
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2016

A domain independent method to assess system of system meta-A domain independent method to assess system of system meta-

architectures using domain specific fuzzy information architectures using domain specific fuzzy information

Louis Edward Pape II

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Pape, Louis Edward II, "A domain independent method to assess system of system meta-architectures
using domain specific fuzzy information" (2016). Doctoral Dissertations. 2487.
https://scholarsmine.mst.edu/doctoral_dissertations/2487

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2487?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A DOMAIN INDEPENDENT METHOD TO ASSESS SYSTEM OF SYSTEM META-

ARCHITECTURES USING DOMAIN SPECIFIC FUZZY INFORMATION

by

LOUIS EDWARD PAPE II

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

SYSTEMS ENGINEERING

2016

Approved

Dr. Cihan Dagli, Advisor

Dr. Steven Corns

Dr. Ivan Guardiola

Dr. David Enke

Dr. James Paunicka

Dr. Nil Ergin

 2016

Louis Edward Pape II

All Rights Reserved

 iii

ABSTRACT

This research proposes a domain independent method to build and assess systems

of systems (SoS) architecture models. A simplified binary, meta-architecture containing

each component system’s participation and a first order, system-to-system interface is

proposed. The method describes how to elicit desired SoS attributes from stakeholders.

Measures of the attributes depend on systems’ participation, characteristics and

interfaces, that is, on the SoS architecture. The goal is to model a realizable SoS

configuration, optimized over multiple attributes. Key attribute measures are combined

in a fuzzy inference system to assess an overall fitness measure for any SoS within the

meta-architecture. A genetic algorithm is used to find ‘good’ SoS architectures with a

fitness that depends on the participation framework. This research illustrates a method to

define architecture sensitive attributes and build the fuzzy assessor. These are two

segments of the Missouri S&T developed, nine part Flexible Intelligent Learning

Architectures for SoS (FILA-SoS) research approach to architecting SoS. A desirable

SoS architecture found this way may be handed off to an agent-based model to examine

the impact of various negotiation behaviors or policies on realization of the SoS. The

final configuration may evolve over several development epochs as desired in the wave

model.

The method is demonstrated on SoS in several domains to illustrate its broad

generality. Two intelligence, surveillance and reconnaissance (ISR) SoS, a search and

rescue (SAR) SoS, two versions of the MITRE Toy problem, and a validation using an

actual SoS for a large training program are analyzed. The method provides researchers

and designers with a novel way to think about the effects of imprecise stakeholder

desires, sensitivity to inputs, and acquisition policies on SoS architecting.

 iv

ACKNOWLEDGMENTS

I thank my advisor, Dr. Cihan Dagli, for his patient, wise and persistent tutelage

as I frequently wandered from the simple path. I would also like to thank the SERC for

funding the RT-37, RT-44c and RT-109 research tasks titled “An Advanced

Computational Approach To SoS Analysis And Architecting Using Agent-Based

Behavioral Modeling.” The research colleagues (professors and fellow students) on those

tasks were most helpful in refining the approach and providing a forum to expose ideas to

scrutiny and implementation tests.

My committee and MS&T faculty and staff were also very helpful with comments

and discussions during course work, writing papers, and developing the models and

methods discussed in this dissertation. Several committee members also participated in

the SERC research tasks, doing double duty for me.

The Boeing Company Learning Together Program paid for the majority of my

doctoral classes. I am grateful for that support. The International Council on Systems

Engineering (INCOSE) organization, as well as the local Midwest Gateway INCOSE

chapter, and my participation in the annual Systems Engineering Research and Complex

Adaptive Systems Conferences, were all very helpful with discussions of best practices

and their application on potential projects. I am grateful for receiving the INCOSE

Foundation/Stevens Doctoral Award in 2013, based on this work while it was in progress.

Finally, I want to thank my wife, Donna, and the rest of my family for their

extraordinary patience and support during my extended graduate school journey.

 v

ACKNOWLEDGEMENT OF SUPPORT

This material is based upon work supported, in whole or in part, by the U.S.

Department of Defense through the Systems Engineering Research Center (SERC) under

Contract H98230-08-D-0171. SERC is a federally funded University Affiliated Research

Center (UARC) managed by Stevens Institute of Technology.

Any opinions, findings and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the United

States Department of Defense.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

ACKNOWLEDGEMENT OF SUPPORT ... v

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

LIST OF ABBREVIATIONS ... xvii

SECTION

1. INTRODUCTION .. 1

1.1 RESEARCH INTO ACKNOWLEDGED SYSTEMS OF

SYSTEMS (SoS) .. 1

1.2 SOCIOTECHNICAL SYSTEM COMPLEXITY 2

1.3 NEED FOR IMPROVED METHODS OF ARCHITECTING 5

1.4 ACKNOWLEDGED SoS ... 10

1.5 THE SoS ENVIRONMENT ... 13

1.6 THE SoS META-ARCHITECTURE ... 17

1.7 AIMS OF THIS RESEARCH ... 24

1.8 PROPOSED MODELING APPROACH ... 24

1.9 SUMMARY OF FINDINGS .. 28

1.10 CHAPTER ORGANIZATION ... 29

2. LITERATURE REVIEW ... 31

2.1 SYSTEMS OF SYSTEMS (SoS) ... 31

2.2 SoS ATTRIBUTES ... 33

2.2.1 Attributes Commonly Found in the Literature.............................. 34

 vii

2.2.2 Correlation of Attributes. .. 38

2.3 NETCENTRICITY OF SoS ... 49

2.3.1 Achievable Interfaces Through Communication Systems. 50

2.3.2 Special Treatment for ‘Linking’ Systems. 53

2.3.3 Improved Netcentric Performance Equation. 54

2.3.4 Why Not Graph Theory. ... 57

2.3.5 Why this is Not a Simple Assignment Problem............................ 61

2.4 FUZZY LOGIC. ... 64

2.4.1 Just Enough Fuzzy Logic. ... 64

2.4.2 Impact of Recent Advances In Fuzzy Logic. 64

2.4.3 Fuzzy Linguistic Analysis for Discovering SoS Attributes. 67

2.5 MULTI-OBJECTIVE FUZZY OPTIMIZATION 69

2.6 GENETIC ALGORITHM APPROACH TO THE PROBLEM 72

2.7 EVOLUTION OF THE SoS IN SUCCESSIVE WAVES 74

2.8 SoS ARCHITECTING CHALLENGES .. 74

2.9 OTHER ARCHITECTURAL ANALYSIS METHODS 78

2.10 SCARCITY OF DOCUMENTED SoS EXAMPLES FOR STUDY 86

2.11 SUMMARY OF LITERATURE REVIEW.. 88

3. PROPOSED METHOD FOR DEVELOPING AN SoS EVALUATION

MODEL .. 90

3.1 USE CASE MODEL OF THE DOMAIN INDEPENDENT

METHOD ... 90

3.2 DOMAIN INDEPENDENT MODEL CREATION 94

3.2.1 Establishing a Vision of the SoS. .. 96

3.2.1.1 Collecting descriptive domain information. 100

3.2.1.2 Deducing attributes. .. 103

 viii

3.2.2 Understanding Stakeholders Views. ... 103

3.2.2.1 Relationships to established decompositions: Task

Lists, Joint Capability Areas, ISO Standards. 105

3.2.2.2 Capability improvement of a proposed SoS. 107

3.2.2.3 Decomposition of capabilities to functions and

logical views. .. 108

3.2.2.4 Conducting analyses of SoS behavior............................. 111

3.2.3 Review of the Method Steps. .. 112

3.2.3.1 Choosing the SoS key attributes. 115

3.2.3.2 Visualizing domain model data. 116

3.2.4 Architecture Space Exploration. ... 116

3.3 INDIVIDUAL SYSTEMS’ INFORMATION 118

3.3.1 Cost, Performance and Schedule Inputs of Component

Systems. .. 118

3.3.2 Membership Functions.. 120

3.3.3 Mapping Attribute Measures to Fuzzy Variables. 123

3.3.4 Exploring the Meta-Architecture Space to Set MF Crossing

Values. .. 126

3.4 NEED FOR MULTI-OBJECTIVE OPTIMIZATION (MOO) 129

3.5 NON-LINEAR TRADES IN MULTIPLE OBJECTIVES OF SOS 131

3.6 COMBINING SoS ATTRIBUTE VALUES INTO AN OVERALL

SoS MEASURE .. 134

3.7 EXPLORING THE SoS ARCHITECTURE SPACE WITH THE

GENETIC ALGORITHM (GA) APPROACH 136

3.8 COMBINING THE FUZZY APPROACH WITH THE GA

APPROACH ... 137

3.9 HEURISTICS ... 139

3.10 DISPLAYING THE RESULTS OF COMPLEX SoS ANALYSES 141

 ix

3.11 MODULARIZING THE METHOD... 144

3.12 VALIDATING THE DEVELOPED MODEL 145

3.13 HOW TO KNOW WHEN ONE HAS A GOOD SOLUTION............... 147

3.14 USING THE SoS ASSESSMENT WITH NEGOTIATION

MODELS .. 148

4. APPLICATION OF THE METHOD ... 150

4.1 DOMAIN DATA GATHERING .. 150

4.1.1 Historical Example – Gulf War ISR Domain Model. 151

4.1.2 Operations Other Than War (OOTW) Counterinsurgency

ISR Example. .. 162

4.1.3 Search and Rescue (SAR) Domain Example. 168

4.1.3.1 A model building basis for SAR. 179

4.1.3.2 Additional features of recent tool versions. 179

4.1.4 MITRE “Toy” Problem... 179

4.1.5 Large Live-Virtual-Constructive (LVC) Model. 188

4.1.6 How To Use the Method on Global Air Traffic Management. ... 193

4.2 RESULTS OF IMPLEMENTING THE METHOD 198

4.2.1 Sensitivity Analysis. ... 198

4.2.2 Results of Gulf War ISR Modeling. ... 200

4.2.3 Results of OOTW Scenario Model. .. 203

4.2.4 Results of SAR Modeling. .. 207

4.2.5 Results of Toy Modeling. ... 211

4.2.5.1 Initial Toy model results. .. 211

4.2.5.2 Generalized FDNA implementation results. 213

4.2.6 Validation with a Large, Real World Example. 217

5. CONCLUSIONS AND FUTURE WORK ... 223

 x

5.1 CONCLUSIONS... 223

5.2 FUTURE WORK .. 225

APPENDICES

A. DETAILED GULF WAR PERFORMANCE MODEL 227

B. MATLAB CODE .. 230

C. MATLAB FUZZY INFERENCE SYSTEM (.FIS) FILES 287

D. DODAF 2.0 MODEL VIEWPOINT EXPLANATIONS 297

E. SUPPLEMENTARY FIGURES ... 302

BIBLIOGRAPHY ... 318

VITA ... 327

 xi

LIST OF FIGURES

 ... Page

Figure 1.1. Focus: two segments of the FILA-SoS approach .. 3

Figure 1.2. Linear representation of the generalized SoS meta-architecture 18

Figure 1.3. Partial linear display of an SoS chromosome extending far to the right 18

Figure 1.4. SoS meta-architecture layout ... 19

Figure 1.5. Network connection topologies shown in upper triangular form 20

Figure 1.6. Overview of the contributions to the assessment model 28

Figure 2.1. Absolute architecture comparison illustration ... 43

Figure 2.2. Relative architecture comparison .. 44

Figure 2.3. Properly scaled architecture comparison; still not conclusive 45

Figure 2.4. Exploring the meta-architecture space with varying participation ratios 48

Figure 2.5. ‘Achievable interface’ has a communication system path in common 52

Figure 2.6. Achievable/unachievable, and used/unused interfaces 60

Figure 2.7. Incidence matrix for systems vs. capabilities for the ISR SoS 61

Figure 2.8. Incidence matrix for systems vs. capabilities for the SAR SoS 61

Figure 2.9. Kiviat charts are sometimes used to show the satisfaction of multiple

objectives ... 71

Figure 3.1. Use case diagram for developing an SoS Architecture 91

Figure 3.2. Domain Independent Process Method for SoS Model building 94

Figure 3.3. Sample OV-1 for ballistic missile defense (ASN/RDA 2009) 99

Figure 3.4. Data sources and analysis steps for applying the method 104

Figure 3.5. How the steps of the method result in a good SoS architecture 114

Figure 3.6. Example domain data input for 29 system SAR SoS 121

 xii

Figure 3.7. Updated input data format for characteristics of the component

systems .. 122

Figure 3.8. Matlab Fuzzy Toolbox display of typical membership function shapes 123

Figure 3.9. Map from fuzzy variable on horizontal axis to probability of detection

on left ... 125

Figure 3.10. Attribute values, mapped to fuzzy variables ... 126

Figure 3.11. Setting the membership function edges for the attributes with value

exploring .. 127

Figure 3.12. Nonlinear SoS fitness surface of the ISR fuzzy inference system

(FIS) ... 132

Figure 3.13. Alternate fitness shapes for different domain problems 133

Figure 3.14. Fitness surface from the large training SoS validation problem 133

Figure 3.15. Exploring the meta-architecture - 25 chromosomes, 22 systems,

Example 1 .. 139

Figure 3.16. Exploring the meta-architecture to map membership function edges,

Example 2 .. 140

Figure 3.17. Exploring biased, but still random populations to set the membership

function edges .. 140

Figure 3.18. Upper triangular form of chromosome, with color codes for used and

achievable (or feasible) interfaces ... 142

Figure 3.19. Color coded achievable/unachievable interfaces for a SAR SoS 143

Figure 3.20. Four equivalent methods of showing the systems and interfaces in an

SoS ... 144

Figure 4.1. ISR domain specific input data.. 157

Figure 4.2. Binary matrix of capabilities vs. systems for ISR example......................... 162

Figure 4.3. OOTW IS2 systems and capabilities ... 163

Figure 4.4. Operational View 1 for Search and Rescue scenario 169

Figure 4.5. Conceptual SAR Operating Radius (Google Maps, 2013) 172

Figure 4.6. The fuzzy assessor model inputs for the SAR SoS 174

 xiii

Figure 4.7. Execution timeline example generated directly from the SAR model 180

Figure 4.8. Activity diagram matching the CONOPS of the SAR model 181

Figure 4.9. MITRE Toy SoS problem as originally proposed 182

Figure 4.10. Reconfigured Toy problem for Missouri Toy FILA-SoS approach 183

Figure 4.11. Input domain data for FILA-SoS configured Toy problem 183

Figure 4.12. Intermediate progress through GA generations showing SoS fitness

improvement .. 200

Figure 4.13. Typical 50th generation output graphs for GA of the ISR 201

Figure 4.14. An ISR run of 200 gens with 300 in population .. 202

Figure 4.15. This convergence plot shows an ISR assessment still improving at

generation 150 .. 202

Figure 4.16. Final ISR SoS chromosome display for 200 generations 203

Figure 4.17. Biased number of ones in a small population explores the space

adequately .. 204

Figure 4.18. OOTW SoS GA snapshots with population =100, total generations =

50.. 206

Figure 4.19. OOTW convergence with generations and population = 40 207

Figure 4.20. Snapshots of typical GA generations of 29 system SAR convergence 208

Figure 4.21. Convergence and final SAR SoS configuration, first wave epoch 209

Figure 4.22. First wave on bottom; second wave on top ... 209

Figure 4.23. Robustness MF edges are changed between these two runs 210

Figure 4.24. SAR runs show impact of robustness MF change in Figure 4.23 210

Figure 4.25. Alternate SAR formulation provides a similar architecture 211

Figure 4.26. Output performance for Ground station input performance of 100 212

Figure 4.27. Output performance for Ground station input performance of 75 213

Figure 4.28. Output performance for Ground station input performance of 25 213

Figure 4.29. COD values for generalized Toy problem... 214

 xiv

Figure 4.30. SOD values for generalized Toy problem ... 215

Figure 4.31. Exploration of the space with 300 biased Toy chromosomes 216

Figure 4.32. Early generations of Toy problem GA run shows selected interfaces

changing ... 217

Figure 4.33. Final generation of Toy problem; convergence plateaued around

generation seven of 50 ... 218

Figure 4.34. Very large input data matrix for the LVC problem (gray cells contain

‘1’).. 220

Figure 4.35. 18 fuzzy rules with seven attributes on the left, compared to 11 rules

and four attributes of other models .. 221

Figure 4.36. Example 111 system example shows bands of less selected systems 222

 xv

LIST OF TABLES

 Page

Table 2.1. Correlation coefficients between attributes in Figure 2.4 are shaded 48

Table 2.2. Proposed method's approach to SoS Pain Points .. 77

Table 3.1. List of SoS and component systems’ variable meanings within the

meta-architecture... 92

Table 3.2. Example SoS evaluation model building questionnaire for creating an

AV-1 ... 96

Table 3.3. Example AV-2, Integrated Dictionary .. 111

Table 3.4. Explanation of value exploring graph pages during early model efforts 128

Table 3.5. Example of a few powerful Fuzzy Inference Rules for combining

attribute values .. 135

Table 4.1. ISR SoS domain example characteristics ... 154

Table 4.2. Domain model data for SoS with 22 Systems: Capabilities, Costs, and

Schedules .. 156

Table 4.3. Trapezoidal Membership Function crossover values 157

Table 4.4. Mathematical definition of variables for ISR domain example 158

Table 4.5. MF edge crossover points for OOTW model ... 163

Table 4.6. OOTW IS2 SoS domain example characteristics ... 163

Table 4.7. Mathematical definition of variables for OOTW domain example 164

Table 4.8. Possible SAR scenarios .. 171

Table 4.9. Characteristics of a SAR SoS ... 172

Table 4.10. MF edge crossover points for SAR... 174

Table 4.11. Mathematical definitions for SAR model ... 174

Table 4.12. MF edge crossover points for TOY problem .. 184

Table 4.13. MITRE Toy problem SoS domain datasheet .. 184

 xvi

Table 4.14. Mathematical definition of variables for Missouri Toy problem 185

Table 4.15. MITRE Proprietary LVC problem SoS domain datasheet 189

Table 4.16. Mathematical definition of variables for LVC validation problem 190

Table 4.17. Correlation coefficients among all the OOTW attribute variables 205

Table 4.18. Cross correlation matrix for the Toy problem shows minor correlation 216

Table 4.19. Correlation coefficients for the LVC problem .. 221

 xvii

LIST OF ABBREVIATIONS

A3 Architecture description technique referring to the size paper it

uses

AADL Architecture Analysis and Description Language

ADS-B Automatic Dependent Surveillance-Broadcast

AF Air Force

AMADEOS Architecture for Multi-criticality Agile Dependable Evolutionary

Open System-of-Systems

AOC Air Operations Center

AOR Area of Responsibility

ARID Active Reviews for Intermediate Designs

ARIMA Autoregressive integrated moving average

AS5506B SAE standard for Architecture Analysis and Description

Language

ASD(NII) Assistant Secretary of Defense for Networks and Information

Integration

ASN/RDA Assistant Secretary of the Navy (Research, Development, and

Acquisition)

ATAM Architecture Tradeoff Analysis Method

ATC Air Traffic Control

ATM Air Traffic Managemeent

AV All View in DoDAF

BLOS Beyond Line of Sight

BPMN Business Process Modeling Notation

BS Bachelor of Science

 xviii

C4ISR Command, Control, Communications, Computers, Intelligence,

Surveillance and Reconnaissance

CA California

CC Closed Circuit

CESUN Council of Engineering Systems Universities

CIR Computing Infrastructure Readiness

CJCSI Chairman of the Joint Chiefs of Staff Instruction

CJCSM Chairman of the Joint Chiefs of Staff Manual

COD Criticality of Dependency (in FDNA)

COMPASS Comprehensive Modelling for Advanced Systems of Systems

CONOPS Concept of Operations

CONUS CONtinental United States

CRC Chemical Rubber Company

CSD Complex Systems Design

CV Capability View

DANSE Designing for Adaptability and evolutioN in System of systems

Engineering

DFO Department of Fisheries and Oceans

DIV Data & Information View

DoDAF Department of Defense Architecture Framework

DoDI Department of Defense Instruction

DSP Defense Support Program

DYMASOS Dynamic Management of Physically Coupled Systems of

Systems

EO/IR ElectroOptical/Infrared

EU European Union

 xix

FA Federated Architecture

FAA Federal Aviation Administration

FAM Fuzzy Associative Memory

FDNA Functional Dependency Network Analysis

FILA-SoS Flexible Intelligent Learning Architectures for Systems of

Systems

FIF Fund an InterFace

FIS Fuzzy Inference System

FOP Fund Operation (of a System)

GA Genetic Algorithm

GATM Global Air Traffic Management

GPS Global Positioning System

GUI Graphic user interface

I/F Interface

ICAO International Civil Aviation Organization

IEA Information Enterprise Architecture

IED Improvised Explosive Device

IEEE Institute of Electrical and Electronics Engineers

IFS Intuitionistic Fuzzy Sets

INCOSE International Council On Systems Engineering

IP It means a funded EU project

IR Infrared

IS2 Three letter code for the second ISR project

ISO International Organization for Standardization

 xx

ISO/IEC/IEEE International Organization for Standardization/International

Electrotechnical Commission/Institute of Electrical and

Electronics Engineers

ISO-10303 Automation systems and integration — Product data

representation and exchange

ISR Intelligence, Surveillance & Reconnaissance

JSTARS Joint Surveillance and Target Attack Radar System

KM Karnik–Mendel

KPA Key Performance Attributes

LML Life cycle Modeling Language

LOS Line of Sight

LVC Live, Virtual, Constructive

MBA Master of Business Administration

MF Membership Function

MOA Memorandum of Agreement

MODAF Ministry of Defence Architecture Framework

MOO Multi-Objective Optimization

MOU Memorandum of Understanding

MS Master of Science

N/A Not applicable

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NCO Netcentric Operations

NOAA National Oceanic and Atmospheric Administration

NR Net ready

NVS National Air Space Voice System

 xxi

OOTW Operations Other Than War

OUSD (AT&L) Office of the Undersecretary of Defense for Acquisition,

Technology & Logistics

OV Operational View

PBS Public broadcasting System

PEM Program Element Monitor

POR Program of Record

PSO Particle Swarm Optimization

RF Radio Frequency

ROM Rough Order of Magnitude

RPA Remotely Piloted Aircraft

RT Research Task

S2ESC IEEE Software and Systems Engineering Standards Committee

SAE Society of Automotive Engineers

SAR Search and Rescue

SE Systems Engineering

SEI Software Engineering Institute

SERC Systems Engineering Research Center

SESAR Single European Sky ATM Research

SESARJU Single European Sky ATM Research Joint Undertaking

SMC Systems, Man, and Cybernetics

SME Subject Matter Expert

SOD Strength of Dependency

SoS System of Systems

SoS Systems of Systems

SoSE Systems of Systems Engineering

 xxii

SPO System Program Office

STANAG Standardization Agreement (NATO)

SWIM System Wide Information Management

SysML Systems Modeling Language

TEL Transporter Erector Launcher

UAV Unmanned Air Vehicle

UCS User Control Station

UML Unified Modeling Language

US United States

USAF US Air Force

WG Working Group

1. INTRODUCTION

1.1 RESEARCH INTO ACKNOWLEDGED SYSTEMS OF SYSTEMS (SoS)

The aims of this research are to develop and explore a model building method that

can handle the inherent ambiguities of designing a System of Systems (SoS) comprised

of pre-existing, independent systems. The method then uses a fuzzy genetic algorithm

(GA) approach to find ‘good’ SoS compositions among a universe of possibilities. The

method itself is domain independent; it is applicable across a wide range of domains with

very little tuning required. Missouri University of Science and Technology (Missouri

S&T) researchers developed an approach called Flexible Intelligent Learning

Architectures for Systems of Systems (FILA-SoS), comprised of nine segments to

explore the SoS design problem space. This research makes up two of the nine segments

of FILA-SoS shown in Figure 1.1. A secondary goal of the method is to increase the

understanding of relevant trade-space issues and possibilities for modeling components

and capabilities in the design of SoS under multiple objectives from an acquisition

viewpoint. FILA-SoS starts with a simplified, binary meta-architecture for the

participation of each potential system, and the presence of each system’s interface with

every other system. The method of generating and assessing SoS designs within this

meta-architecture comprises the following steps:

 Developing an SoS concept, nominating potential systems, and collecting

domain data

 Eliciting desired SoS attributes and their relative values from the stakeholders

 Hypothesizing, documenting, and implementing algorithms (models) for

evaluating each attribute from the SoS meta-architecture

 2

 Finding a rule based combination of attribute values for an overall SoS

assessment, or fitness, through a fuzzy inference system

 Checking the attribute models against the SoS meta-architecture to ensure

closure (which may cause a repeat of previous steps as far back as step two if

the checks are not satisfactory)

 Selecting a satisfactory architecture with the fuzzy genetic algorithm (GA)

 After other segments of the FILA-SoS approach find a potentially sub-optimal

‘realizable’ and agreed to design through negotiations, the fuzzy assessor is

exercised again to provide a measure of the fitness of the final architecture for

that epoch, or wave, in the wave model of SoS evolution (Dahmann, et al.

2011).

The method is demonstrated on several hypothetical SoS tuned to show the

feasibility of the approach in general, on variations of a classic MITRE ‘Toy’ SoS using

functional dependency network analysis (FDNA) as a different problem formulation, and

on a large, customer provided (proprietary) existing live, virtual, constructive (LVC)

training SoS for validation on a real-world example.

1.2 SOCIOTECHNICAL SYSTEM COMPLEXITY

There can be no question that today’s civilization and its component systems are

far more complex than in previous times (Wai 2012). Travel, trade, commerce,

education, technology, nation states, financial networks, populations, legal frameworks,

volume of information, magnitude of risk, political systems, interconnectedness and

interdependency – all these facets of society have expanded tremendously in scope and

 3

Figure 1.1. Focus: two segments of the FILA-SoS approach

reach over recent centuries. The systems that allow, or control (depending on the

viewpoint), these facets of civilization are called sociotechnical systems. It is only

recently, however, that humanity’s systems have become so powerful and interconnected

that we can no longer afford avoidable mistakes. Society’s ability to know, and to do,

more and more have almost kept pace with its desires. There have always been problems

associated with growth; there have always been unintended consequences of decisions,

even with the best intentions and significant care by decision makers. The downside risk

inherent in the most powerful societal systems has grown too large. One need look no

further than nation-states’ nuclear weapons establishments, the recent worldwide

financial collapse, the too numerous environmental disasters, or widespread ethnic

cleansing to find examples of this downside risk. Almost every large system is now a

 4

sociotechnical system, meaning that both human and technological aspects are deeply

entwined. This implies that they are more difficult to analyze as well. Almost every

large socio-technical system is now both complex and adaptive, meaning that results:

 Are not always predictable,

 Could be strongly influenced by small perturbations, and

 Can develop in ways neither contemplated by designers nor understood by

users.

Further, many of these societal systems are in fact Systems of Systems (SoS).

Systems of Systems Engineering (SoSE) is becoming a significant area of specialization

within the profession of Systems Engineering (SE). Changes inevitably occur in

society’s institutions, technologies, governments, and patterns of life; other changes

inevitably need to be made to accommodate the first changes. Society’s ability to

analyze SoS, and to understand the implications of change, needs to improve beyond

current practice to avoid costly mistakes and errors that might realize the downside risks

mentioned above.

Complex SoS structures, with divergent stakeholder viewpoints on what

constitutes success and multiple, frequently contradictory, objectives, are the norm in

large, modern socio-technical enterprises. These SoS will be expected to do things never

attempted before; to be safe, effective, efficient, to have little environmental impact, to be

easy to understand, to never fail, to work in conditions far removed from those for which

they were designed, and above all, to be inexpensive to build and operate.

An acknowledged SoS is any simultaneously semi-voluntary and partially

regulated combination of systems with a centralized goal, but a less than complete central

 5

authority. These include: multi-jurisdictional construction projects (canals, tunnels,

bridges or dams), non-governmental organization (NGO) relief efforts, airports, seaports,

multimodal transportation systems, security architectures (both physical and cyber),

supply chains, and health care as an enterprise. The method described here can be used

as a starting point for understanding some of the possible trade space in acknowledged,

DoD style SoS, as well as many non-military, complex, multi-stakeholder SoS constructs.

Society requires the ability to better understand how acknowledged SoS develop, evolve,

and thrive, so as to better manage organizations, resources, and change in the future.

1.3 NEED FOR IMPROVED METHODS OF ARCHITECTING

As civilization grows, the need for larger, more complex systems also grows.

Many of the newest, most complex systems are better described as systems of systems

(SoS), in which existing, independently developed and managed major systems are

brought together to achieve additional capabilities not possible through the component

systems’ continued independence. Examples of this include

 Ballistic missile defense, in which existing warning radars, communication

systems, and shelters are combined with new technology interceptor and

decision systems

 A modern multimodal transportation system would certainly qualify as an SoS

– not merely an interstate highway system, for example; but also feeder roads;

airports; seaports; tugs; canals; rivers; barge, rail, trucking, bus, and cab

companies; automobiles; aircraft; ships; warehousing; hotels; rest stops; travel

and liability insurance; fuel and repair stations; traffic laws, courts, taxes,

tolls, customs, tariffs, and so on

 6

 Governments, the internet, the world economic system and multinational,

conglomerate corporations may be characterized as systems of systems to

varying degrees, and with varying ranges of central control.

New possibilities from new technologies, as well as from new ideas about ways to

use existing technologies and systems, allow society to pursue many paths not previously

discoverable. However, the growth of possibilities is currently outstripping the

availability of resources, even as fast as the availability of resources within the world

economy has grown in the last couple of centuries. Examples of this include:

 The US Apollo program of the 1960’s, had access to nearly unlimited

resources and reached the moon, but the US would have difficulty duplicating

the feat today due to competing priorities.

 The Space Shuttle, developed in the 1970s, operated as the nation’s space

transportation system for the next three decades with enormous technical

success over hundreds of flights (except the two disasters and cost overruns).

However, the replacement program decision was postponed repeatedly until

after the shuttle was retired, leaving a gap in launch capability. NASA’s

budget has barely kept pace with inflation for the last 20 years.

 ‘Big physics’ provides another example of decline. Another program that

started with nearly unlimited resources in the Manhattan Project, followed by

larger and larger particle accelerators. This led to a better understanding of

deep physics and collaboration with astrophysics. The eventual rejection of

the proposal for the U.S. Superconducting Super Collider in the 1990s as

 7

being too expensive for an unknowable return (in addition to environmental

concerns) is a sign of society’s inability to continue down that promising path.

 Very large tunnels, such as the Channel Tunnel, the Sendai Tunnel, or the

“Big Dig” in Boston qualify as projects started in an era of relative abundance

(1980s and 1990s); they all resulted in huge overruns and repeated

bankruptcies of the sponsor corporations. These were all large, complex

projects involving many investors, governmental jurisdictions, government

agencies, subcontractors, specialists, and regulators working as an SoS.

None of these projects, nor numerous other proposed large construction projects,

could possibly get started in today’s economic environment. Author and futurist Neal

Stephenson famously bemoaned “our far broader inability as a society to execute on the

big stuff” (Stephenson 2011).

Very large projects, invariably SoS, not only are expensive and difficult to

manage by definition, but almost invariably overrun in cost and schedule. While one

reason might be that if reasonable (instead of over optimistic) cost and schedule estimates

were originally presented, no one would ever choose to start these projects. It is

generally regarded as self-defeating to acknowledge realistic costs when trying to get a

large project started. However, if the proponents do get a project started, it is highly

likely that it will contend with many problems and repeated upward revisions to the

estimate to completion. Although business schools teach that sunk costs are not a reason

to continue investing in a project (Krugman and Wells 2009), the emotional attachment to

the sunk cost is practically impossible to ignore. In society’s defense, it is seldom the

case that it would be cost effective to start a large project over from the beginning.

 8

Another compelling reason for delays and cost overruns is that larger projects

typically have an impact on larger numbers of stakeholders. They have a ‘bigger

footprint,’ i.e., they may benefit many stakeholders, but they likely also impinge on

numerous stakeholders in a negative way, leading to strong reasons for obstructionism by

larger numbers of opponents. Note: the reason for starting an SoS is to do some new

task, or an old task in a far better way. This means changes to the pre-existing way of

doing things; hopefully, big changes! Woodrow Wilson once said, “If you want to make

enemies, try to change something” (Shaw 1918). Smaller projects are easier to manage in

newer and more efficient ways, because less of everything is at risk. But big projects are

what society frequently needs. In addition to increasing societal desires over time,

numerous other rapidly increasing factors are nevertheless quite compelling:

 Public expectations of being able to do better today than ever before

 Demands from customers and stakeholders to do more with less

 Population growth requires additional social services, such as food, water,

energy, transportation, sewage, and sanitation

 The apparent growth of the potential of technology, systems and networks

 Rapidity of technological change

 Global competition

 Threats, whether ‘simply’ competitive, or security/existential in origin

While these factors tempt society to pursue larger projects with greater goals,

there are factors that oppose:

 Limitations of resources, especially when the projects are large

 9

 The ‘cost of regret’ for projects forgone, when significant resources are

committed to one project over other potentially desirable projects

 Lack of large numbers of fully trained personnel to manage development and

operate the otherwise realizable systems

 A changing regulatory environment

 Rapidly rising public demand for less risk, increased safety, and zero

environmental impact

 Inability to accurately predict performance, schedule or costs in the face of

complexity and uncertainty

 Inability to test all (or even sufficient) combinations of inputs and

environments on the operation of complex systems

 Complexity (non-intuitiveness and unpredictability) of the effects of

interconnectedness of society’s institutions

Civilization has reached a point where there is a significant need to develop better

ways to envision, and to evaluate future possibilities before devoting substantial

resources to potential solutions. When the decision is to proceed, one might expect a

wise civilization to choose more efficient utilization of existing but finite resources,

whether they be capital, work force, time, natural resources, or political support. The

trend demands that society architect its possibilities with improved understanding over

what was available in the past. Better tools must be combined with improvements in

modeling techniques to make this possible.

 10

1.4 ACKNOWLEDGED SoS

Very few SoS are actually under the ‘tight central control’ typically attributed to

military organizations by nonmilitary members. On the continuum of ‘degree of central

control’ of SoS described in the SE Guide for SoS, ranging from extremely tight to near

anarchy, almost no SoS exist at either of the far ends of the scale (Director Systems and

Software Engineering, OUSD (AT&L) 2008). Most SoS exist near the center of the

scale, as acknowledged SoS; where there is some recognized central authority, but not

complete, centralized control, authority, or budget. Even in the military, authority is

broadly delegated. Staff coordination among nearly autonomous functional areas is

strongly enforced, implying that most serious decisions are through consensus.

The definition of an acknowledged SoS is an overlay on existing component

systems that have independent existence outside the proposed SoS. Components of SoS

are usually ‘legacy’ systems, having their own well developed architectures, missions,

stakeholders, and funding sources (Bergey 2009). Moreover, successful managers of

acknowledged SoS understand that their potential component systems work best if they

are perturbed as little as possible to meet the new requirements necessary to contribute to

the incipient SoS. That is, the component systems’ architectures are primarily left to the

systems engineering and architecture professionals at the systems’ hierarchy level. It is

in the best interest of the SoS manager to coordinate and guide individual systems to join

the SoS team, rather than attempt to issue commands or demands.

On one hand, the component (existing, independently managed) systems have no

need to accede to an acknowledged SoS manager’s requests/demands, nor to officially

report through SoS management staff teams. On the other hand, there may be numerous

reasons to cooperate with the SoS manager’s desired changes to their systems. These

 11

include the opportunity (or excuse) to break open their architecture to make those minor

adjustments required to join the SoS – this could allow an opportunity to fix some

ongoing problems that do not, on their own merit, justify such ‘breakage.’ Another

reason might be to stretch out the life of the program (and its constituency of stakeholders

and contractors) with fresh, new tasking, when the system would otherwise be

approaching its end of life, decommissioning, disposal and end of the program office’s

life. A system might already be planning to make changes to its architecture that could

easily accommodate the desired SoS changes, but the new SoS opportunity could be a

bonus source of funds or the basis of further upgrades to make the system more relevant

within its own domain.

There is no assumption that existing missions of the component systems would

not suffer from a decision to participate in the SoS. The most general case is that there

will be negative impacts to existing missions. In spite of this, there are many potential

ways to persuade a system to participate. The nature of these ways may change

depending on where each system currently is within its life cycle. Sometimes the small

changes required in a system to be able to participate in an SoS may also improve its

ability to perform its existing missions. The SoS manager typically has a small budget to

help make these changes, so they can be implemented at no net cost to the system.

Sometimes there is a backlog of changes planned for the next upgrade of the system;

however, without an impetus such as the need for a change to accommodate the SoS, the

system is reluctant to initiate the implementation of those minor upgrades. Some reasons

for this may be that it is embarrassing to acknowledge the need for a change in a

deployed system, the changes are planned (and budgeted) to occur in a specific sequence,

 12

or the proposed funding and schedule seem unrealistic. On the other hand, the system

program office (SPO) may be eager for an excuse to ‘piggyback’ some of its more critical

backlog of changes on an outside request from the SoS. A system early in its deployment

may welcome an excuse to add a change to its baseline, if only to give it more time to

meet its own requirements, if not also providing justification for minor changes of its

own as well. A system late in its lifecycle may welcome the chance to stay relevant

longer by joining the new SoS. Many times, the minor changes to accommodate a new

interface can make an existing system more flexible, or even improve its legacy mission

capabilities, but those changes were not judged worthy on their own merits. Madni

discusses both the pros and cons of increasing interoperability (Madni and Sievers 2014).

It is possible that the overarching SoS mission is important enough that stakeholders of

the individual systems’ missions agree to the minor degradation to their systems’

capability to be able to contribute to the SoS capability. Finally, in the type of

acknowledged SoS under discussion, a SPO is free to refuse to participate if the potential

degradation to its current capabilities would be undesirable or unjustified by the value of

the successful SoS, or not reimbursed enough for making changes necessary to join the

SoS.

The above noted issues about impacts to legacy systems are adjudicated during

the negotiation phase of FILA-SoS. Motives for the systems’ behavior and environment

may be modeled there as well. The optimization process may reject participation of a

system or interface because its presence diminishes the evaluation of at least one of the

attributes. During the architecture planning phase, the SoS manager has only estimates of

 13

cost, performance, and other input data to calculate the attribute evaluations. After a first

draft of the SoS model is created and tuned to provide potentially good SoS designs,

 The GA finds a good SoS architecture chromosome

 The SoS design is handed over to negotiation where the domain input data

may be adjusted

 The input domain data is improved with negotiated values (including the

effects of degradation (or improvement) to individual systems’ capabilities

from required minor changes to participate and interface with the

remainder of the SoS.

 A better, validated model of the system’s contribution to the SoS attributes

may be used to re-evaluate the selected or negotiated architecture.

1.5 THE SoS ENVIRONMENT

This modeling framework is offered for an acknowledged SoS, where each

component system is a fully functioning, independently funded and managed system

represented by the (SPO) that manages the program. A high-level (SoS level) official

envisions an opportunity to achieve a needed, new capability by using combinations of

existing systems in a new way such that component systems can be left largely

unchanged, or incorporated with relatively minor changes. The acknowledged SoS

approach is only useful if it can achieve the new capability under either or both of the

following constraints:

 A reduced cost compared to a separate, new ’purpose built‘ system, and/or

 A reduced time to field such a new capability.

 14

Defense Secretary Rumsfeld famously said “…you go to war with the army you

have, not the army you might want or wish to have…” (Suarez 2004). Therefore, the

concept of the acknowledged SoS meta-architecture is that the major capabilities are built

into the systems already, but small, quick changes can be made to interfaces to enhance

existing capabilities when used in a cooperative manner. The proposed method uses a

novel, binary system and interface architecture, that will be called the meta-architecture

throughout this document. It will guide the SoS architecture development through a

wave model evolution in capabilities over time (Dahmann, et al. 2011) with incremental

improvements after it begins operation.

The new capabilities being sought in the SoS are achieved by combining mostly

existing system capabilities and/or adding new capabilities that arise in conjunction with

other systems (i.e., through new interfaces) (CJCSI 6212.01F 12 Mar 2012). If simply

throwing more systems (with their individual capabilities) at the problem were sufficient,

there would be no need to create the SoS. Therefore, all successful acknowledged SoS

architectures need to invest in the relationships (i.e., interfaces) between the systems

composing the SoS. Furthermore, improvements in typical SoS attributes such as

performance, availability, affordability, reliability, etc., must arise from the interfaces.

Otherwise, there is no advantage over simply adding individual systems’ capabilities.

The nature of the acknowledged SoS implies that the SoS manager does not have

absolute authority to command system participation (nor interoperability changes).

Instead, she must ’purchase’ the component systems’ participation and modifications, not

merely with funding but also through persuasion, the strength of the vision of the SoS,

quid pro quos, the bully pulpit, appeals to good sense, and whatever other means are

 15

legitimate and effective (Director Systems and Software Engineering, OUSD (AT&L)

2008). Individual systems remain free to decide not to participate in the SoS, although

that choice may cost those systems something as well. That cost comes not only from the

withholding of SoS funds, but also as the missed opportunity to participate in a successful

SoS, missed opportunity to make a related change, or as earning a reputation for

uncooperativeness for the common good.

Additionally, some of the desired systems may not be available to the SoS during

a particular operational period of need even though they made required interface changes.

They may be down for maintenance, assigned to a higher priority mission, or

geographically distant on their day-to-day missions and therefore, not able to contribute.

Some of the required capabilities and interfaces may already exist in the systems,

meaning they are free and fast for development, but those systems may have a significant

cost to operate in a fielded SoS. This may be a reason term of art school. All right to ask

them to participate. Some systems may have enough capability that the SoS can tap their

spare capability while they pursue their original tasks, so they are essentially free to

operate. Other capabilities may need minor (compared to a ‘new start’ major program)

development efforts, either within the system or by developing a new interface with

another system. The performance capabilities of the SoS will generally be greater than

the sum of the capabilities of its parts (Singh and Dagli 2009). If this were not the case,

there would be no need for the SoS. Changing the way the systems interact, i.e., tactics

alone, with no physical modifications, typically would not improve the SoS capabilities

as much as providing completely new ways of interacting through new interfaces. It is

assumed that tactics changes do not require an SoS approach. Systems architecting in the

 16

overall context of the SoS must address all the attributes of groups of disparate systems

as well as crucial issues affecting their collective behavior.

An instance of an acknowledged SoS might be a military command and control

SoS that has transitioned from a tightly knit group of a few systems to an acknowledged

SoS that now includes many more previously independent systems. This could be due to

a change in the implementation or importance of the missions currently being supported,

or of a change of importance and increase in complexities of potential cross-cutting (new)

SoS capabilities (Dahmann, Baldwin and Rebovich 2009). Another acknowledged SoS

might be a regional air traffic control (ATC) system that crosses national boundaries.

National ATCs are independent, but find it strongly in their interest to cooperate and

interface with the regional ATC.

One way to develop better tools for predicting performance in various attributes is

to use proposed new tools on a very simple model, where the results can be calculated

independently. Exploring the working of a tool on simple models can build confidence

that the tool does what it is intended to do. Another way to build confidence is to choose

a model that can be extended in a very straightforward manner to more complex

situations. Actual SoS may have very complex architectures, but at the most basic level,

they may be boiled down to ‘are the systems here or not, and which of them interface

with each other.’ If they do not interface with each other, they are not an SoS, but simply

a collection of systems. This simple, generic model of the SoS is the basis of the FILA-

SoS meta-architecture.

 17

1.6 THE SoS META-ARCHITECTURE

A meta-architecture is an organization or pattern by which other architectures

may be described. The SoS meta-architecture for this analysis consists of a list of all the

potential component systems, followed by the first order interfaces of each system with

every other system. Associated with each of these labeled elements is a single bit

representing presence (1) or absence (0) in a particular architecture instance. The meta-

architecture is the empty framework, or bit string, with the positions identified as to their

meaning. An instance of the meta-architecture occurs when the framework is filled with

ones and zeroes. An instance of the meta-architecture is also called simply an

architecture or an SoS. One binary bit indicates the presence of a system, other binary

bits indicate the presence of the interfaces between that system and each other system.

The string of bits representing an architecture is used later in a genetic algorithm, where

each string is called a chromosome. An instance of the meta-architecture is a particular

arrangement of the ones and zeroes in the string of bits; it is a particular architecture

showing which systems with their interfaces are participating in the SoS. The terms

architecture, instance, chromosome and SoS are used interchangeably to represent a

particular design of an SoS as discussed further below.

The interfaces are assumed to be bidirectional for simplicity; an interface of

system i with system j is the same as the interface from system j to system i.

Furthermore, in this ‘participation architecture’ – the presence of the system is equivalent

to the decision by the SPO to participate and is represented as a ‘1’ in the architecture.

The decision by the system (used interchangeably with the term SPO) to have an

interface with another system is also represented by a ‘1.’ If the system or interface is not

present (not participating), it is represented by a zero.

 18

Figure 1.2 and Figure 1.3 show an SoS architecture as a long string of bits (Xi,

where X is a one or zero) where the position determines which element is indicated.

There are m(m-1)/2 interfaces for an SoS with m systems, plus the m systems

themselves, so the total number of bits in the meta-architecture with m systems is

m(m+1)/2. The meta-architecture consists of all possible bit strings of this length.

X1 X2 Xi … Xm X1 with 2 X1 with 3 X1 with m X2 with 3 … Xi with j … X(m-1) with m

Systems Interfaces

Figure 1.2. Linear representation of the generalized SoS meta-architecture

Figure 1.3. Partial linear display of an SoS chromosome extending far to the right

The linear representation of the chromosome representing one instance of an

architecture as shown in Figure 1.2 or Figure 1.3 is relatively cumbersome. It is difficult

to decide what any particular bit represents without extensive counting, labeling, or other

efforts to keep track of it. An alternative representation of the chromosome was found to

be an upper triangular matrix. The advantage of the form shown in Figure 1.4 is that the

interfaces may be identified ‘by their conventional matrix element row and column

position labeling. This form of representation is close to, but not the same as, what is

sometimes called an adjacency matrix. The interfaces could be considered a non-directed

graph where the nodes are the systems. Usually, the diagonal of the adjacency matrix

 19

would be zeroes, but there are advantages to putting the systems on the diagonal in this

representation, so it is not quite the same as an adjacency matrix.

The FILA-SoS meta-architecture allows the representation of many network

architectures. The well-known star, ring, fully-connected mesh, partly-connected mesh,

and hierarchical ‘branch and leaf’ network connection topologies are shown with a

corresponding representation within the meta-architecture in Figure 1.5. Ones in

interface regions of the matrices are shaded, zeroes are not. The second row of matrices

shows the effect of numbering the nodes from a different starting position or in a

different sequence but they are equivalent from an meta-architecture point of view.

Figure 1.4. SoS meta-architecture layout

The proposed meta-architecture framework may be used to represent any

acknowledged SoS. All candidate component systems are represented along the

 20

diagonal, and all potential undirected interfaces are represented in the elements in the

upper triangular matrix above the diagonal. Large numbers of component systems and

interfaces may need to be examined in designing a typical SoS. A system or an interface

may be excluded by fixing a zero in the appropriate place in the matrix. Systems or

interfaces may be required by fixing a one. In the GA approach, most or all of the

elements may take on either a one or a zero.

Figure 1.5. Network connection topologies shown in upper triangular form

Resource availability may limit the installation of interfaces by their cost (whether

measured in money, downtime, weight, drag, etc.), or limit the use of interfaces by

restricting their bandwidth, detectability, or power consumption for example. Those are

only a few of the most easily imagined limitations. In choosing appropriate attributes to

measure the SoS value proposition, one must consider the most important or significant

limitations in the algorithms if they depend on the SoS architecture. The problem in

 21

designing an SoS is to select from the very large range of possibilities while

simultaneously trading off among the numerous, important criteria that participants and

sponsors need to be satisfied about to support the SoS. Finding the balance of how many

considerations to count while keeping the algorithms simple enough to understand and

explain, is an art. There may also be potential goodness in some new interfaces outside

the existing ones in an imagined SoS – the systems might open themselves up to

accomplishing other missions more effectively, either alone or in another SoS to which

they contribute some of their capabilities. It is the facilitator’s task to ferret these

possibilities out of stakeholder and subject matter expert (SME) interviews. These types

of issues certainly impact the cooperativeness of a system when negotiating its joining

this SoS.

The solution approach must aid the understanding of the impacts of tradeoffs

among the various elements and attributes of the SoS. The solution must also account for

the behavior of the individual component systems and their motivations in negotiating to

participate in, and contribute to, the SoS. Many stakeholders, each with their own

system’s day-to-day as well as strategic, management issues, are involved with the issues

that affect these decisions. Some stakeholders care about multiple systems or even larger

SoS issues. They naturally have at least slightly different perceptions of what is

important, and even the definitions of the terms used to describe the attributes of the SoS,

their own systems, and others. One way to handle the ambiguous linguistic terms

commonly used by the stakeholders to describe their needs and wants is to use fuzzy

logic.

 22

A partial membership function overlap is one way to handle the uncertainties at

the edges and overlaps of these ambiguous usages. Fuzzy approaches are often used in

decision support problems (Pedrycz, Ekel and Parreiras 2011), but have not previously

been widely used in SoS architecting. Commercial architecting tools such as Core,

Sparx, MagicDraw, Rhapsody, or Aris, working in the unified modeling language

(UML), systems modeling language (SysML), or business process model and notation

(BPMN), for example, do not generate alternative architectures, but the system

description and data to be modeled must be provided to them (Hunt, Lipsman and

Rosenberg 2001) (Sumathi and Surekha 2010). The proposed method provides an

approach to meeting many of the ambiguity and uncertainty concerns for the variety of

architectures, key performance attributes (KPAs), and stakeholders possible within an

SoS. In this method, the KPAs, which make up the evaluation criteria of the SoS, are

defined in terms of the meta-architecture of possible combinations of systems and

interfaces. The method must hypothesize an algorithm for each attribute using the

chromosome and information about the selected systems and interfaces to produce an

SoS attribute evaluation from the system/interface participation. The various attribute

algorithms are explained and vetted among the stakeholders to reach consensus on their

definition. The rules for combining KPA evaluations to arrive at the SoS assessment are

discovered, explained, and vetted through interaction with the stakeholders in the same

way. At the end of the method, all stakeholders should understand how the model works

and how architectures are assessed.

There is a need for an approach to handle the ambiguities in the selection of the

SoS design based on consensus on the KPAs quality assessments over the majority of

 23

their range. Few disagreements occur for the very, very bad or the very, very good

assessments. Disagreements typically occur at the edges of the granularity regions. This

is an excellent application of the partial membership function principle of fuzzy logic.

Some people think a particular KPA value is very bad; others think it is simply far below

par, or perhaps only at the low end of average. The solution: let that point have

proportionate membership in each evaluation.

An advantage of representing the SoS in the form of a binary string is that the

chromosome may be used in a genetic algorithm (GA) approach to explore the

evaluations of various instances of the SoS architecture. Optimization might be a bit too

strong of a word for what the genetic algorithm can do in this case. Due to the multiple

layers of uncertainty in:

 The cost and performance estimates for various aspects of the systems

 The truncated binary (fully present or completely absent) nature of the

model

 The simplifications inherent in the high level of abstraction used in the

KPA algorithms.

The GA approach primarily helps one explore, in an unbiased way, the influence

of rule or component changes. Some KPAs of the SoS remain ambiguous even after

extensive discussions among the stakeholders. Fuzzy logic approaches may be used to

compare relative scores among many attributes, criteria, and alternatives through

algorithms using the presence or absence of the systems and interfaces as input. If an

attribute cannot be described in such a way that it depends on the meta-architecture, then

 24

it may not be useful in describing the value of the makeup and organization of the SoS as

represented by the meta-architecture.

Finally, there is an inherent difficulty simply in the size of the mass of data about

the systems, interfaces, attributes, and the resultant desired versus delivered SoS. It is

difficult to comprehend and analyze this mass of data for even one, much less for many,

proposed SoS architecture alternative. The modular fuzzy genetic approach proposed

here allows simplified models to be used to explore relationships and improve

understanding so that one can know where the benefit of improving the fidelity (and

possibly the complexity) of individual attribute models and rule sets lies in future efforts.

1.7 AIMS OF THIS RESEARCH

The aims of this research are to develop, document, refine, explore, and

demonstrate a method for planning, coordinating, assessing and building successful,

acknowledged SoS. The overall approach offers a new way of thinking about many

design issues for SoS by combining numerous simple models in a meta-architecture

framework. The application of fuzzy genetic algorithms in the SoS wave model

acquisition environment makes several difficult areas more tractable. The research

should help practitioners quantify potential gains from netcentric interoperability,

evaluate SoS lifecycle costs, and explore the impact of high-level policies on SoS

concepts.

1.8 PROPOSED MODELING APPROACH

Since acknowledged SoS are typically complex, with multiple stakeholders and

continuing missions for the component systems, a multi-objective optimization (MOO)

 25

approach is used to recommend an architecture from the meta-architecture framework. A

fuzzy genetic approach is one form of MOO that may be applied in the creation and

analysis phases of an acknowledged SoS development over a wide range of problem

domains. This approach lends itself to handling the evolution of an SoS over multiple

epochs as proposed in the wave model, which is currently a problem of great interest

(Dahmann, et al. 2011).

The architecture selected by the GA may be used to begin negotiations between

the SoS manager and the selected component systems’ managers to find a realizable SoS

architecture. In the next epoch of the wave model, the solution may be further developed

to evolve the design of the SoS. The current state of the art in system of systems

engineering (SoSE), fuzzy linguistic analysis, multi-objective optimization and the gaps

that this research fills are detailed in the literature review in chapter 2.

The method is a decision making aid for the SoS manager. It does not so much

find the best solution to designing an SoS as help the manager explore the influence of

the various constraints on the shape of a reasonable solution. The method starts, as

shown in Figure 1.6, from the SoS context and goals using the simplified binary meta-

architecture, including the full range of candidate systems and their interfaces. Guided

interviews uncover the SoS purpose, characteristics of candidate systems, key attributes

that characterize the SoS, and methods for measuring the SoS in each of these attributes.

The key attributes generally lend themselves to linguistic characterization and ranges of

measures that may be handled through fuzzy logic. A subset of the characteristic

capabilities of the component systems is categorized and documented. Estimated costs,

schedules and performance goals are established for the systems, interfaces, and SoS as a

 26

whole. When the attribute models are combined in the SoS model, it is ‘end-around’

checked for consistency. At this point in the model development, adjustable parameters

typically need to be adjusted in trial runs until the model is self-consistent but also in

accord with stakeholders’ goals. The completed model must be able to evaluate any

proposed SoS instance within the meta-architecture for its KPA values and provide an

overall assessment of the SoS. The relative worth of each attribute evaluation is

described in the membership functions. The rules of the fuzzy inference system

described how attribute values are combined for an overall SoS assessment. Visualizing

the results of the characterization of the KPAs, the other inputs, the combination of

systems, and the buildup of SoS capabilities from the component systems is the most

useful part of the method for the SoS manager and stakeholders. Variations of all inputs,

assumptions, rules, etc. may be examined to identify the most influential characteristics

within the problem and to insure the formulation of the problem and solutions are proper

and helpful. This approach can be used search for Pareto surfaces or other frontiers

within the input and output spaces.

Figure 1.6 shows generalized steps for how to derive the set of attributes by which

to evaluate the fitness of a selected arrangement of the systems and their interfaces to

provide required capabilities to the SoS. The method determines the fitness of each

architecture, or system + interface SoS arrangement, from the meta-architecture and

domain dependent information. Attributes desirable in the completed SoS architecture

are elicited from stakeholders through linguistic analysis of guided interviews with

stakeholders. Having developed the attributes of interest, the possible ranges of

evaluation in each attribute are separated into an agreeable number of gradations of

 27

goodness or badness (defining the membership functions for fuzzy sets) with some

overlap due to ambiguities in linguistic representation. The relative value of

combinations of performances in each attribute is developed into fuzzy rules through a

series of stakeholder hypothetical tradeoff exercises. The multiple objective optimization

(MOO) problem of finding a good architecture over many dimensions may be solved by

finding an architecture that maximizes the single fuzzy SoS fitness assessment. The

method initially regards the independent variable to be the number of ones in a

chromosome with randomly positioned ones and zeroes in it. The dependent variable is

SoS fitness or overall quality. Exploring the architecture ‘space’ by evaluating a few

hundred chromosomes with varying percentages of randomly placed ones provides

insight into whether a solution within the constraints is possible. The rules and fuzzy

membership function edges may need to be adjusted to find a set of tunable parameters

that closes on itself (i.e., a set of parameters that produces solutions dependent on the

architecture). When some good solutions are found to exist, a genetic algorithm

approach is used to find a near-optimal arrangement from the meta-architecture. It is

certainly possible to design a problem for which no acceptable solutions exist.

Combining all these steps into an organized method has not previously been

applied to SoS. Because of the many simplifications in the method, it is not expected to

directly provide final solutions but to give insight into behaviors of possible real solutions

in response to changes in rules, definitions of capabilities, performance models,

membership function shapes, environment, budgets, etc. that drive aspects of the

development and evolution of SoS.

 28

Figure 1.6. Overview of the contributions to the assessment model

1.9 SUMMARY OF FINDINGS

The proposed method was successfully demonstrated to find SoS architectures for

a hypothetical intelligence, surveillance and reconnaissance (ISR) SoS in a Gulf War

scenario, for an operation other than war (OOTW) scenario, for a search and rescue

(SAR) scenario, for variations to a previously studied SoS model from MITRE called the

Toy problem, and for an actual SoS of a large training program. Several variations of the

method were used to look for Pareto surfaces, to conduct sensitivity analyses across a

number of tunable parameters in the attribute models, and to examine the impact of

changing parameters within the GA. Several useful visualization techniques were

successfully implemented during the research. SERC Research Tasks 37, 44c and 109

An Advanced Computational Approach to System of Systems Analysis & Architecting

using Agent Based Behavioral Modeling, sponsored this (and related) research into a

wave model for acquisition of DoD acknowledged SoS (Dahmann, et al. 2011) (Dagli, et

al. 2013). The evaluation and assessment algorithm portion of FILA-SoS was used on

A Fuzzy SoS
Evaluation &
Assessment

Model

The SoS
Vision and
CONOPS

System &
Interface
Meta-
Architecture

Stakeholders,
Values,
Preferences,
Resources

Systems,
Capabilities,

Costs,
Schedules

Modular
Capability
Combination
Algorithms

Fuzzification
of SoS
Attributes,
Criteria, Rules

 29

architecture chromosomes developed by other members of the FILA-SoS team (using a

non-gradient descent method instead of a GA), as well as by a Purdue/SERC team

working on a counterfeit parts SoS. Other team members studied negotiation techniques

to agree on a configuration under a range of environmental conditions between the

systems and SoS manager. The part of the SERC research effort in this document

describes the method to produce an SoS assessment method, and select a desirable

architecture design for starting the negotiations to realize an SoS design to meet

stakeholders needs.

1.10 CHAPTER ORGANIZATION

Chapter 1 introduced the importance and the need for methods to produce better

models and to improve our understanding of issues involved in exploring the trade space

when building an acknowledged SoS.

Chapter 2 is a literature review discussing what has been explored in the areas of

fuzzy decision support tools, using fuzzy analysis to handle ambiguity in evaluation

criteria, multi-criteria and multi-objective optimization, fuzzy genetic algorithms, and

visualization in SoS architecting. There is no previous combined treatment of modular

model building, coupled trade space visualization, meta architecture exploration and

parameter tuning, and fuzzy genetic selection of architectures from an SoS meta-

architecture.

Chapter 3 describes the model building method in detail, with worked out

illustrations of the steps across several domains. The method of piecewise linear

mapping the real attribute values to the fuzzy domain so that fuzzy models may be reused

 30

is described. Use of the Matlab fuzzy inference system to describe membership function

shapes and sizes is explained.

Chapter 4 discusses the results developed by using the method on the example

SoS mentioned above. The FILA-SoS effort was transitioned to a large SoS problem

proposed by Army Training Command in conjunction with system architects from

MITRE. The model itself is proprietary (marked FOUO), but a sanitized version with

system and capability names anonymized is included.

Chapter 5 contains some conclusions and a summary of the status of FILA-SoS

with suggestions for future research.

The appendices contain an example of a more detailed ISR scenario, all the

Matlab code for the attribute evaluations, the fuzzy inference system rules and

membership functions, the input, output and display functions, a short explanation of

DoDAF 2.0 model viewpoints, and additional illustrations of the input and output data for

special cases.

 31

2. LITERATURE REVIEW

2.1 SYSTEMS OF SYSTEMS (SoS)

Most of the work on understanding or developing SoS has ‘approached from the

side,’ or looked at relatively narrow aspects of the problem as opposed to trying to

understand SoS in their entirety. One of the problems with understanding SoS is that

they frequently cross traditional domain boundaries. Either they address a broad new

problem area that is not traditionally understood as being connected, or they develop

because of changes in technology that allow for novel connections and unprecedented

capabilities. Either way, analyzing this type of problem requires extensions to the old

ways of thinking about problems. Simply describing the characteristics, boundaries,

expectations, or governance of an SoS is difficult, being fraught with no commonly

accepted terms for the new capability, little agreement on what constitutes success, nor

even a good theory of SoS (Trans-Atlantic Research and Education Agenda in Systems of

Systems (T-AREA-SOS) Project 2013). The acknowledged SoS that is the focus of this

effort only exacerbates these problems because of the inherent limits in the responsibility,

authority and accountability between the SoS manager and the system program offices

that participate in the SoS formation (Director Systems and Software Engineering, OUSD

(AT&L) 2008), (Pitsko and Verma 2012). The literature describing SoS engineering

(SoSE) is growing in coverage, but it is still relatively sparse.

The differences between SoSE and systems engineering are discussed by

Flanagan and Brouse (Flanagan and Brouse 2012), pointing out that different sorts of

trade spaces open up in SoS. Some of the concepts about flexibility used here in section

3.6 trace to the discussion of options and limiting risk in DoD programs from Giachetti

 32

(Giachetti 2012). Countering some of these difficulties in describing SoS architectures

are the advances in describing complex systems with fuzzy sets (Gegov 2010).

There have been few attempts to describe architecting methods for acknowledged

SoS. One such approach is based on the federated architecture (FA) (Ahn 2012). FA is a

pattern that describes the construction of a meta-architecture. This approach emphasizes

features to allow interoperability and information sharing between component systems

and the centralized controller. Another approach has been to model the

interdependencies of systems and impacts of failures using Bayesian networks. An

example is the outcomes of the Bayesian analysis with failure rates modeled as beta

distributions providing a knowledge base for decision makers to control risk in

development of an SoS with complex interdependencies (Han and DeLaurentis 2013).

These examples still look at relatively narrow aspects of the SoS development problem.

Warfield introduced the concept of using binary matrices to describe system

components’ relationship with each other (Warfield 1973). That paper described how to

construct reachability matrices using graphs representing directed interfaces, and a

number of mathematical techniques to find compact regions in a general system

representation of subsystems, but the last few paragraphs mention that this approach

could also be used to show “objectives, events, activities, motors, generators, radars,

etc.”, or in this case, capabilities of elements of the SoS, or non-directed interfaces.

There is undoubtedly more that can be done by extending the present research to directed

graphs, however, the concept was borrowed for use here only to do the display of a much

simpler approach to SoS architecting.

 33

The SoS acquisition environment may be affected by external factors such as

changes in the national priorities, changes in the SoS funding, or changes in threats to the

nation, the business climate, or existing commercial arrangements. Clearly, foreseeable

events should be accommodated through planning. The environmental changes spoken

of herein are changes outside the framework of expectations. One traditional way to be

ready for unexpected change is to have an abundance of spare capacity or capability, but

that costs something. It costs something not only in resources devoted to carrying and

maintaining the capacity beyond immediate need, but also in opportunities forgone.

Introduction of this method may help allocate scarce resources better in the future cost

constrained environment.

2.2 SoS ATTRIBUTES

Systems engineers call the areas of engineering design that require detailed

knowledge and detailed analysis tools ‘specialty engineering’ areas (INCOSE 2011).

These types of areas may also be called attributes of an SoS. Just as a measure of

‘reliability’ or ‘availability’ may require very detailed analyses at many levels within a

system design, but result in a single overall number to characterize the design in that

specialty area, the attributes of an SoS may require detailed analyses, but result in a

single characterizing number. The attributes or specialty areas are sometimes be called

‘-ilities;’ they are the subject of continuing, intense research, especially in the area of

SoS. Large lists of the attributes, many with several definitions, are being catalogued and

organized in several on-going efforts (Mekdeci, et al. 2014) (Ross 2014) (Ross, Rhodes

and Hastings 2008). Just as that single number characterizing a system in a specialty area

may have numerous conditions limiting its applicability, the attribute measures

 34

characterizing the SoS will probably be valid over a limited range of scenarios. To

understand the implications of a particular measure, one needs to know about all those

conditions. Simply presenting that data in an intelligible format is a challenge. Finally,

since the specialty engineering areas typically have well-known algorithms and

procedures for evaluating combinations of subsystems that are easily extended to

combinations of systems, this effort attempts to deal with more appropriately SoS

specific attributes. These SoS attributes might be described as the ones which depend

more heavily on the SoS systems and interfaces, which is detailed in the chromosome.

2.2.1 Attributes Commonly Found in the Literature. A key feature of the

attributes of either systems or SoS is that they frequently pull in different directions. For

example, improving speed may reduce range, both key attributes of overall technical

performance. Improving reliability may increase cost, thereby reducing acquisition

affordability, but possibly increasing operations and maintenance affordability.

Numerous other candidate attributes of SoS exert pulls along different directions in the

multi-dimensional design or architecture space. The selected architecture must satisfy the

most unhappy stakeholder at least enough to avoid a veto. The stakeholders’ concerns

are represented in the attributes selected to grade the value of the proposed architectures.

The models used to evaluate the attributes must be fully described and open to

stakeholders so they can assure themselves the competition among architectures is fair.

The weighting between attributes must be open and fair as well.

Pitsko and Verma (Pitsko and Verma 2012) describe four principles to make an

SoS more adaptable. They spend a large part of their time describing what adaptable

means to various stakeholders, that different stakeholders may continue to have slightly

 35

different concepts of what adaptability means, that the definition is probably dynamic –

changing over time, and that this ambiguity likely will apply to many other SoS

attributes. Schreiner and Wirthlin discuss a partial failure to fully model a space

detection SoS architecture, but learned a lot about how to improve the approach the next

time they try it (Schreiner and Wirthlin 2012). The point is that people are not modeling

according to a well-developed theory of SoS and then reporting on the success or failure:

they are still attempting to define the theory.

There are numerous approaches in the literature attempting to describe useful

attributes, as well as how to measure them, to help understand or predict the value of

various architectural arrangements. These include evolvability and modularity almost as

complementary attributes (Clune, Mouret and Lipson 2013), while Christian breaks

evolvability into four components described as extensibility, adaptability, scalability and

generality (Christian III 2004). Christian introduces the concept of complexity to overlay

on these attributes because ‘too simple’ a system cannot evolve. Kinnunen reviews at

least four definitions of complexity (Kinnunen 2006) before offering his analysis of one

definition related to the object process methodology (OPM) of Dori. Mordecai and Dori

extend that model to SoS specifically for interoperability (Mordecai and Dori 2013). Fry

and DeLaurentis also discussed measuring netcentricity (interoperability within the SoS),

noting also the difficulty of pushing the commonly used heuristics too far, because the

Pareto front exists in multiple dimensions (Fry and DeLaurentis 2011), not merely two

dimensions, as it is commonly depicted. Ricci et al. discuss designing for the

evolvability of their SoS in a wave model and playing it out several cycles in the future,

evaluating cost and performance (Ricci, et al. 2013). Because SoS are complex, there are

 36

many ways to look at them, with no dominant theory yet. This is why this direction of

research is interesting and worth pursuing (Acheson, et al. 2012).

Slightly different definitions for some of the SoS attributes were chosen for this

work, especially for flexibility and robustness. Lafleur used flexibility in the operational

context of changing a system after deployment (Lafleur 2012), which is to narrowly a

system viewpoint to be used for the SoS. Robustness is used here in a different way than

Deb and Gupta’s classic notion of robustness (Deb and Gupta 2006), that is shifting the

optimum point (defined as narrowly better performance), rather than accepting lower

performance across a wider front – the path taken here. Singer used robustness in a

different operational context (Singer 2006), that of losing a node in a network, rather

more like losing a system or an interface from the SoS as described here. Gao et al.

discussed a concept of robustness as the ability to withstand hacker attacks for ‘networks

of networks’ with varying degrees of interconnectedness (Gao, et al. 2011). The concept

of the flexibility attribute used here is more attuned to giving the SoS manager flexibility

during development, when selecting systems to supply all the desired capabilities. This

falls right in line with some recent discussions of resilience and sensitivity analyses,

although they use the terms resiliency or robustness for it (Smartt and Ferreira 2012) (Yu,

et al. 2011) (Jackson and Ferris 2013). The point is that there are many possible ways to

describe the attributes of systems and even more ways for SoS, depending at a minimum

on circumstances, organizations, and stakeholders’ preferences. Many of these ways of

thinking depend directly on the architecture of the system of interest. This dependency

on interconnectedness fits into the framework of the architecture meta-model used here.

If an attribute does not depend on the SoS architecture in any way, then it will not be

 37

useful to help select between potential architectures. It is not necessary that a useful

ranking algorithm be very accurate in its relationship to the measured attribute, only that

it be reasonably well correlated to reality and nearly monotonic in its ranking. That is

sufficient to be useful in this approach.

For purposes of this research effort, the following key attributes for a family of

ISR SoS were defined by a group of subject matter experts (SMEs) during the SERC

research task RT-44 (Dagli, et al. 2013):

 Performance: Generally, the sum of the performance in required capabilities

of the individual component systems, with a small boost in performance due

to increased coordination through interfaces. This is explained further in

section 2.3 on netcentricity.

 Affordability: Roughly the additive inverse of the sum of the development

and operation costs of the SoS. The performance factor above is occasionally

applied in a different way to the affordability to change its shape as a function

of the number of interfaces, but also to be somewhat related to superior

performance.

 Developmental Flexibility: This is roughly the additive inverse of the number

of sources that the SoS manager has for each required sub capability. If a

required capability is available from only one component system, then the SoS

manager’s flexibility is very small; they must have the only system that can

provide a required capability as part of the SoS. On the other hand, if each

capability is available from multiple systems within the SoS, the manager has

far more developmental flexibility.

 38

 Robustness: This is the ability of the SoS to continue to provide performance

when any individual participating system and all its interfaces is removed.

Generally, having a very high performing system as part of an SoS is a good

thing; however, if that system is ever absent, the performance of the SoS may

be degraded substantially. Therefore, it may be useful to have the

contributions of the individual system capabilities more widely dispersed, so

that the loss of one system does not represent as great a percentage loss to the

SoS (Pape and Dagli 2013).

2.2.2 Correlation of Attributes. There is a tendency for the quality attributes of

systems (or SoS) to be correlated. A ‘good’ system or SoS by definition has many good

attributes. This is not necessarily a natural condition; it takes considerable effort. Good

architecting and design processes should result in this condition. Program managers with

a good ‘feel’ for their problem area, whether systems or systems of systems (SoS) can

often deliver good results. That ‘feel’ is difficult to duplicate or teach. This research is

an effort to provide a way for a larger audience to be able to break down the problem to

smaller, more understandable elements, and to build up the solution in a way that a wider

group of stakeholders can understand and accept the discovered implications in the

modeling.

If two attributes are highly positively correlated, then this is equivalent to

counting one of them twice in the overall assessment. In an otherwise balanced design,

counting one attribute twice is unfair to the other attributes, and may skew the design

away from optimum. If their correlation is highly negative, then they tend to cancel each

other out in an overall assessment, giving more weight to the remaining attributes than

 39

they deserve. An ideal set of individual attributes would be strongly de-correlated, so

they are measuring essentially different and independent aspects of the SoS. In

mathematical terminology they would be orthogonal. It is part of the architect’s art to

select appropriate attributes. That is, to define them smartly, derive evaluation

algorithms for them that depend on the architecture, and socialize all of this across the

stakeholder community. This includes finding out what attributes the stakeholder

community value, as well as discovering the relative strength of preferences among them.

This act of discovery and elicitation can only occur through extensive discussion and

focused probing. It also includes finding ways to calculate values for each selected

attribute in a way that depends on the architecture. Not all attributes depend on the

architecture, but many do. Only those attributes that depend on the architectural

arrangements of the desired SoS should be included in the discussion of what SoS

architecture is best. Attributes that do not depend on the architecture should be excluded

from this portion of the planning.

The point of having different aspects in the SoS assessment is to achieve a

balance among those different aspects. Furthermore, even if some variables are highly

correlated, it need not imply that there are no differences between them. The fact of

some modest correlation among the attributes does not mean that there are not still

important differences, nor that there does not exist a ‘sweet spot’ that is the best

compromise position among the conflicting desires of the stakeholders. This is also part

of the fuzzy assessment process, where each of the proposed evaluation algorithms are

explored across the range of values possible within the meta-architecture, to insure that

they measure what is being sought. Additionally, appropriate membership function

 40

names must be matched to the appropriate ranges of values, and the approach vetted

among all stakeholders and subject matter experts. The modeling must tell a story, and

appropriate, easy to assimilate, and to remember names for the parts help in this effort.

Typically, this requires several model design iterations, with trial algorithms and

adjustments to the boundaries between the quality attribute levels, or even trying different

attributes, to get acceptable levels of fidelity. Equally important is to be able to explain

the impact of having correlated attributes among the evaluation criteria of the SoS.

Examples of how small changes in the architecture could change the evaluation by

relatively large measures are relatively easy to find. An example of a very small change

to the architecture could be removing one communications channel. That change of one

bit in the chromosome would change many interfaces to infeasible from feasible, thereby

changing the performance or the robustness very significantly. Showing these examples

to stakeholders (and being able to explain them), are important elements of the

socialization process to get prospective members of the SoS (or other stakeholders) to

agree to support not only the SoS, but the modeling process. The member systems must

support the values of the SoS analysis, because they typically give up something

(hopefully small) within their original mission performance to be able to support the new

SoS.

For example, improving one quality attribute, modifiability, might adversely

affect another quality attribute, performance through increased latency, then the range of

acceptable values where modifiability induced latency does not adversely affect

performance must be defined, along with how a layered architecture, which might impact

modifiability, also impacts latency. Other architecture properties could also impact

 41

latency as well, such as volume of data being exchanged or capacity of the

communications link. The proposed method addresses this in the step for modeling the

attributes as a function of any selected architecture (within the meta-architecture

framework). The correlation might be negative, but acceptable values of both

(simultaneously with other attributes) must be achieved to have a viable SoS architecture.

The SoS architecture description and domain dependent system data should show how

the different aspects of the design (attributes) impact each other, are self-consistent, and

most importantly, are simultaneously achievable.

There are many ways to illustrate the impact of attribute values on the SoS

quality. The data must be conveyed to decision makers, whether architects, designers,

managers, or key stakeholders. An impediment to correctly ranking the overall

architecture based on several attributes is shown in Figure 2.1 and Figure 2.2 when some

attribute values are better smaller. Lists of values, stacked bar charts, or a Kiviat chart,

such as those shown here for example. Both these examples show some attributes (e.g.,

cost) that are better when smaller, and others (performance) that are better when larger.

Figure 2.2 shows relative architecture comparisons on a scale of 10 as the desired value.

An important part of the architects’ skill is to find a way to show all attributes better in

the same direction. This is shown in Figure 2.3, where costs have been transformed into

affordability; one can much more easily determine that Alternate B exceeds desires in all

areas except affordability, and the very affordable Alternate C is less than desired in all

other attributes. None of these displays clearly identifies a ‘best’ alternative. That is still

very much a subjective decision, even in Figure 2.3. Neither do they indicate the

sensitivity of an attribute between the alternatives. For example, perhaps one could trade

 42

some performance or modifiability for affordability in Alternate B. When the sample

alternatives being compared are SoS architectures, much information is necessarily

hidden in these views, yet any of these views are relatively difficult for decision makers

to comprehend. This is why the proposed method includes significant effort to discover,

understand, document, and socialize the meaning of terms and evaluation algorithms used

throughout the model. Gentry Lee, chief engineer of the Jet Propulsion Laboratory, says

“The systems engineer must know the partial of everything with respect to everything

else” (NASA 2007). This includes quality attributes, technical data, performance

predictions, implications of proposed changes, costs, schedule and customer valuations.

In areas of confusion, uncertainty or disagreement, the sensitivities can more easily be

explored to find the ‘best’ (or at least a close to best) architecture because the method

creates and records the open algorithms and data to evaluate all the attributes for any

configuration within the meta-architecture.

If an acceptable and achievable SoS is not found, then analysis should help one

decide how close or far any particular instance is from acceptability or achievability. The

analysis should also give indications of which attributes must be improved to be

acceptable, as well as what changes to the architecture could move it in the ‘right’

direction. Kiviat charts (or in Excel, radar charts) allow one to see several project

measures simultaneously; but even with a well-designed chart, it may be difficult to

decide which is better between two (or more) alternatives with this visualization method.

 43

Figure 2.1. Absolute architecture comparison illustration

Attribute Alt A Alt B Alt C Budg/Need

Initial Cost $M 42 60 24 50

Performance 60 65 40 50

Lifetime 20 25 15 20

Maint $/yr 70 40 60 50

Modifiability 50 70 30 60

 44

Figure 2.2. Relative architecture comparison

Attribute Alt A Alt B Alt C Budg/Need

Initial Cost $M 8.4 12.0 4.8 10.0

Performance 12.0 13.0 8.0 10.0

Lifetime 10.0 12.5 7.5 10.0

Maint $/yr 14.0 8.0 12.0 10.0

Modifiability 8.3 11.7 5.0 10.0

 45

Figure 2.3. Properly scaled architecture comparison; still not conclusive

Attribute Alt A Alt B Alt C Budg/Need

Affordability 11.6 8.0 15.2 10.0

Performance 12.0 13.0 8.0 10.0

Lifetime 10.0 12.5 7.5 10.0

Maint Afford 6.0 12.0 8.0 10.0

Modifiability 8.3 11.7 5.0 10.0

 46

The practice of creating a series of simplified functional relationships between the

meta-architecture presence or absence of the systems and interfaces, represented in the

chromosome for each of the key attributes is the key to the proposed assessment method.

It can demonstrate to the stakeholders the implications of systems’ choices to participate

and how many interfaces to pursue. The process of randomly filling in the meta-

architecture with ones and plotting the resultant attribute values allows everyone (from

analysts to program managers, to funding stakeholders) to see values or costs of

participation. By sorting the plots by the number of ones in the SoS meta-architecture,

the process illustrates how changes in each part of the model contribute to the overall SoS

quality: systems count, interfaces, definitions of capabilities, how individual capabilities

are joined to build the SoS capability and performance, as well as attributes, membership

functions, and rules for combining the attributes. Furthermore, by exposing the inner

workings of the component models to everyone, the strength of the architecture model

construct is far stronger than the historical practice of PowerPoint engineering through

even the formal architecture tradeoff analysis method (ATAM) practice of having outside

SMEs comment on risky parts of the architecture. At least ATAM provides a series of

checklists for items to review about the architecture.

Figure 2.4 shows the impact of changing the number of ones in a population of

5000 chromosomes for the ISR case described in section 4.1.1 with 22 systems. There

are clear trends in many of the quality attributes, but also much variation within them,

even from one chromosome to the next in the series (ordered by the total number of ones

in the chromosome). The same number of ones could be distributed differently between

systems and interfaces, as well as between different sets of systems, or different

 47

arrangements of interfaces for the same set of systems. Only the total number of ones in

the chromosome is tracked as the independent variable in this portion of the analysis.

Table 2.1 shows the correlation coefficients between all the variables plotted in

Figure 2.4, which is a relatively thorough exploration of the ISR SoS meta-architecture

space. It seems remarkable that the highest correlation between an attribute

(performance, labeled ‘perf’ in column 4 of the table) and overall SoS quality (labeled

‘sos’ in row 3 of the table) is as weakly correlated as it is (0.1459). The only relatively

high cross-correlation between any of the quality attributes is between flexibility (‘flex’

in row 5) and affordability (‘afford’ in the last column), at about r = 0.8; this doesn’t even

qualify as strongly correlated (r2 > 0.8). Furthermore, affordability and flexibility are not

closely linked in the way they are calculated, so even the slightly more than weak

correlation that is seen here is questionable.

The rule-based fuzzy inference system approach provides a mathematically

rigorous method to make architecture comparisons. This hinges on the individual

attribute evaluation algorithms being well defined, and on the fuzzy inference system

(FIS) for combining the attribute measures to the overall SoS assessment. The

assessment is a single, composite, characteristic SoS value from the multiple attributes.

This transforms the multi-objective problem into a single valued SoS function that can be

optimized. The attributes and the FIS are developed through facilitated individual

stakeholder discussions, including the SoS manager, then are vetted and socialized across

the stakeholder community. The method is ideally suited to sorting through many

candidate SoS instantiations from a meta-architecture of potential SoS designs in a way

that is traceable and understandable to all the stakeholders.

 48

Figure 2.4. Exploring the meta-architecture space with varying participation ratios

Table 2.1. Correlation coefficients between attributes in Figure 2.4 are shaded

pop # i/f sos perf flex maxloss sys penalty cost afford

pop # 1 0.9915 -0.0176 0.3663 0.8352 -0.5671 0.9318 0.6565 0.9749 0.8955

i/f 0.9915 1 -0.0283 0.3515 0.8471 -0.5555 0.9306 0.6519 0.9796 0.9104

sos -0.0176 -0.0283 1 0.1459 0.0779 -0.0049 0.0451 -0.0372 0.0133 -0.0337

perf 0.3663 0.3515 0.1459 1 0.3625 0.0395 0.5595 -0.2584 0.4491 0.0734

flex 0.8352 0.8471 0.0779 0.3625 1 -0.4544 0.8664 0.5124 0.8725 0.8023

maxloss -0.5671 -0.5555 -0.0049 0.0395 -0.4544 1 -0.5368 -0.6598 -0.5235 -0.593

sys 0.9318 0.9306 0.0451 0.5595 0.8664 -0.5368 1 0.5385 0.9683 0.8261

penalty 0.6565 0.6519 -0.0372 -0.2584 0.5124 -0.6598 0.5385 1 0.6051 0.8439

cost 0.9749 0.9796 0.0133 0.4491 0.8725 -0.5235 0.9683 0.6051 1 0.8949

afford 0.8955 0.9104 -0.0337 0.0734 0.8023 -0.593 0.8261 0.8439 0.8949 1

 49

2.3 NETCENTRICITY OF SoS

The acknowledged SoS being considered herein are inherently netcentric.

Information is the primary resource exchanged across an interface. This approach

heavily weights the presence of interfaces to promote interoperability and collaboration

in addition to simply summing the systems’ individual capabilities. The purpose of the

concept of netcentricity is to achieve increases in performance greater than linear in the

number of systems (Alberts, Garstka and Stein 1999). In other words, the SoS exploits

the potential synergy of the combined systems to achieve greater performance through

their working in a coordinated way. This coordination comes through exchanging

information on sensor data, intentions, positions, etc., between systems, so that

previously independent systems can coordinate their activities to be more effective

(Alberts 2011) (Cloutier, Dimario and Polzer 2009). This concept may flow into other

types of acknowledged SoS such as supply chains, intermodal transportation systems,

health care, etc. In general, more interconnections mean more powerful synergies in the

SoS (not taking this argument to the point of clogging the network/roads/etc. with too

much traffic –that is a different issue than having the pathway merely exist between the

nodes). One way to handle this improvement in performance from interconnections is to

have very detailed models of every system and interface. Another way is to treat the

interfaces generically and assume each one helps the overall SoS performance by a tiny

fraction. If one does not count the interfaces at all, the SoS performance, PSoS, is simply

the sum of the individual system performances, ΣPSystems. Allowing a slight

improvement, 𝜖, in the performance of the SoS from each interface in the meta-

architecture is quite simple, as shown in equation 1. It is not a very accurate model, but it

 50

makes some intuitive sense and shows a general trend of increased performance through

improved interoperability.

 𝑷𝑺𝒐𝑺 = (∑ 𝑷𝑺𝒚𝒔𝒕𝒆𝒎𝒔) ∗ (𝟏 + 𝝐)(∑ 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔) (1)

Whatever performance the systems can bring individually, the performance of the

SoS is increased by a small amount when multiple systems act cooperatively through

interfaces. Epsilon is a small fraction, approximately 0.1% to 1% of increase in the

simple sum of the systems capabilities before accounting for interoperability. The sum of

the interfaces can be scaled by a constant if the number of systems grows large.

Adjusting both the scaling factor and epsilon allows fine control of the total netcentric

improvement effect. This does not seem unreasonable. The addition of one interface

does not change an overall SoS performance very much. However, when larger numbers

of component systems are considered, potential interfaces increase proportionally to the

square of the number of systems. Therefore, the impact of large numbers of interfaces

within the SoS can be significant. This is the basic premise of the netcentric warfare

movement, even though it ignores several criticisms and problems (Alberts, Garstka and

Stein 1999). It has the advantage for this research of providing a performance difference

in the model that depends significantly on the meta-architecture. If better models of the

impact of adding systems and interfaces are developed or available, they can be

substituted into this very simplified, generalized, but also moderately nonlinear SoS

performance attribute model.

2.3.1 Achievable Interfaces Through Communication Systems. To prevent

this SoS analysis method from being a simple counting exercise, a further complication is

introduced through a new concept of ‘achievable interface.’ Here, achievability means

 51

requiring a common communication link to enable the interface between systems to be

achieved. In this way, the concept of a netcentric performance improvement is modified

by only rewarding the use of achievable interfaces. Attempted use of unachievable

interfaces, , that is, by having a ‘1’ bit in an interface position in the architecture that is

not supported by the appropriate communications link and interfaces, is now penalized.

The reward or penalty depends both on the intention of having an interface (a ‘1’ in the

meta-architecture between systems), but also on the existence of a common

communication link through which an information exchange takes place. The possible

communication links are enumerated both as component systems within the SoS and as

capabilities within the systems.

The meta-architecture is filled with random bits during the genetic algorithm

approach to exploring the SoS architecture space, so there may be ‘interfaces’ that are not

supported by communication links – therefore they are unachievable. Within a real SoS,

a SPO may have spent resources to develop an interface. They might install equipment,

antennas, make software changes, test the new configuration, etc. If the system on the

other end of that interface did not also install the interface, there is not a real interface

there. If both systems do the development work for the interface but the communications

system is not available during operation, due to jamming, not having a relay system, or

lack of cryptographic compatibility on that day, then again – there is no real interface,

i.e., no information exchange is achievable over that interface. The communication

system might be down for maintenance, filled with higher priority messages,

compromised by hackers, a system might lack the encryption keys they need to use it, or

any number of other problems prevent the use of an interface. In all these cases of

 52

unachievable interfaces, any equipment a system carries to make this link possible also

carries a penalty to normal performance. A size, weight, power, cooling, fuel, payload,

range, throughput, or memory penalty is paid to carry the unusable interface. Therefore,

having the performance reward or penalty increment depend on the achievability of the

interface seems quite reasonable.

In netcentric SoS, the interfaces are normally through communication links. The

communication links are a special type of system within the meta-architecture. Since the

location and number of ones in the chromosome are the independent variable in the GA

approach, a pair of systems may say they have an interface, when there is no possibility

of achieving it, because there is no common communication system between them.

Therefore, the ‘achievable’ interface is one where the two systems must interface through

a communication system in common. In order to get credit for an interface as a

performance improver, both systems must be present, their interface bit must be a one,

and in addition, both systems must have an interface with a communications system in

common, as shown in Table 3.1 and in Figure 2.5.

Figure 2.5. ‘Achievable interface’ has a communication system path in common

feasible and used

not feasible, no system 3

1 1 1 … 0 1 … 1 System 1

1 0 … 1 1 … 1 2

0 … 1 0 … 1 3
… … … … …

feasible 1 0 … 1 i

but not used 1 … 0 j not feasible; no row 'j'

… … communications i/f

1 m

m = a Comm system

 53

2.3.2 Special Treatment for ‘Linking’ Systems. One of the primary ways that

systems interface with each other is through communications links, this depends on the

domain of the SoS. A transportation SoS may link through switching yards or intermodal

transshipment points; a chemical refinery SoS might interface through manifolds and

valves. These elements could be considered systems in their own right, or nodes in the

graph of a network. Most of the systems considered herein accomplish their interfaces by

exchanging information. The acknowledged SoS is normally created by joining

independent, existing, mobile systems that achieve an interface primarily by exchanging

information. Therefore, they do so through communications links. Most systems can use

multiple communication systems, as well. The simple, general meta-architecture model

discussed so far is modified by adding a rule for placement of the communications

systems, and another rule for the interfaces between the remaining systems as follows:

1. Gather the communication systems to the bottom in the list of systems

2. Insist that a ‘claimed’ interface between system i and system j (Xij =1 in Figure

1.4) be supported by mutual interfaces to a common communications link

(system k) from both system i and system j (∃ k, Xkk=1, Xik=1, Xjk=1). If so

supported, Xij =1 is called a achievable interface; if not so supported, it is

unachievable.

Rule 2 allows postulating an increase in the measure of an attribute for using

achievable interfaces in the netcentric SoS, and penalties for unachievable interfaces.

This conception of the interface matrix separates even further from the adjacency matrix

paradigm, because it is not a simple graph with the addition of the second rule. It might

 54

be possible to break the matrix into separate simple graphs, but this is not a graph-

theoretic discussion, so there will be no further speculation in that direction.

Given the meta-architecture as described in section 1.6, with the above additional

rules on interfacing through a communication system, the netcentric SoS as defined here

is a reasonable model of an acknowledged SoS. Using the concept of achievability

described above, a reward or penalty function may be defined to recognize the impact of

netcentricity (or implemented interoperability) on performance or other attributes of the

SoS. This allows for an evaluation of useful SoS attributes directly from the meta-

architecture. This approach is not previously found directly in the literature.

2.3.3 Improved Netcentric Performance Equation. Interfaces can have either

positive or negative impact on PSoS, due to the concept of achievability. In addition, the

ratio of penalty to reward for each type of interface is one of the adjustable parameters in

the performance attribute model. But, performance is not the only factor in suitability of

an SoS. Adding new interfaces always costs something, so they detract from

affordability whether feasible or infeasible. The impact on overall SoS assessment, by

the addition or subtraction of an interface from the chromosome (see section 2.6) is

difficult to predict for the other attributes, because an individual interface is not strictly

nor straightforwardly linked to the other attributes in a simple way that can be

interpolated.

A systems engineer, designer, or architect can use this information is to guide

their exploration of the trade space in the SoS meta-architecture. They may use it to

challenge assumptions, policies, or any of the component pieces of data in the model. In

the examples it is used to look at correlations between selection of individual systems,

 55

changes in input data, rules of how long operations costs count, membership function

boundaries, or changes in the algorithms for evaluating each attribute, in the overall SoS

assessments.

Even with no interfaces, adding individual system performances increases the

performance of the SoS, PSoS, linearly. However, since the performance of the SoS is

affected by the number of interfaces, it is possible that performance may be improved

even more through interfacing a fixed number of systems than by adding more systems

alone. The actual performance algorithm of a new SoS may be as simple or as

complicated as required; there is no requirement that it take this form. The purpose of

using this particular performance equation is to have something complicated enough to

fully exercise the modeling method. It is representative of potential SoS performance

measures. It is non-linear, which was a self-imposed goal to show the method works for

non-linear combinations of systems and interfaces. The equation for the demonstration

performance of the SoS should more properly be written as follows:

𝑷𝑺𝒐𝑺 = (∑ 𝑷𝑺𝒚𝒔𝒕𝒆𝒎(𝒊)

𝑚

𝑖

) ∗

 (𝟏 − 𝝐)(𝑷𝒆𝒏𝒖𝒑∗∑ 𝑼𝒏𝒂𝒄𝒉𝒊𝒆𝒗𝒂𝒃𝒍𝒆 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔 − 𝑷𝒆𝒏𝒅𝒏∗∑ 𝑨𝒄𝒉𝒊𝒆𝒗𝒂𝒃𝒍𝒆 𝑰𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆𝒔) (2)

Where Penup is the scale factor for increasing the penalty for using an

unachievable interface, Pendn is the scale factor for decreasing the penalty for an

achievable interface (or increasing the reward for a good interface). The sign of the

netcentric boost, ϵ, was reversed from equation 1 to fit the penalty/reward paradigm

 56

instead of a pure reward paradigm of equation 1. The sums of the achievable and

unachievable interfaces are simply counted from within the chromosome.

After the initial introduction of the netcentric concept, the explanation should

have continued on to say the exponent in the PSoS factor consists of the sum of the

achievable interfaces, minus the sum of the unachievable interfaces in the chromosome as

shown above. The additional tunable parameters Penup and Pendn allow the

improvement ratio of feasible to infeasible performance to be altered depending on the

scenario. The factor can now go negative in the exponent, causing a loss in overall

performance of the SoS when infeasible interfaces outnumber feasible interfaces (or not,

if the Penup to Pendn ratio is not one-to-one).

The point of the exercise was to have a representative function for performance

that depended in a reasonable way on the degree to which the architecture was

interconnected. There is a considerable body of study in the Command and Control

Research Program (CCRP) Network Centric Warfare (NCW) series (Alberts and Hayes

2005) (Alberts 2011) on how connecting an SoS can allow it to self-organize and

improve its performance well beyond the simple sum of individual system performances.

There is no agreement on what the improvement factor should be in general, because that

would be highly system and scenario dependent. A factor of two to three improvement in

effectiveness, however, seems eminently reasonable in the generic case.

In a real world validation problem using the Army training system from MITRE

(see section 4.1.5), there were no key performance attributes (KPAs) that used the

netcentric form of performance dependence, so it most emphatically is not required for

the method.

 57

2.3.4 Why Not Graph Theory. The FILA-SoS meta-model chromosome looks

similar to the upper half of an adjacency matrix. An adjacency matrix of the graph G,

written A(G), is the n-by-n matrix in which entry aij is the number of edges in G with

endpoints {vi, vj }, where G is a loopless graph with vertex set V(G) = {v1, …, vn} and

edge set E(G) = {e1, …, en } (West 2000). An adjacency matrix is symmetric, so

occasionally notation is used that ignores the lower half just as the upper triangular form

of the chromosome does.

In the FILA-SoS approach, the nodes would be the potential systems of the SoS

(along the diagonal of the matrix) and the edges would be the interfaces between systems

(in the upper triangular portion of the matrix). A ‘one’ in an interface position makes the

two systems potential graph ‘neighbors,’ but there is a twist to that simple interpretation

required by the condition that potential systems may choose not to participate in the SoS.

The interfaces alone could be represented by an adjacency matrix, which either ignored

or removed the diagonal (and assumed the diagonal was filled with ones). Since the

diagonal represents all potential systems and some may not participate, it is important to

have both the ones and zeroes in the diagonal. The adjacency matrix represents edges

(connections) between existing nodes (systems). That interpretation assumes all the

nodes in the graph exist. By introducing the concept that some of the potential nodes

may not exist in the SoS, the straightforward interpretation of the upper triangular matrix

(above the diagonal) as being the upper half of the adjacency matrix, is lost.

If one were to keep the simple graph interpretation of the interface as being an

edge of the graph, and forced the system (node) interconnections (edges or interfaces) to

be through the special intermediate nodes of communication systems, one could interpret

 58

an interface as a collection of two edges with the special communications system node

between them. This would still not account for missing nodes represented by the zeroes

along the diagonal. Leaving the unachievable nodes in the graph allows the genetic

algorithm (GA) to be implemented very easily. The introduction of the ‘interface through

a communications system’ concept also complicates the otherwise simple interpretation

of the matrix as described next.

At the end of the list of component systems is a special class of systems that also

count as capabilities – these are the communications systems, or ‘linking’ systems. Other

systems may have the communication links as capabilities or sub-systems, but also

require an interface with the communication link system to count in my formulation of

achievable interfaces. In today’s environment, many communications links are

accomplished through networks as opposed to being point to point. Two systems could

even be connected through the same waveform, on the same network, but not within the

same community of interest or secure subnet; therefore, they would still not be able to

communicate. Therefore, to complicate the otherwise simple notion of a bipartite graph

of the interfaces, a requirement is introduced that systems that claim an interface must

both also have a valid, common, communications system interface as well. It might be

possible to squeeze the situation back into a graph theory interpretation by rearranging

portions of the meta-architecture matrix into two different graphs, one having only non-

communication systems and the other containing the communications systems, where the

communications system graph was not bi-partite. This seemed to be an overly

complicated approach, and was abandoned.

 59

The concept of the achievability of the interface accounts for situation of a ‘down’

communication system. Two systems may claim to be connected (by having a 1 in the

architecture chromosome representation at the correct place for the interface), and be

prepared to use any information shared with each other. Yet the systems will still not be

able to do so unless they also have a common, working communications link. While an

adjacency matrix would show which systems are connected to each other in the same way

that the FILA-SoS meta-architecture shows the first order interfaces, it does not aid this

second check through the communications link interconnections for each interface. The

last column in Figure 2.5 shows the interfaces with a communications system, system m

in the mth row (and column). In order to decide if a 1 in an interface position of another

row system is achievable, one must proceed both right to the communications system

interface with that system, as well as down to the other system on the diagonal, then right

to the communications interface with the second system. If both systems have a 1 for

their interface with the communications system, then the original interface is

‘achievable.’ Having an achievable interface is good. Having an unachievable interface

in the chromosome is bad. Essentially, it means one or both of the systems prepared for

an interface, possibly modifying software or displays, or adding a radio or antenna, but

still cannot exchange data with the intended partner for their trouble. It is a waste of

resources, in both development and operation. Figure 2.6 shows the achievable and

unachievable interfaces in an example chromosome, and whether they are used

(represented by a 1) or not used (by a 0) through the color coding.

Because this achievability factor is added to the matrix, it changes from a

straightforward 1st order interface representation between systems to something more

 60

complicated, and at least is no longer simply 1st order for some of the interfaces. This

breaks the simple connection to an adjacency matrix representation. This is not to say

that an adjacency matrix representation couldn’t be used, only that it seems easier not to

do the problem in graph theory notation, instead using the matrices as place holders for

similar and closely aligned, but different types of information.

Figure 2.6. Achievable/unachievable, and used/unused interfaces

The systems vs. capabilities matrix of the required input domain data is indeed an

incidence matrix, showing which systems have which capabilities, examples shown in

Figure 2.7 and Figure 2.8.

 61

Figure 2.7. Incidence matrix for systems vs. capabilities for the ISR SoS

Figure 2.8. Incidence matrix for systems vs. capabilities for the SAR SoS

The advantage of having the architecture composition problem formulated in

graph theory, with the matrix representations actually being adjacency matrices would be

that a large body of graph theory mathematics already exists for manipulating,

understanding, and applying the matrices in certain classes of problems that would no

doubt be useful in solving SoS architecting problems.

2.3.5 Why this is Not a Simple Assignment Problem. One could interpret

capabilities as tasks and systems as doers of tasks in the classical assignment problem

formulation to approach this problem. In the entire FILA-SoS architecture approach, the

systems get to negotiate adjustments to how much they will participate, given a decision

to participate, and also have freedom to withdraw completely. This is very different than

the classical assignment problem. The assignment problem seems to be more oriented

toward centrally controlled systems than the loose confederation of the acknowledged

SoS. However, the fuzzy GA architecture selection part only recognizes the freedom to

choose not to participate by the presence of zeroes in the chromosome. It might be

possible to formulate this part of the problem as an assignment problem but there did not

CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

EO/IR 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SAR 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Exploit 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Comm 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

IR – range 3 nm 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Night Vision – range 3 nm 1 1 1 1 0

Visual – range 3 nm 1 0 0 0 0 0 0

Maritime Radar – range 30 nm 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

RF Direction Finding – range 70 nm 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Deliver Medical Aid (Deliver Paramedic too specific)1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

Remove survivor(s) to Emergency Medical Care1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Speed 300 mph 0 0 1 1 1 1 0

Speed 15 mph 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Communication 1

 62

seem to be away to assign the constraints in the assignment problem format with

potentially missing systems, or non-linear performance based on the participation. There

are ways to formulate a multi-objective assignment problem by combining the multiple

objectives in exactly the same way as the fuzzy assessor (De and Yadav 2011), but that

paper still assumed a one-to-one connection of tasks and performers. Furthermore, the

way the capabilities of individual systems are joined together in the SoS is not as

straightforward as in a typical assignment problem. It is not simply assigning systems to

tasks (or capabilities) on a one-to-one basis. The way that capabilities are joined in an

SoS could be quite nonlinear, and vary depending on which systems bring which of their

possible multiple capabilities together. A method could not be determined for how to

assign dummy tasks in the assignment problem formulation for missing systems or

interfaces. It may be possible, but did not seem to be a general way to do it. The GA

approach was much easier to formulate on the meta-architecture.

At any rate, the purpose of the proposed method is not to provide a final, truly

optimum design for the new SoS. The purpose is to explore the impacts of policy

changes, different environment situations, changing choices of acceptable levels of the

key performance attributes, choosing entirely different KPAs, or valuing KPAs

differently within the fuzzy rules, on the selection (through genetic optimization

methods) of ‘good’ architectures. The design analyses permissible with this very

simplified model with many adjustable parameters is limited to evaluating instances of

the meta-architecture. Given a set of input data, the meta-architecture is limited to a

binary presence or absence of the possible systems, and first order direct interfaces

between each of those systems. The number of possible architectures (or chromosomes)

 63

with this formulation is 2m(m+1)/2. Even if numerous heuristics are employed to help

select a ‘good’ architecture, it is very difficult to do this for multiple KPAs

simultaneously. For example, it’s not hard to write rules (heuristics) to select high-

performing systems with low costs (i.e., good affordability); however, these choices

perform poorly in the attributes of robustness (still good performance with a missing

system) or flexibility (multiple systems can provide each capability). The method was

developed to be as heuristic free as possible, because it is not understood what the right

solution to this problem will be yet, and therefore one cannot know which heuristics will

be the useful or appropriate ones.

Heuristics clearly can help find solutions more quickly, and the discovery of

heuristics is important to finding better and/or faster solutions to many types of problems

(Maier and Rechtin 2009). However, by definition, the reason a heuristic works is not

strictly known (Blanchard and Fabrycky 2010). Heuristics may bias the discovered

solution by discarding possibilities in unknown ways. Even though many heuristics are

known to be biased, they are used both intentionally and unconsciously (Taleb 2004).

There are no guarantees that any particular heuristic will continue to be useful (as it has

been in the past) on a new type of problem. Heuristics are common sense derivations

from experience in solving similar problems, but if the reason they worked were fully

understood, they would be part of the formal solution method and not classed as an

heuristic. The methods worked out here attempt to limit heuristics because the nature of

a ‘good’ SoS solution is not yet understood well enough to trust any heuristics. The

example problems are not large enough to require extensive use of heuristics to reach a

reasonable solution in quite reasonable times, either, which is a standard reason for

 64

relying on an heuristic: to narrow the search space and reduce the time to compute a

solution (Blanchard and Fabrycky 2010). In the proposed method, heuristics might be

unintentionally embedded in the attribute definitions, evaluation algorithms, membership

function shapes, and fuzzy rules, but every attempt was made to avoid heuristics.

2.4 FUZZY LOGIC.

2.4.1 Just Enough Fuzzy Logic. The fuzzy logic systems used in this research

are quite basic. Simple Type I fuzzy sets are used throughout (Zadeh 1975) (Mendel

2013) (Dauby 2011). The intent was to discover and demonstrate the usefulness of a

fuzzy logic approach in reasoning about finding ‘good’ SoS instances from a simplified,

binary meta-architecture. For this reason, the simplest possible triangular membership

functions were used at the beginning (Singh 2011). As the research progressed, it

became clear that trapezoidal membership functions were equally simple to use within

the Matlab Fuzzy Toolbox and were also more nearly a match for SoS acquisition and

design reality. Matlab ‘.fis’ files that detail the fuzzy membership and rule bases of each

file are shown in Appendix C.

2.4.2 Impact of Recent Advances In Fuzzy Logic. The approach used in

FILA-SoS was limited in many ways. The first way was that the meta-architecture

included only binary (i.e., fully in or fully out) participation by the systems, and

secondly, only first order, non-directed interfaces. Only Type I fuzzy systems were used,

with limited ranges of overlap of the degree of membership in adjacent Gaussian rounded

trapezoidal membership functions. The rule sets in the fuzzy inference system

implementations were kept to a minimum, while allowing enough non-linearity to show

that linearity was not necessary, but no more. The purpose was to demonstrate the

 65

validity of the fuzzy assessor concept working with the genetic algorithm over the

simplified meta-architecture. The examples produced ‘good’ architectures over a wide

range of input data values.

More recent concepts being developed within fuzzy logic could certainly be used

to make better models. For example, if there were still discrepancies in the common

understanding of the meaning of the attributes and various membership functions among

the stakeholders, then it might be more appropriate to use Type II membership functions.

This would allow the edges and/or shape of the membership functions to have an

uncertainty or probabilistic character. This is one way of handling that type of

uncertainty. Golkar suggests a number of ways to elicit information from SMEs in cases

of large ambiguity (Golkar and Crawley 2014) which could mesh with either Type II

fuzzy systems or interval valued fuzzy systems. Using interval fuzzy sets would allow

the uncertainties of the membership functions (MFs) to vary over their shape. In other

words, the degree of uncertainty could vary along the abscissa of the MF shape. This

could improve the modeling if there is both sufficient data and disagreement among

stakeholders at that very detailed level – to the extent of varying uncertainty within the

individual membership functions. For the SoS examples used, not much difference

occurred when varying the entire MF shapes between trapezoidal and triangular. The

modeling of the rest of the system, such as the strength of a capability contributed by an

individual system, and how the capabilities are used together to achieve more capability

at SoS level, would have to be improved as well to make this a worthwhile effort.

Having the models all be at a roughly equal and appropriate level of fidelity is not

necessary, but it avoids wasting effort.

 66

The use of computing with words to find loci of commonality within stakeholder

discussions when trying to establish the meaning of attributes and membership functions,

is very similar to what is currently being done in ‘big data,’ and is very appropriate for

the suggested modeling methods. Evaluating the relative value of individual SME inputs

as suggested by Eggstaff, et al. could certainly be included in the modeling (Eggstaff,

Mazzuchi and Sarkani 2014). Computing with words is at least 15 years old, but using it

in conjunction with big data techniques is relatively recent. With many stakeholders and

many conversations in a large SoS, finding principal components with the type of big

data analysis used on Twitter, and computing with words approaches to define Type II

fuzzy membership functions is quite feasible. Whether it significantly enhances the

accuracy of the models depends on all the modeling components being done to the same

level of rigor.

Intuitionistic fuzzy sets (IFS) are not a new addition to fuzzy logic, being at least

30 years old, but recently the concepts of interval valued IFS (IVIFS) and geometric

aggregation operators have been introduced in a way that can make decision theory

problems more realistic. These do not seem to be necessary or even helpful to the FILA-

SoS approach, given the severe simplifications in the remainder of the model, but they

could be used to improve the modeling of future, very complicated attribute functions, or

if they required more complicated chromosomes to describe the architecture. Once again,

due to the severe simplifications imposed by the binary meta-architecture approach, there

do not seem to be advantages from incorporating relatively newer fuzzy logic topics such

as topological fuzzy spaces, or continuity or separation characteristics of IFS.

 67

2.4.3 Fuzzy Linguistic Analysis for Discovering SoS Attributes. Mendel

notes that there are numerous fuzzy approaches to allow ‘computing with words’ and to

extract meaning even from the degree of our lack of knowledge to be included in the

solution of a large variety of problems (Mendel 2013). Some problems with highly

nonlinear relationships from many potential noisy inputs may be approached with fuzzy

methods (Lin, et al. 1998). Li and Chiang (Li and Chiang 2013) introduce the concept of

complex fuzzy sets, which even replace the ‘if-then’ rules of Mamdani fuzzy systems.

Selva and Crawley use fuzzy sets to describe system attributes, along with artificial

intelligence style rule based systems (up to hundreds of rules) to reason about potential

architectures, but still largely see the result as binary – i.e., meeting requirements or not

(Selva and Crawley 2013). They also recognize that the stakeholders themselves as part

of the process, as well as being able to report results to them in easily understandable

form, are important to the process. In systems acquisition, capabilities are usually the

purpose of contractual requirements. Systems are traditionally acquired through

contracts, and it is unreasonable to change the legal process. However, in acknowledged

SoS, the capabilities are mostly already available, with only small changes potentially

being contracted to add interfaces. The agreements to participate between system

program offices (SPOs) and the SoS manager are usually not contractual but informal,

such as in Memoranda of Understanding (MOU) or Agreement (MOA).

Many of the techniques mentioned above are more applicable to extremely large

data sets, such as those of ‘big data’ in social media where sampling a huge population

can detect trends and shifts in public opinion on the time scale of hours. Using them on a

few dozens of SME opinions on engineering tasks or even the list of slightly more

 68

numerous stakeholders discussed later seems inefficient, but they remain a viable

approach for larger and smaller problems. Simpler, more basic techniques were used for

this first modeling demonstration, leaving the obvious extensions to improved techniques

for later (Agarwal, Pape and Dagli 2014). The attributes were selected and defined

during weekly brainstorming sessions for a year among eight SMEs, with facilitation to

determine consensus on fuzzy membership function shapes and bounds.

Much of the recent literature on fuzzy systems deals with treating uncertainty

explicitly with Type 2 fuzzy systems. Type 2 systems treat the thickness of the

membership function edges as an additional parameter in fitting a solution. There is a

contention that adding parameters (and rules) to Type 1 fuzzy systems can be made

equivalent to the extra degrees of freedom that Type 2 systems allow for describing

solutions (Cara, et al. 2013). Several of these concepts were used in the definition of the

membership functions and variable maps from real world variables to fuzzy variables

here.

For the types and sizes of systems, capabilities, and missions involved in a typical

SoS, there are substantial numbers of stakeholders and SMEs who would be interviewed,

and numerous discussions to be undertaken over a wide range of facets of the proposed

SoS. These discussions should provide a reasonable amount of data upon which to

exercise the linguistic fuzzy analysis (Pape, Giammarco, et al. 2013). Wang and Zhang

provide a possible approach to include the degree of uncertainty in the derived

membership function definitions with Antonov’s intuitionistic fuzzy sets (Wang and

Zhang 2013). These concepts helped shape the discussion herein, but definitions were

 69

kept as simple as possible to remain focused on the development of the overall method

rather than fine points of possible improvements.

2.5 MULTI-OBJECTIVE FUZZY OPTIMIZATION

Satisfying the desires of many stakeholders over many attributes of the SoS is a

multi-objective optimization (MOO) problem. A common method in the literature for

solving a MOO problem is to use a genetic algorithm approach with a fuzzy fitness

assessor as the chromosome sorter between generations (Pedrycz, Ekel and Parreiras

2011). Good chromosomes are more likely to be propagated to the next generation in

most GA implementations. This technique solves multi-objective or multi-criteria

problems by changing them into a single equation that can be optimized more easily. The

combination of MOO with fuzzy approaches is discussed by Cara et al. (Cara, et al.

2013). Their problem was to fit surfaces with minimum error and minimize fuzzy rules

while comparing Type-1 vs. Type-2 fuzzy sets. Several of their ideas are incorporated

here, such as minimizing the number of rules in the fuzzy rule base. This has the

advantage of making the architecture of the SoS easier to explain to stakeholders. (Type

2 fuzzy sets add uncertainty bands around the edges of the membership functions.) They

also showed that Type 1 fuzzy systems are better in low noise (except for the input itself)

situations, and Type-2 works better where the noise comes from the rest of the system.

This effort uses the simpler Type 1 fuzzy systems, but an obvious extension to noisier,

real world stakeholder linguistic inputs is possible. Wang and Zhang discuss incomplete

information and weighted sets, but also include the concept of the penalty function as a

more subtle method to push the fuzzy set solution off unwanted or infeasible solutions

(Wang and Zhang 2013). A penalty function is incorporated in the FILA-SoS approach.

 70

Sanz et al. (Sanz, et al. 2013) present the method used here of tuning the membership

functions and rules to fit the data as the first part of their paper.

This method for selecting SoS architectures attempts to simplify and modularize

the treatments of

 The SoS description - purpose, goals, constraints, etc.

 The definition of what is important to the stakeholders and how consensus is

reached

 Selecting SoS attributes for evaluation

 Development process and funding within each system (cost and schedule are

always a factor)

 Interactions between contributing systems when the SoS is fielded, and

 The negotiation between the SoS manager and the systems managers or SPOs

to develop a realizable SoS.

A major effort was the segmentation of the models in an intelligent way, so that a

variety of techniques could be tested with each other by ‘dropping in’ compatibly

interfaced performance, evaluation, or display modules with different functionality. This

was done by using well defined data files to exchange information between segments of

the method. The modularity was also desired because it was not known which techniques

would work best together, nor if different types of problems would require partially

different approaches.

A fuzzy associative memory (FAM), normally generated by a fuzzy inference

system (FIS), is a method of decision support that can satisfy, or select a compromise for,

many objectives simultaneously. The multiple objectives may be thought of as

 71

dimensions of a curve fitting problem. One common way to illustrate comparisons

between approaches to a problem is by using a Kiviat chart (Microsoft Excel calls it a

Radar chart), shown for example in Figure 2.9. The FAM is designed so that all possible

combinations of attribute values can be ranked – this is the assessment at the SoS level.

When created from the consensus stakeholders needs/desires through the method

described in Chapter 3, the FIS is more justifiable than attempting to decide which of the

two irregular polygons in Figure 2.9 is better. Genetic algorithms can explore such a

‘space’ very effectively, possibly without depending nearly as much on heuristics to

simplify the solution approach. Minimizing heuristics is discussed further in section 3.9.

When the space is the meta-architecture of a new SoS, the combination of 1) a fuzzy

treatment for evaluating the attributes elicited by the method, 2) combining them to the

overall assessment of the SoS architecture, and 3) the GA approach for finding a near

optimum architecture, is a small step forward in the area of SoS engineering. The next

sections discuss a fuzzy genetic approach to meeting some of the societal needs

mentioned above.

Figure 2.9. Kiviat charts are sometimes used to show the satisfaction of multiple

objectives

 72

2.6 GENETIC ALGORITHM APPROACH TO THE PROBLEM

There are numerous genetic algorithm techniques (Fogel 2006) (Sumathi and

Surekha 2010), from the very simple constant mutation rate on all chromosome members

of the population, to random length transpositions at random positions, to sexual

crossover at random positions, to variable size but ‘gene’ specific transpositions. In

selecting chromosomes for reproduction to the next generation, techniques range from

simple tournament selection of the best few, to roulette based ‘higher fitness gives a

greater chance of random selection (but not a guarantee)’ for reproduction (Sumathi and

Surekha 2010).

Some key drivers for the selection of a modeling approach are:

 The choice of representation of the problem

 The size of the domain

 Whether the gene components of the chromosome are possible (or worth it) to

distinguish and treat differently

 The form of the fitness function used to select ‘good’ chromosomes from each

generation.

The meta-architecture structure for the SoS problems addressed here was selected

in FILA-SoS. With one small exception for the communication systems initialization,

discussed in section 2.3.2, there are no privileged gene components in the SoS meta-

architecture. One could treat the systems separately from the interfaces, as two genes

within the chromosome, or certain combinations of systems’ interfaces as a gene

deserving special treatment. In many conceivable real SoS, this could be very useful and

appropriate. However, this was not found to be necessary in this initial treatment. The

 73

remaining driver to a solution is the choice of membership function shapes. The fuzzy

logic system approach is well suited to the type of judgments made about ‘good’ SoS

architectures (Pedrycz, Ekel and Parreiras 2011), but certainly not the only possible

approach. In fact, other members of the FILA-SoS research group worked on several

other methods of optimizing the architecture, including non-gradient descent methods

and multi-level modeling.

Numerous programs or subroutines are published in C++ and Matlab for solving

problems with GAs. Due to the fact that that the FILA-SoS established the file

interchange format for the various elements of the overall approach to modeling the

evolution of the SoS, a unique set of routines was coded for assessment and incorporated

into a special purpose GA. These codes are included in Appendix B. Matlab Code.

Most of the examples shown in Chapter 4 were computed using a hybrid of several GA

techniques including tournament selection of the top 20% of the chromosomes in the

population, replacement of the last 3 of those chromosomes with chromosomes from the

lower ranked elements of the population, then replication of that top quintile portion 4

times: sexual crossover of random lengths of bits at random locations between quintile 2

and 3 was applied, transposition of random lengths of bits within each chromosome in

quintile 4, and double the mutation rate of each bit in quintile 5 of the next generation

population. Delta was specified mutation rate per bit, and also controlled the random

location and length for crossovers and transposition.

Later in the research, a ranked roulette wheel selection algorithm was

implemented in the GA. The literature suggested that this could be a better, faster, more

effective GA approach (Kumar and Jyotishree 2012). This also demonstrated that the

 74

fuzzy assessor approach was modular enough to be able to work with multiple GA

approaches.

2.7 EVOLUTION OF THE SoS IN SUCCESSIVE WAVES

Another purpose of the FILA-SoS approach is to model the evolution of the SoS

in successive steps called waves. After providing the suggested architecture to the other

elements of FILA-SoS, negotiations are simulated between the systems and the SoS

manager. The number of systems that choose to participate are typically less than all

those invited. The realized architecture is assessed for quality, and plans for the next

budget cycle (epoch) are implemented. Technology may change, new systems may come

on line, and the opportunity to add systems, either from the same list or an amended list

of systems occurs again in the next epoch. Participating systems from the previous epoch

are protected; they have made the investments (and commitment) to participate already.

These systems and their interfaces are protected from the random changes during

optimization in the GA. After the GA operates through transpositions and mutations, any

already participating systems and interfaces that might have been removed are replaced,

so the evolutionary pressures occur only on the new systems for the next epoch. The

protected systems are noted in input data to the GA.

2.8 SoS ARCHITECTING CHALLENGES

The first challenge is getting agreement on what constitutes an SoS. There is a

continuing debate on this in systems engineering (SE) social media (such as the LinkedIn

Community of Practice: Systems Engineering), over whether an SoS is merely a larger

system, and even a debate over whether an SoS must be a complex system. This might

 75

have been slightly less of a challenge if systems engineers could decide what systems

engineering itself is. There has apparently never been an INCOSE International

Symposium, or Workshop, over the past 25 years where the definition of the SE

profession did not become a significant topic of conversation. There is a definition in the

INCOSE Handbook, but many practitioners are dissatisfied with it; it gets at least slightly

adjusted with each version release of the handbook. If the premier professional SE

organization cannot satisfy themselves about what SE means, what hope is there of

deciding what SoS Engineering is? There is a subargument that even if SoS may be

slightly different from systems, there is no need to change normal SE processes because

‘pure’ SE is robust enough to take any differences into account.

This challenge can be answered by the authority of the US Department of

Defense, an organization familiar enough with SoS to have a valid opinion, through their

release of Systems Engineering Guide for Systems of Systems (Director Systems and

Software Engineering, OUSD (AT&L) 2008). They describe a continuum of types of

SoS, from tightly, centrally controlled (such as a military formation like a naval battle

group) to extremely loosely controlled, voluntary, collaborative groups. They use the

term ‘virtual’ for this end of the spectrum, but that term has taken on additional

connotations since the Guide’s publication, so that it requires clarification for this

context. The Guide addresses many differences between what might have been

considered a simple (but large) system, such as a weapons system in acquisition, and an

SoS. The European Union is also firmly behind efforts (to the tune of millions of euros

of research investment) to develop methods for handling SoS, such as through the

COMPASS (Coleman, et al. 2012) and DANSE (Arnold, Boyer and Legay 2012)

 76

programs. The European programs have the stated goal of becoming the premier

practitioners of SoSE research and implementation in the world.

The next challenge is to attempt to describe and/or model an SoS in a succinct yet

sufficient manner, especially to non-experts. SoS are almost always large and

complicated, implying that it takes a correspondingly large amount of information to

adequately characterize and explain them. Three key features of the proposed method

help limit the problems inherent in this challenge:

1. The treatment is limited to only that type of SoS called ‘acknowledged (section

1.4),

2. The meta-architecture is limited to a binary participation model of systems and

their interfaces, and

3. The purpose of this SoS analysis is limited in time and space to a single or at least

a small range of scenarios.

The purpose of keeping the applicability of the method limited in this way is to

see what one can learn from a simplified approach. Methods for collecting and

organizing data for component systems, capabilities and interfaces are devised, with

relatively simple models for performance and related ‘-ilities’ used to evaluate and

compare arbitrary SoS architectures. This method is intended to be modular, so that

competing or better models may easily be substituted. Other challenges for SoSE include

crafting display techniques for architectures in different domains and evaluation criteria

for SoS in those domains, displaying solutions, exploring sensitivity of the solutions to

small perturbations, as well as summarizing relevant data for component systems in a

concise presentation suitable for all stakeholders.

 77

The International Council on Systems Engineering (INCOSE) initiated an SoS

Working Group in 2012 to address some of the specific challenges of SoSE. Dr. Judith

Dahmann, co-chair of the INCOSE SoS Working Group (WG), has consolidated seven

‘SoS Pain Points ‘over a period of several years, in conjunction with the National

Defense Industry Agency (NDIA) SE WG, annual Conference on Systems Engineering

Research (CSER), the Complex Adaptive Systems Conference (CAS), and the Trans-

Atlantic Research and Education Agenda in System of Systems (T=AREA-SoS) (J.

Dahmann 2014). While this research does not answer all the pain points in general, it

does at least address some facet of each of them as shown below in Table 2.2.

Table 2.2. Proposed method's approach to SoS Pain Points

SoS Pain Points Questions FILA-SoS Approach

SoS Authorities What are effective

collaboration patterns in

SoS?

First order undirected interfaces,

but counts communication links

as systems too

Leadership What are the roles and

characteristics of effective

SoS leaders?

SoS Manager is the creator of

the SoS vision & controller of a

small budget for minor system

changes;

SPO managers negotiate for

available/needed development

funds

Constituent Systems What are effective

approaches to integrating

constituent systems?

Assumed to be through

information exchanges over

communications links which are

regarded as component systems

Capabilities &

Requirements

How can SE address SoS

capabilities and

requirements?

An MBSE-like documentation

approach to algorithmically

account for system capability

contributions to the SoS

 78

Table 2.2. Proposed method's approach to SoS Pain Points (cont.)

SoS Pain Points Questions FILA-SoS Approach

Autonomy,

Interdependencies &

Emergence

How can SE address the

complexities of SoS

interdependencies and

emergent behaviors?

Flexibility attribute asks for

multiple contributors to each

SoS capability

Robustness attribute accounts

for single missing systems

Emergence arises from

netcentric reward/penalty

Testing, Validation

& Learning

How can SE approach SoS

validation, testing, and

continuous learning in SoS?

Costs, capability contributions,

membership functions, and

fitness rules may be varied for

sensitivity analysis;

Observed performance could be

inserted into attribute evaluation

algorithms to improve fidelity

Wave model evolution can be

explicitly modeled as

systems/capabilities are added

over time

SoS Principles What are the key SoS

thinking principles?

Fuzzy multi-objective

optimization can handle large

numbers of attributes

Negotiations for realization of

the suggested architecture

Sensitivity analysis of input

conditions, attribute

membership function definitions

and SoS assessment rule base

2.9 OTHER ARCHITECTURAL ANALYSIS METHODS

The Software Engineering Institute (SEI) at Carnegie Mellon University

developed the ATAM, along with several related approaches such as Attribute Driven

Design (ADD) to try to improve the quality of software programming (Nord, et al. 2009).

It was primarily a way to get early expert review of the plans for large software projects

to identify and prioritize any risky areas in the plan. This was in response to the

 79

widespread and disturbing trend for large software projects to overrun their plans by very

large ratios in both cost and schedule. At the same time this trend was becoming

unmistakable, software was becoming the major component of most large and complex

systems. This made it especially annoying to funding stakeholders, necessitating that

“something must be done.” ATAM, along with a number of other SEI initiatives were

one result (Software Engineering Institute, Carnegie Mellon University 2015). They now

have a Systems Architecture Tradeoff Analysis Method (SATAM), and an SoS

Architecture Evaluation Method (SoSAEM), starting with Mission Thread Workshops

(MTWs) that work through how the system will be used, that include the following steps:

“An SoS architecture evaluation

 uses outputs of the MTWs, including augmented mission threads and

SoS architecture challenges

 incorporates the expertise of a trained evaluation team and SoS

stakeholders, including the SoS and system architects

 probes architecture at the areas where the systems interact to identify

risks

 organizes the individual risks into risk themes that can be

comprehended (and mitigated later) by program management

 assesses the sufficiency of architecture documentation

 identifies potentially problematic systems for focused follow-on

evaluations using the specific augmented mission threads” (Software

Engineering Institute, Carnegie Mellon University 2015)

 80

However, the following line on their website notes that the method is “ready to be

piloted,” i.e., not universally in practice yet.

ATAM is intended to be a high level, total system evaluation, very oriented to

finding risky areas within the planned system architecture. Two other architecture

evaluation methods are very closely related to ATAM:

1. Active Reviews for Intermediate Designs (ARID), also from the SEI, looks at

portions of the architecture at milestone points as the system is developed.

The key focus by highly experienced, typically outside, subject matter experts

is again on the impact of architecture choices on quality attributes of the

system, but ARID reviews are more focused, to only a portion of the total

system, and only for the specific review being conducted (Software

Engineering Institute, Carnegie Mellon University 2015).

2. Architecture-Centered Software Project Planning (ACSPP) is an approach

where architecture documentation is provided to several experienced

designers, they are allowed a limited time to prepare a plan to implement

selected architectural elements, using the architecture documentation as

inputs, identifying resources and time required. By comparing the resultant

plans, differences in interpretation and clarity of the architecture description

are highlighted by differences in the plans. Very high estimates of required

resources or schedule are also interpreted as problem areas with the

architecture descriptions (Paulish and Bass 2001).

Kruchten’s ‘4+1’ method for software architecting identifies four ‘views’ of the

architecture: Logical, Development, and Physical. The ‘+1’ is at least one (or more)

 81

scenarios for using the planned system (Kruchten 1995). There are numerous ‘question’

methods in the literature, where objective subject matter experts are asked to answer a list

of questions from the architecture documentation alone. If the questions cannot be easily

answered, the architecture description, if not the architecture itself, obviously needs to be

improved.

This research are was disappointed in several ATAMs in which he participated.

There seem to be a lack of depth of architectural detail, with an ad hoc nature to the

architecture presentations. Criticisms offered by the participants seemed focused on only

the most obvious risk areas within the selected architecture. Subtle or in depth analysis

seemed quite beyond the group of objective subject matter experts (SMEs), perhaps

because they were not well-versed in details of the architecture under discussion; they

never approached the problem as a systems architecture review, but only commented in

their narrow SME domains. This means that one must be careful to explain sufficiently

when conducting the ATAM, facilitate helpfully, and keep the conversation at the

architecture level. However, there did not seem to be a project commitment to do

anything as a result of the risk areas identified in the ATM. Certainly, no thought was

given to actually modifying the architecture as a result of the ATAM. Not every ATAM

may be that superficial, but the process is certainly not immune to the superficiality

observed. This is one of the criticisms levied on the ATAM approach, especially now

that it has become institutionalized. It is common corporate practice for an ATAM to be

required to allow a project to proceed, but a commitment to fix any highlighted problems

as a hard requirement of the process snot always happen. Other methods identified above

are also heavily dependent for success on the participation of highly skilled subject

 82

matter experts with a systems approach. FILA-SoS assumes similar extensive SME

participation in the generation of the attributes, evaluation models, and definition of

acceptable ranges. It is the intent that this knowledge be better documented and more

open than in some of the other evaluation methods. FILA-SoS seems to be following the

dictates of ISO 42010 in this regard (IEEE S2ESC – Software and Systems Engineering

Standards Committee) 2011).

There are few other ‘architecture evaluation’ methods per se. There are a growing

number of architecture documentation and management methods. The US Defense

Department has the DoDAF, which is oriented toward complex but still only a single

system Program of Record (POR) (in the U.S. Congress acquisition terminology) style

acquisition and design; Ministry of Defense has MODAF, NATO has an architecture

framework, also oriented toward single (including complex) system procurements.

DoDAF and MODAF have merged to become the Unified Profile for DoDAF/MODAF

(UPDM). TOGAF, from the Object Management Group, is oriented toward enterprise

architectures, not necessarily either systems or SoS, but possibly larger in scope than

either. All these frameworks specify ways that the architecture description must be

documented, with the sincere hope that any holes will somehow become obvious, and yet

a further hope that they will be fixed, as well. The Architecture Analysis and Design

Language (AADL) (now SAE Standard AS5506B) is another way of describing an

architecture, concentrating on the interfaces as the most likely risk areas. This approach

also helps point out holes in a proposed architecture that should then obviously be fixed.

Steven Dam’s proposal for a Life Cycle Modeling Language (LML) is designed to insure

that entire life cycle concerns are included in the architecture description of a system

http://standards.sae.org/as5506b/

 83

from early in its design, and is relatively easily extended to SoS (Dam and Vaneman,

2015). Although some modeling language tools are in the early stages of making

architectural diagrams ‘executable,’ this is fairly experimental and certainly not widely

used in practice. FILA-SoS has a module using Dori Dov’s Object Process Modeling

methodology (Blekhman and Dori 2011), and also Colored Petri Nets, both of which use

the collected architecture data to create a discrete event model that may be used to test

various hypotheses about the architecture, such as

 Does it have enough bandwidth?

 Is the latency of messages small enough under various usage conditions?

 Is there coverage throughout a shift, or a day, or a month, with this many units?

There are other discrete event modeling tools that can be used to examine the

same types of questions with many other types of models than those built under the

FILA-SoS approach. Recent European Union projects specifically oriented toward SoS

include COMPASS – Comprehensive Modelling for Advanced Systems of Systems;

DANSE – Designing for Adaptability and Evolution in System of Systems Engineering;

DYMASoS – Dynamic Management of Physically Coupled Systems of Systems;

AMADEOS – Architecture for Multi-criticality Agile Dependable Evolutionary Open

System-of-Systems; and MONDO – Scalable Modeling and Model Management on the

Cloud (COMPASS 2015) (European Commission's FP7 2015) (DYMASOS 2015)

(MONDO Project 2015), all these approaches seem more oriented toward describing the

architecture of, or managing an existing, SoS project, not so much as evaluating the

architecture, although some do analysis of an existing architecture. There is a small

portion of each of these efforts directed toward understanding where the project is now

 84

(or will be in the near future). This is again, more of a hope that problems will make

themselves obvious when describing the project in each of the above named method’s

terms than a direct evaluation of the architecture. The Systems Engineering Leading

Indicators Guide from the International Council of Systems Engineering (INCOSE)

(jointly with the Lean Advancement Initiative (LAI), the Systems Engineering

Advancement Research Initiative (SEAri), and Practical Software and Systems

Measurement (PSM)) also suggests to look at trends of metrics far more than at the

absolute values of the suggested measures of health of an entire project (not merely at the

architecture of the project). Another European suggested approach is the A3 size

architecture overview method (A3AO) (Kooistra, Bonnema and Sko 2012). This is

another method that highlights defining the architecture, distilled down to a single,

moderate sized sheet of paper, with a relatively standard template of information to be

included. Holes in the architecture description become glaringly obvious, one may hope,

as noted previously.

Other architecture assessment methods have been proposed specifically for

software, and many of these could be applied to SoS, with minor wording changes.

Patterns have been proposed as a framework for evaluating aspects of software

architectures. Patterns may be found in SoS, as well. Basically, they ask if certain

problem patterns are present, and if they’ve been solved previously. If so, then patterns

of previously successful solutions should be able to be deployed on similar problems in

new architectures.

Functional dependency network analysis (FDNA) from Garvey and Pinto is

another approach to architecture evaluation when the SoS is networked (Garvey and

 85

Pinto 2009). It was primarily developed for supply chain types of analysis, which could

be considered similar to an acknowledged SoS. This method of analysis is intended to

find and understand risks in the supply chain. Many architecture analysis methods are

oriented toward reducing risk in development or operation of an SoS.

SERC Research Task 108 on the SoS Analytic Workbench from Purdue

University brings together several other methods for evaluating architectures. These

include Bayesian Network analysis, Robust Portfolio Options, Approximate Dynamic

Programming, and Stand-In Redundancy methods for evaluating SoS architectures.

Another related method is Database Centric Architectures. All the above methods help

expand the ways that architects think about, examine, analyze and select prospective

architectures for complex systems in general, and SoS in particular.

All the above named approaches do help build better architectures. Most of them

evaluate an architecture by finding risky places within it, or obvious (after being

highlighted by application of the method) holes in the architecture. The SoS Analytic

Workbench is more analysis focused than most. All the alternative methods focus

attention on the architecture, and this is good. They do not ‘evaluate an architecture

numerically’ as much as provide a path to improving it by suggesting areas to examine

more closely. With the FILA-SoS approach, for each of the desired attributes, there is a

documented model and score from the freely shared algorithms operating on each

architecture instance. Even though the method maps those scores into fuzzy, qualitative

measures, developed by analyzing a broad group of SME and stakeholder opinions, and

the actual score is frequently on an arbitrary scale, or for only a short list of possible SoS

scenarios, it provides something slightly more focused on the end result than some of the

 86

evaluation methods in the literature. FILA-SoS adds value by combining the various

attribute scores to an overall SoS assessment through the rule based fuzzy inference

system, which can rigorously select between the Kiviat style representations in Figures 1-

3. It also allows a more thorough exploration of the entire meta-architecture ‘space,’ as

well as the ability to quickly assess any stakeholder’s suggestions for improvement.

2.10 SCARCITY OF DOCUMENTED SoS EXAMPLES FOR STUDY

Institutional pressures make it difficult to find discussions of what works and

what does not work in SoS. For one thing, such frankness is relatively rare. DoD

examples of SoS typically:

 Do not follow the normal DoDI 5000 series management processes, so normal

reporting is not always enforced, and therefore detailed records are unusually

sparse

 Are not POR, so there is less than normal oversight by watchdog agencies

 Have relatively small budgets, or are started as pilot programs, not entailing

the detailed oversight normally given to the bigger ticket items such as PORs

 Begin in an ad hoc way or as quick reaction efforts, so if they don’t work, they

are simply abandoned quickly for another ad hoc but more promising

approach

 May be classified or have significant classified components, which make it

exceedingly difficult both to record as well as to discover what happened in an

accessible format

Commercial SoS efforts frequently fall under proprietary disclosure rules, which

makes finding documented examples difficult in that arena, as well. Studies of failures

 87

are infrequently objective, more commonly regarded as ‘the search for scapegoats;’ the

participants surveyed after the fact frequently sense that agenda, and consciously or

unconsciously, become reticent to share or even recall their part in the failure. Another

barrier to finding good post-mortems on ‘problem’ projects is that those ‘lessons’ might

be embarrassing to those most likely to know what occurred, so they frequently are not

reported with full disclosure to protect the reputation of the organization or management

chain. All these facets of SoS projects make it difficult to conduct accurate, reliable

system case studies, or to find valid SoS lessons learned. The INCOSE SoS WG is

actively engaged in finding SoS examples on which to do case studies, but even if they

succeed, this will inevitably be a small sample.

Finally, it is often the case that no one really knows why a large project fails or

succeeds. SoS are by definition complicated, therefore hard to understand, and normally

have authority issues. The personnel assigned to the independent component systems

have little motivation to understand the overall SoS architecture and purpose, hoping only

to adequately fulfill their part (as they understand even that). The relatively few SoS

engineers are normally sent off to other assignments as soon as an SoS failure is declared.

No one stays around long enough to conduct a proper post mortem. It may simply be that

an SoS success was an idea whose time had finally come, as much as one would like to

ascribe to it a more helpful lesson of cause and effect, or even a rare example of excellent

management. Another reason for success/failure might be that key stakeholder’s

personalities made the project work (or not). It is a painful yet obvious truth that

personalities have a great deal to do with success in complex projects. The next chapter

 88

explains more of the unique underpinnings for applying the very simplified meta-

architecture model to acknowledged SoS.

2.11 SUMMARY OF LITERATURE REVIEW

None of the concepts presented in this dissertation are particularly new or unique,

with the exception of exploring the binary interface/participation meta-architecture and

applying the fuzzy genetic MOO to SoS. The following concepts and different

application of existing concepts do represent an addition to the growing body of

knowledge in system of systems architecting:

 Development and demonstration of the method to create architecture based

assessment models of the SoS that can quickly rank thousands of potential

architectures

 Directly handling the ambiguity inherent in combining multiple systems into

an acknowledged SoS, with its distributed authority and non-contractually

binding requirements, with the fuzzy logic approach to attribute evaluation

and SoS assessment

 Extending the application of DoDAF system oriented concepts to

acknowledged Systems of Systems

 Using the upper triangular matrix representation of the binary participation in

the SoS meta-architecture chromosome

 Treatment of the communication links between systems as elements of the

SoS component systems

 89

 Creating the concept of achievable and unachievable interfaces and

connecting that to reward and penalty functions for the SoS netcentric

improvement factor

 Using fuzzy, linguistic analysis on discussions with stakeholders to help

define key performance attributes and explicitly handle the ambiguity in

acknowledged SoS due to the sheer number of stakeholders and the lack of

strong central control

 Providing a method to display the SoS interoperability architecture data

including the concept of achievability

 Translating between fuzzy and real world representation of the attribute values

through piecewise linear mappings to the membership functions

 Biasing the number of ones in the initial population of the genetic algorithm to

explore a representative region of the meta-architecture space

 Applying the developed method across a number of SoS in different domains,

addressing each of the seven SoS Pain Points to some extent

 90

3. PROPOSED METHOD FOR DEVELOPING AN SoS EVALUATION MODEL

3.1 USE CASE MODEL OF THE DOMAIN INDEPENDENT METHOD

The method for developing an architecture evaluation model of an SoS is the

same regardless of domain. Key features of the method are shown in the use case

summary diagram of Figure 3.1. In this figure, dashed lines are for information; solid

lines represent ‘responsible for,’ or active involvement; this portion of the effort excludes

the Negotiate Achievable SoS use case The SoS manager is a key player, along with the

SoS stakeholders, in forming a vision of the desired, acknowledged SoS capabilities.

Information from potential component systems also contributes to the SoS vision. The

vision of the SoS informs the model facilitator for exploring ways to model the desirable

SoS attributes. This may include what fraction of the system capabilities the SoS will

require, defining the meaning of the attributes and SoS missions in context, and

establishing trade space limits to explore within the SoS meta-architecture. Other inputs

include estimated costs for modification and operation of the systems within the SoS,

which ideally would come from system stakeholders or SMEs, but usually start as

estimates from the SoS manager. The modeler works with the model facilitator and

various SMEs to develop attribute evaluation models that depend on the meta-

architecture structure. These individual attribute evaluation models are combined

through a fuzzy logic rule based system to assess the overall SoS. With this assessment

tool, sample architectures represented in the meta-model may be evaluated for relative

fitness as an entire SoS.

This fitness assessment tool is precisely what is needed by a GA to sort the better

architectures within a mutating population of trial chromosomes searching out the meta-

 91

architecture space. Sensitivity analyses can be run by the modeling team in consultation

with the SoS manager. The consensus SoS design may then be presented by the SoS

manager to the SPO managers for negotiation about any minor changes required to join

the SoS. The documentation developed during the modeling effort is even more

important for SoS explanation than for the legal and regulatory prescriptions of the

DoDAF for official POR systems, because the SoS is outside the pre-existing design and

training of the component systems. Results of the negotiations also need to be well

documented, because SMEs may provide additional information to the negotiations, and

stakeholders will want to know what capabilities their systems agree to provide to the

SoS.

Figure 3.1. Use case diagram for developing an SoS Architecture

 92

The list of data required, and the variable names used throughout this effort, for

the generic SoS model is shown in Table 3.1. This is a simplified, binary model of the

systems’ presence or absence from the SoS, and the non-directed interfaces between each

pair of systems.

Table 3.1. List of SoS and component systems’ variable meanings within the meta-

architecture

Name or description of variable Expression

Name of SoS: sos 1

Number of potential systems: m 2

Number of types of systems: t 3

Names of system types: sys_typi : i ϵ {1,…t} 4

Number of component capabilities: n 5

Names of component capabilities: sys_capi : i ϵ {1,…n} 6

Binary meta-architecture upper

triangular matrix:
Aij : i ϵ {1,…m}, j ϵ {i,…m} 7

Individual systems of the SoS
Aij : i ϵ {1,…m}, j =i , also sometimes

written as Aii , or simply Ai
8

Achievable interface

Aij : i ϵ {1,…m}, j > i , and

Ajk = 1, Aik = 1, Aii =1, Ajj=1, Akk = 1 ,

where Akk is any communications

system

9

SoS main capability: C 10

SoS performance in its large capability: PSoS 11

Component capabilities of systems:
cij :: i ϵ {1,…n capabilities}, j ϵ

{1,…m systems} (binary matrix)
12

Performance of a particular system in its

key capability:
Pi

Ss : i ϵ {1,…m}, Ss is each system 13

Estimated funding to add an interface to

an individual system:
FIFi

Ss : i ϵ {1,…m}, Ss is each system 14

Deadline for developing new interface(s)

on a system:
Di

Ss : i ϵ {1,…m}, Ss is each system 15

Estimated funding for operation of all

the participating systems during an SoS

operation:

FOPi
Ss : i ϵ {1,…m}, Ss is each

system
16

 93

Table 3.1. List of SoS and component systems’ variable meanings within the meta-

architecture (cont.)

Name or description of variable Expression

Function describing the advantage of

close collaboration within an SoS as a

function of participating systems and

interfaces:

F (Aii, Aij, j≠i,) : i ϵ {1,…m}, j ϵ {i,…m} 17

Function for combining system

capabilities into SoS capability C:
𝐶 = ∑ ∑ 𝐴𝑖𝑖

𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

Number of individual attributes the

stakeholders want to evaluate the SoS

over:

g 19

Attribute names to evaluate SoS

architectures against (e.g., cost,

performance, flexibility):

Attk : k ϵ {1,…g attributes} 20

Number of gradations of each Attribute

that become fuzzy Membership

Functions (MF):

hk : k ϵ {1,…k gradations within the

attributes}
21

Fuzzy membership function names

within each attribute (granulation = a,

attribute = b):

MFab a ϵ {1,…hk gradations}, b ϵ

{1,…g attributes}
22

Fuzzy membership function boundaries

(cross over points) for each of b SoS

attributes:

Boundab a ϵ {1,…h+1}, b ϵ {1,…g}

a=1 is lower bound of universe of

discourse, a ϵ {2,…h+1} is upper bound

of MF(a-1)b because Matlab can’t handle

matrix subscripts of zero

23

Overall SoS performance in an

Attribute
(∑ ∑ 𝐴𝑖𝑖

𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F (Aii, Aij, j≠i,) 24

Total cost of developing and using an

SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25

Parameters for controlling the

netcentric performance factor

 Increment per interface

 Penalty inc for unachievable

 Penalty decrement for

achievable i/f

Epsilon ϵ
Penup

Pendn

26

Parameters for controlling the GA:

 Mutation Rate

 Number in Population

 Number of Generations

Delta

P

G

27

 94

Figure 3.2 shows an alternate view of the method as a process flow with emphasis

on the individual steps, without concern for who performs them.

Figure 3.2. Domain Independent Process Method for SoS Model building

3.2 DOMAIN INDEPENDENT MODEL CREATION

The SoS model includes all the information available to it from the sources

gathered from the participants identified in Figure 3.1, but it still must be cast in terms of

the binary participation model of the meta-architecture.

The first step, regardless of domain, is to identify the reasons for the SoS and the

desired capabilities. The SoS manager, and the facilitator, must always develop some

background and vocabulary within the domain so that meaningful discussions may be

held among stakeholders. At this point one can begin to create domain specific models of

 95

development schedules, costs, performance, and other attributes to be used in evaluating

an SoS architecture. The steps of the general method, however, are the same regardless

of the domain of the model as shown in Figure 3.2. Many modeling approaches in the

literature assume the architecture is already defined. This is similar to SE methods that

assume the requirements are well defined – nice and clean, but neither realistic nor

adequate. The DoDAF, Ver. 2.02, to its credit, begins at the proper place when it

describes a domain independent six-step process for how to build an architecture model

for a large DoD system:

1. Determine Intended Use of Architecture

2. Determine Scope of Architecture

3. Determine Data Required to Support Architecture Development

4. Collect, Organize, Correlate, and Store Architectural Data

5. Conduct Analyses in Support of Architecture Objectives

6. Document Results in Accordance with Decision-Maker Needs

(ASD(NII) 2010)

This research extends the DoDAF system oriented model to SoS, adding detail on

how to create, document and use a similar model building process for an SoS. This will

form a basis to help designers and managers choose SoS architectures more wisely in the

future.

The DoDAF viewpoints may be extended to the buildup of any SoS (military,

civil or commercial) in nearly exactly the same way it is intended to be used to document

the vision, plans, capabilities, and workings of a complex weapons system.

 96

3.2.1 Establishing a Vision of the SoS. An SoS is by definition a group of

independently capable systems, collaborating for a greater purpose, in other words, to

deliver a larger capability. Within some range, systems may be present in varying

numbers (or not at all) for a particular application of the SoS. The concept for the SoS

must be articulated, captured, and agreed to among the stakeholders in relation to this

variability in participation. Some SoS, after being developed, are on stand-by until called

on to perform; others may implement a new capability that is operating all the time. The

ideal SoS provides an acceptable range of capabilities over a broad range of

compositions. Typically, the SoS manager (or management group) creates a vision

statement to guide development of the concept for the SoS. The vision includes a high

level description of the goals of the SoS, the potential types of participants and their

capabilities, and the mission(s), threat(s), and a description of how the SoS arrangement

will improve existing capabilities, or provide new ones. The architecture model of the

SoS captures this vision but also provides the framework for decomposing the vision to

manageable components as well as for building up the SoS out of legacy, new, or

modified systems. The SoS manager must start with information such as that shown in

Table 3.2 that corresponds to the DoDAF AV-1 Overview and Summary Information.

(Corresponding roughly to Step 1 of the DoDAF 2.02 6-Step Architecture Development

Process.)

Table 3.2. Example SoS evaluation model building questionnaire for creating an AV-1

Overarching

Purpose Of SoS

A DoDAF OV-1 style description is often helpful; text should

accompany it

 97

Table 3.2. Example SoS evaluation model building questionnaire for creating an AV-1

(cont.)

Unique Value

Of SoS

What makes it better than simply adding another legacy system

SoS Measures

Of

Effectiveness

How will everyone know how good it is?

Issues That

Might Limit

Effectiveness

Are changes of procedure necessary? Are there legal, regulatory, or

bureaucratic impediments to the creation of the SoS?

SoS Features

That Might

Greatly Increase

SoS

Effectiveness

Can changes in procedures help? What is the innovation?

Desired

Effectiveness

What would be considered really good, what’s adequate, what’s

inadequate?

Rom Budget:

Development

As appropriate

Rom Budget:

Operations

As appropriate

Desired

Schedule

As appropriate

Attributes Of

The SoS/Range

Limits For

Fuzzy

Evaluation

What might be ‘tradeable’ – Suggestions for fuzzy rules, e.g., is

extra performance worth more budget? Is extra flexibility worth

more? How much? Is lack of flexibility OK? etc.

Capabilities Of

Contributing

Systems

How do they combine? Top level description of synergies

Component

Legacy Systems

Type/

Category

Capabilities Time to

Develop/

Equip

Costs

$M-

Dev and

Ops

Notes

(Incompatibilities,

Constraints,

Characteristics,

etc.)

 etc.

 98

An Operational View (OV-1) high level operational concept. The type of

information that the SoS manager must have for the ‘Vision of the SoS’ is at least one

example of how the SoS would be used (or a list of examples with all their context). The

example must discuss expected participants in a rough picture (whether in graphics or

text) of what the SoS will do in operation. Initial draft of this information may be

summarized in one or two pages as shown in Table 3.2 for the All Viewpoint. This may

be expanded to the OV-1 Operational Overview that describes how the system will be

used in slightly greater detail. It can be a graphic with accompanying text showing the

overall concept of use of the SoS as shown in Figure 3.3. Every term used in the

descriptions is defined in the All View 2, the Integrated Dictionary (AV-2). Major

component systems, data or resource exchanges, and effects are depicted iconically to

present an overall, high level impression of how the SoS may be dispatched, controlled,

employed, and recovered, for example, as shown in Figure 3.3. For an SoS, support is

normally presumed to be supplied by the system operators in their continuing

independent missions, unless significant changes are imposed by the SoS configuration.

Major mission segments are shown are shown in the OV-1. The unifying SoS Integrated

Dictionary (AV-2) is started with the OV-1, building outward so that all terms,

components, activities, and interfaces are defined in one place.

Tracking the sources of definitions is more necessary for an SoS than for a

system. Differences in usage of similar terms between component system stakeholders,

model developers and operational users should be flagged in the AV-2 by noting multiple

definitions for the same or similar terms within their proper contexts. This is

significantly important in an acknowledged SoS because the nominally independent

 99

component systems may have their own unique acronyms, terms or usages. The OV-1

establishes the scope of the SoS. A key component of most SoS is mission flexibility –

the ability to pivot to different postures or missions as conditions change. A discussion

of the range of likely activities of the SoS should be included in the textual explanation of

the OV-1, or even as multiple graphics for different missions if that is part of the SoS

charter. The OV-1 of an SoS must also include a discussion of priority between the SoS

mission versus the original and continuing missions of the component systems. It should

also include a generalized discussion of how deeply the SoS architecture will be allowed

to control the component systems. That is, to what extent major interfaces enabling the

SoS need to be controlled by (or at least communicated to) the SoS manager through the

architecture, as well as where existing systems may continue control of their own

configurations. (An extension of Step 2 of DoDAF 2.02 to handle the SoS.)

Figure 3.3. Sample OV-1 for ballistic missile defense (ASN/RDA 2009)

 100

3.2.1.1 SoS Collecting descriptive domain information. Identifying the

numerous stakeholders and their concerns, and gathering data about component systems

and their missions are key parts of developing the required domain knowledge to build an

SoS model. This process step is the same regardless of domain. The method is domain

independent, but the data gathered is now domain dependent data. An initial rough level

of knowledge is needed to allow a facilitator to make plans for stakeholder interviews.

Identification of key discussion points and possible areas of tradable concepts within the

early SoS construct are made at this point. However, until detailed discussions with the

stakeholders are held, a facilitator must not jump to conclusions about what is valuable or

tradable, nor even what the SoS framework looks like. Facilitated discussions with the

stakeholders must draw out the following features of the SoS:

• Desired and composable capabilities, with expected or desired levels of

performance

• Concepts of operation for the desired new SoS capabilities

• Likely scenarios for the employment of the SoS

• Key performance parameters, with expected or desired levels of performance

• Possible algorithms to combine component capabilities into SoS capabilities

• Shared (as well as conflicting) judgments about potential evaluation criteria

for SoS attributes

• Relative ranking of, and expected values of, attributes of the SoS by groups of

stakeholders

 101

• Rough estimates of cost, schedule, and performance changes for required

minor changes to existing systems to achieve desired SoS interfaces, or

performance

• And to get an overall ‘feel’ for how the SoS might work in practice.

An important part of developing an SoS architecture is to define all the

component systems’ ownership, missions, and priorities in case some current mission

capabilities must be ‘hijacked’ to support the SoS. Identifying all affected stakeholders is

the second part of the facilitation exercise. Inside the Pentagon, this part of the effort is

called identifying the coordination required to ‘staff a position paper.’ Since SoS

normally include systems both from multiple domains, as well as across a range of stages

of their life cycle, affected stakeholder identification requires careful and extensive

coordination. As the stakeholders are identified, they should be placed in a hierarchy of

command, tasking, and funding chains. This network is the basis of the Organizational

Relationships Viewpoint (OV-4), which serves as an excellent template for SoS in any

domain, not only military ones. In normal DoDI 5000.02 system development, this is

nominally within one service, and most of the relationships are obvious. In an SoS,

whether military, civil, or commercial, the effort to develop the hierarchies may require

special attention and care to achieve successful coordination across major organizational

boundaries (Director Systems and Software Engineering, OUSD (AT&L) 2008). Major

concerns of each stakeholder must be discovered, recorded, tracked and updated over

time, to aid in the coordination of initial tasking as well as changes to the goals of the

SoS over its lifecycle. An ideal place for this information is in the OV-4 part of the

DoDAF. Capability managers (or at least communities of interest) may be defined in the

 102

Capability Taxonomy viewpoint (CV-2). These are cross-referenced and mapped in the

Capability Dependencies viewpoint (CV-4) among the component systems and

stakeholders. An ideal SoS would have a variety of ways to achieve each of its required

capabilities, perhaps with varying efficiencies. Having only a single way to achieve a

required capability is an exceedingly poor way to design an SoS; due to the independent

nature of the component systems’ missions, there is no guarantee that all possible systems

will always be made available to the SoS. The concerns expressed in terms of the US

DoD programs are equally applicable to any complex set of entrenched bureaucracies,

such as companies in supply chains, divisions of corporations, or elements of

intergovernmental enterprises.

The desired capabilities of the SoS, as well as those of the component systems

must be carefully defined and accounted for both as a function of participating numbers

of systems but also over time, as the SoS plans to mature. An ideal architecture should

handle not only incremental improvements over time as capabilities evolve, but also a

range of numbers of component systems. This accounts not only for technological

improvements but also for the availability of systems. The number of systems can

change on any particular day due either to logistic availability or to higher priorities

outside the SoS. The attribute models of the SoS must be developed as functions of these

variables. A SysML approach could allow parametric definition of capabilities and

effectiveness to be explicitly built into the model. Other approaches may require

additional math models, which ideally will be based on architectural data from the SoS

model and the participation represented in the meta-architecture model.

 103

3.2.1.2 Deducing attributes. Linguistic analysis of the stakeholder discussions

(‘computing with words’) (Singh and Dagli 2010) allows one to deduce a set of

attributes, potential membership function shapes, and rules for combining attribute values

to create an overall SoS fitness evaluation. It may be necessary to iterate definitions of

membership function shapes and rules to get a reasonable set that works together.

Working together here means that the attribute measures do not overlap, nor correlate too

well, among themselves (i.e., they are orthogonal, or nearly so). If they were duplicative,

it would tend to give too much weight to a subset of issues, instead of optimizing over the

broadest range of attributes.

Attribute characteristics and desirable ranges identified in the linguistic analysis

are combined with fuzzy evaluation and a set of rules to derive a meta-architecture based,

overall fitness value from the participating systems and interfaces. Level setting and

model checking runs may need to be performed to insure the story is self-consistent.

Then the model can be sampled across a range of percentage of ones for stakeholders’

validation. These steps are as shown in Figure 3.4 and Table 3.1.

3.2.2 Understanding Stakeholders Views. A DoD acknowledged SoS is a very

large, complex endeavor. SoS by definition create cross-functional organizations. They

bring together functions that may have been built up through separate, large systems (and

their program offices) that were developed over many years for many reasons, and only

recently appear to have the potential to improve the effectiveness of a process or create a

new capability by the joining together of these previously disparate systems. The new

capability is highly desired, but not of overriding importance in the acknowledged SoS.

 104

Figure 3.4. Data sources and analysis steps for applying the method

Many stakeholders are inevitably involved in an SoS. The stakeholders include at

least the following recursive classes of interested parties:

 Component Systems (System Program Offices (SPOs) in the DoD or

management agencies or corporations, and all the single system stakeholders

that they represent)

 The SoS Manager or management agency

 Payers/funders (typically Congressional Committees, DoD, and Services for

military systems, but also finance offices of other state or federal agencies, or

CEOs of corporations)

 Congressional committees/watchdog agencies

 National or Theater Command Authority for military

 Users/beneficiaries of the SoS

 105

 Operators of the SoS

 Competitors of the SoS

 Enemies/threats/targets of the SoS

 Allies of the U.S.

 Press/public opinion

A similar list could be made for other types of SoS in the civil or commercial

domains. Occasionally individual stakeholders may be members of several groups

simultaneously. Additional stakeholders may be professional organizations, industry

groups, standards organizations, municipalities, rulemaking agencies, shareholders of

corporations, charities, entrenched bureaucracies, unions, non-governmental

organizations, etc. ‘Due diligence’ is the term for doing the work to identify the

stakeholders of a proposed SoS, their degree of influence, and their level of concern

about changes to their existing systems to make the SoS work.

3.2.2.1 Relationships to established decompositions: Task Lists, Joint

Capability Areas, ISO Standards. When the domain is military, the Universal Joint

Task List, the Service specific task lists, and the Joint Capability Areas provide excellent

vocabulary for defining the missions and capabilities required for military tasks,

independent of the systems used to achieve them (Joint Staff 2010) (

j7jcaa@js.pentagon.mil 2009). This vocabulary of capabilities and tasks (activities in

UML or SysML style modeling) is aggregated in the SoS AV-2 and model behavior

definitions, so that each time that a term, word or concept is used in the architecture,

reports, or performance models, it is consistent and clear to every stakeholder or

participant. Other domains than military typically have manuals, corporate, industry or

 106

government standards, scholarly, or professional guidance documents, or even textbooks

to provide this background of vocabulary and definitions. The ISO-10303 series of

standards is another source of guidance, particularly AP233, Systems Engineering Data

Representation. In fact, there are usually so many possible sources that it is highly

advisable to maintain source tracking within the AV-2, with priorities assigned to each

source to prevent confusion when a term is overloaded by multiple definitions depending

on context.

The DoD task lists contain suggested very high level definitions of measures of

effectiveness for evaluating the performance of the capabilities. These are potentially

valuable sources for determining membership function shapes and edge values. These

are typically ‘improved upon’ for specific system solutions, but they serve as an excellent

starting point for drafting evaluation criteria for the SoS, especially in performance. For

the first pass through a fuzzy analysis, the membership function shapes are not too

important; triangular or trapezoidal shapes work well enough to get started. At the

preliminary stage of analyzing choices with crude, initial models, it is more important to

get the terminology, ordering, and trade space rules agreed to among the stakeholders

than to have highly accurate membership function shapes.

Other ‘-ilities’ models may contribute to SoS attributes – reliability, availability,

affordability, survivability, flexibility, adaptability, agility, ability to be redirected,

autonomy, precision, among many others (Mekdeci, et al. 2014) , may be useful in

evaluating characteristics of a particular SoS meta-architecture. SoS attributes should be

created through reasonable extrapolations of the component systems’ capabilities in each

area, with a small improvement factor for self-coordination. (If the SoS has no advantage

 107

over the simple sum of component systems’ capabilities, then there is no need for the SoS

– simply send more systems to do the task.) By the time one has defined the vision,

capabilities, stakeholders, components, and measures of effectiveness, there should be

enough of a basis to decide what additional data will be required to develop the

architecture evaluation models. (Step 3 of DoDAF 2.02.)

3.2.2.2 Capability improvement of a proposed SoS. The concept in the FILA-

SoS for the buildup and even emergence of capabilities within the SoS is that capabilities

are brought to the SoS basically intact by the component systems as currently existing.

Typically, the SoS improves the sum of the individual component system capabilities by

a change in the way they work together to provide some unique or even greatly improved

capability. Assume the interfacing of those systems together in a new way can be made

to improve performance by a small multiplier for each connection. This is a typical

approach introduced as the concept of netcentricity by Alberts, Garska and Stein in the

late 1990s (Alberts, Garstka and Stein 1999). This is equivalent to the small change in

performance for each used-achievable interface. It is a greatly simplified notion to regard

the performance improvement to be a simple exponential function of the number of

interfaces; there is undoubtedly a plateau effect on the lower end whereby a minimum

number of systems must be interfaced to be able to see the effect. On the high end there

is no doubt also a limit to improvement by the introduction of the concepts of information

overload, latency, and bandwidth limits. The simplifying assumption that more interfaces

is better is nevertheless quite reasonable over a broad range between the two extremes,

especially since it is limited to a small fraction for each interface.

 108

3.2.2.3 Decomposition of capabilities to functions and logical views. The high

level capabilities described in the AV-2 and OV-1 can be decomposed to lower level

actions and/or functions allocable to the potential component systems. This continues

iteratively, exactly as in normal/standard systems engineering, until both a functional

hierarchy and behavioral description can be attributed to component systems. Some

systems may need upgrades to be compatible with the SoS architecture. The phasing and

organization of the capabilities must be agreed to by both the systems and the SoS

manager, with performance, funding and schedules. The time phasing of capabilities

development is shown in the Capability Phasing Viewpoint (CV-3). If some systems’

capabilities were to be ready before others and they could be used together, the

timeframes would be noted and this would become a Capability Vision Viewpoint (CV-

1) that shows how the deployed capability is built up (ASN/RDA 2009). Mapping

capability development to operational activities is shown with the Capability to

Operational Activities Mapping Viewpoint (CV-6). If some activities are not possible

without the developing capabilities, then there will be some operational changes over

time, as well. Some functions may be logically grouped because they can be reused to

support other missions; some might be grouped because they are unique to the SoS

mission and configuration. Training and tactics may have to be developed to use new

capabilities, or even to get the systems to work together operationally if the systems don’t

already do so in existing, joint missions. These constraints may be shown in several of

the capability views, but especially in the Capability Dependencies (CV-4) and

Capability to Organizational Development (CV-5) viewpoints.

 109

The decomposition of capabilities to functions, and the aggregation of functions

to higher levels of abstraction, eventually to capabilities, are inverse processes.

Sometimes it is easier to decompose downward, other times it is easier to aggregate

upward. This depends on what information is available when one starts the process. The

important point is to fill in the Capability Taxonomy Viewpoint (CV-2), so that it is

complete and makes sense to all stakeholders (or at least is accepted by all) as the

operative definition for the SoS. The capability taxonomy is a subset of the Integrated

Dictionary definitions, with the addition of the item’s location within the hierarchy.

Naturally, it is best to think through the implications of the definitions for the whole

lifecycle of the SoS. This also implies that the vision should be sufficient to sustain a

lifecycle view for the SoS, not merely the initial use of it. In practice, this sufficiency of

vision is rare.

Many SoS, in spite of being complicated arrangements, are also started as quick

reaction responses to environmental changes. Therefore, many SoS are short time frame

exercises. “Make the required changes quickly, and get them deployed!” is the prevailing

attitude in this case. In this extreme, there is scant thought given to planned upgrades,

phased deployment, or building for growth. Here, all the changes or new interfaces need

to be developed in one time period (usually a budget period, called an epoch in FILA-

SoS). When there is planning for development over several epochs, the ‘in-work’

interfaces are regarded as not participating until their delivery epoch.

The development of the Architecture Views must be an ongoing, continually

updated process extending throughout the program life cycle. The simplest cocktail

napkin draft to the most detailed, data base driven, multiply approved, fully vetted,

 110

graphical interface control definition should be documented within a “model,” as the

single source of data. Many of the remaining DoDAF viewpoints can be derived from

basic Operational Activity Model Viewpoints (OV-5b) activity diagrams if they contain

both activities allocated to swim lanes (denoting the various participants/elements/actors)

and sequenced data flows between elements. This is an addition to the basic (minimalist)

definition of an activity diagram, but adding these two items is an important step in

defining how the SoS will operate. One can vary the amount of back up text residing in

each object in the model. This is dependent on the amount of detail required and

available at each stage of the architecture development. However, the AV-2 works most

brilliantly if two conditions are fulfilled: all participants assiduously define their terms in

it, and a facilitator continually edits its contents for clarity and consistency. Consistency

is sustained if the rest of the documentation uses the AV-2.

An architecture of the SoS will exist, whether or not it is defined, planned, or

understood. It will be a far more useful architecture (and a better SoS) if the architecture

is developed intentionally, and well documented. That the documentation might be in a

standard, organized framework, and maintained throughout the life of the SoS in a central

repository, could make it useful to new hires, visitors, and the engineers and managers

attempting to upgrade, maintain, or use the SoS in the future. (Step 4 and 6 of DoDAF

2.02.)

The Integrated Dictionary (AV-2) is the authoritative source for definitions of all

elements of the architecture and program descriptions. All acronyms, terms of art, and

important concepts must be defined there, and the source of the definition is maintained

to give context for understanding arcane, duplicative, or cross program usages (frequent

 111

occurrences in SoS). Example architectural element definitions found in an AV-2 are

shown in Table 3.3.

Table 3.3. Example AV-2, Integrated Dictionary

Phrase Acronym Definition Source

Computing

Infrastructure

Readiness

CIR Provides the necessary computing

infrastructure and related services to allow the

DoD to operate according to net-centric

principles. It ensures that adequate processing,

storage, and related infrastructure services are

in place to respond dynamically to computing

needs and to balance loads across the

infrastructure.

DoD IEA v2.0

Concept of

Operations

 A clear and concise statement of the line of

action chosen by a commander in order to

accomplish his mission.

Std I/F UCS

Nato

STANAG

4586-3

Conceptual

Data Model

DIV-1 The required high-level data concepts and their

relationships.

DoDAF 2.02

Condition The state of an environment or situation in

which a Performer performs.

DoDAF 2.02

Confidentiality Assurance that information is not disclosed to

unauthorized entities or processes.

DoD IEA v2.0

Configuration A characteristic of a system element, or project

artifact, describing their maturity or

performance.

INCOSE Sys

Eng Hndbk

v3.2.1

3.2.2.4 Conducting analyses of SoS behavior. The SoS manager and

development facilitator must at this point be doing some mental estimation of where the

required SoS capabilities could be obtained and for what cost. They must be designing

questions to elicit both responses and thought from the stakeholders about what could be

of value in building the SoS. The stakeholders extend both up and down the chain of

 112

responsibilities with the SoS manager in the middle. Are there potential multiple sources

for most required capabilities? Are there new ways of putting pieces together in different

ways to accomplish necessary tasks or functions? Do new technologies allow for

anything more easily that previously envisioned? If something did work in a new way,

how much better would it be? What functional relationships could be described to

evaluate the SoS? What ranges of values of performance would be outstanding, pretty

good, acceptable, poor, or awful? Answering these questions will allow models to be

built that will allow new designs of an SoS to be evaluated. (Step 5 of DoDAF 2.02.

Step 6 is documenting the viewpoints in a self-consistent model, which is done during all

the previous steps.)

3.2.3 Review of the Method Steps. Yet another way to look at this model

development process is shown in Figure 3.5, using the binary participation meta-

architecture model as a starting point. A vision of the SoS, facilitated stakeholder

discussions, produces a plethora of linguistic terms and definitions. Linguistic analysis of

these discussions may be used to distill the SoS attributes that are important to the

stakeholders. Linguistic analysis also may be used to establish ranges of values for the

attributes that are considered excellent, good, or very bad, as well as the strength of the

stakeholders, feelings about each of these ranges. The modeler gets to play a role at this

point by writing trial algorithms that work on the meta-architecture to deliver an initial

trial measure of each attribute. These measures should depend significantly on the meta-

architecture, because they are used to evaluate the goodness of the architecture of the

SoS. Given this information, establishing membership functions to fit the fuzzy

evaluation measures is relatively easy. Rules for combining attribute valuations are also

 113

developed from stakeholder interviews and discussions. The rules are embodied in a

Mamdani fuzzy inference system or fuzzy associative memory in the form seen in Table

3.5 in paragraph 3.6. The measures are used to improve the selection of the SoS

architecture within the genetic algorithm approach. The optimized architecture is then

proposed for implementation and negotiation between the component systems and SoS

manager. The negotiations require a reasonably good starting point to have any chance

of success, and that is what this research is designed to provide – the starting architecture

for the agent based modeling part of the problem. The system negotiations are the key to

getting a realizable, implementable architecture for the SoS, because the systems cannot

be forced into the SoS in the case of an acknowledged SoS.

It is important to devise a method to visualize how the component systems’

capabilities (ci) of various architecture instantiations come together to create the SoS

capabilities (C). This helps during the level setting exercises, but is vital to describing

both the approach and the results to stakeholders as well. Finally, there must be clear

explanations of the limitations of the modeling approach. The numerous simplifications

mean that the model is not likely to match reality very well in detail; the best this model

can do is match in terms of broad, general trends in comparing high-level architectural

impacts between different approaches to constructing the SoS.

For every SoS there will be requirements for component system and capability

descriptions. Capabilities of each system are denoted by ci, and the way those

capabilities are combined into the SoS capability C must be described and captured in the

model. When the information is gathered and organized, then the domain specific model

 114

Figure 3.5. How the steps of the method result in a good SoS architecture

is described, but the fact that there must be some way to build up the required capability

as a module in the model is domain independent. For our meta-architecture, there may be

sets of capabilities from each system, a combination algorithm to describe how the SoS

capability is built up from the systems, and costs for development of either new

capabilities or interfaces, with schedules and costs for operations of the systems in the

SoS. More detailed models could be used, for example if the cost of discovering and

codifying new doctrine or tactics, and training in the new configurations is known or can

be estimated. Other desirable attributes and ways of measuring and combining them may

be discovered during the stakeholder discussions; these may be added to the SoS

evaluation, but there must be some process such as this regardless of domain. Initial draft

runs of the model may also lead the modelers to changes and improvements in the model

Binary Meta-
Architecture

•Systems and their interfaces are present (1), or not (0)

•An instance of the meta-architecture is a "chromosome" representing one particular arcchitecture

Stakeholder
Discussions

•Facilitated interviews to draw out input data and value judgments from key stakeholders

•Model building and validation iterations proceed toward consensus

Evaluation
Model

•Fuzzy SoS attributes created from stakeholder concerns, performance algorithms of collaborating systems, and
advantages from interfacing

•Fuzzy model can evaluate multiple attributes for each SoS chromosome to arrive at an overall SoS 'fitness'
assessment

Genetic
Algorithm

•Can explore large volumes of the potential architecture space

•Can optimize with respect to many attributes using overall fuzzy fitness

 115

modules. This method of discovering the domain dependent data that goes into the

model is domain independent. It should work for any domain.

3.2.3.1 Choosing the SoS key attributes. The facilitators and model builders

need some basic knowledge of the domain of the SoS. Without that, they will not be able

to ask intelligent questions of the stakeholders and SMEs. Conversely, if the facilitators

know too much about a domain, they may unconsciously pre-select a solution, biasing the

way they ask questions. An example questionnaire form for directing the interviews with

stakeholders is shown in Table 3.2. This is only a very high level starting point; it should

be adjusted for any specific SoS application.

Questions such as those in Table 3.2 are intended to elicit from the stakeholders

the key attributes (or key performance parameters (KPPs)) that they care about for the

development and use of the SoS. The questions are asked from the point of view, and

with the intention, of developing relatively simple evaluation algorithms that depend

strongly on the participating systems and their interfaces and how they interconnect in

operation. At the initial stage of development, these algorithms may be fairly

approximate, using rough estimates. The goal is to have some kind of broadly achievable

architecture with which to begin the analysis leading to negotiations between SoS

manager and individual systems for an agreed to SoS. It is fully expected that individual

systems’ performance, cost, schedule and other attributes would be adjusted during

negotiations. On the other hand, attribute evaluation algorithms are designed to be

modular, so that if better models become available, they may be substituted in at any

time. Well documented, traceable information trails are invaluable when reviewing,

 116

improving, correcting, or extending the models (or the SoS itself). These documented

traces are well described by DoDAF style views.

3.2.3.2 Visualizing domain model data. There is a great deal of information

potentially available about the components of the SoS – each system may be complex in

its own right. The architect must find a better way to share SoS data with analysts and

stakeholders than dozens or hundreds of columns of numbers. Color coded and textured

graphs, multiple and rotatable viewpoints into multi-dimensional data, slices, smart

filtering, correlations, time series analyses, and animations may all be used to aid the

understanding of the very large sets of data produced by SoS modeling (Yi, et al. 2007).

Both large scale trends and significant but tiny artifacts in the data must be easily and

quickly discoverable in the way the data is conveyed to reviewers. One needs to be

careful of the color palette chosen to display results, since different display or printer

devices may represent them differently, sometimes in surprising ways. Some in the

audience will usually be color blind to various degrees, as well. One must be careful not

to assume that color coding data artifacts makes them obvious to others. (For those

interested, the website http://www.vischeck.com/examples/ simulates for people with

normal color vision the way colorblind people see, and suggests alterations to color

palettes that allow more people to see an image in a similar way).

3.2.4 Architecture Space Exploration. This modeling method uses a genetic

algorithm (GA) approach to explore the architecture space. A population of

chromosomes is evaluated and sorted to select the better ones for propagation to future

generations with genetic modifications. The ones and zeroes in the chromosomes are

generated at random during the first generation. This is normal GA procedure. However,

http://www.vischeck.com/examples/

 117

to avoid getting an average of 50% ones in the entire initial generation of chromosomes, a

bias is applied to the random number generator so that the probability of any bit in a

chromosome of that generation being a one depends on the chromosome’s position in the

population. The number of chromosomes in a population for one generation of the GA is

variable. Typically, a few tens to a few hundred chromosomes are used in the population

in each generation. For the initial generation, chromosome number 1 has only a few

ones, with mostly zeroes. The last chromosome in a population has mostly ones with

only a few zeroes. Typically, low numbers of ones in the chromosome (meaning

participating systems and/or interfaces) is associated with lower cost and lower

performance. The other attributes could be better or worse, depending on their

definitions. Higher numbers of participating systems and interfaces are usually

associated with higher performance and higher cost (equation 24 and 25 in Table 3.1).

Costs/affordability and overall performance are almost universally necessary SoS

evaluation attributes. Since there is normally a desire for higher performance and lower

cost, one hopes for a sweet spot between the extremes, where there is adequate

performance, and adequate affordability (nearly the inverse of cost) as well as acceptable

values of the other attributes.

A key feature of the method is to do an exploration of the architecture space with

a few hundred or a few thousand sample chromosomes, which cover a large range of

participating systems and interfaces. Each of the chromosome’s attribute evaluations is

plotted against the membership functions for that attribute. The membership function

shapes and/or the algorithms for evaluating the attributes may need to be adjusted several

 118

times in an iterative process that may include discussions with stakeholders to arrive in

acceptable SoS model. This is explained further in section 3.8

The meta-architecture and associated data model being proposed so far contains

many features that mimic real-life:

 There may be multiple copies of the same system

 There may be slight differences between the otherwise similar systems

 Each system may have multiple capabilities

 There is a minimum number of component capabilities required to make up

the SoS capability.

If a proposed architecture does not have the minimum capabilities, a penalty is

tacked on to its performance, to enhance the chances of discarding its chromosome in the

fitness comparisons at each generation of the genetic algorithm. No population member

or bit position is pre-selected for discarding before evaluating it for all attributes.

3.3 INDIVIDUAL SYSTEMS’ INFORMATION

3.3.1 Cost, Performance and Schedule Inputs of Component Systems. The

models used here treat the cost of developing a new capability or adding an interface

separately from the cost of operating the system during a deployment of the SoS. In real

life these costs are potentially paid for from different categories of funds, such as

acquisition vs. operations budget lines in DoD, or current vs. future funds. The

development cost is normally a one-time cost, while the operations cost of the system is a

continuing cost each time the SoS is called into action. Performance enhancement is

normally on the order of a few percent for the modification requested to fit into the SoS.

For adding an interface, it might require a new radio and antennas to be installed on a

 119

vehicle, or extending the software database of messages that can be handled by an

existing system on a vehicle. There can be significant costs for a minor modification to

accomplish retesting of functions that might be affected by any changes to fielded

systems (called regression testing), in addition to testing of the change itself. Whatever

the change, in addition to time to develop and test the change, the system hosting it will

be ‘down for maintenance’ during the installation of the change. The time to develop,

install and test a change is the development time. This is generally one epoch, or time

period, in the wave model described in Chapter 1. If a capability already exists, such as

ability to use a specific radio on a platform, the development cost and time for that

system for that capability will be zero in the domain input data. However, development

of the other end of the interface on a different system may still be required and will count

toward the cost of the interface. Some complex modifications might take two or more

epochs to develop. In this case, since the development is not complete at the end of the

first epoch, it is as if the system chose not to participate, because it delivers no capability

yet. However, one is still spending funds on that development, for which one receives

nothing until the development is complete. The bottom of Table 3.2 shows a simplified

template to start gathering the estimated individual system cost and performance data.

Figure 3.6 and Figure 3.7 show a typical arrangement of the input data required to

perform the individual attribute evaluation model calculations. Figure 3.7 is in the latest

graphic user interface format. Columns have been added for the protection of existing

systems and for the negotiation behavior; the remainder of the columnar information is

 120

the same. Heading information has been modified to allow a few more adjustable

settings in the data input file.

3.3.2 Membership Functions. Membership functions (MF) map the fuzzy

values to the real world values and show the fuzziness of the boundaries between the

granulations or grades within each attribute. The Matlab Fuzzy Toolbox has a number of

built in shapes for membership functions. Triangular, trapezoidal, and the Gaussian

smoothed corners of trapezoidal shapes are available among others; only the Gaussian

rounded trapezoidal shape shown in Figure 3.8 was used in this analysis. It is very

common when evaluating large projects to have a band of acceptability for each grade in

each attribute. A familiar example is the Contractor Performance Assessment Reporting

System (CPARS). It assigns one of five colors to a series of common measures of project

status. It is also common to have multiple reviewers provide a grade in each area, which

is then averaged to get the final grade (Department of the Navy 1997). This is intended

to avoid the issue of unconscious bias or error of interpretation of the data by a single

reviewer on a borderline issue. This process is very similar to the mathematically more

precise fuzzy logic process. Other MF shapes show similar characteristics, but the

nonlinearities in the output surface display the concepts better with the slightly rounded

MF shapes shown in Figure 3.8. All the variables in the Fuzzy Tool Box are scaled the

same way. In real space, a further scaling is required to the individual variables. The

MFs cross each other at the 50% level between each of the numbers in the granularity

scale from 1 to 4. For this fuzzy inference system (FIS), 1 = Unacceptable, 2 = Marginal,

3= Acceptable, and 4 = Exceeds (expectations) for each attribute: Performance,

 121

Figure 3.6. Example domain data input for 29 system SAR SoS

Name SAR

NumSys 29 com1 26

NumCap 10 attr 4 mfnum 4

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime

1 Cutter 7 0.03 2 12 1

2 Cutter 7 0.03 2 12 1

3 Helicopter 6 0.1 2 20 1

4 Helicopter 6 0.1 2 20 1

5 Aircraft 8 0.1 5 10 1

6 Aircraft 8 0.1 5 10 1

7 UAV 1 0.1 0.1 7 1

8 UAV 1 0.1 0.1 7 1

9 UAV 1 0.1 0.1 7 1

10 UAV 1 0.1 0.1 7 1

11 UAV 1 0.1 0.1 7 1

12 UAV 1 0.1 0.1 7 1

13 UAV 1 0.1 0.1 7 1

14 UAV 3 0.1 0.1 7 1

15 UAV 3 0.1 0.1 7 1

16 UAV 3 0.1 0.1 7 1

17 UAV 3 0.1 0.1 7 1

18 Fish Vessel 3 0.03 0.5 4 1

19 Fish Vessel 3 0.03 0.5 4 1

20 Fish Vessel 3 0.03 0.5 4 1

21 Fish Vessel 3 0.03 0.5 4 1

22 Fish Vessel 3 0.03 0.5 4 1

23 Civ Ship 7 0.05 2 8 1

24 Coord Ctr 5 0.05 0.5 5 1

25 Coord Ctr 5 0.05 0.5 5 1

26 Communications 10 0.02 0.03 1 0

27 Communications 10 0.02 0.03 1 0

28 Communications 10 0.02 0.03 1 0

29 Communications 10 0.02 0.03 1 0

 122

Figure 3.7. Updated input data format for characteristics of the component systems

Affordability, (Developmental) Flexibility, and Robustness. There is no requirement that

the scaling be the same for different attributes. In fact, the Matlab Fuzzy Tool Box

allows the MFs to be scaled to real values, and it might have been clearer to use that

facility, but the graphical user interface (GUI) for changing the values is rather tedious,

so a method to apply the scaling outside the GUI was developed. The process of

SoS Description ISR

Total Systems in SoS 22 probtypeISR

Number of Characteristics 6 linearinput 1

Number of System Types 22

Max negotiation rounds 4

ProtectNeg Behavior Perf OpsCost IFcost DevTime

fighterA1 0 2 10 10 0.2 1

fighterA2 0 2 10 10 0.2 1

fighterA3 0 2 10 10 0.2 1

RPA1 0 2 10 2 0.4 1

RPA2 0 2 10 2 0.4 1

RPA3 0 2 10 2 0.4 1

RPA4 0 2 10 2 0.4 1

U-2 0 2 3 15 0 0

DSP 0 2 8 0.1 1 1

fighterB1 0 2 15 10 0.7 1

fighterB2 0 2 15 10 0.7 1

fighterB3 0 2 15 10 0.7 1

JSTARS 0 2 40 18 0.1 1

ThExp1 0 2 10 10 2 1

ThExp2 0 2 10 10 2 1

ConUS 0 2 15 0.1 0.2 0

CmdCont1 0 2 12 2 1 1

CmdCont2 0 2 12 2 1 1

LOS1 0 2 10 0.1 0.2 1

LOS2 0 2 10 0.1 0.2 1

BLOS1 0 2 10 3 0.5 1

BLOS2 0 2 10 3 0.5 1

 123

translating real values to fuzzy values is called fuzzification or fuzzifying. Multiple

criteria are combined through the rules in fuzzy space, and the output fuzzy value is de-

fuzzified to a crisp value for the SoS assessment. In this fuzzification scheme, values are

rounded to the nearest integer value for each fuzzy gradation. In the example in Figure

3.8, a fuzzy value of 2.35 would fall on the sloping line for Marginal membership at a

value of about 65%, higher than on the line for membership in Acceptable, where it is

about 35%. The crossover points between membership functions are fixed at the half

integer point in fuzzy space, but need not be mapped linearly to real space. The next

section discusses how the real values are mapped to the fuzzy scale.

Figure 3.8. Matlab Fuzzy Toolbox display of typical membership function shapes

3.3.3 Mapping Attribute Measures to Fuzzy Variables. The generic

membership function range is the ‘universe of discourse.’ This typical range, discussed

in section 3.3.2, must be mapped to the real world values of the domain specific SoS.

 124

The mapping can be done inside Matlab so that Figure 3.8 would be scaled in real units,

but that requires working in a tedious GUI. It can also be done by mapping the key shape

points of the scaled MF to the real world values. In a real problem, this mapping of

ranges for each attribute would come from the problem definition and the stakeholders’

beliefs and desires discovered during the model building step of the method. Examples

could be estimated values for cost of the SoS, or performance in terms of square miles

searched per hour, or tons of freight delivered per day in another type of problem. The

probability of success, or the number of shipments, or other attributes would have desired

thresholds that define the levels of performance in each attribute, such as: unacceptable,

marginal, acceptable, or exceeds expectations in a four part granularity for each attribute.

The judging criteria may take on a wide variety of terminology and of forms, depending

on the domain. Any degree of granularity is possible. An even number of gradations

were chosen in this instance to avoid the possibility of an evaluation question being

answered in the middle. Odd numbers of gradations tend to allow stakeholders to answer

too many valuation questions disproportionately in the middle during the interview

process, while even numbers of gradations force the choices to be above or below

average. This depends on one’s problem and particular stakeholders, of course.

Figure 3.9. shows a typical mapping between real world values on the left, and the

fuzzy variable on the bottom. Note that there is no requirement for the mappings to be

linear. Figure 3.10 shows affordability and robustness mapped to their fuzzy values. All

the attribute membership function values need to be a matched set, with a matched set of

attribute models. In this case, robustness depends on the range of the values of

performance. Therefore, if the maximum performance doubles due to a change in the

 125

model, then the real world robustness map would need to change as well. The real world

values for affordability are dollars, and robustness is the maximum loss of performance

when removing any system, but they are mapped as negative values here, because less is

better. This allows the fuzzy attributes to be plotted as monotonically increasing. Minor

kinks in the mapping lines show that the slopes of the membership function maps do not

need to be constant.

Figure 3.9. Map from fuzzy variable on horizontal axis to probability of detection on left

0

0.1

0.2

0.3

0.4

0.5

0.6

1 1.5 2 2.5 3 3.5 4

Performance

R
ea

l
sp

ac
e:

 L
ik

el
ih

o
o
d
 o

f
d
et

ec
ti

o
n
/d

a
y

 126

Figure 3.10. Attribute values, mapped to fuzzy variables

3.3.4 Exploring the Meta-Architecture Space to Set MF Crossing Values.

To explore the entire meta-architecture space for the demonstration of the method, a

novel approach to defining the membership function sizes is used. After defining the

draft attribute calculation algorithms to depend on the meta-architecture, a random

selection of chromosomes with a wide variation in the number of ones is evaluated. The

range of attribute values is examined to re-set the edge values of each fuzzy gradation of

evaluations in each attribute to allow a solution. The MF edge values also need to be

adjusted for attributes that depend on other attributes, such as robustness being dependent

for absolute size on the performance range. With real world data, for a given set of rules,

there is no guarantee that a solution is possible. In order to demonstrate the method, there

must be achievable solutions. By exploring the values of each attribute over a range of

chromosomes, the modeler may be able to find compromises that will work. This may

require changes to the rules or desired values in the outcome. With real world problems,

-250

-190

-155

-110

-60

-300

-250

-200

-150

-100

-50

0
1 1 . 5 2 . 5 3 . 5 4

AFFORDABILITY

-0.75

-0.45

-0.3

-0.15

0

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
1 1 . 5 2 2 . 5 3 3 . 5 4

ROBUSTNESS

 127

another round of discussions with the stakeholders may be required to vet the model, rule,

or MF definition changes required to make the solution method converge. This is called

the value exploration phase of the model development. An example of this exploration

approach is shown in Figure 3.11, with the explanation of the graphs in Table 3.4. These

charts show that there are achievable solutions within this architecture model:

 A general trend toward more performance, robustness, and affordability with

increasing numbers of interfaces

 The penalty peaks in the middle of the range

 There are several good starting points on the graphs.

Figure 3.11. Setting the membership function edges for the attributes with value

exploring

 128

Table 3.4. Explanation of value exploring graph pages during early model efforts

1) On the first row of graphs, the number of ones in the whole chromosome (in

blue) and five times the number of systems in the chromosome (in red) plotted

together on the same scale

2) The overall SoS assessment on the 1 to 4 scale of unacceptable to exceeds

expectations

3) The performance of each of the population chromosomes, with dashed lines of

different colors representing the edges of the membership functions

4) The flexibility attribute evaluation of each chromosome

5) On the second row of graphs, the maximum loss in performance by successive

individual system removal of each participating system – that is, the robustness

attribute

6) The value of the penalty/reward function for using unachievable/achievable

interfaces for each chromosome in the population

7) The total cost for each chromosome, and

8) The affordability attribute, which is the total cost modified by (one minus

epsilon) raised to the penalty/reward power, as described in section 2.3 above.

By running a few thousand random chromosomes (with the biased total number of

ones, but still randomly selecting systems and interfaces) through the fuzzy evaluation

subroutine, one can settle on adequate values for the membership function edges to show

there are good solutions possible within the model as shown in Figure 3.11. This is not

yet the ‘finding the best chromosome’ part of the method, but only finding a set of

membership function edges so that one can be sure of finding some acceptable

chromosomes during the GA from which to select better mutations from each generation.

One can also see similar shapes of the functions for each of the attributes and the penalty

function. One important feature is that tiny changes in the chromosome can have wide

swings in the values of each of the attributes. The search for a ‘good’ chromosome is

 129

really that, a search for it – it is not obvious that there will be a single optimum from the

model so far.

It takes only a few minutes to run 1000 ‘almost’ random chromosomes through

the exploration phase. Several iterations on selecting the mapping values for the

boundaries between membership functions may be required. If one selects values that are

too tight, such as demanding a high performance, the robustness limits may need to be

adjusted. When the membership function edges change, the input domain specific costs

and performances, and the limits for the robustness function are selected so that there are

at least some chromosomes that are performing well, the next step is to run the full fuzzy

model through the GA for 60 to 100 generations, as discussed in section 3.6.

3.4 NEED FOR MULTI-OBJECTIVE OPTIMIZATION (MOO)

Since there are so many stakeholders in SoS, there might be dozens to hundreds

of concerns that must be tracked, traded among, and optimized to create an acceptable

SoS architecture. Using the proposed meta-architecture, the independent variable is the

presence or absence of the system or the interface. The architecture may be changed only

by either adding or subtracting a system or interface. System costs or other input

characteristics may be changed, or the algorithms for modeling the attributes may be

changed, but that is a secondary effect compared to changing a one to a zero in the meta-

architecture. The SoS evaluation may be changed in highly non-linear and discontinuous

ways by the change of a single bit in the architecture. For most of the analysis, the total

number of one bits in the chromosome is used as a shorthand for the independent

variable. One could pursue this sorting in other ways, such as number of systems,

number of interfaces, or exactly which bits change, but it seemed the most real to have an

 130

individual system or its interface be present or absent either during development (when

an irrevocable decision is made for this epoch whether not to participate in the

negotiation phase of SoS development) or independently again during employment due to

the operational concerns mentioned above. Even if a system manager decides to

participate during acquisition and development, on the day the system is needed by the

SoS it may still be unavailable due to maintenance or being assigned to another mission,

for example. This problem is more likely in acknowledged SoS composition, where the

systems still have their continuing missions as individual systems or components of

overlapping SoS missions competing for resources.

It is not feasible to try to find or construct Pareto dominant surfaces under these

conditions, while holding ‘other variables’ constant. On the other hand, some variables,

such as how much increase in performance might arise by increasing interfaces among

component systems, may be analyzed in this way, but the desired performance (a

measure of effectiveness) may also need to be adjusted for the model make sense. This is

because the range of possible performances could change so much for small changes in

NCO advantage epsilon discussed section 2.3. This again violates the ‘all other things

the same’ assumption that one makes for describing a Pareto front. Finding the Pareto

non-dominated solutions within a small region of the input space is difficult because it is

hard to know what one means by ‘within a small region’ in the meta-architecture. Shall it

be defined as being within a small Hamming distance: by changing the ones present

within one or two rows and columns of each cell in the upper triangular matrix of

interfaces within a chromosome? Alternatively, is it within a Hamming distance by

allowing bits anywhere in the starting chromosome to change? If one of the bits being

 131

changed represents a system, then whole rows of interfaces change from being achievable

to unachievable or vice versa. If the bit represents a communication system, then many

more interface bits may change from achievable to unachievable, or the reverse.

3.5 NON-LINEAR TRADES IN MULTIPLE OBJECTIVES OF SOS

Fuzzy logic can be used to fit highly nonlinear surfaces even with a relatively

small rule base. The commonly cited problem of dimensionality for fuzzy logic systems

in fitting arbitrarily large input sets (Gegov 2010) does not arise in this problem because

the number of inputs are small – limited to the KPAs of the SoS design problem. The

combination of membership function shapes and combining rules allows one to fit quite

nonlinear surfaces in the several required dimensions of this problem. Furthermore, the

input variables are generally monotonic, increasing in value from the fuzzy value of

‘worst’ to ‘best.’ All the membership functions used in this effort (input and output) have

been scaled from 1 to 4 for simplicity of display in this document, but that scaling is

purely arbitrary. The actual scaling is through linguistic variables discovered through the

interactions of the facilitator, SMEs, and stakeholders. They are typically terms such as

“very bad,” “good,” “excellent,” etc. For most attributes, there is a further mapping of

the linguistic terms, such as ‘excellent affordability is a cost between $8M and $10M,’ or

‘acceptable affordability is cost between $10M and $12M.’ If the attribute evaluation

elements can be categorized in such fuzzy terms as this, then relatively simple rules for

combining them can result in a straightforward overall SoS evaluation from the resultant

fuzzy inference system or fuzzy rule based system. Figure 3.12 to Figure 3.14 show how

quite complicated assessment shapes can be represented through the combination of MF

shapes and the combining rules of the FIS. Figure 3.12 shows the SoS fitness surface

 132

versus affordability and performance in the ISR example. Figure 3.13 shows the impact

on the fitness surface of changing the membership function shapes; the left example is

four triangular MFs with four rules; the right example is four trapezoidal MFs with 10

rules. Figure 3.14 illustrates a very different shape for the SoS assessment surface for the

large training SoS validation problem, with seven MFs and 18 rules, showing that very

complicated function shapes can be represented by the combination of FIS rules and MF

shapes.

Figure 3.12. Nonlinear SoS fitness surface of the ISR fuzzy inference system (FIS)

 133

Figure 3.13. Alternate fitness shapes for different domain problems

Figure 3.14. Fitness surface from the large training SoS validation problem

 134

3.6 COMBINING SoS ATTRIBUTE VALUES INTO AN OVERALL SoS

MEASURE

A Mamdani fuzzy inference system allows the combination of as many input

attributes as desired (Fogel 2006). Each attribute is equivalent to an objective or

dimension in a multi-objective optimization problem. Gegov expanded this concept to

include networks of fuzzy systems, to cover deep and complicated problems with many

dimensions (Gegov 2010), and uncertainties extending to Type II fuzzy sets.

Nevertheless, if rules of the form discussed below (which are symmetrical), are combined

with rules of the form ‘if attribute one and attribute four are excellent, but attribute five is

marginal, then the SoS is better-than-average,’ etc., which allows for asymmetry or non-

uniform weighting among attributes, then very complex evaluation criteria may be

described for the SoS. Using membership function shapes other than those shown in

Figure 3.8 also allows considerable tuning of the mapping of input attribute values

(depending on the SoS architecture or chromosome structure in the model) to the output

of the overall SoS quality or fitness.

A Mamdani Type I fuzzy rule set may also be called a Fuzzy Associative Memory

(FAM) to combine the attribute values into the overall SoS fitness score. Attribute

measures are converted to fuzzy variables from the mappings explained in section 3.3.3,

the rules are followed to form a fuzzy measure for the SoS architecture (represented by a

chromosome). That measure may be de-fuzzified back to a crisp value for final

comparison in the GA through an equivalent mapping in the output space. The rules

should be kept simple for two reasons: primarily it is easier for the analyst to understand

and to explain them to the stakeholders, but also because a few rules within the fuzzy

logic system can be very powerful in defining the shape of the resulting surface. Still,

 135

some sensitivity analysis can be done on the rule sets, and results of minor changes in the

rules may be displayed for comparison, all other things being kept the same. Rules are

typically of the form: ‘if all attributes are good, then the SoS is superb,’ ‘if all attributes

except one are superb, then the SoS is still superb,’ ‘if any attribute is completely

unacceptable, then the SoS is unacceptable.’ A dozen or so of these rules can give an

excellent estimate of the stakeholders’ intentions, including significant nonlinearities and

complexity (Gegov 2010). The Mamdani FIS does its best to satisfy contradictory rules

simultaneously by simply including them both in the calculation of the resultant output

value for optimization in the GA.

The linguistic form of some of these rules may be easier to express than the

mathematical form. For example, ‘if any attribute is unacceptable, then the SoS is

unacceptable’ can be expressed linguistically as a single sentence, but mathematically a

separate rule for each attribute is tested alone to implicate the unacceptability of the SoS.

If the rule can be expressed as a single sentence linguistically, as in Table 3.5, it will be

Table 3.5. Example of a few powerful Fuzzy Inference Rules for combining attribute

values

Five Plain Language Rules

If ANY single attribute is Unacceptable, then the SoS is Unacceptable

If ALL of the attributes are Marginal, then the SoS is Unacceptable

If ALL the attributes are Acceptable, then the SoS is Exceeds

If (Performance AND Affordability) are Exceeds, but (Dev. Flexibility and

Robustness) are Marginal, then the SoS is Acceptable

If ALL attributes EXCEPT ONE are Marginal, then the SoS is still Marginal

 136

counted as only one rule. The rules come out of linguistic analysis of the stakeholder

interviews, with some normative smoothing by the facilitator. At worst, if consensus

cannot be reached on a rule statement among the stakeholders, a version of the analysis

with the rule expressed both ways can be compared for sensitivity to that rule. This

approach can also help explain the issue to the stakeholders.

3.7 EXPLORING THE SoS ARCHITECTURE SPACE WITH THE GENETIC

ALGORITHM (GA) APPROACH

Having developed a method of evaluating architectures based on presence or

absence of any combination of systems and interfaces within the meta-architecture, this

evaluation may be used as the fitness measure for selection for propagation to a new

generation within an evolutionary algorithm. One class of evolutionary algorithm is the

genetic algorithm (GA). The key feature of a GA approach is to evaluate the overall

fitness of a series of chromosomes in a ‘population.’ One then sorts the chromosomes by

their fitness, and proceeds to a next generation through mutations, crossovers, or ‘sexual

reproduction’ of a fraction of the better fitness chromosomes in that generation. Mutation

rates, crossover points, special rules for certain sections of the chromosome (genes), or

deciding which parents are combined, can all be varied as part of the GA approach.

The GA first generation starts with a population of random arrangements of

chromosomes built from the meta-architecture, which spans the search space, then sorts

them by fitness. A fraction of the better performing chromosomes is selected for

propagation to the next generation through mutation and/or transposition. A few poorly

performing chromosomes may also be included for the next generation, to avoid the

 137

danger of becoming stuck on a purely local optimum, although proper selection of

mutation and transposition processes can also help avoid this problem.

3.8 COMBINING THE FUZZY APPROACH WITH THE GA APPROACH

In order that the GA work with any string of bits within the meta architecture, the

algorithms for evaluating each attribute must work for any string of bits. The results of

individual attribute evaluations may take on a large range of values. When the desired

and tradable values of the attributes, and the algorithms for evaluating them, are

determined from the SoS stakeholder interviews, the range of values of each attribute is

pre-determined. The entire range of possible values is the ‘universe of discourse.’ In

each dimension or attribute, the entire range is mapped contiguously to the granularity

described by the membership functions. There is no guarantee that any arrangement of

systems and interfaces will be found to be acceptable. Because this effort was to develop

and explore the method, and the example SoS were largely fictional, all the model

parameters could be adjusted to find examples that would work. The key to this adjusting

process was to plot the attribute evaluations against the number of ones in the

chromosome. Figure 3.15 and Figure 3.16 show changing the MF edges for small, 25

chromosome population examples. The shapes of the attributes are similar, but the fuzzy

value maps are adjusted.

Biasing the random number generator to produce a population of chromosomes

with varying numbers of ones allowed an exploration of chromosomes from various

regions of the meta-architecture. By iterating adjustments of the attribute membership

function edges against a population of randomly generated (but biased in the number of

 138

ones) initial populations of chromosomes, an acceptable picture of the SoS behavior

could be determined.

When a few hundred chromosomes are present in the exploratory population, one

can get a very good idea of the shape of the behavior of the meta-architecture space as a

function of the number of interfaces between systems of the SoS, shown in Figure 3.17.

More systems and interfaces generally leads to more of all the attributes: performance,

flexibility, robustness, but to more cost as well (= less affordable). However, one can

also see that the trends are noisy, and not perfectly correlated as shown in the ISR model

in Figure 3.17. In the example on the left, too many good SoS are found because the MF

edges are set too low. There is not enough discrimination in the combination of MF

values, attribute evaluation algorithms and fuzzy inference system rules. On the right,

performance, robustness and affordability MFs are mapped better; fewer SoS are in the

exceeds range The exploration phase allows the setting of the MF edges to take

advantage of the variability in the evaluations to drive the GA search toward regions that

look more likely to produce a decent compromise from among the competing attributes.

One needs to be in a reachable region of the SoS attribute space, or the universe

of discourse, defined by the MF edges of the fuzzy inference system when it is mapped

back to the real world. It is of little value to have an architecture that produces $100M

solutions when the only acceptable value is less than $50M. Therefore, some level

setting of expectations, tuning of algorithms, and of the input domain data may all be

necessary to reach a reasonable ‘space’ within which to attempt optimization with the

GA. This is the function of the exploration phase of the process and includes going back

 139

Figure 3.15. Exploring the meta-architecture - 25 chromosomes, 22 systems, Example 1

to the stakeholders to attempt to adjust their thinking when they have completely

unrealistic expectations.

3.9 HEURISTICS

Heuristics may help find solutions more quickly, and the discovery of heuristics is

important to finding better and/or faster solutions to many types of problems (Maier and

Rechtin 2009). However, by definition, the reason a heuristic works is not strictly known

(Blanchard and Fabrycky 2010). Heuristics may bias the discovered solution by

 140

Figure 3.16. Exploring the meta-architecture to map membership function edges,

Example 2

Figure 3.17. Exploring biased, but still random populations to set the membership

function edges

 141

discarding possibilities in unknown ways. Even though many heuristics are known to be

biased, they are used both intentionally and unconsciously (Taleb 2004). There are no

guarantees that any particular heuristic will continue to be useful (as it has been in the

past) on a new problem. Heuristics are common sense derivations from experience in

solving similar problems, but if the reason they worked was fully understood, they would

be part of the formal solution method and not classed as an heuristic. The methods of

solution worked out here attempt to avoid heuristics because we do not yet understand the

nature of a ‘good’ SoS solution well enough to trust any heuristics. The example

problems are not so large as to require extensive use of heuristics to reach a reasonable

solution in quite reasonable times, either, which is a standard reason for relying on an

heuristic to narrow the search space and reduce the time in computing a solution

(Blanchard and Fabrycky 2010).

3.10 DISPLAYING THE RESULTS OF COMPLEX SoS ANALYSES

A key feature of understanding problems of this nature is to be able to visualize

the solution. While the architecture framework was easy to describe in text, and even to

draw pictures of what was meant, until the upper triangular visualization was discovered,

it was difficult to see patterns or to compare two solutions in a meaningful or easy to use

manner. Figure 3.18 shows the format of a chromosome, color coded to show

used/unused systems and interfaces as colored versus the dark brown color for unused.

The red and green colors show where ones exist; Green for an achievable and used

interface or system. Red is for attempting to use an unachievable interface, and blue is

for an unused interface that would have been achievable, if it were used. Figure 3.19

shows this display for the 29 system SAR SoS. It is not automatically true that the

 142

overall fitness of a chromosome would be enhanced if the blue interfaces were used. It

costs money and time to develop interfaces (normally), so the cost could go up if they

were used. It is difficult to predict how the other attributes would be affected by using

the blue (achievable but unused), or deselecting the red (unachievable but selected)

interfaces. Another reason not to discard selected interfaces arbitrarily is that the model

is intended to be used to mimic the wave model evolution of the SoS over several epochs,

when new systems might be persuaded to join, or longer term modifications come to

fruition, and previously unachievable interfaces now switch to achievable ones.

Figure 3.18. Upper triangular form of chromosome, with color codes for used and

achievable (or feasible) interfaces

The four representations in Figure 3.20 are equivalent ways for showing identical

participating systems and interfaces in an SoS. The upper triangular matrix on the upper

 143

Figure 3.19. Color coded achievable/unachievable interfaces for a SAR SoS

left also shows the achievability/unachievability of the interfaces through color-coding.

The ‘ojo de dios’ display, sometimes called the ‘circle’ display, in the upper right shows

the systems’ presence by the number at a vertex, while the interfaces are shown by the

connecting lines between the vertices. The triangular matrix at the lower right shows

only the presence of the systems or interfaces through the color coding, ignoring the

achievability. Finally, the linear representation at the bottom shows the highly

compressed systems and interfaces presence by the color coded downward pointing

‘teeth’ where there is a one. The alternating color bands along the top show the systems

on the far left and the interfaces of each system in the same order as the rows of the

triangular matrices. The triangular matrix representation is far superior for identifying

the position of the interfaces (a key element of defining the architecture) when the

number of systems becomes large.

 144

Figure 3.20. Four equivalent methods of showing the systems and interfaces in an SoS

3.11 MODULARIZING THE METHOD

Each component of the FILA-SoS approach, and each attribute model was

designed to be modular, so that if the definition of performance or other evaluation

factors, such as cost, time to deliver, etc. changes due to new information or the

development of an improved algorithm, the other components do not need to be changed.

If it seems that reasonable results are produced through the process from simple models,

model parts may be replaced with more accurate models, or models validated by a

standards agency. The combined model, with its input data, algorithms for combining

system capabilities to SoS capabilities, evaluation criteria, and GA tuning factors must be

independently validated, then tested together to insure that the whole process produces

reasonable SoS architectures.

This part of the FILA-SoS effort produces architectures to be handed off via a

well-defined Excel spreadsheet interface to the negotiating team of agent-based models to

achieve a realized SoS each epoch. Those models test various negotiation strategies and

 145

policy incentives in the creation of the final SoS from the suggested component

system/interface architectures produced here.

3.12 VALIDATING THE DEVELOPED MODEL

Validation is the agreement from the customer that the system (or SoS) does in

fact provide a solution to the problem it is intended to solve. Verification is the

furnishing of proof that the designed system is what was produced. If systems

engineering was done correctly throughout the program, customer involved design

reviews at several stages should have validated that the design should produce a system

that will satisfy the customer. However, with the type of acknowledged SoS in

discussion here, already produced (legacy – sometimes long out of production systems

that are in the sustainment phase of their life cycle) are being slightly modified (if at all)

to meet the new need. Much of the normal life cycle validation process for a system

development has been skipped over when the SoS is composed mostly from legacy

systems. Validating the FILA-SoS component models is accomplished by a series of

steps from the very beginning of the concept development through the ‘end’ of the SoS

design process. The ‘end’ of the process is really only the start of the next wave in the

wave process of SoS evolution, when the process starts over, possibly with minor

changes in the environment, goals, or component systems. The model validation steps

include:

 The first validation step is that domain SMEs must help write the original goal

statement for the SoS. They use the appropriate vocabulary to begin the concept

development, and begin the documentation process with equivalent descriptions

to the DoDAF all-view viewpoints

 146

 The fact that this method is intended for an acknowledged SoS means that the

component systems are persuaded, not directed to join. They must ‘buy in’ to the

SoS concept and their part in it, the same way that all the other stakeholders do.

Only one other element is more important to validation

 The management staff of the SoS must be open to suggestions, questions, and

issues being raised by the prospective and committed participating systems’

personnel to the purpose, goals, plans, integration methods, evaluation algorithms,

or proposed testing for how they will contribute to the SoS. This is the only way

that an acknowledged SoS, with peer component systems, can work.

One of the keys to achieving validation is for the SoS management to be ‘honest

brokers’ of information, that is, actively seeking constructive criticisms and suggestions,

and following up on action items from all interactions Regular reviews with the

community of SoS participants aid the following goals:

 To judge progress

 Encourage completion of development and integration of the interfaces demanded

by the choice to participate

 To adjust and socialize (i.e., get consensus on) plans, whether things are better or

worse than the last accepted joint SoS plan.

The best way to validate the SoS modeling effort requires:

 Openly sharing information with all the stakeholders

 Actively asking for inputs, suggestions, and criticisms

 Making it a collaborative effort

 Getting everyone to agree, or at least not object.

 147

In short, it requires an open culture of using the ‘exploration’ analysis phase of

the SoS architecting process to socialize what participation, combined with domain data

and attribute definitions, together mean to an overall SoS quality result. This is what is

called for in current SE standards (ISO/IEC/IEEE 2011) (ISO/IEC/IEEE 2008).

3.13 HOW TO KNOW WHEN ONE HAS A GOOD SOLUTION

There are several ways to check on the validity of solutions from the fuzzy GA.

The first step is to examine the selected chromosome to determine if it makes sense on its

face. This consists of at least the following steps:

 Check the evaluation of individual attributes to ensure the model algorithms seem

to be working properly

 Check that the fuzzy inference system rules are being properly applied

 Make a few conscious mutations in the solution chromosome to see if either the

KPA evaluations or the SoS assessment can be improved

 Socialize the solution among stakeholders and SMEs to find out if they agree that

it is a good solution

The validity of the process may be checked by the following steps:

 Alter some of the input data, such as operations costs, or performance values, and

see if the new solution seems to take those changes into account properly

 Alter the membership function edge mapping to see if those changes move the

solutions in an appropriate direction

 Change the relative value of reward and penalty for achievable/unachievable

interfaces

 148

 Membership function basic shapes may be changed between trapezoidal,

Gaussian rounded trapezoidal, triangular, and Gaussian.

All these validity checks were performed numerous times on the all the example

solutions from the fuzzy GA.

3.14 USING THE SoS ASSESSMENT WITH NEGOTIATION MODELS

In addition to the architecture definition itself, budget, schedule, and performance

functions are assigned to the individual systems. The chromosome tells each system

what interfaces to develop. The performance, budgets and schedules in the input data are

the SoS manager’s best estimate with limited knowledge. It is assumed the systems may

know better what performance they can deliver within the proposed funding and

schedule. Therefore, the systems negotiate with the SoS manager to update the existing

cost, performance, or other attribute estimates. The negotiation model assumes the

individual systems do not share information with other systems during negotiations.

Individual systems may be negotiating for funds to create an interface with another

system, while the other system may be refusing to participate in this epoch. It is another

simplification to not allow systems to share information during negotiations, but not that

far removed from reality, either. System modification possibilities and funding are

frequently closely held information, or even classified, so that normally the systems do

not freely share that information among themselves. The negotiations attempt to achieve

the GA proposed SoS architecture. Sometimes the systems decide they cannot agree to

the proposed funding for a performance commitment, and drop out, or become non-

participants. Sometimes they decide they can actually deliver a little more performance

than was requested, or for less funding.

 149

If updates are made to the systems’ cost, performance and schedule inputs during

negotiations, those should be fed back to the evaluation inputs. At first order, one can

simply rerun the original evaluation model with the negotiated systems and interfaces,

because any negotiated changes are generally small changes to the initial estimates and

any particular system’s data forms only a small contribution to the answer.

The next chapter will show how the method was applied to the selection of an

architecture for several interesting SoS of different styles and sizes to create the input

domain data files. Several outputs are demonstrated, with a discussion of sensitivity

analysis to input data variations.

 150

4. APPLICATION OF THE METHOD

4.1 DOMAIN DATA GATHERING

The method developed in Chapter 3 was originally employed on an intelligence,

surveillance and reconnaissance (ISR) example inspired by history. The SoS attributes,

their definitions, ranges of values used for membership functions and their definitions,

and some of the evaluation algorithms were developed over a year in weekly meetings of

a subject matter expert (SME) group. The group included academics, military members,

and SoS SMEs from government. The OOTW example of section 4.1.2 was created to

test the method on a similar size but slightly larger SoS, with different capabilities but

differently purposed and differently performing group of systems and evaluation

algorithms. The fuzzy assessor for OOTW was the same as ISR with the exception of

adjusted membership function edges. The SAR example in section 0 was selected to

show the method and code worked on SoS with different number of systems and

capabilities. Completely new attribute evaluation algorithms were used, even though the

same attributes were used in the fuzzy assessor. Two fuzzy assessors were used on SAR,

one still using trapezoidal membership functions, the other with triangular membership

functions.

The MITRE ‘toy’ problem was used because it had been studied previously. The

original toy problem is only five systems, and all are used all the time. This did not fit

the FILA-SoS paradigm, so MS&T researchers created a 22 system toy problem, with

multiples of each type of the five systems. Another MITRE suggested very large

validation problem of a live, virtual, constructive training SoS is described in section

4.1.5. The method of Chapter 3 was applied to a DoDAF description of the architecture,

 151

arriving at a model with 111 systems and 74 capabilities. Seven attributes with five

membership functions were defined for this problem. Section 4.1.6 discusses how the

method could be applied to the extremely large problem of global air traffic management.

4.1.1 Historical Example – Gulf War ISR Domain Model. A guiding

physical example is taken from relatively recent history. During the 1991 Gulf War, Iraqi

forces used mobile SCUD missile launchers called Transporter Erector Launchers

(TELS) to strike at Israel and Coalition forces with ballistic missiles. Approximately 50-

60 TELs were hidden in the western Iraqi desert, from which Iraqi forces launched

somewhere between 100 – 200 missiles during the 43-days of intense combat. The Iraqi

forces had developed new techniques called ‘shoot and scoot’ that allowed them to

reduce the TEL vulnerability time to half an hour. This included the time to come out of

hiding, set up, launch, and return to their hiding places. This was only one third of pre-

war intelligence estimates of 90 minutes, and a great surprise to Coalition planners

(Thompson 2002). While the relatively inaccurate Scuds were not a tactically significant

factor in the war, their potential for carrying chemical or biological warheads meant that

they had a significant strategic impact on morale and cohesiveness of the Coalition.

Israel had been persuaded to stay out of the conflict, but that decision was threatened by

Scud attacks on their cities. The Coalition included many Arab countries, who threatened

to withdraw if Israel joined the conflict. It was, in fact, a very successful tactic for the

Iraqi forces, deflecting significant combat and diplomatic power from the central purpose

of the Coalition. Therefore, the TELs became a “high value, fleeting” target for Coalition

forces (Rostker 2000).

 152

Existing intelligence, surveillance, and reconnaissance (ISR) assets and processes

at that time were inadequate to find the TELs during their shortened setup and knock

down time of visibility. The ‘uninhabited and flat’ terrain brought to mind by the term

‘western desert’ was in fact neither of those things, with a significant population of

Bedouin herders and their families, significant traffic (100,000 vehicles), and thousands

of wadis with culverts and bridges in which to conceal the TELs and obscure their

movement. In addition, the Iraqi forces produced some very fine camouflage and

realistic decoys, again surprising Coalition planners (Rosenau 1991). Even though

several thousand sorties were flown against hundreds of TEL firing opportunities, TELs

were spotted only 11 times, and the contacts were lost before completing an attack eight

of those 11 times. The average time between spotting and arriving at a potential target

with a strike aircraft was about 90 minutes, which might have been marginally acceptable

before development of the shoot and scoot tactic (Thompson 2002). This offers a clear

example of existing systems being inadequate to address a highly important mission.

Potentially, some relatively low cost, quick changes, and the joining together of existing

systems might have been able to create an SoS capability to perform the mission better.

Applying the method described in Chapter 3 above to a slightly fictionalized

version of the Gulf War ISR problem with a small team of subject matter experts (SMEs)

resulted in the following hypothetical input domain parameters for treating this as an SoS

problem. The characteristics of the SoS reached by consensus of stakeholders and SMEs

are listed in Table 4.1. Most of the suggested important requirements of the ISR SoS was

distilled down through the SME discussions to the following four attributes, measurable

by operations on the chromosome describing the SoS:

 153

 Performance is simplified to the sum of the square miles of terrain able to be

searched by the SoS divided by the total search area; equivalent to targets found

per day. A marginally good performance for reasonable SoS would be a

probability of finding and destroying a single TEL per day. This is far better than

the actual performance during the war. An original performance model was

developed in great detail, but the details were regarded as too arcane for most

reviewers. The original performance model is detailed in Appendix A as an

example of a reasonably sufficient operational performance model.

 Affordability depends on the sum of the total cost ranges of development and

operation of the SoS; less cost is more affordable. Occasionally affordability had

the inverse of the netcentric boost applied to it, to make it a little more nonlinear.

 Flexibility in terms of development – multiple sources (systems) are available for

each required capability contributed to the SoS; less sources means less

flexibility.

 Robustness, defined as the smallest maximum loss of performance by successive

removal of each participating system (Pape and Dagli 2013) (Deb and Gupta

2006)

Performance and affordability are adjusted by a netcentric factor in the exampled

to keep them from being too linear, depending on the interconnectedness (number of

interfaces), and proper use of achievable interfaces, as represented in the chromosome.

 154

Table 4.1. ISR SoS domain example characteristics

Overarching

Purpose of SoS

ISR & Targeting of Gulf War Iraqi Scud Missile TELs

Unique value of SoS Existing non-networked systems not doing the job

SoS Measures of

Effectiveness

Probability of successful engagement per day

Issues that might

limit effectiveness

SCUD TEL concealment and countermeasures

Short time of exposure of TEL before and after launch

SoS features that

might greatly

increase

effectiveness

Improved probability of detection in presence of concealment

Significantly Improved speed of response

Desired

Effectiveness

About 1 successful engagement per day or more

Stakeholders Operating commands, system operators/crew/maintainers,

intel agencies, coalition partners, regional states, system

program offices, troops in theater, contractors, Congress,

DoD, enemy forces

ROM Budget:

Development

About $40 Million

ROM Budget:

Operations

About $40 Million

Attributes of the

SoS, and range

limits for fuzzy

evaluation

Performance – from about 0.5 to 1.0 successful targetings per

day

Affordability – a few dozens of millions of dollars

Robustness – less than 15% loss of capability for loss of one

system

Flexibility – prefer no single sources for component

capabilities

Capabilities of

contributing systems

EO/IR Command & Control

Synthetic Aperture Radar Communications

Exploitation

The capabilities of the ISR SoS, contributed by the component systems, were

broken down into the following five elements:

 Electro-Optic/InfraRed (EO/IR) search capability

 Side looking, synthetic aperture radar (SAR)

 Command and control facilities

 155

 Exploitation centers (smaller ones in theater and a large one in the continental US.

(CONUS))

 Communication capabilities, both line of sight (LOS) limited to in-theater, and

beyond line of sight (BLOS) for reachback to CONUS

Taking some poetic license with respect to the historical example, the following

are the proposed types of systems within this SoS, with the non-communication systems

limited to one primary capability plus communications.

 Fighters, some equipped with an EO/IR capability, some with SAR

 Remotely Piloted Aircraft (RPA), equipped with better EO/IR capability

 U-2 aircraft, primarily equipped with EO/IR capabilities, but limited to film, so

that system is not timely, but can help reduce the overall search area for the other

systems, if it participates

 Defense Support Program (DSP) satellite system, that can surveil the entire area,

but only provide notice on actual launch, reducing the time for the fighters to

arrive before the TELs are hidden again

 JSTARS, with large SAR

 Control Stations for the RPAs or Air Operations Center (AOC)

 ISR data Exploitation and fusion centers

 Communication systems, LOS and BLOS, that enable the interaction between

systems that make the SoS work.

A possible set of capabilities and costs of systems and interfaces for an SoS to

address the Gulf War TEL problem are shown in Table 4.2. This resulted in an ISR SoS

model with 22 potential systems of nine types, with five different capabilities among

 156

them, with at most two capabilities per system. Later examples had more capabilities per

platform, with more complicated performance models, but the ISR SoS model allowed a

reasonable level of complexity to start.

Table 4.2. Domain model data for SoS with 22 Systems: Capabilities, Costs, and

Schedules

System Type

Sub-

Sys-

tem

Cap-

ability

Num-

ber

Coverage

sq mi/hr;

Develop

$M/

epoch/

interface

Operate

$K/hr per

system

Time to

Dev-

elop,

Epochs

Num-

ber

possi-

ble in

SoS

Sys-

tem

Num-

ber

Fighter EO/IR 1 500 0.2 10 1 3 1-3

RPA EO/IR 1 2000 2 2 1 4 4-7

U-2 EO/IR 1 50000 0 15 0 1 8

DSP IR 1 100000*

.01

1 1 1 1 9

Fighter Radar 2 3000 0.7 10 1 3 10-12

JSTARS Radar 2 10000 0.1 18 1 1 13

Theatre Exploit 4 5000 2 10 1 2 14-15

CONUS Exploit 4 25000 0.2 0 0 1 16

Control

Station/

AOC

Cmd

&

Con-

trol

5 1 1 2 1 2 17-18

LOS

Link

Com

m

3 1 0.2 0 1 2 19-20

BLOS

Link

Com

m

3 1 0.5 3 1 2 21-22

The inputs from Table 4.2 were adjusted slightly to simplify the model by scaling

all the capability contributions to be relative to square miles searched per hour. This

allowed a simplified performance algorithm to be implemented in the fuzzy fitness

assessor. The equivalent input data from Table 4.2 are shown in the Excel input sheet

shown below in Figure 4.1. The modularity suggested in section 3.11 allows higher

 157

fidelity models for either capabilities or attributes to be substituted relatively easily if

they are available, after demonstrating the approach is viable with simpler models as used

here. See Appendix A for a representative more detailed performance model. Table 4.3

shows how the membership function significant points were entered in the Excel

spreadsheet of input data. Table 4.4 matches the input data to the mathematical

explanations in Table 3.1.

Figure 4.1. ISR domain specific input data

Table 4.3. Trapezoidal Membership Function crossover values

 Lower Bound

Attributes

1

Unacceptable

1.5

Marginal

2.5

Acceptable

3.5

Exceeds

4

(upper)

Performance 0.4 0.75 1.5 2 5

Affordability -200 -100 -85 -65 -40

Flexibility 1 1.5 2.5 3.5 4

Robustness -0.9 -0.6 -0.4 -0.2 -0.05

Name ISR

NumSys 22 m

NumCap 5 n sys has capability, costs, perf, deadline 1 2 3 4 5

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime EO/IR SAR Exploit C2 Comm

1 fighter 1 0.2 10 10 1 x x

2 fighter 1 0.2 10 10 1 x x

3 fighter 1 0.2 10 10 1 x x

4 RPA 1 0.4 2 10 1 x x

5 RPA 1 0.4 2 10 1 x x

6 RPA 1 0.4 2 10 1 x x

7 RPA 1 0.4 2 10 1 x x

8 U2 1 0 15 3 0 x

9 DSP 1 1 0.1 8 1 x

10 ftrSAR 2 0.7 10 15 1 x x

11 ftrSAR 2 0.7 10 15 1 x x

12 ftrSAR 2 0.7 10 15 1 x x

13 JSTARS 2 0.1 18 40 1 x x

14 ThExp 3 2 10 10 1 x x

15 ThExp 3 2 10 10 1 x x

16 ConUS 3 0.2 0.1 15 0 x x

17 CmdCont 4 1 2 12 1 x x

18 CmdCont 4 1 2 12 1 x x

19 LOS 5 0.2 0.1 10 1 x

20 LOS 5 0.2 0.1 10 1 x

21 BLOS 5 0.5 3 10 1 x

22 BLOS 5 0.5 3 10 1 x

 158

Table 4.4. Mathematical definition of variables for ISR domain example

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for ISR Model

Name of SoS: sos 1 ISR

Number of potential

systems:
m 2 22

Number of types of

systems:
t 3 11

Names of system

types:
sys_typi : i ϵ {1,…t} 4

sys_typ1 = fighter

sys_typ2 = RPA

sys_typ3 = U2

sys_typ4 = DSP

sys_typ5 = ftrSAR

sys_typ6 = JSTARS

sys_typ7 = ThExp

sys_typ8 = CONUS

sys_typ9 = CmdCont

sys_typ10 = LOS

sys_typ11 = BLOS

Number of component

capabilities:
n 5 5

Names of component

capabilities:
sys_capi : i ϵ {1,…n} 6

sys_cap1 = EO/IR

sys_cap2 = SAR

sys_cap3 = Exploitation

sys_cap4 = Cmd & Control

sys_cap5 = Communication

Binary meta-

architecture upper

triangular matrix:

Aij : i ϵ {1,…m}, j ϵ

{i,…m}
7

Selection of systems and

interfaces between them

Individual systems of

the SoS

Aij : i ϵ {1,…m}, j =i ,

also sometimes written

as Aii , or simply Ai

8
Numbered systems up to

m=22

Achievable interface Aij : i ϵ {1,…m}, j > i ,

and

Ajk = 1, Aik = 1, Aii =1,

Ajj=1, Akk = 1 , where

Akk is any

communications system

9 Depends on both system

interfaces with joint

communications systems,

and systems’ presence in the

architecture

 159

Table 4.4. Mathematical definition of variables for ISR domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for ISR Model

SoS main capability: C 10 Detection of TELs

SoS performance in its

large capability:
PSoS 11

Expressed as probability per

day of finding a TEL
(∑ 𝑎𝑖𝑖

𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Component

capabilities of

systems:

cij : i ϵ {1,…n},

 j ϵ {1,…m} (binary)
12

Whether each system

posseses each capability

Performance of a

particular system in its

key capability:

Pi
Ss : i ϵ {1,…m} 13

Depends on the system;

simplified down to a single

gestalt number for this

example; shown in Figure

4.1

Estimated funding to

add an interface to an

individual system:

FIFi
Ss : i ϵ {1,…m} 14

∑ (∑ 𝑎𝑖𝑗

𝑖−1

𝑗=1

𝑚

𝑖=1
∗ 𝐹𝐼𝐹𝑗

𝑆𝑠 +

∑ 𝑎𝑗𝑖 ∗ 𝐹𝐼𝐹𝑗
𝑆𝑠

𝑚

𝑗=𝑖+1

)

Deadline for

developing new

interface(s) on a

system:

Di
Ss : i ϵ {1,…m} 15 Shown in Figure 4.1

Estimated funding for

operation of all the

participating systems

during an SoS

operation:

FOPi
Ss : i ϵ {1,…m} 16 ∑ 𝑎𝑖

𝑚

𝑖=1

∗ 𝐹𝑂𝑃𝑖
𝑆𝑠

Function describing

the advantage of close

collaboration within an

SoS as a function of

participating systems

and interfaces:

F (Aii, Aij, j≠i,) : i ϵ

{1,…m}, j ϵ {i,…m}
17

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠 ∗

(1 + 𝜖)(∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝐼/𝐹−∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝐼/𝐹)

 160

Table 4.4. Mathematical definition of variables for ISR domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for ISR Model

Function for

combining system

capabilities into SoS

capability C:

𝐶 = ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓)

Number of individual

attributes the

stakeholders want to

evaluate the SoS over:

g 19 4

Attribute names to

evaluate SoS

architectures against

(e.g., cost,

performance,

flexibility):

Attk : k ϵ {1,…g} 20

Performance

Affordability

Flexibility

Robustness

Number of gradations

of each Attribute that

become Fuzzy

Membership Functions

(MF):

hk : k ϵ {1,…g} 21 4 Each

Fuzzy membership

function names within

each attribute

(granulation = a,

attribute = b):

MFab a ϵ {1,…hk}, b ϵ

{1,…g}
22

a=1: Unaceptable

a=2: Marginal

a=3: Acceptable

a=4: Exceeds

For all b

Fuzzy membership

function boundaries

(cross over points) for

each of b SoS

attributes:

Boundab a ϵ {1,…h+1},

b ϵ {1,…g}

a=1 is lower bound of

universe of discourse, a ϵ

{2,…h+1} is upper

bound of MF(a-1)b

because Matlab can’t

handle matrix subscripts

of zero

23 See Table 4.3

 161

Table 4.4. Mathematical definition of variables for ISR domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for ISR Model

 Overall SoS

performance in

an Attribute

(∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F

(Aii, Aij, j≠i,)
24

Flexibility: ∑ (𝑐
𝑖𝑗

𝑚
𝑖=1 ×

𝑎𝑖𝑖′) ≥ 𝑥, 𝑥 = 0, 1…m,

where 𝑥 is the number of

systems providing each

capability

Robustness: (orig perf. –

min (perf. stepping through

with each different

participating system

removed))

 Total cost of

developing and

using an SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25
Cost = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡 (eq

16) + development cost (eq.
14)

Parameters for

controlling the

netcentric performance

factor

 Increment per

interface

 Penalty inc. for

unachievable

 Penalty dec. for

achievable i/f

Epsilon ϵ

Penup

Pendn

26

.02

1

1

Parameters for

controlling the GA:

 Mutation Rate

 Number in

Population

Number of

Generations

Delta

p

g

27

.02

100

50

The binary matrix of capabilities contributed by systems is shown in Figure 4.2.

It is equivalent to the x’s in the cells on the right side of Figure 4.1. The ISR model with

22 systems is implemented further in the Agent Based Model (ABM) portion of the

 162

FILA-SoS wave development model (Acheson, et al. 2012). Results of the GA operating

on each of the domain examples of an SoS introduced in section 4.1 are discussed further

in section 4.2.

Figure 4.2. Binary matrix of capabilities vs. systems for ISR example

4.1.2 Operations Other Than War (OOTW) Counterinsurgency ISR

Example. This is a mission with some similarities to the Gulf War ISR mission in Iraq,

discussed in section 4.1.1 – not demanding immediate close combat, but more heavily

oriented toward surveillance to keep the peace of the assigned area with the possibility of

requiring force, but more likely being able to prevent trouble with a show of force.

Because the mission and military service is different, the SoS consists of a different set of

systems than the Gulf War scenario, with 25 systems and 10 capabilities, with input data

as shown in Figure 4.3. Here one can see that some systems have many capabilities, but

all still require communications of some sort. The OOTW membership function

crossover points are shown in Table 4.5. The OOTW SoS description and characteristics

data is shown in

Table 4.6 and Table 4.7. This example was used with one of the operational

modeling components of the FILA-SoS project that included scheduling operations and

maintenance activities to ensure that the SoS could achieve its mission tasks in a

reasonable way.

Capability CapName Cap-Sys1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 EO/IR 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 SAR 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

3 Exploit 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

4 C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

5 Comm 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 163

Figure 4.3. OOTW IS2 systems and capabilities

Table 4.5. MF edge crossover points for OOTW model

 Lower Bound
Attributes

1
Unacceptable

1.5
Marginal

2.5
Acceptable

3.5
Exceeds

4
(upper)

Performance 0.24 0.49 0.63 0.8 1

Affordability -10 -8 -6 -4 -2

Flexibility 0 1 2 3 4

Robustness -0.2 -0.15 -0.11 -0.07 -0.03

Table 4.6. OOTW IS2 SoS domain example characteristics

Overarching

Purpose of SoS

Peace Keeping ISR in Operations Other Than War

Unique value of SoS Efficient way to perform the tasks required for Peace keeping

SoS Measures of

Effectiveness

Area of territory closely monitored per day

Ability to detect and monitor trouble areas early

Ability to accurately direct fire or air support to trouble spots

Name COIN ISR SOS For watching an occupied area with counter insurgency.A

NumSys 25 com1 19

NumCap 10 1 2 3 4 5 6 7 8 9 10

SysNo Type Capability I/FDevCostOpsCost/moPerf DevTime EO IR Radar CC SurveillanceExploitation CtrFusion CoordinationFires LOS BLOS

1 Shadow 1 0.01 0.06 85 1 1 0 0 0 0 0 0 0 1 0

2 Shadow 1 0.01 0.06 85 1 1 0 0 0 0 0 0 0 1 0

3 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

4 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

5 Shadow 2 0.01 0.06 85 1 0 1 0 0 0 0 0 0 1 0

6 Gray Eagle 3 0.1 0.3 150 1 1 1 1 0 0 0 0 0 1 1

7 Gray Eagle 3 0.1 0.3 150 1 1 1 1 0 0 0 0 0 1 1

8 Apache 8 0 0.2 200 1 1 1 1 0 0 0 0 1 1 0

9 Apache 8 0 0.2 200 1 1 1 1 0 0 0 0 1 1 0

10 CC Surveillance 4 0.03 0.09 30 1 0 0 0 1 1 1 1 0 1 1

11 CC Surveillance 4 0.03 0.09 30 1 0 0 0 1 1 1 1 0 1 1

12 Exploitation Ctr 5 0 0.1 100 1 0 0 0 0 1 1 0 0 0 1

13 Exploitation Ctr 6 0 0.1 100 1 0 0 0 0 1 1 0 0 0 1

14 artilllery 8 0.01 0.2 50 1 0 0 0 0 0 0 0 1 1 0

15 UAV Ctrl 7 0.005 0.25 40 1 0 0 0 0 0 0 1 0 1 1

16 UAV Ctrl 7 0.005 0.25 40 1 0 0 0 0 0 0 1 0 1 1

17 Voice/Chat 7 0 0 30 1 0 0 0 0 0 0 1 0 1 1

18 Voice/Chat 7 0 0 30 1 0 0 0 0 0 0 1 0 1 1

19 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

20 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

21 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

22 LOS 9 0.03 0.01 35 1 0 0 0 0 0 0 0 0 1 0

23 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1

24 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1

25 BLOS 10 0.1 0.015 40 1 0 0 0 0 0 0 0 0 0 1

 164

Table 4.6. OOTW IS2 SoS domain example characteristics (cont.)

Issues that might

limit effectiveness

of the SoS

Bad weather

Large number of areas to monitor

Deception by enemy forces

Ability of guerillas to operate in the civilian community

SoS features that

might greatly

increase

effectiveness

Ability to monitor many areas frequently during both day &

night

Improved overwatch and backup for patrols/convoys

Immediate close air support from armed ISR platforms

Communications relay for LOS equipped patrols

Desired

Effectiveness

Multiples of full coverage of area of responsibility (AOR) per

day

Ability to prevent ambush/emplacement of IED in AOR

Stakeholders Patrolling troops, Local commander(s), System operators,

Civil authorities, Higher echelons of command, Local

population

ROM Budget:

Development

About $40 Million

ROM Budget:

Operations

About $40 Million

Attributes of the

SoS, and range

limits for fuzzy

evaluation

Performance – multiples of full coverage of AOR/day

Affordability – a few dozens of millions of dollars

Robustness – less than 15% loss of capability for loss/absence

of one component system

Flexibility – prefer no single sources for component

capabilities

Capabilities of

contributing systems

EO/IR Radar

CC Surveillance Exploitation

Fusion Command & Control

Coordination Fires

LOS Communications BLOS

Communications

Table 4.7. Mathematical definition of variables for OOTW domain example

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for OOTW Model

Name of SoS: sos 1 IS2

Number of potential

systems:
m 2 25

 165

Table 4.7. Mathematical definition of variables for OOTW domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for OOTW Model

Number of types of

systems:
t 3 10

Names of system types: sys_typi : i ϵ {1,…t} 4

sys_typ1 = Shadow

sys_typ2 = Gray Eagle

sys_typ3 = Apache

sys_typ4 = C&C

Surveillance

sys_typ5 = Exploitation

sys_typ6 = Artillery

sys_typ7 = UAV Control

sys_typ8 = Voice/Chat

sys_typ9 = LOS

sys_typ10 = BLOS

Number of component

capabilities:
n 5 10

Names of component

capabilities:
sys_capi : i ϵ {1,…n} 6

sys_cap1 = EO/IR

sys_cap2 = SAR

sys_cap3 = Exploitation

sys_cap4 = Cmd & Control

sys_cap5 = Communication

Binary meta-

architecture upper

triangular matrix:

Aij : i ϵ {1,…m}, j ϵ

{i,…m}
7

Selection of systems and

interfaces between them

Individual systems of

the SoS

Aij : i ϵ {1,…m}, j =i ,

also sometimes written

as Aii , or simply Ai

8
Numbered systems up to

m=25

Achievable interface

Aij : i ϵ {1,…m}, j > i ,

and

Ajk = 1, Aik = 1, Aii =1,

Ajj=1, Akk = 1 , where

Akk is any

communications system

9

Depends on both system

interfaces with joint

communications systems,

and systems’ presence in

the architecture

SoS main capability: C 10
Detection of insurgency

activity

SoS performance in its

large capability:
PSoS 11

Expressed as fraction of

AOR covered by ISR each

half day

Component capabilities

of systems:

cij : i ϵ {1,…n},

j ϵ {1,…m} (binary)
12

Shown in Figure 4.3.

OOTW IS2 systems and

capabilities

 166

Table 4.7. Mathematical definition of variables for OOTW domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for OOTW Model

Performance of a

particular system in its

key capability:

Pi
Ss : i ϵ {1,…m} 13

Depends on the system;

simplified down to a single

gestalt number for this

example; Shown in Figure

4.3. OOTW IS2 systems

and capabilities

Estimated funding to

add an interface to an

individual system:

FIFi
Ss : i ϵ {1,…m} 14

Shown in Figure 4.3.

OOTW IS2 systems and

capabilities

Deadline for developing

new interface(s) on a

system:

Di
Ss : i ϵ {1,…m} 15 Shown in

Estimated funding for

operation of all the

participating systems

during an SoS

operation:

FOPi
Ss : i ϵ {1,…m} 16

Calculated for each

chromosome

Function describing the

advantage of close

collaboration within an

SoS as a function of

participating systems

and interfaces:

F (Aii, Aij , j≠i,) : i ϵ

{1,…m}, j ϵ {i,…m}
17

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠

∗ (1 + 𝑑𝑒𝑙𝑡𝑎)
(∑

𝐹𝑒𝑎𝑠. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠 −
∑ 𝐼𝑛𝑓𝑒𝑎𝑠. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠)

Function for combining

system capabilities into

SoS capability C:

𝐶 = ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

See the Matlab code in

Appendix B
(∑ 𝑎𝑖𝑖

𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓)

Number of individual

attributes the

stakeholders want to

evaluate the SoS over:

g 19 4

Attribute names to

evaluate SoS

architectures against

(e.g., cost, performance,

flexibility):

Attk : k ϵ {1,…g} 20

Att1 = Performance

Att2 = Affordability

Att3 = Flexibility

Att4 = Robustness

 167

Table 4.7. Mathematical definition of variables for OOTW domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for OOTW Model

Number of gradations

of each Attribute that

become Fuzzy

Membership Functions

(MF):

hk : k ϵ {1,…g} 21 hk = 4 for all k

Fuzzy membership

function names within

each attribute

(granulation = a,

attribute = b):

MFab a ϵ {1,…hk}, b ϵ

{1,…g}
22

a=1: Unaceptable

a=2: Marginal

a=3: Acceptable

a=4: Exceeds

For all b

Fuzzy membership

function boundaries

(cross over points) for

each of b SoS

attributes:

Boundab a ϵ {1,…h+1},

b ϵ {1,…g}

a=1 is lower bound of

universe of discourse, a ϵ

{2,…h+1} is upper

bound of MF(a-1)b

because Matlab can’t

handle matrix subscripts

of zero

23
See

Table 4.6

Overall SoS

performance in an

Attribute

(∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F

(Aii, Aij, j≠i,)
24

Flexibility: ∑ (𝑐
𝑖𝑗

𝑚
𝑖=1 ×

𝑎𝑖𝑖′) ≥ 𝑥, 𝑥 = 0, 1…m,

where 𝑥 is the number of

systems providing each

capability

Robustness: (orig perf. –

min (perf. stepping through

with each different

participating system

removed))

Total cost of

developing and using

an SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25

Cost = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑠𝑡 +

development cost

Ops cost = ∑ 𝑎𝑖
𝑚
𝑖=1 ∗

𝐹𝑂𝑃𝑖
𝑆𝑠

Dev cost = ∑ (∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1

𝑚
𝑖=1 ∗

𝐹𝐼𝐹𝑗
𝑆𝑠 + ∑ 𝑎𝑗𝑖 ∗𝑚

𝑗=𝑖+1

𝐹𝐼𝐹𝑗
𝑆𝑠)

 168

Table 4.7. Mathematical definition of variables for OOTW domain example (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for OOTW Model

Parameters for

controlling the

netcentric performance

factor

 Increment per

interface

 Penalty inc. for

unachievable

 Penalty dec. for

achievable i/f

Epsilon ϵ

Penup

Pendn

26

.0035

0.5

0.2

Parameters for

controlling the GA:

 Mutation Rate

 Number in

Population

Number of Generations

Delta

P

G

27

0.03

40

40

4.1.3 Search and Rescue (SAR) Domain Example. The method as applied in

section 4.1 was applied to a non-military ISR domain to insure the fuzzy evaluation and

GA would continue to work as hoped. A Coast Guard Search and Rescue (SAR) problem

serving the Alaskan coast region was selected. When there is a vessel in distress, the law

of the sea requires other mariners to go to its aid, which means that a large number of

disparate systems join in an ad hoc SoS. The Coast Guard has numerous systems with

differing capabilities such as cutters, aircraft, helicopters, communication systems, and

control centers available from several stations in the area. In addition, fishing vessels,

civilian craft, and commercial vessels join in this ad hoc SoS to provide assistance when

a disaster strikes. To develop improved services in the face of budget cutbacks and

changing technologies, it is assumed that adding some communication systems to fishing

 169

boats with their now ubiquitous UAVs to provide better search capability for less total

funding. Background information was gathered from numerous Coast Guard documents

and news stories about maritime rescues; several SMEs were consulted (Deputy Minister

of National Defence and Commissioner, Canadian Coast Guard 1998). A sample SAR

SoS with 29 systems of 9 types, with 10 total capabilities, with as many as 9 capabilities

per system was constructed as shown in Table 4.9 and Figure 4.6 below. The concept

graphic or OV-1 is shown in Figure 4.4.

Figure 4.4. Operational View 1 for Search and Rescue scenario

The Search and Rescue (SAR) mission aims to minimize loss of life, injury, and

property damage or loss at sea by finding and providing aid to those in distress. The SAR

mission framework is inclusive of many activities from conducting search planning and

 170

coordinating SAR response, actual searching for, locating, and rescuing mariners and

others in distress, providing necessary medical advice, assistance, or evacuation, and

provide, when necessary, persons in distress safe transport to shore. Various

components, such as Coast Guard cutters and helicopters, commercial and private sea

vessels, Unmanned Vehicles (UVs), and private pilots and aircraft have some

reconnaissance capability that may be brought together in a mixed dedicated and ad hoc

SoS construct to assist in this ever evolving mission; (Contag, et al. 2013) (Johnston, et

al. 2013).

“As defined in the National Search and Rescue Plan, ref (a), and

Supplement, ref (b), participating search and rescue organizations may

obtain permissible assets within the required SAR regions at any notice.

These regions include all waters subject to U.S. jurisdiction and

international waters in the Atlantic, Pacific, and Arctic Oceans and the Gulf

of Mexico. Additional regions include identified Department of Defense

(DoD) Area of Responsibilities (AORs). Partnerships exist among

maritime industry in the Automated Mutual-Assistance Vessel Rescue

(AMVER) system, and coordination among Federal, state, local, and tribal

authorities to coordinate SAR operations is extensive. This section

describes an example operational context for SAR missions, for which

optimal SoS configurations can be determined given specific mission

parameters and tradeoffs among SoS attributes such as performance,

flexibility, robustness, and affordability.”

 171

Use of the Bering Sea and the Arctic by commercial fisheries, oil exploration,

ecology and climate science is increasing. With the rise of the number of people and

vessels in the area, the likelihood increases of a large SAR scenario occurring. Possible

missions related to this setting may include those in Table 4.8. The corresponding

domain information overview is shown in Table 4.9, MF crossover points in Table 4.10,

mathematical model definitions in Table 4.11, and computer data input in Figure 4.6

below.

Table 4.8. Possible SAR scenarios

Possible SAR Scenarios

1

A large sinking ship, cruise liner, or commercial freighter.

Rescue of passengers, and/or a potential exposure of

hazardous material (oil).

2 A ship stuck in the ice in the arctic ocean.

3 A private or commercial plane crash with survivors.

4 An oil rig disaster (fire, explosion, medical emergency, etc.).

The basic conceptual radius of operation for the purposes of this application will

include the Bearing Sea and the Gulf of Alaska as represented in Figure 4.5 below. This

is the actual area of responsibility of the US Coast Guard District 17. Evolving extended

loiter radii for airborne ISR mission profiles may extend the conceptual SAR mission

profile to include the North Pacific Ocean, Chukchi Sea, Beaufort Sea, and Arctic Ocean.

Scientific expeditions and mineral exploitation efforts are growing in this larger area as

well, so this is a useful exercise.

 172

Figure 4.5. Conceptual SAR Operating Radius (Google Maps, 2013)

Table 4.9. Characteristics of a SAR SoS

Overarching

Purpose of SoS

Maritime Search & Rescue (SAR) of Bering Sea; small airliner

crash at sea

Stranded Cruise Ship in ‘Other Territorial’ Waters

Find two people in a small boat

Unique value

of SoS

Greatly enhanced SAR Capability

SoS Measures

of

Effectiveness

Time to search 100,000 Sq Mi

Probability of detection of survivors within 2 hours or within 12

hours, depending on the scenario

Issues that

might limit

effectiveness

of the SoS

Weather

Availability of participant systems

Language barriers

Number of Survivors

Sovereignty questions

SoS features

that might

greatly

increase

effectiveness

Speed of discovery

Improved coordination of resources

Ability to prioritize resources(?) at time of event, or during

development

Desired

Effectiveness

Find someone very fast and/or help lots of people relatively fast

 173

Table 4.9. Characteristics of a SAR SoS (cont.)

Stakeholders Federal, State, Local, Tribal governments NGOs, Foreign Nation,

Crews, Mariners, travel/shipping/fishing/oil/research/insurance

corporations, Survivors, Military, Coast Guard, Public

ROM Budget:

Development

Around $15M

ROM Budget:

Operations

Around $10M

Attributes of

the SoS, and

range limits for

fuzzy

evaluation

Performance – time to find and pick someone up before death by

exposure or injury

Affordability – budgetary pressures, small civilian investment

Robustness – still works with only partial complement of systems

Flexibility - many choices of partners

Capabilities of

contributing

systems

EO/IR

Night Vision

Maritime Radar

Emergency Locator Beacon System Tracking

RF direction finder

Deliver Paramedic/medical aid

Remove survivor(s) to Emergency Medical Care

Provide major medical capability

Speed – Fast (around 300 kt)/Slow (around 15 kt)

Time on Station

Command and Control/Coordination

Communications

Costs for developing the interfaces are assigned to each system, as well as a cost

for operating the system for a month in the case of the ISR SoS, or for 3 days in the case

of the SAR SoS. The deadline for development of an interface was assigned one of three

values:

 0 – ready now,

 1 – will be ready by the end of this epoch, or

 2 – won’t be ready this epoch, but the next.

 174

Figure 4.6. The fuzzy assessor model inputs for the SAR SoS

Table 4.10. MF edge crossover points for SAR

Lower Bound

Attributes

1

Unacceptable

1.5

Marginal

2.5

Acceptable

3.5

Exceeds

4

(upper)

Performance 0 0.12 0.24 0.36 0.45

Affordability -50 -40 -33 -22 -10

Flexibility 0 1 2 3 4

Robustness -0.25 -0.18 -0.12 -0.06 -0.01

Table 4.11. Mathematical definitions for SAR model

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for SAR Model

Name of SoS: sos 1 SAR

Number of potential

systems:
m 2 29

Number of types of

systems:
t 3 8

Name SAR A

NumSys 29

NumCap 10 1 2 3 4 5 6 7 8 9 10

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime IR – range 3 nmNight Vision – range 3 nmVisual – range 3 nmMaritime Radar – range 30 nmRF Direction Finding – range 70 nmDeliver Medical Aid (Deliver Paramedic too specific)Remove survivor(s) to Emergency Medical CareSpeed 300 mphSpeed 15 mphCommunications

1 Cutter 7 0.03 2 12 1 x x x x x x x x

2 Cutter 7 0.03 2 12 1 x x x x x x x x

3 Helicopter 6 0.1 2 20 1 x x x x x x x x x

4 Helicopter 6 0.1 2 20 1 x x x x x x x x x

5 Aircraft 8 0.1 5 10 1 x x x x

6 Aircraft 8 0.1 5 10 1 x x x x

7 UAV 1 0.1 0.1 7 1 x x x x x x

8 UAV 1 0.1 0.1 7 1 x x x x x x

9 UAV 1 0.1 0.1 7 1 x x x x x x

10 UAV 1 0.1 0.1 7 1 x x x x x x

11 UAV 1 0.1 0.1 7 1 x x x x x x

12 UAV 1 0.1 0.1 7 1 x x x x x x

13 UAV 1 0.1 0.1 7 1 x x x x x x

14 UAV 3 0.1 0.1 7 1 x x x x x x

15 UAV 3 0.1 0.1 7 1 x x x x x x

16 UAV 3 0.1 0.1 7 1 x x x x x x

17 UAV 3 0.1 0.1 7 1 x x x x x x

18 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

19 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

20 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

21 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

22 Fish Vessel 3 0.03 0.5 4 1 x x x x x x

23 Civ Ship 7 0.05 2 8 1 x x x x x x

24 Coord Ctr 5 0.05 0.5 5 1 x x x x

25 Coord Ctr 5 0.05 0.5 5 1 x x x x

26 Communications 10 0.02 0.03 1 0 x

27 Communications 10 0.02 0.03 1 0 x

28 Communications 10 0.02 0.03 1 0 x

29 Communications 10 0.02 0.03 1 0 x

 175

Table 4.11. Mathematical definitions for SAR model (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for SAR Model

Names of system

types:
sys_typi : i ϵ {1,…t} 4

sys_typ1 = Cutter

sys_typ2 = Helicopter

sys_typ3 = Aircraft

sys_typ4 = UAV

sys_typ5 = Fish Vessel

sys_typ6 = Civ Ship

sys_typ7 = Coord Ctr

sys_typ8 = Communications

Number of component

capabilities:
n 5 10

Names of component

capabilities:
sys_capi : i ϵ {1,…n} 6

sys_cap1 = IR

sys_cap2 = Night Vision

sys_cap3 = Visual

sys_cap4 = Maritime Radar

sys_cap5 = RF Dir Find

sys_cap6 = Deliver Med Care

sys_cap7 = Remove Survivor

sys_cap8 =Speed 300 kt

sys_cap9 =Speed 15 kt

sys_cap10 =

Communications

Binary meta-

architecture upper

triangular matrix:

Aij : i ϵ {1,…m}, j ϵ

{i,…m}
7

Selection of systems and

interfaces between them

Individual systems of

the SoS

Aij : i ϵ {1,…m}, j =i ,

also sometimes written

as Aii , or simply Ai

8
Numbered systems up to

m=29

Achievable interface

Aij : i ϵ {1,…m}, j > i ,

and

Ajk = 1, Aik = 1, Aii =1,

Ajj=1, Akk = 1 , where

Akk is any

communications system

9

Depends on both system

interfaces with joint

communications systems, and

systems’ presence in the

architecture

SoS main capability: C 10 Find and rescue survivors

SoS performance in its

large capability:
PSoS 11

Torrent problem toy problem

Expressed as probability of

finding a survivor within 2-12

hours in frigid temps

Component

capabilities of

systems:

cij : i ϵ {1,…n},

j ϵ {1,…m} (binary)
12 Shown in Figure 4.6

 176

Table 4.11. Mathematical definitions for SAR model (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for SAR Model

Performance of a

particular system in its

key capability:

Pi
Ss : i ϵ {1,…m} 13

Depends on the system;

simplified down to a single

gestalt number for this

example; shown in Figure 4.6

Estimated funding to

add an interface to an

individual system:

FIFi
Ss : i ϵ {1,…m} 14 Shown in Figure 4.6

Deadline for

developing new

interface(s) on a

system:

Di
Ss : i ϵ {1,…m} 15 Shown in Figure 4.6

Estimated funding for

operation of all the

participating systems

during an SoS

operation:

FOPi
Ss : i ϵ {1,…m} 16

Calculated for each

chromosome

Function describing

the advantage of close

collaboration within

an SoS as a function

of participating

systems and

interfaces:

F (Aii, Aij , j≠i,) : i ϵ

{1,…m}, j ϵ {i,…m}
17

∑ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚𝑠

∗ (1 + 𝑑𝑒𝑙𝑡𝑎)
(∑

𝐴𝑐ℎ𝑖𝑒𝑣. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠−
∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠)

Function for

combining system

capabilities into SoS

capability C:

𝐶 = ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘)𝑛

𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

 * (1 −

𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/
𝑓 − ∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓)

Number of individual

attributes the

stakeholders want to

evaluate the SoS over:

g 19 4

Attribute names to

evaluate SoS

architectures against

(e.g., cost,

performance,

flexibility):

Attk : k ϵ {1,…g} 20

Att1 = Performance

Att2 = Affordability

Att3 = Flexibility

Att4 = Robustness

 177

Table 4.11. Mathematical definitions for SAR model (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for SAR Model

Number of gradations

of each Attribute that

become Fuzzy

Membership

Functions (MF):

hk : k ϵ {1,…g} 21 hk = 4 for all k

Fuzzy membership

function names within

each attribute

(granulation = a,

attribute = b):

MFab a ϵ {1,…hk}, b ϵ

{1,…g}
22

a=1: Unaceptable

a=2: Marginal

a=3: Acceptable

a=4: Exceeds

For all b

Fuzzy membership

function boundaries

(cross over points) for

each of b SoS

attributes:

Boundab a ϵ {1,…h+1},

b ϵ {1,…g}

a=1 is lower bound of

universe of discourse, a

ϵ {2,…h+1} is upper

bound of MF(a-1)b

because Matlab can’t

handle matrix subscripts

of zero

23
See Table 4.10. MF edge
crossover points for SAR

Overall SoS

performance in an

Attribute

(∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F

(Aii, Aij, j≠i,)
24

(∑ 𝑎𝑖𝑖
𝑚
𝑖 𝑃𝑖 ∑ 𝑐𝑖𝑘+ 𝑃𝑖

𝑆𝑠𝑐𝑖𝑘)𝑛
𝑘

∑ 𝑃𝑖
𝑚
𝑖 ∑ 𝑐𝑖𝑘

𝑛
𝑘

* (1 − 𝜖)𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Penalty = (∑ 𝑈𝑛𝑎𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓 −
∑ 𝐴𝑐ℎ𝑖𝑒𝑣. 𝑖/𝑓)

 Total cost of

developing and

using an SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25

Ops cost = ∑ 𝑎𝑖
𝑚
𝑖=1 ∗ 𝐹𝑂𝑃𝑖

𝑆𝑠

Dev cost = ∑ (∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1

𝑚
𝑖=1 ∗

𝐹𝐼𝐹𝑗
𝑆𝑠 + ∑ 𝑎𝑗𝑖 ∗ 𝐹𝐼𝐹𝑗

𝑆𝑠𝑚
𝑗=𝑖+1)

Cost = operations cost +

development cost

 178

Table 4.11. Mathematical definitions for SAR model (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for SAR Model

Parameters for

controlling the

netcentric performance

factor

 Increment per

interface

 Penalty inc. for

unachievable

 Penalty dec.

for achievable

i/f

Epsilon ϵ

Penup

Pendn

26

0.008 & 0.005 & 0.01

0.4 0.3 0.3

0.6 0.2 0.8

Parameters for

controlling the GA:

 Mutation Rate

 Number in

Population

Number of

Generations

Delta

p

g

27

0.02 & 0.005 & 0.01

80 80 300

50 50 50

A system may spend funds on an interface that will not be ready until the next

epoch, but they will get no performance increment from that interface until it is complete.

An overall ‘relative’ performance value was assigned to each system based on its key

capability. The costs for development were rough figures similar to what may be seen in

official and informal budgetary estimates for interfacing with communications systems

and integrating the mission systems to be able to interoperate. The costs to operate

aircraft or other systems were determined similarly, in units of thousands of dollars per

flight hour. The units are chosen to result in numbers usually between 0.1 to 100 because

it makes comparisons more intuitive and easier to keep straight in one’s head.

 179

4.1.3.1 A model building basis for SAR. New tools are being developed that

could make the integration of the SoS exploration and analysis tools developed here even

easier to use. When building the SAR model, autogenerating the domain input data from

a more general descriptive model of a system or SoS was examined. It does appear

possible, but additional development would be required. The activity diagram in Figure

4.8, built using classes that equate to the types of systems used in SAR, is an example of

the way that today’s SoS architects are being taught at the Naval Postgraduate School.

This is the way analysts and graduate systems engineers are being trained to think and

communicate architecture concepts among themselves and to others. This relatively new

tool can already autogenerate an execution timeline such as that shown in Figure 4.7

(SPEC Innovations 2015). The point of this is not to recommend a tool, but to note that

newer tools are evolving to be able to support the types of representation and analysis

that will make architecting future SoS far more effective and efficient. Competitive

pressure will move all the tool vendors in this direction.

4.1.3.2 Additional features of recent tool versions. Multiple executions can be

set up in Monte Carlo simulations to obtain analysis statistics of a model architecture as

well. This type of connection between tools, architectures and analysis might be fruitful

to pursue in future work. The activity diagram shown in Figure 4.8 shows swim lanes,

serial step sequences, data exchanges between steps, loops, and parallel paths.

4.1.4 MITRE “Toy” Problem. MITRE presents what they call the Toy SoS

problem that has been studied fairly extensively within the government (DeLaurentis, et

al. 2012) and academically (Guariniello and DeLaurentis 2014). This SoS problem was

 180

Figure 4.7. Execution timeline example generated directly from the SAR model

 181

Figure 4.8. Activity diagram matching the CONOPS of the SAR model

recast in the format used in FILA-SoS, but the original Toy problem in Figure 4.9 is too

small to work properly in FILA-SoS, because all component systems must be included

and they all have only one capability in the original formulation – there is nothing to

select. Therefore, there is really no opportunity to trade different numbers of system

types or combinations of systems and interfaces among themselves as FILA-SoS does.

Additionally, the network connection graph is directed in the Toy problem, whereas in

FILA-SoS only undirected graphs were used. Finally, the performance attribute in the

Toy problem was calculated using the functional dependency network analysis algorithm,

so a very different form of input domain data is required (Garvey and Pinto 2009).

FDNA assumes the links are always associated with each system, not counted separately

as in FILA-SoS, but it adds to the model by including a ‘criticality of dependency’

(COD) and a ‘strength of dependency’ (SOD) value for each link.

 182

For purposes of having a few more systems to choose from, the Toy problem was

initially reconfigured as shown in Figure 4.10. The corresponding input domain data is

shown in Figure 4.11. The additional Missouri modification input COD and SOD data is

on pages 316-317 of Appendix E. The MF data shown in Table 4.12 uses the ratio of

original COD data to the COD as the key measure when systems are reduced in

efficiency by maintenance failure or by attack. The remaining Toy problem data is

shown in Table 4.13 and Table 4.14. The affordability MF limits are set in this version

so that too many or too few systems will be discarded from the solution by the GA.

Figure 4.9. MITRE Toy SoS problem as originally proposed

 183

Figure 4.10. Reconfigured Toy problem for Missouri Toy FILA-SoS approach

Figure 4.11. Input domain data for FILA-SoS configured Toy problem

Name TOY A

NumSys 22 com1 23

NumCap 5 sys has capability, costs, perf, deadline 1 2 3 4 5

SysNo Type Capability I/FDevCostOpsCost/hrPerf DevTime Ground SatA UAV SatB Carrier

1 Ground 1 0 1 100 0 x

2 SatA1 2 0 1 100 0 x

3 SatA2 2 0 1 100 0 x

4 SatA3 2 0 1 100 0 x

5 SatA4 2 0 1 100 0 x

6 SatA5 2 0 1 100 0 x

7 SatA6 2 0 1 100 0 x

8 SatA7 2 0 1 100 0 x

9 SatA8 2 0 1 100 0 x

10 UAV0 3 0 1 100 0 x

11 UAV1 3 0 1 100 0 x

12 UAV2 3 0 1 100 0 x

13 UAV3 3 0 1 100 0 x

14 UAV4 3 0 1 100 0 x

15 UAV5 3 0 1 100 0 x

16 SatB1 4 0 1 100 0 x

17 SatB2 4 0 1 100 0 x

18 SatB3 4 0 1 100 0 x

19 SatB4 4 0 1 100 0 x

20 SatB5 4 0 1 100 0 x

21 SatB6 4 0 1 100 0 x

22 Carrier 5 0 1 100 0 x

 184

Table 4.12. MF edge crossover points for TOY problem

 Lower Bound
Attributes

1 1.5 2.5 3.5 4

Performance Ratio 0 0.8 0.9 0.98 1

Affordability -50 -6 -5.5 -5 -4.8

Flexibility 0 0.25 0.5 1 2

Robustness -0.25 -0.18 -0.12 -0.06 -0.01

Table 4.13. MITRE Toy problem SoS domain datasheet

Overarching

Purpose of SoS

Relay commands and ISR data from ground station and UAV to a

Carrier Battle Group

Unique value

of SoS

Provide redundant paths for data important to the Carrier Battle

Group (CBG)

SoS Measures

of

Effectiveness

Reliability of data links

Latency of data

Issues that

might limit

effectiveness of

the SoS

Weather

Availability of participant systems

Cyber attacks on elements of system

Jamming of communications links

SoS features

that might

greatly increase

effectiveness

Similarity of data link formatting

Over the horizon communications links

Frequency diversity

Redundant messages

Desired

Effectiveness

99.999% up time for end to end communications

Full bandwidth availability

Stakeholders Carrier Battle Group Users Information Generators

Satellite operators Other potential Users of links

UAV controller Ground Station Operators

UAV owner

ROM Budget:

Development

About $10M

ROM Budget:

Operations

About $5M

 185

Table 4.13. MITRE Toy problem SoS domain datasheet (cont.)

Attributes of

the SoS, and

range limits for

fuzzy

evaluation

Performance – redundancy of communications links (individual

links all perform the same in Toy problem)

Affordability – budgetary pressures, small investment (basically all

acceptable for Toy problem)

Robustness – still works with only partial complement of systems

Flexibility - many choices of partners

Capabilities of

contributing

systems

Ground station uplinks

Relay capability of satellites

Relay capability of UAV

Receive capability of Carrier Battle Group

Table 4.14. Mathematical definition of variables for Missouri Toy problem

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for Toy Model

Name of SoS: sos 1 TOY

Number of potential

systems:
m 2 22

Number of types of

systems:
t 3 5

Names of system

types:
sys_typi : i ϵ {1,…t} 4

sys_typ1 = Ground

sys_typ2 = SatAx, x ϵ (1 - 8)
sys_typ3 = UAV x, x ϵ (0 - 5)
sys_typ4 = SatB x, x ϵ (1 - 6)
sys_typ5 = Carrier

Number of component

capabilities:
n 5 5

Names of component

capabilities:
sys_capi : i ϵ {1,…n} 6

sys_cap1 = Ground

sys_cap2 = SatA

sys_cap3 = UAV

sys_cap4 = SatB

sys_cap5 = Carrier

Binary meta-

architecture upper

triangular matrix:

Aij : i ϵ {1,…m}, j ϵ

{i,…m}
7

Selection of systems and

interfaces between them

Individual systems of

the SoS

Aij : i ϵ {1,…m}, j =i ,

also sometimes written

as Aii , or simply Ai

8
Numbered systems up to

m=22

 186

Table 4.14. Mathematical definition of variables for Missouri Toy problem (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for Toy Model

Achievable interface

Aij : i ϵ {1,…m}, j > i ,

and

Ajk = 1, Aik = 1, Aii =1,

Ajj=1, Akk = 1 , where

Akk is any

communications system

9

All achievable except the

Ground system does not

interface with the Carrier,

and systems of type SatA do

not interface with type Sat B

SoS main capability: C 10

Performance ratio of

Connection Ground to

Carrier

SoS performance in its

large capability:
PSoS 11 Continuity of connection

Component

capabilities of

systems:

cij : i ϵ {1,…n},

j ϵ {1,…m} (binary)
12

Whether each system

posseses each capability

Performance of a

particular system in its

key capability:

Pi
Ss : i ϵ {1,…m} 13

COD and SOD for each

system are shown on page E-

13 of Appendix E for initial

solution; the general solution

used COD/SOD in Figure 64-

65

Estimated funding to

add an interface to an

individual system:

FIFi
Ss : i ϵ {1,…m} 14

Shown in Figure 4.1; all the

same

Deadline for

developing new

interface(s) on a

system:

Di
Ss : i ϵ {1,…m} 15

Shown in Figure 4.1; all the

same

Estimated funding for

operation of all the

participating systems

during an SoS

operation:

ΣFOPi
Ss : i ϵ {1,…m} 16

Calculated for each

chromosome’s selected

systems

Function describing

the advantage of close

collaboration within

an SoS as a function of

participating systems

and interfaces:

F (Aii, Aij , j≠i,) : i ϵ

{1,…m}, j ϵ {i,…m}
17

FDNA implementation of

COD and SOD matrices

Function for

combining system

capabilities into SoS

capability C:

𝐶 = ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

See the Matlab code in

Appendix B pg 21, file

evalsos.m and fdn22Atoy.m

for the Toy problem

 187

Table 4.14. Mathematical definition of variables for Missouri Toy problem (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for Toy Model

Number of individual

attributes the

stakeholders want to

evaluate the SoS over:

g 19

1; other attributes are used

only to select out undesired

chromosomes for initial

solution

4 were used in the second,

general FDNA

implementation

Attribute names to

evaluate SoS

architectures against

(e.g., cost,

performance,

flexibility):

Attk : k ϵ {1,…g} 20

Att1 = PerformanceRatio

(before and after attacks);

same for both

implementations

Att2 = Affordability

Att3 = SinglePtFailure

Att4 = StrengthOfDepen

Number of gradations

of each Attribute that

become Fuzzy

Membership Functions

(MF):

hk : k ϵ {1,…g} 21 hk = 4 for all k

Fuzzy membership

function names within

each attribute

(granulation = a,

attribute = b):

MFab a ϵ {1,…hk}, b ϵ

{1,…g}
22

a=1: Unaceptable

a=2: Mediocre

a=3: AboveAvg

a=4: VeryGood

For all b

Fuzzy membership

function boundaries

(cross over points) for

each of b SoS

attributes:

Boundab a ϵ {1,…h+1},

b ϵ {1,…g}

a=1 is lower bound of

universe of discourse, a

ϵ {2,…h+1} is upper

bound of MF(a-1)b

because Matlab can’t

handle matrix subscripts

of zero

23

See Table 4.12. MF edge

crossover points for TOY

problem

Overall SoS

performance in an

Attribute

(∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F

(Aii, Aij, j≠i,)
24

See the Matlab code in

Appendix B pg 21; it is

unique for the generalized

Toy problem

 188

Table 4.14. Mathematical definition of variables for Missouri Toy problem (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for Toy Model

Total cost of

developing and using

an SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25

See the Matlab code in

Appendix B; used only to

confirm a feasible

chromosome in first solution,

when only one of each type is

chosen (no costs);

General formulation of

FDNA evaluator included

multiple systems of each

type, so cost counted

Parameters for

controlling the

netcentric performance

factor

 Increment per

interface

 Penalty inc for

unachievable

 Penalty

decrement for

achievable i/f

Epsilon ϵ

Penup

Pendn

26

N/A

N/A

N/A

Parameters for

controlling the GA:

 Mutation Rate

 Number in

Population

 Number of

Generations

Delta

p

g

27

0.02

40

50

4.1.5 Large Live-Virtual-Constructive (LVC) Model. MITRE and the Army

supplied a very large, proprietary training SoS problem for validation of the method on a

realistic problem. It was broken down to 111 systems with 74 capabilities after exploring

architecture description information from relatively complete DoDAF compliant

information on the SoS in several proprietary documents and stakeholder summary

 189

presentations. A sanitized version of the SoS domain data is shown in Table 4.15, with

the mathematical definitions for the LVC problem in Table 4.16.

Table 4.15. MITRE Proprietary LVC problem SoS domain datasheet

Overarching

Purpose of SoS

Enable, and enhance the value of, Live, Virtual, Constructive

training

Unique value

of SoS

Allows many existing automated and operator in the loop training

simulations, and live participants to train simultaneously

SoS Measures

of

Effectiveness

Proprietary

Issues that

might limit

effectiveness of

the SoS

Latency

Mistranslation of data between different systems

Lack of centralized truth data

SoS features

that might

greatly increase

effectiveness

Establishment of central truth data

Common interfaces among participating systems

Improved sense of reality to training simulations

Allowing any mix of live, virtual, and constructive participants

Desired

Effectiveness

Proprietary

Stakeholders Trainers and trainees (both users of the systems), funders, system

developers

ROM Budget:

Development

Proprietary

ROM Budget:

Operations

Proprietary

Attributes of

the SoS, and

range limits for

fuzzy

evaluation

Seven Proprietary attributes

Capabilities of

contributing

systems

Communications

Displays

Simulations of numerous tasks to be trained

 190

Table 4.16. Mathematical definition of variables for LVC validation problem

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for LVC Model

Name of SoS: sos 1 LVC

Number of potential

systems:
m 2 111

Number of types of

systems:
t 3 18

Names of system

types:
sys_typi : i ϵ {1,…t} 4 Proprietary

Number of component

capabilities:
n 5 74

Names of component

capabilities:
sys_capi : i ϵ {1,…n} 6 Proprietary

Binary meta-

architecture upper

triangular matrix:

Aij : i ϵ {1,…m}, j ϵ

{i,…m}
7

Selection of systems and

interfaces between them

Individual systems of

the SoS

Aij : i ϵ {1,…m}, j =i ,

also sometimes written

as Aii , or simply Ai

8
Numbered systems up to

m=111

Achievable interface

Aij : i ϵ {1,…m}, j > i ,

and

Ajk = 1, Aik = 1, Aii =1,

Ajj=1, Akk = 1 , where

Akk is any

communications system

9 Proprietary

SoS main capability: C 10 Training

SoS performance in its

large capability:
PSoS 11 Training effectiveness

Component

capabilities of

systems:

cij : i ϵ {1,…n},

j ϵ {1,…m} (binary)
12

Whether each system

posseses each capability

Performance of a

particular system in its

key capability:

Pi
Ss : i ϵ {1,…m} 13 Proprietary

Estimated funding to

add an interface to an

individual system:

FIFi
Ss : i ϵ {1,…m} 14 Proprietary

Deadline for

developing new

interface(s) on a

system:

Di
Ss : i ϵ {1,…m} 15 Proprietary

 191

Table 4.16. Mathematical definition of variables for LVC validation problem (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for LVC Model

Estimated funding for

operation of all the

participating systems

during an SoS

operation:

ΣFOPi
Ss : i ϵ {1,…m} 16

Calculated for each

chromosome’s selected

systems

Function describing the

advantage of close

collaboration within an

SoS as a function of

participating systems

and interfaces:

F (Aii, Aij , j≠i,) : i ϵ

{1,…m}, j ϵ {i,…m}
17 Not Used

Function for combining

system capabilities into

SoS capability C:

𝐶 = ∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘 18

See the Matlab code in

Appendix B for LVC

problem

Number of individual

attributes the

stakeholders want to

evaluate the SoS over:

g 19 7

Attribute names to

evaluate SoS

architectures against

(e.g., cost,

performance,

flexibility):

Attk : k ϵ {1,…g} 20 Proprietary

Number of gradations

of each Attribute that

become Fuzzy

Membership Functions

(MF):

hk : k ϵ {1,…g} 21 hk = 5 for all k

Fuzzy membership

function names within

each attribute

(granulation = a,

attribute = b):

MFab a ϵ {1,…hk}, b ϵ

{1,…g}
22 Proprietary

 192

Table 4.16. Mathematical definition of variables for LVC validation problem (cont.)

Name or description

of variable

Expression or Variable

Name

Eq.

no.
Value for LVC Model

Fuzzy membership

function boundaries

(cross over points) for

each of b SoS

attributes:

Boundab a ϵ {1,…h+1},

b ϵ {1,…g}

a=1 is lower bound of

universe of discourse, a

ϵ {2,…h+1} is upper

bound of MF(a-1)b

because Matlab can’t

handle matrix subscripts

of zero

23 Proprietary

Overall SoS

performance in an

Attribute

(∑ ∑ 𝐴𝑖𝑖
𝑚
𝑖 𝑐𝑘𝑖

𝑛
𝑘) * F

(Aii, Aij, j≠i,)
24

See the Matlab code in

Appendix B; it is unique for

the LVC problem; e.g.,

AU = ∑ (∑ 𝑎𝑖𝑖
53
𝑗=2

90
𝑖=60 𝑐𝑗𝑖 +

∑ 𝑎𝑐ℎ𝑖𝑒𝑣. 𝑎𝑖𝑗 +𝑚
𝑗=𝑖+1

∑ 𝑎𝑐ℎ𝑖𝑒𝑣. 𝑎𝑗𝑖
𝑖−1
𝑗=1)

Total cost of

developing and using

an SoS

𝑇𝐶 = ∑ ∑ 𝐴𝑖𝑗FIF𝑖
Ss𝑚

𝑖
𝑛
𝑗

+ ∑ ∑ 𝐴𝑖𝑖FOP𝑖
Ss𝑚

𝑖
𝑛
𝑘

25 Proprietary

Parameters for

controlling the

netcentric performance

factor

 Increment per

interface

 Penalty inc for

unachievable

 Penalty

decrement for

achievable i/f

Epsilon ϵ

Penup

Pendn

26

0.0015

1

1

Parameters for

controlling the GA:

 Mutation Rate

 Number in

Population

 Number of

Generations

Delta

p

g

27

0.003

40

50

 193

4.1.6 How To Use the Method on Global Air Traffic Management. Global

Air Traffic Management (GATM) is one of the largest SoS problems in existence.

NextGen is a concept for modernizing air traffic control (ATC) in the United States to

improve efficiency and reliability of control, and therefore the safety, of air travel, even

in the face of more crowded skies in the future. Reducing delays, allowing more direct

routing to improve fuel burn (for both efficiency and the environment), and reducing

separation standards to allow more aircraft in the same space, while improving safety are

the top level goals of NextGen (Federal Aviation Administration 2014). NextGen

consists of 6 major POR level programs:

“Automatic Dependent Surveillance-Broadcast (ADS-B) is FAA's

satellite-based successor to radar. ADS-B makes use of GPS technology to

determine and share precise aircraft location information, and streams

additional flight information to the cockpits of properly equipped aircraft.

Collaborative Air Traffic Management Technologies (CATMT) is

a suite of enhancements to the decision-support and data-sharing tools

used by air traffic management personnel. These enhancements will

enable a more collaborative environment among controllers and operators,

improving efficiency in the National Airspace System.

Data Communications (Data Comm) will enable controllers to

send digital instructions and clearances to pilots. Precise visual messages

that appear on a cockpit display can interact with an aircraft's flight

computer. Offering reduced opportunities for error, Data Comm will

https://www.faa.gov/nextgen/adsb
https://www.faa.gov/nextgen/catmt
https://www.faa.gov/nextgen/datacomm

 194

supplant voice communications as the primary means of communication

between controllers and flight crews.

National Airspace System Voice System (NVS) will supplant

FAA's aging analog voice communication system with state-of-the-art

digital technology. NVS will standardize the voice communication

infrastructure among FAA facilities, and provide greater flexibility to the

air traffic control system.

NextGen Weather will help reduce weather impact by producing

and delivering tailored aviation weather products via SWIM, helping

controllers and operators develop reliable flight plans, make better

decisions, and improve on-time performance. NextGen Weather is

accomplished through collaboration between FAA, NOAA and NASA.

System Wide Information Management (SWIM) is the network

structure that will carry NextGen digital information. SWIM will enable

cost-effective, real-time data exchange and sharing among users of the

National Airspace System” (Federal Aviation Administration 2015).

Although NextGen is the US plan for ATC upgrades, European airspace is even

more crowded and has additional issues due to the numerous sovereign national systems.

Single European Sky (SES) is their master plan for ATM (EUROCONTROL - The

European Organisation for the Safety of Air Navigation 2015), and SESAR (Single

European Sky ATM Research) is the technology and systems portion of their ATC

upgrade plans (European Commission of Transport 2015) (SESARJU 2015). Curiously,

their website’s audio says that the environment is the top goal, but the written materials

https://www.faa.gov/nextgen/nvs
https://www.faa.gov/nextgen/wx
https://www.faa.gov/nextgen/swim

 195

cite safety, efficiency, predictability and reduced cost for providing air traffic

management (ATM) (what they call ATC) as the top goals, not bothering to cite

environment at all.

In the Pacific region, which actually has slightly more passenger-miles flown than

either North America or Europe, the current plan for improving ATM is under the

auspices of the International Civil Aviation Organization (ICAO), embodied in the

Asia/Pacific Seamless ATM Plan (Group, Asia/Pacific Seamless ATM Planning 2013).

The number one, key attribute in that document is interoperability between different

ATM regions, followed by safety, seamlessness of flight services between different

regions, then efficiency. A secondary concern is simultaneity of changes in service

modes among the regions. The Asia/Pacific region treats its member systems more like

an acknowledged SoS than NextGen and SESAR. NextGen is slightly more in the strong

central authority end of the spectrum of control, due to the principal participation of the

federal government in ATC and tightly controlled certification for flight processes in the

US. SESAR is about midway between Asia/Pacific and US in degree of central control

for an SoS.

These details illustrate the necessity of reaching agreement on what to call the

appropriate key attributes, along with careful definition of their meaning and how to

measure them among all the stakeholders. Additional discussion of issues with NextGen

is available in Haimes & Anderegg (Haimes and Anderegg 2015). This top-level

agreement is key to making any analysis or recommendation useful to the broad group of

stakeholders. This is especially true when close collaboration is necessary to achieve one

of the key goals, such as the extremely technical goal of improved safety. If there is

 196

anyone not following the agreed upon rules, safety inevitably suffers. When tackling this

sort of global issue, it is extremely difficult to find the common ground without over-

simplifying some issues; also difficult to agree on attribute definitions among all the

competing voices in the discussion. Frequently the lofty goals suggesting themselves at

first blush on seeing a problem get cut back in the hope of keeping all the member

systems ‘in the fold.’ Establishing the dictionary and achieving stakeholder ‘buy in’

would have to be the initial priority for GATM. It would be very difficult in this arena.

Nevertheless, harmonizing and improving GATM is a greatly to be desired, overarching

goal, which everyone supports to some extent. That extent is largely determined by the

affordability of the improvements. That is why affordability seems always to be a key

attribute in evaluating the SoS.

Another problem for using the FILA-SoS approach on global ATM is that the

structure of the participation is not at a peer to peer level, as it was in all previous

examples of acknowledged SoS. There is a much more hierarchical nature to the

systems’ organization within ATM. Getting an airline company or a government to

provide (or use) ATM services or capabilities in the desired way can stepwise add dozens

or hundreds of aircraft (or flights – we still have to decide what the unit of system

measure should be), or large coverage areas to the SoS, while the general aviation sector

will require tedious, individual system co-option into the SoS. The FILA-SoS approach

might have to be substantially modified to handle a hierarchical organization of systems,

where some interfaces are still peer to peer, and others are up or down a hierarchical tree

structure.

 197

Selecting how to partition the numerous possible systems, as well as how to

enumerate the possible capability elements, will also be a significant challenge for the

goal of upgrading ATM globally. Civil air includes airlines of many sizes with many

types of equipment, both fixed and rotary wing, as well as general aviation with many

types and vintages of aircraft. There is also military and other government aircraft to

consider. Ground facilities include airports, passenger and cargo facilities, maintenance

(daily: such as fueling, minor inspection, remove & replace, and major: such as

modifications and overhaul) as well as terminal and en route ATM control facilities.

Space systems such as GPS, Inmarsat, or Iridium satellites may also have to be included.

Enumerating and partitioning the classes of systems and capabilities would certainly need

to be iterated with attribute selection and evaluation modeling approaches to be effective.

The various communications systems that provide the links between components

will fit nicely into the achievable/unachievable interface formulation. Upgrading

capabilities to include new digital radios would work well with the FILA-SoS

negotiations framework and the time component of the development of capabilities over

multiple epochs. So there are some factors about the global ATM problem that would fit

quite well with the FILA-SoS approach, even if some parts present great difficulties.

There are large, detailed analyses underway by each ATM region on how to

maintain safety while making the changes needed to upgrade the infrastructure of ATM

systems, and how to implement changes piecemeal in the many, many components of the

SoS. Safety as one of the primary goals is a difficult attribute to model. It is absolutely

not considered adequate to have a ‘rough’ model of safety (one of the key thrusts of the

FILA-SoS approach), but instead to require the most detailed and accurate modeling

 198

possible to be able to prove any changes will be as safe as the existing systems. If the

FILA-SoS approach is used to analyze policies, efficiency, timetables, or rough costs, it

might do well. Attempting to use or even create ‘rough’ models of safety as an attribute

would be very likely to discredit the approach entirely. However, the FILA-SoS

approach is modular, so if a large scale, validated model could be made to work with the

other components, one could theoretically use it within a FILA-SoS type approach.

4.2 RESULTS OF IMPLEMENTING THE METHOD

In the discussion of the results in this section, the definitions of the eight sub-

graphs presented in Table 3.4 for each run during the GA have been changed as follows:

 The third graph on the top now has both the performance and flexibility

attributes plotted in different colors to make room for the heat map

 The fourth graph now has a ‘heat map’ presentation of the frequency of ones

in each chromosome position for the better performing half of the population.

 The penalty graph was removed to make room for the best chromosome graph

of the current generation

 The last graph now has the best chromosome of the current generations’

population plotted in the color coded upper triangular form

Later examples sometimes have a slightly different form of display because that

subroutine was changed to be able to handle varying numbers of attributes and MFs,

controlled entirely by the input data, using the same code for all types of problems.

4.2.1 Sensitivity Analysis. The ranges of items that were varied for sensitivity

analysis included the following:

 199

 The value of the netcentric performance increment (epsilon); from about 0.1%

to 2% per achievable interface; ratio of penalty to reward was also varied

through a range of 0.3 to 3.

 Changing epsilon requires adjustments to penup and pendn, as well as

membership function limits to account for changes to average performance of

SoS architectures, as well as the robustness limits because they correlate

moderately with performance.

 Cost and performance inputs for various system elements, over a range of

about 0.5 to 2 for the ratio of changes of key systems contributors.

 Protecting prior negotiated systems during mutation in the GA, to model a

succeeding epoch of the wave model of SoS development where some

systems with their interfaces had already negotiated their inclusion in the SoS

and were not open to random selection. These are shown in pages E1-E11 of

Appendix E, Supplementary Figures.

 Mutation rate was varied between 0.5% and 10% with no noticeable impact.

The population size was varied from 20 to 5,000.

 The number of generations in the GA was varied from 20 to 500.

 Minor rule changes in the way attributes values contributed to SoS assessment

were also varied over the course of the research.

In addition, coefficients of correlation between the number of systems, number of

interfaces, all attribute evaluations, and the SoS assessment were run for each example.

None of the variations made significant changes to the overall pattern of results, although

convergence rate of the GA was occasionally different.

 200

4.2.2 Results of Gulf War ISR Modeling. Representative generational

snapshots in a GA run of 50 generations is shown in Figure 4.12 and Figure 4.13 for the

first ISR model. All population graphs have been sorted by the overall SoS fitness,

which is shown in the second graph in the top row of each snapshot. One can see the

gradual improvement of the SoS fitness for the whole population from generation to

generation in the four snapshots. The first generation still has the distribution forced

from a few to many ones, but when sorted by the fitness, the correlation to chromosome

number within the population is lost. In subsequent generations distribution of the

number of ones is not forced, but governed by the mutation rate about the better

chromosomes (with a few ‘sports’ from lower in the sort) that were selected for

propagation to the next generation

Figure 4.12. Intermediate progress through GA generations showing SoS fitness

improvement

 201

Figure 4.13. Typical 50th generation output graphs for GA of the ISR

Some GA optimization runs were made with relatively large populations and

many generations. A population size of 300, is shown in Figure 4.14. The convergence

plot in Figure 4.15 shows an improvement at generation 150 of 200. Most runs had no

improvement after about 20 to 30 generations. A few still had some improvement as late

as generation 70, but that was quite rare. The green line at the bottom of Figure 4.15

shows the assessment of the chromosome at the 20th percentile of overall fitness within

the population in that generation. This example has relatively few top performing

chromosomes, with about 30% of the population in a plateau at about 98% of the best

value, as shown in the second subgraph on the top row of Figure 4.14. The best

chromosome after this 200 generation run is shown in Figure 4.16.

 202

Figure 4.14. An ISR run of 200 gens with 300 in population

Figure 4.15. This convergence plot shows an ISR assessment still improving at

generation 150

 203

Figure 4.16. Final ISR SoS chromosome display for 200 generations

4.2.3 Results of OOTW Scenario Model. Figure 4.17 shows the result of a

small valueExplore.m run to ensure that the MF edges are set in reasonable areas for each

attribute, and that even with only a few chromosomes in this example, there are some

acceptable SoS assessments.

The correlation coefficients between all the variables for this exploration run are

shown in Table 4.17. Correlations between the position in the population, the number of

systems and interfaces, the overall SoS assessment, each attribute evaluation, and the

penalty for unachievable interfaces (I/Fs in the table) are shown. The relatively small

correlation of each of these variables to the overall SoS assessment means that the SoS

assessment does not weight any element more heavily than it should. Most attribute

evaluations are not significantly cross-correlated, either. The highest correlation of any

attribute evaluation with SoS assessment is only 26%. This means that the fuzzy assessor

 204

is correctly picking architectures that satisfy several of the desires simultaneously, as

intended.

Figure 4.17. Biased number of ones in a small population explores the space adequately

 205

Table 4.17. Correlation coefficients among all the OOTW attribute variables

 Pop # Sum I/F SoS

Assess

Perf Flex Robust Sum Sys Penalty Total $ Afford-

ability

Pop # 1.000 0.9936 0.0331 0.8718 0.7502 0.4615 0.9347 0.4904 0.9874 0.9691

Sum I/F 1.0000 0.0327 0.8718 0.7582 0.4453 0.9338 0.4816 0.9921 0.9756

SoS Assess 1.0000 0.1324 0.2658 0.0625 0.1340 0.1483 0.0490 0.0699

Performanc
e

 1.0000 0.7719 0.6656 0.9562 0.1847 0.9070 0.8217

Flexibility 1.0000 0.4600 0.7912 0.2999 0.7789 0.7513

Robustness 1.0000 0.5608 0.0496 0.4840 0.4113

Sum

Systems

 1.0000 0.3846 0.9584 0.9169

Penalty 1.0000 0.4573 0.6247

Total $ 1.0000 0.9755

Afford-

ability

 1.0000

The first generation, a randomized population (by the number and placement of

ones in the chromosomes), when the GA was run on the OOTW model, showed fewer

relatively good chromosomes than the other models, but otherwise behaved very

similarly to the others. When large numbers (>50) were used in the population, there

tended to be faster and smoother convergence to the ultimate arrangement. Since the

early version GA implementation kept the top 20% including the best one and three other

‘stray’ chromosomes to build the next generation, populations less than 20 could not be

used. Forty was the smallest population used in this research. That allowed a minimum

of four of the better chromosomes (aside from the best one) to be kept for replication,

mutation, crossover and transposition. Populations of 80, 100, or 120 were frequently

used; a few times 1000 or even 5000 members were used, such as in the population for

the OOTW problem. Figure 4.18 consists of snapshots of the GA for the OOTW

problem; Figure 4.19 shows convergence (blue line) takes about the same number of

generations for the smaller population sizes, but not as smoothly, and does not reach quite

 206

to the same level as the larger population examples (the bumpy green line is the 20th

percentile chromosome down from the fittest in each generation).

Figure 4.18. OOTW SoS GA snapshots with population =100, total generations = 50

 207

Figure 4.19. OOTW convergence with generations and population = 40

4.2.4 Results of SAR Modeling. The SAR model did not have exactly the same

characteristics as the ISR model in the GA as shown in Figure 4.20 and Figure 4.21.

There seemed to be a plateau of SoS assessments at the average level. The remainder of

the evaluation functions operated quite similarly to the other SoS examples. With the

most commonly used systems being the highest performing systems and the lowest cost

systems. Figure 4.22 shows an example of implementing the second wave of SAR SoS

development; it is not as good as the first wave because more systems joining in the

second wave cost more, causing affordability to go down by a large amount.

The original inputs for the exploration portion of the method for SAR is shown in

Figure 4.23; the result of changing the membership function ranges to get more attribute

results into the ‘above average’ or ‘acceptable’ MF is shown in Figure 4.24. SoS

assessment values on the left in the original do not exceed 2.6 on the scale of 4; but after

easing the robustness MF limit (lower left graph), the example on the right has many

 208

more population members around an SoS assessment of 3.6. The simple adjustment to

the robustness MF mapping makes the SoS evaluation improve so much because it

widens the choices available in the other attributes. In a real example, coordination

among the stakeholders would be necessary to alter the membership function edges this

way, but for demonstration purposes, it was only necessary to slightly alter the robustness

MF edge to get different results in the valueExplore.m function, confirming that the GA

could then be run far more successfully.

Figure 4.20. Snapshots of typical GA generations of 29 system SAR convergence

 209

Figure 4.21. Convergence and final SAR SoS configuration, first wave epoch

Figure 4.22. First wave on bottom; second wave on top

A different version of the fuzzy inference system with fewer rules and triangular

membership functions was also used on the SAR problem. Figure 4.25 shows a selected

chromosome very similar to that seen in Figure 4.20 and Figure 4.21 , with the original

fuzzy inference system formulation. The alternate formulation appears to have slightly

larger variations in the attribute evaluations per generation, but the plateaus in the SoS

 210

assessments within a population are still there and the overall architecture suggestion is

quite similar. In either formulation, improvement is not seen beyond approximately

generation 20. More research is probably indicated to discover better ways to select

appropriate MF shapes along with the crossover points between them for the attributes

they characterize. This was merely a demonstration of the impact of choosing different

MF shapes (trapezoidal vs. triangular in this case).

Figure 4.23. Robustness MF edges are changed between these two runs

Figure 4.24. SAR runs show impact of robustness MF change in Figure 4.23

 211

Figure 4.25. Alternate SAR formulation provides a similar architecture

4.2.5 Results of Toy Modeling. The toy model used functional dependency

network analysis (FDNA) introduced by Pinto and Garvey to examine supply-chain

problems (Garvey and Pinto 2009). It is a very different modeling paradigm than the ISR

and SAR problems. Instead of a netcentric factor in the performance, evaluation, it uses a

very complicated network application of strength of dependency (SOD) and criticality of

dependency (COD) for each interface between nodes. The initial toy model was solved

for choices of only one system from each type of system, with different SOD and COD

values for each interface. Later, the FDNA problem was solved in general. Then, any

number of each type of system was allowed in the SoS.

4.2.5.1 Initial Toy model results. The original implementation of the Missouri

Toy problem admitted only a few choices; it required one of each of the five types of

 212

systems; there were only choices for the 3 central systems: SatA, UAV, and SatB. There

were only 8x6x6 = 288 choices possible. These were easy to exhaustively list and

evaluate, as shown in Figure 4.26 to Figure 4.28. Here the chromosome has successive

selections of SatA1 – SatA8, UAV0 – UAV5 and SatB1-SatB6, selected in a nested loop

to run through all 288 chromosomes. The input SOD and COD of each component is

shown on page E13 of Appendix E. The selection of different single systems provide

different strength and criticality of dependency of the resulting five member SoS. The

output at the Carrier is the green line on each of the graphs. When Ground has all its

capability of 100 in Figure 4.26, there is no dependence on selection of intermediary

systems in the result. When Ground capability is reduced, as in Figure 4.27 and Figure

4.28, then one can see there is impact to the result at the Carrier that is dependent on

selected path, frequently showing large changes for a single system’s different choice.

Figure 4.26. Output performance for Ground station input performance of 100

 213

Figure 4.27. Output performance for Ground station input performance of 75

Figure 4.28. Output performance for Ground station input performance of 25

4.2.5.2 Generalized FDNA implementation results. With the change to allow

any number of each of the three central system types in the Toy problem, it now looks

much more like the other SoS problems, with numerous potential systems and interfaces.

 214

Neither the concept of netcentricity nor achievability of interfaces apply to the Toy

problem; all the interfaces are possible to the chromosome, but only some have SOD and

COD values that provide connectivity in the correct places for the problem. Interfaces

with no corresponding SOD/COD values are ignored. Allowed SOD and COD values

were filled with random numbers in the appropriate ranges, as shown in Figure 4.29 and

Figure 4.30 through color-coding.

Figure 4.29. COD values for generalized Toy problem

 215

Figure 4.30. SOD values for generalized Toy problem

The exploration of the generalized, modified Missouri Toy problem architecture

can now be seen in Figure 4.31. This shows how the random chromosomes fit within the

attribute evaluation membership functions allowing for the SoS assessment to work well.

Several snapshot views of the GA generations are shown next in Figure 4.32, and the

final chromosome with convergence is shown in Figure 4.33, with much similarity to the

previous SoS examples. The correlation coefficients between SoS assessment and

attribute evaluations in the Toy problem in Table 4.18 are all less than 0.6 except

affordability, which was artificially manipulated to control the selection of multiple

systems. This would not be regarded as significant in most cases.

 216

Figure 4.31. Exploration of the space with 300 biased Toy chromosomes

Table 4.18. Cross correlation matrix for the Toy problem shows minor correlation

 q i/f 5*sys crisp 'PerfRatio' 'Afford' 'SingPtFailure' 'StrOfDepen'

 1 0.99009 0.92912 -0.33646 -0.46849 -0.93025 0.82492 -0.57218

 0.99009 1 0.92976 -0.37072 -0.46607 -0.93175 0.81132 -0.57316

 0.92912 0.92976 1 -0.38345 -0.52782 -0.99021 0.85458 -0.60375

-0.33646 -0.37072 -0.38345 1 0.28594 0.38387 -0.066851 0.49082

-0.46849 -0.46607 -0.52782 0.28594 1 0.52006 -0.35869 0.46165

-0.93025 -0.93175 -0.99021 0.38387 0.52006 1 -0.85366 0.58332

 0.82492 0.81132 0.85458 -0.066851 -0.35869 -0.85366 1 -0.51362

-0.57218 -0.57316 -0.60375 0.49082 0.46165 0.58332 -0.51362 1

 217

Figure 4.32. Early generations of Toy problem GA run shows selected interfaces

changing

4.2.6 Validation with a Large, Real World Example. Propriety data from the

Army and MITRE were used to validate the method with a large SoS problem. The

architecture generation method seems to be capable of dealing with increased SoS size.

The computational scalability of the method seems to be quite good. Matrices are used

primarily for keeping track of the model data and relationships. No matrix inversions or

large matrix multiplies are required that might cause a programming implementation to

run out of memory. The fuzzy GA runs in a few seconds to a few minutes in Matlab on a

high-end PC, depending on population size and number of generations. The most time

consuming computational task is reading and writing to Excel spreadsheets within

 218

Figure 4.33. Final generation of Toy problem; convergence plateaued around generation

seven of 50

Matlab for interoperability with the other segments of FILA-SoS. The validation

problem from MITRE had 111 systems, with 74 capabilities as shown in Figure 4.34.

The figure shows 111 systems with costs and performance (down the left) and 74

capabilities (across the top); shaded areas at intersections represent the capabilities of

each system. It had seven KPAs with five levels of granularity in the membership

functions. The fuzzy inference system had 18 rules, shown in Figure 4.35, compared to

the 11 rules in the four attribute ISR, OOTW, SAR, and Toy problems. The SARone

example with triangular MFs had only 4 rules. The principal and most time-consuming

things that had to be changed in the software for the much larger validation problem were

the display subroutines. These were successfully modified to be quite general now, as

shown in Appendix B.

 219

The approach and process steps in the domain independent portion of the method

worked quite well. The most risky area for expansion is communication with and level

setting among all the systems, capabilities and stakeholders in a larger SoS. Gathering

the other domain dependent data such as cost and schedule estimates, deciding what

minor changes could be made, deconstructing system capabilities, and developing

attribute evaluation algorithms is more time-consuming for the greater number of

systems. However, with that many systems, patterns emerge and many elements might

be filled in rapidly.

Growth in the number of KPAs would significantly drive the amount of analysis

required to create evaluation algorithms, choose membership function shapes for each

one, and check their validity. Growth in the number of KPAs would very likely also

drive a larger number of rules in the FAM. When all these model parameters grow in

number, the number of iterations in the sampling runs can increase substantially to insure

everything is correctly coded for all the combinations. The coordination and SME

reviews grow with the number of systems. On the other hand, as the number of systems

grows, the impact of individual systems is more diffuse; therefore, the need for every

system to be modeled very accurately (as well as errors in modeling the impacts of each

bit in the chromosome) diminishes. Therefore, there are several straightforward linear

factors that increase the time and effort it takes to create, socialize, and vet the larger

model, but the experience in the FILA-SoS validation problem shows this could be fairly

reasonable if the stakeholder community cooperates.

The attributes definitions and the granularity of each attribute were provided by

the customer in the validation problem. Once again, the population evaluations were not

 220

strongly correlated, as shown in Table 4.19, although more highly correlated than the

prior ‘made up’ examples in the Table 4.17 and Table 4.18. This means that the

stakeholders had chosen good attributes for their problem. Finally, the upper triangular

matrix form of the architecture as shown in Figure 4.36, is starting to show bands of

unselected systems where they were relatively expensive, even though those systems

could provide many capabilities; many of those capabilities were available from the other

systems as well. This is a reasonable way to select an arrangement of systems and

interfaces for an SoS

Figure 4.34. Very large input data matrix for the LVC problem (gray cells contain ‘1’)

 221

Figure 4.35. 18 fuzzy rules with seven attributes on the left, compared to 11 rules and

four attributes of other models

Table 4.19. Correlation coefficients for the LVC problem

Pop

Seq

of

I/F

0f

Sys

SoS

Asses

s

Attr 1 Attr 2 Attr 3 Attr 4 Attr 5 Attr 6 Afford

Pop Seq # 1 0.997 0.984 0.637 0.935 0.997 0.861 0.536 0.98 0.67 -0.996

of I/F 1 0.988 0.633 0.944 1 0.87 0.564 0.984 0.674 -0.999

0f Sys 1 0.622 0.946 0.988 0.862 0.569 0.994 0.683 -0.988

SoS

Assess
 1 0.514 0.634 0.692 0.657 0.62 0.589 -0.632

Attr 1 1 0.944 0.747 0.396 0.952 0.689 -0.945

Attr 2 1 0.87 0.564 0.984 0.674 -0.999

Attr 3 1 0.67 0.854 0.589 -0.871

Attr 4 1 0.559 0.312 -0.561

Attr 5 1 0.687 -0.985

Attr 6 1 -0.678

Afford 1

 222

Figure 4.36. Example 111 system example shows bands of less selected systems

 223

5. CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

A fuzzy genetic method for modeling, assessing, testing and improving SoS

architectures was developed using the FILA-SoS meta-architecture. This method

generally follows the architecture development method of the DoDAF 2.02 for systems,

extended to SoS. Several hypothetical but reasonable examples of various sizes were

analyzed by following the method to show its viability through application. It should

come as no surprise that modeling an SoS architecture is a lengthy and complex task.

The approach of eliciting key attributes through conversations with stakeholders, and

building, sharing and vetting models of those attributes that depend on the SoS

architecture produces a high payoff in understanding. This understanding extends to the

problem domain, potential SoS solutions, and numerous issues facing the SoS designers.

Combining the attribute evaluations through a fuzzy inference system, also based on

discussions with stakeholders, is a powerful tool to help stakeholders understand trade

spaces, impacts of their demands, and opportunities not previously apparent.

Several new techniques were pioneered in this research. The usefulness of the

upper triangular form of the meta-architecture, something that seems so obvious now,

took a long time to discover. A definition of robustness (for SoS) involving the least loss

of functionality for the SoS, after losing participation of any single system, was

developed and implemented. This definition of robustness could easily be extended by

recursing it to the loss of any number of systems. A generic algorithm for solving the

extended FDNA Toy problem was found. All the Matlab code for the implementation of

these techniques is listed in Appendices B and C.

 224

The research showed that building models of acknowledged SoS architectures

may be accomplished using the generalized method in a real world system example in the

proprietary LVC training SoS. The method is helpful in discovering and defining issues,

exploring ways to satisfy conflicting stakeholder needs, and in showing the impact of

policies (through the rules) on architecture selection and evolution. Key performance

attributes that depend on participation in the meta-architecture can be discovered through

facilitated interactions with stakeholders and SMEs. The modeling approach can be

reused across similar SoS domains with minor modifications. A subset of all, but a still

useful group, of KPAs can be defined such that they do depend strongly on the

participation in the meta-architecture. Relatively simple fuzzy rule-based systems can

combine the KPA evaluations to an overall SoS assessment. The fuzzy genetic approach

has been demonstrated to be viable for finding good solutions to several SoS architecting

problems under a restrictive meta-model of simple, undirected network graphs

representing the system interfaces. This was extended to the directed network in the

extended FDNA MITRE Toy problem.

Setting the boundaries of the membership functions, and scaling them

independently, is a good way to get rapid understanding about the SoS architecting

problem. Because it is tedious to reprogram the Matlab Fuzzy Toolbox with new

boundaries, the variable scaling discussed in section 3.3.3 shows how a type of mapping

between fuzzy and real world variables can be accomplished quickly and easily in

different but related problem domains. This also allows reused solutions which appear

similarly shaped in the fuzzy domain but mapped differently in the real domain. By

following the map, switching between fuzzy and real values provides a rapid approach

 225

for answering questions about an architecture analysis, or for presenting results to

stakeholders in the most understandable way tailored to their specific concerns.

5.2 FUTURE WORK

Extensions of the method in the areas of partial (or perhaps half-hearted)

participation by the systems, instead of binary (all or nothing) participation seems to be

possible and a fruitful area to investigate. Introducing more uncertainty in the attribute

membership functions through use of Type II fuzzy sets or by differently shaped

membership functions seems promising for certain types of problems. The process of

finding ‘good’ suggested architectures through application of the fuzzy genetic approach

appears to be useful for proposing an SoS architecture. When following the wave model

of evolution of an acknowledged SoS, assessing the realizable, negotiated SoS

architecture can aid the update plan for the next epoch. Investigations into finding the

‘best’ shape for membership functions either from the stakeholder discussions or from

additional exploration of the trade space seem well warranted.

FILA-SoS research continues by building improved negotiation models and an

attractive graphic user interface for building the SoS model. These steps will allow the

software to be used in a new SERC sponsored SoS virtual laboratory. The fuzzy assessor

approach continues to be used in the latest series of SERC research tasks on an SoS for

control of counterfeit parts risk to major DoD weapons systems. The systems in this SoS

include, among others: original equipment manufacturers, vendors in supply chains,

parts brokers, part retesting standards, the FBI, the Customs service, the military services,

and the Justice Department. Making more practitioners aware of the entire FILA-SoS

approach, and how to implement the approach on common problems is proposed through

 226

short courses for industry and tutorials that could be provided at several annual systems

engineering conferences and workshops. Additionally, the FILA-SoS approach is being

used in a graduate-level systems architecting course at Missouri S&T.

APPENDIX A

DETAILED GULF WAR PERFORMANCE MODEL

228

Performance – for the Gulf War ISR Domain example is made up of surveillance

coverage in area per hour and wavelength region, combined with ability to reach the site

of a discovered but fleeting high value target before it disappears.

 Background Assumptions: 100,000 square miles in which to hide; 30 minutes

from start to finish for an operational launch; on the order of 60 TELs operational;

an individual TEL might hide for several days, so the probability of an individual

TEL popping out to make a launch is only about 10% per day.

Rules for combining capabilities into performance:

 Fighters can provide modest capability in non-traditional ISR with on board

sensors, and deliver several weapons types, but they cost more to operate than

many other systems and are relatively poor at ISR tasks

 Remote Piloted Aircraft (RPAs) can provide better ISR capabilities with

somewhat less speed and single weapon capabilities, but also require a control

station for each 2 RPAs. They are considerably cheaper to operate than fighters

 JSTARS can provide considerable radar ISR capability, and LOS and BLOS

relay, but no weapons

 DSP can provide reliable notice of an actual launch over the entire search area,

which means there definitely was a TEL in the open at that launch point, but it

does not provide very precise localization of the launch point, meaning some

search is still required upon an armed vehicle’s arrival in the vicinity, and it takes

a few minutes to receive the data from DSP. The TEL can hide quickly after

launch, leaving not much time to arrive there, find and attack it before it

disappears again. In the performance model, the DSP coverage was multiplied by

229

0.01 to account for the likely lack of closure from a DSP detection. DSP is

basically free to operate, because it is used for other purposes

 U-2 or Satellite can cover a large area with high resolution, but turnaround time is

hours; participation of U-2 or Satellite effectively decreases total area to be

searched by other ISR platforms by a reasonable percentage by ruling out certain

areas, but does not affect real time surveillance success

 The area to be covered is divided into sectors by the number of participating

surveillance systems

 Time to arrive is proportional to the square root of the sector area being covered

by each type of system, plus some time for transmitting data to, and double

checking by, the ‘exploit’ systems to insure the target is valid and not in a

restricted area

 Probability of successful engagement is defined as 50% if the coverage rate is the

total area in half an hour by all the systems, and the time to arrive for an attack

after detection is less than 10 minutes. Fighters or RPAs making the discovery

are able to attack relatively quickly, transit time is typically less than 5 min for

fighters airborne in the adjacent sector, 10 min for RPAs; other types of detection

require transit time for the attack vehicle which may be longer if it is in a different

sector.

APPENDIX B

MATLAB CODE

 231

Figure B-1. Structure of genetic algorithm and fuzzy assessor Matlab code:

i

Setup<fname>.m

EvalOne.m

evalsos.m

Attribute Model
Evaluations

filename.fis

Feas/Achievable Display

GAwave.m

GA Optimizer

Matlab FuzzyToolbox
builds filename.fis

SoS Designer.exe for building
domain data file

<fname>.xlsx

 232

Table B-1. Structure of input data and Matlab files

• <fname>.xlsx Domain input data file.

Filled in by hand to start, but now there is a GUI

program to fill it in easier with previews of the data to

reduce typos

Input data parameters may need to be tweaked

together with mapfuz membership function edge

inputs to get a reasonable model.

5 to 7 specifically named sheets must be included in

the input data file

• GAwave.m Returns a GA ‘optimized’ good architecture instance

(chromosome) in excel file <fname>.xlsx

• evalsos.m Inputs a chromosome, and probem type; outputs the

crisp assessment and evaluation of each individual

attribute

• Feas.m Calculates the achievability matrix using the system

number of the first of the common communications

systems at the bottom of the systems list

• Attributes List of items to evaluate an architecture against;

combined in rules of fuzzy inference system, and

named in the domain input file

• SoSRules Embedded in Matlab fuzzy inference system files

Fuzzeval44.fis, lvc.fis, sumonly.fis,

ToyProb.fis

Very simple…don’t pick any worst ones; all good is

excellent; performance and affordability trump

robustness & flexibility.

• Dispfech.m Input a chromosome and a achievability matrix; output

is a graph of systems & interfaces, and assessment

 233

• mapfuz Input matrix that maps the range of each attribute

gradation to the fuzzy values; currently uses g +1

values for g gradations;

• EvalOne Reads in the input domain file with a chromosome,

outputs the linear chromosome, attribute evaluations,

and overall SoS assessment to the same file

• fdn22Atoy.m Generic FDNA solver called inside evalsos.m

• ReadIn.m Reads in five Excel sheets of information; system

characteristics, capabilities, either or both the upper

triangular and the linear form of the chromosome, and

a control sheet for the fuzzy inference system and

genetic algorithm

• setup<fname>.m Sets the filename for ReadIn.m, and the number of

chromosomes to try in valueExplore.m

• penalty.m Provides a penalty/reward for the exponent of the

netcentric boost in the performance

• valueExplore.m Biases the chromosomes in a population from few to

many randomly placed ones to help explore the SoS

design space; plots the data out similar to the GA

INITIAL GA MUTATION PROCESS

Early work on the GA routine was done with a ‘try a little of everything’

approach. Two mutation processes are imposed on the sorted population of

chromosomes. The single best chromosome is always retained, along with less good

chromosomes down to about the 20th percentile of the population. The lowest three

retained chromosomes are replaced by the chromosome at the 40th, 60th, and 80th

percentile. Position of the chromosomes in this adjusted quintile is then randomized.

 234

This group of chromosomes is then replicated four times to fill out the next generation’s

starting population. A selectable parameter, Delta, typically around 1% or 2%, is the

threshold for a uniformly distributed random number generator to decide to mutate each

bit of each chromosome in the first quintile of the population. In the second quintile, the

decision to mutate a bit is made twice as likely (rnd < (2 times Delta). Sexual crossover

is performed at a random position for a random length substring of bits between the third

and fourth quintile of chromosomes to generate the population segments for the next

generation. In the last quintile of the population, a string of random length, starting at a

random position, is transposed with the following bit string within each chromosome.

Any reason for preferring any bit positions or genes within the meta-architecture

chromosome, such as the first m bits representing the systems, fell apart in the definition

of robustness, where any entire system would be removed as part of the evaluation. The

choice of all three methods of mutation was deemed appropriate to insure a broader

exploration of the space by the GA. The size of Delta, Population and number of

Generations may be selected to complement each other to provide quicker execution or

fuller coverage of the space. It is felt that the selection of a linearly biased number of

‘one’ bits in the initial population speeds up the convergence over a purely random set of

initial chromosomes.

FINAL RANKED ROULETTE GA ALGORITHM

Some of the GA literature suggests that a ranked roulette based algorithm, with

higher fitness valued chromosomes having a higher likelihood of propagating, may be a

faster converging GA approach (Kumar and Jyotishree 2012). The current version of

GAwave.m uses the ranked roulette based algorithm. Only the highest fitness

 235

chromosome is guaranteed to be in the next generation. In the initial version of the GA

algorithm, a greater proportion of the higher ranked chromosomes in each generation

were propagated to the next generation. This change did not seem to change the rate of

convergence, but it does seem to lower the average assessment of the remainder of the

population using the new algorithm.

The remainder of this appendix is a listing of all the Matlab Code used in the

project. Each Matlab function or subroutine starts on a new page.

 236

function [chdisp, mov] =dispfech(ch1,fe,crisp);
% version 1 aug 2015 Lou Pape FILA-SoS
% creates a color coded display of an m system chromosome square,

w/evaluation,
% and a frame of a movie
% given a chromosome, the feasibility matrix, and the evaluation
warning('off');
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

xywh=zeros(1,4); % size of display screen array set up
dia=zeros(1,m); % more array setup...
dia=1:m;
chdisp=zeros(m); % size the color grid to display
grn=0; % set counters to zero
rd=0;
bl=0;

for i=1:m % check feasibility & usage of each interface
 for j=i:m
 if fe(i,j)==0
 if ch1(i,j)==0
 chdisp(i,j)=64;%good - dark brown, unused and

infeasible-good
 else
 chdisp(i,j)=55;%bad -red, used but infeas
 rd=rd+1;
 end
 else
 if ch1(i,j)==0
 chdisp(i,j)=12;%toobad, could have done better - blue
 bl=bl+1;
 else
 chdisp(i,j)=40;%just right, yellow/Green, ideal
 grn=grn+1;
 end
 end
 end
end

xywh=get(gcf,'Position'); %this gets the size of the window, if it's

been changed
set(gcf, 'Position',xywh); %this "sets" the window size for the

getframe below

image(chdisp); % shows the color codes for each sys &

interface
hold on % then type labels & summ. data about this

chrom on it
typ= systyp{1}(1:3);
 widx=xywh(3)-xywh(1);
 hty=xywh(4)-xywh(2);
for i=1:m-1

 237

 if ~strcmp(systyp{i}(1:3),typ) % if type changes, then print
 text(m+(m/26),i,systyp(i),'BackgroundColor',[.7 .9

.7],'FontSize', (xywh(4)/(2.5*80))); %rt lable
 text(i-(length(char(systyp{i}))/7)-1.5 , i

,systyp{i},'BackgroundColor',[.7 .9 .7],'FontSize', xywh(4)/(2.5*80));

%lft lbl
 typ=systyp{i}(1:3);
 end
end

plot(dia,dia); % a reminder line on the systems (diagonal)

text(.2*m,.8*m, num2str(crisp),'BackgroundColor',[.7 .9

.7],'FontSize', (xywh(4)/120));
 %now print how many green(used, feas) interface, bad(

used, infeas), &
 %could be better (unused but feasible) interfaces...and

print them
text(.16*m, .95*m, [num2str(grn) ' us-f; ' num2str(rd) ' us-inf; '

num2str(bl) ' un-f']...
 ,'BackgroundColor',[.7 .9 .7],'FontSize', (xywh(4)/170));
hold off
mov=getframe(gcf); %save a movie frame for each gen's or

iteration's picture
end

 238

%Eval and assess One Chromosome, write out chrom, evaluations &

assessment to
%sheet Architecture_Chromosome

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin prot;

mm2=m*(m+1)/2;

[chrom]=Readin(fname);

[mf mff crisp]=evalsos(chrom);

%% write the chromosome & evaluations out to the chromosome sheet
blk=['c7:' num2col(2+mm2) '7'];
xlswrite(fname, chrom, 'Architecture_Chromosome', blk); %fuzzy

numbers
xlswrite(fname,[mff'] ,'Architecture_Chromosome',['b9:b' num2str(8+g)]

) ;
xlswrite(fname,crisp,'Architecture_Chromosome','b7') ;

attrlabe=cell(2,1);
attrlabe=cellstr(['Arch';'Qual']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','b5:b6') ;
attrlabe=cell(1,1);
attrlabe=cellstr(['Architecture']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','a7') ;
attrlabe=cellstr(['Fuzzy']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','b8') ;
attrlabe=cellstr(['Real']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','c8') ;

attrlabe=cell(g,1);
attrlabe=cellstr(attr); %attribute names in a column...
xlswrite(fname,attrlabe,'Architecture_Chromosome',['a9:a' num2str(8+g)

]); ;

xlswrite(fname,[mf'],'Architecture_Chromosome',['c9:c' num2str(8+g)])

;
% real values, col c

attrlabe=cell(3,1); %GA control vars
attrlabe=cellstr(['gens';'popu';'delt']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','f9:f11') ;
xlswrite(fname,[gens ; pop ; mu],'Architecture_Chromosome','e9:e11')

;

xlswrite(fname,[clock], 'Architecture_Chromosome','h9:m9') ; % put the

date/time of the run on it, too
xlswrite(fname,cellstr(fname), 'Architecture_Chromosome', 'h10');

fclose('all');

 239

function [mf, mff ,crisp]=evalsos(chro)
%%evaluates each attribute for the chromosome and other input domain

data
warning('off');
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

fismat=readfis(fisfile{1});
% fdna attributes are: perfratio, afford (inv of cost), sod,

singleptfail...
% SAR, ISR, attr are perf, afford, flex, robust
% LVC attr are AU Ext FaSupt NetRead TrCap ExerSupted

Affordability

mm2=m*(m+1)/2;
sc=lin2sc(chro,m);
fe=feas(sc);
%% now the case statements for each type of problem
switch probtype

 case 'SAR'
%%
%performance...
cover=0;
maxcover=sum(capsys(:,:)*perf(:,1));

for i=1:m
 for j=1:n
 cover=cover+chro(i)*capsys(j,i)*perf(i,1);
 if perf(i,5)==j % add a double helping for the main

capability
 cover=cover+chro(i)*perf(i,1)*capsys(j,i);
 end
 end
end
per=cover/maxcover; %fraction of all ones for systems perfsum

(capsys(:,:)*perf(:,1))
per=per*(1-bump)^penalty(fe,sc);
%%

%affordability
cost=0;

for i=1:m
 cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i));
 % sum of ops cost of system plus interface ccost for each

interface
 % (minus counting the system twice in sum of i/f row & col
end
%%

%singlept failure in sources of capability test for flexibility

 240

flx=capsys*chro(1:m)'; % how many systems with each capability
flex=0;
for i=1:n
 if flx(i)<2
 flex=flex+1;
 end
end
%%
%robustness - steps through repetitively to subtract a system and all

it's interfaces, recheck
%performance...

maxloss=0;
loss=zeros(m,1);
for k=1:m
 test=sc; %start with original
 test(:,k)=0;
 test(k,:)=0; %sets the kth sys & it's interfaces to zero

 fe=feas(test);
 cover=0;
 for i=1:m
 for j=1:n
 cover=cover+test(i,i)*capsys(j,i)*perf(i,1);
 end
 end
 perr=cover/maxcover;
 perr=perr*(1-bump)^penalty(fe,test);
loss(k)=per-perr; % per should usually be bigger than perr
end
maxloss=max(loss);

mf=zeros(h,1);
mff=mf; %also zeroes
mf=[per, -cost, -flex, -maxloss]; %real world values, negative if

better closer to zero
for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end

mf=[per, -cost, -flex, -maxloss];
for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end

crisp=evalfis([mff],fismat); %ending in f is scaled to 0-h (# of mf's)

%%
 case 'ISR'

 cover=0;
maxcover=sum(capsys(:,:)*perf(:,1));

 241

for i=1:m
 for j=1:n
 cover=cover+chro(i)*capsys(j,i)*perf(i,1);
 end
end
per=cover/maxcover; %fraction of all ones for systems perfsum

(capsys(:,:)*perf(:,1))
per=per*(1-bump)^penalty(fe,sc);
%%

%affordability
cost=0;
sc=lin2sc(chro,m);
for i=1:m
 cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i));
 % sum of ops cost of system plus interface ccost for each

interface
 % (minus counting the system twice in sum of i/f row & col
end
%%

%singlept failure in sources of capability test for flexibility
flx=capsys*chro(1:m)';
flex=0;
for i=1:n
 if flx(i)<2
 flex=flex+1;
 end
end
%%
%robustness - steps through repetitively to subtract a system and all

it's interfaces, recheck
%performance...

maxloss=0;
loss=zeros(m,1);
for k=1:m
 test=sc; %start with original
 test(:,k)=0;
 test(k,:)=0; %sets the kth sys & it's interfaces to zero

 fe=feas(test);
 cover=0;
 for i=1:m
 for j=1:n
 cover=cover+test(i,i)*capsys(j,i)*perf(i,1);
 end
 end
 perr=cover/maxcover;
 perr=perr*(1-bump)^penalty(fe,test);
loss(k)=per-perr;
end
maxloss=max(loss);

mf=zeros(h,1);

 242

mff=mf;
mf=[per, -cost, -flex, -maxloss]; %real world values

for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end

crisp=evalfis([mff],fismat); %ending in f is scaled to 0-h (# of mf's)

%%
 case 'LVC'
 switch m %22 systems requires different evaluation algorithm

than 111
 case 22

 %% calculate au's real value

au=0;
for i=15:20 %only the au systems
 %add together sys present, capabilities of each, plus feasible
 %interespces; do we add a multiplier, or subtract infeasible
 %interespces??

 for j=1:4 %add first: all the capabilities not controller, not

comm sys
 if sc(i,i)==1 %system is present
 au= au+capsys(j,i) ;
 end
 end %then add the feasible interfaces to anywhere
 for j=i+1:m %sum the row of interespces; could do till com1...
 au=au+sc(i,j)*fe(i,j); %not feasible, don't count
 end
 for j=i-1:-1:1 %sum the column of interfaces going up
 au=au+sc(j,i)*fe(j,i);
 end
end

%% calculate extens

ex=0;
for i=1:m %now count everything hooked to hi capacity comms; cap *

fe interface
 for j=i+1:m
 %for k=60:61 %hla=97, dis=98 as systems
 k=4;
 if capsys(k,i)==1 || capsys(k,j)==1
 ex=ex+sc(i,j);%*fe(i,j); removed the feasibility
 % end
 end
 end
end

%% fact support does not consider feasibility

 243

fac(1,4)=zeros;

for i=4:5 % large groups
 if sc(i,i)==1
 for j=i+1:com1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 end
end
for i=8:9 %med large groups
 if sc(i,i)==1
 for j=i+1:com1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 end
end
for i=10:10 % mid level
 if sc(i,i)==1
 for j=i+1:com1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 end
end % fac(1) now has feasible interfaces with large & med

for i=1:2
 if sc(i,i)==1
 for j=i+1:com1
 fac(2)=fac(2)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(2)=fac(2)+sc(i,j)*fe(i,j);
 end
 end
end % fac(2) now has feasible interfaces with outside groups

for i=6:7
 if sc(i,i)==1
 for j=i+1:com1
 fac(3)=fac(3)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(3)=fac(3)+sc(i,j)*fe(i,j);
 end
 end
end % fac(3) has feasible interfaces with different outside groups

 244

for i=10:com1-1
 if sc(i,i)==1
 for j=i+1:com1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 end
end

%fac(4) has all the remaininig interfaces
fa=0;
if fac(1)>3 %traditional
 fa=fa+1;
 if fac(2)> 3 %new combined; can't get to higher one unless you

have enough below
 fa=fa+1;
 if fac(3) >5 % outside groups
 fa=fa+1;
 if fac(4) >30 %everyone
 fa=fa+1;
 end
 end
 end
end

%fa now has 4 if everyone has sufficient interfaces

%% netreadiness

nr=0;
nr=sum(sum(sc .* fe)); %% sum of used feasible interfaces
nr=2*nr*(1+bump)^penalty(sc, fe); %give it a netcentric bump for

feasible interfaces (again?)
nr=nr/mm2;

%% training capabilities

tc=0;
for i=1:com1
 tc=tc+sc(i,i)*perf(i,1);
end %sum of present systems times their relative value in the input

domain data

%% exercises supported

es=0;
esp=zeros(1,4);
%if sc(1,1)==1
for i=15:19
 esp(1)=esp(1)+sc(i,i); %counts au's, too;
end

 245

for i=4:5
 esp(2)=esp(2)+sc(i,i); % large
end
for i=1:2:3
 esp(3)=esp(3) +sc(i,i); % hq
end
for i=2:2
 esp(4)=esp(4)+sc(i,i); %counts facts present (not talking to them

tho)
end
for i=6:7
 esp(4)=esp(4)+sc(i,i); %counts facts present (not talking to them

tho)
end
esp(4)=esp(4)+sc(2,2); %adds other groups

if esp(1)>0 % can't get to next level unless enough of lower
 es=es+1;
 if esp(2)> 0 % high level
 es=es+1;
 if esp(3) >0 % mid level
 es=es+1;
 if esp(4) >0 % outsiders
 es=es+1;
 end
 end
 end
end % es now must have some of each below to get one above
%end %can only get exercises supported if exercise monitor is there!
%% affordability
af=0;
for i=1:m
 af=af+sc(i,i)*perf(i,3); %counts operating cost for systems
 for j=i+1:m
 af=af+sc(i,j)*perf(i,2); %counts interfacing cost per

interface
 end
end

%summarizing:
[mf]=[au, ex, fa, nr, tc, es, -af];
for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end
crisp=evalfis([mff],fismat); %ending in f is scaled to 0-h (# of mf's)

 case 111

 %% calculate au's real value

au=0;
for i=60:90 %only the au systems
 %add together sys present, capabilities of each, plus feasible
 %interespces; do we add a multiplier, or subtract infeasible
 %interespces??

 246

 for j=2:53 %add first: all the capabilities not controller, not

comm sys
 if sc(i,i)==1 %sys is present
 au= au+capsys(j,i) ;
 end
 end %then add the feasible interfaces to anywhere
 for j=i+1:m %sum the row of interespces; could do till com1...
 au=au+sc(i,j)*fe(i,j); %not feasible, don't count
 end
 for j=i-1:-1:1 %sum the column of interfaces going up
 au=au+sc(j,i)*fe(j,i);
 end
end

%% calculate extens

ex=0;
for i=1:m %now count everything hooked to hi capacity comms; cap *

fe interface
 for j=i+1:m
 for k=60:61 % hi cap comm sys
 if capsys(k,i)==1 || capsys(k,j)==1
 ex=ex+sc(i,j);%*fe(i,j); removed the feasibility
 end
 end
 end
end

%% fact support does not consider feasibility

fac(1,4)=zeros;

for i=21:25 % large groups
 if sc(i,i)==1
 for j=i+1:com1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 end
end
for i=28:32 %med large groups
 if sc(i,i)==1
 for j=i+1:com1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(1)=fac(1)+sc(i,j)*fe(i,j);
 end
 end
end

for i=2:9

 247

 if sc(i,i)==1
 for j=i+1:com1
 fac(2)=fac(2)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(2)=fac(2)+sc(i,j)*fe(i,j);
 end
 end
end % fac(2) now has feasible interfaces with all if's

for i=10:20 % mid level
 if sc(i,i)==1
 for j=i+1:com1
 fac(3)=fac(3)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(3)=fac(3)+sc(i,j)*fe(i,j);
 end
 end
end % fac(3) now has feasible interfaces with large & med

for i=26:27
 if sc(i,i)==1
 for j=i+1:com1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 end
end

for i=33:com1-1
 if sc(i,i)==1
 for j=i+1:com1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 for j=i-1:-1:1
 fac(4)=fac(4)+sc(i,j)*fe(i,j);
 end
 end
end %fac(4) has all the remaininig interfaces

%fac(4) has all the remaininig interfaces
fa=0;
if fac(1)>0 %traditional
 fa=fa+1;
 if fac(2)> 0 %new combined; can't get to higher one unless you

have enough below
 fa=fa+1;
 if fac(3) >0 % outside groups
 fa=fa+1;
 if fac(4) >0 %everyone
 fa=fa+1;
 end
 end

 248

 end
end

%fa now has 4 if everyone has sufficient interfaces

%% netreadiness

nr=0;
nr=sum(sum(sc .* fe)); %% sum of used feasible interespces
nr=2*nr*(1+bump)^penalty(sc, fe); %give it a netcentric bump for

feasible interfaces (again?)
nr=nr/mm2;

%% train capabilities

tc=0;
for i=1:com1
 tc=tc+sc(i,i)*perf(i,1);
end %sum of present systems times their relative value in the input

domain data

%% ex supported

es=0;
esp=zeros(1,4);
%if sc(1,1)==1
for i=15:19
 esp(1)=esp(1)+sc(i,i); %counts au's, too;
end
for i=4:5
 esp(2)=esp(2)+sc(i,i); % large
end
for i=1:2:3
 esp(3)=esp(3) +sc(i,i); % hq
end
for i=2:2
 esp(4)=esp(4)+sc(i,i); %counts facts present (not talking to them

tho)
end
for i=6:7
 esp(4)=esp(4)+sc(i,i); %counts facts present (not talking to them

tho)
end
esp(4)=esp(4)+sc(2,2); %adds other groups

if esp(1)>0 % can't get to next level unless enough of lower
 es=es+1;
 if esp(2)> 0 % high level
 es=es+1;
 if esp(3) >0 % mid level
 es=es+1;
 if esp(4) >0 % outsiders
 es=es+1;

 249

 end
 end
 end
end % es now must have some of each below to get one above
%end %can only get exercises supported if exercise monitor is there!
%% affordability
af=0;
for i=1:m
 af=af+sc(i,i)*perf(i,3); %counts operating cost for systems
 for j=i+1:m
 af=af+sc(i,j)*perf(i,2); %counts interfacing cost per

interface
 end
end

%summarizing:
[mf]=[au, ex, fa, nr, tc, es, -af];
for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end
crisp=evalfis([mff],fismat); %ending in f is scaled to 0-h (# of mf's)

 end

 case 'FDN'

 % fdna attributes are: perfratio, afford (inv of cost), sod,

singleptfail...

%perfrat:
[cod,sod,p25]=fdn22Atoy(CoD_mat, SoD_mat , 25, chro);
[cod,sod,p100]=fdn22Atoy(CoD_mat, SoD_mat , 100, chro);
prat=p25(m)/p100(m);

%affordability
cost=0;

for i=1:m
 cost=cost+perf(i,2)*sc(i,i) +perf(i,3)*(sum(sc(:,i))+sum(sc(i,:))-

2*sc(i,i));
end

%sod
sd=sod(m); %it was calculated in fdn22toy, above

%singlept failure
sing=capsys*chro(1:m)';
spf=0;
for i=2:n-1
 if sing(i)<2
 spf=spf+1;
 end
end
mf=zeros(h,1);
mff=mf;

 250

mf=[prat, -cost, -spf, -sd]; %real world values
for i=1:g %for each attribute
 mff(i)=map2fuz(mapf(i,:), mf(i));
end

crisp=evalfis([mff],fismat); %ending in f is scaled to 0-h (# of mf's)

end

%%
end

 251

function [cod,sod,P]=fdn22Atoy(CoD_mat,SoD_mat,P1,chro)
%% chro is the fila-sos linear chromosome
%SoD_matx is input as strength of dependency, 0<element<1, and controls

for
%loops in the sod matrix, not the chromosome, which can be random
%where for sys i, interface (i,j)i<j, i is a feeder node to j, and

feeding goes
%clockwise, and j depends on i [i<j is the upper triangular portion]
%if j depended on i, then the dependency would appear in the lower

portion
%of the full matrix in SOD and COD
% if no dependency, then perf of the node is in the input domain or
% characteristics sheet under the system performance
%m is the number of systems
%
warning('off');
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

arch=lin2sc(chro,m); %an upper tri matrix, random interfaces,

input matrix to evaluate
full=arch+triu(arch,1)'; %make into adjacency matrix by filling out

the bottom
COD=CoD_mat.*full; %cod & sod matrix design protect from loops
SOD=SoD_mat.*full; %not having a 1 in the interfaces deletes the

cod/sod
%%
%I'm a receiver node if I have any entries in my vertical interfaces
% column; figure out how much I receive with sod & cod...
P=perf(:,1); % from system characteristics in input domain data
P(1)=P1; % vary start node performance as input
for k=1:4 % because I use original Perf values, and they're

recalculated during FDNA
 % at line 63-74
feedn=zeros(m,1); %column matrix
sod=zeros(m,1); %column matrix
sodp=zeros(m,1); %column matrix
cod=zeros(m); % square

%piter=zeros(m,11); % used only for troubleshooting during

development
%piter(:,1)=P(:);
%%
for j=1:m %col 1 of sod should be zeroes
 for i=1:j-1
 if SOD(i,j)~=0 && chro(i)~=0 && chro(j)~=0 %then sys i feeds

j
 feedn(j)=feedn(j)+1; % how many feed j that are

less than j?
 % found an i that feeds j, add

one
 % to count of items that feed

j

 252

 sodp(j)=sodp(j)+SOD(i,j)*P(i);%100*(1-SoD_mat(i,j)); % sum

will be divided by number in feedn
 sod(j)=sod(j)+SOD(i,j);
 cod(i,j)=P(i)+COD(i,j); % cod is a new efficiency based on

criticality
 % it will be used later to

find the
 % minimum, for the new P(i)
 end
 end
 for i=j+1:m
 if SOD(i,j)~=0 && chro(i)~=0 && chro(j)~=0 % then j feeds i
 feedn(j)=feedn(j)+1; % how many feed i that are

greater than i
 sodp(j)=sodp(i)+SOD(i,j)*P(i);%+100*(1-SoD_mat(i,j)); %

sum will be divided by number in feedn
 sod(j)=sod(j)+SOD(i,j);
 cod(i,j)=P(i)+COD(i,j); % cod is a new efficiency based on

criticality
 % it will be used later to

find the
 % minimum, for the new P(i)
 end

 end

 c2d=cod(:,j); % whole list of feeders with criticality to

receiver j
 % for taking minimum of to continue

 if feedn(j)>0
 if min(size(c2d(c2d~=0)))>0
 P(j)=min((sodp(j)/feedn(j))+(1-sod(j)/feedn(j))*100, min(

c2d(c2d~=0))) ;

 else
 P(j)=(sodp(j)/feedn(j))+((1-sod(j)/feedn(j))*100);

 end
 else
 P(j)=min(P(j), 100);

 end
 if feedn(j)~=0
 sod(j)=sod(j)/feedn(j); % think this is necessary
 end
end
%piter(:,k+1)=P(:); % used during development
end
%% sum(piter) % used during development
end

 253

function fe=feas(sch);
%%
% modified for fdna problems 30 Jul 2015
% this works right; checked on small files 10Jul13
% fe will be the feasibility matrix, generated from common

communication
% systems interfaces among the other systems, or for fdna if sod
% exists
% m is the number of systems in the chromosome
% sch is the square chromosome matrix itself
% com is first comm system number; comm systems are in the right hand
% columns
warning('off');
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

fe=zeros(m); % also, if none work, zeroes going back
if probtype=='FDN' % then they can feed and receive, somewhere

 for i=1:m
 for j=1:m
 if (sch(i,i)==1 && sch(j,j)==0) && (CoD_mat(i,j)~=0 &&

SoD_mat(i,j)~=0)
 fe(i,j)=1; %sod, cod equal 0, then no connection
 end
 end
 end

else % feas depends on comm unit interfaces with other systems
 % and not on CoD
 for i=1:m;
 fe(i,i)=sch(i,i); %systems are copied over; if they exist, they're

feasible
 end

 for i=com1:m;
 if sch(i,i)==1 ; %comm system i is present then feas is

possible, else not
 for j=1:com1-1;
 for k=(j+1):com1-1 ;
 if (sch(j,j)==1) && (sch(k,k)==1) ; %both systems are

present
 fe(j,k) =fe(j,k) || sch(j,i)*sch(k,i);% 'or' the other

comm links
 % both sys also i/f to comm a||b||etc, then

fe=1
 end
 end
 end
 end
end

for j=com1:m; % finish up with within the comm systems
 for k=1:j-1;

 254

 if (sch(j,j)==1) && (sch(k,k)==1) %both system and comm sys are

present
 fe(k,j) =fe(k,j) || 1;% 'or' the other comm links both 1,

then fe=1
 end
 end
end

end

end

 255

%% a genetic algorithm routine to find the best chromosome
%fname is the excel file for the "good" chromosome, and attribute

evaluations
% and crisp assessment of the SoS
% fname is also the domain data file with all the SoS system data
%
% Offer_Status.xlsx is the negotiated member systems (first wave,

all=0)
% file, in the first column, but the participating systems is NOW also

in the
% first column of the Characteristics sheet for running the optimizer

or
% the single chromosome assessor (GAwave.m or evalsos.m)
% The following variables control the architecture:
% m is number of systems
% n is number of component capabilities
% probtype three letter code, and linearinput for a chromosome in the

linear
% form (1) or upper triangular matrix form (0)
% system names, types (if used), major capability (if used), interface

develop cost,
% operations cost, performance in the major capability, and

development
% time are all in the Characteristics sheet of fname.xlsx in named
% columns
% - system vs. capability matrix and number of capabilities, are on the
% Capabilities sheet
% - when not in linear form, the input chromosome is on sheet

Interfaces
% (the chromosome is always output to sheet Architecture_Chromosome
% - mutation rate, delta is the probability of mutating each bit - (1%

to 5%
% seems about right) but also used for deciding how long and where to
% transpose; bump is the interoperability/netcentric boost, amount of
% penalty increase for infeasible/unachievable interface, penup &
% decrease (reward) for achievable/feasible interface, pendn; are all

on
% sheet FuzzyGA, with the .FIS filename, the number of attributes,

and
% the number of membership functions. com1 is the system number of

the
% first communication system (should always be grouped at the end of

the
% list)
% - p is the number of chromosomes in a population for one generation
% - gens is the number of generations to run
% - mapf is the matrix of attributes and fuzzy membership function
% crossing points - fuzzy values are 0 (bad) to number of MFs (best)
% now includes interfaces from negotiations, too, by reading

offerstatus
% and keeping any interfaces associated with kept systems
% - reads in the offer status file for next waves; all zeroes for first

wave

% Lou Pape, 2015oct5
%
tym=now;

 256

warning('off'); % it interferes with making it an executable
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

[initch]=Readin(fname); % reads in all the system/capability data, and

neg chromosome if it exists
 % in the Characteristics sheet; checks to see

if
 % Offer_stat exists in addition to fname.xlsx
 % protected systems

scrsz = get(0,'ScreenSize'); %set up plot figure size fairly large,

but to fit the screen
figure('Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]);
set(gcf, 'Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]); %full

window on double screen w/taskbar on left

mm2=m*(m+1)/2; %number of total bits in chromosome
numm=size(mapf);
nummfs=numm(2)-1;
attv=zeros(g,1);
attvf=attv;
chrom=zeros(pop,mm2);
assess=zeros(pop,1);
stat=zeros(gens,2); % for plotting convergence at end

% plotting constants
heat=zeros(1,mm2); % to store base of heatmap
heattot=heat; % for final,overall heatmap
frac=.7; % how deep to reach for plotting the heatmap from the

best
for ki=1:m
 sip(ki)=11+ (44*ki/m); % total color range, from min to max
end
dia=zeros(1,m); % for plotting a line through the 'system' squares
dia=1:m;
col=['k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b'];
 r=2; % sets up rows & columns of display screens
 c=5; % based on number of attributes in fuzzy evals
 if g>5
 r=3;
 end
pltsym=['-' '--' 'r' 'k' 'm' 'b'];

%setup variables for later plotting
plo=zeros(pop,g+7); % iii or pop

% this part handles the negotiated baseline from last wave - can't let

that
% mutate and evolve!
% add this in for waves...and interfaces - init ch is the starting
% negotiated chromosome read in from linear or interface UT form.
% prot is the systems negotiated from last wave

 257

% create protection chromosome with any neg. system, and any interface

from
% input(negotiated, if > wave 0) that was present for a neg system

keep=zeros(m);
if sum(prot)>0
 initsc=lin2sc(initch,m); % output from Readin function is linear

form,
 % this switches back to UTM
 for i=1:m
 if prot(i)==1
 keep(i,i)=1;
 end
 for j=i+1:m
 if prot(i)==1 || prot(j)==1 %if either system is negotiated in
 if initsc(i,j)==1 %then if its interface is a one,

keep it
 keep(i,j)=1; % should make this a switch to

include
 % protecting interfaces OR not...
 end
 end
 end
 end
end
 initch=sc2lin(keep,m); % initch now has what must be kept from

mutating

clearvars mov; %sets up to make a movie of the generations if you

want to watch later
 % "implay(mov)" will let you step through it;

"save(filename"
 % saves the movie and everything else in a .mat file,

if you like it
%% This runs poprandom m system chromosomes through the fuzzy evaluator
% and picks the best using roulette selection for sexual crossover
% to replay the movie, use implay(mov) in the command window
% it runs from within matlab (ie, not executable) and includes the
% plotting each generation

ch1=zeros(m); % single square chromosome matrix - plotting

%% initialize a random population to start the GA chrom (pop, mm2)
for q=1:pop
 for i=1:mm2
 chrom(q,i)=round(q/pop*rand); %
 end
 % seed the comm systems a little extra:
 for i=com1:m
 if (rand>.5) && (chrom(q,i)==0) ; %give another .5 chance

to be a one
 chrom(q,i)=1;
 end
 end %seed extra comms

 258

 %prevent selected (systems from negotiations) from being mutated
 %away now...for initial wave, you must make offer_stat.xlsx all

zeros (no
 %systems selected from negotiations yet (or the first col of
 %Characteristics sheet)
 %
 %***** this includes the negotiated interfaces
 for x=1:mm2
 if initch(1,x)==1 % hold on to negotiated interfaces
 chrom(q,x)=1; % if other new, proposed by randoms or

mutations, good!
 end %if ever want to consider tiny percentage
 end %systems or interfaces will quit, do it

in this loop!
 %end negotiated sys/interfaces ... every member of the

population has the right ones
 end % of q stepping through initial random ('cept for wave

holdovers) population

% we now have a generally random population for generation 1 with

varying numbers of ones
% AND we've protected any previous wave negotiated ones from being

removed.

%% generational loop - you already have the random starting population

from above
% including negotiation results, which will be protected through
% mutations later...
%%
for gen=1:gens % big outer loop for generations

% 1) EVALUATE whole pop; 2) SORT whole pop; 4) PLOT sorted pop

statistics;
% 3) rank pop by cum fitness; 5) crossover selected parents to

make new pop of chroms;
% 6) RE-LOOP to step 1 for next generation
% Start the sorting and plotting process of a population within

each generation
% just above we randomly initialized the chromosome population
%%
for q=1:pop; % prepare to eval, sort then plot as we step through

each member of the population
 plo(q,1)=q; %plo(1) is the plotting index
 plo(q,2)=sum(chrom(q,m+1:mm2)); %2 is the total number of

interfaes in a chromosome
 plo(q,3)=5*sum(chrom(q,1:m)); %sum of participating systems

 ch1=lin2sc(chrom(q,:),m); %chrom is linear, ch1 is upper

triangular
 fe=feas(ch1);
 %here's where you call the fuzzy evaluator for each member of the
 %population

 [attv , attvf, crisp]=evalsos(chrom(q,:)); % one at a time
 plo(q,4)=crisp;

 259

 plo(q,7+1:7+g)=attv(:);

%%for plotting... not if you will be executing this file in the ABM
 %[chdisp, mov(q)]=dispfech(m,ch1,fe,crisp); future function...

 %crisp is the fuzzy evaluation

end
% whole population is now evaluated and stored for sorting

%% sort section
heat=zeros(1,mm2);
chrom=[chrom plo(:,4)]; %adds the fitness column to end of chrom in pop

chrom=sortrows(chrom, -(mm2+1)); % sorts the chromosome population on

that column in descending order
fitnorm=sum(chrom(:,mm2+1)); %adds column of sos fitnesses to do the

normalization
chrom(:,mm2+1)=chrom(:,mm2+1)/fitnorm; %normalized fitnesses, highest

fitness at top

for ii=2:pop
 chrom(ii,mm2+1)=chrom(ii,mm2+1)+chrom(ii-1,mm2+1); %now the

fitness column is the cumulative, normalized fitness
end
plo=sortrows(plo,-4); %sorts all the plotted values in descending

order of fitness, too

plo(:,1)=1:pop; % renumbers the index column for plotting all rows

(pop)in order of fitness, not place in the generation

%%
% now display the population plots for this generation

%% plotting section
set(gcf, 'Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]);

%full window on double screen w/taskbar on left

subplot(r,c,1);
plot(plo(:,1), plo(:,2),'-',plo(:,1), plo(:,3),'--'), title('Total I/F

Ones, 5*# of Sys'); %number of total ones in chrom, systems+i/f's
%
subplot(r,c,2);
 plo=sortrows(plo,4); %sorts all the plotted values in ascending

order of fitness, too
 plo(:,1)=1:pop; % renumbers the index column for plotting all rows

(pop)in order of fitness, not place in the generation
plot(plo(:,1), plo(:,4),'+'), title('Crisp SoS Assess'); %crisp output

of evaluator/assessor
 plo=sortrows(plo,-4); %sorts all the plotted values in descending

order of fitness, too

 260

 plo(:,1)=1:pop; % renumbers the index column for plotting all rows

(pop)in order of fitness, not place in the generation

hold on
text(pop/20,.8*max(plo(:,4)),['g ' num2str(gen)],'BackgroundColor',[.7

.9 .7]); % put gen no near top left corner
hold off

%
subplot(r,c,3); % 3 heatmap, 4,5convergence, & best from each

generation
 %heat
 heat=sum(chrom(1:round(pop*frac),1:mm2)); % add ones as deep as

frac
 heattot=heattot+heat;
 if gen<gens
 hot=max(heat);
 cold=min(heat);
 else % we are on the last generation...
 hot=max(heattot);
 cold=min(heattot);
 heat=heattot;
 end
 ext=hot-cold; %blue is 12, red is 55, range = 43
 heat=12. + ((heat-cold)/ext)*43. ; %scale min/max whole array to

appropriate color

 image([lin2sc(heat,m) sip' sip']); % plots the values in the

upper triang form, with scale on rt side
hold on
x=zeros(1,m);
x(1,:)= m+.5;
plot(x, dia); %plots a line at the right edge of the heatmap
plot(dia,dia),title('Heatmap');
text(m+2.3+(m/26),m,'More','BackgroundColor',[.7 .9 .7]); % hot label
text(m+2.3+(m/26),1,'Few','BackgroundColor',[.7 .9 .7]); %cold label
 text(-m/8,-m/7,['GA Optimized Arch Plots... '

fname],'BackgroundColor',[.7 .6 .7]);

hold off
%end of heatmap

% converg if appl would be best of each gen in plot slot 4
stat(gen,1)=plo(1,4); % best crisp of this gen
stat(gen,2)=plo(round(pop/10),4); % one tenth of the way down from

best (top 10%)

if gen==gens
subplot(r,c,4);
mg=min(min(.9*stat(:,1)));
xg=max(max(stat)*1.05);
rg=xg-mg;
plot(1:gens,stat), axis([0 gens mg xg]), title('Convergence');
end

 261

%% rest of the attributes, best chrom to worst.. .

 plo=sortrows(plo,4); %sorts all the plotted values in ascending

order of sos fitness, for plotting
 plo(:,1)=1:pop; % renumbers the index column for plotting all rows

(pop)in order of fitness, not place in the generation

for j=1:g
subplot(r,c,j+5);
plot(plo(:,1), abs(plo(:,7+j)) ,pltsym(j)), title(attr(j)); % all

attributes in this loop
hold on
 for i=1:h+1 % now show mf boundary lines
 plot([1 round(1.05*pop)], [abs(mapf(j,i))

abs(mapf(j,i))],'color',col(i),'LineWidth',2)
 end
hold off
end

 plo=sortrows(plo,-4); %sorts all the plotted values in descending

order of fitness, for selection in tournament
 plo(:,1)=1:pop; % renumbers the index column for plotting all rows

(pop)in order of fitness, not place in the generation

subplot(r,c,5);
%plot color display of chromosome at end of each generation
ch1=lin2sc(chrom(1,1:mm2),m); %best chrom in this gen (not cum, norm

fitness column)
fe=feas(ch1);
crisp=plo(1,4); %already know this one - best of the lot, top one
[chdisp, mov(gen)]=dispfech(ch1,fe,crisp); %makes a movie, too

%% for next generation, get ready by creating next gen population from

old roulette winners

if gen<gens
popu=zeros(pop+1,mm2); %size the new population array one bigger than

P
popu(1,:)=chrom(1,1:mm2); %save the best one (not including rank col)

for i=2:2:pop
 cho=rand;
 pt1=find(chrom(:,mm2+1)>=cho,1); %chrom still sorted by rank

column at end
 p1=chrom(pt1,1:mm2); %picks the first one with cum fitness >=

rand()
 cho=rand;
 p2=chrom(find(chrom(:,mm2+1)>=cho,1),1:mm2); %finds another one

>=cho
 cho=rand;
 xo=max(1,round((mm2-1)*cho)); %at a random point in the

chromosome.. .

 262

 cho=rand;
 if cho>.9
 p1=1-p1; %invert each BIT in one parent - on rare occasions,
 % since number of bits is how I plot things; this would allow

wider
 % variations in number of bits, whereas transposition alone

does not
 end
 popu(i,:) = [p1(1:xo) p2(xo+1:mm2)]; % cross over the parents parts
 popu(i+1,:) = [p1(xo+1:mm2) p2(1:xo)]; % to make 2 new offspring
end

%allow a chance to randomly mutate all but best one again
for i=2:pop;
 for j=1:mm2;
 if rand > 1-delta;
 popu(i,j)=1- popu(i,j); %inverts a single bit
 end
 end
end
% oh - must set mutated positions back to negotiated ones, again - now,

after
% mutations, if they changed...
 for i=1:pop
 for x=1:mm2 % counting both systems - and interfaces...
 if initch(1,x)==1 %first wave, initch is all zeroes, never

happens
 popu(i,x)=1;
 end
 end
 end;

 %%allowed them to mutate in popu generation, now returned them to

proper belonging

 chrom(:,1:mm2)=popu(1:pop,:); %all pop rows of chrom and all chrom

bits of pop for new generation
 chrom=chrom(:,1:mm2); % insures it deletes the pesky sos assess

column at the end of chromosome for next gen

end % of if not enough generations yet

end % of gens
%%

%% format and write output files
%% write the chromosome & evaluations out to the chromosome sheet
 [attv , attvf, crisp]=evalsos(chrom(1,1:mm2)); %evaluates final best

one again to write out the values
blk=['c7:' num2col(2+mm2) '7'];
xlswrite(fname, chrom(1,1:mm2), 'Architecture_Chromosome', blk);

%fuzzy numbers

 263

xlswrite(fname,[attvf'] ,'Architecture_Chromosome',['b9:b'

num2str(8+g)]) ;
xlswrite(fname,crisp,'Architecture_Chromosome','b7') ;

attrlabe=cell(2,1);
attrlabe=cellstr(['Arch';'Qual']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','b5:b6') ;
attrlabe=cell(1,1);
attrlabe=cellstr(['Architecture']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','a7') ;
attrlabe=cellstr(['Fuzzy']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','b8') ;
attrlabe=cellstr(['Real']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','c8') ;

attrlabe=cell(g,1);
attrlabe=cellstr(attr); %attribute names in a column...
xlswrite(fname,attrlabe,'Architecture_Chromosome',['a9:a' num2str(8+g)

]); ;

xlswrite(fname,[attv'],'Architecture_Chromosome',['c9:c' num2str(8+g)]

) ;
% real values, col c

attrlabe=cell(4,1); %GA control vars
attrlabe=cellstr(['gens';'pop ';'delt']);
xlswrite(fname,attrlabe,'Architecture_Chromosome','f9:f11') ;
xlswrite(fname,[gens ; pop ; delta

],'Architecture_Chromosome','e9:e11') ;

xlswrite(fname,[clock], 'Architecture_Chromosome','h9:m9') ; % put the

date/time of the run on it, too
xlswrite(fname,cellstr(fname), 'Architecture_Chromosome', 'h10');

fclose('all');

tym=86400*(now-tym);
disp(['it took ' num2str(tym) ' seconds'])

 264

%% if you want to spend the time (30-40 seconds) to label the

chromosome output file
% fname must already exist, and the linear chromosome must be the

rightmost
% sheet in Excel file 'fname' (all my attempts at using the sheet name

result
% in "index exceeds matrix dimensions". it uses m, from input file,

too.

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

 %% format and write output lin chrom labels
mm2=m*(m+1)/2; %number of total bits in chromosome
labe=cell(1,mm2); %*******creates the label values for the output

chromosome Excel file
k=0;
for i=1:m;
 k=k+1;
 labe{1,k}=['S' num2str(i)]; % systems
end
 for i=1:m;
 for j=i+1:m
 k=k+1;
 labe{1,k}=['i' num2str(i) '-' num2str(j)]; % interfaces
 end
 end %**********************end of creating the label array for excel

sheet

%labels cells just above the chromosome with labe matrix just created

above
blk=['c6:' num2col(5+mm2) '6'];
xlswrite(fname, labe, 'Architecture_Chromosome', blk); % that's the

big array of excel.cell labels

fclose('all'); %don't have it already open for activex

%% now label colors on top of labels from above
% Connect to Excel all the active x in one place because it's not
% compatible with xlswrite simultaneously
Excel = actxserver('excel.application');
% Get Workbook object
WB = Excel.Workbooks.Open(fullfile(pwd, fname),0,false);
WB.Worksheets.Item(WB.Sheets.Count).Activate

cel=2; %arch qual - text is below
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cel) '5:'

num2col(cel) '6']).Interior.ColorIndex = 6;%bright yellow?
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(9) ':' num2col(mm2)

]).Columns.ColumnWidth = 3 ;

cel=3; %do the systems background color...

 265

WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cel) '5:'

num2col(cel+m-1) '6']).Interior.ColorIndex = 7;%purple?
cel=m+2;
col=4;
for i=1:(m-1)
 cels=cel+1;
 for j=(i+1):m
 cel=cel+1;
 end %now cels is the first/start cell for the interface, cel is the

last one
WB.Worksheets.Item(WB.Sheets.count).Range([num2col(cels) '5:'

num2col(cel) '6']).Interior.ColorIndex = col;% start green?
 if col==4
 col=8;
 else
 col=4;
 end %alternates color at the end of each range of interfaces
end %of overall nested loop on color alternates
% Save Workbook
WB.Save();
% Close Workbook
WB.Close();
% Quit Excel
Excel.Quit();

%% now the text labeling...
 cel=3; %systems...
sysint=cell(1,1);
sysint=cellstr(['Systems']);
xlswrite(fname,sysint,'Architecture_Chromosome',[num2col(cel) '5']) ;

cel=m+2;
for i=1:(m-1)
 cels=cel+1;
 for j=(i+1):m
 cel=cel+1;
 end %now cels is the first/start cell for the interface, cel is the

last one
sysint=cellstr(['Interfaces to Sys ' num2str(i)]);
xlswrite(fname,sysint,'Architecture_Chromosome',[num2col(cels) '5']) ;

end %of overall nested loop on color alternates
fclose('all');
%end

 266

function sc = lin2sc(llin,m)
% takes the linear chromosome of m systems and m(m-1)/2 interfaces
% returns square matrix sc size m upper triangular with systems
% on diagonal
sc=zeros(m);
for i=1:m
 sc(i,i)=llin(i);
end
k=m;
for i=1:m
 for j=(i+1):m;
 k=k+1; %counter for position in the chromosome
 sc(i,j)=llin(k);
 end;
end

end %of the function

 267

function y=map2fuz(mfs, inpu) % lowerlimit, then upperlimits of mfs
%% version jul2015 for Serc Toy prob
% maps to the fuzzy variable from the real variable input as inpu
% mfs is the array of nummfs+1 MF upper bounds (except first element is

lower bound)
% assume MF fuzzy values starts at zero, (count-1)=num of mfs
% negative values if better is a lower abs value (nearer zero), such as
% cost for affordability; lower cost is better
quit=0;
yy=0;
numm=size(mfs);
nummfs=numm(2)-1; %how wide the mfs array is (starts at 0, so one more

than)
mf=mfs;
inp=inpu;

 if (inp) >= (mf(nummfs+1))% beyond high end
 yy=nummfs;
 quit=1;
 end
 if (inp) <= (mf(1))% beyond low end
 yy=0;
 quit=1;
 end

for i=1:nummfs %mf(1)=lower limit, mf(5)=high end of mf(when

nummfs=4)
 if quit==0 %haven't exceeded a mf crossover point yet
 if inp<(mf(i+1)) %inpu is less than the next larger crossover...
 yy=(inp-(mf(i)))/((mf(i+1)-mf(i)))+(i-1); %fuzzy vars are size

1
 quit=1; %after you find one, you're done; don't need to change

anymore
 end
 end
end

y=yy; %return the value calculated in the fuzzy domain
end

 268

function [blkstr] = num2col(x)
%calculates the column letterlabel in excel from the column number
% 5 Jul 14 10pm version
%Lou Pape, RT-109
%up to 475255 26^4+26^3+26^2+26+1
% it's math with no zero placeholder, like roman numerals
b=26; % should you ever wish to change the base of the calculation
b0=b^0; % could just use one, thereby saving one run time

comcputation,
 % but this keeps the pattern
b1=b^1; % 26
b2=b^2; % 676
b3=b^3; % 17576
b4=b^4; % 456976
b10=b1+b0; %26 + 1
b20=b2+b10; %676 + 26 + 1
b30=b3+b20;
%b40=b4+b30;
[blkstr]=char.empty(1,0);
%this would be a nice place to do fancy error handling, but I simply

return
% an answer that is not nonsense
x=fix(x);
if x<1
 [blkstr] =['A'];
else
 if x>(b30*b) % too big; excel handles only 3 letters deep
 [blkstr]=['WRONG'];
 else %now check the valid range

if x>b20*b % greater than AAAA-1, or ZZZ; and, too big for excel A -

XFD
 xx=x-b20;
 xy=fix(xx/b3); % how many b^3 in thereafter removing zzz
 [blkstr]=[blkstr char(64+xy)]; % blkstr starts out empty, this is

leftest letter
 x=x-xy*(b3); %what's remaining after leftmost digit
end
if x>b10*b %greater than AAA-1=zz; remaining after b3s are counted
 xx=x-b10;
 xy=fix(xx/b2);
 [blkstr]=[blkstr char(64+xy)]; %adds next "digit" of column

name
 x=x-xy*(b2);
end
 if x>b
 xx=x-1;
 xy=fix(xx/b);
 [blkstr]=[blkstr char(64+xy)];
 x=x-xy*(b);
 end
 [blkstr]=[blkstr char(64+x)];
end
end
end

 269

function pen=penalty(fe,ch)

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

 pen=0;
 for i=1:m;
 for j=i+1:m; % try only interfaces, not systems
 if fe(i,j) > ch(i,j); %it's feasible, you didn't use it
 pen=pen+pendn*.5; % blue color mminor penalty -

bad
 else
 if fe(i,j)==ch(i,j);
 pen=pen-pendn; %you used feasibility rightly green

- less penalty - good
 else
 pen=pen+penup; %it's infeasible but you used it,

the worst: red more penalty
 end
 end
 end
 end
end % big penalty, bad if 1-bump raised to it; more perf, better;

 270

function [chrom]=Readin(fname)
%%
%reads in the domain data from the new GUI format
%give it the filename as a parameter...that's all
% reads following sheets of input domain data gui output:
% Characteristics, Capabilities, Initerfaces, Architecture_Chromosome,

SOD, COD,
% FuzzyGA
%reads all in at once, closes the file, then sorts it out to globals...
warning('off');
[chnum chtxt]=xlsread(fname, 'Characteristics');

[canum catxt]=xlsread(fname, 'Capabilities');

if chnum(2,4)==1 % input is in linear format
 [ionum iotxt]=xlsread(fname, 'Architecture_Chromosome');
else
 [ifnum iftxt]=xlsread(fname, 'Interfaces');
end

if chtxt{2,5}=='FDN'
 [conum cotxt]=xlsread(fname, 'COD');
 [sonum sotxt]=xlsread(fname, 'SOD');
end

[fnum ftxt]=xlsread(fname, 'FuzzyGA');
fclose('all');

%%

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

m=chnum(1,1); %from Characteristics sheet
nchar=chnum(2,1);
n=canum(2,1);
probtype=chtxt{2,5};
lin=chnum(2,4);

systyp=chtxt(7:6+m,1);
prot=chnum(6:5+m,1); % if protected is from updated inputs (must

be, if adding new systems)
 neg=zeros(m,1);
 [neg]=xlsread('Offer_Stat.xlsx');
 if sum(neg)>0 % if negotiations protect some systems, they

will be non zero in offerstat
 % default offerstat has all zeros, so if
 % negotiations doesn't change it, then any

protected
 % systems are from input domain data
 prot=neg;
 end
perf=chnum(6:5+m,3:2+nchar); % includes costs, too, now

 271

capsys=canum(6:5+m,1:n)'; %from Capabilities sheet
capname=catxt(6,2:1+n);

if probtype=='FDN'
 CoD_mat=conum(6:5+m,1:m);
 SoD_mat=sonum(6:5+m,1:m);
end

if lin==1
 chrom=ionum(6:6, 2:1+(m*(m+1)/2)); %the input chromosome, linear

format
else
 chsc=ifnum(6:5+m,1:m); %input chromosome is in UTmatrix form, in

Interfaces sheet
 chrom=sc2lin(chsc,m); % force it into the linear form, but not in

the excel sheet, yet
end

fisfile=ftxt(2,2);
g=fnum(2,1); % g is how many attributes
attr=ftxt(7:6+g,1); % attribute names
h=fnum(3,1); % # of MFs in each attribute
mfname=ftxt(6,3:2+h);
mapf=fnum(6:5+g, 1:1+h);
com1=fnum(4,1);
pop=fnum(1,7);
gens=fnum(1,8);
delta=fnum(2,7);
bump=fnum(2,8);
penup=fnum(3,7);
pendn=fnum(3,8);

end

 272

function lin = sc2lin(sc,m);
% takes the square matrix sc size m upper triangular with systems on

diagonal
% returns linear chromosome lin of m systems and m(m-1)/2 interfaces
% (total 1 by m(m+1)/2)
lin=zeros(1,m*(m+1)/2);
for i=1:m ;
 lin(1,i)=sc(i,i);
end ;
k=m;
for i=1:m ;
 for j=(i+1):m;
 k=k+1; %counter for position in the chromosome
 lin(1,k)=sc(i,j);
 end;
end;

end %of the function

 273

%setup fila-sos l pape 30 Jul 2015
%%

fname='Toy24Jul15.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readfdna(fname); % reads in ALL the background data from GUI

data input

iii=160; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 274

%setup fila-sos l pape 30 Jul 2015
%%
fname='Toy24Jul15one.xlsx'

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

iii=300; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 275

%setup fila-sos l pape 30 Jul 2015
%%
fname='Toy24Jul15one2.xlsx'

global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

iii=300; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 276

%setup fila-sos l pape 30 Jul 2015
%%

fname='isr.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=200; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 277

%setup fila-sos l pape 30 Jul 2015
%%

fname='LargeTrainingSoS.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=100; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 278

%setup fila-sos l pape 30 Jul 2015
%%

fname='LargeTrainingSoS111.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=200; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 279

%setup fila-sos l pape 30 Jul 2015
%%

fname='LargeTrainingSoS22.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=100; %default number of random chromosomes for value explore
mm2=(m+1)*m/2;

 280

%setup fila-sos l pape 30 Jul 2015
%%

fname='SAR29.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=150; %default number of random chromosomes for value explore

 281

%setup fila-sos l pape 30 Jul 2015
%%
fname='SAR29one.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

iii=150; %default number of random chromosomes for value explore

 282

%setup fila-sos l pape 30 Jul 2015
%%

fname='SAR29sum.xlsx'
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens mu probtype lin;

%[chrom]=Readin(fname); % reads in ALL the background data from GUI

data input

iii=250; %default number of random chromosomes for value explore

 283

%not a function valueExplore(iii,fname);
%% This runs iii random system chromosomes through the fuzzy

evaluator
 % (set iii and fname before running this with the 'setupxxxx.m')
% and plots them so you can set the values for the edges of the

membership function
% it takes about tenth of a second for each chromosome
% run this, then check distribution of the membership function

boundaries on the
% distribution of values for each attribute in the command window.

Make
% adjustments as desired either in the Excel file or the GUI, save, and
% repeat
% Version: all exe's 2015Aug20
% Lou Pape, RT-109

warning('off');

tym=now;
global m n sys systyp capname capsys perf bump mapf com1 penup pendn

...
 CoD_mat SoD_mat g attr h fisfile pop gens delta probtype lin

prot;

[chromdummy]=Readin(fname); %linear string form

%% setting up constants
scrsz = get(0,'ScreenSize'); %set up figure size fairly large
figure('Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]);
mm2=m*(m+1)/2; %number of total bits in chromosome
numm=size(mapf);
nummfs=numm(2)-1;
attv=zeros(g,1);
attvf=attv;
chrom=zeros(iii,mm2);
plo=zeros(iii,g+7); % iii or pop
clf
heat=zeros(1,mm2);
heatsc=heat;
frac=.4; % how deep to reach for plotting the heatmap
for ki=1:m
 sip(ki)=11+ (44*ki/m); % color range, from min to max
end
dia=zeros(1,m); % for plotting a line through the 'system' squares
dia=1:m;
col=['k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b' 'k' 'r' 'y' 'g' 'b'];
 r=2; %set up rows & columns of display screens
 c=5;
 if g>5
 r=3;
 end
pltsym=['-' '--' 'r' 'k' 'm' 'b'];

%%
for q=1:iii % create & evaluate random strings

(architectures)one at a time

 284

 chrom(q,:)=round(.9*q/iii+randn(1,mm2)/3);
 % seed the comm systems to have more 1s even for low numbered

chroms:
 for i=com1:m
 if rand>.5
 chrom(q,i)=1;
 end
 end

 for x=1:mm2 %this is necessary for the normal generated

chromosome
 if chrom(q,x)<0
 chrom(q,x)=0;
 end
 if chrom(q,x)>1
 chrom(q,x)=1;
 end
 end %CHROMOSOME q of iii generated
 % for visualizeing the chromosome distribution later
 ch1=zeros(m,m);
 plo(q,1)=q; % serial number within population
 plo(q,2)=sum(chrom(q,m+1:mm2)); % number of interfaces
 plo(q,3)=5*sum(chrom(q,1:m)); % 5*sum of participating systems

 % here's where you call the fuzzy evaluator
[attv , attvf, crisp]=evalsos(chrom(q,:)); % one at a time

 plo(q,4)=crisp;
 plo(q,7+1:7+g)=attv(:);
 ch1=lin2sc(chrom(q,:),m);
 fe=feas(ch1);
 %plo(q,5&6&7)=placeholder for heatmap(need slider) & convergence &

best(q or gen,crisp)
 heat=heat+chrom(q,:); % add all the chromosomes to 'heat'
 % save best chrom found so far
 if q==1
 bestchrom=chrom(q,:);
 bestcrisp=crisp;
 bestq=1;
 else
 if crisp>bestcrisp
 bestchrom=chrom(q,:);
 bestcrisp=crisp;
 bestq=q;
 end
 end
end
%% sort section used for optimization
%s=sortrows(plo,4); %sort by crisp value
%plo=s;
%plo(:,1)=sort(s(:,1));

%% plotting section
set(gcf, 'Position',[60 scrsz(4)/25 scrsz(3)/1.2 scrsz(4)/1.18]);

%full window on double screen w/taskbar on left

 285

subplot(r,c,1);
plot(plo(:,1), plo(:,2),'-',plo(:,1), plo(:,3),'--'), title('Total I/F

Ones, 5*# of Sys'); %number of total ones in chrom, systems+i/f's
%
subplot(r,c,2);
plot(plo(:,1), plo(:,4),'+'), title('Crisp SoS Assess'); %crisp output

of evaluator/assessor
%
subplot(r,c,3); % 3,4,5 heatmap, convergence, &final
 %heat

 hot=max(heat);
 cold=min(heat);
 ext=hot-cold; %blue is 12, red is 55, range = 43
 heat=12. + ((heat-cold)/ext)*43. ; %scale min/max to appropriate

color

 image([lin2sc(heat,m), sip' ,sip']); % plots the values in the

upper triang form, with scale on rt side
hold on
x=zeros(1,m);
x(1,:)= m+.5;
plot(x, dia); %plots a line at the right edge of the heatmap
plot(dia,dia),title('Heatmap');
text(m+2.3+(m/26),m,'More','BackgroundColor',[.7 .9 .7]); % hot label
text(m+2.3+(m/26),1,'Few','BackgroundColor',[.7 .9 .7]); %cold label
 text(-m/8,-m/7,['EXPLORiNG for MF EDGEs vs. Arch '

fname],'BackgroundColor',[.7 .9 .7]);
hold off
%end of heatmap

% converg if appl would be best of each gen in plot slot 4
% plot best chrom here:
subplot(r,c,5);
image(12+25*lin2sc(bestchrom,m));
 hold on
 plot(dia,dia),title('Best');
 text(m+.3+(m/26),m/2, sprintf('# %3g',bestq),'BackgroundColor',[.7 .9

.7]); %which one label
 text(m+.3+(m/26),3, sprintf('Eval

%.3g',bestcrisp),'BackgroundColor',[.7 .9 .7]); %assessment label
hold off

for j=1:g
subplot(r,c,j+5);
plot(plo(:,1), abs(plo(:,7+j)) ,pltsym(j)), title(attr(j)); % all

attributes in this loop
hold on
 for i=1:h+1 % mf lines
 plot([1 round(1.05*iii)], [abs(mapf(j,i))

abs(mapf(j,i))],':','color',col(i),'LineWidth',2)
 end
hold off
end

 286

%end
hold off
%% Correlation
cor=zeros(iii,4+g);
cor(:,1:4)=plo(:,1:4);
cor(:,5:4+g)=plo(:,8:7+g);
disp([' q ' 'i/f ' '5*sys ' 'crisp ']);
disp([attr(1:g)]');
disp(num2str(corrcoef(cor)));
%% current values for membership function edges vs distribution
bou=plo(:,4); %crisp
bou=sort(bou);
disp('crisp');
for i=0:nummfs
 disp(sprintf('MF edge = %.4g but %.4g is the distribution', i,

bou(round(max(1,i*iii/nummfs)))));
end

for gg=1:g
 bou=plo(:,7+gg);
 bou=sort(bou);
 disp(' ');
 disp(attr(gg));
 for i=0:nummfs
 disp(sprintf('MF edge%.2g = %.4g but %.4g is the distribution', i,

mapf(gg,i+1), bou(round(max(1,i*iii/nummfs)))));
 end

 end

APPENDIX C

MATLAB FUZZY INFERENCE SYSTEM (.FIS) FILES

 288

Filename: sumonly.fis

[System]

Name='sumonly'

Type='mamdani'

Version=2.0

NumInputs=4

NumOutputs=1

NumRules=4

AndMethod='min'

OrMethod='max'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='centroid'

[Input1]

Name='Performance'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25]

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99]

[Input2]

Name='Affordability'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25]

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99]

[Input3]

Name='Development-Flexibility'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23]

 289

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25]

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99]

[Input4]

Name='Robustness'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25]

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99]

[Output1]

Name='SoS-Arch-Fitness'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.25]

MF4='Exceeds':'gauss2mf',[0.135 3.64 0.135 3.99]

[Rules]

1 1 1 1, 1 (1) : 2

2 2 2 2, 2 (1) : 2

3 3 3 3, 3 (1) : 1

4 4 4 4, 4 (1) : 1

 290

Filename: Fuzzeval44.fis

[System]

Name='Fuzzeval44'

Type='mamdani'

Version=2.0

NumInputs=4

NumOutputs=1

NumRules=10

AndMethod='min'

OrMethod='max'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='centroid'

[Input1]

Name='Performance'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035]

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99]

[Input2]

Name='Affordability'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035]

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99]

[Input3]

Name='Development-Flexibility'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686]

 291

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035]

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99]

[Input4]

Name='Robustness'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035]

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99]

[Output1]

Name='SoS-Arch-Fitness'

Range=[1 4]

NumMFs=4

MF1='Unacceptable':'gauss2mf',[0.18 1.07 0.18 1.36346302134404]

MF2='Marginal':'gauss2mf',[0.218 1.82 0.218 2.23141985318686]

MF3='Acceptable':'gauss2mf',[0.21 2.75 0.21 3.2487756413035]

MF4='Exceeds':'gauss2mf',[0.135 3.64704559113483 0.135 3.99]

[Rules]

1 1 1 1, 1 (1) : 2

4 4 4 4, 4 (1) : 1

2 2 2 2, 1 (1) : 1

3 3 3 3, 4 (1) : 1

4 4 2 -1, 4 (1) : 1

2 2 2 3, 2 (1) : 1

2 2 3 2, 2 (1) : 1

2 3 2 2, 2 (1) : 1

3 2 2 2, 2 (1) : 1

4 4 -1 2, 4 (1) : 1

 292

Filename: ToyProb.fis

[System]
Name='ToyProb'
Type='mamdani'
Version=2.0
NumInputs=4
NumOutputs=1
NumRules=10
AndMethod='min'
OrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='centroid'

[Input1]
Name='Performance'
Range=[0 4]
NumMFs=4
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80]
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85]
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84]
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99]

[Input2]
Name='Affordability'
Range=[0 4]
NumMFs=4
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80]
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85]
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84]
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99]

[Input3]
Name='SinglePtFailure'
Range=[0 4]
NumMFs=4
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80]
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85]
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84]
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99]

[Input4]
Name='StrengthOfDependency'
Range=[0 4]

 293

NumMFs=4
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80]
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85]
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84]
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99]

[Output1]
Name='SoS-Arch-Fitness'
Range=[0 4]
NumMFs=4
MF1='Unacceptable':'gauss2mf',[0.24 0.0333 0.20 0.80]
MF2='Mediocre':'gauss2mf',[0.11 1.15 0.126 1.85]
MF3='AboveAvg':'gauss2mf',[0.196 2.27 0.178 2.84]
MF4='VeryGood':'gauss2mf',[0.18 3.30 0.18 3.99]

[Rules]
1 1 1 1, 1 (1) : 2
4 4 4 4, 4 (1) : 1
2 2 2 2, 1 (1) : 1
3 3 3 3, 4 (1) : 1
4 4 2 -1, 4 (1) : 1
2 2 2 3, 2 (1) : 1
2 2 3 2, 2 (1) : 1
2 3 2 2, 2 (1) : 1
3 2 2 2, 2 (1) : 1
4 4 -1 2, 4 (1) : 1

 294

Filename: lvc.fis

[System]

Name='lvc'

Type='mamdani'

Version=2.0

NumInputs=7

NumOutputs=1

NumRules=18

AndMethod='min'

OrMethod='max'

ImpMethod='min'

AggMethod='max'

DefuzzMethod='centroid'

[Input1]

Name='AU'

Range=[-0.1 5.1]

NumMFs=5

MF1='None':'trimf',[-0.1 0.02381 1.262]

MF2='Minimal':'trimf',[0.03619 1.262 2.5]

MF3='Sufficient':'trimf',[1.262 2.5 3.738]

MF4='Complex':'trimf',[2.5 3.738 4.976]

MF5='Fully':'trimf',[3.738 4.976 5.1]

[Input2]

Name='Ext'

Range=[-0.1 5.1]

NumMFs=5

MF1='Not':'trimf',[-0.1 0.02381 1.262]

MF2='Slight':'trimf',[0.02381 1.262 2.5]

MF3='Sufficient':'trimf',[1.262 2.5 3.738]

MF4='Mostly':'trimf',[2.5 3.738 4.976]

MF5='Fully':'trimf',[3.738 4.976 5.1]

[Input3]

Name='FactSupt'

Range=[-0.1 5.1]

NumMFs=5

MF1='None':'trimf',[-0.1 0.02381 1.262]

 295

MF2='Trad':'trimf',[0.02381 1.262 2.5]

MF3='Multi':'trimf',[1.262 2.5 3.738]

MF4='Civil':'trimf',[2.5 3.738 4.976]

MF5='Complete':'trimf',[3.738 4.976 5.1]

[Input4]

Name='Net'

Range=[-0.1 4.1]

NumMFs=5

MF1='VeryInsuff':'trimf',[-0.1 0 1]

MF2='Insufficient':'trimf',[0 1 2]

MF3='Sufficient':'trimf',[1 2 3]

MF4='Good':'trimf',[2 3 4]

MF5='Brilliant':'trimf',[3 4 4.1]

[Input5]

Name='TC'

Range=[-0.1 4.1]

NumMFs=5

MF1='0':'trimf',[-0.1 0 1]

MF2='25':'trimf',[0 1 2]

MF3='50':'trimf',[1 2 3]

MF4='75':'trimf',[2 3 4]

MF5='100':'trimf',[3 4 4.1]

[Input6]

Name='ExSupt'

Range=[-0.1 4.1]

NumMFs=5

MF1='NoSupt':'trimf',[-0.1 0 1]

MF2='Medium':'trimf',[0 1 2]

MF3='Large':'trimf',[1 2 3]

MF4='Larger':'trimf',[2 3 4]

MF5='Largest':'trimf',[3 4 4.1]

[Input7]

Name='Aff'

Range=[-0.1 4.1]

NumMFs=5

MF1='TooExpensive':'trimf',[-0.1 0 1]

 296

MF2='HighCost':'trimf',[0 1 2]

MF3='Marginal':'trimf',[1 2 3]

MF4='Good':'trimf',[2 3 4]

MF5='Excellent':'trimf',[3 4 4.1]

[Output1]

Name='TrainVal'

Range=[0 5]

NumMFs=5

MF1='Bad':'trimf',[-0.2 0 1.27645502645503]

MF2='Poor':'trimf',[0.486507936507936 1.47650793650794 2.44047619047619]

MF3='Good':'trimf',[2.66962962962963 3.59962962962963 4.56962962962963]

MF4='Superb':'trimf',[3.61772486772487 5 5.15]

MF5='Avg':'trimf',[1.54 2.5462962962963 3.53]

[Rules]

1 1 1 1 1 1 1, 1 (1) : 2

2 2 0 0 0 0 0, 1 (1) : 1

0 2 2 0 0 0 0, 1 (1) : 1

0 0 2 2 0 0 0, 1 (1) : 1

0 0 0 2 2 0 0, 1 (1) : 1

3 3 3 -1 0 -1 0, 2 (1) : 1

0 3 3 3 0 0 0, 2 (1) : 1

0 0 3 3 3 0 0, 2 (1) : 1

4 4 4 4 0 0 0, 3 (1) : 1

4 4 4 0 4 0 0, 3 (1) : 1

4 4 4 4 4 4 0, 3 (1) : 1

4 4 4 4 4 4 3, 4 (1) : 1

0 4 4 4 4 0 3, 3 (1) : 1

5 5 5 5 5 5 2, 3 (1) : 1

5 5 5 5 5 5 4, 4 (1) : 1

4 4 4 4 4 4 3, 4 (1) : 1

3 3 3 -1 0 -1 -1, 3 (1) : 1

4 3 5 3 4 3 3, 4 (1) : 2

APPENDIX D

DODAF 2.0 MODEL VIEWPOINT EXPLANATIONS

 298

 299

 300

 301

DoDAF

Model

DoDAF Model Name Typical Model Implementation

AV-1 Overview and Summary Information Text (Word Document)

AV-2 Integrated Dictionary Text, Spreadsheet or Database

OV-1 High Level Operational Concept Graphic PowerPoint or Animator

OV-2 Operational Resource Flow Description UML Collaboration Diagram

OV-3 Operational Resource Flow Matrix Table, Spreadsheet or Database

OV-4 Organizational Relationships Chart UML Class Diagram or Visio

OV-5b Activity Model UML Use Case Diagram, Sequence Diagram, Activity
Diagram

OV-6c Event Trace Description UML Sequence or Activity Diagram

DIV-1 Conceptual Data Model UML Classes & Class Diagrams

DIV-2 Logical Data Model UML Classes & Class Diagrams

DIV-3 Physical Data Model UML Classes & Class Diagrams

CV-1 Capability Vision Text

CV-2 Capability Taxonomy UML Class Diagram

CV-3 Capability Phasing Table, Spreadsheet, Gantt Chart

CV-4 Capability Dependencies UML Class Diagram

CV-5 Capability to Organizational Development

Mapping

Table or Spreadsheet

CV-6 Capability to Organizational Activities
Mapping

Table, Spreadsheet, Partitioned Activity Diagram, or
Sequence Diagram

CV-7 Capability to Services Mapping Table, Spreadsheet or UML Class Diagram

SvcV-1 Services Content Description Text

SvcV-2 Services Resource Flow Description UML Sequence Diagram

SvcV-3a Systems-Services Matrix Table or Spreadsheet

SvcV-3b Services-Services Matrix Table of Spreadsheet

SvcV-4 Services Functionality Description Text

SvcV-5 Operational Activity to Services Traceability

Matrix

Table or Spreadsheet

SvcV-6 Services Resources Flow Matrix Table or Spreadsheet

SvcV-7 Services Measure Matrix Table or Spreadsheet

SvcV-8 Services Evolution Description Table, Spreadsheet, Gantt Chart

SvcV-9 Services Technology and Skills Forecast Table, Spreadsheet, Gantt Chart

SvcV-10a Services Rules Model UML Activity Diagram

SvcV-10b Services State Transition Description UML State Diagram

SvcV-10c Services Event-Trace Description UML Sequence or Activity Diagram

APPENDIX E

SUPPLEMENTARY FIGURES

 303

The initial protection chromosome for the first wave is normally all zeroes – no

selected systems or interfaces. The following screenshots show input and output files of

the GA for the first wave:

 304

The following series of snapshots shows generations of the GA; note Generation 1

has a wide range of numbers of ones in both systems (5 times the number in red) and

interfaces (blue)

Generation number is in the upper left of the second graph.

 305

 306

50th generation: the GA is complete

 307

Convergence of best chromosome over generations (blue); the green line is the 20th

population member

Final Upper Triangular Matrix representation

 308

First wave chromosome in linear format:

Showing solution of wave 1, after negotiating, a few less to start the second wave

 309

The final chromosome for this run of the GA

The following illustrations are of generations in the example second wave, wherein some

systems and their previously negotiated interfaces are protected. This shows up as redder

points in the heatmaps.

 310

 311

Remember: red on bottom chart is bad – unachievable but used; blue is ‘could be better’

– achievable but unused; green is best

Heatmap color code (chart 4 on top row) is on the right side – from few (dark blue), to

many (red)

 312

The heatmap shows red on a few interfaces, and all the systems that were marked as

negotiated, as it should

 313

Correcting mutations back to negotiated is occurring at the wrong place in this early

version of the GA– although the trend is right, there should not be regressions in the blue

convergence line. This was corrected at a later wave protection version of the code

 314

Second wave solution for ISR

The Linear form of the chromosome shown immediately above

3
1
5

S
o
u
rces fo

r th
e O

O
T

W
 sy

stem
s in

p
u
t d

ata

Radius,

Nautical

miles radius km

Speed,

knots

Resolution,

meters

Time on

station,

HOURS Capabilities Bandwidth how controlled

Image

size, m

flies at

altitudes,

feet

cost to modify

for SoS

interoperability

add'l cost to

double the

performance

change on the

left

cost to operate

for a month

(including

personnel) m2/sec KM2/hr

pixels/sec (but

these are

compressed

about 50 to 500

to one before

transmission)

Raven

http://en.wikipe

dia.org/wiki/RQ-

11_Raven 6.2 11.4824 30 0.15 1 EO or IR 2/sec stills

Controlled by

soldier/operato

r 100 <500 $1,000 9000 32.4 1.20E+05

RQ-7

Shadow/Scan

Eagle class

http://en.wikipe

dia.org/wiki/RQ-

7_Shadow 59 109.268 80 0.2 9 EO or IR

1 Full

Motion

Video (FMV)

Controlled by

command post 300-600

1000-

5000 $10,000 $6,000 $60,000 24000 86.4 4.80E+06

MQ-1C Gray

Eagle/Predator

Class

http://en.wikipe

dia.org/wiki/MQ-

1C_Gray_Eagle 200 370.4 120 0.1 25 EO/IR/SAR 2 FMV

Controlled

distant remote 100-3000

15,000-

25,000 $100,000 $150,000 $300,000 36000 129.6 1.44E+07

Apache

Helicopter 200 370.4 180 0.2 1

EO/IR,

strike

1 FMV,

adjustable piloted 3000

200-

15000 $0 $500,000 $200,000 54000 194.4 1.08E+07

Command

center

surveillance

desk

smaller

exploitation

capability than

exp. Center 120 222.24 n/a 0.1 24/7

command,

exploitation

, fusion

8 voice, 3

FMV command staff 100-3000 0 $30,000 $60,000 $90,000 #VALUE! #VALUE! #VALUE!

Control station

(common) 120 222.24 n/a 0.1 24/7

coordinatio

n

2 voice, 1

FMV controllers 100-3000 0 $5,000 $3,000 $250,000 #VALUE! #VALUE! #VALUE!

Exploitation

Center 10000 18520 n/a 0.1 24/7

exploitation

, fusion infinite analysts 100-5000 0 $0 $5,000 $100,000 #VALUE! #VALUE! #VALUE!

voice/chat

shared

over

either los

or blos n/a n/a 24/7

coordinatio

n

3 KHz or 7

Kbs anyone n/a n/a $0 $0 $0 #VALUE! #VALUE! #VALUE!

LOS data comm 120 222.24 n/a any 24/7 LOS 25-128 KBS anyone n/a n/a $30,000 $40,000 $0 #VALUE! #VALUE! #VALUE!

BLOS data

comm 10000 18520 n/a any 24/7 BLOS

32 KBS-

10MBPS

RQ-7 goes

through control

station for BLOS n/a n/a $100,000 $50,000 $15,000 #VALUE! #VALUE! #VALUE!

artillery

(delivering

shells from a

'battery') 25 46.3 1000 100 24/7 strike n/a manned n/a n/a $10,000 $10,000 $200,000

can't modify it, not big enough,

no networking, no recording,

only connected to soldier; really:

 316

Input data sets are differently shaped for the Missouri Toy problem because a

form of the FDNA evaluation is used for the performance attribute evaluation algorithm.

Capabilities of systems versus system type

Criticality of dependency to each system

 317

Strength of dependency of links to each system

 318

BIBLIOGRAPHY

j7jcaa@js.pentagon.mil. 2009. Joint Capability Areas. Washington DC, Jan 12.

Acheson, Paulette, Louis Pape, Cihan Dagli, Nil Kilcay-Ergin, John Columbi, and

Khaled Haris. 2012. "Understanding System of Systems Development Using an

Agent-Based Wave Model." Complex Adaptive Systems, Publication 2.

Washington D.C.: Procedia Computer Science. 21-30.

Agarwal, Siddhartha, Louis E. Pape, and Cihan H. Dagli. 2014. "GA and PSO Hybrid

with Type-2 Fuzzy Sets for Generating Systems of Systems Architectures."

Procedia Computer science.

Ahn, Jae-Hong. 2012. "An Architecture Description method for Acknowledged System of

Systems based on Federated Architecture." Advanced Science and Technology

Letters 05.

Alberts, David S. 2011. The Agility Advantage: A Survival Guide for Complex

Enterprises and Endeavors. Washington DC: Center for Advanced Concepts and

Technology.

Alberts, David S., and Richard E. Hayes. 2005. Power to the Edge: Command and

Control in the Information Age. Washington DC: Command and Control Research

Program (CCRP).

Alberts, David S., John J. Garstka, and Frederick P. Stein. 1999. Network Centric

Warfare: Developing and Leveraging Information Superiority, 2nd Edition.

Washington DC: C4ISR Cooperative Research Program.

Arnold, A., B. Boyer, and A. Legay. 2012. "Contracts and Behavioral Patterns for System

of Systems: The EU IP DANSE Approach."

ASD(NII), DoD. 2010. DoD Architecture Framework Version 2.02 (DoDAF V2.02).

Washington DC: Department of Defense.

ASN/RDA. 2009. Net-Ready Key Performance Parameter (NR-KPP) Implementation

Guidebook, Ver. 1. Guidebook, Washington DC: Department of the Navy.

Bergey, John K., Stephen Blanchette Jr, Paul C. Clements, Michael J. Gagliardi, John

Klein, Rob Wojcik, and William Wood. 2009. "US Army Workshop on Exploring

Enterprise, System of Systems, System, and Software Architectures."

Blanchard , Benjamin S., and Wolter J. Fabrycky . 2010. Systems Engineering and

Analysis. Upper Saddle River, NJ: Prentice Hall.

 319

Blekhman, Alex, and Dov Dori. 2011. "Model-Based Requirements Authoring." 4th

Israeli International Conference on Systems Engineering. Herzlia : INCOSE.

Brooks, Frederick P. 2010. The Design of Design: Essays from a Computer Scientist.

Upper Saddle River, NJ: Addison-Wesley.

Cara, Ana Belen, Christian Wagner, Hani Hagras, Hector Pomares, and Ignacio Rojas.

2013. "Multiobjective Optimization and comparison of Nonsingleton Type-1 and

Singleton Interval Type-2 Fuzzy Logic Systems." IEEE Transactions on Fuzzy

Systems 21 (3): 459-476.

Christian III, John A. 2004. A Quantitative Approach to Assessing System Evolvability.

Houston: NASA Johnson Space Center.

CJCSI 6212.01F. 12 Mar 2012. Net Ready Key Performance Parameter (NR KPP).

Washington DC: US Dept of Defense.

Cloutier, Robert J., Michael J. Dimario, and Hans W. Polzer. 2009. "Net Centricity and

System of Systems." In System of Systems Engineering, by Mo Jamshidi, 150-

168. Hoboken NJ: John Wiley & Sons.

Clune, Jeff, Jean-Baptiste Mouret, and Hod Lipson. 2013. "The evolutionary origins of

modularity." Proceedings of the Royal Society - B 280: 2863.

Coleman, Joey W., Anders Kaels Malmos, Peter gorm Larsen, Jan Peleska, Ralph Hains,

Zoe Andrews, Richard Payne, et al. 2012. "COMPASS Tool Vision for a System

of Systems Collaborative Development Environment." Proceedings of the 7th

International Conference on System of System Engineering, IEEE SoSE 2012.

COMPASS. 2015. COMPASS. Mar 14. http://www.compass-research.eu/ .

Contag, G., C. Laing, J. Pabon, E. Rosenberg, K. Tomasino, and J. Tonello. 2013.

Nighthawk System Search and Rescue (SAR) Unmanned Vehicle (UV) System

Development. SE4150 Design Project, Naval Postgraduate School.

Dagli, Cihan, Nil Ergin, David Enke, Kristin Giammarco, Abhijit Gosavi, Ruwen Qin,

Dincer Konur, et al. 2013. An Advanced Computational Approach to System of

Systems Analysis & Architecting using Agent Based Behavioral Modelin. Final

Technical Report, Systems Engineering Research Center, Hoboken NJ: SERC.

Dahmann, J., G. Rebovich, J. A. Lane, R Lowry, and K. Baldwin. 2011. "An

Implementers’ View of Systems Engineering for Systems of Systems."

Proceedings of IEEE International Systems Conference. Montreal.

Dahmann, Judith. 2014. "System of System Pain Points." INCOSE International

Symposium. Las Vegas: INCOSE.

 320

Dahmann, Judith, Kristen J. Baldwin, and George Rebovich. 2009. "Systems of Systems

and Net-Centric Enterprise Systems." 7th Annual Conference on Systems

Engineering Research. Loughborough.

Dam, Steven H., and Warren K. Vaneman,. 2015. A New Open Standard: Lifecycle

Modeling Language (LML) a Language for Simple, Rapid Development,

Operations and Support. March 12. http://cdn2.hubspot.net/hub/316256/file-

493267217-pdf/LML_Overview_for_Lifecycle_Management_WG-

Dam_and_Vaneman.pdf?t=1391103350000.

Dauby, Jason P. 2011. ASSESSING SYSTEM ARCHITECTURES: THE CANONICAL

DECOMPOSITION. Rolla MO: Missouri University of Science & Technology.

De, P. K., and Bharti Yadav. 2011. "An Algorithm to Solve Multi-Objective Assignment

Problem Using Interactive Fuzzy Goal Programming Approach." International

Journal of Contemporary Mathematical Sciences 1651-1662.

Deb, Kalyanmoy, and Himanshu Gupta. 2006. "Introducing Robustness in Multi-

Objective Optimization." Evolutionary Computation 14 (4): 463-494.

DeLaurentis, Daniel, Karen Marais, Navindran Davendralingam, Seung Yeob Han,

Payuna Uday, Zhemei Fang, and Cesare Gurainiello. 2012. Assessing the Impact

of Development Disruptions and Dependencies in Analysis of Alternatives of

System-of-Systems. Final Technical Report SERC-2012-TR-035, Hoboken NJ:

Stevens Institute of Technology, Systems Engineering Research Center.

Department of the Navy. 1997. "Contractor Performance Assessment Reporting System

(CPARS)." Washington DC.

Deputy Minister of National Defence, and Commissioner, Canadian Coast Guard. 1998.

NATIONAL SEARCH AND RESCUE MANUAL (NATIONAL SAR MANUAL) B–

GA–209–001/FP–001– DFO 5449. Canadian Government.

Director Systems and Software Engineering, OUSD (AT&L). 2008. Systems Engineering

Guide for Systems of Systems. available from http://www.acq.osd.mil/se/docs/SE-

Guide-for-SoS.pdf.

DYMASOS. 2015. DYMASOS – Dynamic Management of Physically Coupled Systems of

Systems. March 12. http://www.dymasos.eu/outcomes/publications/dymasos-

dynamic-management-of-physically-coupled-systems-of-systems/.

Eggstaff, Justin W., Thomas A. Mazzuchi, and Shahram Sarkani. 2014. "The

Development of Progress Plans Using a Performance-Based Expert Judgment

Model to Assess Technical Performance and Risk." Systems Engineering 375–

391.

 321

EUROCONTROL - The European Organisation for the Safety of Air Navigation. 2015.

eATM Portal; European ATM Master Plan. March 6.

https://www.atmmasterplan.eu/ .

European Commission of Transport. 2015. European Commission of Mobility and

Transport. Mar 6.

http://ec.europa.eu/transport/modes/air/single_european_sky/index_en.htm.

European Commission's FP7. 2015. AMADEOS: Architecture for Multi-criticality Agile

Dependable Evolutionary Open System-of-Systems. March 14. http://amadeos-

project.eu/.

Federal Aviation Administration. 2014. NextGen Priorities Joint Implementation Plan:

Executive Report to Congress. Washington DC: FAA.

—. 2015. NextGen Programs. Accessed May 20, 2015.

https://www.faa.gov/nextgen/programs/.

Flanagan, David, and Peggy Brouse. 2012. "System of Systems Requirements Capacity

Allocation." Procedia Computer Science 8: 112-117.

Fogel, D.B. 2006. Evolutionary Computation. New Jersey: John Wiley and Sons.

Fry, Donald N., and Daniel A. DeLaurentis. 2011. "Measuring Net-Centricity."

Proceedings of the 6th International Conference on System of Systems

Engineering. Albuquerque.

Gao, Jianxi, Sergey V. Buldyrev, H. Eugene Stanley, and Shlomo Havlin. 2011.

"Networks formed from interdependent networks." Nature Physics (Macmillan

Publishers Ltd.) 8: 40-48. doi:10.1038/NPHYS2180.

Garvey, Paul R, and C. Ariel Pinto. 2009. "Introduction to functional dependency

network analysis." Second International Symposium on Engineering Systems.

Cambridge MA: MIT.

Gegov, Alexander. 2010. Fuzzy Networks for Complex Systems. Berlin: Springer.

Giachetti, Ronald E. 2012. "A Flexible Approach to Realize an Enterprise Architecture."

Procedia Computer Science 8: 147-152.

Golkar, Alessandro, and Edward F. Crawley. 2014. "A Framework for Space Systems

Architecture under Stakeholder Objectives Ambiguity." Systems Engineering

479–502.

Group, Asia/Pacific Seamless ATM Planning. 2013. Asia/Pacific Seamless ATM Plan.

Bangkok: ICAO Asia and Pacific Office.

 322

Guariniello, Cesare , and Daniel DeLaurentis . 2014. "Communications, information, and

cyber security in Systems-of-Systems: Assessing the impact of attacks through

interdependency analysis." Procedia Computer Science; Conference on Systems

Engineering Research. Redondo Beach CA: Elsevier.

Haimes, Yacov Y. 2012. "Modeling complex systems of systems with Phantom System

Models." Systems Engineering 333-346.

Haimes, Yacov Y., and Alfred Anderegg. 2015. "Sequential Pareto-Optimal Decisions

Made During Emergent Complex Systems of Systems: An Application to the FAA

NextGen." systems Engineering 28–44.

Han, Seung Yeob, and Daniel DeLaurentis. 2013. "Development Interdependency

Modeling for System-of-Systems (SoS) using Bayesian Networks: SoS

Management Strategy Planning." Procedia Computer Science, Volume 16, 698–

707. Atlanta.

Hunt, B., R. L. Lipsman, and J. M. Rosenberg. 2001. A guide to MATLAB: For beginners

and experienced users. New York: Cambridge University Press.

IEEE S2ESC – Software and Systems Engineering Standards Committee). 2011.

ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture

description. New York: Institute of Electrical and Electronics Engineers, Inc.

INCOSE. 2011. Systems Engineering Handbook, v. 3.2.2. INCOSE‐TP-2003-002-3.2.2,

San Diego: INCOSE.

ISO/IEC/IEEE. 2008. 15288-2008 - ISO/IEC/IEEE Systems and Software Engineering —

System Life Cycle Processes. Geneva: ISO.

ISO/IEC/IEEE. 2011. ISO/IEC/IEEE 42010:2011 Systems and software engineering --

Architecture description. Geneva: ISO Org.

Jackson, Scott, and Timothy L. J. Ferris. 2013. "Resilience Principles for Engineered

Systems." Systems Engineering 16 (2): 152-164.

Johnston, W., K. Mastran, N. Quijano, and M. Stevens. 2013. Unmanned Vehicle Search

and Rescue Initiative. SE4150 Design Project, Naval Postgraduate School.

Joint Staff. 2010. CJCSM 3500.04C, UNIVERSAL JOINT TASK LIST (UJTL). Manual,

Washington DC: Department of Defense.

Kinnunen, Matti J. 2006. Complexity Measures for System Architecture Models.

Cambridge: MIT: System Design and Management Program Masters Thesis.

Kooistra, Rien L., G. Maarten Bonnema, and Jacek Sko. 2012. "A3 Architecture

Overviews for Systems-of-Systems." Complex Systems Design & Management

(CSD&M). Paris: Springer-Verlag.

 323

Kruchten , Philippe. 1995. "The 4+1 View Model of Architecture." IEEE Software 45-50.

Krugman, Paul, and Robin Wells. 2009. Economics. New York: Worth Publishers.

Kujawski, Edouard. 2014. "Interaction Effects in the Design of Computer Simulation

Experiments for Architecting Systems-of-Systems." Systems Engineering 426–

441.

Kumar, Rakesh, and Jyotishree. 2012. "Blending Roulette Wheel Selection & Rank

Selection in Genetic Algorithms." International Journal of Machine Learning and

Computing 2 (4): 365-370.

Lafleur, Jarret M. 2012. A Markovian State-SpaceFramework for Integrating Flexibility

into Space System Design Decisions. Atlanta: Georgia Institute of Technology

School of Aerospace Engineering Doctoral Thesis.

Li, Chunshien, and Tai-Wei Chiang. 2013. "Complex Neurofuzzy ARIMA Forecasting -

A New Approach Using Complex Fuzzy Sets." IEEE Transactions on Fuzzy

Systems 21 (3): 567-584.

Lin, Yinghua, George A. Cunningham III, Stephen V. Coggshall, and Roger D. Jones.

1998. "Nonlinear System Input Structure Identification: Two Stage Fuzzy Curves

and Surfaces." IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans 28 (5): 678- 684.

Madni, Azad M., and Michael Sievers. 2014. "System of Systems Integration: Key

Considerations and Challenges." Systems Engineering 330–347.

Maier, Mark W., and Eberhardt Rechtin. 2009. The Art of Systems Architecting, 3rd ed.

Boca Raton: CRC Press.

Mekdeci, Brian, Nirav Shah, Adam M. Ross, Donna H. Rhodes, and Daniel Hastings.

2014. Revisiting the Question: Are Systems of Systems just (traditional) Systems

or are they a new class of Systems? CESUN Conference, Cambridge, MA:

Systems Engineering Advancement Research Initiative (SEAri).

Mendel, Jerry M. 2013. "On KM Algorithms for Solving Type-2 Fuzzy Set Problems."

IEEE Transactions on Fuzzy Systems 21 (3): 426-446.

MONDO Project. 2015. MONDO – Scalable Modeling and Model Management on the

Cloud. March 12. http://www.mondo-project.org/.

Mordecai, Yaniv, and Dov Dori. 2013. "I5: A Model-Based Framework for Architecting

System-of-Systems Interoperability, Interconnectivity, Interfacing, Integration,

and Interaction." International Symposium of the International Council on

Systems Engineering (INCOSE). Philadelphia.

 324

NASA. 2007. Space Systems Engineering. Accessed June 8, 2011.

http://spacese.spacegrant.org/index.php?page=videos.

Nord, Robert L., Paul C. Clements, David Emery, and Rich Hilliard. 2009. A Structured

Approach for Reviewing Architecture Documentation. Pittsburgh, PA: Carnegie

Mellon University Software Engineering Institute.

Pape, Louis, and Cihan Dagli. 2013. "Assessing robustness in systems of systems meta-

architectures." Procedia Computer Science, Complex Adaptive Systems.

Baltimore: Elsevier. 262-269.

Pape, Louis, Kristin Giammarco, John Colombi, Cihan Dagli, Nil Kilicay-Ergin, and

George Rebovich. 2013. "A fuzzy evaluation method for system of systems meta-

architectures." Procedia Computer Science, Conference on Systems Engineering

Research (CSER’13). Atlanta: ScienceDirect, Elsevier. 245-254.

Paulish, Daniel J., and Len Bass. 2001. Architecture-Centric Software Project

Management: A Practical Guide. Boston: Addison-Wesley Longman Publishing

Co., Inc.

Pedrycz, Witold, Petr Ekel, and Roberta Parreiras. 2011. Fuzzy Multicriteria Decision

Making; Models, Methods and Applications. West Sussex: John Wiley & Sons.

Pitsko, Robert, and Dinesh Verma. 2012. "Principles for Architecting Adaptable

Command and Control." New Challenges in Systems Engineering and

Architecting. St. Louis.

Ricci, Nicola, Adam M. Ross, Donna H. Rhodes, and Matthew E. Fitzgerald. 2013.

Considering Alternative Strategies for Value Sustainment in Systems-of-Systems

(Draft). Cambridge MA: Systems Engineering Advancement Research Initiative.

Rosenau, William. 1991. Coalition Scud Hunting in Iraq, 1991. RAND Corporation.

Ross, Adam M. 2014. "Contributing toward a Prescriptive “Theory of Ilities”." Systems

Engineering Advancement Research Initiative (SEARri). April 2.

http://seari.mit.edu/documents/presentations/MST14_Ross_MIT.pdf.

Ross, Adam M., Donna H. Rhodes, and Daniel E. Hastings. 2008. "Defining

Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability,

and Robustness for Maintaining System Lifecycle Value." Systems Engineering

246 - 262.

Rostker, Bernard. 2000. "Iraq's Scud Ballistic Missiles." Iraq Watch. July 25. Accessed

Sep 12, 2013. http://www.iraqwatch.org/government/US/Pentagon/dodscud.htm .

 325

Sanz, Jose Antonio, Alberto Fernandez, Humberto Bustince, and Francisco Herrara. 2013.

"IVTURS: A Linguistic Fuzzy Rule-Based Classification System Based On a

New Interval-Valued Fuzzy Reasoning Method with Tuning and Rule Selection."

IEEE Transactions on Fuzzy Systems 21 (3): 399-411.

Schreiner, Michael W., and Joseph R. Wirthlin. 2012. "Challenges using modeling and

simulation in architecture." Procedia Computer Science (ScienceDirect) 8: 153-

158.

Selva, Daniel, and Edward F. Crawley. 2013. "VASSAR: Value Assessment of System

Architectures using Rules." IEEE Aerospace Conference. Big Sky MT: IEEE. 1-

21.

SESARJU. 2015. SESAR Joint Undertaking. Mar 7. http://www.sesarju.eu/ .

Shaw, Albert, ed. 1918. President Wilson's State Papers and Addresses. New York:

George H. Doran Co.

Singer, Yariv. 2006. "Dynamic Measure of Network Robustness." IEEE 24th Conference

of Electrical and Electronic Engineers in Israel.

Singh, Atmika. 2011. Architecture Value Mapping: Using Fuzzy Cognitive Maps As A

Reasoning Mechanism For Multi-Criteria Conceptual Design Evaluation.

Dissertation. Rolla MO: Missouri University of Science & Technology.

Singh, Atmika, and Cihan H. Dagli. 2010. ""Computing with words" to support multi-

criteria decision-making during conceptual design." Systems Research Forum 85-

99.

—. 2009. "Multi-objective Stochastic Heuristic Method for Trade Space Exploration of a

Network Centric System of Systems." 3rd Annual IEEE International Systems

Conference, 2009. Vancouver, Canada.

Smartt, Clement, and Susan Ferreira. 2012. "Constructing a General Framework for

Systems Engineering Strategy." Systems Engineering 15 (2): 140-152.

Software Engineering Institute, Carnegie Mellon University. 2015. Active Reviews for

Intermediate Design. Accessed March 22, 2015.

http://www.sei.cmu.edu/architecture/tools/evaluate/arid.cfm.

—. 2015. Architecture Tradeoff Analysis Method. March 12.

http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm.

—. 2015. System of Systems Architecture Evaluation Method. Mar 12.

http://www.sei.cmu.edu/architecture/tools/evaluate/sosevaluation.cfm.

SPEC Innovations. 2015. Model-Based Systems Engineering Tools. March 18. Accessed

August 20, 2014. https://www.innoslate.com/systems-engineering/.

 326

Stephenson, Neal. 2011. "Innovation Starvation." World Policy Journal (Sage) 28 (3): 11-

16.

Suarez, Ray. 2004. "Troops Question Secretary of Defense Donald Rumsfeld about

Armor." PBS NewsHour. Dec 9. Accessed Apr 14, 2014.

http://www.pbs.org/newshour/bb/military-july-dec04-armor_12-9/.

Sumathi, S., and P. Surekha. 2010. Computational Intelligence Paradigms: Theory &

Applications Using MATLAB. Boca Raton FL: CRC Press.

Taleb, Nassim Nicholas. 2004. Fooled by Randomness. New York: Random House Trade

Paperbacks.

Thompson, Mark. 2002. "Iraq: The Great Scud Hunt." Time Magazine, December 23:

http://www.time.com/time/magazine/article/0,9171,1003916,00.html.

Trans-Atlantic Research and Education Agenda in Systems of Systems (T-AREA-SOS)

Project. 2013. The Systems of Systems Engineering Strategic Research Agenda.

Loughborough: Loughborough University.

Wai, Jonathan. 2012. "The Growing Complexity of Everyday Life." Psychology Today,

Nov 12: 25.

Wang, Jian-Qiang, and Hong-Yu Zhang. 2013. "Multicriteria Decision-Making Approach

Based on Atanassov's Intuitionistic Fuzzy Sets With Incomplete Certain

Information on Weights." IEEE Transactions on Fuzzy Systems 21 (3): 510-515.

Warfield, John N. 1973. "Binary Matrices in System Modeling." IEEE Transactions on

Systems, Man, and Cybernetics SMC-3 (No. 5, September): 441-449.

West, Douglas B. 2000. Introduction to Graph Theory (2nd Ed.). Urbana IL: University

of Illinois.

Yi, Ji Soo, Youh ah Kang, John T. Stasko, and Julie A. Jacko. 2007. "Toward a Deeper

Understanding of the Role of Interaction in Information Visualization." IEEE

Transactions on Visualization and Computer Graphics 13 (6): 1224 - 1231.

Yu, O.-Y., S. D. Gulkema, J.-L Briaud, and D. Burnett. 2011. "Sensitivity Analysis for

Multi-Attribute System Selection Problems in Onshore Environmentally Friendly

Drilling (EFD)." Systems Engineering 15 (2): 153-171.

Zadeh, L. A. 1975. "Fuzzy logic and approximate reasoning." Synthese 30 (3-4): 407-428.

 327

VITA

Louis E. Pape II was born in Chicago, Ilinois. In June 1970, he graduated from

the US Air Force Academy as a USAF lieutenant with a BS in Physics. He earned an MS

in Optical Sciences at the University of Arizona in February 1972. He conducted laser

propagation and atmospheric turbulence experiments in wind tunnels and aircraft until

1976. He served at the Pentagon as Assistant Program Element Monitor (PEM) on the

Global Positioning System (GPS), and Acting PEM for USAF Basic Research. He

managed GPS Satellite contract finances for four years at Space and Missile Systems

Organization. He left active duty in 1980, remaining in the AF Reserve for 20 years. He

retired as a Colonel in 2000, having served in acquisition, logistics, training, testing and

safety positions. After leaving the USAF he worked for TRW in Redondo Beach, CA on

satellite laser communication systems. In 1994 he joined Boeing to work on aircraft

systems engineering, and networked systems. In 2009 he became a Boeing Associate

Technical Fellow in Systems Engineering. He was in instructor in the Boeing Systems

Engineering Leadership Program starting in 2006.

He earned an MBA in 1980 from California State University, Dominguez Hills.

He graduated from the Industrial College of the Armed Forces (1986), and Air War

College (1996). In May 2016, he received his Ph.D. in Systems Engineering from the

Missouri University of Science and Technology, Rolla, Missouri.

Louis E. Pape II was a member of IEEE, INCOSE (an officer in the Midwest

Gateway chapter). He became a Certified Systems Engineering Professional (CSEP) in

2011. He has authored several conference papers and reports. In 2013 he was the winner

of the INCOSE/Stevens Institute Doctoral Award for “research most likely to impact

Systems Engineering in the next 10 years.” He has mentored both FIRST Robotics teams

and student project teams in the Missouri S&T Introduction to SE course for several

years.

	A domain independent method to assess system of system meta-architectures using domain specific fuzzy information
	Recommended Citation

	tmp.1467300612.pdf._sZMB

