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ABSTRACT 

The effect which a growlng droplet has on the super

saturated atmosphere surrounding it is analyzed by assumlng 

a macroscopic diffusional growth mechanism involving both 

heat and vapor. The problem is solved, for cloud-chamber 

conditions, first for very short times assuming a fixed 

radius, and then for longer times assuming the establishment 

of 11 quasi" steady-state conditions. Knowledge of the way ln 

which droplet growth affects supersaturation is important ln 

the evaluation of nucleation rates. 
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CHAPTER I 

Introduction: 

For the past several years a primarily experimental 

endeavor has been underway with the atmospheric physics 

group at the University of Missouri at Rolla to measure 

homogeneous nucleation rates using a specialized cloud-

1 chamber. The overall purpose has been to provide various 

theories with a meaningfully accurate value of this rate 

with which different theoretical expressions could be com-

pared. Direct comparison, however, is thwarted by the fact 

that while experimentally measured nucleation rates neces-

sarily take place in an atmosphere partially relieved of 

vapor by droplets themselves, no such depletion is ac-

counted for in the usual theoretical development. Nor lS 

account taken of the evolution of heat from these droplets, 

which arises from the latent heat deposited by the incoming 

vapor. 

These effects suggest a pragmatic concept: dead space, 

the space around a droplet where warming and vapor depletion 

have reduced the supersaturation. We can conceive of such 

a volume, say Vd, as a spherical region concentric with the 

droplet, of outer radius d, 1.e. 

Inside this reg1on a supersaturation of unity is imagined 

to exist, so that the nucleation rate is zero. Outside the 



2 

region (r/ d) the bulk supersaturation, S(R,t), is imag

ined to exist . The validity of an experimental-theoretical 

comparison presupposes an estimate of the dead space magni-

tude as well as an assessment of its effect on the nuclea-

tion rate. Analyses of this sort have been made by 

Grayson 2 in this laboratory, and elsewhere both experimen

tally and theoretically. 3 The present paper addresses it-

self to a theoretical estimation of the dead space. 

Distribution of Drops in a Cloud-Chamber: Competition 

Effects : 

We begin by considering specifically the situation 

existing in the sensitive volume of a cloud-chamber during 

a controlled expansion. We will further specify the atmos-

phere to be composed of a vapor in dilute solution with a 

noncondensible gas. It is well-known that such an atmos-

phere wi ll, upon expansion, tend to divest itself of excess 

vapor by forming droplets either on "nucleation centers", 

such as ions or dust particles, or simply spontaneously, 

i.e. 1n the homogeneous nucleation here under consideration . 

We are led, then, to consider generally the emergence of 

I(S) nucleation centers (representing "potential " droplets) 

per unit volume per unit time attributable to the contin-

uing controlled expansion of the chamber above a certain 

critical supersaturation Sc. Here I = nucleation rate i n 

3 . d . droplets/em /sec, S = supersaturat1on, an t = t1me . A 

typical droplet of radius a(t) is surrounded by a random 
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collection of other droplets, nucleating and grow1ng. 

If we have a large number of drops, either by virt ue 

of a large sensitive volume, or by an average over a large 

number of identical expansions, every sufficiently large 

volume element will look like every other element. We can 

then speak of a number dn(m) per unit volume of droplet 

masses between m and m + dm, where m is the mass of the 

drop. Furthermore, if the h i story of the drop is known, 

this number can be specified at a time t . dn should be in-

versely proportional to the rate, R(m,t), of droplet growth 

at time t, and directly proportional to the number produced 

time t' ago which have attained the specified size range. 

We have: 

where since, 

then, k = 1. 

dm (;m) -

dfYYJ 
h I (S, () 

R(rm, t) 

dm R(rm,i) = d.J.m ~rm = k I (S, t') 
drm tm CL t 

dm = k J(st') df ' 

So the distribution for drop sizes is given by : 

(1.1) 
drn(tm) _ [(S,t') 
cJ. rm - R (rrn, t) 

with m and t ' connected by: 
t 

rm(t,t')-J R(rm,1") d?-' 

t' 



If, within the unit volume, S is a function of r, that is 

S = S(r,t), then the above formula lS invalid, and I must 

be replaced by: 

4 

while the rate, R, becomes a function both of the droplet's 

location and its history. If we now permit ourselves to 

.... 
regard R as independent of r, the previous population dis-

tribution holds, with I replaced by the above integral. 

This important assumption amounts to the exclusion of "com-

petition effects," i.e. two or more droplets competing for 

the same vapor, and considerably simplifies the problem of 

estimating a dead space. 

The Diffusion Equations for Drop Growth: 

We proceed, then, under the above restrictions, to fix 

attention on one droplet of this array and examine the ef-

fects this droplet may have on its circumambiant atmos-

phere. We can assure the independence of one droplet from 

another by describing a sphere around each droplet, the 

diameter, 2R, of which is roughly equal to the average dis-

tance between droplets. Regarding this sphere to be impen-

etrable (to both heat and vapor), in addition to providing 

an outer boundary condition for the problem, has the physi-

cal significance that only a limited amount of vapor lS 

allotted to the droplet, the rest being appropriated by 

other droplets in contiguous spheres. When the annular 
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region at the edge of a g1ven sphere is sensibly affected 

by events occurring at the droplet, competition is evident-

ly imminent, and the impermeability boundary condition must 

be abandoned. It may be added that any solution obtained 

ln the noncompetitive r~gime should be practically indis

tinguishable from that obtained by letting R go to infin -

ity; nevertheless, the existence of a finite R a t least 

serves to forecast graphically t he onset of competition, 

and may as well provide a "point of departure" for the 

treatment of competition. 

Turning to that region of the R-sphere which 1s af-

fected by the presence and growth of the droplet, we expect 

to observe the double diffusion of vapor toward the drop, 

and heat, given off by the condensing vapor, away from it . 

In brief, the drop acts as a source of heat and a sink of 

vapor. The amount of vapor available for condensation lS a 

function of the supersaturation, the knowledge of which is, 

of course, a consequence of solving the vapor-heat diffu-

sion problem. But at the outer edge of the sphere super-

saturation is a function of the applied expansion, i.e. of 

time alone. The same applies to the temperature, T, and 

the density, ;a . We thus envisage a homogeneously changing 

T (t) and ~ (t) upon which is superimposed a nonhomo-
o 1 o 

genous (but spherically symmetric) T (r,t) and ? Cr,t), so 

that the actual values of these variables may be written: 

T;, ( t) t- T( r-, t) 

(o(t) + f(r,t). 



Now the chamber achieves supersaturation by an expan

sion which occurs quickly enough so that central portions 

of the chamber remain "insulated" from the influx of heat 

from the outer walls, i.e. unit volumes 1n the sensitive 

volume stay adiabatic . 4 Then , since no heat flows in or 

out of a unit volume in this region, we can imagine the 

cooling to be effected by a homogeneous "sink" term . The 

sudden drop in vapor density can likewise be ascribed to a 

sink term , so that the two governing diffusion equations 

can be written: 

V [K(T)\lT]= ;; - t=; (t) 

where, D(T) = diffusion coefficient, 

k(T) = diffusivity, 

and, Ff and FT are sink terms . 

6 

At the surface of the drop the net influx of molecules must 

be the difference between those condensing and those evapo

rating. If an overall temperature T(a,t) can be associated 

with the drop (any d i ffusion inside the drop occurring in

stantaneously), this evaporation is expressible in terms of 

the condensation to the droplet under equilibrium condi

tions. Likewise at the droplet surface we must have a 

power balance equating incoming heat, due to condensation, 

with the outgoing diffusing heat plus the heat used in 

raising the temperature of the drop . The latter condition 
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can be written: 

+KV'T 
r=a. 

where, = density of liquid in drop, 

a(t) = radius of drop at time t, 

l(T) = latent heat of condensation of vapor, 

K(T) = thermal conductivity of medium ln which 

droplet lS immersed, 

and, cw = specific heat of liquid. 

Following Mason 5 the former condition will be replaced by 

requlrlng ordinary equilibrium between temperature and 

vapor density to prevail at the droplet's surface. This 

relationship is postulated to be of the form: 

The equation for a(t) is: 

f 
du(t) _ ]) '\7 

w cit - vr 
r= a. 

Finally the initial condition must be specified ln 

terms of the history of the droplet. The above equations, 

being macroscoplc, purport only to describe the physical 

situation existing when a(t) exceeds the mean free path,~, 

associated with the surrounding gas molecules. The impli-

cation is that this description "takes over" as soon as 

a(t)~ ~ . At this point of time we will provisionally 
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assume a reasonable initial condition has been presented to 

us, representing the tail-end of the solution of the prob-

lem worked out by kinetic theory methods, or by some other 

means valid in that region. Collecting equations: 

( l. 2) 

( l. 3) v[HT) vT] -= tJ- F, (t) 

(1.4) 

( l. 5) ,P(o,r) = ~~ (r) 

( l. 6) 

( l. 7) f[a (f), t] -'~aM Tm L o.(t) 

m 

( l. 8) ciT!. = ( 0( \lf +-f \7 T) I dt r=a.(f) r=a.{t) 

( l. 9) 

where, 

and D, K, k, and j are all functions of T. 



Aside from the assumptions already introduced, it is im-

portant to note that this description neglects (1) convec-

tive effects, (2) the effect that heat diffusion has on 

mass diffusion, and (3) the effect that mass diffusion has 

on heat diffusion. The last two assumptions, due to 

Neiburger and Chien6 , are a consequence of the assumed 

diluteness of the vapor. 

Evaluation of the Dead-space Parameter: 

9 

Given a solution to the above equations, we will be in 

a position to evaluate the dead-space parameter Vd. This 

is easily done if T(r,t) and;o(r,t) are known, since these 

determine the supersaturation . If we suppose S(r,t) to be 

obtained from T and;o, we can evaluate Vd according to: 

R 

I[~lt>,R][j7TR3- I!Jitl] f [S(t,,l] '1-n'dr 

a. lt) R 

(1.10) • VJ = 3 vR- [(5,r)r r 1/-- 3 'f7T " '-d . " I [S(t,R)] 

cJ.{t) 

Thus a knowledge of Vd follows directly from a solution of 

the diffusion equations. To solve this rather complicated 

set of equations some assumptions must be invoked. The 

next chapter gives a brief account of some customary sim-

plifying assumptions which allow a solution to the general 

diffusion problem. 
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CHAPTER II 

The object of this chapter is to present a general , if 

somewhat brief, survey of popular simplifying assumptions 

used i n the solution of diffusional droplet growth problems , 

along wi th some of their impli ed solutions . In pursuing 

t his object we will be led to a closer examination of the 

origin of the initial condition posi ted in the first chap-

ter . Details of droplet growth , insofar as they are de-

scribable by a macroscopic diffus ional mechanism , are here-

after assumed to be adequately represented by the equations 

collected in Chapter I . 

Probably the most widely used assumption (the so - called 

"quas i steady-state 11 assumption) secures considerable s i m-

plification by setting time derivatives of the dependent 

vari ables equal to zero: 

ff ;-;=o. 
Its justificati on, according to Riess and La Mer , appeals 

to the fact that when material diffuses from an infini te 

region to a s i ngle sink . . . "the flux of diffusing mat erial 

through any surface i n the diffus i on field is much greater 

than the rate of change of concentration on that surface . "
7 

A more extensive d iscussion of this point is given by 

Kirkaldy who especially investigates the spherica lly sym-

. 8 
metr1.c case. 

Of the many quas1. steady-state calculations 
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f d 9,10,11,12,13 M I b . 1 d per orme , ason s seems to e typ1ca , an 

the following treatment is based on his assumptions. Mason 

''starts" the droplet at its criti cal radius, that is the 

radius at which it is in unstable equilibrium with its at-

mosphere. He introduces values o f the diffusion constants, 

k and D, corrected for the region a~A, as constants ap-

propriate to t he average radi us in a step-wise calculation. 

The macroscopic equations us ed by Mason are, in the nota-

t ion of the present work, 

'F.. elF. ;\. ... ~::: ~-=VT===\7;::>= 0 
cJt Jt I 

fla) = f" exp(~ -r;_-:.~ ,,:LaM Ti;) 
M 

The las t equation is obtained by regarding the vapor as an 

ideal gas, and integrating the Clausius-Claperyon equation 

between {JR , j>{r) and TR' T, where ;O(a.? is the vapor 

density at the droplet, and ;DA that a t t he outer sphere. 

The steady- state solutions are: 

T ( r} = 7: - ~ R- r [-Tp_ - T ("' ) J
A r R - c.. 

( The above are valid for Mason ' s case, R=~, s1nce Lim 
R_, oo 

(R-r)/( R- a) = 1) 



Buecher has indicated that , 1n temperature ranges 

ordi narily of interest , terms to T2 in the vapor equilib

rlum cond i t ion yield excellent accuracy . 14 Hence we can 

put: 

00 

f(c.)-= l: am Tm(o.) ::: (" T '+ b T +eta. 
m=o 

Substitution of ;ocr) and T(r) into t he power balance 

equation , -]) R. V',o J = K 'JT/ gives : 
1 r~c;.. y,o 

PA -p(c..) 
r 1 7R- T(o..) 

= 

12 

Treati ng ( R-a)/R as constant, since its variation is of the 

order of A 0 fR'- which is usually small (this becomes exact 

for R = oo ) , we obtai n from, 

'l. 

;oca.) = ..t T(a) -t- b TtCt) -t- c. 

an express1on for the change in radi us squared : 

R-a. 
where, o<.» : RJ:> /-=<- "and, tX" = L..:-.-

R 1-< 

(Here again some average value of the radius , a, must be 

taken , or else set a= 0 which is valid for R = 00 ) . An 

areal dependence of the form, 

drop area =~Ta~L+ t · canst 

. 15 16 17 
1s obtained in agre ement w1th others. ' ' 
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Mason proceeds to estimate overall supersaturation 

change by applying quasi steady-state theory during short 

time intervals. After each interval he computes the vapor 

extracted from the system as well as the heat imparted to 

it. From this he calculates a new, homogeneous supersatu-

ration. His neglect of a radial dependence of S, discussed 

in Chapter I of this work, is regarded as an approximation. 

Mason compared reductions in nucleation rate with Frey's 

. t 18 . h. h . f exper1men s 1n w lC a supersaturat1on o 10.4 produces 

6 3 a maximum drop concentration of 1.8 x 10 drops/em , as 

compared with Mason's 3.8 x 10
6 

drops/cm 3 . 

Other authors, employing quasi steady-state techniques 

1n the macroscopic regime, attempt a more explicit connec-

tion with initial stages of growth occurring in the mlcro-

. . 19,20,21 B B k d B k 22 scop1c reg1me agge, ec er, an e ow , for 

example, resort to kinetic theory methods to calculate the 

net molecular flux associated with a drop of macroscopic 

s1ze. To do this they describe a sphere of radius a + A 

concentric to the droplet, where \ is the mean free path. 

Assuming the absence of collisions inside this sphere, they 

calculate the difference between the molecular flux ema-

nating from the inside of the spherical surface toward the 

droplet, and the evaporational flux originating at the 

surface of the droplet. The incoming flux is evaluated 

as if the vapor concentration were homogeneous, and the 

vapor an ideal gas, beyond a + ~ • The departing flux lS 

evaluated by assuming it to be the equilibrium flux at the 
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drop temperature . Identical flux calculations are explained 

more fully 1n Buecher's thesis 23 . The difference in these 

fl uxes, S, 1s used in: 

to evaluate the term in brackets. This term 1s then shown 

to match the usual gradients when r >>A , so that the 

11 microscopic:' regime is connected continuously to the 11mac-

roscopic" . 

A more detailed analysis has been attempted by Monchick 

and Riess 24 who did not assume a homogeneous vapor concen

tration beyond r + ~ , but instead used a non-equilibrium 

concentration . This led to a departure from the usual 

radial growth law of the form: 

do. a:- rn...r-
Jt --((-..... -

1+--:!. 
a+~ J> 

where, v = ~ m /lf" = collision frequency in molecules I area, 

and ;n = concentration of molecules, 

AI = average molecular speed. 

If D is taken to be (nv >-.)I 3, the growth law expressing con

stant areal velocity is confirmed for a >>'A 

Another method attempts to incorporate the mov1ng 

boundary condition directly into the diffusion equation by 

~-- r,.,.,.,jtm the introduction of an independent variable : 5 

If the variable 3 1s evaluated at a mov1ng boundary, e.g. 

r = a(t), an attempt can be made to choose norm so that~ 

is constant, and the trans formed problem is reduced to one 
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with a fixed boundary. The new variable transforms the 

diffusion operator, 

to, 

This expression can be put solely in terms of ~ by letting 

2n = m. Setting m = 1 one obtains: 

It is interesting to note that the relation 2n = m requires 

that we set d.T(a)_ O 
c:l t -

, at least if the dependence on 3 

alone is to be preserved. Hence insisting that 3 charac-

terize the diffusion problem automatically leads to the 

boundary conditions: 

The transformed equation has the property that a fixed 

boundary in 3 space implies a moving boundary, proportional 

to t-1 12 , in ordinary space. Solutions of the transformed 
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t . k d t b Ch b 25 C k 26 K. k 27 equa ~on are wor e ou y am re , ran , ~r aldy , 

and Frank28
. Kirkaldy obtains a result of the form derived 

from the previously discussed quasi steady-state theory , 

i.e. 

drop area = . t · c. on s t r Lf TT a
0
", 

but h e asserts that 0 this agreement should not be used as a 

justification for the quasi steady-state theory . The latter 

remains essentially incorrect mathematically, and g~ves the 

correct result only through a lucky combination of com

pounded errors and suitable geometry." 29 

Another solution, making use of ~s that of 

Riess and La Mer30 who attempt to introduce the mov1ng 
, 

boundary condition into a solution of 9 fJ =0 for a finite 

spherical geometry , that is for a drop grow~ng ~n an imper-

meable sphere as described in Chapter I. They account for 

the continuing supersaturation, but neglect the heat flow 

problem altogether . Their results, applied to aerosols as 

nuclei indicate that for all but the sparsest concentrations 

( 8 to 10 nuclei/cm3 ) spontaneous nucleation is effectively 

quenched . Their f astest supersaturations build up at a rate 

of 530 deg/sec which evidently permits extensive diffusion 

to occur. 

Finally mention must be made of Buecher ' s work in 

which a solution of the growth problem was performed for 

droplets of microscopic size. 31 Using simple kinetics, and 

assuming a homogeneous ideal gas around the drop, Buecher 

predicted a rapid establishment of a linear growth rate -



the linearity occurr1ng about at the time when temperature 

stabilization takes place. An attempt will later be made 

to use Buecher's calculation as an initial condition for 

the macroscopic problem. 

17 
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CHAPTER III 

In this chapter a solution will be presented which is 

derived from assumptions based on a re-examination of the 

physical situation pertaining to cloud-chamber measurements 

of nucleation rates. The solution will complement those 

discussed previously, and hopefully set some limits on 

their validity. 

Simplifying Assumptions: 

In the first chapter we imagined an array of tempo-

rarily independent drops growing and originating 1n a super-

saturated atmosphere. The cloud-chamber is able to produce 

such an atmosphere quickly, and maintain supercriticality 

(S )S ) from about .001 to several seconds. Because meas
c 

urement of nucleation rates becomes questionable for long 

growth periods, it 1s the brevity of these supersaturation 

pulses that claims our attention. 

s = s max 

s = s c t 

t = .01 second 

S = critical supersaturation 
c 

Figure 1. Typical Short Pulse Achieved by Rapid Expansion 
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Consideration of short pulses such as the one shown above 

will confine our interest to initial stages of droplet 

growth and prescribe, to an extent, our choice of simpli

fying assumptions. The earliest stage of droplet growth 

32 extends up to critical size. Farley has estimated its 

d . -5 urat1on to be of the order of 10 seconds, so that 1 n a 

typical short pulse critical size 1s attained almost instan-

taneously. Subsequent growth, up to macroscopic size, 

i.e . a~A , has been treated by Buecher whose results ln-

. -4 d1cate the time to be less than 10 seconds for a typical 

expansion . 33 It is clear, then, that sometime near the be-

g1nn1ng of the pulse, the supersaturated atmosphere is '' pre-

sented" with a growing droplet in the vicinity of macro-

scopic size to which the diffusion equations presumably 

apply. 

As 1n Chapter II, a simplification is sought which 

renders the problem solvable while preserving a semblance of 

physical reality. The discussion of that chapter disclosed 

a general tendency, in the literature, to assume that tran-

sient parts of the total diffusional growth process are 

comparatively short-lived, and that satisfactory results 

could be achieved by neglecting this phase o f growth alto-

gether . This neglect led to the development of a quas1 

steady-state theory which incorporated the effect of a mov

ing radius. However it is not apparent that quite short 

growth periods justify steady-state assumptions. The other 



20 

available alternative ~s to include the partial derivative, 

~1 , and the mov~ng radius by the transformation to ~ 

space. But it was seen in Chapter II that this forces sim

pli f ied boundary conditions on the problem, and does not 

a l low the continuing supersaturation to be taken into ac-

count. 

The above considerations suggest that perhaps a more 

exact approach to the problem, emphasizing its initial 

growth stages, is needed. Such a solution, it is hoped, 

would not only be usable in the analysis of unusually brief 

pulses, but also capable of evaluating the transient part of 

prolonged growth. 

Unfortunately, as far as this writer can see, retention 

of all transient terms prevent s closed form treatment o f a 

movlng radius. Nevertheless the fixed radius assumption 

frees the rest of the problem from the necessity of further 

serious simplification, and even this assumption can be 

a mended by noting that the solution so obtained includes a 

reasonably arbitrary initial condition. Thus the fixed 

boundary solution, valid f or extremely short times d uring 

which radial growth is negligible, may lend itself to a 

step-wise extension to longer times wherein the final solu

tion for any given step constitutes the initial cond ition 

f or the next. This solution should provide a criterion to 

determine the advent of steady-state (in which case simpler 

solutions can be used). We proceed, then, to a solution of 

the problem with a fixed radius. 
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Laplace Transform theory provides a straight-forward 

way of handling both diffusion equations along with their 

boundary conditions if the problem is linear. This re-

quires that we regard the coefficients D, 1, K, and k as 

average values over ranges of T appropriate to the problem. 

Also the quadratic, 

+ c 

must be linearized and fitted to the actual vapor equilibri-

urn curve. The steady-state temperature is sufficiently 

close to the initial drop temperature that the above ex-

pression, withe = 0, is a fair approximation. 

Initial Conditions: 

In keeping with the discussion above, the initial con-

dition will not be introduced in explicit form. The sim-

plest initial condition would be: 

a.<r L...R 

T{D,r)=~ 

where TR and ~R are the initial temperature and density 

respectively, and Ta is introduced to account for droplet 

heating that may have occurred during its growth history up 

to macroscopic size. This, of course, neglects heat pro-

duced and vapor depleted in the region around the drop. 
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Boundary Conditions: 

As previously mentioned, the outer boundary 1s an 1m-

permeable sphere, 

Here T also "builds up" inside the sphere R 1n the sense 

that heat exuded by neighboring drops tends to flatten the 

gradient at R. In effect there is competition among drops 

not only for vapor, but as well for a cooler "reservoir" to 

absorb heat produced at the surface r = a. Were it not for 

the presence of other droplets, such a reservoir would exist 

at large values of r. 

Transformed Problem: 

The Laplace transform of a function will be denoted 1n 

one of the following ways: 

- f oo -pt 
L H(t) -= h (f) = H < p) = 1-f ct > Jl. jt 

0 

where p is the trans fo rm variable, p = x + iy. In spherical 

coordinates \J.;l. is given by: 

r dr 

for radial symmetry. The transformed problem is : 

(3.1) 

( 3. 2) 
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with the boundary conditions, 

( 3. 3) 

(3.4) 

( 3. 5) 

where, 

and, 

For T(O,r) take: 

where, 

~-==Lim T(o1 r) 
+r--'> a. 

etc. for r (O,r). 

Explicit introduction of T will put the solution in a 
0 

form that will reduce unequivocally to the initial condition 

discussed on page 21. 

The heat diffusion equation with l'= ~/r becomes: 

Let, 
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where Y{, lS the homogeneous solution, and l/: , and lf;__ are 

particular solutions. With the boundary condition (3.3) in-

eluded, one obtains for the homogeneous solution: 

and for the first particular solution: 

For l/; take: f"J.. 

~ -= tfeto + f ='a~ (p) sin rn-rr ( r- C\) t- C L.. R-a. J 
m 

-o 
where Y: is imagined to be extended as an odd function, and 

f lS a solution to, 

I 1/ 0 
Substitution of ~ into 

;l 

gives, 

R 

' ?./(R-a.) J T' . "Y>T/ am(P)=- .,_ r (O;r) StY! _(r-a) Jr-
k(~~)+P R-u 

~-0. 
0. 

The condition (3.3) is satisfied if: 
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Take for f 

_d_f_!_LQ~(p)sin m][ (r-a)l = Tr ~Q~(p)rn{-t)"" 
dr Lr R-a.. j R(R-o.) 

r:R 
m m 

7[ I o.;, (p> rn (-I )m 

. . c k ( p) q ( p) = ~R..!_-_£7<.:-=---;::~"'--~;---~=--
k sinh Jf (R-a)-~ cosh Jf (R-et.) 

a'(p\= :azm a;.(p>H)m 

5= 1T 
R-a.. 

/Yl 

Collecting results, the transformed solutions may be writ-

ten: 

( 3. 6) 

~a:. :p) sin;;:_ (r-"-) + c, (pl/'(p) sinh {f(r-o.) 

/TI 
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( 3 . 7 ) 

+ ~:~Cp>5in""lT (r-<>)J- c,<pliUpl 51·Y"I~ lfcr.-a.) r R-v.. r ~:J> · 
/YY' 

where, 

(r-~)d.r-

H 

/17') - 2. R -o. 
a· (p) - ;).j(f.(-C()JfCo,r) r sin «n"Tr (r-c.) cl r 

J>(';_:J+ p 
'< 

and, _][_ I 0/Y>'(p)rm{-1) M-1 

~ ( 1:>) c:P ( p) =- _R,J -_a---;"""----'-.::::;:;----===------

RSinh{f(R-~<)-~~ co::.h{f (R-u) 

(3.6) and (3.7) can now be substituted into boundary condi-

tions (3.4) and (3.5) in order to determine A(p) and A'(p). 

With the abbreviated functions: 
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'11> (r) = Jf (R - r)- tanh-~~ 

the condition ( 3 . 4 ) 1s: 

( 3 . 8 ) 

where , 

h h jl-r(r)- 0,(p> / 
,(p)-= 1L_ 15) -t- c 

p f' 

and, 

Boundary condition ( 3 . 5) becomes , after some rearrangement: 

where, 

- h7..cp> 

h <p) = (-r:.-T )- flr(p) -r ""'TT '- ( ) .If O(B(p)C.J>(P> 
J. ~~. o Dl o.(R-u.)c a/1'1'1 p + ~1) a. 

rm 

;r ~ / .fp j3 C~<(p) ~Cp) 
-r p o.c,~-C<) o"" (p)m +vt: 

Q 
/)') 

Solving (3.8) and (3.9) for A(p) leads to : 
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+ ry· + ~:a-(pJ s•n{ ;.: (r-a~+ I£ (f) ;~cp) s•nhJ{; (r-~) 
1771 

and, 

+ ~ 0 1 (f) sin~ (r-Gt) + ll~p) C~c.(f) Sinh rr (r-a) ~ m R-~ r ~k 
,m 

where, 

and , 

Inversion of the Transformed Problem : 

The problem is now reduced to one o f inverting T and 

;o , which is to be attempted by using the inversion inte-
34 

gral . While the justification for the validity of the 
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abo ve solutions will be sought on physical grounds , that is 

by demonstrating the physical reasonableness of the solution 

1n terms of its initial and boundary behavior, some mathe-

matical facets of the solutions should here be pointed out . 

First, despite the ubiquity of square-root terms , the 

l . h b h . 35 h . . . 1 so ut1ons ave no ran c po1nts . T 1s 1s most eas1 y 

seen by noting that an expansion of the sinh terms around 

p = 0 will not produce a branch point (at p = 0) if this 

expansion is either divided or multiplied by p 112 . In

spection of (3 . 10) a nd (3 . 11) reveals that there are ex-

actl y enough such terms to be paired t o every sinh term . 

Second , in the contour relating to the inversion inte-

gral (shown), the contribution to the integral around ABCD 

i 8 
vanishes as/---" oo, where p = ;::> .Q. 

Appendix I . 

y 

B A 

This is shown in 

Figure 2. Inversion Integral Contour 
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The inversion integral is: 

r+; 

L~'frp) = -.;, ~:Jfrw- rJP 
t-yo 

Here 0 divides the complex plane into a right-hand reglon 

which lS free of poles and a left-hand region which is not. 

The existence of 36 is due to a theorem quoted by Scott. 

Finally it is argued in Appendix II (ultimately with 

the help of a plot ln the complex plane) that all singular-

ities occur along the non-positive real axis, and are given 

by the roots of: 

(3.12) 

These will be denoted by p 
fl. 

f.. = I, ;;L). - . 

Before performing the inversions, some abbreviated 

functions which are to be used will be collected here. 

P t-/> x /<. c v..) + h {)(. x.J> ( ~ ) 



~(r)= ~ {)(p) sinh~"J>(rl 
Sin h 'T].J> t cd 

a (pl = R~aLIY" a~ tpl (-t)~ 
!YYl 

a'Lp)-== ;.aLm "'; {p) (-1) m 

/)'l 

-I 

C~ ( p) = ~ 5 ;n), {f (R- o)-~ cosh Jf (R-o.1 

-I 

c K ip) =. ~ S in /, ff ( R -a ) - -Jf co >)., {f ( R -a.)} 

31 
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h.,.<p) ~ (T;.-To)- O,(p)+ cxn-~;Yna....,(p)-r·'f C4.@(p) Cp (f) pi a(R-a~ y~ a 

fYY' 

fo Ti .~ , ff' j3 c1~ (f>) g{_ (p~ 
r a(R-t::c >L_.m a, (p) +yk a . 

m 

Since convolution techniques are to be enlisted in the in

version of ;5 and T, the important individual transforms of 

the above functions will also be collected . To do this 

straight-forward summation of residues will be employed, 

. h . 1 " d . s 38 h follow1ng the tee n1ques out 1ne 1n cott. T e poles are 

d . 1 39 assume s1ng e. 

(3.15) C'3,(r) ~: 
R 

where 

Similarly, 

(3 . 16) 

where, 
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(3.17) 

In order to determine L-
1

h~(p) it lS necessary to find, 

where the symbol * represents convolution. The transform: 

can be performed by summation of residues around the contour 

ABCD shown in Figure 2. 

. m 1:;>. t L-v-r C,<[p) = _ s_, --'-~T=_J-_J _____ _ 
~~p·kra cosh [pj(R-u.)+-(R-c..) fP? sinh~pj·(f~.-~)l 

J J lR Vk V-f I< 'j 

where the p. 's are solutions to: 
J 

The other inversion 1s: 

R 

L am (p) =. .R... T (~ r-> r- sm m7T (r-o.) Jr. -} I - /<_,. t ;;L f 1 · 

R-o. R-c::t 

a 



Performing the convolution glves: 

L'l'l'(p) Ck(pl.JI L ll~ c. Cpj) ¥¥ pJ· t - k_.. t 
_R. -~ 

pJ· + 1<,., 
j,m 

where, 
R 

;- - rT(o,r) r s /n m-rr ( r-c.) d r "-:J . 1-:f-o... 

0. 

and, 

Likewise, 

This gl ves for L -J h~ ( p): 

L- , it ;t c p) =(~ - -r:: ) r ( t) - F;. ( t) + 0( IT ~ ll IYn ..e - ]),..,., t 
o.(R-o.)L., tm 

(I'Yl 

a2 1 * r/ -~,.,.t T ~ A c ( p. ) fj g_ - _u. 
ct h'l I< J k P·+ k 

m I J m 

where b" (t) is the Dirac Delta function. 

34 
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Inversion of T(p,r): 

The inversion of T(p,r) may now be written in terms of con-

volutions of the inverses calculated above. 

+L'a 1 (p)Stn mv (r-c..)+ 91
(p)C,<(P) sinh f"fYk (R-C<) f£_, m R-C{_ r VI: 

m 

_, ~--=- e.Rt'-:- _ ell.t L h;},.(p) §k(r)-= c-r;.-To)L.._'<(f£ 1r)y_ -L..-1<-[p,,r) F.{t)*..( 

; " 
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(3.19) 

where 

The remaining inversions have already been calculated . Col-

lecting terms , we can now write the solution for the temper-

ature as a funct ion of r and t . 

(3 . 20) 

TCr,t) "(T;.- To[ ..::_" ( p.,f).t p, L 7 , ( l'<,r) F,: (t )* -" p,t 

J l 
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t 

- k( o) XD(O) fc bF.;: -If) Jt- c( hF,.- if )2: -k cp,,rJXb~:·t 
o R 

Inversion of p(p,r-): 
I 

The inversion of j5 (f) r) proceeds much like that of 

T(p,r). 

+f c '[ -, (o) X, co) z -, Cp.,n X" 
~ 
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+ o< ~A,.., CJ) <fj) ~ p;' [.R ~·T_-2 P• ~ 
ct £. f.j r D/>¥' ]) pj- fJ. 

p, t -:D.,..t] 
.,( -~ - ( - f::>.t r) 

-.l> > fa.t-.J>,.,.,., 
17"',j)t. 

K" fl s ;., ..':'.!': (r-c. l ~ !l_ ~· <P,;) s inh.J¥ (r-"'). 
+ FL. m1 A-a. 'L 
~ nn,j 

The solutions are in terms of convolutions with FT(t) and 

F? (t) . These convoluti ons are easy to calculate if the 

form of FT(t) and F~ (t) are assumed to be parabolic, as 1n 

Appendix IV . 

(3.22) 
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The two equations (3.20) and (3.21) represent the solu

tion of the double diffusion problem cast into fairly gener

al form. The length of these solutions makes numerical 

evaluation rather difficult. In the next chapter numerical 

results will be obtained for a simplified problem with 

= 0. 
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CHAPTER IV 

The solution derived in the foregoing chapter can be 

shortened by simplifying the physical situation it repre-

sents. It will be seen that such simplification will yield 

a solution which can still provide much of the information 

desired, as well as a reasonably convincing argument for 

the correctness of the mathematics. In this chapter, there-

fore, we are concerned with numerical solutions pertaining 

to a simpler problem. Before developing these solutions it 

is necessary to discuss some intermediate steps which are 

common to all forms of T(r,t) and ;o<r,t). 

Preliminary Step~: 

First the transcendental equation must be solved, 

since any solution involves at least one sum over these 

roots. From Appendix II, the roots are expected to be real 

and negative. The substitution, 

g1ves 

- I I 

~ c ; nr) = C ,.,.- fiT":,- A. c of( a. rV- fc,.-,-~; ff) + 5. cof ( b.N -1o.n h. IV) 

where, 

Ao=: (3/Jk 

B =- bo</[1) 
0 
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The roots of this equation are calculable by means of a 

computer program presented in Appendix V. The smallest root 

is calculated with extra accuracy, and there is a special 

root, calculated separately in the program, near ~; 

otherwise the roots are rather close to the infinite dis-

continuities given by: 

and, 

The computer program is based on these values of v as first 

approximations to the actual roots. 

Second, the writer has found it help f ul to put the ex-

pressions ~ ~ '7 ~ and }(lcin fo rms into which one can 
-:P, -I<) ./"...,, 

explicitly substitute IPl' . The evaluation of these fol

lows: 

(4.1) 

. r@ (R- r)-ta ¥1-'RVJ.e!l J smL\Jf Jl; 

( 4. 2) 
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Analogous expressions are obtained for ~J~~)and )(~ 

Third, a mass influx calculation will be needed. For 

this we will use: 

( 4. 3) 

0 

where llm(t) lS the mass incremented ln a time t. The cal-

culation of 1J. rrn(t) is simplified by the identity, 

cl
d -:- ( p1 ,r) =- 'X_J> (p, ;r) - "I> (p1 , r) 
r -:D 

Finally, the calculations will be compared with quasl 

steady-state calculations which are solutions to the equa-

tions: 

At each timet, one puts: 

Tss (o.) = T (t,tA.) 

J;
5 

(R) = T (t,R). 

The right-hand values are those calculated from the correct, 

fixed radius, solutions. We can analyze the quasi steady-
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state approximation according to the following argument. 

The fixed boundary solution permits the calculation of a 

"virtual!' mass influx, that is, the influx which occurs 

when the drop radius does not grow into the surrounding at-

mosphere. The difference between this and the true mass 

influx will have to be considered small compared with either 

influx term . Also the mass of the drop , throughout its 

brief "growth" period, is considered constant, so that its 

contribution to the specific heat of the drop is necessarily 

neglected . However an averaged mass, somewhere between 

initial and final masses for a given growth period t , could 

be introduced as an approximation . The radial change is 

given by, 

1 t:J.rm 
3 ~ 

'" 'o 

where subscript zero denotes initial values . Now the valid

ity of an appraisal of a steady-state approximation will de 

pend on the condition that the variation of the steady

state solution with respect to the above change in radius 

be negligible. The valid ity of the steady-s tate approxima

tion then depends on the magnitude of its departure from the 

fixed radius solution. 

Numerical Solutions: 

The simplest physical problem to which the solution 

applies is that of a drop suddenly inserted into an atmos-

phere of constant supersaturation, where the drop is ini-

tially at the same temperature as the atmosphere. For these 
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conditions the boundary conditions g1ve simply: 

and, h._ (p)=O 

where, 
C '= b J: -jJof-C 

and where T
0 

and ;Do are the initial temperature and vapor 

density respectively. In this case the transformed solu-

tions reduce to: 

I 

( 4. 4) T= -~c 31<(p>r)XJ>fD) + T.jp 

( 4. 5) 

which have the inversions: 

( 4. 6) T( t) ,_ v ) ~- - -j~Jt 
r> .::- o< c ~ k (O}j~1:JD -!X c ~ ...::.._1<. (j>_,]) X:D Jl.. + T; 

f. 

(4.7) I.J(r, t) == c lm p+ ,Ja) ~J>(r,p) +c' '' 1<..-=-- lp r)~ +-p /L" [ X ~ LP+-jJX -Jp.lt 
I p- o p. -I> 

6
' I o 

~ 

where, if a <: < R, as will usually be the case, 

and, 
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In these solutions a constant steady-state temper ature and 

density would finally ensue given by : 

t;;-cxc' =::Kco)Xl>co) , and ;Oo - C' ~.}:; [P t- X I< ( 0. ~ ~.b ( p, r ) , 

that is at a value o f T h i gher t h an T
0 

and a value of~ 

lower than ;Oc· This fact, which 1s physically obvious, is 

attri butable to the sign of c '. For growth, equilibrium 

must be violated i n such a way that ~o is greater than its 

equi librium value . Of course the validity of the f i xed 

rad ius solution is destroyed long before true steady-s tate 

is ever reached . Our interest i s in the rapidly est ablished 

quasi steady- state solution . 

The sample problem to be considered first, while not 

d irectly applicable t o the problem posed at the outset of 

this study, will serve to lend plausibility to the solutions 

obtained, and perhaps have some bearing on the " quenching 

effect" of aerosol particles discussed by Riess and 

La Mer . 40 Data for a typical light expansion were obtained 

41 from Grayson . These are as follows : 

Supersaturation (S) = 5 . 89 

Initial temperat ure ( To) = -3.6°C 

Initial vapor density ( fo) 17 . 76 X 10-6 gms/crn . 3 
= 

Number of drops 
3 (N) = 8 per em 

Radius of drop (a) = .001 em . 

Radius of impermeabl e sphere (R) = . 3 em. 

The cloud-chamber gas is composed of Helium as a solvent and 

water vapor as a dilute solute . Experimental values for D, 
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the vapor diffusion coefficient, were found in an article 

42 
by Schwerz and Brow, and extrapolated down to the tempera-

ture of interest. The diffusivity was calculated for Helium 

43 
alone, following Bagge, Bekow, and Becker, from data 

available in the International Critical Tables. 44 Vapor 

equilibrium parameters were taken from Buecher's Thesis. 45 

Supersaturation curves corresponding to temperature and den-

sity solutions are easily computed from the definition: 

actual vapor density at temperature T 
s = 

equilibrium vapor density at temperature T 

In Appendix VII a sample computer program is displayed for 

the evaluation of the temperature. This is simply equation 

(4.6) with (4.1) and (4.2) directly substituted. The pro-

grams for density and mass influx are similar. Solutions to 

the 10 micron drop problem, with drop temperature equal to 

the initial ambient temperature, are displayed in Figures 3, 

. -4 -3 
4, 7 and 8, for two t1mes, t = 10 seconds and t = 10 

seconds. Also shown, for the same times, are the supersat-

. ( f k D . 46 h ) urat1on curves calculated rom Bee er- or1ng t eory 1n 

Figures 5, 6, 9 and 10 respectively. Each figure shows both 

the fixed radius solution and the quasi steady-state solu-

tion (provided they differ noticeably). The difference be-

tween quasi steady-state nucleation rate profiles and those 

for the fixed radius problem is surprisingly large when com-

pared with the corresponding difference in supersaturations. 

This difference is due to the high sensitivity of the nucle-

ation rate formulae to supersaturations above critical, and 



leads to a significant disparity, in the values for dead 

space volumes, which l i ngers on up to 1 0- 3 seconds when 
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steady-state and fixed radius solutions are nearly concur

rent . Mass influx calculations give , after 10- 3 seconds, 

::. ,Olf7 

which leads to less than a 2% change in radius , giving no 

detectable change in steady-state solutions . The present 

analysis appears to indicate that the growth of a 10 mi cron 

drop is entirely described by the fixed radius theory in 

conjunction with the quasi steady-state theory , and i n addi-

tion that the quasi steady-state theory holds for a large 

duration of the growth time . Additional graphs , for the 

same 10 micron drop problem , but now with an initial tern -

perature of -.1°C (where T = -3. 6°C) are shown in Figures 
0 

11 and 12 . The -.1° is obtained from Beucher ' s treatment .
4 7 

In each of the calculations it is easy to check that the 

condition 

is satis f i ed , and that: 

Furthermore , if the series solution is carried out far 

enough , the initial conditions emerge as time goes to zero . 

Additional solutions, along with per tinent data , are 

shown in Figures 13 and 14 for 1 micron drop radius . Quasi 



steady-state represents a good approximation 1n less than 

-4 10 seconds. At this time, 

!Jrm . It 
/}710 

and 
D. a - .Db. 

Qv -
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Now, while a 6% change in radius yields aga1n an undetecta-

ble change in the quasi steady-state solution, an 18% change 

in mass should lead to a protraction of the time it takes 

the fixed radius solution to concur with the quasi steady-

state solution. If the drop is endowed with a slightly 

greater mass, say about midway between initial and final 

-4 masses for t = 10 seconds, a certain nsluggishnessn should 

be observed. Despite this, Figures 15 and 16 show that the 

quasi steady-state solution is still reached before 10-
4 

seconds. It should be mentioned that at and below one micron 

the usual macroscopic theory begins to lose significance, 

since \, 
-5 the mean free path, is of the order of 10 em. 

for present conditions. 

In spite of the above reservations it is interesting to 

repeat the computations for a .5 micron drop. Table I shows 

-5 
an analysis of the fixed radius solutions for 10 seconds, 

-5 -5 . 2 x 10 seconds, and 5 x 10 seconds along w1th steady 

state solutions evaluated at the original radius of the 

drop, and at the radius it would have (if growth were possl

ble) at t = 2 x 10- 5 seconds. Again, an averaged mass 1s 

obtained by introducing an effective density of water. 



49 

-5 
In 10 seconds the largest departure of the fixed 

radius solution form the quasi steady-state solution 1s .36%. 

During this time mass i nfl ux is 8% and radial growth about 

3%. The situation has not changed much in 2 x 10-S seconds, 

except that the mass influx becomes large enough, at this 

point, to show a perceptible departure of the steady-state 

solution calculated by using the incremented radius, from 

the steady-state solution calculated by using the original 

radius. This departure is still somewhat less , however, 

than that between the fixed radius solution and the steady-

state solution. 

Assuming the validity of the fixed radius solution to 

-5 . f extend to 2 x 10 seconds, the max1mum departure rom 

steady-state, at 2 x 10-5 seconds is less than .3% (although 

it should be mentioned that the f orth place in vapor and 

temperature calculations is somewhat questionable due to the 

fact that the series solutions necessarily carry only a 

finite number of terms) . 

Quasi Steady-State Results: 

The above results appear to support an entirely steady-

state computation "starting", let us say, the droplet a t .5 

m1crons. The results of such a calculation are shown 1n 

Figures 15 and 16. It is hard to say precisely what error 

is incurred by assuming that the droplet attains a size of 

.5 microns ninstantaneously 11
; however the results of simply 

extending quasi steady-state theory to a = 0 put this time 

-4 at an order of magnitude of 10 seconds. 
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Extension to Higher Supersaturations: 

The approximate validity of a quas i steady-state ap

proach to the evaluation of dead space has been suggested, 

of course, only for the set of data presented on page 45. 

For higher supersaturations one expects the vali d i ty of the 

fixed radius solution to be more short-lived, while depart

ures of transient terms from steady-state solutions become 

larger. In short, the ultimate breakdown of the quasi 

steady-state approxi mation is anticipated as supersaturations 

are increased. Now we can increase supersaturat i ons s i mply 

by increasing the initial vapor density ( and thus the pre

expansion temperature). Aside from the comparatively slight 

changes in diffusion coefficients, this will cause essen-

t i ally two changes: (l) lineariz ation of the vapor-tempera-

ture equi librium boundary condition at a new point on the 
I 

actual curve, and (2) a change in the value of C As sum-

1ng, as suggested by Table I, that final quasi steady-state 

droplet temperature is attained "instantaneously", the va

l i dity of the quas i steady-state solutions then depends pri

mar ily upon the radial increment, s i nce thi s determines the 

time "allowed 11 for the transients to die out . A supersatu

ration which is augmented by increasing the initial densi ty 

(keeping the initial temperature the same) has the general 

eff ect of decreasing b, since the final t emperature and den

sity are increased, and lie on a f latter part of the vapor

temperat ure equi l ibrium curve. The decrease in b gi ves rise 

to a slower approach to equi librium; however for very small 
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droplets this retardation is virtually undetectable, and the 

initial mass influx in such cases appears to be rather in-

sensitive to changes in b. For longer times higher final 

density must lead to a smaller mass influx (for a given 

initial density). Thus, since we are interested ln an upper 

limit to the mass influx relinearization will be discounted 

as a deciding factor in its evaluation. This attributes the 

increase in mass influx to the lncrease in initial vapor 

density, f" , which gives rise to an increase in: 

I c 'I= I b ~ -ro + c J. 
But c' can be factored out of the equation for mass influx 

so that one can write, 

( 4. 8) 
( sJiF ), c, 
(drYn) 
dt;t 

c' 
l.. 

Returning now to Table I, and recalling the argument pre-

sented at the top of page 49, it may be verified from (4.8) 

that the mass influx can still be restricted to 24% ln a 

time of 10-5 seconds even if supersaturations of 10 are 

achieved. 

Conclusions: 

The fixed radius (macroscopic) solutions appear to 

justify steady-state methods down to drop sizes of the or

der of a mean free path. In this reglon, however, the 

macroscopic treatment breaks down, and kinetic theory 
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methods must be employed. For larger heterogeneous nuclei, 

the transient phase can be treated by the fixed radius solu

tion and the subsequent steady-state phase by steady-state 

theory. 
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TABLE I 

Density Profiles for Fixed Radius Solution and for Steady-State Solutions 

1 2 3 4 5 6 7 

r (em . ) -5 t=lO (sec . ) t=2xl0 -5 t=5xl0 -5 t=l0-4 j'ss(a) fss (ec-t.D.) 

.00005 8.65 8.66 8.65 8 . 65 8.66 8.66 

.00008 12.10 12.08 12.08 12 . 08 12 . 08 12.03 

.00010 13.25 13 . 23 13.23 13.22 13.22 13 . 18 

.00015 14.78 14.75 14.75 14. 47 14.73 14.71 

.00025 16 . 00 15 . 97 15.97 15 . 96 15 .95 15.93 

. 00040 16 . 69 16.65 16.65 16.64 16 . 63 16.62 

.00070 17.18 17.15 17.15 17.13 17 . 12 17.11 

. 02000 17.76 17 . 76 17.76 17.75 17.75 17.75 

Density profiles for fixed radius solution (columns 2-5) and for steady-state solutions 

(columns 6 and 7). Density is given in units of 10-
6 

gms/cm
3 

and r in em. Droplet 

radius is .5 microns (a = .00005 em) for all calculations except those of column 7 where 

a has been increased by 8% corresponding to the amount of mass increase at the end of 

-5 2 x 10 seconds . (T1 

w 
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APPENDIX I 

The transforms of 

(defined in Chapter III, pages 30 and 31) have been worked 

out by direct use of the inversion integral whose contour 

is shown in Figure 2 (page 29). The inverse is g1ven as a 

sum of residues enclosed by the contour ABCDE. Such an in-

verse is valid if it can be shown that the integrand van-

ishes along the contour ABCDE. To do this consider the in-

version: 

The contour will be split into two parts. The first part lS 

the semi-circle BCD including the point x = 0, where the 
;e 

complex variable lS given by: r =;;o~ · 
pression: 

where, 

and, 

Consider the ex-



We have: 

hence, 

{f (ct-r) 

Lin, lsi~~">JH(r) I <. ~ ,. ~ 1. 
~ .-,oo ~~n '?~<.(c.) 

Now consider: 

Excluding t emporarily the negative real axis ( $-#IT), the 

limit can be written: 

Therefore with these restrictions , 

L ,·)')? I XDrc:.)l = I~ ~ rr < ~~~ ~ 
(>~00 

Fina lly consider : 

~ ( p) =:. p + ~ +a.h ex + {[co tJ., '>'J~< (a) -4-- {{Co fh 1{~ {Cd 

as before with e ~ Tr. 

63 
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Hence along the contour the original integrand will be less 

than: 

Consider the contour integral: 

~15 +C{ ..£ d.9 Ji (I fP/ 1 ) fjJcos8 

In the limit ~-'HJo, this becomes: 

Jrr J- tr"s8Je 

which 1s even in e around the point 11 . 

(1- ~) 

Figure 17. Geometrical demonstration of 
the inequality: cos B 5 1- ~ JJ: £. & !:. 7/ - ..,. ) ... - -

Within the limits of integration, 

§:.e 
(1- a:)f 

(See Figure 17) 
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and direct integration between :g: and tr glves: 

The magnitude of~ can be chosen so that the value of 

the integrand for large ;a along the negative real axis 

(which was excluded above) is as small as desired. In this 

special case p = -;o The integrand lS: 

which goes to zero at large ;o except when ~ 

g( f ) . 
Now if p = x ± l f , then JP = A + iB, where 

As was done previously: 

whose maxlmum value is l. 

Next: 

A= k J IX± ~I'X'+-r 

8= J,: }N~k+/ ' 

(R-r)!Jk (A~ iB) 

I 
+a. 

t. I R-c.. .~ a. h h ---:;;;;;: v f ---.;.. ± .1 
vl> p~ o.o 

is a root of 
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Finally, 

from previous work, the coth terms can take on values ± l, 

as ;;~oo , and letting, 

one obtains: 

. 

'~(f)\~{ f> (;,.. ~ )~· + V" {i + ,;,)BJf 
As _;0~QO the 

I 

entire integrand lS seen to become proportion-

al to o/ . 
The other inverse, 

-I 

L ~k ( p, r) can be treated in the 

same fashion and its contribution to the contour ABCDE is 

also seen to vanish. 
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APPENDIX II 

The nature of the roots of g ( p ), that is whether they 

are real, complex , or pure imaginary , is most straightfor-

wardly determined by means of a plot in the complex plane. 

This plot can be localized somewhat , for a give n problem , 

accord i ng to the inequalities which are developed in thi s 

Appendix . 

From g(p ) = 0 , where z = p , we have: 

By means of the f ormulae : 

and , 

+ -1 I I 1-f ~ to.nh t:- =- ~ n 1_ 
2 

co th ~ = sin;).IX- 2.sin:;)1' 
COS :l.-;x - CoS ;;2'1 

this equation can be reduced to : 



where, 

and, 

_J_ -1 J.f 
- /o.n ---':!....--

' !)(- /Qt 
" 

Equating real parts of this equation glves: 

+- B s/nh ~( b"IX- ~b!;;. ) 

o Cosh).(k~- 31)-cvsJ..(bo:f_L>:b).· 

68 

The denominators of the right-hand terms are always positive , 

hence at least one of the right-hand numerators must agree 

with the left-hand term in sign . This requires x > 0, and 

leads to the inequalities: 

~b"/)( .(_ fnr_o+b:tX)~(b.,'J.t)"l. J 
- L(l- b"~J)()+-(b:1f · 

At least one of these inequalities must be sat i sfied for 

roots to exist. 

If the possibility x = 0 lS now excluded, and R lS 
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taken to be .3 em., a numerical evaluation of the above ln

equalities gives: 

-3.57 < -;} < 3.57. 

If, in addition, the inner radius lS taken to be less than 

20 microns, which for the present problem is always the 

case, we have C
0 

/Cx 2 + y 2 ) >1, so that the inequalities 

associated with the imaginary terms can be used, These are: 

For these inequalities the range of x lS further reduced to: 

3.S/ </X( 'f.;lC( 

And this additional restriction on x leads, from the "real" 

inequalities, to a further restriction on y: 

-/. ;1. < Jf< I.~ 

The above ranges in x and y can now be substituted into g(z) 

and a plot of the region can be obtained with the help of 

the computer. Such plots imply that roots exist only for 

X = 0. 



Some limits: 

l. 

where, 

2. 

where, 

3 . 

APPENDIX III 

Lim 
p~o 

s in h 1)1, ( r) _ 

Stnh /fjJ<(o.) 

3])a 
"L. 

- R~ 3 -a 

Lim Xk(Q) D 
p-4 0 XJ> (a) k 

r 
0. 

70 
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APPENDIX IV 

The " p ulse" form of a cloud - chamber expansion can be approx-

i mated by a parabola : 
T(t> 

1;,.·, .. . 

T(t} = T;;,_.,f + '+ (r,..,. ... - Tc .. ;t) t ( t:l t - t) 
(~tp 

Figure 18 . Postulated parabolic temperature 
dependence of cloud-chamber pulse . 

The "sink" term ~s g i ven by : 

F: (t) == r;. ( 6 t - ~-t) 
T 

where, 

A similar approximation holds for the density sink : 

where , 

1-. -
f> 

4- (Pm ,·, . - jJc r i f. ) 

(D.t:)-.. 
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APPENDIX V 

A computer program lS presented in this appendix which 

lS designed to find the roots of g(iv). The smallest (first) 

root is calculated in a separate program with extra accuracy. 

Also presented is a list of equivalent fortran variables 

used in the programs presented in this Appendix and Appendix 

VII. 
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A LIST OF VARIABLES AND THEIR FORTRAN EQUIVALENTS 

Variable Name Fortran Equivalent 

r X( I) 

t T(J) 

a A 

R R 

k AK 

D AD 

l CNLAT 

T TEMPO 
0 

fo DEN SO 

T TEMP A 
a 

p. DENS A 

K THERM 

A SA 
0 

B SB 
0 

c c 
0 

a TA 
0 

b TB 
0 

c CINT 

c' CSCA 

b B 

T TEMP 

f RHO 



*I_JST PRINTER ---*ALL -sf-ATEi·1ENt-11AP ______________________________________ - -----------------

c C***Ol249PHX006 J CARSTENS 12/09/65 FORTRAN 2 0080 004 0 
C ROOTS OF G(V) USHJG INF. DISC AS 1ST. APPROXA(A=.5r·1!C. R=.050·,)-

----- D(MEi·~·sroN Yl(20), AN(20),Y(20l,XS(2), XT(2) 
A=.00005 

9 9 9 F 0 R 1·1 AT ( I 5 ) 
------3-0b-FO-RI'-1AT-T4E 18.8) 

50 FORMAT(20F3.0) 
___ READ 200, THERI-1 , CHJTC, DENSO,TH1PO,CNLAT 

READ-ZOO, R,AD,AK,B 
READ 50, (AN ( J), J= 1, 10) 
ALPHA=3.*CNLAT*AD/A 

----B-E f A;3-:-*riTE R M /A--
ALPHB=B~~ALPHA 

-- ------- ~-

------------

_____ C::_:S:....:C A=C IN TC + B~nE 1,1PO- DE :::..N;..:..S::..;O=---. ________________________________ _ 
C=(ALPHB+BETA)/A 
CSQ=SQRTFCC) 
PRINT 300, BETA,ALPHA,CSCA 

260--FoRt:lAT-T5-IT4.6> --'----------------------------------------
SOD=SQRTFIADl 
SQK=SQRTFIAK) 
AO=BETA/SQK·~------
BO=ALPHB/SQD 
PRlNl 200,B,BO,AO,C 

--SA~{R~A)/-SQK -----------------------------
SB=<R-Al /SQD 
TA=R/SQK 

-----------,=B:::;R/SQD·-------------------- ------------------ -------
XSCU=SA 
XSI2l=SB -------------xrrn=r A------

xT<z>=TB 
PRINT 300,SA,SB,TA,TB 
Dlf~TJJ--;-1 ' 2 
DO 9 J= 1, 10 
Yl(Jl=3.1416*(2.*AN(J)+l.)/(2.*XS(JJ)) 

-- ---PRINT -Z oo-;-'i'ITJ r ;7-i:N-CJT;-X.ST,TJ)- ----------
Y!Jl=YI<J> 

1 Y(J)=Y(J)-.01 -r;r=-r------- --------- ----
Fvv=siNFtxs<JJ>*Y<J>>IcosF<xs<JJ>*Y<J>>-xr<JJ>*Y(J> 

IF IABSF(FYY)-.0001) 
-- -----2-Yf:-(f:--yy)·3-;9 ~--1--------- --

3 Y(J)=Y{J)+.01/(2.**Nl 
IF(~-25)155,155,9 

155--~N+l________ ~~-----------------------------------

F Y Y = ~ Tt'l F C X s'( . I.J l :;: Y C .J ) ) I C 0 S F C X S ( .J.J );;.: Y C J ) ) - X T ( J J ) ::< Y ( J ) 

-J 
+ 



IF (ABSF(FYY)-.0001) 9,9,4 
4 IF (FYY)3,9,5 
5 Y(J)=YCJJ-.Ol/~(~2~.-~~~~~ .. N~J~-----------------------------------------------

IFIN-25)156,156,9 
156 N=N+l 

------·FY.,i=S I NF(XS ( JJ > ;-;.y ( J >> /CO-SF( XS(JJ) *Y.< J l l - x'T"< JJ) *Y <XI --------
IF (AoSF(FYY)-.0001) 9,9,6 

6 1FIFYY)3,9,~5~---------------------------------------------------------------- -----------
9 PRINT 200,Y(J),FYY 

DO 30 J=l,10 
L=l _ ..... ·-----·--------·- ----------------
PRINT 999,J 
IF (CSQ-Y(Jll 10,10,1001 

10 HICUP=-1.0 
GO TO 1104 

1001 HICUP=1.0 
__ ----::;1.=1 0'!_ X= 'LLJ.) -=---~'7"'--~--------------------------------------------------------

11 X=X-.05 *HICUP 
ARGB=S5*X-ATANFITB*X) 

---- ARGA= SA•::x -AT AN F ( T A•::x) 
FX=C/X-X+AO*COSF(ARGA)/SINF(ARGAI+BO*COSF(ARGB)/SINF(ARGB) 

1105 IF (A BSF (FXI-.2) 29 7 29 7 1106 
-··---1..~9-~_Jf.. .. _t~ -~(~ ~'! .. < .. Jl! .. LL07-Ll_10_ 1, 12 

1107 IF lFX) 14,29,11 
12 lF(FXlll,29,17 

_______ 14 X=~-~05/_(_2_._•::_*.L __ ) __________________________________________________________________ __ 
L=L+1 
ARGA=SA*X-ATANF(TA*X) 
ARG9=SB*X-ATANF(TB*X) 

·---,F=-=-X~=C I X - x+·A 0 •:< c·"o....,S"'F"'(-.A""R"'G"Ac--.)--,/,...S:-;I-;-N~F"(-.A"""'R""'G:-::A-.l--:+-;:B:-:::;O,--,*=C=o""'S"'F"'( ..... A-;:;R""'G""B")-,/"'S"'I-.N"'F"( ..... A...,.R..,.G"'B")-------------'------------ ---
IF(ABSF(FX)-.2) 29,29,15 

15 IF(L-30) 16,16,29 
16 IF(FXl14,29,f7 
17 X=X+.05/(2.**L) 

ARGA=SA*X-ATANF(TA*X) 
- ------AR:G·B-;SB·;i'x-iffANF ( TB*X) 

FX=C/X-X+AO*COSF(ARGA)/SINF(ARGA)+BO*COSF(ARGBl/SINF(ARGB) 
L=L+1 
IF(ABSF(FX)-.21 29,29,18 

18 IF ( L-30 l 19, 19 , 2 9 
_____ 1_2_ 1 f ( F X!J 4 t 2 9, 1} _ 

29 XSQ=X*X 

c 

30 PRINT 300,X,FX,XSQ 
31 CONTINUE 

NOW CALCULATE SPECIAL ROOT 
X=SQRTF(C) 

-..J 
c:.n 



1·1= l 

ARGA=SA*X-ATAN F ( TA*X ) ------------______ A_P._G_B;·s-&*x·=-ATAiT'F-(T B ::ZX_> __ ------------------ - ·-· - ------------··------------
FX=C/X-X+AO*COSF t ARGA>ISINFtA~GAl+BO*COSF<ARGBl/SI ~F < ARGB > 

_ ____ ~ F_ ( F X) 6_9_0 ~ _, _ _!_~-'-1:: q_Q_ 1 __ 
6001 X=X+ . 5 

ARGA=SA*X-ATANF(TA*X l 

-· ·-----------

APGB=~ ~*X- A TANF (TB*X ) -------·- - --·--·- -- ·· · . ·- - ····- - --· ·-·- ·--------------- ··- - ··--·-----·-··-----
FX=C/X-X+ AO*COS F ( A~GA)/SINF(A~GA )+BO*CO SF(ARGB )/ SJNF ( ARGB ) 
lF( AoSF (F X)-. 001 ) 79 , 79 7 6002 

--------·-----~002 . IFCFX) ~3 7 7? 7 ~~Q.!_ __ __ ----·- ···-- __ ---·· ---·--- ·-- -------------- ·-· --- _____ ...... --- --------
6003 X=X - . :> 

ARGA=SA*X-ATAHF (TA *X ) 
ARGB=S~*X-ATAHF (T B*X ) 

---·- ·-----····--- -- ·Fx ;e: tx '-x+'iB*Cr.3 s·F ( AR(;'.A)Is'iNFTAKGA-f +B(y;:;-co s F(-ARGB) Is If\11:: (TRG-BT--- ·- - ·- --·-·-·--·-.. 

600L~ --- --- - ... 6o 

I F ( :\ o SF(FX)- . 001) 79 7 79 7 6004 
lF(FX) 6003 7 79 , 60 ·x ;X+·. 5 I f2 -~ :::::~ 1'1 ) . . ... ..... __ ... ---- - - ----- - -

f'-'i=l'\+1 . 
ARGA=SA*X-ATANF(TA*X ) 

----·-----------------------·-·--- -··- ·-- --·--·-----

AriGO= S l)':~·x---.Afi\'~TF '('(a·,:;x·>--· .. ··-·---·----·------- --- ----·· ---·-- -- ·----.. ----------- ------ .. --------- - .. ----------·--

FX=C/X-X+AO*COSF !ARGAl/SIN F!ARGA)+BO*COSF(ARGBl/SINF(ARGBl 
I F ( 1~ tiS F ( F X ) - . 0 0 1 ) 7 9 , 79 , 6 1 

61 IF ( l·i - 25·)-62 , 6?.',"79~ --· ----- ·-- ----··~ - ·- ·-----·- - - ---·--·--------- ---------- ... 

62 IF(FX) 63 ,79, 60 
63 X=X-0 . 5/(2 . **M ) 

ARGA=SA*X-ATANF !TA~X ) 
ARGB=S B*X-ATANF (T B*X ) 
FX=C/X-X+AO*COSF ! ARGA l/ SINF(AKGA )+BO*COSF(ARGB )/ SINF(ARGB ) 

- - -·--·-· - -----------..---. -- --- -···- -- ---- · -- ·- -- --!·1=i·1+ l 
IF(M- 25 ) 64 , 64 , 79 

64 IF(ABS I- (FX) -. 001)79 ,79, 65 ·--- · ·- -- 65---n=TF=x > ·r;3 ;--r9;6o _ ______ ____________ .. 

79 XSQ=x':'x 
PRINT 300 , X, XSQ , FX , CSQ 

-.... ---- . . ... --CALL EX IT 
H!D 

- .. 0 ------- ----

.....,J 
(j) 
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APPENDIX VI 

The following program is designed to evaluate the tem

perature as given in equation (4.6) on page 44 (see also 

expresslons 4.1 and 4.2 on page 41). The "computer" vari-

ables are the same as those used in Appendix V. Similar 

programs were used to evaluate both the density and mass 

influx. 



*l-IST PRINTER 
>:~.A LLSTAYEJ'-1 Ei'JT NAP 
>::FANDK1204 
C C***00943PHX006 J CARSTENS 12/08/65 FORTRAN 2 00 30 006 0 

-t- ~ ~ ~ n::w. c-ALC.-- (A-~-1--f.ffCRO N ,R = .o-5--c-r:f.)~ 
DHlENSION C(30),P(30),CD(30,30),X(30), T(30), EXT(30,30) 7 CSINK(30) 
A= .000 1 

-·- --~~~-· ~ ~~~---- ~R F. -AD -1 , r~ ~~r.t;-t --
READ 4 00 , (X ( I ) , I= 1, N) 
READ 400,(T(J),J=l 7 M) 
READ 200, . THER}1, C-CI~TC,-D~E-ITS!J-;--TETfrf)~ C~ NLA-t 
READ 200, R,AD,AK,B 
READ 100, (P(K),K=l,L) 

--------------~----~--- ---··~~-·-- ~ 

-- ·- ~ 2 o-o~- FORMAY-T5 ET4-:6T -=-.,: ______________________ _ ~----·~---·-·-----------

3 0 0 F 0 R (1 AT ( 4 E 18 • 8 ) 
AlPHA=3.*CNLAT*AD/A 
BET A= 3. >:<THERi'1/ A-~·------
AL PH B= B>:~ALPHA 
CSCA=CINTC+B*TEMPO-DENSO 
--PRl~IT--300-;--B·ETA, ALPHA,;;-C-;;;S-;;;C'A------------------------·----

AL PHC = AL PHA'::C SC A 
PRINT 300,ALPHC 
s no= sa·R r F rA o > -~ --~--~---~ 

SOK=SURTf:(AK) 
AO=BETAISOK 
13 f1= AL Pli B/SQ 0--------------------
S 1\ = ( R- A) I SQ K 
SB=(R-A)/SQO 
TA=R/SQK 
Tf3=R/SQD 
PRINT 300,SA,SB,TA,TB 

---------- --~ ----~----

·--- ----~-----·oo -z;r-K==-1--;L____ --------------------- -----------------

ETAK=<R-Al*SORT~<P<KliAKl-ATANF<R*SORTF<P<K>IAKl> 
ETAD=(R-Al*SORTF(P(KliAD)-ATANF(R*SQRTF(P(K)IAO)) 
COTK =COSF ( E TAK) IS INF-(ET AK)-- -----~--~---~----~----- ----
COTD=COSF(ETADl/SINF(ETAO) 
D X 1 K 0 = -1 • ::=cUT K I ( 2 • 0 ,;, S Q RTf ( P ( K l >:<A K ) ) 

-·--- --- ~ ~~i5'5C1KT = rR -:::A--=-R71T:+:~-,;:R,:;PCKT7/.'~K)F:~ 1. 1'1(-:;z;-.:.~,:-~-ADK0,::zlqrcs~rrrtTi~ F:.:-Ti( Ec--rr-AAiKi1"1) I) T:,:,T:,::?2T) ---------------------

DX1DO=-l.*COTDI(2.0*SQRTF(P(Kl*AD)) 
--~- _ . 0 X 1 OT = ( R- !\ -R I ( 1. +:~ :::R :::p ( K l I 1\ D) ) '~~ 1 • I L?_•_Q':~_t'~Q~'_(_S I ~l_c_( -~-T A_Q_) ~ ~":'_? ~ _ 

DX1K=DX1KO+DX1KT 
OX lO=UX lOO+OX lOT 
0 G = 1 • + [3 E T ,'\ :;: [)X 1 K + II L P I l B :;: D X 1 D 

-------~·--c: < KT=-;~CPr-iC':'TCu r IJ:::s-(.TJUF( ri"(Xf1A.lJT+r:·; A l 1 < P < K > ':'oG > --- --~ 

CSINK(K)=C(K)/SINF(ETAK) 
41 PRINT 300 7 P(K),C(K) 

-- -~ - ~ 0 0 2 0 K = 1 , L 
CSQ~SQRTF(P(K)IAK) 

-------------

00 
0 



.,,,.,u._ .. -.-.. ---------------------------------------------
CAT=ATANFCR*CSQ) 
00 10 I = l, N 

-. . . - c· D ( I , K )= C S li' ! K ( KT ~::A·~:: S 1 t-! n ( R- X ( i l ) ~::t ·s (): .:(AT l I X ( Cl 
I F CK- S) 411,411,10 

411 PRI NT 300 ,C O(I, Kl 
--- lOCONflT!TrE---------------------------· 

20 CONTINUE 
_ 00 40 K=l,L _ ·- - -···- _ 

DO 30 J=l,l·' 
EXT( K , J ) =l . / ~ XPF(P(K ) *T !J)) 

30 corn INUE 
----7~·0 c ONT.II:ju·--:-=E --------

00 7 0 I = l, N 
0 0 6 0 J = 1 ' ~-I 

. . .. . T E 1'1 P = 0 • 0 •.• -- - -- --------·--- .. --···--··-- ··--- .... -- ·-- ··---· 

00 50 K=l,L 
CSQ=S~RTF ( P(K)/AK ) --· ---- ·----c iiY;J\t-Aii"F l R ~~c sQl- -------------------------------
XA=X<I l 
TEMPP=CO(I, K) *EX T(K , J ) 
I F ( K- () 50 , '~ 2 , S<f .... . ------· --- . ----- - - - · 

42 PRINT 200 , TEMPP 
50 TEMP=T EMP +T EMP P 
·6o -·P '~ r NT .. 2oo·; r < J r;x-n-, -;-rr::w-· 
7 0 C ONT li'-IU 1: 

PRIIH 300 , AO , BO 
CALL EXI T --------- · ·-·-

1 F 0 R t-1 AT ( 3 I 2 l 
100 FORMAT (6 Fl2 . 0 ) 
4d·o - F.iJRt1-AT ·n o,=·7 ;-()'}" ___ _ 

END 

........ --·-------- - - -· 

------

·---· ---------

co 
-~ 
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