries on the 
% distribution of values for each attribute in the command window.  

Make 
% adjustments as desired either in the Excel file or the GUI, save, and 
% repeat 
% Version: all exe's  2015Aug20 
% Lou Pape, RT-109 

  
warning('off'); 

  
tym=now; 
global m n sys systyp capname capsys perf bump mapf com1  penup pendn 

... 
      CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin 

prot; 

  
[chromdummy]=Readin(fname);        %linear string form 

  
%%  setting up constants 
scrsz = get(0,'ScreenSize');  %set up  figure size fairly large 
figure('Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); 
mm2=m*(m+1)/2; %number of total bits in chromosome 
numm=size(mapf); 
nummfs=numm(2)-1; 
attv=zeros(g,1); 
attvf=attv; 
chrom=zeros(iii,mm2); 
plo=zeros(iii,g+7);     % iii or pop 
clf 
heat=zeros(1,mm2); 
heatsc=heat; 
frac=.4;       % how deep to reach for plotting the heatmap 
for ki=1:m 
     sip(ki)=11+ (44*ki/m); % color range, from min to max 
end 
dia=zeros(1,m);    % for plotting a line through the 'system' squares 
dia=1:m; 
col=['k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b']; 
    r=2;             %set up rows & columns of display screens 
    c=5; 
  if g>5 
    r=3; 
  end 
pltsym=['-' '--' 'r' 'k' 'm' 'b']; 

  
%%  
for q=1:iii                   % create & evaluate random strings 

(architectures)one at a time  
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    chrom(q,:)=round( .9*q/iii+randn(1,mm2)/3); 
       % seed the comm systems to have  more 1s even for low numbered 

chroms: 
       for i=com1:m 
           if rand>.5 
               chrom(q,i)=1; 
           end 
       end 

   
    for x=1:mm2    %this is necessary for the normal generated 

chromosome 
        if chrom(q,x)<0 
            chrom(q,x)=0; 
        end 
        if chrom(q,x)>1 
            chrom(q,x)=1; 
        end 
    end   %CHROMOSOME q of iii generated 
    % for visualizeing the chromosome distribution later      
      ch1=zeros(m,m); 
    plo(q,1)=q;                     % serial number within population 
    plo(q,2)=sum(chrom(q,m+1:mm2));   % number of interfaces 
    plo(q,3)=5*sum(chrom(q,1:m));     % 5*sum of participating systems 

     
    % here's where you call the fuzzy evaluator  
[attv , attvf, crisp]=evalsos(chrom(q,:));  % one at a time 

  
     plo(q,4)=crisp; 
     plo(q,7+1:7+g)=attv(:); 
  ch1=lin2sc(chrom(q,:),m); 
  fe=feas(ch1); 
    %plo(q,5&6&7)=placeholder for heatmap(need slider) & convergence & 

best(q or gen,crisp) 
  heat=heat+chrom(q,:);   % add all the chromosomes to 'heat' 
      % save best chrom found so far 
      if q==1 
          bestchrom=chrom(q,:); 
          bestcrisp=crisp; 
          bestq=1; 
      else 
          if crisp>bestcrisp 
              bestchrom=chrom(q,:); 
              bestcrisp=crisp; 
              bestq=q; 
          end 
      end 
end  
%% sort section  used for optimization 
%s=sortrows(plo,4);   %sort by crisp value 
%plo=s; 
%plo(:,1)=sort(s(:,1)); 

  

  
%% plotting section 
set(gcf, 'Position',[60   scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); 

%full window on double screen w/taskbar on left 
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subplot(r,c,1); 
plot(plo(:,1), plo(:,2),'-',plo(:,1), plo(:,3),'--'), title('Total I/F 

Ones, 5*# of Sys'); %number of total ones in chrom, systems+i/f's 
% 
subplot(r,c,2); 
plot(plo(:,1), plo(:,4),'+'), title('Crisp SoS Assess'); %crisp output 

of evaluator/assessor 
% 
subplot(r,c,3);       % 3,4,5 heatmap, convergence, &final 
  %heat 

  
   hot=max(heat); 
   cold=min(heat); 
   ext=hot-cold;   %blue is 12, red is 55, range = 43 
   heat=12. + ((heat-cold)/ext)*43. ; %scale min/max to appropriate 

color 

    
   image( [lin2sc(heat,m), sip' ,sip'] );  % plots the values in the 

upper triang form, with scale on rt side 
hold on 
x=zeros(1,m); 
x(1,:)= m+.5; 
plot(x, dia);    %plots a line at the right edge of the heatmap 
plot(dia,dia),title('Heatmap'); 
text(m+2.3+(m/26),m,'More','BackgroundColor',[.7 .9 .7] );  % hot label 
text(m+2.3+(m/26),1,'Few','BackgroundColor',[.7 .9 .7] );  %cold label 
 text(-m/8,-m/7,['EXPLORiNG for MF EDGEs vs. Arch   ' 

fname],'BackgroundColor',[.7 .9 .7] );  
hold off 
%end of heatmap 

  
% converg if appl would be best of each gen in plot slot 4 
% plot best chrom here: 
subplot(r,c,5); 
image( 12+25*lin2sc( bestchrom,m)); 
  hold on 
  plot(dia,dia),title('Best'); 
  text(m+.3+(m/26),m/2, sprintf('# %3g',bestq),'BackgroundColor',[.7 .9 

.7] );  %which one label 
  text(m+.3+(m/26),3, sprintf('Eval 

%.3g',bestcrisp),'BackgroundColor',[.7 .9 .7] );  %assessment label 
hold off 

  
for j=1:g 
subplot(r,c,j+5); 
plot(plo(:,1), abs(plo(:,7+j)) ,pltsym(j) ), title(attr(j));   % all 

attributes in this loop 
hold on 
  for i=1:h+1           % mf lines 
    plot([1 round(1.05*iii)], [abs(mapf(j,i)) 

abs(mapf(j,i))],':','color',col(i),'LineWidth',2) 
  end 
hold off 
end 
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%end 
hold off 
%% Correlation 
cor=zeros(iii,4+g); 
cor(:,1:4)=plo(:,1:4); 
cor(:,5:4+g)=plo(:,8:7+g); 
disp( ['   q       ' 'i/f       ' '5*sys      ' 'crisp    ' ]); 
disp( [ attr(1:g)]' ); 
disp(num2str(corrcoef(cor))); 
%% current values for membership function edges vs distribution 
bou=plo(:,4); %crisp 
bou=sort(bou); 
disp('crisp'); 
for i=0:nummfs 
    disp(sprintf('MF edge = %.4g but %.4g is the distribution',  i, 

bou(round(max(1,i*iii/nummfs))))); 
end 

  
for gg=1:g 
    bou=plo(:,7+gg); 
    bou=sort(bou); 
    disp(' '); 
    disp( attr(gg)); 
    for i=0:nummfs 
     disp(sprintf('MF edge%.2g = %.4g but %.4g is the distribution', i, 

mapf(gg,i+1), bou(round(max(1,i*iii/nummfs))))); 
    end  

    
 end 
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Filename:  sumonly.fis 

 

[System] 

Name='sumonly' 

Type='mamdani' 

Version=2.0 

NumInputs=4 

NumOutputs=1 

NumRules=4 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid' 

 

[Input1] 

Name='Performance' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25] 

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99] 

 

[Input2] 

Name='Affordability' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25] 

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99] 

 

[Input3] 

Name='Development-Flexibility' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23] 
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MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25] 

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99] 

 

[Input4] 

Name='Robustness' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25] 

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99] 

 

[Output1] 

Name='SoS-Arch-Fitness' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25] 

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99] 

 

[Rules] 

1 1 1 1, 1 (1) : 2 

2 2 2 2, 2 (1) : 2 

3 3 3 3, 3 (1) : 1 

4 4 4 4, 4 (1) : 1 
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Filename:  Fuzzeval44.fis 

 

[System] 

Name='Fuzzeval44' 

Type='mamdani' 

Version=2.0 

NumInputs=4 

NumOutputs=1 

NumRules=10 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid' 

 

[Input1] 

Name='Performance' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035] 

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99] 

 

[Input2] 

Name='Affordability' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035] 

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99] 

 

[Input3] 

Name='Development-Flexibility' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686] 
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MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035] 

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99] 

 

[Input4] 

Name='Robustness' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035] 

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99] 

 

[Output1] 

Name='SoS-Arch-Fitness' 

Range=[1 4] 

NumMFs=4 

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404] 

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686] 

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035] 

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99] 

 

[Rules] 

1 1 1 1, 1 (1) : 2 

4 4 4 4, 4 (1) : 1 

2 2 2 2, 1 (1) : 1 

3 3 3 3, 4 (1) : 1 

4 4 2 -1, 4 (1) : 1 

2 2 2 3, 2 (1) : 1 

2 2 3 2, 2 (1) : 1 

2 3 2 2, 2 (1) : 1 

3 2 2 2, 2 (1) : 1 

4 4 -1 2, 4 (1) : 1 
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Filename:  ToyProb.fis 

 

[System] 
Name='ToyProb' 
Type='mamdani' 
Version=2.0 
NumInputs=4 
NumOutputs=1 
NumRules=10 
AndMethod='min' 
OrMethod='max' 
ImpMethod='min' 
AggMethod='max' 
DefuzzMethod='centroid' 
  
[Input1] 
Name='Performance' 
Range=[0 4] 
NumMFs=4 
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80] 
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85] 
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84] 
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99] 
  
[Input2] 
Name='Affordability' 
Range=[0 4] 
NumMFs=4 
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80] 
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85] 
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84] 
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99] 
  
[Input3] 
Name='SinglePtFailure' 
Range=[0 4] 
NumMFs=4 
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80] 
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85] 
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84] 
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99] 
  
[Input4] 
Name='StrengthOfDependency' 
Range=[0 4] 
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NumMFs=4 
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80] 
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85] 
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84] 
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99] 
  
[Output1] 
Name='SoS-Arch-Fitness' 
Range=[0 4] 
NumMFs=4 
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80] 
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85] 
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84] 
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99] 
  
[Rules] 
1 1 1 1, 1 (1) : 2 
4 4 4 4, 4 (1) : 1 
2 2 2 2, 1 (1) : 1 
3 3 3 3, 4 (1) : 1 
4 4 2 -1, 4 (1) : 1 
2 2 2 3, 2 (1) : 1 
2 2 3 2, 2 (1) : 1 
2 3 2 2, 2 (1) : 1 
3 2 2 2, 2 (1) : 1 
4 4 -1 2, 4 (1) : 1 
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Filename:  lvc.fis 

 

[System] 

Name='lvc' 

Type='mamdani' 

Version=2.0 

NumInputs=7 

NumOutputs=1 

NumRules=18 

AndMethod='min' 

OrMethod='max' 

ImpMethod='min' 

AggMethod='max' 

DefuzzMethod='centroid' 

 

[Input1] 

Name='AU' 

Range=[-0.1 5.1] 

NumMFs=5 

MF1='None':'trimf',[-0.1 0.02381 1.262] 

MF2='Minimal':'trimf',[0.03619 1.262 2.5] 

MF3='Sufficient':'trimf',[1.262 2.5 3.738] 

MF4='Complex':'trimf',[2.5 3.738 4.976] 

MF5='Fully':'trimf',[3.738 4.976 5.1] 

 

[Input2] 

Name='Ext' 

Range=[-0.1 5.1] 

NumMFs=5 

MF1='Not':'trimf',[-0.1 0.02381 1.262] 

MF2='Slight':'trimf',[0.02381 1.262 2.5] 

MF3='Sufficient':'trimf',[1.262 2.5 3.738] 

MF4='Mostly':'trimf',[2.5 3.738 4.976] 

MF5='Fully':'trimf',[3.738 4.976 5.1] 

 

[Input3] 

Name='FactSupt' 

Range=[-0.1 5.1] 

NumMFs=5 

MF1='None':'trimf',[-0.1 0.02381 1.262] 
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MF2='Trad':'trimf',[0.02381 1.262 2.5] 

MF3='Multi':'trimf',[1.262 2.5 3.738] 

MF4='Civil':'trimf',[2.5 3.738 4.976] 

MF5='Complete':'trimf',[3.738 4.976 5.1] 

 

[Input4] 

Name='Net' 

Range=[-0.1 4.1] 

NumMFs=5 

MF1='VeryInsuff':'trimf',[-0.1 0 1] 

MF2='Insufficient':'trimf',[0 1 2] 

MF3='Sufficient':'trimf',[1 2 3] 

MF4='Good':'trimf',[2 3 4] 

MF5='Brilliant':'trimf',[3 4 4.1] 

 

[Input5] 

Name='TC' 

Range=[-0.1 4.1] 

NumMFs=5 

MF1='0':'trimf',[-0.1 0 1] 

MF2='25':'trimf',[0 1 2] 

MF3='50':'trimf',[1 2 3] 

MF4='75':'trimf',[2 3 4] 

MF5='100':'trimf',[3 4 4.1] 

 

[Input6] 

Name='ExSupt' 

Range=[-0.1 4.1] 

NumMFs=5 

MF1='NoSupt':'trimf',[-0.1 0 1] 

MF2='Medium':'trimf',[0 1 2] 

MF3='Large':'trimf',[1 2 3] 

MF4='Larger':'trimf',[2 3 4] 

MF5='Largest':'trimf',[3 4 4.1] 

 

[Input7] 

Name='Aff' 

Range=[-0.1 4.1] 

NumMFs=5 

MF1='TooExpensive':'trimf',[-0.1 0 1] 
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MF2='HighCost':'trimf',[0 1 2] 

MF3='Marginal':'trimf',[1 2 3] 

MF4='Good':'trimf',[2 3 4] 

MF5='Excellent':'trimf',[3 4 4.1] 

 

[Output1] 

Name='TrainVal' 

Range=[0 5] 

NumMFs=5 

MF1='Bad':'trimf',[-0.2 0 1.27645502645503] 

MF2='Poor':'trimf',[0.486507936507936 1.47650793650794 2.44047619047619] 

MF3='Good':'trimf',[2.66962962962963 3.59962962962963 4.56962962962963] 

MF4='Superb':'trimf',[3.61772486772487 5 5.15] 

MF5='Avg':'trimf',[1.54 2.5462962962963 3.53] 

 

[Rules] 

1 1 1 1 1 1 1, 1 (1) : 2 

2 2 0 0 0 0 0, 1 (1) : 1 

0 2 2 0 0 0 0, 1 (1) : 1 

0 0 2 2 0 0 0, 1 (1) : 1 

0 0 0 2 2 0 0, 1 (1) : 1 

3 3 3 -1 0 -1 0, 2 (1) : 1 

0 3 3 3 0 0 0, 2 (1) : 1 

0 0 3 3 3 0 0, 2 (1) : 1 

4 4 4 4 0 0 0, 3 (1) : 1 

4 4 4 0 4 0 0, 3 (1) : 1 

4 4 4 4 4 4 0, 3 (1) : 1 

4 4 4 4 4 4 3, 4 (1) : 1 

0 4 4 4 4 0 3, 3 (1) : 1 

5 5 5 5 5 5 2, 3 (1) : 1 

5 5 5 5 5 5 4, 4 (1) : 1 

4 4 4 4 4 4 3, 4 (1) : 1 

3 3 3 -1 0 -1 -1, 3 (1) : 1 

4 3 5 3 4 3 3, 4 (1) : 2 
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DODAF 2.0 MODEL VIEWPOINT EXPLANATIONS 
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DoDAF 

Model  

DoDAF Model Name  Typical Model Implementation  

AV-1  Overview and Summary Information  Text (Word Document)  

AV-2  Integrated Dictionary  Text, Spreadsheet or Database  

OV-1  High Level Operational Concept Graphic  PowerPoint or Animator  

OV-2  Operational Resource Flow Description  UML Collaboration Diagram  

OV-3  Operational Resource Flow Matrix  Table, Spreadsheet or Database  

OV-4  Organizational Relationships Chart  UML Class Diagram or Visio  

OV-5b  Activity Model  UML Use Case Diagram, Sequence Diagram, Activity 
Diagram  

OV-6c  Event Trace Description  UML Sequence or Activity Diagram  

DIV-1 Conceptual Data Model UML Classes & Class Diagrams 

DIV-2  Logical Data Model  UML Classes & Class Diagrams  

DIV-3 Physical Data Model UML Classes & Class Diagrams 

CV-1 Capability Vision Text 

CV-2 Capability Taxonomy UML Class Diagram 

CV-3 Capability Phasing Table, Spreadsheet, Gantt Chart 

CV-4 Capability Dependencies UML Class Diagram 

CV-5 Capability to Organizational Development 

Mapping 

Table or Spreadsheet 

CV-6 Capability to Organizational Activities 
Mapping 

Table, Spreadsheet, Partitioned Activity Diagram, or 
Sequence Diagram 

CV-7 Capability to Services Mapping Table, Spreadsheet or UML Class Diagram 

SvcV-1 Services Content Description Text 

SvcV-2 Services Resource Flow Description UML Sequence Diagram 

SvcV-3a Systems-Services Matrix Table or Spreadsheet 

SvcV-3b Services-Services Matrix Table of Spreadsheet 

SvcV-4 Services Functionality Description Text 

SvcV-5 Operational Activity to Services Traceability 

Matrix 

Table or Spreadsheet 

SvcV-6 Services Resources Flow Matrix Table or Spreadsheet 

SvcV-7 Services Measure Matrix Table or Spreadsheet 

SvcV-8 Services Evolution Description Table, Spreadsheet, Gantt Chart 

SvcV-9 Services Technology and Skills Forecast Table, Spreadsheet, Gantt Chart 

SvcV-10a Services Rules Model UML Activity Diagram 

SvcV-10b Services State Transition Description UML State Diagram 

SvcV-10c Services Event-Trace Description UML Sequence or Activity Diagram 
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The initial protection chromosome for the first wave is normally all zeroes – no 

selected systems or interfaces.  The following screenshots show input and output files of 

the GA for the first wave: 
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The following series of snapshots shows generations of the GA; note Generation 1 

has a wide range of numbers of ones in both systems (5 times the number in red) and 

interfaces (blue) 

Generation number is in the upper left of the second graph. 
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50th generation:  the GA is complete 
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Convergence of best chromosome over generations (blue); the green line is the 20th 

population member 

 

Final Upper Triangular Matrix representation 
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First wave chromosome in linear format: 

 

Showing solution of wave 1, after negotiating, a few less to start the second wave 
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The final chromosome for this run of the GA 

 

The following illustrations are of generations in the example second wave, wherein some 

systems and their previously negotiated interfaces are protected.  This shows up as redder 

points in the heatmaps. 
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Remember:  red on bottom chart is bad – unachievable but used; blue is ‘could be better’ 

– achievable but unused; green is best 

Heatmap color code (chart 4 on top row) is on the right side –  from few (dark blue), to 

many (red) 
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The heatmap shows red on a few interfaces, and all the systems that were marked as 

negotiated, as it should 
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Correcting mutations back to negotiated is occurring at the wrong place in this early 

version of the GA– although the trend is right, there should not be regressions in the blue 

convergence line.  This was corrected at a later wave protection version of the code 
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Second wave solution for ISR 

 

The Linear form of the chromosome shown immediately above 
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Radius, 

Nautical 

miles radius km

Speed, 

knots

Resolution, 

meters

Time on 

station,  

HOURS Capabilities Bandwidth how controlled

Image 

size, m

flies at 

altitudes, 

feet

cost to modify 

for SoS 

interoperability

add'l cost to 

double the 

performance 

change on the 

left

cost to operate 

for a month 

(including 

personnel) m2/sec KM2/hr

pixels/sec (but 

these are 

compressed 

about 50 to 500 

to one before 

transmission)

Raven

http://en.wikipe

dia.org/wiki/RQ-

11_Raven 6.2 11.4824 30 0.15 1 EO or IR 2/sec stills

Controlled by 

soldier/operato

r 100 <500 $1,000 9000 32.4 1.20E+05

RQ-7 

Shadow/Scan 

Eagle class

http://en.wikipe

dia.org/wiki/RQ-

7_Shadow 59 109.268 80 0.2 9 EO or IR

1  Full 

Motion 

Video (FMV)

Controlled by 

command post 300-600

1000-

5000 $10,000 $6,000 $60,000 24000 86.4 4.80E+06

MQ-1C Gray 

Eagle/Predator 

Class

http://en.wikipe

dia.org/wiki/MQ-

1C_Gray_Eagle 200 370.4 120 0.1 25 EO/IR/SAR 2 FMV

Controlled 

distant remote 100-3000

15,000-

25,000 $100,000 $150,000 $300,000 36000 129.6 1.44E+07

Apache 

Helicopter 200 370.4 180 0.2 1

EO/IR, 

strike

1  FMV, 

adjustable piloted 3000

200-

15000 $0 $500,000 $200,000 54000 194.4 1.08E+07

Command 

center 

surveillance 

desk

smaller 

exploitation 

capability than 

exp. Center 120 222.24 n/a 0.1 24/7

command, 

exploitation

, fusion

8 voice, 3 

FMV command staff 100-3000 0 $30,000 $60,000 $90,000 #VALUE! #VALUE! #VALUE!

Control station 

(common) 120 222.24 n/a 0.1 24/7

coordinatio

n

2 voice, 1 

FMV controllers 100-3000 0 $5,000 $3,000 $250,000 #VALUE! #VALUE! #VALUE!

Exploitation 

Center 10000 18520 n/a 0.1 24/7

exploitation

, fusion infinite analysts 100-5000 0 $0 $5,000 $100,000 #VALUE! #VALUE! #VALUE!

voice/chat

shared 

over 

either los 

or blos n/a n/a 24/7

coordinatio

n

3 KHz or 7 

Kbs anyone n/a n/a $0 $0 $0 #VALUE! #VALUE! #VALUE!

LOS data comm 120 222.24 n/a any 24/7 LOS 25-128 KBS anyone n/a n/a $30,000 $40,000 $0 #VALUE! #VALUE! #VALUE!

BLOS data 

comm 10000 18520 n/a any 24/7 BLOS

32 KBS-

10MBPS

RQ-7 goes 

through control 

station for BLOS n/a n/a $100,000 $50,000 $15,000 #VALUE! #VALUE! #VALUE!

artillery 

(delivering 

shells from a 

'battery') 25 46.3 1000 100 24/7 strike n/a manned n/a n/a $10,000 $10,000 $200,000

can't modify it, not big enough, 

no networking, no recording, 

only connected to soldier; really:  
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Input data sets are differently shaped for the Missouri Toy problem because a 

form of the FDNA evaluation is used for the performance attribute evaluation algorithm.  

 

Capabilities of systems versus system type 

 

Criticality of dependency to each system 
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Strength of dependency of links to each system 
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