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ABSTRACT 

PEMFC - proton exchange membrane fuel cell is electrochemical devices producing 

electricity and heat from reaction between a fuel (often hydrogen) and oxygen. Therefore, 

energy production is generally clean and effective without burning the fuel like the tradition way 

in combustion engines. The obstacles encountered fuel cell commercialization are mainly due to 

expensive catalyst materials (Platinum) and long-term instability performance. For this reason, 

numerous investigations have been undertaken with the goal of developing low-cost, efficient 

electrocatalysts that can be used as alternatives to Pt. In this paper, a two-step procedure at room 

temperature was applied to prepare a bimetallic Pt-M(M = metal) supported carbon Vulcan. 

First, the chemical reduction of M metal ions by sodium borohydride in the presence of carbon 

powder is performed. Second, the partial galvanic replacement of M particle layers by Pt is 

achieved upon immersion in a chloroplatinate solution. The major size of synthesized metallic 

particles was around 2-3 nm. From the slope of Koutecky-Levich plot for ORR using PtM/C 

materials as catalysts it was found that the overall electron transfer number ranged from 3 to 4, 

leading to the suggestion of H2O2 formation as an intermediate of the ORR. 
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1. INTRODUCTION 

Fuel cells are attractive power sources for both stationary and electric vehicle applications 

due to their high conversion efficiencies and low pollution [1]. The commonest electrocatalyst 

for fuel cells is Pt, which is highly effective for accelerating the slow kinetics of oxygen 

reduction reaction (ORR) where io is 2.8×10
7
 mA/cm

2
 at 30 °C. However, challenges for this 

catalyst are its scarcity and high cost, as well as the poisoning by the intermediates of the fuel 

oxidation, such as carbon monoxide (CO). For this reason, numerous investigations have been 

undertaken with the goal of developing low-cost, efficient electrocatalysts that can be used as 
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alternatives to Pt. In recent years, bimetallic PtM materials have attracted much attention 

because of their active and stable electrocatalytic performance for alcohol oxidation and oxygen 

reduction reaction at low temperatures in proton exchange membrane fuel cells (PEMFCs). A 

variety of techniques have been applied to synthesize electrocatalysts for fuel cell, one of these 

is chemical reduction method [2]. The advantage of this method is generating nano alloy 

particles with comparatively unique size in short time. These extreme conditions allow 

homogenization of the alloy phases and lead to the formation of uniformly distributed and nano 

sized bimetallic materials [3]. In this work, nanoscale bimetallic PtNi, PtCo, PtCu catalysts on 

carbon Vulcan XC72R as supports were synthesized by reduction method under ultrasonic 

irradiation. The morphology, structure and specific area of synthesized materials were 

characterized by X-Ray diffraction (XRD), transmission electron microscopy (TEM). The 

catalytic activity for oxygen reduction reaction (ORR) of PtM/C was investigated by CV and 

linear sweep voltammetry (LSV) under simulated fuel cell working conditions.  

2. EXPERIMENTALS 

2.1. Synthesis of nano PtM/C catalysts 

Briefly, Ni(NO3)2(or Co(NO3)2.6H2O; CuSO4 -SigmaeAldrich) was dissolved in ultrapure 

water. After 15 min of constant stirring carbon Vulcan and citric acid (CA) was added to the 

solution. M material nanoparticles supported on carbon were formed by reduction of the metal 

precursor with NaBH4 which was added as a solid to the mixture in a weight ratio of 3:1 to 

metal. The resulting mixture was then left under constant stirring over night and the formed 

supported catalyst was collected via suction filtration, washed thoroughly with ultrapure water, 

ethanol, and acetone and finally dried over night at 80 
o
C. Afterwards, the synthesized M/C, CA 

and H2PtCl6 0.05 M (Aldrich) were dissolved in ultrapure water. After 1 hour of constant 

stirring, the mixture was treated with NaBH4 0.15 M which was added and left under stirring 

over night and the formed Pt(M) supported on carbon was collected via suction filtration, 

washed thoroughly with ultrapure water, ethanol, and acetone and finally dried over night at              

80 
0
C. The ratio of total metal loading to carbon support was 20 wt%.  

2.2. Electrode preparation 

2.50 mg of PtM/C (M = Co, Cu, Ni) (carbon Vulcan - supported) catalysts and 10 µl of 5 

wt% Nafion (Sigma Aldrich, 65 %) were added to 1.0 mL of ethanol solution. The formed ink 

was irradiated ultrasonically in 1 hour. A volume of 75 µl of the ink was dropped on a glassy 

carbon support (12.56 mm
2
), and the prepared working electrode was dried at room temperature 

in 1 hour.  

2.3. Physical – chemical and electrochemical characterization 

The morphology of catalysts was characterized by Transmission Electron Microscopy 

(TEM) using a JEOL JEM 1400 microscope at 120 kV. Brunauer-Emmett-Teller specific surface 

area (SBET) was determined by nitrogen adsorption measurement (QuantaChrome Autosorb 1C), 

remove gas at 200 
o
C for 2 h. 

The catalytic behavior of synthesized nano PtM/C was studied by cyclic voltammetry (CV) 

and chronoamperometry (CA) using potentiostat/galvanostat PGSTAT 320N (MetrOhm 

Autolab). The electrochemical measurements were performed in a three electrode cell with the 
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working electrodes (WE) being a glassy carbon foil covered by a Pt/C, PtNi/C, PtCo/C, PtCu/C 

film. A Pt wire of a geometric area about 1.41 cm
2
 was used as the counter electrode (CE) and 

an Ag/AgCl/3.0 M KCl was used as the reference electrode (RE) (0.21 V vs. SHE). The 

measurements were carried out at 25 
o
C in nitrogen (99.999 %) atmosphere. The electrochemical 

behavior of synthesized catalysts was compared with commercial Pt/C powder (Sigma Aldrich, 

loading 10%wt Pt on active carbon) (coded as Pt/C com).  

For ORR, a glassy carbon rotating disk electrode (GC-RDE) coated with PtM/C paste has 

been used as WE. The ORR kinetics was studied by linear sweep voltammetric (LSV) in the 

potential range from 0.8 V to -0.15 V with the scan rate of 10 mV/s. The rotating speed was set 

on different values and an oxygen-saturated 0.5 M H2SO4 was used. The saturated concentration 

of oxygen (25 °C) was 36.4 mg/L, measured by WTW Oximeter Oxi 538 with a WTW CellOx 

325 electrode. 

3. RESULTS AND DISCUSSION 

3.1. Structure, composition and size of the PtNi/C, PtCo/C and PtCu/C synthesised 

materials 

As shown in Fig. 1, TEM images  can be clearly seen that the metal nanoparticles with a 

narrow particle size distribution are uniformly dispersed on the surface of carbon. It showed that  

the particle sizes of PtM/C distributed from 1 to 5 nm with major part of 2 nm. Interestingly, the 

morphologies of the PtNi nanoparticles are generally spherical, and the mean diameter is almost 

mono-sized of 1 nm (Fig. 1a). Compared to PtNi/C, the PtCo/C and PtCu/C particles were larger 

and multi-distributed in size though they were synthesized with the same method. The BET 

surface areas (SBET) of synthesized PtM/C catalysts showed that  PtNi/C were higher than that 

of catalysts of PtCo/C and PtCu/C, which is obviously correlated with particle size. It results that 

PtNi/C possessed highest SBET and smallest particle size. Thus, it is inferred that, the size of 

PtM nanoparticles are influenced by the radius M metal atom. The calculated SBET of PtNi/C, 

PtCu/C and PtCo/C are 199.90, 177.60 and 115.13 m
2
.g

-1
, respectively. 

The XRD pattern of Pt/C catalyst shows in Fig. 2. The wide diffraction peak located at a 2  

angles of about 25.0
o 

is attributed to carbon (002) crystal face, which matches well with the 

standard C peak (JCPDS No.75-1621) [4]. The diffraction peaks of (111), (200) and (220) at 2θ 

values of 39.9
o
, 46.55

o
 and 67.85

o
 were characterized the face-centered cubic (fcc) structure of 

the synthesized Pt nano materials. Fig. 2  aslo shows the X-ray diffraction patterns of PtNi, 

PtCo, PtCu alloys catalysts deposited on Vulcan XC-72 carbon. However, the diffraction peaks 

at 40
o
, 46

o
, and 68

0
 display primarily the characteristics of fcc Pt without any trace of fcc M 

metal. And XRD patterns of PtM/C catalysts are gradually shifted to higher 2  angles with 

presenting M metal in Table 1. This indicated a contraction of the lattice and confirmed the 

formation of Pt–M alloys due to the incorporation of M metal into the fcc structure of Pt. No 

characteristic diffraction peaks of metallic or M oxides were detected, indicating that the 

oxidation of M can be effectively prevented by the use of flowing argon gas in the reduction 

process. The diffraction peaks of the PtM alloy catalysts were broader than those of Pt, which 

are due probably to Pt atom and M atom are only partially alloyed, and the residual M atom is 

oxidized. 
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                                         (a)                                              (b)                                                (c) 

  

                                       (d)                                               (e)                                                (f) 

Figure 1. TEM images of (a) PtNi/C,(b) PtCu/C, (c) PtCo/C catalysts and the particle size distribution of 

(d) PtNi/C, (e) PtCu/C, (f) PtCo/C catalyst. 

The diffraction peaks for Pt (111) and Pt (200) are used to estimate the particle size by the 

Scherrer’s equation: 

0.9

cos
D

B
 

 

Figure 2. XRD pattern of 20Pt/C catalyst and PtNi/C, PtCo/C, PtCu/C catalysts. 

Where D is average particle size (nm),   is wavelength, is the angle of Pt (200) peak and B is 

the full width at half-maximum in radians [5, 6]. The calculated average particle size of PtNi, 

PtCu and PtCo nanoparticles dispersed on carbon are 1.306, 2.869 and 3.4216 nm, respectively; 

which are well consistent with the TEM results.    
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Table 1. The shifted diffraction peak of PtM catalysts. 

Sample 2  

110 200 220 

Pt/C 39.46 46.41 67.46 

PtNi/C 40.20 46.81 68.02 

PtCu/C 40.02 46.71 67.85 

PtCo/C 41.11 46.77 68.80 

3.2. Electrochemical characterization 

 Electrochemically active surface area estimation 

The real electrochemical active surface area (ECSA) of a Pt-based catalytic electrode may 

be determined by the charge values of hydrogen adsorption-desorption on the electrode in 0.5 M 

HClO4. ECSA is calculated by ECA = QH/QM where QH (µC) is the charge associated with peak 

area in the hydrogen desorption region (-0.16 – 0 V). QM is the charge density associated with 

monolayer adsorption of hydrogen (210 µC.cm
-2

) [7, 8]. 

 

Figure 3. The CV curves of Pt/C, PtCu/C, PtNi/C and PtCo/C in 0.5 M H2SO4 solution from -0.1V to 

1.2 V at 25 mV.s
-1

 scan rate. 

Table 2. ECSA and if/ib of Pt/C, PtCo/C, PtCu/C and PtNi/C. 

Electrode ECSA (cm
2
/mg) 

Pt/C 0.18 

PtCu/C 0.55 

PtCo/C 0.45 

PtNi/C 0.65 
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Figure 3 shows the cyclic voltammograms (CV) curves of the studied electrodes from -

0.1V to 1.2 V at 25 mV.s
-1

 scan rate, high purity argon gas was used during the experiments. The 

results of calculation and the corresponding the different molar ratios of Pt to M  are shown in 

Table 2. Among the electrocatalysts, PtNi/C has the highest ECSA at 0.65 cm
2
.g

-1
, which is 

attributed to the smallest particle size of Pt nanoparticle loaded on the carbon [9]. 

Oxygen reduction reaction activity of PtM/C nanoparticle electrocatalysts 

Linear sweep voltammetric (LSV) profiles of PtM/C alloy electrocatalysts for ORR 

obtained from the rotating disk electrode (RDE) experiments and compared with that for 

commercial Pt/C catalyst are showed in Fig. 4. Obviously, compared to Pt/C and PtM alloys 

performed as much better catalysts for the ORR. At potential of -0.15 V and the same 1398 rpm 

rotating speed, the current density of ORR on PtM/C was from -1.2 to -1.7 mA.cm
-2

, compared 

with 0.15, -0.17 and 0.12 mA.cm
-2

 on the Ni/C, Cu/C and Co/C. Clearly, the presence of M in 

the Pt-based catalysts improved significantly their electrocatalytic activity for ORR. Thus, the 

low catalytic activity of Pt/C may be attributed to the large size of particles.  

 

Figure 4. The LSV in O2- saturated 0.5 M H2SO4 of PtCo/C, PtCu/C, PtNi/C and Pt/C catalyst. 

The onset potential (OP, V) as well as the mass activity (MA, mA/mgPt) and specific 

activity (SA, mA/cm
2
Pt) at 0.9 V vs RHE or at 0.7 V (vs. Ag/AgCl (NaCl 3M)) of PtM/C are 

showed in Table 4. According to Table 4, PtNi/C is the most active material for ORR with the 

high onset potential of 0.696 V (or with the low overpotential). Meanwhile, PtNi/C is the least 

active material since ORR which was catalysed by PtM/C has not begun yet at 0.9 V vs. 

Ag/AgCl (NaCl 3M). The worst activity of PtCo/C can be explained by the low proportion of 

active sites which can be seen in XRD, TEM results. Due to the low solubility of oxygen in acid 

media, the ORR depends strongly on hydrodynamic conditions. The polarization curves of 

PtCu/M electrocatalyst in oxygen saturated 0.5 M H2SO4 electrolyte were obtained by correcting 

the total current density at different rotation rate in Fig. 5.  



 
 
Some glycosides isolated from Desmodium gangeticum (l.) dc. of Viet Nam 

87 

 

Figure 5. The polarization curve achieved by LSV method in O2-saturated 0.5 M H2SO4 of PtCu at 

different rotation rate. 

Table 4. Onset potential, mass activity, specific activity at 0.7. 

Sample Eop vs Ag/AgCl (KCl 3M) (V) MA (mA.mg
-1

Pt) SA E = 0.70 V (mA.cm
-1

) 

PtNi/C 0.696 0.901 0.057 

PtCu/C 0,636 0.678 0.044 

PtCo/C 0.612 0.572 0.034 

Pt/C 0.507 0.500 0,035 

ORR in aqueous solution occurs mainly by two pathways: (i) the direct four – electron 

reduction pathway from O2 to H2O; (ii) the two-electron reduction pathway from O2 to hydrogen 

peroxide H2O2 [10]. The ORR mechanism is deduced from Koutecky – Levich equation. We use 

the overall electron transfer number (n) which is calculated from the slope (a) of Koutecky – 

Levich plots (1/i – 1/
1/2

) [11].  

 

Figure 6. Koutecky – Levich plot PtM/C alloys. The theoretical line is calculated according to Levich 

theory for a 4-electron O2 reduction process. 

The Koutecky – Levich plots of PtM/C from Fig. 6. show that the overall electron transfer 

number of ORR at most of the studied catalyst was from 3 to 4. Thus, it clearly proved the 

formation of H2O2 as an intermediate in the reaction. 
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4. CONCLUSIONS 

Different catalysts synthesized bimetallic PtM (M=Co, Cu, Ni) catalysts consist of 

spherical nanoparticles with 1 to 5 nm particle size. PtNi/C (carbon Vulcan supported) particles, 

mostly sized of 1 nm, were a little smaller than PtCo, PtCu (~3 nm). PtM/C material showed the 

best catalytic performance for ORR compared to other catalysts synthesized on the same 

support. It results that the electrocatalyst of PtM nanoparticles follow the order of PtNi/C > 

PtCu/C > PtCo/C. 
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