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ABSTRACT

This study examines the optimization design of geosynthetic reinforced embank-

ment slopes (GRES) considering both economic benefits and technical safety require-

ments. In engineering design, cost is always a big concern. Tominimize the cost, engineers

tend to seek an optimal combination of design parameters among the considered alterna-

tives while ensuring the optimal solution is safe. Reliability-based optimization (RBO) is

such a technique that provides engineers the optimal design with the minimum cost while

all technical design requirements are satisfied. The research goal of this study is to im-

plement a mathematical formulation algorithm of the RBO technique in GRES design. To

achieve this goal, slope stability is studied using the limit equilibriummethod (LEM). Con-

sidering geotechnical uncertainties, the first-order reliability method (FORM) is adopted to

perform probabilistic slope stability analysis, address the critical slip surfaces, and assess

the reliability of the slope system. The slope stability and reliability are then used as the

crucial constraints in the following RBO procedure, wherein the constrained optimization

problem will be solved by adopting a genetic algorithm (GA). Sensitivity analysis is car-

ried out on the basis of the probabilistic slope stability analysis to highlight the influence of

each involved random variable on the probabilistic performance of the slope system; and

thereby, infer the corresponding impact on the optimization design. A framework of how

to implement the RBO in GRES design is proposed. An engineering case history is accord-

ingly studied to demonstrate the practical application of the proposed design framework.

Compared to the conventional (manual) process, the proposed design framework is more

systematic and effective, especially with the large number of design variables involved in

geosynthetic reinforced slopes.
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1. INTRODUCTION

1.1. OVERVIEW

In engineering design, cost is always a big concern. A design should not be only

technically feasible, but also economically competent. Usually, there could be various

design alternatives to meet the same technical design requirements, but the cost involved

could vary significantly. In order to minimize the cost, engineers tend to select an opti-

mal combination of design parameters among the considered alternatives. The process of

searching for such an optimal combination is called ‘optimization’. In practical design of

geotechnical systems, optimization is always performed manually based on the alterna-

tives selected by engineers experience and judgment. However, a crucial issue faced by

designers is: when a large number of design parameters are involved, the design process

becomes very time consuming and probably fails to find the ‘best’ optimal result due to

the limited number of alternatives the designers can attempt manually.

In light of the preceding issue, a more systematic and effective optimization ap-

proach is required so that the cost of a constructed facility is minimized while all technical

design requirements are satisfied. Furthermore, due to the unavoidable geotechnical un-

certainties which are primarily arising from inherent soil variability, measurement error

and transformation uncertainty (Christian et al. 1995; Phoon and Kulhawy 1999b; Phoon

and Kulhawy 1999a; Baecher and Christian 2003), reliability-based analysis has been in-

troduced in geotechnical practice with an intention to assess the risk associated with the

design of geo-structures. Therefore, to take the reliability requirements into considera-

tion, reliability-based optimization (RBO) needs to be carried out, while optimization is

performed by coupling reliability assessment.
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1.1.1. Reliability-basedOptimization. Theoretically, RBO is a constrainedmin-

imization problem, that minimizes an objective function while variables are subject to

some reliability constraints. When RBO is applied to the problems of engineering interest,

the objective function is always specified as cost function or volume function, while the

constraints are determined by design requirements and explicitly model the effects of un-

certainties. The idea of RBO is attractive. Substantial studies have been done on solving

the RBO problems in past decades as recently summarized by Valdebenito and Schuëller

(2010). However, its practical implementation is still challenging because of the coupling

between reliability assessment and cost minimization, the high numerical costs involved

in its solution, and the interpretation of a specific engineering problem in mathematical

and computational language. So far the application of the RBO technique in geotechnical

engineering is still very limited. Recent studies mainly focus on the design of pile groups

(Chan et al. 2009), foundations (Babu and Basha 2008; Basha and Babu 2008) and retain-

ing walls (Babu and Basha 2008; Basha and Babu 2008; Basha and Babu 2010; Zhang

et al. 2011b). Few studies have been carried out on the focus of slope design; particularly

in the area of reinforced slopes.

As mentioned by Elias et al. (2001), the use of reinforced soil slope (RSS) struc-

tures has expanded dramatically in 1990s; approximately 70 to 100 RSS projects were be-

ing constructed yearly in connection with transportation related projects in United States,

with an estimated projected vertical face area of 130,000 m2/year. In the last decade, with

the developments in reinforcement materials and construction techniques, the use of RSS

continuously expands because of its economics and successful performance. Therefore, it

can be reasonably expected that great contributions can be made by improving the opti-
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mization procedure in the design of reinforced slopes in practice.

1.1.2. Geosynthetic Reinforced Embankment Slopes. Geosynthetic reinforced

embankment slope (GRES) is a unique RSS structure which is a form of reinforced soil that

incorporates planar geosynthetic reinforcing elements in constructed earth-sloped struc-

tures with face inclinations less than 70 degrees. And ‘geosynthetics’ is a generic term

that encompasses flexible polymericmaterials used in geotechnical engineering (Elias et al.

2001), such as geotextiles, geogrids, geonets, geomembranes, etc.. Among the considered

geosynthetic products, geotextiles and geogrids are the two categories used as reinforce-

ment materials most often. A typical GRES structure, as shown in Figure 1.1, generally

Figure 1.1: Typical components in a GRES structure (Elias et al. 2001)

consists of foundation, retained backfill, reinforced fill, subsurface drainage, primary re-

inforcements, secondary reinforcements and surface protection. Primary reinforcements

are horizontally placed within the slope to provide tensile forces to resist instability. Ei-
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ther geotextiles or geogrids with sufficient strength and soil compatible modulus can be

used as primary reinforcements. Secondary reinforcements are used to locally stabilize

the slope face during and after slope construction. In other words, by placing geosynthetic

reinforcements, it is able to construct a slope at an angle steeper than could otherwise be

safely constructed with the same soil (Elias et al. 2001). Therefore, the use of GRES is

able to increase land usage and decrease site development costs.

Elias et al. (2001) shows a study of the site specific costs of soil-reinforced struc-

tures based on a survey of state and federal transportation agencies. In general, the use of

GRES results in substantial savings on the order of 25 to 50 percent and possibly more in

comparison with a conventional reinforced concrete retaining structure, especially when

the latter is supported on a deep foundation system. Furthermore, the study provides an ap-

proximation of the actual cost of a specific GRES structure, which is basically depending

on the cost of each principal component: 1) reinforcements, 45 to 65 percent of total cost;

2) reinforced fill, 30 to 45 percent of total cost; and 3) face treatments, 5 to 10 percent of

total cost. The above are the typical relative costs estimated based on limited data. Details

may vary with different projects. But basically it concludes the approximate proportions of

expenditures, wherein the reinforcement is obviously the principal part, the optimization

design of which is expected to be significant to the total cost.

1.2. OBJECTIVES

This study is primarily focused on the development and implementation of the RBO

technique in GRES design with an intention to minimize the geosynthetic reinforcement

cost. To achieve this goal, four major research objectives are identified as follows:

1. Perform both deterministic and probabilistic slope stability analyses, in which the
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factor of safety and the probability of failure are respectively computed to assess

the stability and reliability of the GRES structure;

2. Develop a RBO framework on the focus of GRES design, where the objective func-

tion is specified as the geosynthetic reinforcement cost while the crucial constraints

are assigned by the previous slope stability analyses;

3. Perform reliability-based sensitivity analysis to evaluate the effects of the uncer-

tainty in each involved random variable on the probabilistic performance and the

optimization design of the GRES; and

4. Demonstrate the application of the proposed framework in an engineering case

study.

1.3. DISSERTATION ORGANIZATION

This dissertation is organized in seven sections. An introduction to the research

topic is presented in Section 1. A comprehensive literature review is presented in Sec-

tion 2. Through Section 3 to 6, the four major research objectives as mentioned above

are respectively addressed in detail. In Section 3, the reliability-based (probabilistic) slope

stability analysis and its application to GRES structure are introduced. In Section 4, a

reliability-based sensitivity analysis is presented to evaluate the influence of the uncer-

tainty in each random variable on the slope reliability. In Section 5, a reliability-based op-

timization framework for GRES design is proposed, that incorporates both the traditional

deterministic and the proposed probabilistic slope stability analyses along with genetic

algorithm (GA) to perform optimization. To demonstrate the proposed RBO framework

with a practical application, the Cherry Island Landfill expansion is used as a case study

in Section 6. Finally, conclusions and recommendations are presented in Section 7.
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2. REVIEW OF METHODOLOGIES

2.1. OVERVIEW

To implement reliability-based optimization (RBO) in the design of geosynthetic

reinforced embankment slopes (GRES), it is primarily consisting of three essential tasks:

1) slope stability analysis; 2) reliability-based (probabilistic) analysis; and 3) reliability-

based optimization. In general, slope stability analysis is supposed to be embedded as a

basic approach to quantify the slope safety; and is traditionally performed on the basis

of deterministic soil properties. Three primary methodologies to perform slope stabil-

ity analysis are reviewed in Section 2.2, wherein limit equilibrium is further discussed

based on the various failure mechanisms regarding slope instability. When geotechnical

uncertainty is taken into consideration, slope stability should be evaluated along with the

reliability-based (probabilistic) analysis to estimate how probable the slope can fail. The

methods commonly used to perform probabilistic slope stability analysis are reviewed in

Section 2.3. Critical slip surfaces, representing the most dangerous positions within the

slope, are routinely searched in most of the practical design and analyses, as stated in

Section 2.4. Reliability-based optimization, when introduced in GRES design, intends to

minimize the geosynthetic reinforcement cost; meanwhile, the design variables are subject

to some reliability constraints and technical requirements. The methods that can be used

to address such a constrained minimization problem are reviewed in Section 2.5. And in

Section 2.6, the methods to be employed in this research are summarized.

2.2. SLOPE STABILITY ANALYSIS

Currently there are three primary methodologies to perform stability analysis for

geosynthetic reinforced slopes: Continuum Mechanics, Limit Analysis (LA), and Limit
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Equilibrium (LE). Continuum mechanics approach is numerically based, such as finite el-

ement (FE) or finite difference (FD); considers the full constitutive relationships of all the

materials involved, e.g., backfills, reinforcements, and face treatments. It satisfies bound-

ary conditions, produces displacements (unavailable in LE and LA) and considers local

conditions and the compatibility between dissimilar materials. Generally, it is able to rep-

resent a problem in the most realistic fashion. To obtain reliable results, it asks for quality

input data, which however is frequently not available in common practice. Furthermore,

this approach often requires a designer with good understanding of the possible technical

’traps’ that may occur during numerical modeling (Christopher et al. 2005; Leshchinsky

et al. 2014). Limit analysis models the soil as a perfectly plastic material obeying an asso-

ciated flow rule (Yu et al. 1998). It is able to deal with layered soil, complex geometries,

groundwater effect, seismicity, and etc.. The numerical upper bound in LA of plasticity

yields kinematically admissible failure mechanisms, which means it is not necessary to

arbitrarily assume a mechanism as done in LE; and is thereby considered as an advantage

when complex problems are involved (Leshchinsky et al. 2014). However, because of its

limited familiarity of practicing engineers, this method is not commonly used in routine

design.

Limit equilibrium has been the most popular method for slope stability calcula-

tions for years by assuming that soil at failure obeys the perfectly plastic Mohr-Coulomb

criterion. A major advantage of this approach is its capability to deal with complex soil

profiles, seepage and a variety of loading conditions (Yu et al. 1998). As concluded by

Christopher et al. (2005), its application to reinforced soil slope (RSS) structures is an ex-

tension of the classical approach that has been used for unreinforced slopes for decades.

That is, investigates the equilibrium of the soil mass tending to slide down under the in-
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fluence of gravity and surcharge, and evaluates the slope stability by producing a factor of

safety (fs) which is defined as the ratio of resisting forces (moments) to driving forces (mo-

ments) to maintain a static equilibrium. In geosynthetic reinforced slopes, the stabilizing

forces contributed by reinforcement layers are incorporated into the limiting equilibrium

equations to determine the factor of safety of the reinforced mass. However, unlike the

continuum mechanics approach, a main concern of this method is neither LE nor LA con-

siders the compatibility between dissimilar materials. In unreinforced slopes, this issue is

always solved by predetermining the failure surfaces according to the prevailing failure

mechanism when vastly different soil layers exist. Similarly, in geosynthetic reinforced

slopes, as mentioned by Leshchinsky et al. (2014), the use of LE in conjunction with soils

and geosynthetic reinforcements is always not much of an issue. Overall, limit equilib-

rium is simple to perform and has been adopted in most of the geotechnical specialized

software for slope stability analysis, e.g., Slope/W, Slide, SVSlope, Stable, and some RSS

design programs, e.g., ReSSA, MiraSlope, SecueSlope, and etc.. Furthermore, LE is the

method used in the current design manual: FHWA Mechanically Stabilized Earth Walls

and Reinforced Soil Slopes Design & Construction Guidelines (Elias et al. 2001).

Substantial studies have been done on the classical limit equilibrium slope stabil-

ity analysis for unreinforced slopes. Various approaches have been developed based on

different failure mechanisms. For example, planar failure analysis is commonly used in

the rock masses that consist of planar joints or bedding planes along which sliding failure

may occur (Figure 2.1a). Infinite slope analysis is similar to the planar failure analysis but

with a sliding surface parallel to the slope face (Figure 2.1b). Sliding block method, some-

times, is also called wedge method due to the wedge-shaped failure surface predetermined

in the slope (Figure 2.1c). And rotational analysis is always performed on a rotational
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sliding mass with a non-planar failure surface, such as circular or log spiral (Figure 2.1d),

which seems to be more common in most of the soil slopes. In geosynthetic reinforced

embankment slopes, planar failure (or infinite failure) hardly occurs due to the relatively

homogeneous fill material and the localized reinforcements; but the latter two are com-

monly implemented in the analyses as demonstrated by Elias et al. (2001).

(a) Planar failure (b) Inifinite failure (c) Sliding block

(d) Rotational failure

Figure 2.1: Various failure mechanisms (Naresh and Edward 2006)

2.2.1. Sliding BlockMethod. For the analysis, the potential sliding block is usu-

ally divided into three parts: an active wedge at the head of the slide; a central block; and

a passive wedge at the toe. As shown in Figure 2.2, Pa is the active force; Pp is the pas-

sive force ; T is the resisting force due to the interaction between the central block and the

bottom layer, simply = cL + N tanϕ, where c and ϕ are the smaller cohesion and fric-

tion angle of either the central block or the bottom layer; L is the horizontal width of the

central block; and N , the normal force acting on the base of the reinforced mass, can be

easily derived by taking vertical equilibrium on the central block. The factor of safety can



10

be accordingly computed by summing the horizontal forces acting on the central block as

given below:

fs =
FR

FD

(2.1)

where FR is the horizontal resisting forces; FD is the horizontal driving forces (Naresh

and Edward 2006). As a result, to determine the minimum factor of safety, various trial

locations of the active and the passive wedges need to be checked.

Figure 2.2: Sliding block method



11

2.2.1.1. Coulomb’s theory. To compute the lateral forces, Pa and Pp, two classi-

cal theories are commonly involved: Coulomb’s theory and Rankine’s theory. Coulomb’s

theory is considered more realistic and generalized compared to the Rankine’s, since the

latter one assumes a frictionless wall face, that is however, a very ideal situation and can

hardly occur. Especially in slope stability analysis, the ‘wall’ is the central block and the

‘wall friction’ is contributed by the friction angle of the backfill. Therefore, in Coulomb’s

theory, the lateral forces acting on the central block are always inclined from the horizontal

with an angle that represents the wall-and-soil interface friction, as δa or δp in Figure 2.2,

the value of which is always assumed between 2ϕw/3 and ϕw, where ϕw is the smaller

friction angle of either the central block or its neighbor wedge. But in Rankine’s theory,

since the wall is assumed frictionless, the lateral forces are horizontally acting on the cen-

tral block. In a geosynthetic reinforced slope system, sliding failure is most likely along

the interface between reinforced mass and foundation soil, so that only two wedges are

considered as shown in Figure 2.3.

Figure 2.3: The two-part wedge mechanism for sliding analysis
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When applied to a uniform granular slope, without considering groundwater ef-

fects, Coulomb’s theory gives an active force as

Pa =
1

2
KaγbH

2 (2.2)

where γb is the unit weight of the backfill; Ka is the Coulomb’s active earth pressure co-

efficient, give as (Das 2011)

Ka =
cos2 (ϕ′

b − θ)

cos2 θ cos (δ + θ)

[
1 +

√
sin (δ + ϕ′

b) sin (ϕ′
b − α)

cos (δ + θ) cos (θ − α)

]2 (2.3)

where ϕ′
b is the friction angle of the backfill; θ is the inclination of the back surface of the

reinforced zone from vertical; α is the inclination of the backfill from horizontal; and δ

is the friction angle between reinforced mass and backfill. According to Figure 2.3, for a

vertical reinforced face (θ = 0◦) with a horizontal backfill (α = 0◦), Equation 2.3 can be

simplified as

Ka =
cos2 ϕ′

b

cos δ

[
1 +

√
sin (δ + ϕ′

b) sinϕ′
b

cos δ

]2 (2.4)

Considering the equilibrium of the reinforced wedge, the factor of safety against sliding
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can be obtained based on Equation 2.1, as (Elias et al. 2001)

fs =

(
W

Pa cos δ
+ tan δ

)
tanϕ′ (2.5)

where ϕ′ is the smaller friction angle of either reinforced mass or foundation soil, andW

is the weight of the reinforced wedge.

2.2.1.2. Rankine’s theory. In a more generalized case that has cohesive soils and

groundwater effects involved, a new active force needs to be derived by taking equilibrium

on the reinforced wedge. Therefore, the factor of safety will be redefined. But if multiple

layers are involved, Rankine’s theory seems a more efficient way to evaluate the lateral

earth pressure, since the Coulomb’s method asks for more equilibrium conditions. There-

fore, in Rankine’s theory, a generalized form to compute the active force is given by (Das

2011)

Pa =
n∑

i=1

∫ hi

0

σ′
vi
Kaidz +

∫ H

0

udz (2.6)

where σ′
vi
is the effective vertical stress in the ith layer; hi is the height of the ith layer; u

is the pore pressure; n is the number of soil layers; and Kai is the Rankine’s active earth

pressure coefficient in the ith layer, given as

Ka =
2

cos2 ϕ′
b

(1 +M cosϕ′
b sinϕ′

b −M cosϕ′
b − sinϕ′

b)− 1 (2.7)
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where M = c′b/γbz with c′b and ϕ′
b representing the cohesion and friction angle of the

backfill.

2.2.2. Rotational Method. During last century, more than 10 methods of slices

based on limit equilibrium were developed to deal with circular or arbitrarily shaped rota-

tional slip surfaces (Duncan 1996). Using these methods, a potential slip body is divided

into a finite number of vertical slices in order to calculate the forces on each slice, thereby,

to determine the factor of safety as follows:

fs =
MR

MD

(2.8)

whereMR is the resisting moment; MD is the driving moment. As concluded by Jiang et

al. (2003), the existing methods of slices, e.g., ordinary method, Bishop simplified, Janbu

simplified, Spencer, Sarma, and etc., involve various assumptions regarding the inter-slice

forces along with various combinations of equilibrium conditions (force or/and moment)

considered, thus giving different values of factor of safety for the same slip surface.

2.2.2.1. Ordinary method of slices. Ordinary method (Fellenius 1936) is the

simplest of all with the simplified assumption that inter-slice forces are neglected. This

method satisfies only one condition of equilibrium, and is proved to be relatively conser-

vative and underestimates the factor of safety compared to those more accurate methods

(i.e., Bishop simplified, Janbu simplified, and etc.) that satisfy more than one equilibrium

conditions. As discussed by Duncan and Wright (1980), its accuracy is good enough for

practical purposes in total stress analysis; while the result may be as much as 50% smaller

than the ‘correct’ value that is provided by those more accurate methods for flat slopes with
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high pore pressures in effective stress analysis. Regardless of its conditioned accuracy,

many researchers are still using this method because of its easy application and compu-

tational efficiency especially when combined with reliability-based analysis (Hassan and

Wolff 1999; Xue and Gavin 2007; Ching et al. 2009; Zhang et al. 2009).

2.2.2.2. Slip surfaces. The slip surface that may occur in a slope can vary in dif-

ferent conditions. In general, a circular failure analysis is sufficient for a slope in a homo-

geneous soil layer. But for the slope with heterogeneous multi-soil layers, a non-circular

slip surface seems more appropriate (Zolfaghari et al. 2005). According to different slip

surfaces, the calculation involved in slope stability analysis varies dramatically. Basically,

the more complex the surface, the more complicated the calculation is. Therefore, the

circular failure analysis is generally the simplest because of its straight-forward defini-

tion of a circular arc. But an arbitrarily shaped anomalous surface requires more efforts

on geometry definition and computation; especially when it is to be combined with the

reliability-based analysis, difficulties significantly increase. In the ordinary method, the

factor of safety along a circular slip surface in an unreinforced slope (Figure 2.4) is derived

based on Equation 2.8 as follows:

fs =

n∑
i=1

[c′ili + tanϕ′
i(Wi cosαi − uili)]

n∑
i=1

Wi sinαi

(2.9)

where c′i and ϕ′
i are the effective cohesion and friction angle at the base of the ith slice; li

is the arc length of the slip base of the ith slice; Wi is the weight of the ith slice; ui is the

pore water pressure acting on the bottom of the ith slice; αi is the tangential inclination on
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Figure 2.4: The configuration of an unreinforced slope and the forces on a slice with a
circular slip surface

the base of the ith slice; and n is the number of slices. When the method is implemented in

the stability analysis of geosynthetic reinforced slopes, by adding the contribution of the

geosynthetic reinforcements directly to the resisting moment, the factor of safety becomes

to

fs =

r
n∑

i=1

[c′ili + tanϕ′
i(Wi cosαi − uili)] +

m∑
j=1

Tjdj

r
n∑

i=1

Wi sinαi

(2.10)

where Tj is the allowable tensile strength of the jth reinforcement layer; dj is the moment

arm of the jth reinforcement layer; r is the radius of the potential slip surface; and m is

the number of reinforcement layers placed within the slope as shown in Figure 2.5. The

direction of the tensile forces contributed by reinforcement layers and its corresponding

moment arm have been the topic of discussion, because the geoysnthetic layer is likely to

be distorted as rotational deformation occurs. In the limit, the distortion could orient the
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geosynthetics along the potential failure arc, thus changing the tensile forces from horizon-

tal direction to tangential direction, and the moment arm from dj to r (Koerner 2005). But

in practical design, the horizontal tensile force is preferred to be used because of a more

conservative dj .

Figure 2.5: The configuration of GRES and the forces on a circular slip surface

2.3. RELIABILITY-BASED ANALYSIS

As demonstrated in Section 2.2, in limit equilibrium analysis, slope safety is con-

ventionally assessed by means of the factor of safety. It is basically developed on the

basis of the deterministic soil properties, typically using the mean (average) of the input

parameters; and generally fails to be a consistent measure of risk. For example, slopes

with the same value of the factor of safety may exhibit different risk levels depending on

the uncertainty in soil properties. In other words, it is impossible to say how much safer

a slope becomes as the factor of safety is increased (Li and Lumb 1987). To overcome
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the preceding shortcoming of the deterministic approach, reliability-based (probabilistic)

slope stability analysis is carried out to assess the probabilistic performance considering

the relevant uncertainty.

The uncertainty in slope stability is the result of many factors. Some, such as the ig-

norance of geological details during subsurface exploration, are difficult to treat formally;

others, such as the estimates of soil properties are more amenable to statistical analysis

(Christian et al. 1995). As mentioned by Baecher and Christian (2003), the uncertainties

in soil properties arise from two primary sources: 1) scatter in data, and 2) systematic error

in soil property estimation. The former consists of inherent spatial variability in properties

and random testing errors in their measurement. The latter consists of systematic statis-

tical errors due to the precision of the correlation model used to transform the test result

measurement into desired soil property. To take those uncertainties into consideration, a

variety of analyzing methods have been proposed to perform probabilistic slope stability

analysis and a concept of ‘probability of failure’ is introduced to assess slope reliability

over the years (Cornell 1971; Vanmarcke 1977; Chowdhury and Xu 1994; Christian et al.

1995; Hassan and Wolff 1999; Li and Cheung 2001; Morgenstern and Cruden 2002; Bhat-

tacharya et al. 2003; EI-Ramly et al. 2004; Griffiths and Fenton 2004; Xu and Low 2006;

Cho 2007; Ching et al. 2009; Zhang et al. 2011b).

2.3.1. Probability of Failure. Mathematically, the probability of failure (pf ) is

evaluated with the integral as follows:

pf = P{g(x) < 0} =

∫
g(x)<0

fx(x)dx (2.11)
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where {x} is the vector of random variables; g(x) is the limit state function; fx (x) is the

joint density function of random variables {x}. On the basis of reliability theory, the prob-

ability of failure can be expressed as

pf = 1− Φ(β) (2.12)

where β is the reliability index; Φ (·) is the cumulative distribution function (CDF) of a

standard normal distribution. When introduced in engineering design, the probability of

failure is a parameter used to evaluate the impact of uncertainties on the performance of a

design, where ‘failure’ is a generic term for non-performance (Phoon 2008). As in slope

stability analysis, it basically means the driving forces (moments) are over the resisting

forces (moments), thereby the static equilibrium state is broken. Thus the limit state func-

tion is always set in the form of

g(x) = fs(x)− fs(r) (2.13)

where fs(r) is the required factor of safety, theoretically set to 1; but may vary with the

importance of structures and specific design requirements.

2.3.2. Probabilistic Approaches. A number of probabilistic analysis approaches

have been proposed to calculate pf and β. The most popular methods adopted in proba-

bilistic slope stability analysis are first-order second-moment (FOSM), first-order relia-

bility method (FORM), and Monte Carlo simulation (MCS). Monte Carlo simulation is a
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sampling-based method, performing random sampling and conducting a large number of

experiments on a computer, thus giving conclusions on the model outputs drawn based

on statistical experiments. The procedure of MCS is straightforward and most likely to

be adopted in the analysis performed using continuum mechanics method (Morgenstern

and Cruden 2002; EI-Ramly et al. 2004; Griffiths and Fenton 2004; Griffiths and Fen-

ton 2007), since it is unable to define a limit state function that is essential to those non-

sampling-based probabilistic approaches (i.e., FOSM, FORM). Moreover, because of its

high computational costs, MCS is not preferred to be used with the limit equilibrium anal-

ysis, where considered repetitive analyses are required to seek the critical surface which

will be further introduced in Section 2.4.

FOSM and FORM are both non-sampling-based methods; developed based on the

first-order Taylor expansion. In FOSM, the limit state function is approximatedwith Taylor

expansion at the means of random inputs. FOSM is very efficient, convenient and has been

adopted in many research works (Chowdhury and Xu 1994; Christian et al. 1995; Hassan

and Wolff 1999; Bhattacharya et al. 2003). However, a crucial problem of FOSM is that

the method is sensitive to the form of limit state function; that is, the result may change

when the limit state function is rearranged to another equivalent form (i.e., Ang and Tang

2007; Zhang et al. 2011b). Thereby it becomes quite tricky to decide which form of the

limit state function is most appropriate. In light of the invariant issue, FORM is a desired

approach that has the first-order approximation evaluated at a point on the failure surface,

thus not influenced by the form of limit state function. In FORM, β can be addressed by
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solving a constrained optimization problem:

β = min
u

||u|| , sub. to g (u) = 0 (2.14)

where {u} is a set of independent random variables derived by transforming the input

variables {x} in Equation 2.13 from their original space to a standard normal space; g (u)

is the limit state function in u-space (standard normal space). Thereby, from Equation 2.12

the probability of failure can be easily obtained.

The major advantage of FORM is its good balance between accuracy and effi-

ciency: it is invariant compared to FOSM and more efficient compared to MCS especially

when the probability of failure is low. Therefore, FORM is adopted in many research

works (e.g. Low and Tang 1997; Low and Tang 2007; Phoon 2008; Zhang et al. 2011a;

Cho 2013). But it should be noticed that since the first-order approximation is embed-

ded, the exact solution is only available when the limit state function is perfectly linear;

in nonlinear problems, error arises and the failure in convergence may occur. In proba-

bilistic slope stability analysis, when Mohr-Coulomb strength parameters are considered

as probabilistic random variables, from Equation 2.9 and Equation 2.10, it can be noticed

‘tanϕ’ is the major contributor to the nonlinear performance of the limit state function.

With the appropriately selected soil properties, the limit state function is always not too

nonlinear, or in other words, close to linear performance. Thereby, many researchers keep

using FOSM and FORM in probabilistic slope stability analysis due to their computational

efficiency and acceptable accuracy.
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2.4. CRITICAL SLIP SURFACES

In slope stability analysis, it is routine to search for a slip surface along which the

slope is most likely to fail; in other words, it is the most dangerous (or critical) slip surface.

2.4.1. Deterministic Analysis. Conventionally, all the design parameters are de-

terministic. The conventional analysis is accordingly ‘deterministic’ as well. It requires

many calculations performed on different potential slip surfaces in order to arrive at the

surface with the lowest factor of safety, denoted as ‘critical deterministic surface’. The

problem of locating this surface is formulated as an optimization problem (Li and Cheung

2001):

min
surface

fs

(
p, x(k)

1 , y
(k)
1 , x

(k)
2 , y

(k)
2 , · · ·

)
(2.15)

where {p} is the collection of input geotechnical parameters;
{
x
(k)
1 , y

(k)
1 , x

(k)
2 , y

(k)
2 , · · ·

}
is

a set of shape variables (location parameters) defining the location of the slip surface for

the kth trial; fs (·) is the factor of safety for a given set of geotechnical parameters and

a given geometry of the slip surface defined by location parameters. It is a general form

dealing with any shaped surfaces. In a more specific way, for a circular slip surface, there

are only three shape variables: x and y ordinates of the center of rotation and the radius of

slip surface. Then the problem stated in Equation 2.15 can be simplified as follows:

min
surface

fs

(
p, x(k)

0 , y
(k)
0 , r(k)

)
(2.16)
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where
{
x
(k)
0 , y

(k)
0

}
is the rotation center for the kth trial; r(k) is the radius of the slip circle

for the kth trial.

2.4.2. Probabilistic Analysis. Similar to the deterministic analysis, probabilistic

analysis tends to address the surface with the highest probability of failure (or the lowest

reliability index). Such a surface is called ‘critical probabilistic surface’. The search form

is not different in concept from that of critical deterministic surface, and can be formulated

in exactly the same way as above (Li and Cheung 2001). Generally, the problem is stated

as

max
surface

pf

(
p, x(k)

1 , y
(k)
1 , x

(k)
2 , y

(k)
2 , · · ·

)
(2.17)

For a circular slip surface, it is

max
surface

pf

(
p, x(k)

0 , y
(k)
0 , r(k)

)
(2.18)

where pf (·) is the probability of failure for a given set of geotechnical parameters and a

given geometry of the slip surface defined by location parameters.

2.4.3. Search Approaches. The critical deterministic and probabilistic surfaces

can be located by solving the optimization problems as stated in Equation 2.15, 2.16, 2.17

and 2.18. For a circular slip surface, the most commonly used method is Grid-line search

method, in which a predetermined set of grid lines are assigned for the possible locations

of the center of slip circle. All the nodal points defined by grid lines are searched to locate
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those two critical surfaces with different radii. Grid-line method is simple to implement

and is embedded in most of the commercial slope stability programs. Otherwise, a va-

riety of search methodologies were proposed, including: the classical methods, such as

the alternating variable technique (Li and Lumb 1987), simplex method (Nguyen 1985;

Chen and Shao 1988), conjugate-gradient method (Arai and Tagyo 1985), dynamic pro-

gramming (Yamagami and Jiang 1997); Monte Carlo technique (Greco 1996); and more

recently, the heuristic algorithms, such as simulated annealing algorithm (Cheng 2003; Su

2008), genetic algorithm (McCombie and Wilkinson 2002; Cheng 2003; Zolfaghari et al.

2005; Xue and Gavin 2007; Sengupta and Upadhyay 2009; Talebizadeh et al. 2011) and

etc.. But most likely, they are used for non-circular slip surfaces. The number of location

parameters is usually much greater than three (for circular surface). Thus, the geomet-

ric method, such as grid-line method, becomes inefficient and requires a lot of efforts in

defining the solution domain for each location parameter (Phoon 2008).

As discussed by Hassan andWolff (1999), the critical deterministic and probabilis-

tic surfaces may be located at different positions. But Li and Lumb (1987) emphasized the

observation that those two surfaces are very close to each other in homogeneous natural

slopes, thus proposed that the location of the critical deterministic surface could be used

as a starting location for searching for the critical probabilistic surface. However, as the

writers said, this is purely an observation, not universally true; and it is discussed for un-

reinforced slopes only. As for reinforced slopes, few studies were carried out with such a

discussion. Therefore, it is more reasonable to perform a simultaneous search, as stated by

Bhattacharya et al. (2003) and Xue and Gavin (2007), for reinforced slopes.
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2.5. RELIABLITY-BASED OPTIMIZATION

Reliability-based optimization allows determining the best design solution (with

respect to prescribed criteria) while explicitly considering the unavoidable effects of un-

certainty. In general, the application of the RBO is numerically involved as it implies

the simultaneous solution of an optimization problem and the use of specialized algorithm

for quantifying the effects of uncertainties (Valdebenito and Schuëller 2010). A typical

formulation of RBO is given by

min f (d,X,P)

sub. to : P {gi (d,X,P) ≤ 0} ≤ pfi , i = 1, 2, · · · , nc

(2.19)

where f is the objective function; {d} is the set of deterministic design variables; {X} is the

set of random design variables; {P} is the set of random design parameters; gi(d,X,P) are

the constraint functions; pfi are the desired probabilities of constraint satisfaction; and nc is

the number of probabilistic constraints. The elements in vector {d} and {X} are the design

variables that need to be determined through optimization. The most direct approach for

solving a RBO problem is implementing a double-loop strategy (Valdebenito and Schuëller

2010). It employs nested optimization loops as shown in Figure 2.6 to first evaluate the

probabilistic constraint (inner loop) and then to optimize the design objective function sub-

ject to the reliability requirements (outer loop) (Reddy et al. 1994; Wang et al. 1995; Tu

et al. 1999). Because of its easy application, double-loop strategy is implemented in most

of the research works regarding the reliability-based optimization design in geotechnical

engineering (Wang and Kulhawy 2008; Chan et al. 2009; Wang 2009; Talebizadeh et al.
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Figure 2.6: A double-loop procedure, adpated from Du et al. (2007)

2011; Zhang et al. 2011b). Otherwise, to improve the efficiency of double-loop strategy,

some other techniques were introduced such as to improve the efficiency of uncertainty

analysis, e.g., the methods of fast probability integration (Wu 1994), two-point adaptive

nonlinear approximations (Grandhi andWang 1998); or to modify the formulation of prob-

abilistic constraints, e.g., single-loop (Chen and Hasselman 1997), decoupling approach

(Li and Yang 1994). But no matter which strategy is employed, it is always the primary

task to minimize the objective function subject to the relevant constraints. Such a con-

strained optimization problem can be solved by implementing the methods as mentioned

in Section 2.3.2 as well. However, different from searching for the critical deterministic

and probabilistic surfaces that usually comes along with continuous objective functions

and smooth constraints, the optimization design of geosynthetic reinforcements includes

non-smooth constraints, e.g., the number of reinforcement layers should be integer. There-

fore, heuristic algorithms, e.g., simulated annealing algorithm and genetic algorithm, are

preferred in design of geo-structures rather than the classical methods (Wang and Kulhawy
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2008; Chan et al. 2009; Wang 2009; Talebizadeh et al. 2011; Zhang et al. 2011b).

2.6. METHODS EMPLOYED IN THIS RESEARCH

In summary, themethods to be employed in this research are listed in Table 2.1. The

selected ones for implementation in the algorithms developed herein are marked in the “se-

lected” column. Limit equilibrium method is used to perform slope stability calculations,

while both sliding block and rotational analyses are to be involved. First-order reliability

Table 2.1: The methods employed in this research work

Analysis Type Methods Selected

Slope Stability
Analysis

Continuum Mechanics Method

Limit Analysis (LA)

Limit Equilibrium (LE)
Sliding Block Method ×

Rotational Method ×

Reliability-based
Analysis

First-Order Second Moment (FOSM)

First-Order Reliability Method (FORM) ×

Monte Carlo Simulation (MCS) ×

Search Approach

Grid-line Method ×

Classical Methods

Alternating variable method;
Simplex method;
Conjugate-gradient method;
etc.

Heuristic Methods
Simulated Annealing (SA)

Genetic Algorithm (GA) ×

...

Reliability-based
Optimization

Double Loop Strategy ×

Single Loop Strategy
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method is selected as the primary tool for reliability estimate; Monte Carlo simulation is

considered as a backup method when FORM fails to converge. Grid-line method is used

to search for the critical slip surfaces in both deterministic and probabilistic analyses. In

reliability-based optimization, double loop strategy is embedded with genetic algorithm to

address the optimal results.

Although the LE method has been generally embedded in most of the geotechnical

commercial software as mentioned in Section 2.2, the embedded source code is always

unavailable. Furthermore, since those commercial software are currently unable to be

combined with the implementation of other algorithms, they can be hardly used in this

research work. Therefore, to introduce the reliability-based optimization technique in de-

sign of GRES structures, all the above methods are coded in the Matlab, where the genetic

algorithm toolbox is directly used to solve the involved reliability-based optimization prob-

lem. And the code regarding the slope stability analysis is subsequently bench marked by

performing the traditional deterministic slope stability analysis in Slope/W, which is one

of the most-widely-used commercial software for slope stability analysis.
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3. RELIABILITY-BASED SLOPE STABILITY ANALYSIS

3.1. OVERVIEW

To overcome the shortcoming of the traditional deterministic slope stability anal-

ysis that is unable to ensure a consistent risk level of the slopes with a constant factor of

safety, reliability-based (or probabilistic) slope stability analysis is carried out. It estimates

the probability of failure of a slope system to assess its probabilistic performance consid-

ering the relevant geotechnical uncertainties. As mentioned in Section 2.3, the uncertainty

of slope stability is the result of many factors, including the lack of information in site in-

vestigations and the inherent variability in soil properties. The former is hard to be treated

formally, but the latter one is more amenable to statistical analysis. In this study, it is em-

phasized the uncertainty that arises from the variability of the soil strength and the unit

weight of the embankment fill and foundation soil in geosynthetic reinforced embankment

slopes (GRES). The estimation of the probabilistic properties of the involved random vari-

ables is discussed in Section 3.2. The probabilistic algorithm that is to be embedded in the

slope stability analysis is demonstrated in Section 3.3. To thoroughly investigate system

reliability, the multiple failure modes that may potentially occur in a GRES structure are

taken into consideration in Section 3.4. Two numerical examples are then presented in Sec-

tion 3.5 to specifically demonstrate the application of the proposed probabilistic analysis

in studying the slope stability and reliability of the GRES system.

3.2. STATISTICAL INFERENCE

In general, probabilistic analysis primarily concerns: what events may occur with

what probabilities when it is given the probability distribution model and the probabilistic

parameters of the random variable whose value is subject to the variations due to chance
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(Yates et al. 2003). In other words, probabilistic analysis is efficient provided the involved

random variables are well defined. But unfortunately, most of the time, we are in the

situation of not knowing the precise distribution from which a set of data can be arisen,

but of having to infer a probability distribution from the observed data, which is the main

topic of statistical inference. When probabilistic analysis is involved in slope stability

assessment, Mohr Coulomb (MC) strength parameters: cohesion (c) and friction angle

(ϕ), as well as soil unit weight, including bulk unit weight (γ) and saturated unit weight

(γsat), are commonly considered as the random variables inmost of the related studies, since

they are supposed to have significant contributions to the resisting forces and the driving

forces according to Equation 2.1, 2.9, and 2.10. Their variations, in some ways, reflect

the uncertainties involved in soil strength and unit weight and can be generally described

by probability distribution models, probabilistic parameters, and the correlations between

variables.

3.2.1. Probability DistributionModels. There are a large number of probability

distribution models developed so far, but only a few are applied in geotechnical engineer-

ing that mainly include normal, log-normal, uniform, exponential, gamma and beta. As

concluded by Onyejekwe (2012), to choose an appropriate distribution model, there are

two techniques that are commonly used: 1) plotting a histogram of the data and choosing

a distribution model that appears to best-fit the histogram; and 2) Pearson’s moment-based

method, which is developed on the basis of the third- and fourth-moment statistics, such as

skewness (Cs) and kurtois (Ck), that are defined by (Rethati 1988; Baecher and Christian
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2003)

Cs =

n
n∑

i=1

(xi − x̄)3

(n− 1) (n− 2) s3
(3.1)

and

Ck =

n
n∑

i=1

(xi − x̄)4

(n− 1) (n− 2) s4
− 3 (3.2)

where xi represents each data point in the dataset {x}; n is the number of involved data

points; x̄ and s are the sample mean and standard deviation of the dataset, the derivation

of which is to be further discussed in the following Section 3.2.2. According to Pearson’s

distribution space (Figure 3.1), distribution model can be consequently selected, where

β1 characterizing the skewness and β2 characterizing the peakiness can be computed as

(Rethati 1988)

β1 = C2
s and β2 = Ck + 3 (3.3)

Laboratory test results indicate most of the soil properties, including unit weight and MC

strength parameters, can be considered as the random variables having normal or log-

normal distribution (Baecher and Christian 2003; Elkateb et al. 2003; Onyejekwe 2012),

which are indeed the most commonly used distribution models in lots of related studies.
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Figure 3.1: Pearson’s distribution space of β1 and β2 coordinates: E - uniform
distribution (β1 = 0, β2 = 1.8), N - normal distribution, Ex - exponential distribution

(Rethati 1988)
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But owing to the fact that distribution is always parameter- and site-specific, it is preferred

to select a best fitted distribution model by going through the above procedures, e.g., Pear-

son’s system, if sufficient data are available; otherwise, assumptions have to be made ac-

cording to previous works and observations. Furthermore, as discussed by Griffiths and

Fenton (2008), it is essential to ensure if the distribution model is physically reasonable

for the soil property. That is, for example, if the property is strictly non-negative, normal

distribution is not physically reasonable since a negative part always exists in such a dis-

tribution; only when the probability of negative values is sufficiently small, it may be a

reasonable approximation. In principle, the selected distribution model should be as sim-

ple as possible while still reflecting the basic nature of the variability (Griffiths and Fenton

2008), that, on the other hand, simplifies parameter estimations and further calculations.

3.2.2. Probabilistic Parameters. Generally, mean and variance are twomost im-

portant characteristics of a random variable. Mean tells where the probability distribution

is ‘centered’ and variance indicates how ‘narrow’ or ‘wide’ the distribution is. In other

words, variance is the measurement of the variability of a random variable (Baecher and

Christian 2003; Griffiths and Fenton 2008). If there is a random variableX with the proba-

bility density function (PDF) fX (x), its mean (µX) and expected value (E[X]) are defined

as

µX =


E[X] =

∑
x

xfX (x) , if X is discrete

E[X] =

∫ ∞

−∞
xfX (x) dx, if X is continuous

(3.4)
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The standard deviation (σX) and variance (Var[X]) are defined as

σ2
X = Var[X] =



∑
x

(x− µX)
2 fX (x) , if X is discrete

∫ ∞

−∞
(x− µX)

2 fX (x) dx, if X is continuous

(3.5)

From a collection of data, the above two parameters can be simply estimated based on

sample moments by approximating the expectation integrals through a summation over

equi-likely samples, each weighted by 1/n rather than fX (x) dx in Equation 3.4 and 3.5

(Griffiths and Fenton 2008). Therefore, sample mean (x̄) and sample standard deviation

(s) can be respectively derived as

x̄ =
1

ns

ns∑
i=1

xi (3.6)

and

s2 =
1

ns

ns∑
i=1

(xi − x̄)2 (3.7)

Once a distribution has been selected, the fitness must be assessed by means of a number of

approaches, that basically include heuristic procedures and goodness-of-fit tests, such as

Chi-Square (χ2) test, Kolmogorov-Smirnov test and Anderson-Darling test (Rethati 1988;

Baecher and Christian 2003; Griffiths and Fenton 2008).
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3.2.3. Correlations. In the case that multiple random variables are taken into

consideration, the relationship between the random variables often has two possibilities:

dependent and independent. Basically, say, there are two random variables, if the occur-

rence of one does not affect the probability of the other, it is called independence; other-

wise, they are dependent. Mathematically, two independent random variables, X and Y ,

have the following property

pX,Y (x, y) = pX (x) pY (y) (3.8)

which means their joint probability distribution is the product of their marginal probability

distributions. If the random variables are dependent, a measurement parameter, correlation

coefficient (ρ) ranging between -1 and 1, is introduced to evaluate the degree of linear

dependence between the two variables. A positive correlation indicates one tends to go

up when another goes up; vice versa, a negative correlation means one tends to go down

when another goes up. If the correlation is equal to 1 or -1, the random variables are linearly

dependent; otherwise, they are non-linearly dependent; while the correlation is zero, these

two variables are uncorrelated, but still can be dependent.

Some of the research works assumed independent random variables for the soil

properties, such asMC strength parameters or unit weights, to largely simplify the problem

(Xue and Gavin 2007; Ching 2009; Zhang et al. 2013); others considered they are corre-

lated with each other (Wolff 1985; Chowdhury and Xu 1994; Bhattacharya et al. 2003;

Griffiths and Fenton 2004; Zhang et al. 2011b). On the basis of soil mechanics, since co-

hesion and friction angle are two components of soil’s shear strength, it is reasonable to
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believe they are dependent in some pattern. And most likely, they are negatively corre-

lated, because when a soil has a larger cohesion, friction angle probably tends to go down

to maintain the soil’s strength within a reasonable range; otherwise, the strength could keep

increasing, which is unreasonable and impossible in reality. As discussed by Krounis and

Johansson (2011), a reduction in the probability of failure of a soil slope was observed as

correlation coefficient changes from 1 to -1. Therefore, if a negative correlation does exist,

the probability of failure can be possibly overestimated by assuming independent random

variables; on the other hand, a conservative design is to be provided. Moreover, consider-

ing the benefits of soil compaction, that is to improve soils engineering properties, shear

strength and bearing capacity are generally increased after the soil is compacted and be-

comes denser. Therefore, it is reasonable to believe a positive correlation existing between

soil unit weights and strength parameters, especially the friction angle. After all, the above

conclusions are purely observations. The correlations between two or more soil properties

have been found to be dependent on the varying degrees of soil type, the testing methods

used to obtain the numerical value of the parameter, and the homogeneity of soil (Uzielli

et al. 2007). If sufficient data are available, the correlation may able to be interpreted based

on probability theory as follows

ρs =

n∑
i=1

(xi − x̄) (yi − ȳ)√
(xi − x̄)2

√
(yi − ȳ)2

(3.9)

where xi and yi are the data points in the two datasets for the random variables X and Y ;

x̄ and ȳ are the sample means of the datasets; and ρs is the sample correlation coefficient

between the random variables X and Y . Otherwise, assumptions have to be made based
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on previous investigations and works, or those published correlation models. But in light

of the site-specific characteristic regarding the variability of soil properties, inappropriate

assumptions may lead to an underestimate or overestimate in the final results.

3.3. PROBABILISTIC ANALYSIS ALGORITHM

To compute the probability of failure, first-order reliability method (FORM) is in-

troduced as the primary probabilistic approach due to its efficiency and effectiveness. The

advantages even stand out when FORM is working with the iterative scheme for searching

for the critical slip surfaces in slope stability analysis as discussed in Section 2.3 and 2.4.

Monte Carlo simulation (MCS), a relatively powerful but computationally costly sampling-

based method, is the backup in view of the chances that FORM may fail to converge.

3.3.1. MPP-Based FORM. FORM is developed based on the first-order Taylor

expansion evaluated at a point on the failure surface, the shortest distance from which

to the origin is defined as the reliability index (β); the probability of failure (pf ) can be

accordingly computed from Equation 2.12. In other words, the problem can be easily

solved once it is able to locate the most probable point (u∗), which is the shortest distance

point from the origin to the limit state curve g(u) as shown in Figure 3.2. Therefore, the

problem can be further transformed into aminimization problemwith an equality constraint

as described by Equation 2.14, and can be accordingly addressed through some search

algorithms that are to be further discussed in Section 3.3.1.3. As a result, since the problem

is basically searching for the most probable point (MPP), FORM is considered as an MPP-

based method.

3.3.1.1. Transformation. Prior to the MPP search, the random variables need to

be transformed from their original random space (x-space) into a non-dimensional, stan-
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Figure 3.2: The MPP-based FORM in a two-dimensional standard normal space (Du
et al. 2010)

dard normal space, as the u-space in Figure 3.2. If the random variables are independent,

Rosenblatt transformation can be directly applied to transform and derive the variables in

the standard normal space, denoted as standard variables:

ui = Φ−1 [Fi (xi)] (3.10)

based on which, the probability of failure can be rewritten in an equivalent form as that in

Equation 2.11

pf =

∫
g(u)<0

ϕu (u) du (3.11)

where xi is an arbitrary element in {x}, a set of random variables in their original space; ui

is an element in {u}, a set of standard variables corresponding to {x}; ϕ (·) and Φ (·) are
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the joint PDF and CDF in standard normal space; and F (·) is the CDF in original space.

If the random variables are dependent, or more specifically, correlated, transfor-

mation becomes complicated. The correlated random variables need to be converted into

a set of uncorrelated ones by diagonalizing the covariance matrix, whose (i, j) entry can

be expressed by

∑
ij
= COV [xi, xj] = E

[
(xi − µxi

)
(
xj − µxj

)]
(3.12)

where
∑

is the covariance matrix; COV is the covariance operator; xi and xj are two ar-

bitrary elements in {x}. Similar to the correlated coefficient, covariance represents how

much two random variables change together; but differently, the magnitude of the covari-

ance fails to indicate anything regarding the strength of the relationship since it depends

on the units and the variability of the random variables. Correlation coefficient is a nor-

malized, non-dimensional quantity (Griffiths and Fenton 2008), defined as

ρxixj
=
COV [xi, xj]

σxi
σxj

(3.13)

From Equation 3.12 and 3.13, the covariance matrix can be expressed in terms of correla-

tion coefficient as

∑
ij
= COV [xi, xj] = ρxixj

σxi
σxj

(3.14)
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When sufficient data are available, correlation coefficient can be estimated by Equation 3.9.

Covariance matrix is then able to be derived according to Equation 3.14. To complete

the transformation, the procedure demonstrated in Figure 3.3 is introduced, wherein an

essential step is to decompose the covariance matrix into a lower triangular matrix through

Cholesky decomposition, which is only efficient providing a Hermitian, positive-definite

matrix. From Equation 3.12 and 3.14, it is not difficult to find the covariance matrix is

Hermitian, that has
∑

=
∑T, but a positive-semidefinite matrix (zT

∑
z ≥ 0 for all z)

instead of positive-definite (zTMz > 0 for all non-zero z). In this situation, Cholesky

decomposition still exists, but the theory and the computation are more subtle than for a

positive-definite matrix (Higham 2002). More details regarding variable transformation

can be referred to Appendix A.

Original correlated ran-
dom variables {x}

Correlated random variables in a
standard normal space (reduced
variables) {x̂} and derive COV [x̂]

Decompose COV [x̂] to
a lower triangular matrix Lx̂

through Cholesky decomposition

Derive standard variables {u} by

{u} = L−1
x̂ {x̂} (3.15)

Figure 3.3: Correlated variable transformation
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3.3.1.2. Linearization. After the original random variables {x} have been con-

verted into a set of uncorrelated or independent standard normal variables {u}, the limit

state function can be rewritten as g (u). Since the FORM is developed based on the first-

order Taylor expansion, the limit state function is supposed to be linearized at the MPP as

follows

g (u) ≈ L (u) = g (u∗) +
n∑

i=1

∂g

∂ui

∣∣∣∣
u∗
(u− u∗)T = g (u∗) +∇g (u∗) (u− u∗)T (3.16)

where∇g (·) needs to be determined prior to the MPP search since it is going to be contin-

uously recalled in the searching loop. Considering the standard and original random vari-

ables are always inter-related in some pattern, through Chain Rule, ∇g (u) can be given

by

∂g

∂uj

=
n∑

i=1

∂g

∂xi

∂xi

∂uj

(3.17)

or in an equivalent matrix form

∇g (u) =



∂g

∂x1

∂g

∂x2

...

∂g

∂xn



T 

∂x1

∂u1

∂x1

∂u2

· · · ∂x1

∂un

∂x2

∂u1

∂x2

∂u2

· · · ∂x2

∂un

... ... ... ...

∂xn

∂u1

∂xn

∂u2

· · · ∂xn

∂un


(3.18)
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wherein ∂g/∂xi is based on the limit state function regarding the failure mechanism; while

∂xi/∂uj is primarily depending on the probability distribution of the ith random variable

and the correlation between the ith and jth random variables. For normal distribution, the

original random variables can be expressed in an inverse form of Equation 3.15 as

{x̂} = Lx̂ {u} =

{
xi − µxi

σxi

}n

i=1

(3.19)

based on which the partial derivative of an original random variable with respect to a stan-

dard variable can be derived as

∂xi

∂uj

= σxi

n∑
k=1

Lx̂ (i, k)
∂uk

∂uj

= σxi
Lx̂ (i, j) (3.20)

where Lx̂ is the lower triangular matrix with respect to {x̂}, a set of reduced variables that

are in standard normal space but still correlated; for log-normal distribution, similar to

Equation 3.19, the reduced variables can be derived as

{x̂} = Lx̂ {u} =

{
ln xi − µlnxi

σlnxi

}n

i=1

(3.21)

based on which we have the partial derivative derived as

∂xi

∂uj

= xiσlnxi

n∑
k=1

Lx̂ (i, k)
∂uk

∂uj

= xiσlnxi
Lx̂ (i, j) (3.22)



43

since the standard variables {u} are independent,

∂ui

∂uj

=


1, for i = j

0, otherwise.

(3.23)

In a special condition that the random variables are independent or uncorrelated, ∇g (u)

can be simplified as

∂g

∂ui

=
∂g

∂xi

∂xi

∂ui

(3.24)

wherein, according to Appendix A.1, it is easy to obtain

∂xi

∂ui

= σxi
, for normal distribution (3.25)

∂xi

∂ui

= σlnxi
eM , for log-normal distribution (3.26)

where M = uiσlnxi
+ µlnxi

. Thereby, from Equation 3.17 and 3.24, it is easy to have

∇g (u) finally calculated once ∂g/∂xi is derived based on the failure mechanism.

Inmany engineering applications, analytic partial derivatives of the limit state func-

tion with respect to the random variables may not be available, or can be hard to derive

especially when highly complex limit state function is involved. The numerical methods

should be thereby an alternative, such as a two-point estimation with forward, backward or
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centered finite difference, throughwhich the limit state function will be called (2×n) times,

where n is the number of involved random variables. If the frequency of function calls is

used to measure the computational efficiency, the efficiency of FORM is directly propor-

tional to the dimension of the limit-state function (Du et al. 2010). In view of the truncation

error that always exits in numerical differential, centered finite difference is of the order of

h2 in contrast to the forward and the backward approximations that are of the order of h,

and consequently implies a more accurate representation of the derivative (Chapra 2008).

After all, thinking of computational efficiency and accuracy, it analytic derivative is pre-

ferred to use if it is available, so that no additional cost is involved; otherwise, centered

finite difference approximation is embedded with highly complex functions. Considering

the limit state function is generally defined on the basis of failure mechanisms, the es-

timation of the partial derivative ∂g/∂xi is to be discussed individually in the following

Section 3.4.2.

3.3.1.3. MPP search. Provided the transformation and the linearization are done,

MPP search is performed to locate the most probable point, the distance from which to the

origin is the reliability index. The algorithm as illustrated in Figure 3.4 is modified and

extended based on the original Hasofer-Lind method by Rackwitz and Fiessler (1978),

denoted as HL-RF method. It is the most popular algorithm due to its effectiveness and

capability to converge fast for most situations (Santosh et al. 2006; Du et al. 2010). How-

ever, as an iterative scheme, there exists the phenomenon of convergent failure during the

iterative calculation of getting the reliability index determined for some limit state func-

tions, typically some highly complex and nonlinear function whose curvature value near

the MPP at the limit state surface is large so that the sequential points generated during

iterating may oscillate in the domain near the MPP and fail to converge (Santosh et al.
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Starting point {u0}

k = 0, u = u0

k = k + 1

uk = u, βk = ||u||

dk =
∇g(uk)

||∇g(uk)||

βk+1 = βk +
g(uk)

||∇g(uk)||

uk+1 = −dkβk+1

∣∣∣∣uk+1 − uk
∣∣∣∣ < ϵ1∣∣g(uk+1)
∣∣ < ϵ2

Stop

u = uk+1

u∗ = uk+1, β = ||u∗||

pf = 1 − ϕ(β)

YesNo

Figure 3.4: HL-RF search algorithm for locating MPP, adapted from Du et al. (2010)

2006; Yang et al. 2006; Du et al. 2010; Gong and Yi 2010). With this in mind, Monte

Carlo simulation can be an alternative method to solve the problem.

3.3.2. Monte Carlo Simulation. Monte Carlo simulation is a powerful tool to

solve the multi-dimensional probability integral over the failure domain defined by the

limit state function g (x) < 0 (Gasser and SchuEller 1997). As a sampling-based method,

MCS has an outline that is generally described in Figure 3.5, where N is the number of
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Step 1. Sampling of Random Variables
Generating samples of random varaibles

Step 2. Numerical Experimentation
Evaluating limit state functions

Step 3. Statistic Analysis on Model Output
Extracting probability information

Genreate
zi ∼ U (0, 1)

Transform zi → xi
with xi = F−1

xi
(zi)

yj = g (xj) , j = 1, 2, · · · , N

Mean: ȳ =
1

N

N∑
j=1

yj

Variance: s2y =
1

N − 1

N∑
j=1

(yi − ȳ)2

Probability of failure:

pf =
1

N

N∑
j=1

I [g (xj)] =
Nf

N
(3.27)

i = 1, · · · , n

Figure 3.5: Monte Carlo Simulation algorithm, adapted from Gasser and SchuEller
(1997) and Du et al. (2010)

simulations in MCS; Nf is the number of the samples that have the limit state function

less than zero; and n is the number of random variables in the model. The estimation

obtained by MCS approaches to the exact solution as N → ∞; thus, the numerical effort

is extremely high especially when the probability of failure is small due to the reason that

only the samples that fall into the failure zone can contribute to the probability estimation.

Therefore, in view of computational efficiency, HL-RF is selected as the primary method
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to locate the MPP; MCS is embedded as a backup in case HL-RF fails to converge.

3.4. PROBABILISTIC ANALYSIS IN GRES APPLICATION

To clearly demonstrate how the proposed probabilistic algorithm as discussed in

Section 3.3 can be successfully embedded in the stability analysis of geosynthetic rein-

forced embankment slopes, a flowchart is illustrated in Figure 3.6. It is required prior

to the MPP-based probabilistic analysis that failure mode and potential failure surfaces

should be predetermined, based on which the limit state functions can be accordingly de-

fined and the probability of failure can be computed through the MPP-based FORM with

respect to the specified failure mechanism. In either deterministic or probabilistic slope

stability analysis, it is routine to search for the most dangerous surfaces along which the

slope is most likely to fail, denoted as critical slip surfaces, as mentioned in Section 2.4. To

achieve this goal, a series of potential failure surfaces are generated within a most probable

failure zone that is mainly determined by engineers judgments and experience. Thinking

of the phenomenon that critical deterministic and probabilistic slip surfaces may not be lo-

cated at the same position as discussed in Section 2.4, MPP-based probabilistic analysis is

accordingly repeated to locate the critical probabilistic surface with a maximum probabil-

ity of failure (pf,max); meanwhile, deterministic analysis is carried out to locate the critical

deterministic surface with a minimum factor of safety (fs,min).

In the following sections, the failure modes that may potentially occur in a GRES

system will be discussed, followed by the determination of limit state functions. Two nu-

merical examples are consequently carried out in Section 3.5 to demonstrate the application

of the proposed probabilistic slope stability analysis.
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Slope Geometry
Soil and Reinforce-
ment Properties

Random Variables Definition

Specified Failure Mode
Potential Failure Surface

MPP-based FORM

Probability of Failure: pf

Transformation

x → u (Fig. 3.3)

Linearization

∇g (u), from Eq. 3.16

MPP Search

HLRF (Algorithm 3.2)

Statistical Inference

x̄, from Eq. 3.6
s, from Eq. 3.7
ρ, from Eq. 3.9

Critical Slip Surface with
Max. pf or Min. fs

g (u)

Re
pe
at

Figure 3.6: Probabilistic slope stability analysis procedure
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3.4.1. Mulitiple Failure Modes. As illustrated in Figure 3.7, a typical GRES

structure often has three possible failure modes: 1) internal, where the failure plane crosses

all reinforcements; 2) external, where the failure plane is located outside and underneath

the reinforced mass; and 3) compound, where the failure plane passes behind and through

the reinforced mass. The external failure possibilities also include sliding failure, deep-

Figure 3.7: Failure modes of reinforced soil slopes (Elias et al. 2001)

seated overall instability, lateral squeezing failure, and excessive settlement (Elias et al.

2001). The design process as well as the analysis should address all the possible failure

modes that a GRES system will potentially experience in both short-term and long-term

conditions. As recommended by Elias et al. (2001) and Naresh and Edward (2006), the

methods used for analyzing the preceding failure modes are summarized in Table 3.1; and

embedded in the probabilistic slope stability analysis herein.

3.4.2. System Reliability. As discussed by Basha and Babu (2010), in a series

system, the entire system is considered as disabled if even one component fails. The com-

ponents of the system are so configured that the system failure results from the failure of
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Table 3.1: Failure modes of geosynthetic reinforced slopes and analyzing methods,
adapted from Elias et al. (2001) and Naresh and Edward (2006)

Failure Modes Analysis Methods

Internal Rotational method (a)

Sliding Sliding block method

External

Deep-
seated

Rotational method (b) or Sliding
block method

Lateral
squeeze Silvestri’s approach

Excessive
settlement

Classical geotechnical engineering
procedures

Compound Rotational method (b) or Sliding
block method

(a) Rotational method modified for reinforced slope stability analysis.
(b) Rotational method for unreinforced slope stability analysis.

any of the failure modes. Thinking of the contributions of the multiple failure modes to the

system reliability, the probability of failure can be computed as follows (Basha and Babu

2010) if the failure modes are statistically independent:
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pfs = P
{
[g1 (x) ≤ 0] ∪ [g2 (x) ≤ 0] ∪ · · ·

[
gnf

(x) ≤ 0
]}

(3.28)

= 1−
(
{1− P [g1 (x) ≤ 0]} {1− P [g2 (x) ≤ 0]} · · ·

{
1− P

[
gnf

(x) ≤ 0
]})

where pfs is the system probability of failure; gi (x) is the limit state function with respect

to the ith potential failure mode; and nf is the number of potential failure modes to be

considered. When the probability of failure with respect to each failure mode is computed,

the system probability of failure can be obtained from Equation 3.28; and system reliability

(Rs) can be obtained by

Rs = 1− pfs (3.29)

As illustrated in Table 3.1, the typical failure modes that may potentially occur in a GRES

system include internal, external and compound, all of which should be addressed to thor-

oughly perform the probabilistic slope stability analysis for a GRES system.

3.4.2.1. Internal failure. The internal failure, where the failure plane crosses all

reinforcements, is analyzed by the rotational method that assumes all the geosynthetic

layers are effectively working. From Equation 2.10, the limit state function is given by

g (x) =
r

n∑
i=1

[c′ili + tanϕ′
i(Wi cosαi − uili)] +

m∑
j=1

Tjdj

r
n∑

i=1

Wi sinαi

− 1 (3.30)
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where x = {c′,ϕ′,γ,γsat} are the involved random variables with {c′} and {ϕ′} repre-

senting the effective MC strength parameters in each layer if multiple layers exist; {γ}

and {γsat} are the bulk unit weight and the saturated unit weight of each soil layer, al-

though not directly shown in Equation 3.30, but significantly contribute to the weight of

slice (Wi). All the other parameters in Equation 3.30 have been defined in Section 2.2.2

along with Equation 2.9 and 2.10. Based on the limit state function given by Equation 3.30,

the partial derivatives of the limit state function with respect to the strength parameters can

be analytically derived as

∂g

∂c′j
=

n̂∑
j=1

li
n∑

i=1

Wi sinαi

(3.31)

∂g

∂ϕ′
j

=
n̂∑

j=1

Wi cosαi − uili
n∑

i=1

Wi sinαi

(
tan2 ϕ′

i + 1
)

(3.32)

where c′j and ϕ′
j are the effective MC strength parameters for the jth layer; and n̂ is the

number of the layers that the slip surface passes through. Due to the complicated situations

that may encounter, such as the location of groundwater table, it is hard to get a general

formation of the slice weight in terms of unit weights. Therefore, it is more reasonable to

do numerical estimation on the partial derivatives of the limit state function with respect

to the unit weights.

Another thing that should be pointed out is the prerequisite of Equation 2.10 and 3.30.

That is, all the geosynthetic layers are assumed effectively working without the pullout

failure, which always occurs once the load carried by the reinforcement layer exceeds its



53

pullout resistance capacity; and consequently, instead of tensile strength failure, the rein-

forcement has been pulled out and fails to work. Therefore, the pullout resistance capacity

of the reinforcement layer should been taken as another important factor that controls how

much effort the layer can provide as a resistance component. According to FHWA Soils

and Foundations Workshop Reference Manual (Naresh and Edward 2006), the unit pullout

resistance capacity (Pr) can be computed by

Pr = F ∗ · α · C · σ′
v (3.33)

where F ∗ is the pullout resistance factor, the value of which for geosynthetic reinforcement

should be conservatively taken as 2/3 tanϕ in absence of test data; ϕ is the peak friction

angle of the backfill; α is a scale effect correction factor to account for a non-linear stress

reduction over the embedded length of highly extensible reinforcements, usually taken

between 0.6 and 1.0 for geosynthetic reinforcements based on laboratory data; C is the

reinforcement effective unit perimeter, set as 2 for strips, grids and sheets; and σ′
v is the

effective vertical stress at the soil-reinforcement interfaces. Thereby, a factored pullout

resistance force (Fr) contributed by the reinforcement layer can be derived as

Fr =
Pr Le

rp
(3.34)

where Le is the reinforcement length anchored behind the potential slip surface, denoted as

embedment length (or anchorage length); and rp is a specified reduction factor regarding
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the pullout behavior (Elias et al. 2001). Therefore, to better estimate how much effort the

reinforcement layer can contribute to the resistance of sliding, Tj in Equation 2.10 and 3.30

should be replaced by the minimal between the factored pullout resistance force and the

allowable tensile strength (Ta) of a certain reinforcement layer; and the units of both in-

dicate the force is mobilized per unit width into the out-of-plane dimension. On the other

hand, if the tensile strength or the pullout resistance capacity of a geosynthetic reinforce-

ment is actually mobilized is depending on the embedment length anchored behind the slip

surface: if the embedded portion is too short, it may cause very limited loading capacity

of the reinforcement layer to be carried out. Therefore, it should be guaranteed a required

embedment length as (Elias et al. 2001)

Le(required) =
Ta rp
Pr

(3.35)

corresponding to the critical internal failure surface; and as recommended by Elias et al.

(2001), the embedment length should be no less than 1m (or 3.3 ft). The limit state function

with respect to the pullout behavior is then given by

g (x) = Pr Le

Ta

− 1 (3.36)

where the random variables are selected as the unit weights of the reinforced mass that

contribute to the calculation of the effective vertical stress (σ′
v) in determining the unit

pullout resistance capacity in Equation 3.33.



55

3.4.2.2. External failure. The external failure, where the failure plane is located

outside and underneath the reinforced mass, has various possibilities: sliding failure, deep-

seated overall instability, lateral squeeze failure, and excessive settlement, as illustrated in

Table 3.1.

3.4.2.2.1. Sliding failure. The sliding failure that occurs in a GRES system is

most likely along the interface between embankment slope and foundation soil. For a

uniform granular slope without considering groundwater effects, from Equation 2.5, the

limit state function can be directly derived as

g (x) =
(

W

Pa cos δ
+ tan δ

)
tanϕ′ − 1 (3.37)

where Pa is the active force acting on the reinforced mass and can be derived on the basis

of Coulomb’s theory from Equation 2.2;W is the weight of the reinforced mass, functional

of the reinforced soil unit weight; ϕ′ is the smaller angle of either the effective shearing

friction between the reinforced soil and reinforcements or the friction of foundation soil; δ

is the internal friction angle between the reinforced mass and backfill, generally assigned

between 2/3ϕw and ϕw, where ϕw is the smaller friction angle of either reinforced mass or

backfill. In a more generalized way that involves cohesive soils and groundwater effects,

the lateral earth force is re-computed on the basis of the equilibrium of reinforced wedge.

The factor of safety is accordingly renewed and the limit state function is given by

g (x) = c′Lds + (W + Pa sin δ − uLds) tanϕ′

Pa cos δ
− 1 (3.38)
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where c′ is the smaller cohesion of either embankment fill or foundation soil; Lds is the

horizontal width of the reinforced mass along foundation; and u is the pore pressure acting

on the base of the reinforced mass. The derivation of the new active force and the factor

of safety that considers both cohesion and groundwater effects is further discussed in Ap-

pendix B.1. When multiple layers are involved, Rankine’s theory seems more efficient to

be applied with a horizontal active force acting on the reinforced mass; and the limit state

function is given by

g (x) = c′Lds + (W − uLds) tanϕ′

Pa

− 1 (3.39)

where Pa is the active force derived on the basis of Rankine’s theory according to Equa-

tion 2.6. From Equation 2.2 and 2.6, it can be noticed Pa is functional of backfill cohesion

(c′b), friction angle (ϕ′
b) and unit weight (γb); while W is determined by the unit weight

of the reinforced mass. When the random variables are selected as: x = {c′,ϕ′,γ,γsat},

numerical estimation needs to be carried out to calculate the partial derivatives of the limit

state function with respect to those random variables due to the complexity of the func-

tions. Otherwise, simplification can bemade thatPa is assumed as a deterministic variable;

thereby, analytic partial derivatives can be derived based on Equation 3.37, 3.38, and 3.39.

3.4.2.2.2. Deep-seated overall instability. Adeep-seated failure often occurs un-

derneath the reinforced mass. Therefore, a classical rotational analysis that uses for unre-

inforced slopes can be implemented to analyze this type of instability by defining a deep-

seated failure plane passing through the foundation soil. From Equation 2.9, the limit state
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function can be derived as

g (x) =

n∑
i=1

[c′ili + tanϕ′
i(Wi cosαi − uili)]

n∑
i=1

Wi sinαi

− 1 (3.40)

The partial derivatives of the limit state function with respect to the random variables in

this situation are same with the ones given by Equation 3.31 and 3.32. When there is a

soft layer existing in the foundation soil as shown in Figure 2.2, sliding block method is

suitable as well with a failure plane along the soft layer surface; and the partial derivatives

∂g/∂xi can be accordingly derived based on the defined limit state function.

3.4.2.2.3. Lateral squeeze failure. If a weak soil layer exists beneath the em-

bankment slope (Figure 3.8) to a limit depth (Ds) which is less than the width of the slope

(b), the factor of safety against lateral squeezing can be calculated by (Elias et al. 2001)

fs =
cu
γ

{
λ

Ds tan θ
+

π + 1

H

}
(3.41)

where Ds is the depth of the soft layer beneath the embankment slope base; H is the em-

bankment slope height; θ is the slope angle; γ is the unit weight of slope soil; cu is the

undrained shear strength of the soft soil layer; and λ is a factor representing the relative

mobilization of the shear strength between the interfaces: λ = 1 for a perfectly smooth

contact at the top interface and a perfectly rough contact at the bottom interface; λ = 2 for

perfectly rough contacts at two interfaces (Silvestri 1983). Based on Equation 3.41, the
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Figure 3.8: Lateral squeezing failure mechanism, adpated from Silvestri (1983)

limit state function can be defined as

g (x) = cu
γ

{
λ

Ds tan θ
+

π + 1

H

}
− 1 (3.42)

where cu and γ are the only random variables. When multiple layers exist, cu and γ can be

determined by taking average (Silvestri 1983). If the depth of the soft layer is greater than

the slope base width, the general slope stability will govern the design (Elias et al. 2001).

Based on the limit state function as defined by Equation 3.42, the partial derivatives ∂g/∂xi

can be derived.

3.4.2.2.4. Excessive settlement. The settlement in foundation generally consists

of three components: short-term (or immediate), long-term (or consolidation-type), and

secondary compression. All geo-materials, whether cohesionless or cohesive, will experi-

ence settlements immediately after load application; while consolidation-type settlements
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are generally not experienced in cohesionless soils where pore water can drain quickly,

or in dry or slightly moist cohesive soils where significant amounts of pore water are

not present. Therefore, the embankment settlements caused by the consolidation of co-

hesionless or dry cohesive soil deposits are frequently ignored; but in saturated cohesive

soils, consolidation settlement must be discussed (Naresh and Edward 2006). In view

of the construction process of a geosynthetic reinforced embankment slope that the fills

are placed layer by layer over time, the short-term settlement is always not an issue, and

will not be taken into consideration herein. The methods to determine the magnitude and

the rate of foundation settlements in various situations (i.e., normally consolidated, over-

consolidated) are described in detail in Section 7.4 and 7.5 in FHWASoils and Foundations

Workshop Reference Manual (Naresh and Edward 2006). It shows the settlements are sig-

nificantly depending on the soil compressibility that always can be evaluated by bearing

capacity index (C ′), compression index (Cc), recompression index (Cr), coefficient of con-

solidation (cv), preconsolidation pressure (σ′
p) and etc.. Based on the allowable foundation

settlements that are usually determined from project requirements, the limit state function

can be defined in the same way as demonstrated for other failure mechanisms along with

the selected random variables.

3.4.2.3. Compound failure. The compound failure, where the failure plane passes

behind and through the reinforced mass, can be analyzed by either rotational or sliding

block method. In rotational analysis, since the failure plane passes only one or a few rein-

forcement layers, the limit state function can be modified based on Equation 3.30 as given
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below

g (x) =
r

n∑
i=1

[c′ili + tanϕ′
i(Wi cosαi − uili)] +

mc∑
j=1

Tjdj

r
n∑

i=1

Wi sinαi

− 1 (3.43)

where mc is the number of the layers through which the failure plane passes; basically,

mc < m, but if mc = m, it becomes internal failure. Similarly, if the pullout behavior is

taken into consideration, Tj in the above equation should be replaced by the minimum be-

tween the factored pullout resistance force and the allowable tensile strength with respect

to a certain reinforcement layer. If the failure plane is supposed to occur along a rein-

forcement layer, sliding block method can be applied with a limit state function modified

from Equation 3.37, 3.38, or 3.39, whereW is substituted by the weight of the reinforced

mass above the failure plane; c′ is the effective cohesion of the reinforced soil; ϕ′ is the

effective friction angle between reinforced soil and reinforcements; and Pa is the active

force acting on the wedge that is above the failure plane. The partial derivatives of the

limit state function with respect to the random variables can be derived either analytically

or numerically.

3.4.3. Short andLong-TermConditions. Asmentioned in Section 3.4.1, to thor-

oughly evaluate the stability of a GRES structure, both short-term and long-term conditions

need to be taken into consideration. In general, if the slope primarily consists of cohesive

soils, undrained analysis is always carried out in short-term condition; while drained anal-

ysis is performed in long-term condition. In undrained analysis, it is common to use the

undrained shear strength (cu); and a zero undrained friction angle (ϕu) is always assumed.
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Therefore, the problem can be simplified as: 1) in rotational analysis,

g (x) =

n∑
i=1

culi

n∑
i=1

Wi sinαi

− 1, for unreinforced slopes (3.44)

g (x) =
r

n∑
i=1

culi +
m∑
j=1

Tjdj

r
n∑

i=1

Wi sinαi

− 1, for reinforced slopes (3.45)

where {cu} are the undrained shear strengths in multiple soil layers;

and 2) in sliding analysis,

g (x) = cuLds

Pa cos δ
− 1, from Coulomb’s theory (3.46)

g (x) = cuLds

Pa

− 1, from Rankine’s theory (3.47)

where cu is the undrained cohesion between reinforced soil and foundation, and Pa is the

active force computed with the undrained shear strength. Otherwise, in long term condi-

tion, the effective strength parameters are commonly used due to the drained status. If the

slope is primarily consisting of granular materials, due to their relatively higher permeabil-

ity, the drained condition always exits with a zero cohesion assumed regardless of short
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term or long term. Thereby, the problem can be simplified as: 1) in rotational analysis,

g (x) =

n∑
i=1

tanϕ′
i(Wi cosαi − uili)

n∑
i=1

Wi sinαi

− 1, for unreinforced slopes (3.48)

g (x) =
r

n∑
i=1

tanϕ′
i(Wi cosαi − uili) +

m∑
j=1

Tjdj

r
n∑

i=1

Wi sinαi

− 1, for reinforced slopes (3.49)

and 2) in sliding analysis,

g (x) = (W + Pa sin δ − uLds) tanϕ′

Pa cos δ
− 1, from Coulomb’s theory (3.50)

g (x) = (W − uLds) tanϕ′

Pa

− 1, from Rankine’s theory (3.51)

3.5. NUMERICAL EXAMPLE

To demonstrate the application of the proposed probabilistic slope stability analysis,

two numerical examples are carried out in this section, respectively taken from FHWA

Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design & Construction

Guidelines (Elias et al. 2001) and Mirafi Geosyntehtics for Soil Reinforcement Design

Manual.

3.5.1. Numerical Example 1: Geotextile ReinforcedRoadEmbankment. This

example is performed on a 1H:1V road embankment that is 5-m high and reinforced by

12 layers of geotextile reinforcements having a unique allowable tensile strength of 4.14
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kN/m over the full height of embankment, as shown in Figure 3.9. The groundwater table

Figure 3.9: The configuration of the road embankment in Example 1

is located 2-m below the foundation, and is not taken into consideration herein. The bottom

reinforcement layer is placed after the first lift of the embankment fill with a thickness of

200 mm; afterwards, the reinforcements are evenly placed with an average spacing of 400

mm throughout the whole embankment slope. The foundation soil consists of stiff to very

stiff, low-plasticity, silty clay; and the embankment fill is clayey sand and gravel. Their

engineering properties are presented in Table 3.2, where some typical COVs are assumed

with some published ranges (Baecher and Christian 2003; Houlihan et al. 2010). The de-

sign factor of safety regarding the multiple failure modes are all set as 1.3, except for the

pullout behavior that is specified as 1.5. Furthermore, the pullout resistance factor, F ∗ =

0.43; and the scale effect correction factor, α = 0.6 (Elias et al. 2001).
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Table 3.2: The material properties in Example 1

Material Parameter Mean COV

Foundation: stiff to very stiff, low
plasticity, silty clay

cu 100 kPa 30%

c′ 0 Deterministic

ϕ′ 28◦ 9%

γ 19 kN/m3 5%

Embankment fill: clayey sand
c′ 0 Deterministic

ϕ′ 33◦ 8%

γ 21 kN/m3 5%

Note: The COVs are assumed based on Baecher and Christian (2003) and Houlihan et
al. (2010).

3.5.1.1. Deterministic slope stability analysis. To quickly start the example, de-

terministic slope stability analysis is first carried out with a total of 2224 rotational slip

surfaces being searched, that include 638 for internal, 1551 for compound, and 35 for deep-

seated failure. The critical deterministic slip surfaces are accordingly located with respect

to the preceding failure modes as shown in Figure 3.10, where the critical deterministic

internal failure surface with the minimum factor of safety, fs,i (min) = 1.188, passes all the

reinforcements and exits at the toe of the slope; while the critical deterministic compound

failure surface has the minimum factor of safety, fs,c (min) = 1.213, and passes 11 out of 12

reinforcement layers in total. Considering the pullout failure that may potentially occur in

the reinforced slope, it is summarized in Table 3.3 that the factor of safety against pull-

out behavior, the tensile force carried by each reinforcement layer, and the corresponding

embedment length along the critical deterministic internal failure surface. The minimum

factor of safety against the pullout behavior is obtained as 1.66 along the top reinforcement
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Figure 3.10: The critical deterministic slip surfaces in Example 1

layer and has been big enough compared to the required value of 1.5. The resisting forces

provided by the reinforcement layers are all equal to their allowable tensile strength (=

4.14 kN/m), indicating the allowable tensile strength is lower than the pullout resistance

force the geotextile reinforcement can provide. In other words, it is more likely to have

tensile failure occur in the geotextile reinforcements rather than the pullout failure. There-

fore, the allowable tensile strength is considered as a control factor in this example; and

is fully mobilized since the anchored portion is long enough with the embedment length

greater than the required value, which, except for the top layer, is set to be 1 m, since the

calculated value as shown in the parenthesis in Table 3.3 is less than 1 m.

Sliding failure is supposed to occur along the interface between foundation and

embankment slope. With 105 sliding surfaces being searched, the critical deterministic
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Table 3.3: The pullout resistance in deterministic analysis in Example 1

Layer fs Fr (kN/m) Le (m) Le(required) (m)

1 62.91 4.14 4.97 1 (0.119)

2 51.15 4.14 4.41 1 (0.129)

3 42.78 4.14 4.06 1 (0.142)

4 36.36 4.14 3.83 1 (0.158)

5 21.03 4.14 2.49 1 (0.178)

6 17.88 4.14 2.42 1 (0.203)

7 15.21 4.14 2.40 1 (0.237)

8 12.82 4.14 2.43 1 (0.285)

9 5.04 4.14 1.20 1 (0.356)

10 4.09 4.14 1.29 1 (0.474)

11 3.00 4.14 1.42 1 (0.712)

12 1.66 4.14 1.58 1.423

sliding failure surface is located as shown in Figure 3.10, that has the minimum factor

of safety, fs,s (min) = 1.779. The critical deterministic deep-seated failure surface is lo-

cated outside of the reinforced mass with a minimum factor of safety, fs,d (min) = 1.327. In

summary, through the traditional deterministic slope stability analysis, this geotextile re-

inforced road embankment doesn’t meet the design requirements since the factor of safety

against neither internal nor compound failure is greater than the required value of 1.3. In

the following sections, probabilistic slope stability analysis is to be carried out, so that it

can be evaluated how probable the failure can occur with the calculated factor of safety;

and the system reliability is able to be estimated considering the multiple failure modes

that may potentially occur.
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3.5.1.2. Probabilistic slope stability analysis. As shown in Table 3.2, there are

four random variables taken into consideration: the effective friction angle and the unit

weight of both foundation soil and embankment fill; while the effective cohesion with zero

magnitude is considered as deterministic variable. Since the probabilistic properties of soil

strength and unit weight are not available herein, assumptions are made based on some

published ranges(Baecher and Christian 2003; Houlihan et al. 2010). As mentioned in

Section 3.2.2, normal and log-normal are two most popular distribution models to describe

the probabilistic characteristics of the soil properties including MC strength parameters

and soil unit weights; therefore, both of them are going to be studied in the following

probabilistic analysis as a comparison.

3.5.1.2.1. Uncorrelated random variables. The random variables are assumed

uncorrelated and normally distributed (Case I) at first. In view of the chances that the

surface with the minimum factor of safety may not coincide with the one having the maxi-

mum probability of failure, along with the traditional deterministic analysis, the proposed

probabilistic slope stability analysis is simultaneously performed to locate the critical prob-

abilistic slip surfaces with a total of 2224 potential slip surfaces being searched. Along the

critical deterministic slip surfaces that have been addressed in Section 3.5.1.1, the proba-

bility of failure are respectively obtained as 0.685%, 1.312%, and 0.038% corresponding

to internal, compound, and deep-seated failure mode. Meanwhile, the critical probabilistic

slip surfaces are located with the maximum probability of failure and the corresponding

factor of safety as: 1) pf ,i (max) = 1.235% and fs,i = 1.214, for internal failure; 2) pf ,c (max) =

1.312% and fs,c = 1.213, for compound failure; and 3) pf ,d (max) = 0.048% and fs,d = 1.337,

for deep-seated failure. As shown in Figure 3.11, it is only for the compound failure that
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two critical surfaces coincide with each other; otherwise, they are located at different po-

sitions. Therefore, the pullout behavior should be examined along not only the critical

Figure 3.11: The critical deterministic and probabilistic slip surfaces in Example 1

deterministic internal failure surface but also the probabilistic one. The factors of safety

against the pullout behavior along the two critical internal failure surfaces are summarized

in Table 3.4, where it can be noticed, along the critical probabilistic internal failure surface

which is located deeper in the slope compared to the deterministic one, the top four rein-

forcement layers are most likely to be pulled out since the factors of safety are significantly

less than 1.5; and their strengths are not fully mobilized since the anchored portions are

not long enough compared to the required embedment lengths. The critical deterministic

and probabilistic sliding failure surfaces are located at the same position, that is, along the
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Table 3.4: The pullout resitance in probabilistic analysis in Example 1

Layer
Deterministic Internal Surface Probabilistic Internal Surface

Le(required) (m)
fs Fr (kN/m) Le (m) fs Fr (kN/m) Le (m)

1 62.91 4.14 4.97 58.46 4.14 4.62 1 (0.119)

2 51.15 4.14 4.41 43.80 4.14 3.78 1 (0.129)

3 42.78 4.14 4.06 34.58 4.14 3.28 1 (0.142)

4 36.36 4.14 3.83 28.05 4.14 2.96 1 (0.158)

5 21.03 4.14 2.49 13.03 4.14 1.55 1 (0.178)

6 17.88 4.14 2.42 10.43 4.14 1.41 1 (0.203)

7 15.21 4.14 2.40 8.50 4.14 1.34 1 (0.237)

8 12.82 4.14 2.43 6.99 4.14 1.33 1 (0.285)

9 5.044 4.14 1.20 0.21 0.57 0.05 1 (0.356)

10 4.09 4.14 1.29 0.35 0.96 0.11 1 (0.474)

11 3.00 4.14 1.42 0.43 1.18 0.20 1 (0.712)

12 1.66 4.14 1.58 0.34 0.94 0.32 1.423

interface between foundation and embankment slope with a 45-degree inclined back-face;

has a maximum probability of failure, pf,s (max) = 2.1×10−4%, along with a minimum factor

of safety, fs,s (min) = 1.779.

If the random variables are all in log-normal distribution (Case II), the critical sur-

faces are situated at the same positions as obtained in Case I but with different probabilistic

results as summarized in Table 3.5. It is shown a relatively lower probability of failure is

obtained in the case of log-normal distribution for any of the discussed failure modes,

wherein the sliding failure always has the lowest probability of failure and a highest factor

of safety. The comparison is further carried out based on the mixture of normal and log-

normal distributions assigned to the random variables: ϕ′ ∼ N with γ ∼ LN (Case III);
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Table 3.5: The probabilistic results in Case I, II, III, and IV in Example 1

Failure Mode Surface fs
pf (Iterative Steps)

Case I Case II Case III Case IV

Internal
Det. 1.188 0.685% (299) 0.329% (298) 0.672% (299) 0.338% (298)

Pro. 1.214 1.235% (306) 0.728% (306) 1.226% (307) 0.735% (305)

Compound
Det.

1.213 1.312% (306) 0.788% (305) 1.302% (306) 0.795% (305)
Pro.

Deep-Seated
Det. 1.327 0.038% (330) 0.008% (329) 0.038% (330) 0.008% (329)

Pro. 1.337 0.048% (332) 0.009% (331) 0.048% (332) 0.009% (331)

Sliding
Det.

1.779 2.10E-4% (6) 1.31E-5% (6) 2.10E-4% (6) 1.31E-5% (6)
Pro.

1. ‘Det.’ refers to the critical deterministic slip surface;
2. ‘Pro.’ refers to the critical probabilistic slip surface.

vice versa, ϕ′ ∼ LN with γ ∼ N (Case IV), as demonstrated in Figure 3.12. By comparing

the results in Case I and III, Case II and IV, Case I and IV, and Case II and III, it can be

found a greater impact coming from the distribution selection regarding the friction angle

rather than the unit weight, which, on the other hand, indicates the probability of failure

in each discussed failure mode is primarily controlled by the friction angle instead of the

unit weight of foundation soil and embankment fill; especially in the sliding failure, the

distribution selection of the unit weight hardly affect the probabilistic results.

3.5.1.2.2. Correlated random variables. If the random variables are considered

correlated with each other, a nonzero correlation coefficient should be assigned. As men-

tioned in Section 3.2.3, the correlation between cohesion and friction angle can possibly

be negative; while friction angle and unit weight are most likely in a positive correlation

in view of their physical meanings. Since the correlation properties are not available in
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Figure 3.12: The comparison of the probabilistic results in Case I to IV in Example 1

this example, various assumptions are made for comparison to see the effect of the corre-

lation coefficient assigned between the soil properties on the probabilistic results. The MC

strength parameters and the soil unit weights are assumed correlated only in the same soil

layer. Therefore, there are two sets of correlated random variables herein: {ϕ′
e, γe}, for

the embankment fill;
{
ϕ′
f , γf

}
, for the foundation soil. The analysis is accordingly per-

formed with the correlation coefficient set to be 0.1, 0.2, 0.5 and 0.9 for both foundation

soil and embankment fill. The results are listed in Table 3.6 and 3.7; and the comparison

is discussed and illustrated in Figure 3.13 and 3.14. The critical surfaces are located at

the positions as obtained in the case of uncorrelated random variables (Case I, II, III, and

IV), as shown in Figure 3.11. The probability of failure along the two critical surfaces

are significantly decreased with the correlation coefficient increasing from 0.1 to 0.9 with

respect to the internal and the compound failure in both of the cases with normal (Case V,

Figure 3.13) and log-normal distribution (Case VI, Figure 3.14). But it is found slightly
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Table 3.6: The probabilistic results in Case V in Example 1

Failure Mode Surface fs
pf (Iterative Steps)

ρϕγ = 0.1 ρϕγ = 0.2 ρϕγ = 0.5 ρϕγ = 0.9

Internal
Det. 1.188 0.564% (307) 0.454% (316) 0.195% (351) 0.028% (430)

Pro. 1.214 1.154% (310) 1.076% (313) 0.845% (326) 0.559% (348)

Compound
Det.

1.213 1.230% (309) 1.149% (313) 0.912% (325) 0.615% (347)
Pro.

Deep-Seated
Det. 1.327 0.040% (329) 0.042% (327) 0.051% (322) 0.065% (315)

Pro. 1.337 0.053% (329) 0.057% (327) 0.073% (319) 0.101% (309)

Sliding
Det.

1.779 2.10E-4% (6)
Pro.

Table 3.7: The probabilistic results in Case VI in Example 1

Failure Mode Surface fs
pf (Iterative Steps)

ρϕγ = 0.1 ρϕγ = 0.2 ρϕγ = 0.5 ρϕγ = 0.9

Internal
Det. 1.188 0.246% (307) 0.176% (318) 0.045% (361) 0.001% (464)

Pro. 1.214 0.662% (309) 0.598% (314) 0.425% (328) 0.238% (352)

Compound
Det.

1.213 0.719% (309) 0.653% (313) 0.471% (327) 0.272% (350)
Pro.

Deep-Seated
Det. 1.327 0.008% (328) 0.009% (326) 0.012% (322) 0.015% (317)

Pro. 1.337 0.011% (328) 0.012% (326) 0.017% (320) 0.025% (312)

Sliding
Det.

1.779 2.10E-4% (6)
Pro.

increased along the critical surfaces regarding the deep-seated failure mode; and has no

changes along the critical sliding failure surfaces when the correlation coefficient is going

up.
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Figure 3.13: The comparison of the probabilistic results in Case V in Example 1

Figure 3.14: The comparison of the probabilistic results in Case VI in Example 1
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3.5.1.2.3. System reliability. Based on the probability of failure obtained in dif-

ferent cases, system reliability can be consequently calculated according to Equation 3.28

and 3.29 with respect to the discussed failure modes. The results are listed in Table 3.8

with the comparison demonstrated in Figure 3.15, 3.16 and 3.17. It can be noticed, in this

Table 3.8: The system reliability in Example 1

Case Internal Compound Deep-Seated Sliding pfs (%) Rs (%)

I 30.49 44.30 0.66 2.10E-4 61.54 38.46

II 13.15 14.16 0.11 1.31E-5 25.53 74.47

III 30.13 44.12 0.66 2.10E-4 61.22 38.78

IV 13.37 14.28 0.11 1.31E-5 25.82 74.18

V

0.1 26.65 42.12 0.71

2.10E-4

57.85 42.15

0.2 23.06 39.91 0.75 54.11 45.89

0.5 14.04 33.16 0.93 43.07 56.93

0.9 6.21 24.20 1.22 29.77 70.23

VI

0.1 10.75 12.75 0.12

1.31E-5

22.22 77.78

0.2 8.72 10.94 0.13 18.81 81.19

0.5 4.41 7.87 0.17 12.08 87.92

0.9 1.60 4.38 0.23 6.13 93.87

example, the compound failure always has the greatest contribution to the system prob-

ability of failure; while the sliding failure has the slightest impact. When comparing the

results obtained in Case I to IV, by changing the distribution models assigned to the ran-

dom variables from normal to log-normal, significant reduction can be found in the system

probability of failure; meanwhile, the system reliability is highly increased. In Case V and
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Figure 3.15: The system reliability in Case I to IV in Example 1

Figure 3.16: The system reliability in Case V in Example 1
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Figure 3.17: The system reliability in Case VI in Example 1

VI, the total probability of failure regarding the internal and the compound failure is greatly

decreased with the correlation coefficient increasing from 0.1 to 0.9. But it is found slightly

increased in the deep-seated failure mode, and has no changes in sliding failure. There-

fore, as a result, with the increase in the correlation coefficient between the friction angle

and the soil unit weight, the system probability of failure is decreased while the system

reliability is increased.

3.5.2. Numerical Example 2: Geogrid Reinforced Embankment Slope. This

example is performed on a 1H:1V embankment slope that is 30-ft high and reinforced by

9 layers of geogrid reinforcements with an average length of 32 ft (Figure 3.18), where

the bottom layer is placed along the interface between foundation and embankment slope.

Three different geogrid products are installed: Miragrid 5XT for the bottom 4 layers at

3-ft spacing, Miragrid 3XT for the 5th to 7th layers at 3-ft spacing, and Miragrid 2XT for
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Figure 3.18: The configuration of the embankment slope in Example 2

the top 2 layers at 4-ft spacing. The groundwater is not taken into consideration in this

example. The engineering properties of embankment fill, foundation soil and geogrids are

summarized in Table 3.9 along with their probabilistic properties. The design factors of

Table 3.9: The material properties in Example 2

Material Parameter Mean COV

Foundation and Embankment
c′ 0 Deterministic

ϕ′ 30◦ 10%

γ 125 pcf 5%

Geogrids
Miragrid 2XT Ta 949 lb/ft Deterministic

Miragrid 3XT Ta 1558 lb/ft Deterministic

Miragrid 5XT Ta 2234 lb/ft Deterministic

Note: The COVs are assumed based on Baecher and Christian (2003) and Houli-
han et al. (2010).
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safety with respect to the multiple failure modes are all set to be 1.5, including the factor

of safety against pullout failure. Furthermore, the pullout resistance factor, F ∗ = 0.39; and

the scale effect correction factor, α = 0.9. The secondary reinforcements are installed with

an intention to locally stabilize the slope face during and after slope construction; but not

included in the general slope stability analysis.

3.5.2.1. Deterministic slope stability analysis. To quickly start the example, de-

terministic slope stability analysis is first carried out with a total of 1953 potential slip sur-

faces being searched, that include 427 for internal, 762 for compound and 764 for deep-

seated failure. The critical deterministic slip surfaces are accordingly located with respect

to the preceding failure modes as shown in Figure 3.19, where the critical determinis-

Figure 3.19: The critical deterministic slip surfaces in Example 2
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tic internal failure surface with the minimum factor of safety, fs,i (min) = 1.225, passes all

the reinforcements and exits at the toe of the slope; while the critical deterministic com-

pound failure surface has the minimum factor of safety, fs,c (min) = 1.461, and passes the

bottom four layers only. Considering the pullout failure that may potentially occur in

the reinforced slope, it is summarized in Table 3.10 that the factor of safety against pull-

out behavior, the tensile force carried by each reinforcement layer, and the corresponding

Table 3.10: The pullout resistance in deterministic analysis in Example 2

Layer fs Fr (lb/ft) Le (ft) Le(required) (ft)

1 37.2 2234 32.00 3.3 (1.290)

2 27.6 2234 26.35 3.3 (1.433)

3 21.6 2234 23.25 3.3 (1.612)

4 17.4 2234 21.39 3.3 (1.843)

5 20.3 1558 20.32 3.3 (1.500)

6 16.5 1558 19.84 3.3 (1.800)

7 13.2 1558 19.80 3.3 (2.249)

8 14.9 949 20.30 3.3 (2.055)

9 7.8 949 21.32 4.109

embedment length along the critical deterministic internal failure surface. The minimum

factor of safety against the pullout behavior is obtained as 7.80 along the top reinforcement

layer and has been significantly higher than the required value of 1.5. The resisting forces

are mainly determined by the allowable tensile strengths of the geogrids; and are fully mo-

bilized since the anchored portions are long enough with the embedment lengths greater
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than the required values, which, except for the top layer, are all less than the recommended

value of 3.3 ft (Elias et al. 2001).

Sliding failure is supposed to occur along the interface between foundation and em-

bankment slope. With 280 potential slip surfaces being searched, the critical deterministic

sliding failure surface is located as shown in Figure 3.19, that has the minimum factor of

safety, fs,s (min) = 1.487. The critical deterministic deep-seated failure surface is located

outside of the reinforced mass with a minimum factor of safety, fs,d (min) = 1.450. In sum-

mary, through the traditional deterministic slope stability analysis, this geogrid reinforced

embankment slope fails to meet the design requirements since the factors of safety are all

lower than the required value of 1.5. In the following sections, the proposed probabilistic

slope stability analysis is to be carried out to assess the probability of failure with respect

to the discussed potential failure modes and estimate the system reliability in view of the

soil variability.

3.5.2.2. Probabilistic slope stability analysis. Although the embankment fill and

the foundation soil are both homogeneous with the same soil type, considering the con-

struction process, it is more reasonable to treat them as two layers with two sets of random

variables that share the same probabilistic properties: the effective friction angle and the

bulk unit weight with the COVs chosen as 10% and 5% according to some published ranges

(Baecher and Christian 2003; Houlihan et al. 2010).

3.5.2.2.1. Uncorrelated random variables. Similarly, all the random variables

are first assumed uncorrelated and normally distributed (Case I). Along with the traditional

deterministic analysis that has been performed in Section 3.5.2.1, a total of 1953 potential

slip surfaces are searched in the proposed probabilistic slope stability analysis to locate

the critical surfaces with respect to the multiple failure modes, as shown in Figure 3.20.
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Along the critical deterministic slip surfaces, the probability of failure are respectively

Figure 3.20: The critical deterministi and probabilistic slip surfaces in Eample 2

obtained as 0.441%, 0.033% and 0.007% corresponding to internal, compound and deep-

seated failure mode. Meanwhile, the critical probabilistic slip surfaces are located with

the maximum probability of failure and the corresponding factor of safety as: 1) pf ,i (max)

= 0.658% and fs,i = 1.238, for internal failure; 2) pf ,c (max) = 0.041% and fs,c = 1.477, for

compound failure; and 3) pf ,d (max) = 0.007% and fs,d = 1.450, for deep-seated failure. As

shown in Figure 3.20, the critical probabilistic internal failure surface is situated relatively

deeper in the slope compared to the deterministic surface. Therefore, the results regarding

the pullout behavior examined along both of the two critical internal failure surfaces are

listed in Table 3.11, where it can be noticed, because of the deeper location of the critical
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Table 3.11: The pullout resitance in probabilistic analysis in Example 2

Layer
Deterministic Internal Surface Probabilistic Internal Surface

Le(required) (ft)
fs Fr (lb/ft) Le (ft) fs Fr (lb/ft) Le (ft)

1 37.2 2234 32.00 35.1 2234 32 3.3 (1.290)

2 27.6 2234 26.35 25.7 2234 24.55 3.3 (1.433)

3 21.6 2234 23.25 19.4 2234 20.83 3.3 (1.612)

4 17.4 2234 21.39 15.2 2234 18.63 3.3 (1.843)

5 20.3 1558 20.32 17.3 1558 17.33 3.3 (1.500)

6 16.5 1558 19.84 13.9 1558 16.67 3.3 (1.800)

7 13.2 1558 19.80 11.0 1558 16.49 3.3 (2.249)

8 14.9 949 20.30 12.3 949 16.84 3.3 (2.055)

9 7.8 949 21.32 6.5 949 17.74 4.109

probabilistic internal failure surface, the anchored portions are relatively shorter than the

ones behind the deterministic surface; and consequently results in a lower factor of safety

being computed against the pullout behavior along the critical probabilistic internal failure

surface. Nevertheless, with the minimum factor of safety obtained as 6.5 along the top

reinforcement layer, the factors of safety have been big enough compared to the required

value of 1.5; and therefore, the pullout failure can hardly occur in this slope.

The probabilistic analysis is further carried out with different distribution models

assigned to the random variables: ϕ′ and γ ∼ LN (Case II); ϕ′ ∼ N with γ ∼ LN (Case

III); and ϕ′ ∼ LN with γ ∼ N (Case IV). The results are accordingly listed in Table 3.12;

and the comparison is demonstrated in Figure 3.21. It is indicated a lower probability

of failure always comes along with the log-normal distributions assigned to the random

variables as in Case II and IV. By comparing the results obtained in Case I, II, III, and IV,
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Table 3.12: The probabilistic results in Case I, II, III, and IV in Example 2

Failure Mode Surface fs
pf (Iterative Steps)

Case I Case II Case III Case IV

Internal
Det. 1.225 0.441% (309) 0.135% (307) 0.432% (309) 0.139% (307)

Pro. 1.238 0.658% (312) 0.246% (311) 0.648% (312) 0.252% (311)

Compound
Det. 1.461 0.033% (350) 0.002% (349) 0.033% (350) 0.002% (349)

Pro. 1.477 0.041% (352) 0.003% (351) 0.041% (352) 0.003% (351)

Deep-Seated
Det.

1.450 0.007% (349) 0.0005% (348) 0.007% (349) 0.0005% (348)
Pro.

Sliding
Det.

1.487 1.925% (6) 1.324% (5) 1.925% (6) 1.324% (5)
Pro.

Figure 3.21: The comparison of the probabilistuc results in Case I to IV in Example 2
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the distribution selection regarding the friction angle is found having a greater impact on

the probabilistic results rather than the unit weight. The critical sliding failure surfaces are

addressed with the highest probability of failure; thereby, the sliding failure is supposed

to have the most significant contribution to the system probability of failure, which can be

further demonstrated in Section 3.5.2.2.3.

3.5.2.2.2. Correlated random variables. When the random variables are corre-

lated, the probabilistic results are shown in Table 3.13 and 3.14; and the comparison are

demonstrated in Figure 3.22 and 3.23, with the correlation coefficients assigned to both

foundation soil and embankment fill changing from 0.1 to 0.9 simultaneously. Significant

reduction is found with the increase in the correlation coefficient with respect to the failure

modes except for the deep-seated, whose probability of failure is slightly increased but is

too small to have affect on the system reliability. Therefore, it can be predicted the system

reliability tends to significantly increase when the correlation coefficient is going up.

Table 3.13: The probabilistic results in Case V in Example 2

Failure Mode Surface fs
pf (Iterative Steps)

ρϕγ = 0.1 ρϕγ = 0.2 ρϕγ = 0.5 ρϕγ = 0.9

Internal
Det. 1.225 0.349% (348) 0.268% (328) 0.093% (369) 0.005% (485)

Pro. 1.238 0.561% (348) 0.471% (326) 0.245% (355) 0.056% (409)

Compound
Det. 1.461 0.032% (351) 0.030% (353) 0.026% (358) 0.019% (366)

Pro. 1.477 0.038% (354) 0.036% (358) 0.028% (363) 0.018% (369)

Deep-Seated
Det. 1.450

0.0071% (348) 0.0073% (347)
0.0081% (345) 0.0093% (341)

Pro. (1.498) 0.0088% (345) 0.0120% (337)

Sliding
Det.

1.487 1.925% (6)
Pro.

For the deep-seated failure, the critical surfaces are located at the same position for the first two cases (ρ = 0.1 and
0.2); but separated for the rest of two (ρ = 0.5 and 0.9), where the critical probabilistic slip surface has a corresponding
factor of safety equal to 1.498.
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Table 3.14: The probabilistic results in Case VI in Example 2

Failure Mode Surface fs
pf (Iterative Steps)

ρϕγ = 0.1 ρϕγ = 0.2 ρϕγ = 0.5 ρϕγ = 0.9

Internal
Det. 1.225 0.088% (319) 0.054% (314) 0.006% (391) 0.000% (600)

Pro. 1.238 0.187% (320) 0.138% (329) 0.042% (367) 0.003% (442)

Compound
Det. 1.461 0.0020% (351) 0.0018% (353) 0.0012% (359) 0.00072% (370)

Pro. 1.477 0.0024% (354) 0.0020% (357) 0.0013% (361) 0.00073% (370)

Deep-Seated
Det.

1.450
0.00051% 0.00054% 0.00061% 0.00073%

Pro. (347) (346) (344) (342)

Sliding
Det.

1.487 1.324% (5)
Pro.

Figure 3.22: The comparison of the probabilistic results in Case V in Example 2
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Figure 3.23: The comparison of the probabilistic results in Case VI in Example 2

3.5.2.2.3. System reliability. Based on the probability of failure obtained in dif-

ferent cases, system reliability can be consequently calculated according to Equation 3.28

and 3.29 with respect to the discussed failure modes. The results are accordingly listed

in Table 3.15 with the comparison demonstrated in Figure 3.24, 3.25, and 3.26. It can

be noticed, in this example, the sliding failure has the greatest contribution to the system

probability of failure; while the deep-seated failure has the slightest impact. When com-

paring the results obtained in Case I to IV, by changing the distribution models assigned

to the random variables from normal to log-normal, great reduction can be found in the

system probability of failure; thereby, the system reliability is increased. From Case V

and VI, it can be concluded, with the increase in the correlation coefficient between the

friction angle and the soil unit weight, the system probability of failure is decreased while

the system reliability is increased.
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Table 3.15: The system reliability in Example 2

Case Internal Compound Deep-Seated Sliding pfs (%) Rs (%)

I 16.37 1.18 0.20 25.03 38.17 61.83

II 3.92 0.07 0.01 14.26 17.69 82.31

III 16.11 1.18 0.20 25.03 37.97 62.03

IV 4.02 0.07 0.01 14.26 17.78 82.22

V

0.1 13.56 1.15 0.21

25.03

36.07 63.93

0.2 11.01 1.11 0.22 34.17 65.83

0.5 5.13 1.01 0.25 29.77 70.23

0.9 1.11 0.88 0.29 26.73 73.27

VI

0.1 2.77 0.07 0.01

14.26

16.70 83.30

0.2 1.88 0.07 0.01 15.94 84.06

0.5 0.44 0.06 0.01 14.70 85.30

0.9 0.020 0.05 0.02 14.33 85.67

3.5.3. Discussion. From the above two examples, an observation can be con-

cluded that, in each failure mode, a lower factor of safety always comes along with a higher

probability of failure, since both of them intend to evaluate slope stability by sharing the

same equilibrium mechanism. However, the factor of safety computed through the tradi-

tional deterministic analysis is always unable to consistently measure the risk associated

with the uncertainties in soil properties. Thereby, it may happen the slip surface with the

minimum factor of safety fails to be the one with the maximum probability of failure. As

presented by Li and Lumb (1987), it is observed in an unreinforced, homogeneous slope,

critical deterministic and probabilistic slip surfaces are located very close; therefore, to

improve searching efficiency, the critical deterministic slip surface is suggested to be the
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Figure 3.24: The system reliability in Case I to IV in Example 2

Figure 3.25: The system reliability in Case V in Example 2
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Figure 3.26: The system reliability in Case VI in Example 2

starting location in searching for the critical probabilistic slip surface. From the examples

presented in this study, this observation seems applicable in most of the situations but with

an exception for the critical internal failure surfaces. In the above two examples, the critical

probabilistic internal failure surface is always situated deeper in the slope compared to the

deterministic surface. Therefore, the pullout behavior should be examined along both of

the two critical surfaces; and the pullout factors of safety corresponding to the probabilistic

surface are always lower than the ones obtained along the deterministic surface in view of

the embedded lengths behind the critical surfaces. In example 1, the pullout failure can

hardly occur along the critical deterministic internal failure surface; but is most likely to

appear along the top four reinforcement layers corresponding to the critical probabilistic

internal failure surface. In other words, it is indicated the top four reinforcement layers

need be extended into a deeper position in the slope to prevent the pullout failure. There-

fore, in a GRES system, since the slope stability regarding internal and compound failure



90

is highly influenced by the reinforcements configuration and their engineering properties,

it is more reasonable to do the simultaneous search. That has the probabilistic analysis

performed along with the traditional deterministic analysis, to locate the critical slip sur-

faces with respect to the above two failure modes. The suggestion that presented by Li and

Lumb (1987) may be more appropriate in searching for the critical surfaces regarding the

deep-seated failure mode.

With the different failure mechanism involved in the slope stability analysis, the

formation of the limit state function varies. Therefore, a design with a relatively large

factor of safety can probably come along with a high probability of failure. As in example

2, when comparing the factors of safety obtained in various failure modes, the critical

sliding failure surface is found with the highest factor of safety, which, in the traditional

deterministic analysis, indicates it is supposed to be the safest compared to the critical

surfaces in other failure modes. However, through the probabilistic slope stability analysis,

the total probability of failure regarding the sliding failure is much greater than the others,

which indicates the sliding failure is the most probable failure mode that can potentially

occur in such a slope. As a summary, only considering the factor of safety, it is unable

to conclude a thorough evaluation regarding the system reliability . On the other hand, in

view of the probabilistic approaches employed in this study, MPP-based FORM is proved

successfully convergent along every potential slip surface that has been searched in the

examples with the iterative steps that are about 300 - 400 in most of the situations. And it

seems much more efficient compared to MCS that always asks for much larger amount of

samples especially when the probability of failure is low.

System reliability is highly depending on the probability of failure along every

potential slip surface. In view of the discussed failure modes, the system reliability is
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obtained as 38.46% in example 1 and 61.83% in example 2 with uncorrelated and nor-

mally distributed random variables. If we take a look at the results obtained in example

1, there is more than 60% chances the reinforced slope can fail. The system probabil-

ity of failure is extremely high and unacceptable. Through the traditional deterministic

analysis, the minimum factors of safety are obtained as 1.188 and 1.213 with respect to

internal and compound failure. It indicates the design doesn’t meet the requirements that

ask for a factor of safety no less than 1.3; but fails to tell how probable the failure can

occur. Through the proposed probabilistic slope stability analysis, the probability of fail-

ure is estimated along each potential slip surface. Though it is not a big number, with a

series of potential slip surfaces having the probabilistic results at the same level, the total

probability of failure regarding the specified failure mode can be huge. For instance, as

the compound failure in example 1, the maximum probability of failure is 1.312%; but

the total probability of failure is obtained as 44.30% in the case that all random variables

are uncorrelated and normally distributed. When the random variables are all assumed in

log-normal distribution, the system reliability is significantly increased from 38.46% to

74.47% with the probability of failure along each potential slip surface highly decreased.

It indicates the system reliability is very sensitive to the distribution selection regarding

the involved random variables. Similar conclusions can be made from example 2, where

the primary contributor to the system probability of failure is the sliding failure that has the

total probability of failure equal to 25.03% (Case I, III, and V) and 14.26% (Case II, IV,

and VI). The system reliability is increased from 61.83% to 82.31% with the log-normal

distribution assigned to the random variables as a substitution.

The correlation coefficient between friction angle and unit weight seems have a

negative impact on the probability of failure in internal, compound, and sliding failure. As
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for the deep-seated failure, the probability of failure is slightly increased when the corre-

lation coefficient goes up. However, as illustrated in the above two numerical examples,

the probability of failure regarding the deep-seated failure is much less than the proba-

bilistic results obtained in most of the other failure modes. Therefore, for the entire slope

system, a significant reduction is supposed to occur in the probability of failure with the in-

crease in the correlation coefficient between friction angle and unit weight. As discussed

in Section 3.2.3, friction angle and unit weight are most likely in a positive correlated

relationship; therefore, with an assumption that friction angle and unit weight are uncorre-

lated, a relatively higher probability of failure is supposed to be derived, based on which

a conservative design is to be carried out. From Figure 3.12 and 3.21, it can be found a

relatively greater impact on the probabilistic results due to the distribution selection re-

garding the friction angle rather than the unit weight. In other words, the slope reliability

is more sensitive to the probabilistic properties of the friction angle instead of the unit

weight. To deeply dig into how sensitive the system reliability is to the involved random

variables, sensitivity analysis is to be carried out in the following Section 4 based on the

results obtained in this section.

3.6. SUMMARY

In general, probabilistic slope stability analysis can tell us how probable the slope

can fail associated with the uncertainties in soil properties. Furthermore, unlike the tra-

ditional deterministic slope stability analysis that can only provide the factor of safety

individually regarding the potential failure modes that may potentially occur in a geosyn-

thetic reinforced embankment slope, the proposed probabilistic slope stability algorithm

is able to estimate the reliability corresponding to the entire system, which is more thor-
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oughly evaluating the safety of the GRES. As illustrated in the numerical examples that

are performed in Section 3.5, system reliability seems highly sensitive to the distribution

models as well as the correlation coefficients assigned to the involved random variables.

Therefore, statistical inference can be a critical step: a better estimation of probabilistic

properties of random variables can consequently provide more reliable probabilistic results

in the following analysis. However, if there are not enough data available for statistical

inference, assumptions have to be made based on some published works and engineering

judgment. Therefore, for amore reliable reliability-based design, sensitivity analysis needs

to be carried out to tell how much impact those assumptions can have on the probabilistic

performance.
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4. RELIABILITY-BASED SENSITIVITY ANALYSIS

4.1. OVERVIEW

Sensitivity analysis is an important procedure in engineering design that obtains

valuable information about the model behavior, thus provides guidance to the following

design process (Liu et al. 2004). For the design with uncertainty (reliability-based design),

sensitivity analysis is carried out along with the probabilistic analysis to interpret the rela-

tionship between the system reliability and the probabilistic behavior of the involved ran-

dom variables. In other words, it is to identify the significance that each random variable

can contribute to the system reliability; and is consequently called reliability-based (prob-

abilistic) sensitivity analysis (PSA). Three popular methods for conducting the PSA are

briefly summarized in Section 4.2, where the MPP-based PSA is further discussed as the

method employed in this study. Its practical application in design and analysis of geosyn-

thetic reinforced embankment slopes (GRES) is discussed in Section 4.3, based on which

two numerical examples are carried out in Section 4.4 to demonstrate how the proposed

MPP-based PSA is working with the probabilistic slope stability analysis.

4.2. PROBABILISTIC SENSITIVITY ANALYSIS ALGORITHM

The basic idea of the probabilistic sensitivity analysis is to evaluate how much

influence the probabilistic behavior of the random variable tends to have on the system

reliability. In other words, the influence can be directly observed by comparing the re-

sults of the probabilistic analysis with different values assigned to the random variables.

Therefore, there is a conventional way to conduct the sensitivity analysis, that is, to repeat

the probabilistic analysis by changing the probabilistic properties of the random variables

and concludes a trend eventually to represent the impacts. This method is very straight-
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forward, easy to use; and has been employed in some geotechnical commercial software,

such as Slope/W and Slide, along with the deterministic slope stability analysis to examine

the effects of those design variables on the factor of safety. When embedded in the proba-

bilistic slope stability analysis, this method becomes very time consuming and inefficient,

because: 1) the computational cost is always proportional to the probabilistic dimension

(for example, if there are n random variables involved in total, the probabilistic analysis

has to be recalled at least 2n(n − 1) times to get the trends for all the random variables);

and 2) iterative scheme is always embedded in the probabilistic slope stability analysis

to locate the critical slip surfaces and estimate the system reliability, especially when the

number of random variables is large.

Therefore, three popular alternative categories of PSA techniques are available:

1) variance-based method; 2) probability-based method; and 3) Kullback-Leibler (K-L)

entropy-based method.

4.2.1. Methods of PSA. Variance-based method for PSA is based on the decom-

position of the variance of a response to its variation sources, that requires two sets of

Monte Carlo sampling to estimate the main and total effects of all the random variables

(Liu et al. 2004; Jacques et al. 2006; Guo and Du 2009). K-L entropy-based method is de-

veloped based on Kullback-Leiber entropy (Kullback and Leibler 1951). Its computational

cost is mainly spent on the estimation of two involved joint probability density functions

by sampling-based methods, e.g., Monte Carlo simulation (MCS) or Kernel density esti-

mation (KDE) (Martinez and Martinez 2002), as well as the numerical integration on the

above density functions. Probability-based method defines a sensitivity measurement as

the rate of the change in a probability due to the changes in a statistical parameter of a

random input (Melchers 1999; Guo and Du 2009; Deng and Luna 2013). When it is devel-
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oped based on the concept of the most probable point (MPP) of failure, the probabilistic

information obtained from the MPP-based probabilistic approaches can be directly used

to determine the sensitivity measurement so that no additional computational efforts are

needed.

It is obvious the last approach is most efficient if the system reliability is eval-

uated by the MPP-based probabilistic method. Therefore, in view of the computational

efficiency, probabilistic-based PSA is selected to be the method used in this study, along

with the proposed probabilistic slope stability analysis as demonstrated in Section 3 which

is mainly performed by MPP-based first-order reliability method (FORM).

4.2.2. MPP-Based PSA. As introduced above, MPP-based PSA is conducted

based on MPP-based FORM to quantify the impact of the uncertainty in each involved

random variable on the uncertainty in model output, typically described by the probabil-

ity of failure (pf ). It is introduced a sensitivity measurement that is defined as the rate of

the change in the probability of failure due to the change in a distribution parameter of a

random variable as (Melchers 1999; Guo and Du 2009; Deng and Luna 2013)

sp =
∂pf
∂p

(4.1)

where sp is the sensitivity measurement with respect to the distribution parameter p of the

random variable X . From Equation 2.12, Equation 4.1 can be rewritten as

sp = −ϕ (−β)
∂β

∂p
(4.2)
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where β is the reliability index that can be determined through the MPP-based FORM as

discussed in Section 3.3. Considering a set of random variables, x = {x1, x2, · · · , xn},

since the reliability index is considered as the distance between the MPP and the original

point, it can be computed by

β =

√√√√ n∑
k=1

(u∗
k)

2 (4.3)

where u∗
k is an element in the set of theMPP outputs, u∗ = {u∗

1, u
∗
2, · · · , u∗

n}, in the standard

normal space. Then the partial derivative of the reliability index with respect to a specified

distribution parameter can be derived as

∂β

∂pj
=

n∑
i=1

∂β

∂u∗
i

∂u∗
i

∂pj
(4.4)

wherein, since the elements in {u∗} are all independent, we have

∂β

∂u∗
i

=
∂

∂u∗
i

√√√√ n∑
k=1

(u∗
k)

2

 =
u∗
i

β
(4.5)

and Equation 4.4 accordingly becomes

∂β

∂pj
=

1

β

n∑
i=1

u∗
i

∂u∗
i

∂pj
(4.6)
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Consequently, for the jth random variable, provided that {u∗} has been determined from

the previous MPP-based probabilistic analysis, the sensitivity measurement can be com-

puted by

spj = −ϕ (−β)
1

β

n∑
i=1

u∗
i

∂u∗
i

∂pj
(4.7)

once the partial derivative of u∗
i with respect to the specified distribution parameter pj is

derived as discussed in the following sections.

4.2.2.1. Uncorrelated random variables. If the random variables are uncorre-

lated or independent, Equation 4.7 can be simplified as

∂β

∂pj
= −ϕ (−β)

u∗
j

β

∂u∗
j

∂pj
(4.8)

since for i ̸= j,

∂u∗
i

∂pj
= 0 (4.9)

Otherwise, according to the variable transformation as demonstrated in Section 3.3.1.1

and A.1,

u∗
j = Φ−1

[
Fj

(
x∗
j

)]
(4.10)
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where x∗
j is the element in the set of MPP outputs, x∗ = {x∗

1, x
∗
2, · · · , x∗

n}, in their original

space. For normal distribution, from Equation A.2 and 4.8, the sensitivity measurements

with respect to the mean (µj) and the standard deviation (σj) of the jth random variable

are given by (Melchers 1999; Guo and Du 2009)

sµj
= ϕ (−β)

u∗
j

βσj

(4.11)

sσj
= ϕ (−β)

(
u∗
j

)2
βσj

(4.12)

For log-normal distribution, from Equation A.3, the partial derivatives can be derived as

∂u∗
j

∂µxj

=
1

µxj
σlnxj

[
σ2
xj

µ2
xj
+ σ2

xj

(
u∗
j

σlnxj

− 1

)
− 1

]
(4.13)

∂u∗
j

∂σxj

=
σxj(

µ2
j + σ2

j

)
σlnxj

[
1−

u∗
j

σlnxj

]
(4.14)

Consequently, the sensitivity measurements can be derived as

sµj
= −ϕ (−β)

u∗
j

β

1

µxj
σlnxj

[
σ2
xj

µ2
xj
+ σ2

xj

(
u∗
j

σlnxj

− 1

)
− 1

]
(4.15)

sσj
= −ϕ (−β)

u∗
j

β

σxj(
µ2
j + σ2

j

)
σlnxj

[
1−

u∗
j

σlnxj

]
(4.16)

where µlnxj
and σlnxj

can be computed from Equation A.4 and A.5.
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4.2.2.2. Correlated random variables. If the random variables are correlated,

for normal distribution, according to the variable transformation as demonstrated in Sec-

tion 3.3.1.1 and A.2, we have

{u∗} = L−1
x̂ {x̂∗} (4.17)

where Lx̂ is the lower triangular matrix obtained by Cholesky decomposition (Appendix

A.2.2) with respect to {x̂∗}, a set of reduced variables at the MPP as given by

x̂∗
i =

x∗
i − µxi

σxi

(4.18)

Since the elements in Lx̂ are only related to the correlation coefficient between the random

variables, for the jth random variable, the partial derivatives with respect to its mean,

standard deviation and correlation coefficient can be derived as

∂u∗
i

∂µxj

=
n∑

k=1

L−1
x̂ (i, k)

∂x∗
k

∂µxj

= − 1

σxj

L−1
x̂ (i, j) (4.19)

∂u∗
i

∂σxj

=
n∑

k=1

L−1
x̂ (i, k)

∂x∗
k

∂σxj

= −
x̂∗
j

σxj

L−1
x̂ (i, j) (4.20)

∂u∗
i

∂ρjm
=

n∑
k=1

∂L−1
x̂ (i, k)

∂ρjm
x̂∗
k =

i∑
k=1

∂L−1
x̂ (i, k)

∂ρjm
x̂∗
k (4.21)
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based on which, from Equation 4.7, the sensitivity measurements can be derived. For

log-normal distribution, the reduced variables at the MPP are given by

x̂∗
i =

lnx∗
i − µlnxi

σlnxi

(4.22)

based on which, the partial derivatives with respect to the mean, standard deviation, and

correlation coefficient can be derived by

∂u∗
i

∂µxj

=
∂u∗

i

∂µlnxj

∂µlnxj

∂µxj

+
∂u∗

i

∂σlnxj

∂σlnxj

∂µxj

+
n∑

m̸=j
m=1

∂u∗
i

∂ρln jm

∂ρln jm
∂µxj

(4.23)

∂u∗
i

∂σxj

=
∂u∗

i

∂σlnxj

∂µlnxj

∂σxj

+
∂u∗

i

∂σlnxj

∂σlnxj

∂σxj

+
n∑

m̸=j
m=1

∂u∗
i

∂ρln jm

∂ρln jm
∂σxj

(4.24)

∂u∗
i

∂ρjm
=

∂u∗
i

∂ρln jm

∂ρln jm
∂ρjm

(4.25)

where the partial derivatives in the natural log-scale are given by

∂u∗
i

∂µlnxj

=
n∑

k=1

L−1
x̂ (i, k)

∂x∗
k

∂µlnxj

= − 1

σlnxj
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=
n∑

k=1

L−1
x̂ (i, k)

∂x∗
k
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= −
x̂∗
j

σlnxj

L−1
x̂ (i, j) (4.27)

∂u∗
i

∂ρln jm
=

n∑
k=1

∂L−1
x̂ (i, k)

∂ρln jm
x̂∗
k =

i∑
k=1

∂L−1
x̂ (i, k)

∂ρln jm
x̂∗
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and

∂µlnxj
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1

µxj

(
1 +

σ2
xj

µ2
xj
+ σ2

xj

)
(4.29)
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=−
σ2
xj

σlnxj
µxj

(
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) (4.30)
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µxm + ρjmσxj
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∂ρlnjm
ρjm

=
σxj

σxm

σlnxj
σlnxm

(
µxj

µxm + ρjmσxj
σxm

) (4.35)

where ρjm is the correlation coefficient between the jth and themth random variable; and

ρln jm can be calculated from Equation A.11. Consequently, the sensitivity measurements

can be derived based on Equation 4.7, and the equations from Equation 4.23 to Equa-

tion 4.35.

4.3. PROBABILISTIC SENSITIVITY ANALYSIS IN GRES DESIGN

As stated by Liu et al. (2004), sensitivity analysis can be utilized in both prior-

design stage and post-design stage for different purposes. In prior-design stage, PSA is
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performed to identify which variable(s) can be safely eliminated without bringing too

much influence to the uncertainty in the design so that the number of random variables

can be reasonably decreased, and thus computational efficiency can be improved. When

in post-design stage, PSA is mainly used to identify themost significant variable(s) that can

have the highest contribution(s) to the system reliability, based on which it can be decided

what random uncertainties need to be further controlled to gain the largest improvement

on the probabilistic performance of the design. In probabilistic slope stability analysis,

Mohr-Coulomb (MC) strength parameters and soil unit weights are always considered as

the random variables. By performing PSA following the probabilistic analysis, it can be

evaluated how significant each random variable does affect the slope reliability. Com-

pared to those manufacturing in the areas of aerospace, electronics and mechanics, it is

extremely hard to improve the probabilistic performance of a slope system by controlling

the uncertainties in the involved random variables since the slope is primarily consisting

of a natural material: soil. Even though the soil can be improved by compaction or other

engineering methods, they are aiming at improving its engineering properties (i.e., to en-

hance soil strength or bearing capacity) instead of the probabilistic performance (i.e., to

decrease its variance). Therefore, when carried out along with the probabilistic slope sta-

bility analysis, PSA is primarily working for the prior-design stage to determine whether

any of those random variables can be eliminated if its influence on the system reliability

is really small and can be ignored to consequently increase the computational efficiency.

Furthermore, as discussed in Section 3.6, the probabilistic characteristics regarding the soil

properties are frequently unavailable, especially in the prior-design stage where the filling

material of the embankment slope has not been decided yet. Therefore, assumptions have

to be made based on some published works corresponding to the potential embankment



104

fills. PSA is accordingly needed in order to estimate how those assumptions can influence

the probabilistic performance of the GRES structure.

4.4. NUMERICAL EXAMPLE

To demonstrate the application of the proposed sensitivity analysis in estimating

how much impact the random variables can have on the probabilistic performance of a

GRES system, two numerical examples are carried out in this section following the prob-

abilistic slope stability analyses presented in Section 3.5. The sensitivity results were ac-

cordingly obtained corresponding to the critical deterministic and probabilistic slip sur-

faces as presented in Table 4.1 to 4.4 for Case I to IV in Example 1 with uncorrelated

random variables; Table 4.5 to 4.8 for Case V and VI in Example 1 with correlated random

variables; and Table 4.9 to 4.11 for Example 2. In those tables, the first value in each cell

is the sensitivity measurement corresponding to the deterministic slip surface, while the

second value is for the probabilistic slip surface. When two critical surfaces happened to

be located at the same position, there is only one value shown in the cell. According to

the definition of the sensitivity measurement in Equation 4.1, a positive value indicates

the probability of failure tends to increase with the increase in the certain statistical pa-

rameter of the random input; vice versa, a negative sensitivity measurement indicates the

probability of failure tends to decrease with the increase in the corresponding parameter.

4.4.1. Uncorrelated Random Variables. The sensitivity measurement with re-

spect to the mean of the friction angle (sµϕ′ ) is always negative in either foundation soil or

embankment fill, indicating that the probability of failure is going down with the increase

of the friction angle in internal, compound and deep-seated failure cases. Otherwise, with

a positive sensitivity measurement with respect to the mean of the unit weight in the em-
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Table 4.1: Sensitivity results in Example 1 (Case I)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-7.023E-3 1.740E-2
-1.250E-2 2.791E-1

-2.374E-4 3.812E-4

-1.101E-2 2.520E-2 -2.405E-4 3.022E-4

γe
8.272E-5 9.602E-7

6.022E-5 2.576E-7
2.680E-6 1.932E-8

5.519E-5 2.518E-7 3.686E-6 2.824E-8

Foundation

ϕ′
f NA / / /

-4.607E-4 1.370E-3

-6.138E-4 1.879E-3

γf / / / /
-2.965E-6 2.139E-8

-4.078E-6 3.126E-8

Case I: All random variables are uncorrelated and normally distributed.

Table 4.2: Sensitivity results in Example 1 (Case II)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-4.429E-3 9.056E-3
-9.557E-3 1.771E-2

-6.862E-5 1.064E-4

-8.107E-3 1.537E-2 -6.690E-5 8.741E-5

γe
5.339E-5 8.097E-7

4.692E-5 2.520-7
8.075E-7 8.189E-9

4.145E-5 2.395E-7 1.066E-6 1.176E-8

Foundation

ϕ′
f / / / /

-1.321E-4 2.983E-4

-1.686E-4 3.932E-4

γf / / / /
-8.935E-7 9.051E-9

-1.180E-6 1.300E-8

Case II: All random variables are uncorrelated and log-normally distributed.
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Table 4.3: Sensitivity results in Example 1 (Case III)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-6.907E-3 1.716E-2
-1.242E-2 2.777E-2

-2.374E-4 3.812E-4

-1.094E-2 2.507E-2 -2.405E-4 3.022E-4

γe
8.169E-5 9.012E-7

6.008E-5 2.437-7
2.687E-6 1.833E-8

5.505E-5 2.382E-7 3.696E-6 2.678E-8

Foundation

ϕ′
f / / / /

-4.607E-4 1.370E-3

-6.138E-4 1.879E-3

γf / / / /
-2.972E-6 2.026E-8

-4.088E-6 2.960E-8

Case III: All random variables are uncorrelated with ϕ′ in normal and γ in log-normal distribution.

Table 4.4: Sensitivity results in Example 1 (Case IV)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-4.529E-3 9.236E-3
-9.633E-3 1.782E-2

-6.862E-5 1.064E-4

-8.176E-3 1.549E-2 -6.690E-5 8.741E-5

γe
5.339E-5 8.097E-7

4.710E-5 2.666E-7
8.055E-7 8.632E-9

4.164E-5 2.536E-7 1.064E-6 1.239E-8

Foundation

ϕ′
f / / / /

-1.321E-4 2.983E-4

-1.686E-4 3.932E-3

γf / / / /
-8.913E-7 9.561E-9

-1.177E-6 1.373E-8

Case IV: All random variables are uncorrelated with ϕ′ in log-normal and γ in normal distribution.
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Table 4.5: Sensitivity results in Example 1 (Case V: ρ = 0.1)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-5.905E-3 1.504E-2
-1.182E-2 2.668E-2

-2.517E-4 4.026E-4

-1.036E-2 2.398E-2 -2.609E-4 3.261E-4

γe
7.158E-5 -1.736E-5

5.831E-5 -1.291E-5
2.850E-6 -4.344E-7

5.319E-5 -1.207E-5 3.999E-6 -4.696E-7

ρϕγ
-3.970E-2

-7.07E-2
3.0E-3

-6.350E-2 3.0E-3

Foundation

ϕ′
f / / / /

-4.872E-4 1.441E-3

-6.639E-4 2.017E-3

γf / / / /
-3.174E-6 9.612E-7

-4.464E-6 1.390E-6

ρϕγ / /
5.60E-3

7.20E-3

Case V: All random variables are correlated and normally distributed.

bankment fill (sµγe
), the probability of failure tends to go up corresponding to the increase

in the unit weight. Therefore, when selecting the fill material for the embankment slope,

the one with higher friction angle and lower unit weight is preferred. The sensitivity mea-

surement with respect to the standard deviation (sσ) of every involved random variable

has a positive value. Since the standard deviation is always reflecting the variability of a

random variable as discussed in Section 3.2.2, it is reasonable to have such an observation

that the probability of failure is increased when the random variable has a larger standard

deviation. As illustrated in Example 1 (Figure 3.11), the critical deterministic and proba-

bilistic slip surfaces with respect to both internal and compound failure are located within

the embankment slope so that the foundation soil is not affecting the probabilistic perfor-



108

Table 4.6: Sensitivity results in Example 1 (Case V: ρ = 0.5)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-2.253E-3 6.537E-3
-9.089E-3 2.156E-2

-3.176E-4 5.000E-4

-7.755E-3 1.890E-2 -3.586E-4 4.384E-4

γe
3.144E-5 -4.523E-5

4.980E-5 -5.886E-5
3.635E-6 -2.844E-6

4.439E-5 -5.391E-5 5.494E-6 -3.328E-6

ρϕγ
-1.98E-2

-6.56E-2
3.0E-3

-5.75E-2 4.6E-3

Foundation

ϕ′
f / / / /

-6.086E-4 1.762E-3

-9.014E-4 2.656E-3

γf / / / /
-4.163E-6 6.049E-6

-6.359E-6 9.405E-6

ρϕγ / /
7.90E-3

1.09E-2

Case V: All random variables are correlated and normally distributed.

mance regarding either of them. Similarly, in Example 2 (Figure 3.20), the foundation soil

has no influence on the probabilistic results along the critical internal failure surfaces. But

for the critical surfaces regarding compound and deep-seated failure, the unit weight of the

foundation soil has a negative impact on their probability of failure (sµf
< 0), indicating a

denser foundation soil tends to provide a more reliable slope system.

As defined in Section 4.2, the sensitivity measurement is the rate of the change in

the probability of failure due to the change in a distribution parameter of a random variable.

Therefore, the random variable having a sensitivity measurement with larger magnitude is

supposed to have a greater impact on the probabilistic performance. For example, when

comparing the sensitivity measurements obtained corresponding to friction angle and unit
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Table 4.7: Sensitivity results in Example 1 (Case VI: ρ = 0.1)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-3.414E-3 7.180E-3
-8.833E-3 1.655E-2

-7.414E-5 8.766E-5

-7.423E-3 1.425E-2 -7.510E-5 9.745E-5

γe
4.253E-5 -1.058E-5

4.451E-5 -1.001E-5
1.145E-6 -1.528E-7

3.902E-5 -9.019E-6 1.199E-6 -1.685E-7

ρϕγ
-2.07E-2

-4.79E-2
9.0E-4

-4.12E-2 9.0E-4

Foundation

ϕ′
f / / / /

-1.424E-4 3.203E-4

-1.888E-4 4.374E-4

γf / / / /
-9.760E-7 3.030E-7

-1.338E-6 4.317E-7

ρϕγ / /
1.4E-3

1.8E-3

Case VI: All random variables are correlated and log-normally distributed.

weight, it is obvious no matter what failure mode is considered, friction angle always has

a greater impact on the probability of failure in both embankment fill and foundation soil.

Such an observation is identical to the conclusion derived in Section 3.5.3 that the distri-

bution model selection corresponding to the friction angle usually has a much more signif-

icant influence on the probabilistic results rather than the unit weights. While, on the other

hand, in deep-seated failure, in view of a larger magnitude of the sensitivity measurement,

foundation soil appears to have a greater impact on the probabilistic performance when

compared to the embankment fill.

4.4.2. CorrelatedRandomVariables. The sensitivitymeasurements correspond-

ing to the correlation coefficients that exist between the random variables are computed
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Table 4.8: Sensitivity results in Example 1 (Case VI: ρ = 0.5)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-7.346E-4 1.765E-3
-6.110E-3 1.203E-2

-9.913E-5 1.506E-4

-4.921E-3 9.942E-3 -1.149E-4 1.452E-4

γe
1.075E-5 -1.554E-5

3.443E-5 -3.980E-5
1.193E-6 -1.029E-6

2.902E-5 -3.455E-5 1.843E-6 -1.297E-6

ρϕγ
-5.8E-3

-3.99E-2
1.3E-3

-3.3E-2 1.5E-3

Foundation

ϕ′
f / / / /

-1.889E-4 4.179E-4

-2.858E-4 6.459E-4

γf / / / /
-1.358E-6 1.891E-6

-2.121E-6 3.027E-6

ρϕγ / /
2.2E-3

3.1E-3

Case VI: All random variables are correlated and log-normally distributed.

herein. In both internal and compound failure, negative numbers are obtained that indicate

the probability of failure tends to decrease with the increase of the correlation coefficient;

and vice versa, a positive sensitivity measurement is derived in the deep-seated failure

situation. The results shown here are identical to the observation obtained in Section 3.5

from Figures 3.13, 3.14, 3.22 and 3.23. When a comparison is carried out between the

sensitivity measurements obtained with respect to the friction angle, unit weight, and their

correlation coefficient, a larger magnitude indicates the correlation coefficient should have

a relatively greater influence on the probability of failure, especially than the unit weight

can have. However, according to the definition of the sensitivity measurement, it can be

interpreted, the probability of failure is supposed to be changed by the amount equal to
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Table 4.9: Sensitivity results in Example 2 (Case I)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-4.186E-3 1.101E-2 -3.952E-4 1.338E-3
-4.954E-5 1.041E-4

-6.003E-3 1.494E-2 -4.798E-4 1.609E-3

γe
1.017E-5 1.354E-7 1.300E-7 3.014E-10

5.336E-8 2.517E-10
1.106E-5 1.056E-7 2.180E-7 6.917E-10

Foundation

ϕ′
f / /

-4.759E-5 1.939E-5
-7.518E-5 2.398E-4

-1.409E-5 1.388E-6

γf / /
-5.481E-9 5.359E-13

-5.339E-8 2.520E-10
-1.037E-9 1.564E-14

Case I: All random variables are uncorrelated and normally distributed.

Table 4.10: Sensitivity results in Example 2 (Case II)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-1.846E-4 3.800E-3 -4.196E-5 1.107E-4
-5.318E-6 9.702E-6

-6.062E-4 8.319E-3 -5.287E-5 1.353E-4

γe
4.665E-6 9.189E-8 1.472E-8 5.803E-11

6.083E-9 4.493E-11
1.106E-5 1.056E-7 2.569E-8 1.402E-11

Foundation

ϕ′
f / /

-5.302E-6 2.948E-6
-7.992E-6 1.881E-5

-1.651E-6 2.488E-7

γf / /
-5.99E-10 9.61E-14

-6.088E-9 4.493E-11
-1.20E-10 3.08E-15

Case II: All random variables are uncorrelated and log-normally distributed.

the sensitivity measurement when the corresponding probabilistic parameter is increased

by 1 unit. Since the correlation coefficient is unable to be greater than 1 or less than -1,
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Table 4.11: Sensitivity results in Example 2 (Case V: ρ = 0.5)

Random Variables
Internal Compound Deep-Seated

sµ sσ sµ sσ sµ sσ

Embankment
Fill

ϕ′
e

-1.006E-3 3.145E-3 -3.069E-4 1.061E-3
-5.790E-5 1.209E-4

-2.459E-3 6.949E-3 -3.384E-4 1.169E-3

γe
2.934E-6 -4.544E-6 1.212E-7 -2.093E-7

6.431E-8 -6.688E-8
5.320E-6 -7.465E-6 1.849E-7 -3.189E-7

ρϕγ
-1.08E-2 -4.1E-3

1.1E-3
-2.4E-2 -4.2E-3

Foundation

ϕ′
f / /

-3.714E-5 1.555E-5
-8.728E-5 2.751E-4

-9.997E-6 1.021E-6

γf / /
-4.665E-9 9.767E-10

-6.620E-8 1.046E-7
-8.041E-10 4.107E-11

ρϕγ /
-1.0E-4

1.6E-3
-4.2E-3

Case V: All random variables are correlated and normally distributed.

such a comparison seems not so reasonable. But basically, the sensitivity measurement

corresponding to the correlation coefficient provides us valuable information about how it

can influence the probabilistic results.

Another significant difference to be mentioned here is the impact from the standard

deviation corresponding to the unit weight of the embankment fill, the sensitivity mea-

surement of which is negative along the critical surfaces regarding internal, compound

and deep-seated failure modes. In the above discussion about the uncorrelated random

variables (see Section 4.4.1), the probability of failure is supposed to increase when the

standard deviation increases; in other words, a greater variability is found in soil prop-

erties. However, when the friction angle is correlated with the unit weight in the same
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soil layer, the change in one can influence the other. More specifically, with a positive

correlation coefficient existing between friction angle and unit weight, according to Equa-

tion 3.13, the increase in the standard deviation of the unit weight (σγe) tends to result in a

reduction in the standard deviation of the friction angle (σϕ′
e
). Thereby, the probability of

failure is supposed to decrease. Since the friction angle always has a greater impact on the

probabilistic performance of the slope, although the increase in σγe has a positive impact

on the probability of failure, the corresponding increasing magnitude is less than the re-

duction resulted from the decrease in σϕ′
e
. Therefore, a negative sensitivity measurement

corresponding to the σγe is consequently obtained.

4.5. SUMMARY

The proposed MPP-based probabilistic sensitivity analysis (PSA) provides the in-

formation identical to the observations obtained from the numerical examples presented in

Section 3.5. Following the preceding probabilistic slope stability analyses that were car-

ried out with the MPP-based FORM, the MPP-based PSA is very efficient and requires no

extra iterative calculations. Through performing PSA, the friction angle seems to have a

relatively greater impact on the probabilistic performance of a GRES structure rather than

the unit weight of foundation soil and embankment fill. However, it may not be a good

choice to eliminate the unit weight as a random variable, since the correlation coefficient

existing between the friction angle and the unit weight can also have a great influence on

the probabilistic results. Though it is hard to improve the probabilistic performance of a

GRES structure by controlling the uncertainties in the involved random variables associ-

ated with soil properties, the proposed MPP-based PSA enables a better understanding on

the probabilistic slope stability analysis. Moreover, it can provide some guidance to the
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GRES design by telling how the assumptions made on the probabilistic characteristics of

those random variables can finally influence the probabilistic performance in the GRES

structure; and will be further discussed in the following Section 5.
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5. RELIABILITY-BASED OPTIMIZATION DESIGN

5.1. OVERVIEW

The traditional deterministic design for geosynthetic reinforced embankment slopes

(GRES) is always carried out on the basis of the critical deterministic slip surface that is

addressed within the original unreinforced slope by performing deterministic slope stabil-

ity analysis. As discussed in Section 3.6, although the deterministic analysis successfully

quantifies the slope stability, it fails to consider the effects from the uncertainties exist-

ing in the soil properties and is accordingly unable to ensure a consistent risk level of the

slopes with a constant factor of safety. Therefore, when the geotechnical uncertainties are

taken into consideration, through conducting the probabilistic slope stability analysis on a

GRES structure, it is often to have the critical deterministic and probabilistic slip surfaces

located at different positions. Those two critical surfaces are sometimes very close, but

there are still chances that they are far away from each other especially under the affects

of geosynthetic reinforcements with different loading capacities and distributions. As a

result, there is a need for a reliability-based design approach associated with the soil vari-

ability involved in the GRES structure.

Reliability-based optimization (RBO) is such a technique that allows determining

the best design solution while ensures higher reliability than an acceptable level. When

introduced in the design of a GRES structure, it is primarily working on optimizing the

usage of the geosynthetic reinforcements with a purpose of reducing the total cost of the

embedded reinforcements while the corresponding technical design requirements are sat-

isfied. So basically, the reliability-based optimization regarding the GRES design can

be considered as a constrained minimization problem that is subject to some reliability re-
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quirements as well as some technical rules. Compared to the traditional optimizing process

which is always performed by manually assigning different values to the design variables,

the application of the RBO technique can be expected to intensively improve the design

efficiency even with larger amount of alternatives taken into consideration. Therefore,

in this chapter, the traditional deterministic design procedure is first briefly introduced in

Section 5.2, where the corresponding disadvantages are highlighted. The proposed RBO

design procedure is accordingly to be carried out and discussed in Section 5.3, wherein the

numerical algorithm to be embedded to solve the preceding optimization problem is briefly

discussed in Section 5.3.1. In Section 5.3.2 and 5.3.3, it is demonstrated how the RBO is

going to be working with the GRES design considering the technical design requirements

that are routinely taken into consideration in the traditional deterministic design procedure.

Two numerical examples are finally carried out in Section 5.4 to specifically illustrate the

application of the RBO in GRES design.

5.2. THE PROBLEMS IN TRADITIONAL DESIGN PROCEDURE

As illustrated in Figure 5.1, it is provided a step-by-step procedure for GRES de-

sign. The design principally assumes the slope is to be constructed on a stable foundation;

mainly uses the classical rotational, limit equilibrium slope stability method (Elias et al.

2001). Provided it has been established the geometric, loading, and performance require-

ments as well as the engineering properties of both in-situ soils and embankment fills, the

stability regarding the original unreinforced slope is first evaluated using both circular-arc

and sliding-wedge methods to determine if the slope needs to be reinforced and the size

of the critical zone to be reinforced. The latter one can be roughly enveloped by the sur-

faces that just meet the required factor of safety as shown in Figure 5.2. Inside the critical
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Figure 5.1: Traditional deterministic design procedure (Elias et al. 2001)
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Figure 5.2: Critical zone defined by rotational and sliding surfaces that meet the required
factor of safety (Elias et al. 2001)

zone, the total reinforcement tension that needs to be provided by the geosynthetic rein-

forcements is calculated along each potential failure surface in order to reach the required

factor of safety according to Equation 5.1 (Elias et al. 2001),

Ts = (FSR − FSU)
MD

D
(5.1)

where Ts is the sum of the required tensile forces per unit width of the reinforcement for

all the layers intersecting the failure surface; MD is the driving moment about the cen-

ter of the failure circle; D is the moment arm of Ts about the center of the failure circle;

FSR is the required factor of safety; and FSU is the original unreinforced factor of safety.

Among the whole set of Ts obtained corresponding to a series of searching slip surfaces,

the largest Ts is considered as the total amount that is to be used to determine the rein-

forcement strengths, distributions, and required lengths in the GRES design. By compar-

ing Equation 2.10 and 5.1, it is not hard to identify the critical deterministic slip surface

is always the surface requiring the largest magnitude of the reinforcement tension (Elias
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et al. 2001). Therefore, basically, the reinforcement design in the traditional procedure is

mainly developed on the basis of the critical deterministic slip surface addressed within the

original unreinforced slope. To be more specific, it is only corresponding to the original

critical deterministic surface that such a conventional reinforcement design guarantees the

factor of safety above the required level. However, according to the reinforcement design,

a new critical surface may be located in the reinforced slope that has a minimum factor of

safety lower than the required value. In other words, the critical surface as well as the cor-

responding minimum factor of safety is supposed to be changing with the reinforcement

design. Therefore, if the critical surface is kept updating during the reinforcement design,

meanwhile, the minimum factor of safety is strictly controlled above the required level,

such a problem can be resolved.

According to the two numerical examples presented in Section 3.5, both of the

reinforced slopes are originally designed following the above traditional procedure. It is

clearly shown that, when the soil variability is taken into consideration, two critical sur-

faces are respectively obtained from the traditional deterministic analysis and the proposed

probabilistic analysis; and probably located at different positions. In other words, the slip

surface with the lowest factor of safety might not be the one with the highest probabil-

ity of failure; vice versa, the surface with the largest chance to fail may have a factor of

safety that is slightly higher than the minimum value. In example 1, along the critical de-

terministic slip surface, fs, min = 1.188, pf = 0.685%; along the probabilistic deterministic

slip surface, pf , max = 1.235%, fs = 1.214. In example 2, along the critical deterministic

slips surface, fs, min = 1.225, pf = 0.441%; along the probabilistic deterministic slip surface,

pf , max = 0.658%, fs = 1.238. Therefore, only considering the critical deterministic surface,

the traditional procedure can probably lead to a design that fails to meet the requirements
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associated with the probability of failure. Furthermore, since the critical probabilistic sur-

face is located deeper than the deterministic one, the required embedement lengths may

not be long enough since they are determined on the basis of the deterministic surface.

As a result, as shown in Table 3.4, the pullout failure is probably to occur along some

reinforcement layers corresponding to the critical probabilistic surface. Therefore, if the

design is carried out on the basis of the critical surfaces obtained in both deterministic and

probabilistic analyses, such a problem can be resolved.

In general, it rarely has only one unique solution in engineering design. Usually,

there could be various design alternatives to meet the same technical design requirements,

but the cost involved could be vary significantly. In order to minimize the cost, engineers

tend to select an optimal combination of design variables among the considered alterna-

tives. The above traditional procedure is not emphasized on the reinforcement cost but the

technical requirements only. Therefore, to search for such an optimal combination, the de-

sign procedure needs to be repeated by manually assigning different values to the design

variables. But a crucial issue is, when a large number of design variables are involved,

meanwhile, not only deterministic but also probabilistic requirements are taken into con-

sideration, the whole design procedure becomes very time consuming; and probably fails

to find the ‘best’ optimal result due to the limited number of alternatives the designers can

manually try. As a result, if there is a numerical algorithm that is able to search for the

optimal combination that leads to a lowest cost, meanwhile, the technical design require-

ments are satisfied from both deterministic and probabilistic perspectives, there is no need

to manually repeat the design process. And thereby, the preceding problems regarding the

design efficiency as well as the optimization accuracy can be resolved. In summary, it is

concluded in Table 5.1 that the disadvantages existing in the traditional design procedure
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along with how they are supposed to be resolved in the proposed RBO design procedure.

Table 5.1: The disadvantages of traditional design compared to RBO procedure

Traditional Design Procedure Proposed RBO Procedure

1

The design is carried out on the basis of
a predetermined slip surface that is
addressed in the original unreinforced
slope so that new critical surface is
probably to be located corresponding to
the reinforcement design and provides a
minimum factor of safety lower than the
required level.

The critical surface is to be kept
updating during the reinforcement
design; meanwhile, the minimum factor
of safety is controlled above the
required level.

2

Without considering soil variability, the
design is carried out on the basis of the
critical deterministic slip surface only
and probably leads to a design that fails
to meet the requirements associated
with the probability of failure as well as
pullout failure.

The design is to be carried out on the
basis of the critical surfaces obtained in
both deterministic and probabilistic
analyses.

3

The cost issue is not emphasized in the
traditional design procedure, so that, to
search for an optimal design that has the
lowest or a relatively lower cost, the
design process needs to be manually
repeated based on the considered design
alternatives; and thereby, it can be very
time consuming and probably fails to
locate the ‘best’ optimal solution.

The optimization design is
mathematically concluded as a
constrained minimization problem,
where the objective function is defined
as the total cost regarding the
geosynthetic reinforcements; and both
deterministic and probabilistic
constraints are taken into consideration
corresponding to the critical surfaces.

5.3. THE PROPOSED RBO DESIGN PROCEDURE

To solve the problems illustrated in Table 5.1, a more systematic optimization de-

sign procedure is proposed. To take the soil variability into consideration, reliability-based

optimization, a numerical technique that enables an optimization problem subject to some
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probabilistic constraints, is embedded. The algorithm and approaches involved in such

a technique are briefly introduced in the following section; and later on, the emphasis is

mainly put on the application of the RBO technique in GRES design.

5.3.1. RBO Design Algorithm. To locate the optimal solution while ensure a

higher reliability than an acceptable level, a typical RBO problem can be written as

min f (d,X,P)

sub. to : P {gi (d,X,P) ≤ 0} ≤ pfi , i = 1, 2, · · · , nc

(5.2)

where f is the objective function; d is the set of deterministic design variables; X is the set

of random design variables; P is the set of random design parameters; g(d,X,P) are the

constraint functions; pf are the desired (target) probabilities of constraint satisfaction; and

nc is the number of probabilistic constraints. The elements in vector d andX are the design

variables that need to be determined through optimization. To address such a reliability-

based constrained optimization problem, double loop strategy is to be implemented herein

following the procedure as illustrated in Section 2.5 (Figure 2.6). The probabilistic con-

straints are evaluated with respect to the specified design variables by performing proba-

bilistic approaches (i.e., FORM or MCS) in the inner loop; and the objective function is

optimized subject to the reliability requirements along with some technical design rules in

the outer loop. As mentioned in Section 2.5, two branches of optimizing approaches are

existing: classical methods, including alternating variable method, simplex method and

conjugate-gradient method, are most likely to be used for solving the problems that are

not too complicated and have continuous objective function and smooth constraints; how-
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ever, in most cases of engineering design, objective function can be complex and not easy

defined in view of the various technical design rules that are probably to be involved, mean-

while, the constraints can be non-smooth. Thereby, another branch of methods, the heuris-

tic method, is preferred that includes simulated annealing method, simple harmony search

algorithm, tabu search algorithm, anti-colony algorithm, and genetic algorithm which is

the one that is to be embedded herein.

Genetic algorithm (GA) is a numerical optimization approach inspired by both nat-

ural selection and genetics as well as the evolution of living creatures, in which an optimal

solution evolves through a series of generations. Each generation consists of a number of

possible selections (or individuals) to the problem, defined by an encoding. The fitness

of an individual within the generation is evaluated, and influences the reproduction of the

next generation (Coley 1999; Melanie 1999; Cheng and Lau 2008). As concluded by Coley

(1999), a typical GA generally consists of the following essential elements: 1) a number or

population of guesses of the solution to the problem; 2) a way of calculating how good or

bad the individual solutions within the population are; 3) a method for mixing fragments

of the better solutions to form new, on average even better solution; and 4) a mutation

operator to avoid permanent loss of diversity within the solutions. A general framework

regarding the GA process is presented in Figure 5.3, wherein the fitness function f (x) is

always identical to the objective function that we are trying to optimize. Accordingly, a

global optimum can be located by performing the genetic algorithm provided the problem

as expressed in Equation 5.2 is well defined, which is to be further discussed associated

with the GRES design in next section.

5.3.2. RBODesign in GRES Application In the optimization design of a GRES

structure, provided embankment material and backfill have been selected, it is the pri-
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Initial generation

Fitness function: f (x)

GA operator:
selection/crossover/mutation

New generation

Stopping criteriaNo

Global solution

Yes

Figure 5.3: Genetic algorithm general framework, adapted from (Coley 1999; Melanie
1999)

mary task to determine the required tensile strength and the distribution of geosynthetic

reinforcements with an intention to meet the technical design requirements from both de-

terministic and probabilistic perspectives while the reinforcement cost is relatively low.

Therefore, the objective function is reasonably defined as the total cost with respect to the

geosynthetic reinforcements that are to be installed in the slope. Considering the multiple

failure modes that may potentially appear in a GRES system as discussed in Section 3.4.1,

the problem of optimizing the geosynthetic reinforcement design in a GRES system can

be expressed as

min f (d,X,P) = Cost (5.3a)
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sub. to: fs, min ≥ fs, req (5.3b)

Rsystem ≥ Rsystem, req (5.3c)

P {ginternal (d,X,P) ≤ 0} ≤ pfinternal (5.3d)

P {gcompound (d,X,P) ≤ 0} ≤ pfcompound (5.3e)

P {gdeep (d,X,P) ≤ 0} ≤ pfdeep (5.3f)

P {gsliding (d,X,P) ≤ 0} ≤ pfsliding (5.3g)

Ta(i) ∈
[
Tl(i), Tr(i)

]
for i = 1, 2, · · ·n ∈ [nl, nu]

where the deterministic design variables, d = {n,Ta}, consisting of (n+ 1) elements

with {Ta} representing the allowable tensile strengths of the geosynthetic reinforcements,

while, n, as the number of geosynthetic layers, should be a positive integer and bounded

within a given range; the random design parameters, P = {c′,ϕ′,γ ′}, are same with the

random variables considered in the previous probabilistic slope stability analysis as demon-

strated in Section 3; and the random design variables, X, are not taken into consideration

since the engineering properties of the geosynthetic reinforcements are not considered as

the random variables herein. The optimization should yield to both deterministic and prob-

abilistic constraints, including: the minimum factor of safety, fs, min, as constrained in

Equation 5.3b should not be lower than the required factor of safety, fs, req; the system

reliability, Rsystem, as constrained in Equation 5.3c should not be lower than the required

(acceptable) level, Rsystem, req; and the total probability of failure with respect to each in-

volved potential failure mode, as constrained from Equation 5.3d to 5.3g, should be no

greater than the desired (target) probabilities of constraint satisfaction, pfinternal , pfcompound ,

pfdeep , and pfsliding , respectively regarding internal, compound, deep-seated, and sliding fail-
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ure modes. To specifically define the objective functions and the constraints regarding

the optimization design of a GRES system, more details are to be discussed in the follow-

ing sections with the consideration of the technical design recommendations used in the

traditional design procedure as stated in FHWA Mechanically Stabilized Earth Walls and

Reinforced Soil Slopes Design & Construction Guidelines (Elias et al. 2001).

5.3.2.1. Objective functions. As previously mentioned, it is primarily to reduce

the total cost of the geosynthetic reinforcements in the proposed reliability-based opti-

mization design of a GRES system. Except for the installation costs, equipment and labor

resources, the objective function must be highly depending on two essential factors: the

usage and the unit price of the geosynthetic products that are to be used as the reinforce-

ments in the slope system. As introduced in Section 1.1.2, in a GRES system, geosynthetic

products are mainly used as: 1) the primary reinforcements, that are horizontally placed

within the slope to provide tensile forces to resist slope instability; either geotextiles or

geogrids with sufficient strength and soil compatible modulus can be used as the primary

reinforcements; and 2) the secondary reinforcements, that are used to locally stabilize the

slope face during and after slope construction, generally not taken into consideration in the

global slope stability analysis. Therefore, the total cost of the geosynthetic reinforcements

in this study is primarily referring to the products cost that should consist of the above two

elements in both.

5.3.2.1.1. Usage of geosynthetic reinforcements. For lower slopes with height

no larger than 6 m (or 20 ft), a uniform reinforcement distribution is acceptable; but for

higher slopes with the total height larger than 6m (or 20 ft), the slope should be divided into

two (top and bottom) or three (top, middle, and bottom) reinforcement zones with equal

height (Elias et al. 2001). The deeper the position, the higher the reinforcement strength
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should be assigned and the closer the reinforcement layers should be placed as shown

in Figure 5.4. Therefore, in the second case, the bounds corresponding to the allowable

tensile strength and the number of reinforcement layers should be separately assigned with

respect to each reinforcement zone when defining the problem stated in Equation 5.3.

Figure 5.4: Spacing versus reinforcement strength, adapted from Elias et al. (2001)

r Primary reinforcements. Corresponding to a specified GRES cross section with
unit width, the usage of the primary geosynthetic reinforcements can be basically calcu-

lated by summing the length of each reinforcement layer as

Lprimary =

np∑
i=1

[
Le(i) + Lslip(i)

]
(5.4)

where Le is the embedment length of the portion anchored behind the slip surface; andLslip

is the length of the portionwithin the slip body. It is obvious the geosynthetic reinforcement

length is highly depending on the size of the critical zone and the position of the slip surface

that is selected to be the one based on which the reinforcement design is carried out. As
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previously mentioned in Section 5.2, the size of the critical zone is generally determined

by safety mapping (Leshchinsky et al. 1995; Elias et al. 2001; Leshchinsky et al. 2014),

that has the limits of the critical zone roughly enveloped by the surfaces that just meet the

required factor of safety. As shown in Figure 5.5, the length required for sliding stability at

the base of the embankment generally controls the length of the lower reinforcement levels

so that the lower layers must extend at least to the limits of the critical zone. The upper

levels of reinforcements may not be required to extend to the limits of the critical zone

provided sufficient reinforcements exist in the lower levels to provide the FSR for all the

circles within the critical zone as shown in Figure 5.5; otherwise, it should extend to the

Figure 5.5: Developing reinforcement lengths, adapted from Elias et al. (2001)

limits of the critical zone as well. From the numerical examples presented in Section 3.5, it

is shown the critical deterministic and probabilistic slip surfaces can be possibly located at

different positions; and the probabilistic surface is observed always situated deeper in the
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slope. Therefore, as previously discussed in Section 5.2 and concluded in Table 5.1, both of

the two critical surfaces should be taken into consideration in calculating the reinforcement

lengths.

In summary, modified from the traditional design procedure proposed by Elias et al.

(2001), the length of the primary geosynthetic reinforcements can be determined through

the following steps: 1) perform both deterministic and probabilistic slope stability analyses

on the original unreinforced slope to locate critical deterministic and probabilistic slip sur-

faces as well as the target rotational slip surface with FSR; the length of the portion within

the slip body (Lslip) along each reinforcement can be accordingly obtained corresponding

to the specified critical surface; 2) compute the required embedment length Le against the

pullout behavior by Equation 3.35 for each reinforcement layer along the specified critical

surface; and the Le should be no less than 1-m (or 3.3-ft) long; 3) compute L′
p = Le+Lslip

for each reinforcement layer; 4) perform sliding analysis on the original unreinforced slope

to determine the wedge-shaped sliding surface with FSR; 5) determine the critical zone by

taking the envelop of the wedge-shaped sliding surface and the target rotational slip sur-

face; 6) if the back-surface of the critical zone is located behind the reinforcement with the

length of L′
p, the reinforcement should extend to the limits of the critical zone with a larger

reinforcement length (Lp); otherwise, Lp = L′
p; and 7) finally, the usage of the primary

geosynthetic reinforcements can be computed through Equation 5.4.

r Secondary reinforcements. If the spacing between two primary reinforcements
is over 800 mm (or 32 inches), secondary reinforcements should be placed between two

neighbored primary reinforcement layers with a length typically ranging from 1.2 to 2 m

(or 4 to 6.5 ft) to maintain amaximum vertical spacing of 400mm (or 16 inches) and locally

stabilize the slope face. In summary, the total usage of the secondary geosynthetic rein-
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forcements can be computed based on the length of each layer placed within the reinforced

slope as

Lsecondary =
ns∑
j=1

Ls(j) (5.5)

where Ls is the length of secondary reinforcement in each layer, and typically set between

1.2 and 2 m (or 4 to 6.5 ft).

r Face wrapping. As recommended by Elias et al. (2001), for the slopes flatter than
1H:1V, closer spaced reinforcements (i.e., every lift or every other lift, but no greater than

400 mm) preclude having to wrap the face in well graded soils. But for steeper slopes and

uniformly graded soils, wrapped faces are required to prevent face sloughing as shown in

Figure 5.6.

Figure 5.6: Primary and secondary reinforcements distribution (Elias et al. 2001)
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r Total usage. When both primary and secondary reinforcements are taken into

consideration, for the slopes flatter than 1H:1V and having reinforcements closely placed

with a spacing no larger than 400 mm, the total usage of geoysnthetic reinforcements is

Ltotal =

np∑
i=1

Lp(i) +
ns∑
j=1

Ls(j) (5.6)

where Lp(i) and Ls(i) are the lengths of primary and secondary reinforcement in each layer.

Otherwise, for steeper slopes, face-wrapping should be included in calculating the total

usage of geosynthetic reinforcements as

Ltotal =

np∑
i=1

[
Lp(i) +

sv(i)
sinα

+ Lw(i)

]
+

ns∑
j=1

[
Ls(j) +

sv(j)
sinα

+ Lw(j)

]
(5.7)

where sv is the vertical spacing between two neighbored reinforcement layers: when no

secondary reinforcements are taken into consideration, sv is the spacing between two pri-

mary reinforcements; otherwise, it is equal to the spacing between two secondary rein-

forcements; Lw is the embedment length of the face-wrapping; and α is the slope angle.

5.3.2.1.2. Cost of geosynthetic reinforcements. Provided the specified geosyn-

thetic reinforcement distribution, the costs corresponding to the primary and the secondary

reinforcements can be generally computed by

Cprimary =

np∑
i=1

cp(i)Lp(i) (5.8)
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Csecondary =
ns∑
j=1

cs(j)Ls(j) (5.9)

where cp and cs respectively represent the unit price of the primary and the secondary re-

inforcements. If the unit price is available with respect to every potential geosynthetic

product, cp and cs can be specified in detail corresponding to the products that are se-

lected as the reinforcements during optimization. In this case, the algorithm is expected to

provide the most precise cost estimation with respect to every potential set of reinforce-

ments that are assigned. Otherwise, in the case that only limited information is available,

a function representing the relationship between the unit price and the product properties

is to be interpreted through performing interpolation on the given data. In this study it

is emphasized the relationship between the unit price and the allowable tensile strength

of geosynthetic reinforcement products. Six different products are respectively studied in

the two categories that are frequently used as the reinforcements in GRES: woven geotex-

tiles (US2600, US3600, and US4800); and bi-axial knitted geogrids (Microgrid, SG200,

and SG550). The engineering properties regarding the above products are available in US

Fabrics website and presented in Appendix C. Based on a set of data collected from some

geosynthetic distributor as summarized in Table 5.2, the cost functions with respect to the

ultimate tensile strengths regarding the preceding geotextiles and geogrids are estimated

in Figure 5.7 with different unit systems involved. Based on the relationships obtained

from the given data, a higher tensile strength corresponds to a higher price. For a specific

reinforcement layer, the unit price can be accordingly calculated based on the estimated

cost function with respect to the assigned allowable tensile strength.

In summary, the total cost regarding both primary and secondary geosynthetic re-
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Table 5.2: The unit price and ultimate tensile strength of geosynthetic products

Geotextile Products
Tult Unit Price

(kN/m) (lb/ft) ($/m2) ($/ft2)

US2600 35.9 2460.6 1.72 0.16

US3600 48.2 3303.6 1.94 0.18

US4800 70.0 4797.8 2.26 0.21

Geogrid Products
Tult Unit Price

(kN/m) (lb/ft) ($/m2) ($/ft2)

Microgrid 29.2 2001.4 1.51 0.14

SG200 52.5 3598.3 1.72 0.16

SG550 118.9 8149.4 3.23 0.30

inforcements can be estimated as: 1) for the slopes flatter than 1H:1V and having closer

spaced reinforcements with a spacing no greater than 400 mm,

Ctotal =

np∑
i=1

cp(i)Lp(i) +
ns∑
j=1

cs(j)Ls(j) (5.10)

and 2) for steeper slopes,

Ctotal =

np∑
i=1

cp(i)

[
Lp(i) +

sv(i)
sinα

+ Lw(i)

]
+

ns∑
j=1

cs(j)

[
Ls(j) +

sv(j)
sinα

+ Lw(j)

]
(5.11)

where cp and cs can be the specified unit prices corresponding to the potential geosynthetic
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Figure 5.7: Unit price vs. allowable tensile strength, collected from US Fabrics

products or the estimations evaluated from the cost function that represents the relationship

between the unit price and product properties.

5.3.2.2. Constraints. As stated in Equation 5.3, the probabilistic constraints can

be ideally given on the total probability of failure with respect to each potential failure
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mode as well as the system reliability to thoroughly control the level of reliability for the

design slope. Therefore, a thorough probabilistic slope stability analysis is required to be

embedded in the optimization to evaluate the probabilistic constraints through computing

the probability of failure along each potential slip surface. However, due to the iterative

scheme embedded in the FORM estimation, plenty of iterative calculations are supposed

to be involved in the inner loop in each GA generation with considered potential slip sur-

faces being searched. Thereby, such an optimization procedure seems dramatically time

consuming. In view of the computational efficiency, it can be an alternative to perform

the RBO design on the basis of the most dangerous surfaces (i.e., critical deterministic and

probabilistic slip surfaces) instead of the entire set of potential slip surfaces. However,

as previously discussed in Section 5.2, one of the primary disadvantages existing in the

traditional design procedure is the predetermined design surface which is located in the

original unreinforced slope prior to the reinforcement design. Based on such a design sur-

face, though the reinforcement design enables a factor of safety above the required level

along this surface, a new critical surface can be possibly generated with a minimum factor

of safety lower than the required value. Similarly, if it is on the basis of the predetermined

design surface only that the RBO design is carried out, same problems can be arisen in

either deterministic or probabilistic aspect. As a result, an iterative design process can be

considered: 1) the RBO design can be first carried out with the probabilistic constraints

assigned to the critical surfaces located in the original unreinforced slope, and obtain an

optimal solution denoted as the initial design; 2) a thorough slope stability analysis is ac-

cordingly carried out with respect to the initial design to locate the new critical surfaces,

which are supposed to be the ‘reference’ design surfaces in the next RBO trial; 3) on the ba-

sis of the updated ‘reference’ design surfaces, the RBO design procedure is to be repeated



136

until the optimal design successfully satisfies all the design requirements. By doing so, the

computational efforts can be significantly reduced; meanwhile, the preceding problem can

be solved.

Furthermore, among the multiple failure modes that may potentially occur in a

GRES system, it is only the internal failure that has the failure surface passing all the re-

inforcement layers. Thereby, it is reasonable to believe the internal failure mode has the

most significant influence on the reinforcement design, especially in determining the rein-

forcement lengths considering the pullout behavior. Therefore, to further simplify the op-

timization problem and improve the computational efficiency, the probabilistic constraints

can be emphasized on the internal slope stability only; and Equation 5.3 can be simplified

as

min f (d,X,P) = Cost (5.12a)

sub. to: fs, min ≥ fs, req (5.12b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal (5.12c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal (5.12d)

Ta(i) ∈
[
Tl(i), Tr(i)

]
for i = 1, 2, · · ·n ∈ [nl, nu]

where pfdet,i and pfpro,i are the probability of failure along critical deterministic and prob-

abilistic internal failure surfaces; and should be no greater than the target probability of

failure (pfcri, internal) regarding the above two surfaces. Along with the simplified probabilis-

tic constraints, the GA optimization is carried out considering the deterministic constraint
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as well, which is primarily controlled by the minimum factor of safety of the designed

slope by implementing a thorough deterministic slope stability analysis in the inner loop.

5.3.3. RBODesignProcedure. On the basis of the objective function, constraints,

and technical design rules that have been discussed above, to clearly demonstrate the pro-

cess of the reliability-based optimization design of GRES systems, a flowchart is presented

in Figure 5.8, showing the design procedure. According to the design recommendations

stated in Section 5.3.2.1.1, for the slopes with the total height less than 6 m, uniform

distribution is acceptable with identical geosynthetic products and design variables as:

d = {n, Ta}. For the slopes higher than 6 m, if the slope is divided into two reinforce-

ment zones, design variables become as: d = {n1, Ta1, n2, Ta2}, where n1 and n2 are the

numbers of reinforcement layers in bottom and top zones, and Ta1 and Ta2 are the allow-

able tensile strengths of the geosynthetic reinforcements in the two reinforcement zones.

If the slope is divided into three reinforcement zones, there are six design variables in total

as: d = {n1, Ta1, n2, Ta2, n3, Ta3}, where the allowable tensile strength and the number

of reinforcement layers are assigned in each reinforcement zone respectively. In order to

simplify the problem, geosynthetic products are supposed to have the same tensile strength

in each reinforcement zone for both primary and secondary reinforcements. Furthermore,

as previously discussed in Section 5.3.2.2, considering the computational efficiency, the

probabilistic constraints are emphasized on the internal critical surfaces only.

In summary, the proposed reliability-based optimization design of a geosynthetic

reinforced embankment slope can be achieved by:

1) Performing deterministic and probabilistic slope stability analyses on the original

unreinforced slope to determine the critical zone and the critical surfaces following

the steps proposed in Section 5.3.2.1.1.1;
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Figure 5.8: The RBO procedure in GRES design
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2) Determining the objective function based on Equation 5.10 or 5.11 in view of the

technical design requirements stated in Section 5.3.2.1.1 and the unit price of the

potential geosynthetic products;

3) Evaluating the probability of failure along the critical internal failure surfaces as

the probabilistic constraints and the minimum factor of safety of the designed slope

as the deterministic constraint;

4) Performing GA optimization on the basis of the objective function and the con-

straints defined in step 2) and 3) with the design variables bounded in a predeter-

mined range to obtain the optimal design;

5) Performing deterministic and probabilistic slope stability analyses on the optimized

reinforced slope to address the new critical surfaces as well as the system reliability

considering the multiple failure modes, mainly including internal, compound, and

deep-seated failure; and

6) Repeating step 2) to step 5) with the updated new critical internal failure surfaces

until the design requirements are satisfied.

Based on the optimal design obtained through the above design procedure, sliding

stability is accordingly verified, especially on its probability of failure. As previously

mentioned in Section 5.3.2.1.1.1, through performing the deterministic analysis on the

original unreinforced slope with a required factor of safety specified against sliding failure,

the surfaces that just meet the required factor of safety roughly envelope the limits of the

critical zone; thereby, the sliding stability is the primary factor that determines the base

width of the critical zone and consequently controls the length of the lower reinforcement

layers. In other words, with the reinforcement layers extended to the limits of the critical

zone, it is always guaranteed a factor of safety against sliding failure above the required
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level. But the total probability of failure can be probably beyond the acceptable level

since the previous deterministic analysis fails to consider soil variability. In this situation,

the lower reinforcement layers may need to be further extended beyond the limits of the

critical zone to enhance the sliding stability and consequently decrease the total probability

of failure until the design requirements are fully satisfied.

5.4. NUMERICAL EXAMPLE

To demonstrate how the proposed reliability-based optimization procedure can be

applied to the design of a GRES system, two numerical examples are carried out in this

section. The numerical examples are developed based on the unreinforced slopes defined

in the previous chapter of probabilistic slope stability analysis in Section 3.5.

5.4.1. Numerical Example 1: Geotextile Reinforced Road Embankment. As

stated in Section 3.5.1, it is required to reinforce a 5-m high, 1H:1V road embankment by

placing geosynthetic reinforcements inside. The engineering properties of both embank-

ment fill and foundation soil have been presented in Table 3.2 along with their probabilistic

characteristics. Provided the given information, slope stability analyses are first performed

on the original unreinforced slope to identify the critical slip surfaces and the critical zone

to be reinforced. With a required factor of safety (FSR) set as 1.3, the critical zone is roughly

enveloped by a circular slip surface (2) and a wedge-shaped sliding surface (3) with a 45-

degree inclined back-face and a 3.5-m long bottom width as shown in Figure 5.9. The

critical rotational slip surfaces are identical in both deterministic and probabilistic analy-

ses, located at a shallow position close to the slope face and passing through the slope toe

with a factor of safety that is only 0.663 and a 100% probability of failure. To maintain the

slope stability, such an unreinforced slope needs to be reinforced by placing geosynthetic
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layers inside.

Figure 5.9: Slope stability analyses on the original unreinforced slope in Example 1

5.4.1.1. Design factors. If geotextiles are supposed to be used as the reinforce-

ments in this embankment slope, the strength reduction factors are assumed based on some

typical ranges as: 1) RID = 1.25 for installation damage; 2) RCR = 2.0 for creep; and 3)

RCBD = 1.2 for chemical or biological degradation (Koerner 2005). The relationship be-

tween allowable tensile strength and ultimate tensile strength are given as

Ta = Tult

(
1

RID ×RCR ×RCBD

)
(5.13)
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During the optimizing process, since the allowable tensile strength is considered as one

of the design variables, from Equation 5.13, the ultimate tensile strength can be computed

and accordingly used to estimate the unit price of geotextile products based on the cost

function presented in Figure 5.7 as shown below

cgeotextile = 0.0157 Tult + 1.1684 (5.14)

where Tult is the ultimate tensile strength of geotextile, in kN/m; and cgeotextile is the cor-

responding unit price, in $/m2. Since the embankment slope is only 5-m high (< 6 m),

according to the design recommendations stated in Section 5.3.2.1.1, reinforcements can

be uniformly distributed with an identical tensile strength. Therefore, there are two ran-

dom variables involved herein: d = {n, Ta}, where the allowable tensile strength is set

between 3 kN/m and 10 kN/m, and the number of reinforcement layers is a positive integer

between 6 and 12.

5.4.1.2. Design requirements. Following the design framework as demonstrated

in Figure 5.8, the iterative scheme will be terminated once the following design require-

ments are fully satisfied: 1) the total probability of failure with respect to the multiple

failure modes including: internal, compound, and deep-seated, are no greater than an ac-

ceptable level set as 5% in this example; 2) the system reliability is accordingly no less

than 85% in view of the above three failure modes; and 3) the minimum factor of safety

is above or equal to the required value that is specified as 1.3. If the design successfully

meets the above requirements, sliding stability should be accordingly verified to ensure the

total probability of failure is no greater than 5% as previously specified to the other failure
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modes.

It should be mentioned that, unlike the factor of safety that has been commonly

used in the traditional deterministic design of reinforced slope structures, the requirements

associated with the level of reliability are not clearly defined in the current design manuals

especially when multiple failure modes are taken into consideration. As stated by Baecher

and Christian (2003), establishing an appropriate target level of reliability for a project is

a complex issue. Generally it involves evaluation of the potential consequences of failure

and the required investment and subsequently striking a balance between the risks and the

costs to reduce those risks. Basically, in the cases where risks are relatively low (e.g.,

largely rural areas where failure is not expected to impact structures or humanity, it may

be warranted to accept a higher probability of failure, contrasted to cases where risks are

higher (e.g. largely urban areas, or cases where failure is likely to impact structure or hu-

manity (Loehr et al. 2006). Selecting an appropriate target level of reliability is beyond the

scope of this study, and will not be discussed herein. The values set above, for instance, the

acceptable level as 5% for the total probability of failure regarding every potential failure

mode, are specified based on the previous probabilistic slope stability analyses presented in

Section 3.5.1 with an intention to guarantee an optimal result existing within the constraint

ranges as assigned in Section 5.4.1.1.

5.4.1.3. Design process. The reliability-based optimization is first carried out

based on the critical zone and the critical surfaces located in the original unreinforced

slope (Figure 5.9) with a required factor of safety set as 1.3 and the target probability of

failure along the two critical internal failure surfaces set as 0.1%. Thereby, the optimiza-

tion problem can be mathematically described by modifying the general formation stated
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by Equation 5.12 as follows

min f (d,X,P) = Cost (5.15a)

sub. to: fs, min ≥ fs, req = 1.3 (5.15b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.15c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.15d)

Ta ∈ [3, 10] kN/m, n ∈ [6, 12] (5.15e)

where all the random variables are assumed uncorrelated and normally distributed along

with the design requirements as previously specified in Section 5.4.1.2 and clearly sum-

marized in the following Table 5.3.

Table 5.3: The RBO design requirements in Example 1

Deterministic fs, min ≥ 1.3

Probabilistic

Total Internal, pfinternal ≤ 5%

Total Compound, pfcompound ≤ 5%

Total Deep-Seated, pfdeep ≤ 5%

Total Sliding, pfsliding ≤ 5%

System Reliability, Rsystem ≥ 85%

5.4.1.3.1. Initial design. Provided the above given information, the initial opti-

mal design is derivedwith 12 layers of primary reinforcements uniformly distributedwithin
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the critical zone having an identical allowable tensile strength obtained as 5.40 kN/m. No

secondary reinforcements are placed inside. The vertical spacing is exactly equal to 400

mm; therefore, it is not needed to wrap the slope face. As shown in Figure 5.10, the rein-

Figure 5.10: The initial design in case 1.3 in Example 1

forcements are all extended to the limits of the critical zonewith the length obtained as 3.50,

3.50, 3.50, 3.67, 3.98, 4.19, 4.33, 4.41, 4.44, 4.43, 4.39, and 4.31 m from bottom to top

layer. The cost and the usage of the geotextile reinforcements are consequently obtained

as $69.20 and 48.64 m2 per unit width of this cross section. Such an optimization guar-

antees a minimum factor of safety equal to 1.3 and has the probability of failure obtained

as zero along the original critical rotational slip surfaces addressed in the previous unrein-

forced slope. Therefore, the initial optimal design is mainly controlled by the deterministic
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constraint instead of the probabilistic constraints regarding the internal probability of fail-

ure along the critical surfaces. Through performing a thorough slope stability analysis on

the initial optimal design, it is located new critical surfaces with the probabilistic results

listed in Table 5.4. With the total probability of failure obtained as 0.2744%, 14.079%, and

3.3650% corresponding to internal, compound, and deep-seated failure mode, the initial

design fails to meet the design requirements since the total compound probability of failure

exceeds the acceptable level as 5%; meanwhile, the system reliability derived as 82.80%

is lower than the required level of 85%. As shown in Figure 5.10, the critical probabilistic

internal failure surface is located at a deep position which is very closed to the limits of the

critical zone so that the anchored portions behind the critical surface are not long enough

and tend to result in the pullout failure along some reinforcement layers. As a result, the

initial design is not acceptable and the reinforcements are supposed to be extended.

5.4.1.3.2. Second design. On the basis of the new critical internal failure sur-

faces updated in the initial design as shown in Figure 5.10, the second optimization trial

is accordingly carried out, that has the optimal design derived with 7 layers of primary re-

inforcements uniformly distributed throughout the embankment slope having an identical

allowable tensile strength obtained as 9.14 kN/m without secondary reinforcements placed

inside. The vertical spacing is 685.7 mm (> 400 mm); therefore, the slope face should be

wrapped up by geotextile reinforcements to prevent face sloughing. Considering the pull-

out failure that may potentially occur corresponding to the critical internal failure surface,

except for the bottom layer, all the other reinforcements are extended beyond the limits of

the critical zone with the length obtained as 3.50, 4.07, 4.77, 5.13, 5.29, 5.31, and 6.06 m

as shown in Figure 5.11. Therefore, compared to the initial design, though the number of

reinforcement layers is decreased from 12 to 7, the total usage obtained as 49.31 m2 in the
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Table 5.4: The RBO design in Example 1 (fs,req = 1.3, pfinternal = 0.1%)

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 12

fs,req = 1.3

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 5.40 fs pf (%) fs pf (%)

Usage (m) 48.64 Internal 1.300 0.0065 1.396 0.0337 0.2744
17.20% 82.80%Cost ($) 69.20 Compound 1.345 0.2033 1.345 0.2033 14.079

Face wrap NO Deep 1.399 0.0272 1.280 0.1810 3.3650

2

No. layer 7

fs,req = 1.3

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.14 fs pf (%) fs pf (%)

Usage (m) 49.31 Internal 1.300 0.0075 1.315 0.0104 0.1620
1.600% 98.40%Cost ($) 78.84 Compound 1.478 0.0021 1.485 0.0037 1.4253

Face wrap YES Deep 1.446 0.0012 1.484 0.0023 0.0192
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Figure 5.11: The second design in case 1.3 in Example 1

second design is slightly higher than the initial amount. Furthermore, with the required al-

lowable tensile strength increased from 5.40 kN/m to 9.14 kN/m, the total cost is obtained

as $78.84 per unit width, that is $9.64 higher than the initial cost. Similar to the initial

trial, the second optimization is also driven by the deterministic constraint and has a mini-

mum factor of safety obtained as 1.3; while the probabilistic constraints are simultaneously

satisfied with the probability of failure along the critical internal failure surfaces derived

as 0.0055% and 4.5362×10−5%, both of which are greatly less than the target value of

0.1%. A thorough slope stability analysis is accordingly carried out to evaluate if the de-

sign is acceptable. As shown in Table 5.4, the total probability of failure is obtained as

0.1620%, 1.4253%, and 0.0192% corresponding to internal, compound, and deep-seated

failure mode; meanwhile, the system reliability is derived as 98.40%. Therefore, the de-
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sign requirements 1), 2), and 3) as stated in Section 5.4.1.2 are successfully satisfied; and

the design process can be accordingly terminated. Based on the optimal design obtained

from the second trial, sliding stability is verified with a total probability of failure derived

as 0.9001% (< 5%) which is sufficiently small so that it is not needed to extend any lower

level of reinforcements to enhance the sliding stability. As a result, the second design

can be considered as a more optimal design; and in view of the sliding stability, system

reliability is finally obtained as 97.79%.

5.4.1.4. Results comparison. According to the optimization problem as defined

by Equation 5.15, the optimal result is supposed to be influenced by many factors. To thor-

oughly understand how much impact the design factors and requirements can have on the

optimization, comparison is carried out focusing on the following aspects: 1) the required

factor of safety specified in deterministic constraint; 2) the target probability of failure

specified in probabilistic constraints; 3) the distribution model assigned to the random

variables; and 4) the constraints involved in the optimization. Since the sliding stability is

excluded from the optimizing process, it is not taken into consideration in the following

comparisons.

5.4.1.4.1. Required factor of safety. When the target probability of failure is fixed

at a constant level of 0.1%, based on the critical zone and the critical surfaces located in

the original unreinforced slope, comparison is carried out with the required factor of safety

changed to 1.2 and 1.1, as highlighted in the following Equation 5.16; and has the results

listed in Table 5.5 and 5.6.

min f (d,X,P) = Cost (5.16a)
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sub. to: fs, min ≥ fs, req = 1.2 (case 1.2); 1.1 (case1.1) (5.16b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.16c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.16d)

Ta ∈ [3, 10] kN/m, n ∈ [6, 12] (5.16e)

In the case that the required factor of safety is 1.2 (case 1.2), deterministic con-

straint works as the primary control factor in the initial optimization trial that generates

an optimal design with 7 layers of primary reinforcements uniformly distributed within

the critical zone having an identical allowable tensile strength equal to 5.40 kN/m. With

such an initial design, system reliability is derived as 71.28%, that is not high enough to

meet the required level. Meanwhile, though the probabilistic constraints are satisfied in

the initial optimization with the probability of failure obtained as zero along the original

critical surfaces, from Table 5.5, it can be noticed, corresponding to the new critical in-

ternal failure surfaces updated in the initial design, the probability of failure is derived

as 0.43 % for the deterministic surface and 0.55% for the probabilistic surface, both of

which exceed the target value specified in the probabilistic constraints as 0.1%. There-

fore, a new optimization trial is needed in order to keep the probability of failure along

the above two critical surfaces within the target level. In the second optimization trial, the

probabilistic constraint becomes the essential factor that controls the optimizing process;

and consequently gives an optimal design with the same number of reinforcement layers

but a higher allowable tensile strength equal to 8.07 kN/m. As shown in Figure 5.12, the

critical internal failure surfaces generated in the second design happen to be located at the

same positions as in the initial design; and have the minimum factor of safety obtained
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Figure 5.12: The initial and second design in case 1.2 in Example 1

as 1.246 along the deterministic surface and the maximum probability of failure equal to

0.1% along the probabilistic surface. It is obvious the second design successfully meets

both deterministic and probabilistic constraints; and more importantly, the probability of

failure along the critical probabilistic internal failure surface is exactly equal to the target

value specified in the probabilistic constraints. Therefore, it can be expected if the de-

sign process continues the same results will be derived. As shown in Table 5.5, such an

inference is successfully verified by performing the third optimization trial which gives

an optimal result identical to the second design. Therefore, with such a required factor of

safety specified as 1.2 in the deterministic constraint, it is unable to provide an acceptable

design that meets the design requirements stated in Table 5.3.

When the required factor of safety is specified as 1.1 (case 1.1), similarly, the initial
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Table 5.5: The RBO design in case 1.2 in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.2

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.22 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.200 0.4340 1.208 0.5457 12.191
28.71% 71.28%Cost (%) 65.49 Compound 1.334 0.2560 1.336 0.2547 15.885

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862

2

No. layer 7

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 8.07 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.246 0.0494 1.249 0.1000 2.5185
19.39% 80.61%Cost (%) 67.24 Compound 1.338 0.2255 1.341 0.2267 14.318

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862

3

No. layer 7

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 8.07 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.246 0.0494 1.249 0.1000 2.5185
19.39% 80.61%Cost (%) 67.24 Compound 1.338 0.2255 1.341 0.2267 14.318

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862
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optimization trial is mainly controlled by the deterministic constraint; and has the optimal

design obtained with 7 layers of primary reinforcements uniformly distributed within the

critical zone having an identical allowable tensile strength equal to 5.43 kN/m. The system

reliability is consequently derived at an extremely low level as 1.980%; meanwhile, the

new critical internal failure surfaces are located at the same position in both deterministic

and probabilistic analysis with a minimum factor of safety equal to 1.1 and a probability of

failure obtained as 9.91% that significantly exceeds the target value of 0.1%. Therefore,

the design process needs to be continued. In the second optimization trial, the probability

of failure along the two identical critical internal failure surfaces becomes the controlling

factor; and an optimal design is accordingly derived with the same number of reinforce-

ment layers but a higher allowable tensile strength equal to 7.81 kN/m. With a system

reliability derived as 78.98%, the second design still fails to meet the design requirements.

However, it should be noticed, based on the second design, the critical internal failure sur-

faces are updated and happen to coincide with the ones obtained in the initial and second

design in case 1.2 as shown in Figure 5.12. Therefore, subject to an identical probabilis-

tic constraint that works as the primary control factor with a target probability of failure

specified as 0.1%, the third optimization trial gives an optimal design that is exactly the

same with the final optimal result obtained in case 1.2. Just as what happened in the last

two optimization trials in case 1.2, if the design process continues, the same results will

be derived with the system reliability equal to 80.61%. As a result, with such a required

factor of safety specified as 1.1 in the deterministic constraint, it is unable to provide an

acceptable design.

In summary, with the same target probability of failure assigned in the RBO de-

sign, the change in the required factor of safety can significantly influence the final result.
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Table 5.6: The RBO design in case 1.1 in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.1

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 5.43 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.100 9.9100 1.100 9.9100 97.439
98.02% 1.980%Cost (%) 61.83 Compound 1.324 0.3323 1.326 0.3357 20.065

Face wrap YES Deep 1.484 0.0023 1.484 0.0023 3.4862

2

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 7.81 pfdet,i = 0.1% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.232 0.1000 1.236 0.1724 3.9997
21.02% 78.98%Cost (%) 66.62 pfpro,i = 0.1% Compound 1.337 0.2344 1.339 0.2357 14.757

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862

3

No. layer 7

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 8.07 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.246 0.0494 1.249 0.1000 2.5185
19.39% 80.61%Cost (%) 67.24 Compound 1.338 0.2255 1.341 0.2267 14.318

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862
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But sometimes, when the required factor of safety is not sufficiently high, the probabilistic

constraints become the primary control factor. In this case, though the specified required

factor of safety can affect the design process more or less, it may hardly influence the final

optimal result. As shown in the cases that have the required factor of safety specified as 1.2

and 1.1 (Figure 5.13), although they have different optimal results obtained in the second

Figure 5.13: System reliability vs. design trial in case 1.3, 1.2, and 1.1 in Example 1

optimization trial, the final designs are identical since the last trials in both cases are driven

by the target probability of failure assigned as 0.1% along the same critical internal failure

surface. Nevertheless, if we pay attention to the usage of the geotextile reinforcements, it

is only in the final design with the required factor of safety equal to 1.3 (case 1.3) that the

reinforcement layers extend beyond the limits of the critical zone. As discussed in Sec-

tion 5.4.1.3.1, this is because the critical probabilistic internal failure surface obtained in

the initial design is located at a deep position very closed to the limits of the critical zone.

As the reference design surface in the second optimization trial, the required reinforcement
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lengths are computed along this surface to prevent the pullout failure; and thereby, the re-

inforcements are extended beyond the critical zone. Therefore, as shown in Figure 5.14,

with the same number of reinforcement layers in the final optimal design, case 1.3 has

a relatively higher total usage as well as the total cost of the geotextile reinforcements.

Furthermore, if we take a look at the total probability of failure regarding each potential

Figure 5.14: The usage/cost with different required factor of safety in Example 1

failure mode in the above three cases, it can be noticed the compound failure seems the

primary contributor to the system probability of failure. Especially in the last two optimiza-

tion trials in case 1.2 and 1.1, though both internal and deep-seated probability of failure

successfully meet the design requirements, the compound probability of failure is almost

10% beyond the acceptable level. Thinking of the length of reinforcements, the compound

probability of failure is supposed to be decreased by extending some reinforcement layers

to a deeper position within the slope.
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5.4.1.4.2. Target probability of failure. In the case that the required factor of

safety is 1.3, the optimization is always driven by the deterministic constraint instead of

the probabilistic constraints so that the target probability of failure specified in the prob-

abilistic constraints can hardly influence the final optimal result. Therefore, to study the

impact it can have on the optimal design by assigning different value to the target proba-

bility of failure, the comparison is focusing on the cases that have the required factor of

safety specified as 1.2 and 1.1 with a target probability of failure significantly reduced

from the original value of 0.1% to a lower level of 0.01%, as highlighted in the following

Equation 5.17:

min f (d,X,P) = Cost (5.17a)

sub. to: fs, min ≥ fs, req = 1.2 (case 1.2[0.01]); 1.1 (case1.1[0.01]) (5.17b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 0.01% (5.17c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 0.01% (5.17d)

Ta ∈ [3, 10] kN/m, n ∈ [6, 12] (5.17e)

According to the results listed in Table 5.7 and 5.8, in both cases, since the deterministic

constraint works as the primary control factor in the initial optimization trial, the initial

designs are identical to the results obtained in the cases with the target probability of fail-

ure set as 0.1% (case 1.2 and 1.1). However, as previously indicated, the probabilistic

constraints will control the optimization in the following design; therefore, the change in

the target probability of failure is supposed to influence the optimal result since the second
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Table 5.7: The RBO design in case 1.2[0.01] in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.2

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.22 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.200 0.4340 1.208 0.5457 12.191
28.71% 71.28%Cost (%) 65.49 Compound 1.334 0.2560 1.336 0.2547 15.885

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862

2

No. layer 12

pfpro,i = 0.01%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 4.93 fs pf (%) fs pf (%)

Usage (m) 48.64 Internal 1.261 0.0508 1.276 0.0545 0.8980
18.89% 81.11%Cost (%) 68.12 Compound 1.340 0.2340 1.340 0.2340 15.301

Face wrap NO Deep 1.262 0.1482 1.280 0.1810 3.4862

3

No. layer 7

pfpro,i = 0.01%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.07 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.297 0.0091 1.387 0.0462 0.6210
16.34% 83.66%Cost (%) 69.29 Compound 1.343 0.1938 1.346 0.1944 12.779

Face wrap YES Deep 1.262 0.1482 1.280 0.1810 3.4862

4

No. layer 7

pfdet,i = 0.01%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.03 fs pf (%) fs pf (%)

Usage (m) 49.28 Internal 1.295 0.0006 1.310 0.0009 0.0071
0.239% 99.76%Cost (%) 78.55 Compound 1.477 0.00005 1.484 0.00012 0.2310

Face wrap YES Deep 1.437 0.00004 1.465 0.00005 0.0005
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optimization.

When the required factor of safety is specified as 1.2 (case 1.2[0.01]), neither the

second nor the third optimization trial is able to generate an acceptable design since the

system reliability always fails to arrive at the required level of 85% mainly due to a total

probability of failure obtained over 15% regarding the compound failure mode. On the

basis of the third design, the critical probabilistic internal failure surface is located at a

deep position very close to the limits of the critical zone, just as in the initial design in

case 1.3 (Figure 5.11). Therefore, based on such a reference design surface, the fourth

trial gives an optimal result that has the reinforcement layers extended beyond the critical

zone to prevent the pullout failure that may potentially occur along some reinforcement

layers corresponding to this ‘reference’ surface. As a result, though with the same number

of reinforcement layers and an even slightly lower allowable tensile strength, the total

compound probability of failure is highly decreased; meanwhile, the system reliability is

greatly increased to 99.76%. Similarly, when the required factor of safety is specified as

1.1 (case 1.1[0.01]), as discussed in the comparison in Section 5.4.1.4.1, though the design

process is different, the final optimal result is identical to the final design in case 1.2[0.01]

since the last optimization trial is conducted along the same critical internal failure surfaces

with an identical target probability of failure set as 0.01%.

In summary, as illustrated in Figure 5.15 and 5.16, with the same required factor of

safety specified in the deterministic constraint, a higher target probability of failure intends

to provide a more reliable design; meanwhile, the usage and the cost become relatively

higher (Figure 5.17). As demonstrated in Section 5.4.1.4.1, when the required factor of

safety is equal to 1.2 and 1.1, with a target probability of failure set as 0.1%, it is unable

to provide an acceptable design mainly due to the total probability of failure regarding the
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Table 5.8: The RBO design in case 1.1[0.01] in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.1

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 5.43 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.100 9.9100 1.100 9.9100 97.439
98.02% 1.980%Cost (%) 61.83 Compound 1.324 0.3323 1.326 0.3357 20.065

Face wrap YES Deep 1.484 0.0023 1.484 0.0023 3.4862

2

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 8.60 pfdet,i = 0.01% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.274 0.0034 1.382 0.0088 0.0569
5.729% 94.27%Cost (%) 68.32 pfpro,i = 0.01% Compound 1.341 0.0644 1.344 0.0645 4.6580

Face wrap NO Deep 1.262 0.1482 1.280 0.1810 3.4862

3

No. layer 7

pfdet,i = 0.01%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.03 fs pf (%) fs pf (%)

Usage (m) 49.28 Internal 1.295 0.0006 1.310 0.0009 0.0071
0.239% 99.76%Cost (%) 78.55 Compound 1.477 0.00005 1.484 0.00012 0.2310

Face wrap YES Deep 1.437 0.00004 1.465 0.00005 0.0005
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Figure 5.15: System reliability vs. design trial in case 1.2[0.01] in Example 1

Figure 5.16: System reliability vs. design trial in case 1.1[0.01] in Example 1
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Figure 5.17: The usage/cost with different target probability of failure in Example 1

compound failure mode that exceeds the acceptable level by approximately 10%. When

the target probability of failure is lower to 0.01%, such a problem is successfully resolved.

Therefore, it can be concluded when the required factor of safety is not sufficiently large,

by reducing the target probability of failure assigned in the probabilistic constraints, it is

able to obtain an acceptable design.

5.4.1.4.3. Distribution model. As demonstrated in Section 3.5, the selection of

the distribution model assigned to the random variables can greatly influence the proba-

bilistic results. More specifically, in this example, when the random variables are changed

from normally to log-normally distributed, the probability of failure is largely decreased.

Therefore, it can be expected the distribution model selection will influence the reliability-

based optimization design more or less. When the required factor of safety is 1.3 (case

1.3[log]), the deterministic constraint is the primary control factor; therefore, the distribu-

tion model selection can hardly influence the final design. As shown in Table 5.9, it is
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derived an optimal result in the second optimization trial that is exactly identical to the

final design obtained in case 1.3, where all the random variables are in normal distribu-

tion. But the differences can be observed by comparing the probabilistic results obtained in

both cases with normal and log-normal distribution as listed in Table 5.4 and 5.9. That is,

with the same reinforcement design, when the random variables are in log-normal distribu-

tion, system reliability is relatively higher than the one obtained with normally distributed

random variables.

When the required factor of safety is specified as 1.2 and 1.1, as observed in case 1.2

and 1.1, the probabilistic constraints become the primary control factor since the second

and third optimization trial. Therefore, the distribution model is supposed to affect the

optimal results in these two situations. When comparing the results listed in Table 5.5

and 5.10, with the same amount of reinforcement usage, the optimized allowable tensile

strength is decreased from 8.07 kN/m to 7.55 kN/m in the case that the required factor of

safety is 1.2 (case 1.2[log]). It is because with the same reinforcement design, the log-normal

distribution tends to give a lower probability of failure; vice versa, if the target probability

of failure is fixed at a constant level, the probabilistic constraints can be satisfied even

with a lower allowable tensile strength. Therefore, though the optimized allowable tensile

strength is relatively lower in the case with log-normal distribution, the system reliability

is obtained as 92.30%, that is approximately 12% higher than the reliability obtained in

the case with normal distribution. When the required factor of safety is 1.1 (case 1.1[log]),

as shown in Table 5.11, the final design is identical to the result obtained in case 1.2[log];

therefore, the same conclusion can be consequently summarized.

In summary, as illustrated in Figure 5.18, 5.19, and 5.20, with log-normally dis-

tributed random variables, the system reliability corresponding to the designed reinforced
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Figure 5.18: System reliability vs. design trial in case 1.3[log] in Example 1

Figure 5.19: System reliability vs. design trial in case 1.2[log] in Example 1
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Figure 5.20: System reliability vs. design trial in case 1.1[log] in Example 1

Figure 5.21: The usage/cost with different distribution model in Example 1
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Table 5.9: The RBO design in case 1.3[log] in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.3

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.16 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.300 0.0003 1.388 0.0064 0.1343
13.24% 86.76%Cost (%) 69.48 Compound 1.344 0.0569 1.344 0.0569 13.121

Face wrap YES Deep 1.484 0.00007 1.484 0.00007 0.0001

2

No. layer 7

fs,req = 1.3

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 9.14 fs pf (%) fs pf (%)

Usage (m) 49.31 Internal 1.300 0.0004 1.315 0.0006 0.0046
0.233% 99.77%Cost (%) 78.84 Compound 1.478 0.00005 1.485 0.0001 0.2277

Face wrap YES Deep 1.446 0.000047 1.465 0.000049 0.0004
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Table 5.10: The RBO design in case 1.2[log] in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.2

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.22 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.200 0.1764 1.208 0.2425 3.4746
9.986% 90.01%Cost (%) 65.49 Compound 1.334 0.0865 1.334 0.0865 5.740

Face wrap YES Deep 1.262 0.0646 1.280 0.0698 1.0671

2

No. layer 7

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.55 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.218 0.0565 1.224 0.1000 1.3379
7.695% 92.30%Cost (%) 66.19 Compound 1.335 0.0806 1.338 0.0808 5.4343

Face wrap YES Deep 1.262 0.0646 1.280 0.0698 1.0671
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slope is relatively higher; especially in the cases with the required factor of safety equal to

1.2 and 1.1 where the probabilistic constraints greatly influence the optimization, the dif-

ferences relied in the system reliability are most remarkable. Furthermore, as concluded in

Figure 5.21, the usage is hardly influenced by the distribution model selection; however,

with a lower allowable tensile strength obtained, the design with log-normally distributed

random variables leads to a slightly lower cost.

5.4.1.4.4. Constraints. According to Equation 5.12, the optimization as previ-

ously performed is simultaneously subject to both deterministic and probabilistic con-

straints, where the deterministic constraint yields to the minimum factor of safety that

can be generally addressed through a thorough deterministic slope stability analysis cor-

responding to every GA generation; while the probabilistic constraints are mainly deter-

mined by the probability of failure along critical deterministic and probabilistic internal

failure surfaces that can be evaluated by performing probabilistic analysis with respect to

the above two reference design surfaces. Therefore, it is reasonable to believe the computa-

tional efforts of the RBO design are directly proportional to the number of constraints; and

the computational efficiency can be improved by reducing the number of the constraints

that are involved in the optimizing process.

When it is only the probabilistic constraints that are taken into consideration as

described by the following Equation 5.18,

min f (d,X,P) = Cost (5.18a)

sub. to: pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal (5.18b)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal (5.18c)
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Table 5.11: The RBO design in case 1.1[log] in Example 1

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7

fs,req = 1.1

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 5.43 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.102 9.2530 1.102 9.2530 93.4779
94.05% 5.947%Cost (%) 61.83 Compound 1.324 0.1250 1.326 0.1250 7.8360

Face wrap YES Deep 1.262 0.0646 1.280 0.0698 1.0671

2

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 7.39 pfdet,i = 0.1% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.209 0.1000 1.209 0.1000 2.1345
8.581% 91.42%Cost (%) 65.85 pfpro,i = 0.1% Compound 1.334 0.0834 1.334 0.0834 5.5798

Face wrap YES Deep 1.262 0.0646 1.280 0.0698 1.0671

3

No. layer 7

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.55 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.218 0.0565 1.224 0.1000 1.3379
7.695% 92.30%Cost (%) 66.19 Compound 1.335 0.0806 1.338 0.0808 5.4343

Face wrap YES Deep 1.262 0.0646 1.280 0.0698 1.0671
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Ta ∈ [3, 10] kN/m, n ∈ [6, 12] (5.18d)

computational efficiency is supposed to be improved mainly due to the elimination of the

embedded deterministic slope stability analysis. With the target probability of failure spec-

ified as 0.1% in the probabilistic constraints, the results are listed in Table 5.12. After four

optimization trials, the design is obtained with 7 layers of primary reinforcements uni-

formly distributed throughout the embankment slope having an identical allowable tensile

strength equal to 7.99 kN/m. Through the probabilistic slope stability analysis, the total

probability of failure is obtained as 3.96%, 14.90%, and 3.48% corresponding to internal,

compound, and deep-seated failure mode; meanwhile, the system reliability is derived as

78.89%, very closed to the results obtained in case 1.2 and 1.1 that have the system reliabil-

ity obtained as 80.61%. When the target probability of failure is lower to 0.05%, the results

are listed in Table 5.13, that has an optimal design obtained after four optimization trials

with the same number of reinforcement layers equal to 7 but a relatively higher allowable

tensile strength equal to 8.33 kN/m; and the system reliability is consequently derived as

80.87%. As illustrated in Figure 5.22, with only the probabilistic constraint involved that

has the target probability of failure set as 0.1%, the optimal result tends to approach the

final design obtained in case 1.2 and 1.1 since the latter two have the probabilistic con-

straints working as the primary control factor; but it seems more optimization trials are

needed. To be more specific, when both deterministic and probabilistic constraints are

taken into consideration, only two optimization trials are needed with a required factor

of safety equal to 1.2; while three trials are needed when the required factor of safety is

1.1; however, with the probabilistic constraints considered only, at least one more trial is
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Figure 5.22: The usage/cost with probabilistic constraints only in Example 1

needed to arrive at the level of reliability that is close enough to the results obtained in

case 1.2 and 1.1. As a result, though the computational efficiency is improved in every

individual optimization trial, with more trials needed, the whole design process requires

more computational efforts and becomes more time consuming.

When it is only the deterministic constraint that is taken into consideration as de-

scribed by the following Equation 5.19,

min f (d,X,P) = Cost (5.19a)

sub. to: fs, min ≥ fs, req (5.19b)

Ta ∈ [3, 10] kN/m, n ∈ [6, 12] (5.19c)

computational efficiency is supposed to be improved mainly due to the elimination of the

embedded probabilistic analyses that are to be performed on the basis of the two critical
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Table 5.12: The RBO design with probabilistic constraints only in Example 1 (pfinternal = 0.1%)

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 3.30 pfdet,i = 0.1% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 0.966 66.530 0.966 66.530 100
100% 0%Cost (%) 57.50 pfpro,i = 0.1% Compound 1.307 0.400 1.315 0.454 26.854

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.486

2

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 7.18 pfdet,i = 0.1% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.198 0.470 1.206 0.581 12.993
29.43% 70.57%Cost (%) 65.42 pfpro,i = 0.1% Compound 1.333 0.257 1.336 0.259 15.956

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.486

3

No. layer 12

pfpro,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 4.4 fs pf (%) fs pf (%)

Usage (m) 48.64 Internal 1.213 0.229 1.217 0.346 5.098
23.72% 76.28%Cost (%) 66.92 Compound 1.334 0.273 1.334 0.273 16.823

Face wrap NO Deep 1.262 0.148 1.280 0.181 3.486

4

No. layer 7

pfdet,i = 0.1%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 7.99 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.241 0.104 1.249 0.122 3.957
21.11% 78.89%Cost (%) 67.08 Compound 1.325 0.316 1.325 0.316 14.896

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.484
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internal failure surfaces. When the required factor of safety is 1.3, the optimal results can

be hardly influenced since the deterministic constraint works as the primary control factor

in both cases. When the required factor of safety is 1.2 and 1.1, the second optimiza-

tion trial always leads to a result that is similar to the initial design. It is because when

both deterministic and probabilistic constraints are taken into consideration, in the second

optimization trial, the optimal result is primarily driven by the probabilistic constraints;

however, with only the deterministic constraint involved, the initial design has success-

fully met the constraint; thereby, with identical required factor of safety assigned in the

deterministic constraint, same results are given in the second optimization trial.

In summary, in the case that has only the probabilistic constraints taken into con-

sideration, if the target probability of failure is small enough, it is supposed to provide an

acceptable design; however, the design efficiency is not as good as in the case that both

deterministic and probabilistic constraints are involved while the required factor of safety

is reasonably high. In the case that has only the deterministic constraint considered, if the

required factor of safety is not sufficiently high, the design process is unable to provide an

acceptable design since the optimal results are always identical to the initial design. How-

ever, prior to the RBO design, it is hard to identify whether the required factor of safety is

high enough or the target probability of failure is sufficiently small corresponding to the

upper and lower bounds assigned to the design variables. Therefore, it is more reasonable

to perform the RBO design on the basis of both deterministic and probabilistic constraints.

5.4.2. Numerical Example 2: Geogrid Reinforced Embankment Slope. As

stated in Section 3.5.2, it is required to reinforce a 30-ft high, 1H:1V embankment slope

by placing geosynthetic reinforcements inside. The engineering properties of both em-

bankment fill and foundation soil have been presented in Table 3.9 along with their prob-
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Table 5.13: The RBO design with probabilistic constraints only in Example 1 (pfinternal = 0.05%)

Trial RBO Results Pri. Control Slope Stability Analyses

1

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 3.40 pfdet,i = 0.05% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 0.972 64.410 0.972 64.410 100
100% 0%Cost (%) 57.60 pfpro,i = 0.05% Compound 1.300 0.606 1.300 0.606 27.379

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.486

2

No. layer 7
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (kN/m) 6.80 pfdet,i = 0.05% fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.177 0.987 1.181 1.181 33.426
46.84% 53.16%Cost (%) 64.65 pfpro,i = 0.05% Compound 1.319 0.375 1.319 0.375 17.257

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.486

3

No. layer 12

pfpro,i = 0.05%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 4.52 fs pf (%) fs pf (%)

Usage (m) 48.64 Internal 1.224 0.207 1.231 0.234 4.703
23.56% 76.44%Cost (%) 67.19 Compound 1.334 0.248 1.334 0.248 16.990

Face wrap NO Deep 1.262 0.148 1.280 0.181 3.486

4

No. layer 7

pfdet,i = 0.05%

Failure
Critical det. Critical pro.

Total pf (%) System pf System Rs

Ta (kN/m) 8.33 fs pf (%) fs pf (%)

Usage (m) 43.42 Internal 1.258 0.046 1.377 0.076 2.213
19.13% 80.87%Cost (%) 67.77 Compound 1.327 0.300 1.327 0.300 14.325

Face wrap YES Deep 1.262 0.148 1.280 0.181 3.484
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abilistic characteristics. Provided the given information, slope stability analyses are first

performed on the original unreinforced slope to identify the critical slip surfaces and the

critical zone to be reinforced. With a required factor of safety set as 1.5, the critical zone

is enveloped by a circular slip surface (2) and a wedge-shaped sliding surface (3) with a

45-degree inclined back-face and a 30.3-ft long bottomwidth as shown in Figure 5.23. The

critical rotational slip surfaces are identical in both deterministic and probabilistic analy-

ses, located at a shallow position close to the slope face and passing through the slope toe

with a factor of safety that is only 0.590 and a 100% probability of failure. To maintain the

slope stability, such an unreinforced slope needs to be reinforced by placing geosynthetic

layers inside.

Figure 5.23: Slope stability analyses on the original unreinforced slope in Example 2
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5.4.2.1. Design factors and requirements. If geogrids are supposed to be used

as the reinforcements in this embankment slope, the strength reduction factors are assumed

identical to the ones assigned in the previous numerical example in Section 5.4.1.1. To

estimate the unit price of the potential geogrid products, the cost function presented in

Figure 5.7 is embedded herein as

cgeogrids =
(
3× 10−9

)
T 2
ult −

(
4× 10−6

)
Tult + 0.1363 (5.20)

where Tult is the ultimate tensile strength of geogrids, in lb/ft; and cgeogrids is the correspond-

ing unit price, in $/ft2. Since the embankment slope is 30-ft high (> 20 ft), according to

the design recommendations stated in Section 5.3.2.1.1, the slope is divided into three rein-

forcement zoneswith a total of 6 design variables involved as: d = {n1, Ta1, n2, Ta2, n3, Ta3},

where: 1) n1 ∈ [3, 6] and Ta1 ∈ [2000, 3000] lb/ft, for the bottom zone; 2) n2 ∈ [3, 5] and

Ta2 ∈ [1600, 2000] lb/ft, for the middle zone; and 3) n3 ∈ [1, 5] and Ta3 ∈ [1000, 1500]

lb/ft, for the top zone. Since the required factor of safety is specified as 1.5 in this example,

the target probability of failure can be accordingly assigned with a lower value as 0.01%

in the probabilistic constraints. Meanwhile, the target level of reliability can be reason-

ably increased to a higher level; for instance, the total probability of failure should be no

greater than 1% corresponding to every potential failure mode; and the system reliability

should be no less than 97%. As a conclusion, the optimization problem can be described
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by modifying the general formation stated by Equation 5.12 as follows

min f (d,X,P) = Cost (5.21a)

sub. to: fs, min ≥ fs, req = 1.5 (5.21b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 0.01% (5.21c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 0.01% (5.21d)

Ta1 ∈ [2000, 3000] lb/ft, n1 ∈ [3, 6] (5.21e)

Ta2 ∈ [1600, 2000] lb/ft, n2 ∈ [3, 5] (5.21f)

Ta3 ∈ [1000, 1500] lb/ft, n3 ∈ [1, 5] (5.21g)

along with the design requirements summarized in the following Table 5.14.

Table 5.14: The RBO design requirements in Example 2

Deterministic fs, min ≥ 1.5

Probabilistic

Total Internal, pfinternal ≤ 1%

Total Compound, pfcompound ≤ 1%

Total Deep-Seated, pfdeep ≤ 1%

Total Sliding, pfsliding ≤ 1%

System Reliability, Rsystem ≥ 97%

5.4.2.2. Design process and results. With the required factor of safety equal to

1.5 and the target probability of failure set as 0.01%, the reliability-based optimization is



178

first carried out based on the critical zone and the critical surfaces located in the original

unreinforced slope (Figure 5.23); and has the initial optimal design derived as: 6 layers

of primary reinforcements uniformly distributed in the bottom zone that has the allowable

tensile strength obtained as 2291 lb/ft; 4 layers of primary reinforcements in the middle

zone that has the allowable tensile strength obtained as 1737 lb/ft; and 3 layers of primary

reinforcements in the top zone that has the allowable tensile strength equal to 1349 lb/ft. No

secondary reinforcements are placed inside; and the reinforcement layers are distributed

close enough so that it is not needed to wrap the slope face. As shown in Figure 5.24, the

reinforcements are all extended to the limits of the critical zone with the length obtained

as 30.30, 30.30, 30.30, 30.30, 31.89, 33.86, 35.67, 36.93, 37.78, 38.29, 38.52, 38.51, and

38.30 ft from bottom to top layer. The cost and the usage of the geogrid reinforcements are

consequently obtained as $95.63 and 450.95 ft2 per unit width of this cross section. Such

an optimization guarantees a minimum factor of safety equal to 1.5 and has the probability

of failure obtained as zero along the original critical surfaces addressed in the previous un-

reinforced slope. Therefore, the initial optimization is mainly driven by the deterministic

constraint instead of the probabilistic constraints regarding the probability of failure along

the critical internal failure surfaces. By performing a thorough slope stability analysis on

the basis of the initial design, the critical surfaces are updated with the probabilistic results

listed in Table 5.15. Having the total probability of failure obtained as 0.0033%, 0.4199%,

and 0.2079% corresponding to internal, compound, and deep-seated failure mode, the ini-

tial design has already met the design requirements as stated in Table 5.14 with a system

reliability derived as 99.37%. Furthermore, corresponding to the new critical internal fail-

ure surfaces located in the initial design (Figure 5.24), the probability of failure is derived

as 1.013×10−6% for the deterministic surface and 0.0010% for the probabilistic surface,
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Figure 5.24: The initial design with fs,req = 1.5, pfinternal = 0.01% in Example 2

both of which are greatly lower than the target probability of failure specified in the prob-

abilistic constraints as 0.01%. Therefore, no more optimization trial is needed; and the

design process can be terminated with the initial optimal result.

When sliding stability is taken into consideration, provided the reinforced zone has

a 30.3-ft long base width, the total probability of failure is derived as 32.12% that greatly

exceeds the acceptable level of 1%. Therefore, as shown in Figure 5.25, the lower level of

reinforcement layers (1st to 8th) are extended to a length of 37.00 ft to enhance the sliding

stability; and the corresponding total probability of failure is significantly decreased to

0.7182%. Based on the modification, probabilistic results are slightly different along with

the total probability of failure obtained as 0.0005%, 0.1515%, and 0.0203% corresponding

to internal, compound, and deep-seated failure modes; and the system reliability is finally
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derived as 99.11%. As a result, after the modification, it can be considered as the final

optimal design, that has the total geogrid usage obtained as 487.40 ft and the corresponding

cost as $104.69 per unit width of this cross section.

Figure 5.25: The modified design with fs,req = 1.5, pfinternal = 0.01% in Example 2

As shown in Table 5.15, when the required factor of safety is 1.5, the level of relia-

bility is extremely high, that has the system reliability above 99% alongwith the probability

of failure approaching zero along the critical surfaces. Therefore, it may worth it to seek

an optimal design that has the system reliability around the same level but with a lower

required factor of safety specified in the deterministic constraint that consequently leads

to a lower reinforcement cost. As a comparison, the RBO design is performed with the re-

quired factor of safety lower to 1.3 and the target probability of failure increased to 0.1%,
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Table 5.15: The RBO design in Example 2 (fs,req = 1.5, pfinternal = 0.01%)

Trial RBO Results Slope Stability Analyses

1

No. layer 6,4,3
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (lb/ft) 2291,1737,1349 fs pf (%) fs pf (%)

Usage (ft) 450.95 Internal 1.500 1.013E-6 1.661 0.0010 0.0033
0.630% 99.37%Cost ($) 95.63 Compound 1.554 0.0010 1.575 0.0077 0.4199

Face wrap NO Deep 1.525 0.0006 1.637 0.0007 0.2079

M

Final Design
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

No. layer 6,4,3 fs pf (%) fs pf (%)

Ta (lb/ft) 2291,1737,1349 Internal 1.500 1.013E-6 1.661 0.0010 0.0005

0.889% 99.11%
Usage (ft) 487.40 Compound 1.669 9.221E-6 1.688 1.333E-5 0.1515

Cost ($) 104.69 Deep 1.575 0.0004 1.637 0.0007 0.0203

Face wrap NO Sliding 1.902 0.0515 1.902 0.0515 0.7182

Note: M - Modified optimal design
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as described in the following Equation 5.22

min f (d,X,P) = Cost (5.22a)

sub. to: fs, min ≥ fs, req = 1.3 (5.22b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.22c)

pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 0.1% (5.22d)

Ta1 ∈ [1600, 2400] lb/ft, n1 ∈ [3, 6] (5.22e)

Ta2 ∈ [1200, 1800] lb/ft, n2 ∈ [3, 5] (5.22f)

Ta3 ∈ [900, 1000] lb/ft, n3 ∈ [1, 5] (5.22g)

where the upper and the lower bounds with respect to the design variables are correspond-

ingly modified. The optimal results are listed in Table 5.16, where 5 layers of primary rein-

forcements are uniformly distributed in the bottom zone with the allowable tensile strength

equal to 1788 lb/ft; 4 layers in the middle zone with the allowable tensile strength equal

to 1458 lb/ft; and 3 layers in the top zone with the allowable tensile strength equal to 991

lb/ft. If the reinforcement layers are all extended to the limits of the critical zone, the total

probability of failure is consequently obtained as 0.9027%, 0.3264%, and 0.2079% corre-

sponding to internal, compound, and deep-seated failure; meanwhile, the system reliability

is derived as 98.57% considering the above three failure modes. When sliding stability is

taken into consideration, as shown in Figure 5.26, the lower reinforcement layers (1st to

7th) are extended beyond the critical zone with a length of 37.00-ft to enhance the sliding

stability and decrease the corresponding total probability of failure to the acceptable level.
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Therefore, based on the modification made on the reinforcement lengths, the final optimal

design is derived with a total usage of 450.40-ft and a total cost of $81.08 per unit width of

this cross section. Compared to the results obtained in the previous case with the required

Figure 5.26: The modified design with fs,req = 1.3, pfinternal = 0.1% in Example 2

factor of safety specified as 1.5 (case 1.5), the system reliability is derived as 98.23% with

a required factor of safety set as 1.3 (case 1.3), that is approximately 0.88% lower than

the value obtained in case 1.5; while the total usage of the geogrids is decreased by 37-ft

per unit width, and the total cost is correspondingly reduced from $104.69 to $81.08 with

a set of lower allowable tensile strengths obtained in the optimization. Therefore, with a

required factor of safety reasonably decreased from 1.5 to 1.3, the level of reliability is

slightly influenced, but the reduction in the total cost is significant.
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Table 5.16: The RBO design in Example 2 (fs,req = 1.3, pfinternal = 0.1%)

Trial RBO Results Slope Stability Analyses

1

No. layer 5,4,3
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

Ta (lb/ft) 1788,1458,991 fs pf (%) fs pf (%)

Usage (ft) 420.06 Internal 1.300 0.0205 1.326 0.0682 0.9027
1.432% 98.57%Cost ($) 75.01 Compound 1.440 0.0018 1.490 0.0131 0.3264

Face wrap NO Deep 1.525 0.0006 1.637 0.0007 0.2079

M

Final Design
Failure

Critical det. Critical pro.
Total pf (%) System pf System Rs

No. layer 5,4,3 fs pf (%) fs pf (%)

Ta (lb/ft) 1788,1458,991 Internal 1.300 0.0205 1.326 0.0682 0.9365

1.766 % 98.23 %
Usage (ft) 450.40 Compound 1.624 0.0002 1.679 0.0016 0.1006

Cost ($) 81.08 Deep 1.575 0.0004 1.637 0.0007 0.0203

Face wrap NO Sliding 1.902 0.0515 1.902 0.0515 0.7182

Note: M - Modified optimal design
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5.4.3. Discussion. Compared to the traditional design procedure for geosynthetic

reinforced embankment slopes, the proposed reliability-based optimization design frame-

work has three primary advantages as demonstrated in Table 5.1. That is, in summary,

it enables an optimal design that guarantees a lower cost regarding the geosynthetic rein-

forcements; meanwhile, the technical design requirements are fully satisfied in both deter-

ministic and probabilistic aspects.

As discussed in Section 5.2, the critical deterministic rotational slip surface located

in the original unreinforced slope is traditionally the only reference design surface used to

determine the reinforcement length and the resistance force that needs to be provided by

the reinforcements to maintain the slope stability. However, from the above two numerical

examples, it is shown that the critical surfaces in a reinforced slope are probably chang-

ing with the reinforcement design. For instance, in example 1, the critical internal failure

surfaces obtained in the initial design (Figure 5.10) are different from the original critical

surfaces located in the unreinforced slope (Figure 5.9); and are continuously updated ac-

cording to the second design (Figure 5.11). Similarly, in example 2, the same observation

can be made for the critical surfaces as illustrated in Figure 5.23, 5.24, and 5.25. As a

conclusion, though the initial design enables the factors of safety along the original critical

surfaces above the required value, a new critical deterministic surface is most likely to be

generated at a different position with a minimum factor of safety which can be probably

lower than the acceptable level. Therefore, with a predetermined critical deterministic sur-

face used as the only reference design surface in the traditional procedure, it may lead to

an unacceptable design that fails to meet the design requirements. But with the proposed

RBO design framework, such a problem can be successfully resolved since the optimiza-
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tion yields to the deterministic constraint where the required factor of safety is specified.

More specifically, a thorough deterministic slope stability analysis is carried out with every

GA generation during the optimization to search for the new critical deterministic surface

along with the minimum factor of safety. In other words, the proposed RBO design is

performed on a ‘flexible’ critical deterministic surface that varies with the reinforcement

design. Therefore, through performing the proposed RBO procedure, an optimal design is

always guaranteed that has a minimum factor of safety no less than the required value.

If we take a look at the two numerical examples presented in the previous chapter

regarding the reliability-based slope stability analysis in Section 3.5, both of the reinforced

slopes are originally designed following the traditional procedure (Elias et al. 2001). In

example 1 (Section 3.5.1), to achieve the design factor of safety specified as 1.3, 12 layers

of geotextile reinforcements are uniformly distributed throughout the embankment slope

with an identical allowable tensile strength equal to 4.14 kN/m. However, as previously

discussed, the traditional design is developed on the basis of the critical surfaces addressed

within the original unreinforced slope. After placing geotextile reinforcement layers in-

side of the embankment, a new critical deterministic internal failure surface is generated

along with a minimum factor of safety derived as 1.188, which is lower than the required

value. On the other hand, it indicates the resistance force provided by the current reinforce-

ments is not enough. To enhance the slope stability, modification can be made by either

placing more reinforcement layers inside or increasing the tensile strength of the reinforce-

ments. Therefore, the problem still exists as how many layers are needed and how strong

the reinforcements should be; and is supposed to be even more complicated when both soil

variability and economic benefits regarding the reinforcement design are taken into consid-

eration. In general, through performing the proposed RBO design procedure, the preceding
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problems can be automatically resolved provided reasonable upper and lower bounds are

assigned to the design variables. As for example 1, with a required factor of safety set as

1.3 and a target probability of failure specified as 0.1%, the final optimal result is given

by 7 layers or primary reinforcements uniformly distributed throughout the embankment

slope with an identical allowable tensile strength equal to 9.14 kN/m, based on which the

minimum factor of safety is exactly equal to the required value as 1.3; and the system

reliability is obtained as 97.79%, approximately 60% higher than the level of reliability

corresponding to the traditional design. As previously mentioned in Section 5.4.1.3.2,

with a required factor of safety specified as 1.3, the optimal design is primarily controlled

by the deterministic constraint instead of the probabilistic constraints; in other words, it

is indicated such a required factor of safety is sufficiently high corresponding to this ex-

ample so that the probability of failure along the two critical internal failure surfaces are

both lower than the target value specified in the probabilistic constraints. Therefore, one

could repeat the traditional design procedure with different values assigned to the design

variables until the minimum factor of safety arrives at the required level, meanwhile, the

system reliability meets the target level of reliability. As previously demonstrated in Sec-

tion 3.5, the critical internal failure surfaces are probably located at different positions in

deterministic and probabilistic analysis, where the probabilistic surface is always situated

deeper than the deterministic one; and thereby, the reinforcements designed based on the

probabilistic surface should be accordingly longer. Since the traditional procedure is al-

ways carried out based on the deterministic surface without considering soil variability,

some reinforcement layers may not be long enough. And thereby, the total probability of

failure regarding the compound failure is relatively high and exceeds the acceptable level,

just as what happened in the initial design in case 1.3 as illustrated in Section 5.4.1.3.1. As
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a result, though it is possible to make the minimum factor of safety arrive at the required

level by repeating the traditional design procedure with various design alternatives, it may

still fail to guarantee the slope reliability above the target level.

Provided the technical design requirements are satisfied in both deterministic and

probabilistic aspects, economic benefits becomes an important factor that influences the

reinforcement design. In the proposed RBO procedure, the total cost corresponding to

geosynthetic reinforcements is considered as the objective function; and is minimized

through the optimization. As previously demonstrated in Section 5.4.1.4, in general, a

higher required factor of safety and a lower target probability of failure tends to achieve

a higher cost. However, if the optimization is mainly controlled by the deterministic con-

straint, the cost can be hardly influenced by the target probability of failure specified in the

probabilistic constraints; vice versa, the cost is affected mainly due to the target probability

of failure when the probabilistic constraints work as the primary control factor. Further-

more, in view of the distribution model assigned to the random variables, as discussed

in Section 5.4.1.4.3, with the same reinforcement design, log-normal distributions tend to

provide a lower probability of failure; in other words, a lower allowable tensile strength

is supposed to be derived with the target probability of failure fixed at a constant level.

Therefore, the total cost in the case of log-normal distribution is slightly lower than the

amount obtained in the case of normal distribution. Similarly, when the correlation co-

efficient is taken into consideration, as previously discussed in Section 3.5.3, the system

reliability increases when the correlation coefficient between friction angle and soil unit

weight changes from 0 to 1. Therefore, it is reasonable to believe with a target probability

of failure fixed at a constant level, a lower allowable tensile strength is supposed to be

derived with a higher correlation coefficient assigned between the random variables. As
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a conclusion, the total cost obtained with correlated random variables is supposed to be

lower than the amount obtained with uncorrelated random variables; and tends to decrease

with the increase of the correlation coefficient of soil properties for the embankment fill

and the foundation soil.

Compared to the conventional way that seeks an optimal design by manually re-

peating the design process with various design alternatives, the proposed RBO design

framework is more systematic, effective, and efficient especially when a large number

of design variables are involved. For instance, in example 1, two design variables are

involved, including the number of reinforcement layers and the corresponding allowable

tensile strength. Assuming the number of potential alternatives as nl and nT respectively

for the above two design variables, the traditional design procedure needs to be repeated

by a total of (nl × nT) times to address an optimal result. However, in example 2, there

are three reinforcement zones along with six design variables involved in total, including:

the number of reinforcement layers and the corresponding allowable tensile strength in

each reinforced zone. Assuming the number of potential alternatives as: nl1 and nT1 for

the bottom zone; nl2 and nT2 for the middle zone; and nl3 and nT3 for the top zone, the

number of trials that are needed to obtain the optimal result is significantly increased to

(nl1 × nT1 × nl2 × nT2 × nl3 × nT3). Therefore, to enhance design efficiency, the number

of design alternatives may need to be reduced; but meanwhile, the ‘best’ optimal result can

be probably missed. To be more specific, for example, if the required factor of safety is

specified as 1.3, with limited number of design alternatives involved in the optimization

process, it is probably to address an ‘optimal’ design that provides a minimum factor of

safety greatly higher than the required value, say 1.4; though the design still successfully

meets the design requirements and has the lowest cost among the whole set of alternatives,
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a better ‘optimal’ design seems available with a lower minimum factor of safety or even

identical to the required value. To address such a better optimal result, more design alterna-

tives are needed. In other words, to increase the optimization accuracy, the conventional

design process can be very time consuming with a large amount of design alternatives

involved, especially when the slope reliability is taken into consideration. As a compari-

son, through performing the proposed RBO procedure, as in example 1, when the required

factor of safety is specified as 1.3, the deterministic requirement is always satisfied with

a minimum factor of safety exactly equal to the required value since the optimization is

primarily controlled by the deterministic constraint. Similarly, in example 2, with a suffi-

ciently large required factor of safety specified in the deterministic constraint, theminimum

factor of safety obtained based on the final optimal design is identical the required value as

well. On the other hand, if the probabilistic constraints are working as the primary control

factor during the optimization, the probability of failure obtained along the critical internal

failure surfaces are always equal to the target probability of failure specified in the prob-

abilistic constraints. As a conclusion, provided the reasonable upper and lower bounds

assigned to the design variables, the proposed RBO design framework is more advanced

since it is able to address a ‘real’ optimal result which is bounded by the technical design

requirements embedded in either deterministic or probabilistic constraints.

5.5. SUMMARY

The optimization design is traditionally performed by manually assigning vari-

ous design alternatives to address an optimal solution with the lowest cost regarding the

geosynthetic reinforcements. Compared to such a conventional way, the proposed RBO

design procedure is more systematic and effective. It is able to maximize the economic
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benefits regarding the geosynthetic reinforcement design, meanwhile, enables the techni-

cal design requirements successfully satisfied in either deterministic or probabilistic aspect.

Furthermore, since the proposed reliability-based optimization design framework is devel-

oped based on the traditional design procedure stated in FHWA Mechanically Stabilized

Earth Walls and Reinforced Soil Slopes Design & Construction Guidelines (Elias et al.

2001), it is convenient to apply in practical design of geosynthetic reinforced embankment

slopes.
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6. PROPOSED DESIGN FRAMEWORK AND PRACTICAL APPLICATION

6.1. OVERVIEW

Generally speaking, the proposed reliability-based optimization (RBO) design frame-

work for geosynthetic reinforced embankment slopes (GRES) primarily incorporates: 1)

traditional deterministic slope stability analysis, 2) reliability-based (probabilistic) slope

stability analysis, and 3) reliability-based optimization. The applications of the preceding

analyses and algorithms have been demonstrated in the previous chapters with two hypo-

thetical numerical examples selected from FHWAMechanically Stabilized EarthWalls and

Reinforced Soil Slopes Design & Construction Guidelines (Elias et al. 2001) and Mirafi

Geosynthetics for Soil Reinforcement Design Manual, respectively. To further discuss

how the proposed design framework can be applied in practical, a case study is carried

out in this chapter on a practical engineering project: the design of the expansion of the

Cherry Island Landfill, Delaware. The landfill expansion involves the installation of pre-

fabricated vertical drains (PVDs) and the construction of a mechanically stabilized earth

(MSE) berm over very soft river sediments and dredged materials (Houlihan et al. 2010).

In the project, the MSE berm plays a dual role, compressing and consolidating founda-

tion soils while providing new disposal space. It was designed to be constructed with a

steep outer slope (1H:3V), to achieve which geosynthetic reinforcement techniques were

required. Therefore, the proposed design framework is mainly emphasized on the design

of the geosynthetic reinforcements in the MSE berm for the landfill expansion.

6.2. PROPOSED FRAMEWORK

The proposed reliability-based optimization design framework is developed on

the basis of the traditional deterministic design procedure as stated in FHWA Mechani-



193

cally Stabilized EarthWalls and Reinforced Soil Slopes Design & Construction Guidelines

(Elias et al. 2001). Implemented with probabilistic analysis and reliability-based optimiza-

tion technique, the whole design framework is summarized in Figure 6.1, wherein:

• In step 1, provided well-defined geometric and loading requirements, performance

requirements are established from both deterministic and probabilistic perspec-

tives, including: 1) the required factor of safety against internal, compound, deep-

seated, and sliding failure; 2) the maximum allowable total probability of failure

regarding internal, compound, deep-seated, and sliding failure; and 3) the accept-

able level of system reliability in view of the preceding multiple failure modes.

• In step 2 and 3, the engineering properties of both in-situ soils and embankment

fills are determined. Conventionally, the general engineering properties are usually

taken as the average properties based on field exploration and lab testing. But from

a reliability perspective, probabilistic characteristics are needed as well, including:

1) distribution model; 2) probabilistic parameters (i.e., standard deviation); and 3)

the correlation between random variables. As for the in-situ soils (i.e., foundation

soils), evaluation can be generally made of the amount data that would be needed

to characterize the subsurface conditions with a reasonably high degree of accuracy

(Houlihan et al. 2010). Increasing the number of tests increases the confidence that

the range of possible values has been determined and also increases the confidence

that the standard deviation on the mean is accurate (Baecher and Christian 2003;

Houlihan et al. 2010). But for the embankment fills (i.e., reinforced and retained

fills), since the embankment hasn’t been built during the design stage, the range

of the possible values and the standard deviations of their engineering properties

can be hard to obtain through field exploration or lab testing. In this situation,
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Establish the geometric, loading, and performance requirements for design. (1)

Determine engienering properties of the in-situ
soils in both deterministic and probabilistic aspects. (2)

Determine engineering properties of avaialbe fill
in both deterministic and probabilistic aspects. (3)

Evaluate design parameters for the reinforcements.

• Design bounds of allowable reinforcement strength and number of reinforcement
layers;

• Cost function related to reinforcement strength and unit price;

• Durability criteria;

• Soil-reinforcement interaction.

(4)

Check unreinforced stability of the slope to determine:

• Critical zone to be reinforced;

• Critical deterministic and probabilistic surfaces to be the reference design surfaces
in the following RBO design.

(5)

(6)

RBO Design Process

min f (d,X,P) = Cost
sub. to: fs, min ≥ fs, req

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal

pfpro,i = P
{
ginternal,pro (d,X,P) ≤ 0

}
≤ pfcri, internal

Ta(i) ∈
[
Tl(i), Tr(i)

]
for i = 1, 2, · · ·n ∈ [nl, nu]

Check reinforced stability of the slope through performing
both deterministic and probabilistic slope stabitliy analyses
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Figure 6.1: The proposed RBO design framework for GRES system
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estimations have to be made based on available fills.

• In step 4, referring to the technical design requirements stated in Section 5.3.2.1 and

current design manual (Elias et al. 2001), the design variables are defined, includ-

ing: 1) how many reinforcement zones are needed according to the slope height;

and thereby, how many design variables are to be involved; 2) the upper and lower

bounds of the design variables, that mainly include the allowable reinforcement

strength and the number of reinforcement layers; if multiple reinforcement zones

exist, the design bounds need to be assigned separately in each zone; and 3) the cost

function related to the reinforcement strength and the corresponding unit price.

• In step 5, a thorough slope stability analysis from both deterministic and proba-

bilistic perspectives is first carried out on the unreinforced slope to determine the

critical zone to be reinforced as well as the critical surfaces that are to be used as

the reference design surfaces in the following optimization design process.

• In step 6, reliability-based optimization is accordingly performed on the basis of

the critical surfaces located in the original unreinforced slope, followed by a thor-

ough slope stability analysis performed on the optimal solution to check whether

the reinforced slope meets the performance requirements established at the begin-

ning. If the requirements are successfully satisfied, sliding stability is to be further

checked especially from the probabilistic perspective; otherwise, the RBO is to be

repeated with the new critical surfaces updated in the reinforced slope along with

the optimized reinforcement design until the performance requirements are finally

satisfied.

• In step 7 and 8, the requirements for subsurface and surface water control are eval-

uated. And the specifications and contract documents are finally developed.
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6.3. CASE STUDY: CHERRY ISLAND LANDFILL

Cherry Island Landfill (CIL), owned and operated by Delaware Solid Waste Au-

thority (DSWA), has been used for municipal solid-waste (MSW) disposal since 1985.

Built on an old dredge disposal site at the confluence of the Delaware and Christina rivers

inWilmington, DE., the subsurface conditions at the site of the landfill consist of extremely

soft, compressible materials. By the early 2000s, the Cherry Island Landfill was nearing

its waste capacity and the DSWA needed to develop a plan to extend the life of the landfill.

However, as shown in Figure 6.2, the original landfill was geographically confined by the

Delaware River on the east, the Christina River on the south, Interstate 495 to the west,

and by dredge lagoons to the north, so horizontal land expansion of the facility was not an

option. The only option to increase the waste capacity of the landfill was a vertical expan-

Figure 6.2: The location of Cherry Island Landfill
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sion. As a result, in order to expand vertically, significant ground improvement measures

and reinforcement techniques would be required (Houlihan et al. 2010; Bygness 2012).

6.3.1. Project Description. Generally speaking, the expansion project was to in-

crease the disposal capacity of the landfill by raising the height of the waste by approxi-

mately 70-ft while providing the required stability (Houlihan et al. 2010). Considering the

soft subgrade at the site of the landfill, the expansion work primarily includes the instal-

lation of prefabricated vertical ‘wick’ drains in the foundation soils of the disposal area

to accelerate consolidation and soil strength gain; and the construction of a MSE berm,

having heights ranging from 30 to 60 ft. The wick drains and MSE berm are both to be

constructed around the perimeter of Phases III, IV, and V, as shown in Figure 6.3, and

will have a length of over 8,000 ft (Houlihan et al. 2010). The purpose of the perimeter

MSE berm were to 1) consolidate, and thus increase the shear strength of the foundation

soils; and 2) counterbalance the lateral load caused by the waste in the landfill (Houlihan

Figure 6.3: Plan view of Cherry Island Landfill, adpated from Houlihan et al. (2010)
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et al. 2010). Therefore, to maximize the strength gain in the foundation and because of

the horizontal space constraints, the berm was designed to be constructed having a steep

outer slope (1H:3V), and a mild internal slope (2H:1V). From the perspective of both cost-

effective and construction friendly, to maintain the stability of the berm, high-performance

geosynthetic materials were selected for reinforcement.

6.3.2. Current MSE Berm Design. As shown in Figure 6.4, the current design

of theMSE berm has high-strength polyester geotextile reinforcements installed at the base

of the berm with drainage sand to provide quality backfill and allows water to drain from

the PVDs. The bottom two layers of reinforcement played an extremely important role

in providing stability to the reinforced berm. As concluded in Table 6.1, these two lay-

ers consisted of TenCate Mirafi® PET1170 geotextile that has an extremely high ultimate

strength equal to 1,170 kN/m (80,000 lb/ft); and extended to a deep position with an em-

bedment length of 140-ft. At the mid-height of the berm, two additional long embedment

lengths of the high-strength Mirafi® PET1170 geotextile were used for additional stability.

The remainder of the berm was constructed using TenCate Miragrid® 20XT polyester ge-

ogrids with the embedment lengths ranging from 20 to 80-ft. The face detail consisted of

L-shaped wire baskets acting as a form for fill placement and woven polypropylene small-

aperture geogrid (TenCate Miramesh® GR) wrapped around the slope face for stability and

erosion control (Bygness 2012).

In summary, over 380,000 square yards of Mirafi® PET1170, 670,000 square yards

ofMiragrid® 20XT, and 315,000 square yards ofMiramesh® GRwere required to construct

theMSE bermwith the heights of 60 to 70 feet and a total perimeter length of approximately

8,700 feet (Houlihan et al. 2010; Bygness 2012).
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(a) Single-tier MSE berm

(b) Two-tier MSE berm

Figure 6.4: Geometry and reinforcement scheme for MSE berm
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Table 6.1: Geosynthetic products in the current MSE berm design in the CIL project

Type Tult Usage Detail

Mirafi® PET1170 1,170 kN/m
(80,000 lb/ft)

380,000 yd2
High-strength polyester geotextile
placed at the base and mid-height
of the berm for external stability.

Miragrid® 20XT 200 kN/m
(13,705 lb/ft)

670,000 yd2
Polyester geogrid placed within
the berm for internal (local)
stability.

Miramesh® GR 21 kN/m
(1,440 lb/ft)

315,000 yd2 Polypropylene geogrid for face
treatment and erosion protection.

6.3.3. Proposed RBO Framework in MSE Berm Design. In view of the large

amount of geosynthetic reinforcement needed in the expansion project, significant eco-

nomic benefits can be gained by optimizing the reinforcement design for the perimeter

MSE berm. The proposed RBO design framework can be applied to modify the reinforce-

ment design in the preceding MSE berm with an objective to optimize the geosynthetic

cost while providing the required stability and reliability.

6.3.3.1. Sections for analysis. As illustrated in Figure 6.4, two typicalMSE berm

schemes are involved: (1) single tier; or (2) two-stepped tiers. A total of eight sections lo-

cated in Phases III through Vwere selected for both design and analysis in consideration of

the unique features of landfill geometry (e.g., maximum height, bench location), founda-

tion stratigraphy (e.g., thickness of dredge/alluvium, thickness of the Potomac Formation),

and the other subsurface features such as the distance to the river and wetlands. As men-

tioned in Section 5.3.2.2, among the multiple failure modes that may potentially occur in

a GRES system, it is only the internal failure that has the failure surface passing all the
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reinforcement layers. In other words, the internal failure mode is considered the most sig-

nificant influence on the reinforcement design. Based on the ground improvements in the

foundation soils and the high-strength geotextiles installed at the base of the berm, the

design of the geosynthetic reinforcements inside of the MSE berm can be emphasized on

the local stability that primarily occurs within the berm and is highly dependent on berm

geometry. Therefore, due to the maximum MSE berm height of 60 ft, section A-A’ with a

single-tier geometry is selected as the most critical section to be designed and analyzed in

the following case study by implementing the proposed RBO design framework.

6.3.3.2. Subsurface conditions. As illustrated in Figure 6.5, below the waste and

the MSE berm, the stratigraphy at the CIL site includes dredge, alluvium, the Columbia

Formation, and the Potomac Formation. The Columbia Formation, encountered under the

dredge/alluvium, consists of poorly sorted, fine-to-coarse sand and gravel with silty sand,

Figure 6.5: The configuration of section A-A’
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silty clay, and clayey silt lenses of varying thicknesses. The Potomac Formation, which

underlines the Columbia Formation, consists of a brownish red, stiff to hard, heavily over

consolidated, clayey silt to silty clay, with traces of fine sand. On the river side of the

berm, the soil above the Columbia Formation is assumed to be alluvium. Through the

field investigations and laboratory testing performed by GeoSyntec in March and April

2002, the subsurface soil conditions were evaluated. A brief summary of the findings re-

lated to the properties for the selected section A-A’ are listed in Table 6.2. The backfill

Table 6.2: The material properties for section A-A’ at the CIL site

Material Condition c (psf) ϕ (◦) γ (pcf) γsat (pcf)

Waste Drained 0 33 60 100

Dredge/Alluvium
Undrained 0.29σv -

85 97
Drained 0 34

Columbia Drained 0 40 125 125

Potomac Undrained 4500 - 120 120

MSE Wall Soil1 Drained 0 29 90 90

MSE Wall Soil2 Drained 0 35 120 120

of the MSE berm requires features to promote drainage. From the cost-effective perspec-

tive, non-traditional, cohesionless materials such as dredge and fly ash are considered for

construction. The unit weight of the MSE wall soil is assumed to be 90 pcf with a friction

angle of 29 degrees, as MSE wall soil1 in Table 6.2; but for the lower 10 ft of the berm,

the unit weight is assumed to be 120 pcf with a friction angle of 35 degrees, as MSE wall

soil2 in Table 6.2. As for the foundation soils, the dredge primarily consists of sandy silty
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clay to clayey silt and varies in thickness from 30 to 40 feet. The alluvium is comprised of

clayey silts and silty clays with varying amounts of sand, organic matter and silty sands.

Because of the similar characteristics of the dredge spoils and the alluvium, these layers are

combined as one soil type in design and analysis. A series of PVD will be installed under-

neath and beyond the MSE berm to enhance the dredge’s ability to drain and accelerate the

dissipation of excess pore pressures generated during berm construction and subsequent

waste placement.

6.3.3.3. Simplified model. Based on the selected section A-A’ and the preceding

subsurface conditions, to implement the proposed design framework and improve design

efficiency, some simplifications can be reasonably made in the following aspects of model

geometry, optimized objectives, and loading conditions.

6.3.3.3.1. Model geometry. As shown in Figure 6.6, a single-tier berm is to be

modeled with a total height of 60-ft. The MSE berm is 41.5-ft wide at the crest and the

slopes on the external reinforced steepened slope at a 1H:3V and the internal slope at a

2H:1V.

6.3.3.3.2. Optimized objectives. In the proposed optimization design, the four

main high-strength Mirafi® PET1170 geotextile reinforcement layers as used in the cur-

rent design will remain, while the geogrid reinforcements will be optimized. Furthermore,

as previously mentioned in Section 6.3.1, one of the purposes of the MSE berm is to coun-

terbalance the lateral load caused by the proposed waste in the expanded landfill. In other

words, the MSE berm is working as a gravity retaining wall, that has the external stability

(i.e., sliding, overturning, bearing capacity, and deep-seated stability) mainly depending

on its gravity, shearing resistance between foundation and reinforced soils, and the engi-

neering properties of both foundation soils and backfill materials. Ground improvements
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Figure 6.6: The configuration of MSE berm model for section A-A’

were achieved in the foundation soils for soil strength gain and high-strength geotextile

reinforcements were installed for external stability. Therefore, the optimization design of

geogrid reinforcements can be mainly emphasized fro the internal stability of the berm

to achieve a stable steep outer slope without considering the effects form the foundation

soils. Accordingly, it is only the reinforced soils that the potential circular slip surfaces

pass through, as in the area shaded in Figure 6.6.

6.3.3.3.3. Loading conditions. In view of the proposed MSW to be placed in

the landfill, the local stability of the MSE berm may be influenced by the lateral forces

produced by the proposed MSW disposal. However, by modeling the entire landfill in

Slope/W, the proposed disposal seems hardly affect the local slope stability. Therefore,

the main static load considered in the slope stability analysis and design for the MSE berm

is the gravity alone. Furthermore, in view of the drainage features of the reinforced soils

(e.g., cohesionless backfill, geocomposite drainage chimney, and a backdrain), drained
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conditions of shear strength are considered in the optimization design.

6.3.3.4. Design parameters. According to the design recommendations stated in

Section 5.3.2, with a berm height of 60-ft, multiple reinforcement zonesmay be considered.

As shown in Figure 6.6, the berm can be basically divided into two primary reinforcement

zones: 1) the bottom zone, which is below the middle geotextile layers with a height of

19.50-ft; and 2) the upper zone, which is above the middle geotextile layers with a height of

37.50-ft and can be further divided into several sub-reinforcement zones. The design vari-

ables can be accordingly defined as demonstrated in Table 6.3. As previously mentioned

Table 6.3: The reinforcement zones and design variables

Reinforcement Zone Design Variables

Bottom nb, Ta (b)

Upper
uniform nu, Ta (u)
2 zones nu1 , Ta (u)1 , nu2 , Ta (u)2
3 zones nu1 , Ta (u)1 , nu2 , Ta (u)2 , nu3 , Ta (u)3

in Section 5.3, to simplify the problem, the geosynthetic reinforcements are supposed to

have the same tensile strength in each reinforcement zone. Therefore, two design variables

are assigned per zone, including: 1) the number of reinforcement layers, n, and 2) the cor-

responding allowable tensile strength, Ta. For example, for the bottom zone, there are two

design variables involved: d = {nb, Ta (b)}, where nb is the number of reinforcement layers

in the bottom zone, and Ta (b) is the unique allowable tensile strength of the reinforcements.

If the geogrid reinforcements are supposed to be uniformly distributed within the upper
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zone, four design variables are involved in total: d = {nb, Ta (b), nu, Ta (u)}, where except

for the two design variables assigned to the bottom zone, two more variables are included:

nu is the number of reinforcement layers in the upper zone, and Ta (u) is the corresponding

allowable tensile strength. If the upper zone is divided into two sub-reinforcement zones,

there are six design variables involved in total as: d =
{
nb, Ta (b), nu1 , Ta (u)1 , nu2 , Ta (u)2

}
,

where nu1 and nu2 are the numbers of reinforcement layers in the two sub-zones in the

upper zone, and Ta (u)1 and Ta (u)2 are corresponding allowable tensile strengths. And if it is

divided into three sub-reinforcement zones, a total of eight design variables are involved:

d =
{
nb, Ta (b), nu1 , Ta (u)1 , nu2 , Ta (u)2 , nu3 , Ta (u)3

}
, where nu1 , nu2 , and nu3 are the numbers

of reinforcement layers in the three sub-zones in the upper zone, and Ta (u)1 , Ta (u)2 , and

Ta (u)3 are the corresponding allowable tensile strengths. Since the reinforcement layers are

supposed to be uniformly distributed within each zone, the spacing between the neighbored

reinforcements can be accordingly calculated.

During the design stage, it is impossible to perform field exploration or lab testing

to obtain the engineering properties of the embankment fills since the MSE berm has not

been built yet. Therefore, the material properties are determined from the specified fill

materials and reconstituted soil specimens in the lab. Asmentioned in Section 6.3.3.2, from

the cost-effective perspective, some non-traditional, cohesionless material such as dredge

spoil is considered as the potential backfill for the MSE berm. Its probabilistic properties

(e.g., the coefficient of variance) are assumed according to the statistical estimations on

the numbers of the soil samples obtained from the dredge/alluvium layer in the foundation

soils as published by Houlihan et al. (2010). As summarized in Table 6.4, both friction

angle and unit weight of the MSE wall soils are considered as uncorrelated, normally-

distributed probabilistic variables with the coefficient of variance assumed within some
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published ranges (Houlihan et al. 2010).

Table 6.4: Summary of material parameters for design

Material Parameter Mean COV Distribution

MSE Wall Soil1
ϕ′ 29◦ 10% Normal

γ 90 pcf 7.2% Normal

MSE Wall Soil2
ϕ′ 35◦ 10% Normal

γ 120 pcf 7.2% Normal

Mirafi® PET1170 Ta 21,000 lb/ft Deterministic

6.3.4. Results and Discussions. The analysis is first carried out on the basis of

the current MSE berm design. With a total of 2,480 potential slip surfaces being searched,

the critical deterministic and probabilistic slip surfaces are respectively located correspond-

ing to internal and compound failure, as shown in Figure 6.7. The critical internal failure

surfaces that pass all the reinforcement layers happen to be located at the same position

in both deterministic and probabilistic analyses, with a minimum factor of safety equal to

1.94 and a probability of failure approaching zero. In other words, the total probability

of failure regarding the internal failure is approaching zero as well since the rest of the

internal failure surfaces all have a factor of safety even higher than 1.94 and thus a smaller

probability of failure that can be considered as zero. The critical deterministic and prob-

abilistic surfaces regarding the compound failure are slightly different but very close to

each other with a minimum factor of safety equal to 1.38 and a maximum probability of

failure as 2.1×10-7%. Since the search area is restricted within the MSE berm, neither

deep-seated nor sliding failures are considered. As a result, the system reliability is ob-
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Figure 6.7: The critical deterministic and probabilistic slip surfaces for current design

tained as 6.7×10-7%, which is mainly coming from the compound failure. On the other

hand, it is indicated the current reinforcement design guarantees a stable slope from both

deterministic and probabilistic perspectives.

6.3.4.1. RBO optimization design. To achieve the same performance in the opti-

mization design, the required minimum factor of safety and the target probability of failure

can be set as same with the values obtained in the preceding analysis. Thereby, the opti-

mization problem can be described by the following equations:

min f (d,X,P) = Cost (6.1a)

sub. to: fs, min ≥ fs, req = 1.94 (6.1b)

pfdet,i = P {ginternal,det (d,X,P) ≤ 0} ≤ pfcri, internal = 2.1× 10−7% (6.1c)
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pfpro,i = P {ginternal,pro (d,X,P) ≤ 0} ≤ pfcri, internal = 2.1× 10−7% (6.1d)

where the number of geogrid reinforcements and the corresponding allowable tensile strengths

are considered as the design variables. As discussed in Section 6.3.3.4, more reinforcement

zones assigned in the berm, more design variables are to be involved. Therefore, three

different situations are to be taken into consideration for comparison as discussed below.

Furthermore, with a target factor of safety set as 1.3 against sliding failure, the critical zone

that needs to be reinforced is determined through performing the slope stability analysis

on the original unreinforced slope as shown in Figure 6.8, where the critical zone has an

Figure 6.8: The critical zone and slip surface to be reinforced
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average width equal to 20.8-ft throughout the whole berm; and the critical slip surface is

located within the critical zone. Therefore, the geogrid reinforcements are supposed to

extend to the limit of the critical zone.

6.3.4.1.1. Two reinforcement zones. If the geogrids are uniformly distributed

throughout the upper zone, four design variables are involved and constrained as

Ta (b) ∈ [4000, 6000] lb/ft, nb ∈ [10, 18] , for the bottom zone (6.2a)

Ta (u) ∈ [3000, 6000] lb/ft, nu ∈ [16, 36] , for the upper zone (6.2b)

based on which the optimal design is derived as: in the bottom zone as highlighted in

green in Figure 6.9, a total of 15 layers of geogrid reinforcements are required with an

allowable tensile strength equal to 4060 lb/ft; and in the upper zone as highlighted in pink

in Figure 6.9, 22 layers of geogrid reinforcements are needed with an allowable tensile

strength equal to 3118 lb/ft. Since all the geogrid reinforcements are extended to the limits

of the critical zone, the total usage and cost are respectively obtained as 974.52 ft2 and

$419.12 per unit width of this cross section. Through performing slope stability analy-

sis, the minimum factor of safety against internal failure is derived as 1.94 along with a

zero probability of failure obtained from both deterministic and probabilistic perspectives.

As for the compound failure, the critical deterministic and probabilistic failure surfaces

are slightly different with the minimum factor of safety equal to 1.40 and the maximum

probability of failure obtained as 2.3×10-8%, as shown in Figure 6.9.
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Figure 6.9: The optimized design with two reinforcement zones

6.3.4.1.2. Three reinforcement zones. If the upper reinforcement zone is divided

into two equal parts, six design variables are involved and constrained as

Ta (b) ∈ [4000, 6000] lb/ft, nb ∈ [10, 18] , for the bottom zone (6.3a)

Ta (u)1 ∈ [3500, 5500] lb/ft, nu1 ∈ [9, 18] , for the upper zone 1 (6.3b)

Ta (u)2 ∈ [3000, 4000] lb/ft, nu2 ∈ [8, 17] , for the upper zone 2 (6.3c)

based on which the optimal design is derived as: a total of 15 layers of geogrid rein-

forcements are required in the bottom zone as highlighted in green in Figure 6.10 with an

allowable tensile strength equal to 4005 lb/ft. As for the upper zone, there are two sub-
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Figure 6.10: The optimized design with three reinforcement zones

reinforcement zones involved, that has 11 layers of reinforcements designed in the upper

zone 1 as highlighted in pink in Figure 6.10 with an allowable tensile strength equal to

3555 lb/ft, and 10 layers of reinforcements for the upper zone 2 as highlighted in orange in

Figure 6.10 with an allowable tensile strength equal to 3007 lb/ft. With all the geogrid re-

inforcements extended to the limits of the critical zone, the total usage and cost are derived

as 949.74 ft2 and $422.75 per unit width of this cross section. Through performing slope

stability analysis, the minimum factor of safety against internal failure is again derived as

1.94 along with a zero probability of failure in both deterministic and probabilistic aspects.

And for the compound failure, the critical deterministic and probabilistic failure surfaces

are located with the minimum factor of safety equal to 1.40 and the maximum probability

of failure obtained as 3.4×10-8%, as shown in Figure 6.10.
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6.3.4.1.3. Four reinforcement zones. If the upper reinforcement zone is divided

into three equal pars, a total of eight design variables are involved and constrained as

Ta (b) ∈ [4000, 6000] lb/ft, nb ∈ [10, 18] , for the bottom zone (6.4a)

Ta (u)1 ∈ [4000, 6000] lb/ft, nu1 ∈ [6, 12] , for the upper zone 1 (6.4b)

Ta (u)2 ∈ [3500, 4500] lb/ft, nu2 ∈ [6, 12] , for the upper zone 2 (6.4c)

Ta (u)3 ∈ [3000, 4000] lb/ft, nu2 ∈ [5, 11] , for the upper zone 3 (6.4d)

based on which the optimal design is derived as: a total of 14 layers of geogrid rein-

forcements are required in the bottom zone as highlighted in green in Figure 6.11 with

Figure 6.11: The optimized design with four reinforcement zones



214

an allowable tensile strength equal to 4131 lb/ft. As for the upper zone, there are three

sub-reinforcement zones involved, that has 8 layers of reinforcements designed in the up-

per zone 1 as highlighted in pink in Figure 6.11 with an allowable tensile strength equal

to 4153 lb/ft; 6 layers of reinforcements for the upper zone 2 as highlighted in orange in

Figure 6.11 with an allowable tensile strength equal to 3737 lb/ft; and 5 layers of the re-

inforcements for the upper zone 3 as highlighted in blue in Figure 6.11 with an allowable

tensile strength equal to 3117 lb/ft. With all the geogrid reinforcements extended to the

limits of the critical zone, the total usage and cost are derived as 874.78 ft2 and $442 per

unit width of this cross section. Through performing slope stability analysis, similar results

are derived. The minimum factor of safety against internal failure is obtained as 1.94 with

a zero probability of failure; while for the compound failure, the critical deterministic and

probabilistic surfaces are slightly different with the minimum factor of safety equal to 1.39

and the maximum probability of failure obtained as 8.4×10-8%, as shown in Figure 6.11.

6.3.4.2. Results comparison. For comparison, the optimal results and slope per-

formance are summarized in Table 6.5 and 6.6 along with the total usage and cost corre-

sponding to the various reinforcement design alternatives. By comparing the RBO designs

to the current design of the MSE berm, it can be noticed, with more reinforcement layers

placed in the bottom zone, the requirements for the reinforcement strength is decreased;

meanwhile, fewer reinforcement layers are needed in the upper zone provided a stable

bottom zone that has sufficient numbers of reinforcements placed inside.

On the basis of the same cost function as demonstrated in Equation 5.20, the pro-

posed RBO design always leads to a lower usage and cost regarding the geogrid reinforce-

ments compared to the current design. As illustrated in Table 6.5, the total costs of the

optimized designs are approximately 56% ∼ 60% of the original as-built design. When
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Table 6.5: Summary of slope performance, reinforcement usage and cost

Design alternatives Usage (ft2) Cost ($)
Internal Compound

pfs
fs, min pf , max fs, min pf , max

Current Design 995.72 746.42 1.94 0 1.38 2.10 6.70

RBO Design
2 zones 974.52 419.12 1.94 0 1.40 0.23 0.68

3 zones 949.74 422.75 1.94 0 1.40 0.34 1.02

4 zones 874.78 442.00 1.94 0 1.39 0.84 2.87

Notes:
1. Both usage and cost are for berm cross section with unit width.
2. The maximum probability of failure (pf , max) and system probability of failure (pfs) are in 10-7%.

Table 6.6: Summary of reinforcement design for the MSE berm in CIL project

Design Alternatives
Reinforcement Zones

Layers
Bottom Part Upper Part

Current Design n = 12, Ta = 5000 lb/ft n = 24, Ta = 5000 lb/ft 36

RBO Design

2 zones n = 15, Ta = 4060 lb/ft n = 22, Ta = 3118 lb/ft 37

3 zones n = 15, Ta = 4005 lb/ft
n = 11, Ta = 3555 lb/ft 36
n = 10, Ta = 3007 lb/ft

4 zones n = 14, Ta = 4131 lb/ft
n = 8, Ta = 4153 lb/ft

33n = 6, Ta = 3737 lb/ft

n = 5, Ta = 3117 lb/ft

we take a look at the slope performance, the optimized designs have the minimum internal

factors of safety maintained as 1.94 (the value in the original as-built design); while the

minimum compound factors of safety are slightly higher than 1.38 (the value in the origi-

nal as-built design) along with the maximum probabilities of failure that are approximately
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60% ∼ 90% lower than the original value of 2.10×10-7%. As a result, with saving around

40% ∼ 44% of the reinforcement cost, the proposed RBO design not only maintains the

slope performance at the same level, but offers an even more reliable slope system that has

the system reliability higher than the original as-built design.

On the other hand, as shown in Table 6.6, in view of the three different reinforce-

ment schemes considered in the RBO design, the more reinforcement zones assigned in

the MSE berm, the lower the total usage is obtained; but the corresponding allowable ten-

sile strengths are increased. Therefore, though the number of reinforcement layers is de-

creased, the design with more reinforcement zones leads to a higher total cost since the unit

price is always proportional to the reinforcement strength. Among the three reinforcement

design alternatives, the optimized design with two reinforcement zones has the lowest cost

as $419.12 per unit width of the berm along with a highest system reliability.

Since the proposed RBO framework is emphasized on the design of geosynthetic

reinforcement, the total cost herein is only referring to the reinforcements; excludes the

consideration of the installation costs, equipment and labor resources. As estimated by

Elias et al. (2001), the installation cost of geosynthetics is typically ranging from $0.30

to $0.90 per square meter. In other words, increasing the number of reinforcement layers

may lead to higher costs in labor work and more efforts in soil compaction and construc-

tion. As illustrated in Table 6.6, a total of 37 reinforcement layers are required in the op-

timized design with two reinforcement zones; 36 layers for the three-reinforcement-zone

design; and 33 layers for the four-reinforcement-zone design. Therefore, provided similar

slope performance, from the perspective of construction, the optimized design with four

reinforcement zones may be recommended since it has the smallest amount of geogrid re-

inforcements to be installed and the reinforcement cost is approximately 40% lower than
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the original as-built design.

6.4. SUMMARY

In this chapter, the proposed reliability-based optimization (RBO) framework is

successfully implemented in an engineering case study for the design of the MSE berm in

the Cherry Island Landfill expansion project. The optimization is mainly referring to the

geosynthetic reinforcement cost. The cost of constructibility and the complication due to

multiple zones and more layers in the cross-sections are not studied herein. Through com-

paring the RBO results with the current reinforcement design, it is shown the total cost

regarding the geogrid reinforcements are significantly optimized; meanwhile, the slope

performance is kept at the same level from both deterministic and probabilistic perspec-

tives, and sometimes even improved. In this case study, with a minimum factor of safety as

large as 1.94, the corresponding probability of failure is in a small magnitude of 10-7% or

10-8%. Therefore, the optimal solution is primarily controlled by the target factor of safety

instead of the probability of failure. Whenmultiple reinforcement zones are taken into con-

sideration, the number of design variables is increased. In this situation, the conventional,

manually-performed optimization process can be very time-consuming and probably fails

to locate the best solution due to the limited number of alternatives that can be manually

tried. But the proposed RBO framework enables a more systematic and effective optimiza-

tion to address the optimal design for the geosynthetic reinforced embankment slopes.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS

In this study, a reliability-based optimization (RBO) design framework is proposed

for the design of geosynthetic reinforced embankment slopes (GRES) with an intention to

minimize the geosynthetic reinforcement cost. Meanwhile, the framework ensures all the

design requirements are satisfied from both deterministic and probabilistic perspectives.

The proposed RBO framework is developed on the basis of the conventional design pro-

cedure stated by FHWA Mechanically Stabilized Earth Walls and Reinforced Soil Slopes

Design& Construction Guidelines (Elias et al. 2001); and primarily incorporates: 1) tra-

ditional deterministic slope stability analysis, 2) reliability-based (probabilistic) slope sta-

bility analysis, and 3) reliability-based optimization.

As discussed in Section 3, the probabilistic slope stability analysis is able to tell

how probable the slope can fail associated with the uncertainties in soil properties. Un-

like the traditional deterministic slope stability analysis that can only provide the factor

of safety individually regarding the various failure modes (i.e., internal, compound, deep-

seated, sliding, and etc.) that may potentially occur in a GRES structure, the proposed

probabilistic slope stability analysis is able to estimate the reliability corresponding to the

entire system, which is more thorough in evaluating the safety of the GRES. With different

failure mechanisms involved in the slope stability analysis corresponding to the multiple

failure modes, the formation of the limit state function varies. Therefore, the failure mode

that has the minimum factor of safety may not be the most probable failure mode since it

can still have a high probability of failure. Therefore, only considering the factor of safety,

a thorough evaluation of the system reliability is not possible. Furthermore, since both the
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factor of safety and the probability of failure aim at evaluating the slope safety, a lower fac-

tor of safety always comes along with a higher probability of failure. However, the factor

of safety computed through the traditional deterministic analysis is always unable to con-

sistently measure the risk associated with the uncertainties in soil properties. Therefore,

it may happen the slip surface with the minimum factor of safety fails to be the one with

the maximum probability of failure. This leads to two possible slip surfaces: the critical

deterministic slip surface with the minimum factor of safety and the critical probabilistic

slip surface with the maximum probability of failure.

In either design or analysis, from a reliability perspective, it is always essential to

estimate the probabilistic properties of the random variables to make their variations well

defined. Basically, it can be achieved by performing statistical inference on the basis of

the data observed from site characterization. Increasing the number of soil samples and

tests increases the confidence that the probabilistic characteristics of the soil properties are

accurate. However, those information can frequently not available for statistical estima-

tions; and sometimes, it can be even impossible to get any data for use. Often, assumptions

have to be made first considering some available fill materials. And thus, it is important to

know how those assumptions are going to influence the design and analysis. As presented

in Section 4, it is proposed a probabilistic sensitivity analysis (PSA) that is developed on

the basis of the most-probable point (MPP). Through performing the MPP-based PSA,

sensitivity measurements can be computed regarding each random variable involved in

the reliability-based design and analysis; and thus evaluate their significance on the slope

performance.

In the proposed RBO design framework, the probabilistic slope stability is one of

the primary sub-routines. It is embedded in not only the inner loop in the genetic algorithm
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optimization to evaluate the probability of failure along the two critical slip surfaces but

also the outer loop to check if the optimized design meets the design requirements. In the

traditional procedure, the critical deterministic slip surface that is located in the original

unreinforced slope is the only reference surface used for reinforcement design, and can

probably lead to an unacceptable design that fails to meet the design requirements. But in

the proposed RBO framework, the design is performed on a ‘flexible’ critical determinis-

tic surface that varies with each optimization generation. Therefore, it always guarantees

an optimal design that has the minimum factor of safety no less than the required value.

Furthermore, as previously mentioned, when soil variability is taken into consideration,

the critical deterministic and probabilistic slip surfaces may be located at different posi-

tions, where the probabilistic one can probably situate deeper in the slope. Therefore, the

reinforcement layer may not be long enough if it is determined only based on the criti-

cal deterministic surface. In the proposed design framework, both critical deterministic

and probabilistic slip surfaces are taken into consideration; and thus, such a problem is

successfully resolved.

In practical design of geotechnical systems, optimization is conventionally per-

formed by manually assigning various design alternatives in each trial; and thus select the

one with the lowest cost as the optimal solution. However, according to the design recom-

mendations (Elias et al. 2001), for the slopes higher than 6 m, it should be divided into two

or three reinforcement zones for reinforcement design. Therefore, the design variables will

be doubled or even tripled; and thus the number of potential combinations of the design al-

ternatives significantly increases. In this situation, the conventional, manually performed

optimization procedure can be very inefficient and probably fails to find the ‘best’ optimal

result due to the limited number of trials. But by implementing the genetic algorithm (GA)
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in the proposed RBO framework, such a problem can be resolved. And the design process

becomes more systematic and effective to maximize the economic benefits regarding the

geoysynthetic reinforcement design; meanwhile, meets the technical design requirements

in both deterministic and probabilistic aspects.

7.2. RECOMMENDATIONS FOR FUTUREWORK

This study has demonstrated the implementation of the reliability-based optimiza-

tion in the design of geosynthetic reinforced embankment slope. However, there are some

observations arising from the study that requires further investigation as stated below:

• With an emphasis on introducing the advanced numerical algorithms in GRES de-

sign, some simplifications were made on 1) the method of limit equilibrium, se-

lected as the ordinarymethod of slices, and 2) the rotational slip surfaces, defined in

shape of circular. In view of the preceding aspects, the proposed framework can be

further improved by implementing some other commonly-used slice methods, e.g.,

Bishop simplified, Janbu simplified, Spencer, or Sarma, and taking non-circular

slip surfaces into consideration.

• In either the preceding numerical examples or the engineering case study, the op-

timization design was performed on the basis of the cost functions estimated from

limited data collected from the US Fabrics. The estimation approximately repre-

sents the trend between the unit price and the tensile strength of geosynthetic rein-

forcements: for the same type of products, a higher tensile strength always leads to

a higher unit price. However, the cost information regarding the geosynthetic prod-

ucts are frequently varying with different projects, manufactures, and distributors.

Therefore, when implementing the proposed RBO design framework in practical
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cases, cost functions can be specifically estimated based on detail information.

• The application of the proposed study can be extended by incorporating the pro-

posed RBO design with some other geotechnical engineering aspects, such as,

earthquake, seepage, and etc..

• So far, most of the commercial slope stability design programs, e.g., Slope/W,

Slide, SVSlope, etc., are unable to perform optimization design on geo-structures.

Miraslope, which is a program published byMirafi, is only for the deterministic de-

sign of reinforced slopes and walls. Since the proposed framework is developed on

the basis of the current design manual, it can be expected to be embedded in some

existing programs to make the optimization design more convenient and effective

for designers.



APPENDIX A

VARIABLE TRANSFORMATION
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This appendix presents demonstrates themathematics involved in variable transfor-

mation in Section 3.3.1.1. This part of work is primarily summarized and concluded from

some previous works as driven by Cruse (1997), Higham (2002), Griffiths and Fenton

(2008), Du et al. (2010) and etc.. The variable transformation always varies with distribu-

tion types. As mentioned in Section 3.2.1, normal and log-normal are two most-commonly

used distributions for Mohr-Coulomb (MC) strength parameters and soil unit weights in

most of geo-related studies. Therefore, the following sections are discussed on the focus

of these two distribution models.

A.1. INDENPENDENT RANDOM VARIABLES

For independent random variables, Rosenblatt transformation can be directly ap-

plied to convert the variables into a non-dimensional, standard normal space according to

Equation 3.10, which is recalled and given below

ui = Φ−1 [Fi (xi)] (A.1)

where Fi(·) is the cumulative distribution function (CDF) regarding random variable xi

with Φ(·) representing its corresponding CDF in standard normal space.

A.1.1. Normal Distribution. If a random variable is normally distributed with

xi ∼ N (µxi
, σxi

), the transformation is derived as

ui = Φ−1 [Fi (xi)] = Φ−1

[
Φ

(
xi − µxi

σxi

)]
=

xi − µxi

σxi

(A.2)
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A.1.2. Log-NormalDistribution. If a randomvariable is log-normally distributed

with xi ∼ LN (µxi
, σxi

), the transformation is derived as

ui = Φ−1 [Fi (xi)] = Φ−1

[
Φ

(
lnxi − µlnxi

σlnxi

)]
=
lnxi − µlnxi

σlnxi

(A.3)

where

µlnxi
= lnµxi

− 1

2
σ2
lnxi

(A.4)

and

σlnxi
=

√
ln
(
1 +

σ2
xi

µ2
xi

)
(A.5)

where µlnxi
and σlnxi

are the mean and standard deviation of random variable xi in log-

scale.

A.2. CORRELATED RANDOM VARIABLES

For correlated random variables, to convert the original variables to a set of un-

correlated ones in a non-dimensional, standard normal space, the covariance matrix needs

to be transformed by going through the procedure as demonstrated in Figure 3.3 in Sec-

tion 3.3.1.1.
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A.2.1. Step 1: From {x} To {x̂}. The first step is to convert the original corre-

lated random variables to a set of reduced ones that are in standard normal space. Leaving

aside the covariance between the variables, the transformation in this step is exactly same

as the one presented in Section A.1. But regarding the reduced variables, an essential issue

is what happens to the covariance and correlated coefficient after the transformation. From

Equation 3.12 and 3.13, it is easy to have

ρxi,xj
= E

[
(xi − µxi

)
(
xj − µxj

)
σxi

σxj

]
= E

[(
xi − µxi

σxi

)(
xj − µxj

σxj

)]
(A.6)

If two correlated random variables, xi and xj , are normally distributed, according to Equa-

tion A.2, we can derive

ρxi,xj
= E [x̂ix̂j] = ρ̂ij (A.7)

where

x̂i =
xi − µxi

σxi

(A.8)

and

x̂j =
xj − µxj

σxj

(A.9)
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are the reduced variables with a new correlated coefficient, ρ̂ij , that is exactly same with

the original one. When xi and xj are log-normally distributed, lnxi and lnxj are both in

normal distribution. Similar to Equation A.6, we can derive

ρlnxixj
= E

[(
lnxi − µlnxi

σlnxi

)( lnxj − µlnxj

σlnxj

)]
(A.10)

where

ρlnxixj
=

ln
(
1 + ρxixj

σxi

µxi

σxj

µxj

)
√√√√ln

(
1 +

σ2
xi

µ2
xi

)
ln

(
1 +

σ2
xj

µ2
xj

) (A.11)

According Equation A.3, it is easy to have

ρlnxixj
= E [x̂ix̂j] = ρ̂ij (A.12)

where

x̂i =
lnxi − µlnxi

σlnxi

(A.13)
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and

x̂j =
lnxj − µlnxj

σlnxj

(A.14)

are reduced variables with a new correlated coefficient, ρ̂ij , that is same with the original

one in log-normal space. Accordingly, a new reduced covariance matrix,
∑̂

(= Cov [x̂]),

can be derived by being transformed from
∑

(= Cov [x]) based on Equation 3.14,

∑̂
ij
= Cov [x̂i, x̂j] = ρ̂ij (A.15)

and when expanded in matrix form, it becomes

∑̂
= Cov [x̂] =



1 ρ̂12 ρ̂13 · · · ρ̂1n

ρ̂21 1 ρ̂23 · · · ρ̂2n

ρ̂31 ρ̂32 1 · · · ρ̂3n

... ... ... ... ...

ρ̂n1 ρ̂n2 ρ̂n3 · · · 1


(A.16)

where ρij = ρji, that makes the matrix a real symmetric one (Hermitian matrix).

A.2.2. Step 2: Cholesky Decomposition. In linear algebra, Cholesky decom-

position is a decomposition of a Hermitian, positive-definite matrix into the product of a
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lower triangular matrix and its conjugate transpose, as given by

A = LLT (A.17)

where A is a Hermitian, positive-definite matrix, and L is a lower triangular matrix with

real and positive diagonal entries. In this situation, the algorithm for Cholesky decompo-

sition is given by

Lj,j =

√√√√Aj,j −
j−1∑
k=1

L2
j,k, (A.18)

Li,j =
1

Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
, for i > j (A.19)

However, as mentioned in Section 3.3.1.1, covariance matrix that has been proved to be

positive semi-definite may not be so ‘ideal’ for Choleksy decomposition. Thereby, unlike

the positive-definite matrix, the eigenvalues of which are all positive, there is a chance that

at least one eigenvalue of thematrix can be zero. In this condition, Cholesky decomposition

still exists but with a form as

PTAP = LLT (A.20)
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where P is the permutation matrix with real entries; L is unique in the form as

L =

L11 0

L12 0

 (A.21)

where L11 is a lower triangular matrix with real and positive diagonal entries. This part

of work has been maturely developed. Some computational packages, such as LINPACK

and a more advanced one LAPACK, can be directly applied to achieve the decomposition

in various situations.

A.2.3. Step 3: From {x̂} To {u}. Based on the previous preparation, the target

variables that are uncorrelated and in a non-dimensional, standard normal space can be

derived by

{u} = L−1
x̂ {x̂} (A.22)

where Lx̂ is the lower triangular matrix with respect to the reduced variables x̂.

A.3. CALCULATION EXAMPLES

As discussed in Section 3.2, in probabilistic slope stability analysis, cohesion and

friction angle are two primary random variables that are considered with a normal or log-

normal distribution in most of the related studies. Therefore, a calculation example is

demonstrated here as the practical application of the above algorithms.

A.3.1. BivariateNormalDistribution. Given as c andϕ are normally distributed

with c ∼ N (µc, σc) and ϕ ∼ N (µϕ, σϕ) and a correlated coefficient ρcϕ, the original co-
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variance matrix is give by

∑
= Cov [c, ϕ] =

 σ2
c φcϕ

φcϕ σ2
ϕ

 (A.23)

where φcϕ = σcσϕρcϕ. After transformed to standard normal space, the variables become

to ĉ and ϕ̂ with µ = 0 and σ = 1 and a correlated coefficient that is exactly same with the

original one ρcϕ. Then the covariance matrix is converted to

∑̂
= Cov

[
ĉ, ϕ̂
]
=

 1 ρcϕ

ρcϕ 1

 (A.24)

Assume a perfect positive definite covariance matrix, through algorithm A.18 and A.19,

the lower triangular matrix can be derived as

Lĉϕ =

 1 0

ρcϕ
√
1− ρ2cϕ

 (A.25)

Therefore, the target variables can be derived by solving

uc

uϕ

 = L−1

ĉϕ

 ĉ

ϕ̂

 (A.26)
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where

ĉ =
c− µc

σc

(A.27)

ϕ̂ =
ϕ− µϕ

σϕ

(A.28)

then finally given as

uc =
c− µc

σc

(A.29)

uϕ = − ρcϕ√
1− ρ2cρ

c− µc

σc

+
1√

1− ρ2cρ

ϕ− µϕ

σϕ

(A.30)

where uc and uϕ are uncorrelated, standard normal variables with respect to cohesion and

friction angle respectively.

A.3.2. Bivariate Log-Normal Distribution. Given as c and ϕ are log-normally

distributed with c ∼ LN (µc, σc) and ϕ ∼ LN (µϕ, σϕ) and a correlated coefficient ρcϕ, the

original covariance matrix is same as the one in the case of normal space (Equation A.23).

After transformation, the reduced covariance matrix becomes

∑̂
= Cov

[
ĉ, ϕ̂
]
=

 1 ρlncϕ

ρlncϕ 1

 (A.31)
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where ρlncρ can be computed based on Equation A.11. Similarly, assume a perfect posi-

tive definite matrix, through algorithm A.18 and A.19, the lower triangular matrix can be

derived as

Lĉϕ =

 1 0

ρlncϕ
√
1− ρ2lncϕ

 (A.32)

Through Equation A.26, where

ĉ =
lnc− µlnc

σlnc
(A.33)

ϕ̂ =
lnϕ− µlnϕ

σlnϕ
(A.34)

the target variables can be finally derived as

uc =
lnc− µlnc

σlnc
(A.35)

uϕ = − ρlncϕ√
1− ρ2lncϕ

lnc− µlnc
σlnc

+
1√

1− ρ2lncρ

lnϕ− µlnϕ
σlnϕ

(A.36)

where uc and uϕ are uncorrelated, standard normal variables with respect to cohesion and

friction angle respectively.
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LATERAL EARTH PRESSURE THEORY
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This appendix presents the generalized extension of two classical lateral earth pres-

sure theories: Coulomb’s theory and Rankine’s theory, that are involved in the sliding anal-

ysis of geosynthetic reinforced slope system in Section 3.4.2.2.1. This part of work is pri-

marily developed based on the previous works summarized by Leshchinsky and Boedeker

(1989), Leshchinsky et al. (1995), Elias et al. (2001), Craig (2004), Naresh and Edward

(2006), Coduto et al. (2011), and Das (2011) and the manuals of some geotechnical design

software that are specialized on reinforced slopes, such as MiraSlope, ReSSA, etc..

B.1. COULOMB’S THEORY

Basically, Coulomb’s theory is proposed to calculate the lateral earth pressure on

a retaining wall with granular soil backfill, when extended to slope stability analysis, it is

suitable for a uniform slope consisting of granular materials in dry condition. The deriva-

tion of active force Pa and Coulomb’s active earth pressure coefficient Ka has been con-

cluded in Section 2.2.1. But in a more generalized situation, that involves both cohesive

soils and groundwater, the active force and the lateral coefficient need to be re-derived by

taking equilibrium of the wedges. The procedure is demonstrated in the following sections.

B.1.1. Equilibriumof BackfillWedge. As shown in Figure B.1, the failure plane

in the backfill is assumed inclined at an angle β with the horizontal, on which there are

normal forceNa, shearing force Ta and the force due to the pore pressure Ua acting. From

Mohr-Coulomb failure criteria, for any point on the failure plane, we have

τ = c′b + σ′ tanϕ′
b (B.1)
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Figure B.1: The two-part wedge mechanism for sliding analysis in a generalized case

where c′b and ϕ′
b are the effective cohesion and friction angle of backfill soil, respectively.

If the soil properties are constant, it is easy to obtain

Ta = Ca +Na tanϕ′
b (B.2)

where Ta, Na and Ca can be derived by the integral as

Ta =

∫
τds (B.3)

Ca =

∫
c′bds (B.4)

Na =

∫
σ′ds (B.5)
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Based on Equation B.2, the forces acting on the failure plane can be conveniently repre-

sented by the cohesive force Ca and the resistance forceRa which is a combined of Ta and

Na and inclined at an angle of ϕ′
b with normal direction, as shown in Figure B.2. Taking

Figure B.2: The forces acting on the backfill wedge

the equilibrium of backfill wedge, we have


Wa = Pa sin δ +Ra cos (β − ϕ′

b) + Ca sin β + Ua cos β

Pa cos δ + Ca cos β = Ra sin (β − ϕ′
b) + Ua sin β

(B.6)

By solving Equation B.6, Pa can be derived as

Pa =

Wa −
[
sin β +

cos β
tan (β − ϕ′

b)

]
Ca −

[
cos β − sin β

tan (β − ϕ′
b)

]
Ua

sin δ + cos δ
tan (β − ϕ′

b)

(B.7)
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where

Ca =
c′b

sin β

∫ H

0

dz =
c′bH

sin β
(B.8)

and

Ua =
γw
sin β

∫ H

z̄

zdz =
γw

2 sin β
(H − z̄)2 (B.9)

and

Wa =
1

2 tan β
[
γ′
b (H − z̄)2 + γb (2H − z̄) z̄

]
(B.10)

with γb and γ′
b representing the bulk and buoyant unit weight of backfill respectively; z̄ is

the depth of ground water table; if z̄ > H , it means the groundwater is located beneath the

slope and its effects are not taken into consideration. By changing β, the failure plane is

altered until the maximum Pa is located; on the other hand, this problem can be solved by

addressing

dPa

dβ
= 0 (B.11)
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Once the maximum Pa is derived, it will be considered as the driving force when taking

the equilibrium of reinforced wedge.

B.1.2. EquilibriumofReinforcedWedge. FromEquation 2.1, the factor of safety

against sliding is computed by summing the horizontal forces that are acting on the rein-

forced wedge as shown in Figure B.1 and is given by

fs =
T

Pa cos δ
=

C +N tanϕ′

Pa cos δ
=

c′Lds + (W + Pa sin δ − uLds) tanϕ′

Pa cos δ
(B.12)

where c′ is the smaller cohesion of either foundation or reinforced soil; ϕ′ is the minimum

angle of either the shearing friction between reinforced soil and reinforcements or the fric-

tion of foundation soil; u is the pore pressure acting along the base of reinforced mass; and

W is the weight of reinforced wedge.

B.2. RANKINE’S THEORY

In Rankine’s theory, the wall is assumed frictionless; therefore, the δ that represents

the wall friction as shown in Figure B.1 is zero, which produces a horizontal active forcePa

that can be computed by Equation 2.6 and 2.7. Therefore, the factor of safety that against

sliding can be derived as

fs =
T

Pa

=
C +N tanϕ′

Pa

=
c′Lds + (W − uLds) tanϕ′

Pa

(B.13)

where c′ is the smaller cohesion of either foundation or reinforced soil; ϕ′ is the minimum

angle of either the shearing friction between reinforced soil and reinforcements or the fric-
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tion of foundation soil; u is the pore pressure acting along the base of reinforced mass; and

W is the weight of reinforced wedge.



APPENDIX C

GEOSYNTHETIC PRODUCTS
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The information of the geosynthetic products used in this study are all collected

from US Fabrics (www.usfabricsinc.com). Two types of geosynthetics that are frequently

used as reinforcing elements in embankment slopes are woven geotextiles and bi-axial

knitted geogrids. To estimate the relationship between price and tensile strength of geosyn-

thetic reinforcements, three woven geotextiles and three bi-axial knitted geogrids are stud-

ied with the engineering properties summarized in the followingmanufacturers data sheets.
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US 2600

Woven Geotextile

US 2600  is a woven geotextile made of 100% high-tenacity polypropylene yarns. US 2600  resists ultraviolet and biological deterioration, rotting, naturally
encountered basics and acids. Polypropylene is stable within a pH range of 2 to 13. US 2600  meets the following M.A.R.V. values except where noted:

 

PROPERTY TEST METHOD ENGLISH METRIC

Wide Width Tensile ASTM D-4595 2,640 x 2,460 lbs/ft (220 x 205 lbs/in) 38.5 x 35.9 kN/m

Tensile Strength @ 2% Strain ASTM D-4595 480 x 588 lbs/ft (40 x 49 lbs/in) 7.0 x 8.6 kN/m

Wide Width Tensile @ 5% Strain ASTM D-4595 1,212 x 1,356 lbs/ft (101 x 113 lbs/in) 17.7 x 19.8 kN/m

Wide Width Tensile @ 10% Strain ASTM D-4595 2,340 x 2,412 lbs/ft (195 x 201 lbs/in) 34.1 x 35.2 kN/m

Apparent Opening Size ASTM D-4751 30 US Sieve 0.600 mm

Permittivity ASTM D-4491 0.70 Sec-1 0.70 Sec-1

Permeability ASTM D-4491 0.04 Sec-1 0.04 Sec-1

Water Flow Rate ASTM D-4491 50 g/min/sf 2,037 l/min/sm

UV Resistance @ 500 Hours ASTM D-4355 80% 80%

ROLL SIZE ROLL DIAMETER AREA WEIGHT

15' x 300' 11.0 in 500 sys 240 lbs

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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US 3600

Woven Geotextile

US 3600  is a woven geotextile made of 100% high-tenacity polypropylene yarns. US 3600  resists ultraviolet and biological deterioration, rotting, naturally
encountered basics and acids. Polypropylene is stable within a pH range of 2 to 13. US 3600  meets the following M.A.R.V. values except where noted:

 

PROPERTY TEST METHOD ENGLISH METRIC

Wide Width Tensile ASTM D-4595 3,600 x 3,300 lbs/ft (300 x 275 lbs/in) 52.5 x 48.2 kN/m

Wide Width Tensile @ 2% Strain ASTM D-4595 540 x 540 lbs/ft (45 x 45 lbs/in) 7.9 x 7.9 kN/m

Wide Width Tensile @ 5% Strain ASTM D-4595 1,500 x 1,560 lbs/ft (116 x 130 lbs/in) 21.9 x 22.8 kN/m

Wide Width Tensile @ 10% Strain ASTM D-4595 2,400 x 2,400 lbs/ft (200 x 200 lbs/in) 35 x 35 kN/m

Apparent Opening Size ASTM D-4751 30 US Sieve 0.60 mm

Permittivity ASTM D-4491 0.52 Sec-1 0.52 Sec-1

Permeability ASTM D-4491 0.05 cm/sec 0.05 cm/sec

Water Flow Rate ASTM D-4491 40 g/min/sf 1,630 l/min/sm

UV Resistance @ 500 Hours ASTM D-4355 80% 80%

ROLL SIZE ROLL DIAMETER AREA WEIGHT

15' x 300' 13.0 in 500 sys 320 lbs

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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US 4800

Woven Geotextile

NTPEP APPROVED - GTX-2013-01-035. US 4800  is a woven geotextile made of 100% high-tenacity polypropylene yarns. US 4800  resists ultraviolet and biological
deterioration, rotting, naturally encountered basics and acids. Polypropylene is stable within a pH range of 2 to 13. US 4800  meets the following M.A.R.V. values
except where noted:

 

PROPERTY TEST METHOD ENGLISH METRIC

Tensile Strength ASTM D-4632 600 x 600 lbs 2,669 x 2,669 N

Elongation @ Break ASTM D-4632 20 x 15% 20 x 15%

Wide Width Tensile ASTM D-4595 4,800 x 4,800 lbs/foot (400 x 400 lbs/in) 70 x 70 kN/m

Wide Width Elongation ASTM D-4595 10.2 x 7.2% 10.2 x 7.2%

CBR Puncture ASTM D-6241 1,400 lbs 6,228 N

Trapezoidal Tear ASTM D-4533 200 x 200 lbs 890 x 890 N

Apparent Opening Size ASTM D-4751 80 US Sieve 0.18 mm

Permittivity ASTM D-4491 0.15 Sec-1 0.15 Sec-1

Water Flow Rate ASTM D-4491 10 g/min/sf 407 l/min/sm

UV Resistance @ 500 Hours ASTM D-4355 80% 80%

ROLL SIZE ROLL DIAMETER AREA WEIGHT

15' x 300' 16.0 in 500 sys 420 lbs

17.06' x 328' 18.0 in 621.7 sys 540 lbs

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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Microgrid

Bi-Axial Knitted Geogrid

STRATAGRID Microgrid™ is geogrid reinforcement for soil. These high performance geogrids are constructed of high molecular weight and high tenacity polyester
yarns utilizing a complex knitting process and polymer coating to provide superior engineering properties. Yarns are precision knitted into a dimensionally stable,
uniform network of apertures providing significant tensile reinforcement capacity. STRATAGRID is engineered to be mechanically and chemically durable, in both
the harsh construction installation phase and in aggressive soil environments (pH range from 3-9).

PROPERTY TEST METHOD ENGLISH METRIC

Ultimate Strength ASTM D-6637 Method A 2,000 lbs/ft 29.2 kN/m

Creep Limited Strength ASTM D-5262/D-6992 1,149 lbs/ft 16.8 kN/m

LTDS (SW, SP, SM, SC) LTDS or Tal 871 lbs/ft 12.7 kN/m

LTDS (GP, GW, GM, GC, SW, SP, SM, SC) LTDS or Tal 550 lbs/ft 8.0 kN/m

LTDS (GW, GP, GM, GC) LTDS or Tal 550 lbs/ft 8.0 kN/m

Molecular Weight (min.) GRI GG8 - 25,000 g/mol

Carboxyl End Group Count (max.) GRI GG7 - 30 Meg/kg

Aperture Size Measured .10 x .25 in 2.54 x 6.35 mm

ROLL SIZE ROLL DIAMETER AREA WEIGHT

8' x 225' 12.0 in 200 sys 65 lbs

REDUCTION FACTOR VALUE

RF(id) Soil - 20mm minus, D50 ≤ 0.2mm (SW, SP, SM, SC) 1.20

RF(id) Soil - 25mm minus, D50 ≤ 8mm (GP, GW, GM, GC, SW, SP, SM, SC) 1.90

RF(id) Soil - 50mm minus, D50 ≤ 20mm (GW, GP, GM, GC) 1.90

RF(d) (3 ≤ pH ≤ 9) (PET - CEG < 30, MW > 25,000) 1.10

SOIL INTERACTION COEFFICIENT VALUE

Silts/Clay (ML, CL) 0.6 - 0.7

Sandy Silts & Clay (SC,GC) 0.7 - 0.8

Poorly-Graded Sand & Gravel, Silty Sand (GP, GM, SP, SM) 0.8 - 0.9

Well-Graded Gravel, Sand Gravel Mix, Well-Graded Sand (SW, GW) 0.9 - 1.0

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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SG 200

Uni-Axial Knitted Geogrid

STRATAGRID is geogrid reinforcement for soil. These high performance geogrids are constructed of high molecular weight and high tenacity polyester yarns
utilizing a complex knitting process and polymer coating to provide superior engineering properties. Yarns are precision knitted into a dimensionally stable, uniform
network of apertures providing significant tensile reinforcement capacity. STRATAGRID is engineered to be mechanically and chemically durable, in both the harsh
construction installation phase and in aggressive soil environments (pH range from 3-9).

PROPERTY TEST METHOD ENGLISH METRIC

Ultimate Strength ASTM D-6637 Method A 3,600 lbs/ft 52.5 kN/m

Creep Limited Strength ASTM D-5262/D-6992 2,323 lbs/ft 33.9 kN/m

LTDS (SW, SP, SM, SC) LTDS or Tal 1,919 lbs/ft 28.0 kN/m

LTDS (GP, GW, GM, GC, SW, SP, SM, SC) LTDS or Tal 1,836 lbs/ft 26.8 kN/m

LTDS (GW, GP, GM, GC) LTDS or Tal 1,564 lbs/ft 22.8 kN/m

Molecular Weight (min.) GRI GG8 - 25,000 g/mol

Carboxyl End Group Count (max.) GRI GG7 - 30 Meg/kg

Aperture Size Measured .72 x .65 in 18.3 x 16.5 mm

ROLL SIZE ROLL DIAMETER AREA WEIGHT

6' x 300' 15.0 in 200 sys 96 lbs

12' x 225' 13.0 in 300 sys 142 lbs

REDUCTION FACTOR VALUE

RF(id) Soil - 20mm minus, D50 ≤ 0.2mm (SW, SP, SM, SC) 1.10

RF(id) Soil - 25mm minus, D50 ≤ 8mm (GP, GW, GM, GC, SW, SP, SM, SC) 1.15

RF(id) Soil - 25mm minus, D50 ≤ 8mm (GP, GW, GM, GC, SW, SP, SM, SC) 1.35

RF(d) (3 ≤ pH ≤ 9) (PET - CEG < 30, MW > 25,000) 1.10

SOIL INTERACTION COEFFICIENT VALUE

Silts/Clay (ML, CL) 0.6 - 0.7

Sandy Silts & Clay (SC,GC) 0.7 - 0.8

Poorly-Graded Sand & Gravel, Silty Sand (GP, GM, SP, SM) 0.8 - 0.9

Well-Graded Gravel, Sand Gravel Mix, Well-Graded Sand (SW, GW) 0.9 - 1.0

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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SG 550

Uni-Axial Knitted Geogrid

STRATAGRID is geogrid reinforcement for soil. These high performance geogrids are constructed of high molecular weight and high tenacity polyester yarns
utilizing a complex knitting process and polymer coating to provide superior engineering properties. Yarns are precision knitted into a dimensionally stable, uniform
network of apertures providing significant tensile reinforcement capacity. STRATAGRID is engineered to be mechanically and chemically durable, in both the harsh
construction installation phase and in aggressive soil environments (pH range from 3-9).

PROPERTY TEST METHOD ENGLISH METRIC

Ultimate Strength ASTM D-6637 Method A 8,150 lbs/ft 118.9 kN/m

Creep Limited Strength ASTM D-5262/D-6992 5,258 lbs/ft 76.7 kN/m

LTDS (SW, SP, SM, SC) LTDS or Tal 4,346 lbs/ft 63.4 kN/m

LTDS (GP, GW, GM, GC, SW, SP, SM, SC) LTDS or Tal 4,157 lbs/ft 60.7 kN/m

LTDS (GW, GP, GM, GC) LTDS or Tal 3,541 lbs/ft 51.7 kN/m

Molecular Weight (min.) GRI GG8 - 25,000 g/mol

Carboxyl End Group Count (max.) GRI GG7 - 30 Meg/kg

Aperture Size Measured 0.85/0.35 x 0.95 in 21.6/8.9 x 24.1 mm

ROLL SIZE ROLL DIAMETER AREA WEIGHT

6' x 300' 15.5 in 200 sys 145 lbs

12' x 225' 13.0 in 300 sys 216 lbs

REDUCTION FACTOR VALUE

RF(id) Soil - 20mm minus, D50 ≤ 0.2mm (SW, SP, SM, SC) 1.10

RF(id) Soil - 25mm minus, D50 ≤ 8mm (GP, GW, GM, GC, SW, SP, SM, SC) 1.15

RF(id) Soil - 50mm minus, D50 ≤ 20mm (GW, GP, GM, GC) 1.35

RF(d) (3 ≤ pH ≤ 9) (PET - CEG < 30, MW > 25,000) 1.10

SOIL INTERACTION COEFFICIENT VALUE

Silts/Clay (ML, CL) 0.6 - 0.7

Sandy Silts & Clay (SC,GC) 0.7 - 0.8

Poorly-Graded Sand & Gravel, Silty Sand (GP, GM, SP, SM) 0.8 - 0.9

Well-Graded Gravel, Sand Gravel Mix, Well-Graded Sand (SW, GW) 0.9 - 1.0

This information is provided for reference only and is not intended as a warranty or guarantee. US Fabrics assumes no liability in connection with the use of
this information (1/2014).

US Fabrics, Inc. | 3904 Virginia Avenue  |  Cincinnati, OH 45227 (USA)  |  Phone: 800-518-2290  |  Fax: (513) 271-4420
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