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ABSTRACT 

As traditional CMOS scaling pace gradually slows down, three-dimensional (3D) 

integration offers another dimension of in the ”More-than-Moore” era. In this 

dissertation, a number of investigations were conducted to better model interconnects in 

3D integrated circuit (IC), to evaluate electrical behavior including delay, power 

consumption, signal integrity (SI), and power integrity (PI) for 3D ICs. Partial Element 

Equivalent Circuit (PEEC) method with layered Green’s function is studied here, since it 

consumes less computational resources and provides better physical insight to model the 

interconnects in 3DIC for high-speed digital circuits. The work is organized as a series of 

papers. The first paper reviewed the fundamental methods to derive layered Green’s 

function in spectral domain using discrete complex image method (DCIM) and analyzed 

the effects of each Green function terms to model silicon interconnects. The second paper 

proposed a unique method to extract poles near branch cut in complex kp plane, to 

accurately extract surface wave effects. The last paper proposed a new equivalent circuit 

model for coplanar waveguide (CPW) structure on 3DIC. The silicon effects on series 

inductance were also studied by employing the modified Green functions with 

semiconductor images at a complex distance from spectral-domain analysis. 
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1.  INTRODUCTION 

As traditional CMOS scaling pace gradually slows down, three-dimensional (3D) 

integration offers another dimension of in the ”More-than-Moore” era. In this 

dissertation, a number of investigations were conducted to better model interconnects in 

3D integrated circuit (IC), to evaluate electrical behavior including delay, power 

consumption, signal integrity (SI), and power integrity (PI) for 3D ICs. Partial Element 

Equivalent Circuit (PEEC) method with layered Green’s function is studied here, since it 

consumes less computational resources and provides better physical insight to model the 

interconnects in 3DIC for high-speed digital circuits.  

The work is organized as a series of papers. The first paper reviewed the 

fundamental methods to derive layered Green’s function in spectral domain using 

discrete complex image method (DCIM) and analyzed the effects of each Green function 

terms to model silicon interconnects. The second paper proposed a unique method to 

extract poles near branch cut in complex kp plane, to accurately extract surface wave 

effects. The last paper proposed a new equivalent circuit model for coplanar waveguide 

(CPW) structure on 3DIC. The silicon effects on series inductance were also studied by 

employing the modified Green functions with semiconductor images at a complex 

distance from spectral-domain analysis. 

In the first paper, previous method of deriving Green function in multi-layer 

media was reviewed. DCIM has been used to derive the Green function with lossy media. 

The study of applying the methods to the real applications of 3DIC shows at image 

theories can be applied to magnetic vector Green functions at low frequency, however, 

multiple images should be considered for electric potential Green’s function. At high 
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frequency, surface-wave term has far-field effects when the distance of the interconnect 

is far. Spatial-wave term becomes to dominate when the pitch size becomes larger. 

In the second paper, a robust and automatic method to extract the surface-wave 

poles of the spectral-domain Green’s functions for general layered media is proposed. 

Both lossless and lossy dielectric materials can be effectively handled. The proposed 

method can accurately identify the surface-wave poles located close to the branch cut. 

Through the numerical examples and the comparisons with the previously published 

results, the proposed approach has been demonstrated more effective and accurate to 

handle lossy layered media.  

In the third paper, a new equivalent circuit model is proposed to model coplanar 

traces on silicon interposer was proposed. The 2D lossy metal-isolator-semiconductor 

(MIS) coplanar waveguide (CPW) is represented by simple RLGC circuit derived based 

on PEEC method. The model provides physical insight and directly related to geometry. 

It is also demonstrated in the paper that the silicon effects on series impedance can be 

neglected in conventional CMOS processes. A test 2.5 silicon interposer is fabricated to 

validate the effectiveness of the model.  The presented circuit model shows good 

correlations with full-wave simulations as well as the measurements on the test 

interposer.   

The primary contributions of this dissertation include: 

 Equivalent Transition Line Model for  Via Structures.  

 Radiated and Conductive Emission Models for Integrated Circuit.   

 Passivity and Causality Analysis in the Link Path. 

 Power Distribution Network Design and Optimization.   
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 Modelling of TSV arrays by extension of PEEC methods.  

 A Technique to Accelerate Computational Efficiency for PEEC  

 Derivation of Green’s Function in Multi-Layered Media    

 A Pole Extraction Method to Handle Branch Cut 

 Modelling of On-Silicon Coplanar Waveguide with Homogenous Decomposition  

 Modelling Guidelines for interconnects on 2.5D interposer and 3DIC 
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PAPER 

I. GREEN'S FUNCTION FOR PLANAR SI-SIO2 MEDIA 

Siming Pan, Student Member, IEEE 

 
 
 

Abstract—As traditional CMOS scaling pace gradually slows down, three-dimensional 

(3D) integration offers another dimension of in the ”More-than-Moore” era. This paper 

reviewed the fundamental methods to derive layered Green’s function in spectral domain 

using discrete complex image method (DCIM) and analyzed the effects of each Green 

function terms to model silicon interconnects. Firstly we derived the general form of 

spectral domain Green’s function for multilayer media based on transmission line 

analogy and generalized reflection/transmission coefficients for potentials. Then, DCIM 

techniques are used to evaluate Sommerfeld integration for spatial domain Green’s 

functions. Specifically, equivalent partial circuit elements for various on-chip 

interconnects are discussed based on the properties of the Green’s functions due to 

different modes and material of semiconductor. 

 

Index Terms—Green’s functions,  surface-wave poles, planar si-sio2 media, pole 

extraction, Sommerfeld integral. 

 

I.     INTRODUCTION 

 Green’s function is the solution to the partial differential equation with a unit 

source subject to specific initial conditions or boundary conditions. It is similar to the 

impulse response in a linear system. The solution of the actual driving function could be 
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derived through a superposition of the Green’s function with the Dirac delta source at 

different locations [1]~[3]. PEEC formulations require extended solutions of integral 

equations, in which evaluation of Green’s functions are critical to obtain an efficient and 

accurate solution of circuit model. A critical step in the formulation involves the 

calculation of the reaction integrals to construct MoM matrix, both in the spectral domain 

[4], [5] and in the spatial domain [6]~-[8].  

 In the layered media, the spectral-domain dyadic Green’s functions (DGF) are 

easier to obtain through one-dimensional generalized reflection and transmission [12] or 

transmission line analogy [13]. It may be directly used in the integral-equation 

formulations based on spectral domain approach (SDA) [14-16]. However, the SDA 

requires double spectral integrals, which could be transformed to Sommerfeld integrals in 

the spatial domain [17]. 

 To evaluate Sommerfeld integrals has been studied extensively in the previous 

work. As the kernel of the Sommerfeld integral is general oscillatory and contains 

singularities with the slowly-decaying parts in the complex kp plane, the direct numerical 

integration is time-consuming. The most popular methods to accelerate the calculations 

of Sommerfeld integration include the steepest-descent path (SDP) approach [18], [19] , 

pole-residue representation approach [5], [20], fast Hankel transform technique [21], the 

window function approach [22] and the discrete complex image method (DCIM) [23]-

[27].We mainly discuss the development Green’s function for planar Si-Sio2 media based 

on DCIM approach. The basic idea of DCIM is to approximate the kernel of the spectral-

domain Sommerfeld integral with summation of complex exponentials, so that closed-

from solutions can be derived using Sommerfeld identity. This method is initially 
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proposed by Y Chow in [23], where he firstly extracted the quasi-static image (which 

contributes in the near-field region) and surface-wave terms (which contributes in the far-

field region) from the kernel. Then prony’s method was applied to transform the 

remaining portion to complex exponentials. The improved Prony method was proposed in 

[24] with least-square techniques for complex images. But both methods require error 

iterations, which make them inefficient and less robust. Generalized pencil of functions 

(GPOF) was employed in [25] and [26] to replace prony’s methods. However, even with 

surface extracted, errors occur in the near-field region due to the primary singularity at 

the origin for Hankel functions when z ≠ z’. Without surface wave extracted, errors occur 

in the far-field region because it is physically inappropriate to approximate the cylindrical 

surface waves by spherical waves (complex images) [4]. Recently, a direct discrete 

complex image method was proposed in [27], where the authors selected a novel 

integration path to avoid wave extractions. But this method is not computationally 

efficient. 

 In the applications of modern on-chip interconnects design, especially for the 

newly emerging 3D integration, the modeling of 3-D interconnects involves 

inhomogeneous metal-isolation-silicon (MIS) environment. Typically, the vertical Si-

Sio2 layered media could affect the performance of interconnects for high-speed 

applications. However, in the previous work, quasi-static approximation with free-space 

Green’s function is generally used in the on-chip interconnect design [9], [10]. Until very 

recently, it is safe in many cases to solve sparse, electrically small problems using quasi-

static methods. By definition, electrically small in frequency domain means  

)/(30 maxmax nfd 
                                                            (1) 
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where  maxd
is the maximum dimension, maxf

is the maximum frequency and n is a 

number between 10 and 20. 

 In time domain, the definition for electrically small generally becomes  

           
dmax 

1

nt                                                                 (2)   

where t  is the rise or fall time of the digital signal. 

     Nevertheless, with bandwidth continuing to grow to meet the needs of switch, 

server and storage consolidation, data center development and processor communication 

[11], the on-chip signal link modeling cannot be considered as electrically small. Thus, it 

could loss great accuracy for high-frequency analysis without evaluation of Green’s 

function for Si-Sio2 media.  

 In this work, firstly we derived the general form of spectral domain Green’s 

function for multilayer media based on transmission line analogy and generalized 

reflection/transmission coefficients for potentials. Then, DCIM techniques are used to 

evaluate Sommerfeld intergration for spatial domain Green’s functions. Specificlly, 

equivalent patial circuit elements for various on-chip interconnects are discussed based 

on the properties of the Green’s functions due to different modes and material of 

semiconductor.  

 

II. SPECTRAL-DOMAIN GREEN’S FUNCTION 

   Consider a general multilayer medium with a point source ),( MJ  embeded in 

layer i, as shown in Fig. 1. The fields ),( HE  due to the point source are governed by the 

Maxwell’s equations 
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 For layered medium, since the medium is infinite large in the (x,y) plane, spectral-

domain analysis are commonly used to transfer the transvese coodinate  yx yxρ ˆˆ  to its 
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is referred as a Sommerfeld integral. 0J
is the Bessel function of 0 order . 

 And the Fourier transform between spectrum and spatial domain satisfies 

Sommerfeld identity and its property, as 
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where ),(  is the cylindrical coordinates of the projection of the field point on the (x, y) 

plane. 
222

kkk iz 
, where 

22

yx kkk  and iiik 
. Physically, (4) 

represented a spherical wave that is expanded as an integral summation of cylindrical 

waves in the  direction, times a plane wave in the z direction. 
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 Apply (4) to (3) and separate the transverse and longitudinal parts of the field, 

yielding [40] 
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            A rotated coordinate system )ˆ,ˆ( vu is defined based on original spectrum-domain 

coordinate system 
)ˆ,( ρρ kk z
, as [55] 
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 And the transverse electric and magnetic fields can be expressed as  

vuH

vuE

ˆˆˆ
~

ˆˆ
~

he

he

IIz

VV









                                                         (11) 

where  ),( ee IV and ),( hh IV  the fields outside the source region are, respectively, TM 

and TE to z, as shown in Fig. 3.1. By projecting (3.6) and (3.7) on )ˆ,ˆ( vu coordinate, a set 

of telegraph equation can be obtained, as 

 

ppp
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                                                  (12) 

where p denotes either e or h type. The characteristic impedance of the transmission line 

are given as 
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And the voltage and current sources in (12) are given as 
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The spectral domain electric and magnetic field can be expressed as 
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 In the linear media, the fields due to arbitrary current source can be expressed as  





MGJGH

MGJGE

HMHJ

EMEJ

~
,

~~
,

~~

~
,

~~
,

~~

                                      (16) 

where 
PQG

~

is the Dyadic Green’s function (DGF) relating to P-type field at the source 

point and Q-type field at the observation point. 

 Compare (15) and (16) and using (14), the spectrum domain DGF related to fields 

can be written as 
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  (20)           

where 
p

iV
 and 

p

iI
denote voltage and current due to shunt current source while 

p

vV
 and 

p

vI
denote voltage and current due to series voltage source. 
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Fig.1 A point source embedded in a general multilayer medium and its transmission line 

analogy. 

        

           Based on the Green’s function (17)-(20) for the fields, we will derive the Green’s 

function for vector potential A  and scalar potential   with regarding to current and 

charge, as    

'

'

dSqG

dS

i

i

s

s








)(r')r'(r,(r)

))J(r'r'(r,GA(r) A


                                         (21) 

where r is the observation point while 'r  is the source point. 

 And in the view of current continuity, the Green’s function for vector potential A  

and scalar potential   should always satisfy 




G
zz

~
'

~1
 AG

                                                (22) 

 However, in a inhomogeneous medium, the Green’s functions for potential A  

and   satisfying (22) does not in general exist, due to the fact that the scalar potentials of 

point charges associated with horizontal and vertical current dipoles in a layered medium 
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are different. Thus, a correction form is introduced to the Green function for vector 

potentials, as [8] 

zPG
zz

ˆ'
1




 AG

                                          (23) 

 And define the corrected vector potential Green function as 

zP
k

ˆ
1

2  AA GK
                                               (24) 

 Thus, the electric field can be expressed as 

)',(
1

,  JJKE A 


 G
j

j
                           (25) 

 Though the form of 
AG

 is not uniquely defined in layer medium problems, the 

traditional form of 
AG

 is chosen as 




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                                                     (26) 

while the correct 
AK

 can be expressed in the form of  


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                                                      (27) 

 The Green’s function for vector potential is associated with the magnetic field by 

AHJ GG 
                                           (28) 

 Using (19) and (28), the spectrum domain AG
~

can be written as 
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 G
~

and P
~

 can be obtained from (23) and (29) 
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 Finally, 
AK

~

from (24) can be written as 
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 Later, we will show  

)|'()'|( zzVzzI
p

v

p

i 
                                                (33) 

 Thus, 

)(),'(
~

)'()',(
~

rrrrrr
t

 AA KK 
                                          (34) 

which means 
AK

~

satisfies reciprocity. 
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 Now we will derive the solutions of the transmission line voltage and current 
p

vV
, 

p

iV
 and 

p

vI
, 

p

iI
. They satisfy the following equations: 

p

i
p

z

p

i IZjk
dz

dV


                                                      (35) 

)'( zzVYjk
dz

dI p

i
p

z

p

i  
                                         (36) 

)'( zzIZjk
dz

dV p

v
p

z

p

v  
                                        (37) 

p

v
p

z

p

v VYjk
dz

dI


                                                      (38) 

where  is the Dirac delta function. 

 Assume the source point at z’ is in the m layer and the observation point at z is in 

the n layer. Layer n is defined with boundaries at 1nz
 and nz

. The propagation constants 

for m layer and n layer are
m

zk , 
n

zk , respectively. And the characteristic impedance 

(admittance) are denoted as )( mm YZ , )( nn YZ , respectively. Assume 10 zz 
 and 

1 NN zz
. When the source and observation points are in the same layer (m=n), the 

voltage and current response due to current source can be represented as   

][
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|'| 


 
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z eBMe

Z
V 

                               (39) 

])1([
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1 4

1

|'| 


 
s

jkp

ns
sp

n
zzjkp

i
ns

n
z

n
z eBMeI 

                            (40) 

where the upper and lower signs pertain to z>z’and z<z’, respectively. And  
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And the generalized reflection coefficients are given as 
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where   
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 Consider the next case m<n, and the source point is above the observation point 

(z’<z), the final solutions of 
p

iV
 and 

p

iI
are 
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where 
downp

mnT
,

is the generalized transmission coefficient from layer m to layer n, with 
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where we assume mm
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 Similarly, when m>n, and the source point is below the observation point (z’>z), 

the final solutions of 
p

iV  and 
p

iI are 
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where 
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 We assume mm
zz 

1 and   
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p

vV  and 
p

vI  can be calculated from 
p

iV  and 
p

iI  by duality, with the following 

substitution: 

ppppp

v

p

i

p

v

p

i ZYYZVIIV  ,,,
                           (53) 

(33) could be demonstrated with (50) and reciprocity of (34)- (37). 

           The spectral-domain Green function through the procedure above is validated 

using a two-layered media with GND bottom. The geometry is shown in Fig. 2. The 

frequency is 60 GHz. Fig 3 shows the results comparison between the Green function 

from the general methods developed above and analytical form in [23]. Good correlation 

has been achieved for spectrum-domain Green function for magnetic potential in x-x 

direction.    

 

Fig. 2 Example of two-layered media with ground bottom. 
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Fig. 3. Comparison of spectrum-domain 
A

xxG
~

 using the approach discussed in this paper 

and analytical form from Y. Chow’s paper [27]. 

 

III.     DISCRETE COMPLEX IMAGE METHOD FOR 

SOMMERFELDINTEGRATION 

 Due to the nature of the kernel of the Sommerfeld integration, direct numerical 

integration is almost impossible for wide-band analysis. Meanwhile, the singular points at 

the real axis of kp plane further impede the direct calculations of Sommerfeld integration. 

Discrete complex image method was developed for decades to analytically calculate 

Sommerfeld integration by utilizing Sommerfeld identity. As shown in [4], [5], 

[23]~[27], the spatial-domain Green function of general layered media could be written 

as   

spswstaticpri GGGGG 
                                 (54) 



 

20

where  priG
is the primary filed from observation and source points, which is same as the 

free-space Green’s function with retarded terms. staticG
is the quasi-static portion that 

assumes  
k

. swG
 represents the term of surface wave, which is the poles in the k

 

and dominates mainly in the far field region. spG
 is calculated based on the Sommerfeld 

identity with complex images and physically represents spherical waves in the space. The 

following paragraph will analyze each term in details.  

 The first term in (3.49) only exists the two conditions satisfy, 1) the source and 

observation points are in the same layer. 2) there is filed coupling  between source and 

observation if assuming free space. However, even for the cases source and observation 

points are in the different layers, the term of primary filed is still needed. The primary 

field can be obtained with the aid of the Sommerfeld identity, as 
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   (55) 

where the source point is located in m layer and r is the distance between source and 

observation points.  

 For the quasi-static staticG
, the analytical form is only available for simple 

geometries if we assume frequency is approaching 0. Generally, the spectrum-domain 

Green function be expanded, through M order GPOF algorithm, as [27] 
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When 
k

,  
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                                                               (57) 

which corresponds to the  quasi-static counterpart in the spectrum domain. And apply 

staticG
~

for the kernel of the Sommerfeld integration, we can obtain 
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jk
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e
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
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                                                           (58) 

where  is the distance between the source and observation points in the x-y plane.  

 The spectrum-domain 
)(

~
pkG

has poles which make it difficult to be integrated 

along a certain path. The poles along the integration path are associated with surface 

wave, which are actually the residues for the poles. Moreover, for the geometry shown in 

Fig. 3.1 (
maxZ

 and minZ  is finite), there are two kinds of modes. The guided modes 

is constrained by the layered slab, with energy bound to the slab.  They are evanescent 

modes in region 1 with 11 kkz  . Those guided modes behave in the manner of cylindrical 

waves and correspond to surface wave. And the other unguided modes can propagate in 

region 1 with 11 kkz  . They behave as spherical waves and can be approximated using 

complex images. Without surface wave extraction, it is physically inappropriate to 

approximate cylindrical surface waves using spherical waves in the far field region [20]. 

 Considering the Sommerfeld integration paths for multi-layer media in Fig. 3.4, 

there is a branch cut associated with k1. The selection of branch cut could be flexible, but 

in order to clearly explain the modes with surface wave and spherical wave, we choose 

the branch cut mostly lies on the y axis, as shown in Fig. 3.4. It could be noted for any of 

the poles, the real part of  k
 is larger than 1k , which indicates the z-dependence of each 
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residue is an exponentially decaying function. Thus, surface waves which related to those 

residues are evanescent modes. On the other hand, all the k
along the integration path c1 

in Fig. 3.4 have a real part smaller than 1k , which is corresponding to spatial wave 

propagating at z direction. The surface wave modes and spatial wave modes are 

orthogonal, as stated in [23].  

 For multilayer media, only the unbounded layer has branch cut, as in the bounded 

layer, wave could travel to both directions. 
m

z
k is not a double-value function if m is a 

bounded layer. For the unbounded region 1 in Fig. 3.1, the Riemann sheet needs to be 

determined for the branch cut. In order to satisfy the radiation condition, we need to 

ensure  

 0)Im(
1

zk                                                          (59) 

 The procedure to implement surface wave pole extraction is shown below: 

 The locations of surface wave poles are detected numerically. Along the real axis 

of kp, firstly local maximum points are picked out numerically.  

 Next, contour integration is used to judge whether those maximum points are 

poles. Calculate and save the residue for real poles. 

 After determine the real pole location, a further refine of the step is needed to the 

local pole region to improve the precisions of finding more accurate poles.    

 Calculate swG
~

 for surface wave part in the spectrum domain. Due to the 

conjugation of the surface wave poles,  swG
~

 can be expressed as 





p ppp

p

sw
kk

sk
G P

22

Re2~

                                                (60) 



 

23

The spatial-domain surface wave term could be calculated as  
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 where p
k is the p th pole refined from step (4).  

 The 1-D methods above only search the poles along real axis of k
, which would 

be only suitable for lossless medium. When dealing with lossy medium, methods with 

recursive contour integration in the entire k
 plane were first proposed in [31] to extract 

poles. Recently, a general method with a new criteria for pole extractions is developed in 

[61].  

 However, if we expand the spatial wave (branch cut) with surface wave 

extraction, the Green function in near-filed region will show inaccuracy, as the 

singularity in the surface-wave term is weaker than that in the primary field. In the far 

field, as the surface-wave propagation at a rate of 


while the spatial wave decays 

exponentially, the affects of surface wave dominant. A transition point is proposed in 

[31] to determine the criteria whether the surface-wave terms should be extracted. Teo 

discussed error analysis for the DCIM with and without  surface-wave pole extractions 

and proposed a new form that is suitable for both near and far fields [27].  
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Fig. 4  Integration path for Sommerfeld kernel in k
 plane 

 For the example shown in Fig. 4, the spectrum-domain Green Function in xx 

direction along real axis of kp is plotted in Fig. 5 (a), from where there is a pole when 

1100pk
. Fig. 5 (b) shows the kernel of SI integration with the same Green Function 

after subtraction of the surface-wave pole. 

 

(a) 

Fig. 5 Surface-wave pole of the spectrum-domain Green Function for layered structure 

shown in Fig. 2. (a) Green Function without pole extraction 
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(b) 

Fig. 5 Surface-wave pole of the spectrum-domain Green Function for layered structure 

shown in Fig. 2. (a) Green Function without pole extraction (b) Kernel of SI with pole 

extraction. (cont.) 

 After subtraction of primary field, quasi-static term and surface-wave poles, the 

remaining portion of the spectrum-domain Green Function could be written in the form 

of spherical waves with complex distance of its images, as     
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where the integration path is formed by uniform samples along [23] 

 
)]/1([ 01

1
Ttjtkk z 

                                             (63) 

where t is a running parameter from 0 to 0T
 to represent a complex variable 

1

zk . The 

complex function compG
~

 with real variable t could be approximated by the summation of 

exponential functions, using GPOF [27]. Thus, the spatial-domain Green Function that is 

related to spherical waves can be easily obtained through Sommerfeld identity, as  
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22 )( ii jbr  
                                             (65) 

 The accuracy of the GPOF is related to the value of 0T
 and number of sampling 

points. Aksun proposed a two-level approach with modified Sommerfeld integration path 

for robust GPOF applied to layered media [26]. 

 For the unbounded layered media as shown in Fig. 3.2, the spherical wave 

expansion should be only regarding to radiated waves in the unbounded media [27]. In 

the bounded layer, wave could travel to both directions and no branch cut will be 

associated with wave numbers. Thus, expansion of spherical wave regarding to the wave 

number will introduce new branch cut, which can be corrected to expand the spherical 

waves only in the unbounded region, i.e. 
1

zk  for all the analysis in this paper.  

 In summary, by applying discrete complex image method, the spectrum-domain 

Green function has general form as  

spswstaticpri GGGGG
~~~~~


                                    (66) 

where its spatial counterpart is shown as equation (3.49). 

 The geometry shown in Fig. 4  is used as the first example to validate the 

formulation and procedure discussed above in Charters 2 and 3. The frequency is 60 

GHz. Fig. 6 compares the final results of spatial-domain Green Functions from the 

formulation in this paper and the analytical forms in Ref [50]. Good correlations have 
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been achieved. Fig. 7 shows the contributions of each term in equation (3.49) relative to 

the distance between source and observation points.   

 

Fig. 6 Correlations of the spatial-domain Green Function for layered media structure 

shown in Fig. 2. 

 

Fig. 7 Contributions of primary field, quasi-static term, surface-wave poles and complex 

images to the spatial-domain Green Function. 
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 A four-layer media shown in Fig. 8 and Fig. 10 is used as the second example, 

same as the examples used in [25]. All the geometry details and material properties are 

shown in the figures. For the example in Fig. 8, the source and observation points are in 

different layer while source and observation overlaps in Fig. 10. Fig. 9 and Fig. 10 shows 

the spatial-domain Green Function for magnetic potential A in xx direction. The results in 

blue is from the calculations of DCIM without surface wave poles while the results in red 

is calculated from DCIM with surface poles. 

 

Fig. 8 A four-layer media with source and observation points in the different layer 

 

Fig. 9 Spatial-domain Green Function xxGA  for layered media structure shown in Fig. 8. 



 

29

 

Fig. 10 A four-layer media with source and observation points at the same location 

 

Fig. 11 Spatial-domain Green Function xxGA  for layered media structure shown in Fig. 

10. 

 

       A five-layer media shown in Fig. 12 is used to calculate electrical potential Green 

function G
 as the third example, same as the examples used in [31]. The source point is 

at z=1.4 while the observation point is at z’=0.4. The frequency is 30 GHz. Fig.13 shows 

the spatial-domain Green Function G
with and without surface wave extracted. 
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Fig. 12 A five-layer media with source and observation points in the different layer 

 

 

Fig. 13 Spatial-domain Green Function G
 for layered media structure shown in Fig. 12. 

 

IV.    Modelling guideline for applications of 3D IC 

     Fig.14 showed an example of the geometry of 3DIC. It is 4-layer DRAM with one 

layer of interposer at the bottom of the IC chip. The chip is integrated with a 2.5 D silicon 

interposer through TSVs. The interposer is soldered on a PCB using BGA. There is a 

ground layer at the bottom of the PCB.  All the DRAM, logic and interposer layers are 

silicon layers. The permeability of the silicon is 11.9. The conductivity of DRAM and 
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logic layers are 1 S/m. The conductivity of Silicon interposer is 0.1 S/m. The PCB layer 

contains FR4, which has permeability of 4.4.  The thickness of every DRAM layer is 270 

um. The thickness of logic layer, interposer and PCB is 50 um, 200 um, and 2mm 

respectively.  The source point is at DRAM layer and the observation layer is at 

interposer. The top layer is air.  

 

Fig. 14 The geometry of 3D memory IC integrated on 2.5D silicon interposer 

 Fig. 15  and Fig. 16 are the plots of the spacial  Green function for vector magnetic 

potential and electric potential at the frequency of 30kHz, 30MHz and 30 GHz. When the 

source and observation points are very closed to each other, the primary term dominates 

the Green function, which means the effects of multi-layer media cannot be shown for 

points with small distance. At relative low frequency,  one quasi-static image caused by 

PCB ground plane generates dominant effects to the Green functions of magnetic 

potentials, when the observation point is further from source point. However, when 

frequency increase, image due to lossy media has complex distance, so in Fig 15, the total 
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layered Green function divert with purely image effect at 30MHz when the distance is 

large. For electric potential, since layers with different permeability generates multiple 

images, the overall effects need to be considered within spherical wave effect even when 

the frequency is low, although it is still quasi-static field. At the frequency of 30G, 

surface wave becomes to show up at far field but the magnitude is very low and can be 

generally ignored by this application. When the distance of the source and observation 

point is far, the coupling effects is much larger as spherical wave begins to dominate.  

 

(a) 

 

(b) 

Fig. 15 the spacial  Green function for vector magnetic potential at the frequency of (a) 

30kHz, (b) 30MHz and (c) 30 GHz  
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(c) 

Fig. 15 the spacial  Green function for vector magnetic potential at the frequency of (a) 

30kHz, (b) 30MHz and (c) 30 GHz(cont.) 

 

(a) 

Fig. 16 the spacial  Green function for electric potential at the frequency of (a) 30kHz, (b) 

30MHz and (c) 30 GHz  
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(b) 

 

(c) 

Fig. 16 the spacial  Green function for electric potential at the frequency of (a) 30kHz, (b) 

30MHz and (c) 30 GHz(cont.) 
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V.    CONCLUSION 

 In this paper, we reviewed previous method of deriving Green function in multi-

layer media. DCIM has been used to derive the Green function with lossy media. The 

study of applying the methods to the real applications of  3DIC shows at image theories 

can be applied to magnetic vector  Green functions at low frequency, however, multiple 

images should be considered for electric potential Green’s function. At high frequency, 

surface-wave term has far-field effects when the distance of the interconnect is far. 

Spatial-wave term becomes to dominate when the pitch size becomes larger. 
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II.  AN EFFICIENT METHOD TO EXTRACT SURFACE-WAVE POLES OF 
GREEN’S FUNCTIONS NEAR BRANCH CUT IN LOSSY LAYERED MEDIA 

 
Siming Pan, and Jun Fan 

Abstract—Calculating the Green’s functions in lossy layered media using the discrete 

complex image method (DCIM) is challenging, due to the difficulties in extracting the 

surface-wave poles that are very close to a branch cut. An efficient algorithm based on the 

contour method is proposed in this paper to locate these poles and calculate the residues. 

The proposed method is robust for both the lossless and lossy media. With the proposed 

approach, it is shown in numerical examples that some poles, very close to a branch cut, are 

successfully extracted that were missed using the previous techniques proposed in [7] in 

lossy media. The accurate calculation of the Green’s functions in lossy layered media 

enables the accurate and efficient modeling of complex structures in lossy semiconductor 

substrates and new 3D IC structures including through-silicon vias (TSVs).      

 

Index Terms—Lossy layered media, spectral-domain Green’s functions,  surface-wave 

poles, discrete complex image method (DCIM), pole extraction, Sommerfeld integral. 

I. INTRODUCTION 

GREEN’S functions in layered media have been extensively studied during the past 

several decades. It is necessary to evaluate the Green’s functions efficiently in any 

algorithm based on integral equations (IE) such as the method of moments (MoM), for 

analyzing multilayer structures such as patch antennas, printed dipoles, high-speed 

interconnects, microwave and millimeter-wave circuits, etc. 
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The normal procedures of calculating the Green’s functions in layered media start 

with the spectral-domain Green’s functions, which are efficiently constructed based on the 

generalized reflection and transmission coefficients [1-3]. Then, the spatial-domain 

Green’s functions are evaluated from their spectral-domain counterparts through the 

well-known Sommerfeld integral (SI). Since SI has the intrinsic property of strong 

singularity, high oscillation and slow decay, numerical integration is generally 

time-consuming. Over the years, several methods have been proposed to expedite the 

calculation of SI [4-7]. Among those methods, discrete complex image method (DCIM) 

provides closed-form Green’s functions in a systematic manner [8], [9].   

When applying DCIM, the spherical waves in the spectral domain are 

approximated in terms of a set of complex exponentials, using the generalized pencil of 

function (GPOF). Via the Sommerfeld identity, each complex-exponential term in the 

spectral domain can be easily casted to an analytical term in the spatial domain. However, 

in order to obtain accurate far-field response, surface-wave poles must be extracted to 

avoid singularities. Because the surface-wave poles representing cylindrical and lateral 

surface waves, if approximated with spherical waves, could cause severe deterioration of 

the DCIM algorithm in the far field.  

Although it is a cumbersome step to locate the surface-wave poles for general 

multiple, especially thick layers [10], significant progress has been achieved and some 

common methods were well summarized in [11]. For general layered media, contour 

integrals, first proposed in [12], are usually performed to check the locations of the poles. 

However, when the surface-wave poles are located close to a branch cut, which is very 

common for transverse magnetic (TM) waves due to the absence of low cutoff frequency, 
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the recursive contour integral method becomes less efficient. Polimeridis et al. proposed a 

technique to remove the branch cut using a sine transformation [13]. But this method 

embodied in the algorithm [14] is not sufficiently efficient for lossy layered media. 

Moreover, in [11], Wang et al proposed to use the Cauchy theorem and criteria to check the 

locations of the poles. Their criteria improved the accuracy but did not completely solve 

the errors caused by the branch cut. Consequently, as shown in the numerical examples in 

Section III, some critical poles were missed in their results (TABLE II in [11]) in lossy 

media.    

Being able to deal with lossy layered media becomes more critical today with the 

need to characterize and model 3D IC and 3D packaging structures with through-silicon 

vias (TSVs).  Lossy silicon substrate has a significant impact on the electrical performance 

of these structures. In this paper, a simple yet accurate method is proposed to calculate the 

contour integral with the presence of a branch cut inside the contour. The algorithm is 

efficient to remove the effects of the branch cut in general layered media, whether lossless 

or lossy, and gives good results for searching the poles as well as calculating the residues. 

The details of the algorithm are presented in Section II, followed by numerical examples to 

demonstrate the accuracy and the effectiveness of the method in Section III.  

II. FORMULATION 

A typical configuration of layered media shown in Fig. 1 is used in the following 

discussions. The top layer is open (unbounded) and the bottom layer is bounded by a 

perfect electric conductor (PEC) plane. The spectral-domain Green’s functions of such 

layered media have been well established through equivalent transmission lines with 

transverse electric (TE) or TM types [2].  
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When applying DCIM to obtain the analytical spatial-domain Green’s functions 

through the Sommerfled identity, the spectral-domain Green’s functions can be 

decomposed into the form as  

spswstaticpri GGGGG
~~~~~

=                                              (1)   

where G
~

is a spectral-domain Green’s function; Gpri , Gstatic
,  Gsw

, Gsp  represent its 

primary field, quasi-static image, surface-wave and complex image terms, respectively, 

and  
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where kz
1 = k1

2  k
2  is the wavenumber in the first open layer, k1 =w 1m1 and k  is the 

transverse propagation wave number. In addition, A0 is the constant term when k ®¥ ; 

NG is the number of the complex images; ai  and biare the coefficients of the ith complex 

image; and, ki  and Resi are the ith surface-wave pole and residue. For layered media, only 

the unbounded layer has branch cut. In any bounded layer, wave could travel at both the ẑ

and - ẑ directions and therefore there is no branch cut. Thus, spherical waves are expanded 

with regard to the open layer to avoid artificial branch cut [15].  
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For general lossless media, the pole ki  is located along  the real axis while ki  

could be located at any point inside the entire k  plane for lossy media. From the residue 

theorem, in a simple connected domain W bounded by a Jordan curve Cr, the residue of a 

pole can be obtained through the contour integral in the complex k  plane as  

=
rC

dkG
j

Res 


~

2

1
                                                      (6) 

However, the spectral-domain Green’s function G has branch cut in the k plane, 

due to the fact that the mode wavenumber for the unbounded layer  

 kz
1 = ± k1

2  k
2                                                  (7) 

is a double-valued complex function. The imaginary part of kz
1 has to be chosen negative to 

satisfy the radiation condition.  

 

Fig. 1 A typical configuration of layered media with N dielectric layers. The top 

layer is open and the bottom layer is bounded with a PEC plane.    

If the branch cut intersects with the integration path, as illustrated in Fig. 2, the 
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contour integral (6) will not be zero even if there is no pole inside the closed domain W. In 

other words, (6) is valid to calculate the residue of a pole only when the integration path is 

within one Riemann sheet of G . For this reason, when the location of a pole is close to the 

branch cut, the algorithm of recursive contour integral [12] fails and the error from the 

integration path across different Riemann sheets impairs the judgment of pole location as 

well as the calculation of the residue. Though it is relatively easy to locate any branch 

point, limiting the contour integral within one Riemann sheet by identifying the entire 

branch cut is usually cumbersome, especially for layered media. 

In order to eliminate the effects of branch cut, we modify (6) and propose the 

following condition for identifying the location of a pole, with a given error tolerance e,  

           edkGG
j

Res
rC

>=  |)'
~~

(
2

1
||| 


                                        (8) 

where G and G' could be calculated from (1) when Im(kz
1 < 0)and Im(kz

1 > 0).        

Spurious poles associated with '
~
G  would also be selected from (8), thus, we should 

add one more criterion, as  

edkG
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2

1
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                                                 (9) 

Conditions (8) and (9), together with the recursive contour integration method [12] 

or the Cauchy’s integral theorem [11], could accurately locate all the poles, no matter how 

close they are to the branch cut. 
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Fig. 2 Contour integration with branch cut intersecting with the integration path. 

III. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we provide numerical examples to demonstrate the accuracy and the 

effectiveness of the proposed method, for both lossless and lossy layered media. In the 

implementation of the proposed algorithm, the error tolerance in (8) and (10) is selected as 

1e-5. The region for searching the poles is limited within a square centered at the origin 

with edge length of 2e4 along both the real and imaginary axis directions.     

First, the surface-wave poles associated with both TE and TM modes in a 

single-layer medium with parameters of r = 4, layer thickness h = 5 mm and the operation 

frequency f = 10 GHz are studied, same as in [11] and [13]. The Green’s function in this 

example has a single TE-mode pole that is very close to its branch point at k = k0 =2.0958. 

The results from the proposed method are compared with the previously published results 

in TABLE І. It can be observed that the results from the proposed method are nearly 

identical with those from [13]. 
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Table І 

TE AND TM WAVE POLES IN A SINGLE-LAYER MEDIUM WITH LOSSLESS OR 
LOSSY DIELECTRIC MATERIAL 

 
Pole 

(rad/cm) 

 Lossless tan    =0.02 

TM  method in this paper 3.265300 3.2653-j0.0402 

method in [11] 3.261989 3.2620-j0.0401 

method in [13]       --- 3.2653-j0.0402 

TE  method in this paper 2.223390 2.2226-j0.0238 

method in [11] 2.220789 2.2200-j0.0237 

method in [13] 2.22 2.2226-j0.0238 

 

Then, surface-wave poles of the Green Function in the same four-layer media with 

a PEC ground plane as discussed in [11] and [13] are studied. The structure is shown in Fig. 

3 and the frequency is 30 GHz. In this example, the surface-wave poles are very close to 

the branch cut. Direct methods in [12] and [14] failed. In [13], only lossless case was 

considered since the method is not sufficiently efficient for lossy layered media. And the 

technique in [11] missed several critical poles for the lossy case as illustrated in Table II.  

 

Fig. 3 Configuration of the four-layer media, as illustrated in [11], used as an example. 
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All the poles obtained from the proposed method are listed in Table II, which also 

includes the results from [11] and [13]. From the table, it can be observed that in the 

lossless case the poles extracted by the proposed method match with those from [13], but 

are slightly different than those from [11]. However, for the lossy case, the proposed 

method identified more poles for both the TE and TM modes than the method in [11]. The 

extra poles identified from the proposed algorithm are not due to a higher error tolerance, 

because the residues of some of these poles are sufficiently large and they dominate the 

surface-wave behavior in the far field. To further verify the accurate locations of these 

poles in the lossy media, contour plots in the complex k  plane are shown in Fig. 4 and 

Fig.5. Due to the space limitation of the paper, only several significant poles for the TM 

waves are shown. But all the poles identified by the proposed method are verified to be true 

and accurate.  
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Table II 

TE AND TM WAVE POLES IN FOUR-LAYER MEDIA WITH LOSSLESS OR LOSSY 
DIELECTRIC MATERIALS  

 

8.6019 7.915-j2.75

16.1638 16.32-j2.308

method 

in this

paper

18.8632 18.95-j1.993

0.733-j38.32

--- 0.175-j56.21

0.265-j80.49

8.5844

16.1478

18.8498

8.6019

16.1638

18.863

6.2894

14.8323

19.1407

6.2841

14.8151

19.1259

6.2893

14.8323

19.1407

---

---

---

method 

in this

paper

4.43867-j3.8411

15.0099-j2.4616

19.2472-j2.1411

method 

in [11]

---

14.9927-j2.4607

19.2322-j2.1396

method 

in [13]

0.149-j87.91

method 

in [11]

7.8894-j2.7340

16.3122-j2.3076

18.9407-j1.9917

method 

in [13]

---

---

---

Pole 

(rad/cm)
Lossless tan 

4.477-j1.495

1.528-j19.04

0.420-j28.45

0.484-j46.89

0.383-j63.31



TM

TE
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Fig. 4 Contour plots of the magnitude of the normalized TE waves in the complex kp plane 
for the lossy case.  The three most significant poles are plotted. The locations of the poles 

match well with those extracted from the proposed method listed in Table II. 
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Fig. 5 Contour plots of the magnitude of the normalized TM waves in the complex kp plane 
for the lossy case.  The remaining three significant poles are plotted. The locations of the 

poles match well with those extracted from the proposed method listed in Table II. 
 
 

The proposed method could be generalized to calculate the residues using contour 

integral with the presence of any number of branch cuts. Suppose a total number of N 

branch cuts intersecting with the integration path, the computational time of locating the 

poles increases to N2 . Fortunately, in general layered media, the maximum number of 
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branch cuts associated with unbounded media that could impact the contour integral for 

locating poles is only 2. Thus, the pole extraction algorithm proposed in this paper can still 

be embodied into DCIM to improve its efficiency with a negligible increase of 

computational time.   

 

IV. CONCLUSION 

A robust and automatic method to extract the surface-wave poles of the 

spectral-domain Green’s functions for general layered media is proposed. Both lossless 

and lossy dielectric materials can be effectively handled. The proposed method can 

accurately identify the surface-wave poles located close to the branch cut. Through the 

numerical examples and the comparisons with the previously published results, the 

proposed approach has been demonstrated more effective and accurate to handle lossy 

layered media.  
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III.  MODELING OF COPLANAR WAVEGUIDE ON 2.5D SILICON 
INTERPOSER 

 
 

Siming Pan and Jun Fan  

 

Abstract— A new equivalent circuit model is proposed in this paper to model CPW 

structure on silicon interposer. The 2D lossy metal-isolator-semiconductor (MIS) coplanar 

waveguide (CPW) is represented by simple RLGC circuit. The shunt admittance of the 

equivalent circuit model is derived rigorously based on partial equivalent element circuit 

(PEEC) in layered media. The silicon effects on series inductance have also been studied 

by employing the modified green functions with semiconductor images at a complex 

distance from spectrum domain analysis. It is also demonstrated in the paper that the 

silicon effects on series impedance can be neglected in conventional CMOS processes. A 

test 2.5 silicon interposer is fabricated to validate the effectiveness of the model.  The 

presented circuit model shows good correlations with full-wave simulations as well as the 

measurements on the test interposer.   

Index Terms— On-chip interconnect, silicon interposer, through-silicon-via (TSV), 

partial equivalent element circuit (PEEC), complex image theory, signal integrity. 

 

I. INTRODUCTION 

 

Recently 3D integration explores a new solution to keep pace with Moore’s Law 

for the semiconductor industry. Nowadays the performance of the integrated circuits is 

highly depends on the interconnect designs as the interconnect delay has exceeded the gate 
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switching delay. On the other hand, the total number of Input / Output (IO) and Power / 

Ground (PG) terminals keep increasing due to requirements of rapid advance in integration 

density and performance [1, 2]. Design rules of the wiring and bump pitch on the substrate 

continue to shrink, thus, passive interposer using silicon substrate with TSVs has emerged 

as a reliable solution to connect with chips using smaller interconnects [3]. Since multiple 

active ICs from different technologies can be mounted over the silicon interposer, silicon 

interposer platform guarantees heterogeneous system-in- package (SIP) solutions in a 

small form-factor [4].    

   Due to the increase in operating frequencies, the performance of signal links 

could be a critical problem to impact signal integrity. The previous lumped 

resistance-capacitance (RC) models may not be suitable to accurately characterize signal 

delay and loss of the interconnect on the silicon interposer, due to relatively long signal 

transmission in silicon environment and high operation frequency [5, 6]. Coplanar 

waveguide (CPW) transmission lines are commonly realized in the conventional CMOS 

processes for global power and signal routing. In order to evaluate the electrical behaviors 

of the broad-band transmission line for CPW structure on lossy silicon substrate, a variety 

of numerical techniques and modeling methodology was summarized in [7]. Most of the 

proposed models clarify three different modes of wave propagations for MIS, originally 

reported by H. Hasegawa [8]. They proposed “skin-effect”, “slow-wave” and “quasi-TEM” 

mechanism according to the comparison between operation frequency and silicon 

relaxation frequency. J. Aguilera developed a quasi-static approach in spectral domain for 

layered isolator-semiconductor substrate [9]. But the conductor losses can be dominant for 

the on-chip MIS structure [10]. So a quasi-TM model is extended to include nonperfectly 
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metallic conductors in [11], where G. Plaza proposed a quasi-TM model by carefully 

defining the meaning of voltage and current and used the combination of method of lines 

(MoL) and method of moments (MoM) to solve the integral equation. This work was 

extended to include multi-conductor case in [12]. Distributed frequency-dependent 

resistance, inductance, conductance and capacitance (RLGC) transmission line model was 

also extracted for integrated circuit CPW based on quasi-TEM field in [13, 14]. However, a 

simple circuit model with frequency-independent elements is always desired for fast 

spice-compatible simulations in time domain. The circuit model proposed in Fig. 4 in [15] 

was widely used and various approaches were developed to calculate the circuit elements 

for this circuit topology. V. Milanovic provided an equivalent circuit model for CPW with 

deep doping substrate and compared with on-wafer measurements. But the derivations of 

the topology and elements of the equivalent circuit are not rigorous, which results in more 

capacitance shown in the measurements than that from the model [16]. Another equivalent 

circuit model was proposed by K. Kang for wideband applications but empirical formulas 

were used to fit the elements in the model [17].  

 In this paper, we proposed a new circuit topology for MIS CPW structures based 

on partial element equivalent circuit (PEEC) [18, 19]. As demonstrated in [20, 21], the 

per-unit-length capacitance and inductance for this type of slow-wave transmission line 

can be calculated separately. While the effective resistance is mostly dominate by the skin 

loss of the conductor rather than the loss from eddy current in silicon, the calculations of 

inductance and resistance could simply use the similar methods mentioned in [19].  The 

equivalent circuit model related to capacitance and conductance in inhomogeneous regions 

are derived through PEEC method combined with complex image theory. The proposed 
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method assumes the ratio between trace space and width should not be too small, which is 

valid in most conventional CMOS processes due to design rules restrictions.  The error 

induced by this method is also analyzed for different geometrical constrains.  

     The paper is organized as followings, in Section II, we derive an equivalent 

circuit model with frequency-independent elements for CPW structure on silicon 

interposer. In Section III, circuit model for TSV is reviewed first then we combined CPW 

and TSV model together. Validations of the models are demonstrated in Section IV 

through full-wave simulations and on-wafer measurements on a test silicon interposer. We 

conclude our work in Section V.  

II. EQUIVALENT CIRCUIT MODEL FOR CPW STRUCTURE ON 

SILICON INTERPOSER 

 

Fig. 1 shows a typical geometry of coplanar waveguide on the silicon interposer. 

Through quasi-static analysis, the electrical properties of the CPW structure can be 

accurately determined by per-unit-length impedance and admittance parameters, as 

demonstrated in [22].  Though the total shunt admittance for on-chip CPW is frequency 

dependent in a wide frequency range, it could be represented by frequency-independent 

capacitance and conductance with appropriate circuit topology. Meanwhile, in today’s 

commonly used CMOS processes, the resistivity of silicon substrate is generally less than 1 

Ω·cm. Thus, the effective substrate resistance is relatively small compared to skin-effect 

loss. The proposed circuit model simply uses the impedance from CPW in homogenous 

media to account for serial impedance elements of on-chip CPW structures.  
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Fig.  1 Coplanar waveguide on silicon interposer  

 

A. Circuit Model for Shunt Admittance Parameters 

The so called short circuit capacitance matrix [23] for the CPW structure in 

dielectric media is defined as, 

11 121 1

21 222 2

s s

s s

C CQ

C CQ

    
=         

,                                               (1) 

where Cs is the short circuit capacitance matrix for signal and ground conductors, Q1, Q2,  

Φ1,  Φ2, are the total charges and potentials on signal and ground conductors, respectively.  

The lumped equivalent capacitance between signal and ground conductors can be 

easily evaluated by  

                2
21 2

1

 when 0lump s

Q
C C= =  =


.                                           (2) 

From the integral solution of Maxwell’s equations, the relationship between the 

charge density and the potential is given as [24] 

( ) ( , ') ( ') 'cG q ds = r r r r .                                                 (3) 

where q is the charge density on the conductor surfaces, and G is the Green’s function. r 
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and r’ are the position vectors of the source and observation points.  

   If the charge uniformly distributes on the surface of the conductors, (3) becomes 

1,2

( ) ( , ') 'i
c

i i

Q
G ds

S=

 =  r r r ,                                              (4) 

where S1 , S2 represent the total surface areas for signal and ground conductors.  

Next, apply Galerkin’s approach to match the potential for signal and ground with 

averaging (4) over their surface, we can obtain [24] 

1,2
1,2

j i ij
i

Q ps=
=

 =                                                       (5) 

where 

                
1

( , ') '
i j

ij c

j i S S

ps G ds ds
S S

=   r r .                                          (6) 

  For on-silicon CPW structure, inhomogeneous SiO2-Silicon media are usually 

involved. The Green’s function for this layered media can be derived from the free space 

Green’s function using the image theory Error! Reference source not found.. Since both 

signal and ground conductors are in the SiO2 layer, source and observation points are in the 

same media. Thus, the Green’s function for CPW structure in SiO2-Silicon media shown in 

Fig. 2 can be written as 

2

2 2 2

1 1 1 1 1 1
( , ')

4 ' 4 ' ( )

c
sio si

c c
sio sio sio si

G
 

     

-
= 

- - im

r r
r r r r

                                (7) 

where rim’ is the position vectors of the image of observation points. 
2sio is the permittivity 

of SiO2.  

2
c si

si si
j f


 


=  .                                                 (8) 

    si and si are permittivity and conductivity of the silicon, respectively. 
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In order to develop an intuitive physics-based circuit model, we assume charge 

distributes uniformly on the 2-D surface of signal and ground conductors when we first 

decompose the circuit elements from rigorous PEEC definition. This assumption will be 

revised and discussed later in Section IV.                      

Consider signal and ground conductors as two uniform cells and apply (7), the Ps 

matrix defined in (6) becomes 

2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

' '

' '

1 1 1 1

( ) ( )

1 1 1 1

( ) ( )

c c
sio si sio si

ss ss sg sgc c
sio sio sio si sio sio sio si

c c
sio si sio si

sg sg gg ggc c
sio sio sio si sio sio sio si

a a a a

a a a a

   

       

   

       

 - -
  

  
=  

- -  
   

Ps
                       (9) 

where 
ss sg

sg gg

a a

a a

 
 
 

 is the Ps matrix purely related to the geometry of signal and ground 

conductors in the homogenous air, as shown in Fig. 2 (a).  'ssa ,
'sga ,

'gga  can be calculated 

using (6) with free space Green function in air between the original conductor and its image, 

as shown in Fig. 2 (b), (c) and (d), respectively. For 2-D rectangular conductors in 

homogenous media, all the coefficients in (9) can be evaluated analytically [24], [26].  

The shunt admittance between the signal and ground conductors in SiO2-Silicon 

media can be obtained through equation (9), as 

2

2 2 2

' ' '

1

1 1
( 2 ) ( 2 )

( )

total c
sio si

ss gg sg ss gg sg c
sio sio sio si

Y

a a a a a a
 

   

=
-

 -   -


                        (10) 

By exploiting the pair capacitance between the two conductors from four 

configurations in Fig. 2, we can write the equivalent admittance in (10) as   

2 2

1 2

1

1 1

( )

total

c
sio sio si

Y
b b
  

=




                                        (11) 
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where 

( ) ( )

1 ( ) ( )( )
2 2

b d

a c

b b
b b b=   -                                         (12) 

2 ( ) ( ) ( )(2 )c b db b b b= - -                                             (13) 

and 

 
( ) ( )1 /i ib C=      , , ,i a b c d=                                       (14) 

 

( )iC  is the pair capacitance between two groups of conductors in homogenous 

media in Fig. 2 (i).   

Finally, the equivalent circuit model for the shunt admittance between signal and 

ground CPW on silicon can be derived based on (11) and shown in Fig. 3. And the 

capacitance and conductance elements can be expressed as  

                               
2 21_ 1/sio sioC b=                                                        (15) 

  
2 22 _ 2/sio sioC b=                                                       (16) 

 
2 _ 2/si siC b=                                                          (17) 

  
2 _ 2/si siG b=                                                         (18) 

The elements in the equivalent circuit model are directly related to physical 

geometry. In the design of on-chip interconnects, smaller conductance is usually desired to 

reduce loss for signal transition. In order to reduce 
2 _ siG , the capacitance from the 

configuration in Fig. 3(c) needs to be increased while the capacitance of the geometry in 

Fig. 3(b) and (d) needs to be decreased. Thus, to reduce the spacing between signal and 
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GND conductors and to increase the vertical distance between conductors and silicon will 

help to reduce loss caused by shunt conductance.   

 
(a) 

 
(b) 

 
(c) 

     
(d) 

Fig.  2 Geometry to calculate the coefficients in the Ps matrix in Equation (9): (a) ssa ,
sga ,

gga (b) 'ssa  (c) 
'sga  (d) 

'gga  
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Fig.  3 Equivalent circuit model for the shunt admittance between signal and ground from 

rigorous derivation of PEEC method 

 

B. Silicon Effects on Series Impedance Parameters 

The silicon can affect the current distribution of the on-chip CPW structure due to 

the eddy currents in the substrate induced by the time varying magnetic field. For a line 

current above a semi-infinite silicon substrate, the solution of vector magnetic potential 

can be expressed in term of the 2-D Green’s function as    

 ( ) ( , ') ( ') 'z l zA G J ds= r r r r .                   (19) 

With the coordinates defined in Fig. 4, the spatial domain Green’s function can be 

expressed with its spectral counterpart through well-known Sommerfeld integral, as 

 


 dkkkHzzkGzzG
A

l

A

l )()',,(
~

4

1
)',,(

)2(

0 = 


-

                       (20) 

where 
)2(

0H is the zero order Hankel function of the second kind.  
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22 )'()'( yyxx --=                                         (21) 

The spectrum-domain Green’s function in the SiO2 region in Fig. 4 can be 

represented as [28]: 

)(
2

1

4

~ )'()'(

_

0 2_2_

2

zzjk

TE

zzjk

sioz

A

l
siozsioz eRe

kj
G

---
=




                          (22) 

where 
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222
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222

_ kkk sisiz -=                                               (26) 

As the impedance of the CPW can be accurately determined over a wide 

frequency range beyond 10 GHz by quasi-static analysis, only the quasi-static image is 

considered in (22) by setting the frequency to approach DC, thus, for the electrical dipole 

in   direction, as shown in Fig. 4,  

                              
jkk sioz =

2_
                                                      (27) 

5.02

_ )(  kjk siz --=                                            (28) 

Assume an image exist in the distance of 
complexhz '  

complexz

sisiz

sisiz
hjk

hkjTE

hkjTE

TETE e
er

er
RR 0

_
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2

2

0
1

-

-

-

-=



-==                          (29) 

Note that 0k means no variations in the  direction, thus, the complex distance 

can be calculated as by substituting (27), (28) to (29) and yields 
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h
complex

=
ky -0
lim

-RTE 0

- jkz _ sio2

=
2


tanh(h

si
)                                (30) 

where  

sisij  =                                                       (31) 

If there is no ground at the bottom, the complex distance can be obtained as  

d
complex

=
hsi -0
lim h

complex
=

2

                                       (32) 

 

Fig.  4 Geometry and coordinates of layered Si-SiO2 Media  

      

Since in silicon interposer, the thickness of silicon is much larger than it of SIO2, 

the spatial domain Green’s function in SiO2 region without ground plane can be expressed 

as the vector magnetic potential due to original line current sources and its complex image, 

as 

_ _( , ') ( , ') ( , ')l l air l siG G G= r r r r r r                                         (33) 

where  

0
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1
( , ')

4 '
l airG
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r r

r r
                                                 (34) 
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l siG
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r r
r r
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rim_complex’ is the position vectors of the complex image of observation points, as 

shown in Fig. 5. The mirror distance between the original and complex image points is  

2 (1 )d h j =  -                                                   (36) 

and 

0

1

sif


  
=                                                     (37) 

 The per-unit-length partial inductance of the CPW structures on silicon substrate 

then can be obtained as 

1
( , ')

m n

mn l m n

m n A A

L G dA dA
A A

=   r r                                   (38) 

where Am and An are cross-sectional areas of two filaments, in which current distribution 

varies very little. If 

max( , , )h w t  ,                                                (39) 

The partial inductance in equation (25) can be approximate to 

 0
_

1
( , ')

4
m n

mn l air m n

m n A A

L G dA dA j
A A




 -  r r                                    (40) 

 

The impedance matrix for filaments is defined by partial inductance with 

self-resistance, as 

                                   j= Z R L                                                      (41) 

where R is the DC resistance matrix that only contains diagonal elements. Substitute (40) 

into (41), the impedance for conductors in SiO2-Silicon layer could be represented as, 

2

0

4
sio si air N N



- =  Z Z 1                                          (42) 



 67

    N is the total numbers of filaments and 
N N1  is an N N matrix with all the 

elements equal to 1. 

    The series impedance in the equivalent circuit model with SiO2-Silicon media is 

the loop impedance and therefore can be calculated as 

2
( )s sio siZ -= -1B AZ A' B'                                     (43) 

where 

1

1

0

0

s

g

N

c
N



-

 
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Ι
A

1
 ,         1 1= -B .                       (44) 

Ns, Ng are the numbers of filaments for sigal and ground conductors, respectively. 

1sN Ι is the identity matrix and 
1g

c
N -1 is a column vector with all the elements equal to 1. 

As 
airZ is a symmetric and  

                           rank ( 0

4
N N



 1 ) = 1,                                       (45) 

the series impedance in (43) can be simplified to [27] 

( )s airZ = -1B AZ A' B'                                         (46)             

Therefore, if equation (39) is satisfied, the series impedance in (42) for CPW 

structure in SiO2-Silicon media can be simply calculated as the impedance of the same 

conductors in homogenous media. In today’s conventional CMOS process, the 

conductivity of silicon is usually large than 1 cm  . In the frequency of interests up to 50 

GHz,  is much larger than the dimensions of the interconnects. Thus, the eddy current in 

the silicon substrate generally has little effects on the series impedance in the equivalent 

circuit model.  
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Fig. 6 shows the series resistance and inductance for the CPW structures in Fig. 1 

with different media. The simulations were performed using commercial electromagnetic 

field solver based on finite element method (FEM). In all the examples as well as the CPW 

structures fabricated on the test interposer using in this paper, the widths ws and wg of the 

signal and ground traces are all 10 um. The spacing between traces is also 10 um. The 

thickness t of the metal is 1 um. The height of the metal layer to the silicon substrate h is 0.5 

um. The results in Fig. 6 compare the per-unit-length impedance with different 

conductivity of the silicon and the impedance with homogenous air. The deviations among 

the impedance in Fig. 6 were less than 1%, which demonstrates that the series impedance 

of on-chip CPW structure can be simply obtained from the impedance of same structure in 

homogenous media.      

 

Fig.  5 Complex image of line current source in SiO2-Silicon media. The current flows in 
the opposite direction in the original and image lines. 
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(a) 

 

(b) 

Fig.  6 Comparisons of the series impedance for on-chip CPW structures with 
different conductivity of silicon substrate. The impedance of the same CPW structures in 
homogenous air is set as reference. Only minor differences exist between the impedance in 

sio2-silicon media and that in homogenous air.   
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III. RESULTS AND DISCUSSION 

A. Discussion on Circuit Model for Shunt Admittance 

To validate the proposed circuit model for the on-chip CPW in Fig. 1, the 

admittance from the circuit model are compared with that obtained from full-wave 

simulator based on FEM in Fig. 7. The conductivity of silicon is 10 cm  . All the 

dimensions are the same as the example mentioned in Section II.   

 

(a) 

 

(b) 

Fig.  7 Shunt admittance obtained from our model is compared with simulated results using 
FEM: (a) capacitance (b) conductance   
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In the derivation of the equivalent circuit model for shunt admittance of on-chip 

CPW structure, we assumed the charge uniformly distribute on the surfaces of the 

conductors and ignored the proximity effect. Theoretically, this assumption will generate 

errors when calculate the elements in Ps matrix in (6).  As generally the width of on-chip 

conductors is greater than its thickness, the accuracy of the proposed model can be is 

directly related to the ratio of trace spacing and their widths, as 

/ max( , )s gr s w w= .                                                       (47) 

Fig. 8 shows the relative derivations between the admittance from the proposed 

circuit model and that from FEM. The derivations is defined as the percentage of the 

average difference of the curves from two different methods in the frequency range from 

50 MHz to 50 GHz. The derivation is plotted versus the ratio r defined in (34).  When the 

ratio of trace spacing and width is smaller than 1, the distributions charges cannot be 

considered as uniform on the surface of the each conductor, thus, the proposed circuit 

model introduces large errors. However, when the ratio is larger than 1, the derivations of 

both the capacitance and conductance from circuit model and FEM are less than 10%.  

 

Fig.  8 Derivations of capacitance and conductance for on-chip CPW using FEM 
and model proposed in this paper.   The x axis is the ratio of trace spacing to width defined 

in (34). The y axis is the average derivation in percentage from 50 MHz to 50 GHz. 
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Combined the circuit models for shunt admittance and series inductance, the model 

for per-unit-length parameters of on-chip CPW structure is shown in Fig. 9. 

 

Fig.  9 Equivalent circuit model of 2-D CPW structure in Fig. 1 with per-unit-length 
parameters 

 

B. Validations of the Proposed Model 

First, we validate our model with simulations using high frequency structural 

simulator (HFSS)- a commercial full-wave simulator based on finite element method 

(FEM) [29].  The CPW structures under study are shown in Fig.1. The widths ws and wg of 

the signal and ground traces are all 10 um. The spacing between traces is also 10 um. The 

thickness t of the metal is 1 um. The height of the metal layer to the silicon substrate h is 0.5 

um. Both S21 and S11 get good correlations, as shown in Fig. 10 
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(a) 

 

(b) 

Fig.10 Comparison between S parameters using proposed model and full-wave 

FEM simulations for CPW geometry in Fig. 1 (a) S21 (b) S11 

 

We also validated our model with measurements for CPW structures on a test 

interposer. The layout and stack up of the test interposer with CPW structures is shown in 

Fig. 11. The ground and signal trace widths wg and ws are all 10 um. The spacing s is 20 
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um. The length of the CPW is 4.8 mm. The conductivity of silicon is 10 cm . GSG 

microprobe with 100 um pitch size was used in the measurement. To calibrate the effects of 

microprobe and probing pads on M2, same CPW structures with two different lengths of 

0.1 mm and 2.4 mm are also designed. A hybrid calibration method introduced in [30] is 

used to remove the effects of the probing pads. After calibration, S parameters of 4.7 mm 

CPW line could be extracted, and compared with the results from the proposed model in 

Fig. 12. Good correlations have been achieved up to 25 GHz. The discrepancy is due to 

inaccuracy geometry during IC fabrication process. 

 

 

(a) 

 

(b) 

Fig.  11 CPW structure fabricated on a silicon interposer: (a) layout (b) stack up 
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(a) 

 

(b) 

Fig.12 Comparison between S parameters using proposed model and measurement for 

CPW geometry in Fig. 11 (a) S11 (b) S21 

 

IV. CONCLUSION 

            In this paper, we proposed a new equivalent circuit model is proposed to model 

coplanar traces on silicon interposer. The 2D lossy metal-isolator-semiconductor (MIS) 

coplanar waveguide (CPW) is represented by simple RLGC circuit derived based on PEEC 
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method. The model provides physical insight and directly related to geometry. It is also 

demonstrated in the paper that the silicon effects on series impedance can be neglected in 

conventional CMOS processes. A test 2.5 silicon interposer is fabricated to validate the 

effectiveness of the model.  The presented circuit model shows good correlations with 

full-wave simulations as well as the measurements on the test interposer.   
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SECTION 
 
 
 

2. CONCLUSION 

 

In the first paper, previous method of deriving Green function in multi-layer 

media was reviewed. DCIM has been used to derive the Green function with lossy media. 

The study of applying the methods to the real applications of 3DIC shows at image 

theories can be applied to magnetic vector Green functions at low frequency, however, 

multiple images should be considered for electric potential Green’s function. At high 

frequency, surface-wave term has far-field effects when the distance of the interconnect 

is far. Spatial-wave term becomes to dominate when the pitch size becomes larger. 

In the second paper, a robust and automatic method to extract the surface-wave 

poles of the spectral-domain Green’s functions for general layered media is proposed. 

Both lossless and lossy dielectric materials can be effectively handled. The proposed 

method can accurately identify the surface-wave poles located close to the branch cut. 

Through the numerical examples and the comparisons with the previously published 

results, the proposed approach has been demonstrated more effective and accurate to 

handle lossy layered media.  

In the third paper, a new equivalent circuit model is proposed to model coplanar 

traces on silicon interposer was proposed. The 2D lossy metal-isolator-semiconductor 

(MIS) coplanar waveguide (CPW) is represented by simple RLGC circuit derived based 

on PEEC method. The model provides physical insight and directly related to geometry. 

It is also demonstrated in the paper that the silicon effects on series impedance can be 
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neglected in conventional CMOS processes. A test 2.5 silicon interposer is fabricated to 

validate the effectiveness of the model.  The presented circuit model shows good 

correlations with full-wave simulations as well as the measurements on the test 

interposer.   
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