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ABSTRACT

Due to recent advancements in semiconductor technology, power electronic convert-

ers for high voltage, high power, and high frequency applications will soon be commer-

cially available. Conventional single phase distribution transformers are replaced by solid

state transformers (SST) in a distribution test system to investigate their interactive dynam-

ics. Under certain circumstances, instabilities due to harmonic resonance are observed. A

design criterion for solid state transformer during no load conditions has been proposed in

order to avoid instability using an impedance-based analysis. Stability assessment is also

extended to include the impact of distribution system voltages and system wide impedance

analysis. It is shown that if the SST filters throughout the system are designed with re-

gards to the proposed stability criterion, then system stability is guaranteed regardless of

configuration. This leads to two resulting applications: (1) the order in which the SSTs

are connected to the system will not generate instability if the criterion is satisfied, and (2)

a system configuration change due to a fault will not produce instability. In distribution

power systems, feeder voltages can be very sensitive to changes in load and/or distributed

generation. A solid-state-transformer-based local voltage control strategy is introduced to

reduce variability distribution system bus voltages. An on-line dynamic volt-var control

(VVC) algorithm is proposed to regulate bus voltages by injecting or absorbing reactive

power through a solid state transformer. The main goal of the algorithm is to enforce strict

voltage constraints on the system voltages. The proposed control algorithm is validated in

both a radial and meshed distribution system.
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1. INTRODUCTION

Distribution transformers are one of the important components of power system and

are responsible for changing voltage levels while allowing power to flow through them very

efficiently. Magnetically coupled transformers have been used for more than 100 years.

They are a mature industrial product in terms of reliability, cost, lifetime, maintenance,

stability, and efficiency. Voltage regulators are transformers with a tap and play an active

role in boosting the voltages of nodes located along the feeder in radial distribution system.

Transformers are inherently inductive in nature and in addition, power system loads, trans-

mission and distribution lines are largely inductive as well. Hence, power system operates

normally in with a lagging power factor. If conventional transformers could be upgraded

to have the features of a voltage regulator and maintain unity power factor on the ac grid,

utilities would benefit from such a device. The solid state transformer (SST) is a power

electronic device that can maintain unity power factor on the ac grid and also play the role

of a voltage regulator.

SSTs have been proposed as a powerful, highly flexible alternative to conventional

transformers. Recent developments in semiconductor technology can make SST a reality,

although the concept of the SST is not new. Multilevel converters employing IGBTs are

already in use in the power system. Silicon carbide MOSFETS are being developed for use

in power electronic switches for high voltage, high power, and high switching frequency

applications. These switches support the development of the solid state transformer. SSTs

have several attractive features: (1) SSTs can provide active compensation at the point of

common coupling, (2) SSTs can provide user side voltage regulation, (3) SSTs may act

as an active filter for loads, (4) SSTs provide a low voltage dc link that can be used for

integrating renewable energy sources, and (5) SSTs allow bidirectional power flow. These

features make the SST an attractive device for the future smart grid infrastructure.
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A number of technical issues in the area of control and stability arises due to inclusion

of large number of power electronic devices in a traditional ac grid. SST interactions may

cause instability and harmonic resonance. The high voltage side of the SST may appear as

constant power load to the ac grid, leading to voltage collapse due to negative impedance

characteristics. Paper I addresses the instability caused by SST interactions and provides

a stability design criteria for SST to avoid harmonic resonance during no load conditions.

Paper II extends the application of stability design criteria for SSTs operating under loaded

conditions.

SSTs may be used to maintain unity power factor on the ac grid. During high solar

power generation, the bus voltages of the distribution system may exceed 1.05 pu. Addi-

tionally, during peak load conditions, the bus voltages may drop below 0.95 pu. The SSTs

may be used to enforce strict limits for bus voltages. Paper III introduces an online dy-

namic DQDV algorithm to control the SST to maintain voltage in a limited range in the

distribution system. The DQDV algorithm uses the bus voltage and active power flowing

through SST as its inputs and generates a reactive power command for the active rectifier of

the SST. If the upper voltage limit is violated, the control algorithm will direct the SST to

absorb reactive power from the ac grid. Conversely, if the lower limit is violated, the SST

will inject reactive power into the ac grid. The proposed DQDV algorithm performance is

validated for both radial and meshed distribution systems.
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1. INTRODUCTION

Distribution transformers are an integral component in the delivery of electrical

power to the end customer. The distribution transformer provides voltage transformation

by stepping down the voltage from the distribution circuit to the voltage level used by the

customer. Conventional distribution transformers are passive components and without ad-

ditional capabilities cannot provide voltage regulation, reactive power support, or power

quality improvement. Solid state transformers (SST) have been proposed as a powerful,

highly flexible alternative to conventional transformers [1]-[4]. SSTs are insensitive to har-

monics or user-side faults, can perform power factor correction and voltage regulation, and

do not use potentially toxic coolant oils.

A solid state transformers consists of three stages: an active rectifier, and bi-

directional dc-to-dc dual active bridge converter, and an inverter as shown in Figure 1.

These three stages together provide the key attractive features of the SST. The solid state

transformer can provide active compensation to the point of grid coupling; therefore it can

draw unity power factor or provide reactive compensation for voltage regulation. Addi-

tionally, it can provide active filtering to the load side such that the load is isolated from

momentary sags, swells, and harmonics on the ac grid. Furthermore, the low voltage dc

link can provide a dc bus to which photovoltaic panels, energy storage devices, or elec-

tric vehicle chargers can be connected. These additional features and flexibility provide a

platform with which to build the future smart grid infrastructure.

The inclusion of a high number of power electronic converters in a traditionally ac

grid introduces a number of technical issues in control and stability that have not previ-

ously been encountered. One area of concern is the potential for instability caused by SST

interactions. This instability may take the form of a harmonic resonance induced by the

interaction of the input impedance and the source output impedance [5]. Regardless of the
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400 Vdc

120/240 Vac

400 Vdc

high frequency 
transformer 
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ac/dc converter dc/dc converter dc/ac converter

high voltage stage low voltage stage

Figure 1 Solid state transformer

load composition on the customer side, the active front end of the SST (the high-voltage

rectifier) will appear to the ac grid as a constant power load [5]. Constant impedance

loads are generally considered to be self-correcting loads in that as the voltage decreases,

the power consumption will also decrease. Constant power loads however, draw the same

power and are sometimes referred to as “negative impedances” and can destabilize dc net-

works if not properly designed [4]. This type of instability is not frequently experienced in

ac distribution systems, but may become increasingly prevalent with the advent of SSTs.

It is anticipated that SSTs will replace many, if not all, conventional transformers and the

ability to “plug-and-play” without additional design considerations is desirable. In this

paper, we analyze the circumstances that may lead to SST interaction and instability and

propose a design approach to avoid this problematic behavior.

Similar harmonic behavior is reported to have been generated by high frequency con-

verters used for railway locomotives during low load conditions [8]. A theory of resonance

stability analysis of railway systems is proposed in [9] based on the energy exchange prin-

ciples between infrastructure and locomotive converters. A proof of an empirical input

admittance criterion as a special case of results is provided by [9]. The concept of input

admittance criterion and its application to the stability of railway systems is also discussed
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in [10]. The shaping of the input admittance of the converter is discussed in [11] to achieve

a positive real part of the admittance for a certain frequency range. It is shown that os-

cillations of a certain frequency will not occur if, for that frequency, the input admittance

has positive conductance (i.e. is passive). Passivity helps to improve stability of systems

in which interactions between the power system infrastructure and the converters occurs.

A similar approach for improving stability by making the system passive for the entire

frequency region is proposed in [12].
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2. SST INTERACTIONS

To illustrate the impact of multiple SSTs in a distribution system, three (out of the

total of 16 SSTs) are placed on the b phase of a modified IEEE 34 bus distribution test

system (see Figure 2). The IEEE 34 bus distribution system was selected as the benchmark

test case due to several attractive features: (1) it is a three-phase system with moderately

unbalanced loads by phase; (2) the feeder requires voltage regulation (capacitors and tap

changers); and (3) the system data was developed by the IEEE PES Distribution System

Analysis Subcommittee’s Distribution Test Feeder Working Group and is publicly available

[12]. This case study is used to demonstrate instability occurring in the distribution system

with multiple solid state transformers.
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Figure 2 IEEE 34 bus distribution test system with 3 SSTs

The following assumptions are made:

• The SSTs are all single-phase to better accomodate the single-phase feeder laterals

• The SSTs are energized under no-load

• The substation is modeled as a constant voltage source
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• An RL filter is placed at the first stage active rectifier

• The SSTs are aggregated to provide a 200 kVA power rating at each bus (for consis-

tency with the IEEE 34 bus distribution system)

• The rated phase (line) input high-side voltage is 7.2 (12.47) kV

• The regulated output voltage of the SST is 120V/240V

• The SSTs provide voltage regulation to the system, therefore all capacitor banks and

voltage regulators are removed from the test system

• The SSTs use DQ control [13] (see Appendix)

Topologies for three phase SSTs are still in the development stage and as a result will

likely follow single-phase SSTs to market, therefore this study is restricted to single-phase

SSTs.

The three stages of the SST are connected in cascade, as shown in Figure 1. The active

rectifier stage of the SST is connected to the high voltage capacitor and regulates the high

voltage dc link at 10 kV. The actual topology of the active rectifier consists of three series

connected H-bridge rectifiers. Each H-bridge rectifier is connected to the high voltage dc

link and a dual active bridge converter. The output of each dual active bridge converter is

connected in parallel. These dual active bridge converters regulate the low voltage dc link

to 400 V. A split phase inverter is connected to the low voltage dc link and regulates the

output voltage. The topology shown in Figure 1 is a simplified representation of the actual

SST topology. The SST is energized at no load and brought to a stable operating point

before it is connected to the distribution system.

The three solid state transformers are connected sequentially from the substation

down the feeder. The SST at bus 806 is connected at 1 second, the SST at bus 810 is

connected at 2 seconds, and the SST at bus 856 is connected at 3 seconds. Figs. 3(a), 3(b),

and 3(c) show the bus 856 ac voltage, ac current, and SST high-side dc link voltage from
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the time SST 856 is connected at no load. Note that the dc link voltage is uncontrolled

and the SST bus voltage and current become increasingly erratic. We hypothesize the pri-

mary reason behind this behavior is the violation of an impedance-based (similar to the

Middlebrook) stability criterion.

According to this impedance-based stability criterion, the source impedance for any

system must be less than the load impedance at all frequencies to ensure stability. There-

fore it is not surprising that the SST node (electrically) farthest from the substation should

cause the instability when connected, since the source output impedance increases along

the feeder. For this reason, an impedance-based stability criterion is used.

In this paper, the system is simulated in PSCAD using average value models of the

active rectifier, dual active bridge converter and inverter to accurately replicate the be-

havior of the SSTs. Full switch-level models are not used due to the limitations of the

simulation complexity and computational time. The average value models were developed

directly from the switching models and validated experimentally [13]. A linear time invari-

ant model is required to apply any stability criteria. To fulfill this requirement, the voltage

and current controllers of active rectifier are tuned using state space analysis explained in

[15]. Proportional and integral gains of controllers are present as variables in the system

matrix derived using state space analysis. For a given set of gains, elements of the state

matrix are independent of time. Thus, the model of the active rectifier used in the simula-

tion is linear time invariant. The average value model of the dual active bridge converter

and inverter also use linear proportional integral regulators for regulating their respective

voltages. Their respective controls are summarized in the Appendix.
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11

3. IMPEDANCE-BASED STABILITY

It has been shown that distribution systems with a high penetration of photovoltaics

may have sustained harmonic resonance or other erratic behavior due to interference with

inverter current control loop [16]. The application of existing impedance-based stability

criteria to grid-connected converters is problematic because, depending on the frame of

reference, either the inverter or the grid can be modeled as the source. This can lead to con-

tradictory stability considerations. Since the distance from the substation is a contributing

factor in the SST stability, we take the approach that the grid is the source. To apply an

impedance-based stability criterion to the SST-deployed system, the system to be analyzed

is modeled as a source and a load subsystem. The source subsystem consists of a voltage

source (Vs) in series with the Thevenin equivalent source impedance (Zs). The load subsys-

tem consists of the input impedance of the converter (Zin) in series with source subsystem,

as shown in Figure 4. It should be noted that this simple linear system representation is

only valid for small-signal analysis.

Zs

ZinVs

Source Load

Figure 4 Voltage source with source impedance and input load impedance

The SST is connected to the distribution system through an RL filter with filter resis-

tance R f and filter inductance L f as shown in Figure 5. The high-side ac source voltage

is denoted by Vhs whereas the input to the active rectifier is Vin. The magnitude and phase

of the sinusoidal input voltage Vs is controlled with four quadrant DQ control, therefore it
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is represented as a controllable voltage source [13]. During energization, the SST is not

loaded, therefore the input impedance is dominated by the filter impedance.

The direction of the active power flow depends on the relative phase difference be-

tween the source voltage and the input voltage. The direction of the reactive power flow

depends on the relative phase difference between the source voltage and current. In the

absence of voltage regulation commands, the active rectifier will have unity power factor

operation. The input impedance Zin(s) is the impedance looking into the active rectifier.

Its transfer function is comprised of the filter impedance, the controller impedance, and

the load impedance. The source impedance ZS(s) is the impedance looking from the SST

towards the substation and is calculated for each bus at which an SST is connected.

The load current transfer function can be expressed

I(s) = H(s)
Vs(s)
Zin(s)

(1)

where

H(s) =
1

1+Zs(s)/Zin(s)
(2)

Assuming that the source voltage Vs(s) and Zin(s) are stable, then the stability of the load

depends on H(s). The Nyquist Criterion states that a necessary and sufficient condition for

stability of the system is that the H(s) does not encircle the (−1,0) point in complex space.

The Middlebrook Criterion was proposed specifically to provide input filter specifications

to ensure that the converter dynamics are not adversely impacted. The Middlebrook Criteria

states that the system is stable if ‖Zs(s)/Zin(s)‖ < 1. This states that the transfer function

H(s) must remain within the unit circle.

The Nyquist plot of Zs(s)
Zin

at bus 856 is shown in Figure 6. Clearly the Nyquist contour

does not encircle the (−1,0) point nor does any part of the contour lie outside the unit

circle (the Middlebrook criterion), yet the system is displaying instability. This indicates

that there are factors to be considered which are not captured by these basic criteria. We
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Figure 5 Equivalent circuit of active rectifier

propose an alternative stability design consideration in the following section.
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Figure 6 Nyquist plot of Zs(s)
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at bus 856 (filter = 5.8%)
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4. STABILITY-BASED DESIGN

The SST farthest electrically from the substation will see the largest source

impedance. In a radial system, this impedance is calculated as the sum of the impedances

of the laterals and feeder from the SST to the substation. For a looped system, however, the

source impedance must be obtained either through an impedance calculation by injecting

a nominal current and voltage at the SST bus, or from the bus impedance matrix. In the

bus impedance matrix, the Thevenin equivalent for each bus in the system can be obtained

from the diagonal of the bus impedance matrix that corresponds with the SST bus. One

significant issue to consider is that all capacitor banks were removed from the system be-

cause the SSTs can provide voltage regulation. This has the additional impact of increasing

the system impedance which further exacerbates the input impedance-source impedance

mismatch.

The input impedance of the SST is difficult to calculate analytically due to the mul-

tiple stages and controls. Therefore a harmonic perturbation technique is used to numeri-

cally extract the input impedance from the SST model. To calculate the impedance at each

frequency, a sinusoidal voltage harmonic having a peak magnitude of 3.36% of the fun-

damental component of the phase voltage is injected into the circuit model of the active

rectifier (shown in Figure 5). The resulting current is measured and the respective current

harmonic peak magnitude and phase are calculated using a discrete Fourier transform. The

input impedance is the ratio of the voltage phasor to the current phasor. This process is

repeated to extract the input impedance for frequencies ranging from 10 Hz to 15 kHz.

The resulting gain and phase of the source impedance and input impedance at bus 856 are

shown in Figs. 7 and 8.

The effect of the phase-locked-loop (PLL) is taken into account while calculating the

input impedance using the harmonic perturbation method. To validate the accuracy of the



15

PLL, the results were repeated with two different approaches. In the first approach, the

voltage angle was measured directly in the simulation using a multimeter. In the second

approach, a single-phase PLL was used to calculate the angle. Both approaches yielded

identical results.
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Figure 7 Bus 856 source and input impedance magnitudes (filter = 5.8%)
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One possible explanation for the observed instability is the proximity of the source

and input magnitudes indicating that the ratio is approaching 1.0 at higher frequencies. A

good design practice requires that the gain margin of 6dB be maintained [17]; this margin

is violated in Figure 7 explaining the exhibited instability. This is not a design issue that

occurs with conventional transformers and is therefore seldom experienced in a distribution

system. Therefore care must be taken with the deployment of SSTs. We propose a design

criterion that provides guidance to size the input filter such that harmonic instability can

be avoided. Specifically, we propose that system stability can be assured if the input filter

is chosen such that the input impedance magnitude exceeds the source impedance. Now,

using the stability criterion, it stands to reason that if the SST filters were selected such that

the input impedance magnitude exceeded the source impedance, then the system would

remain stable.

This condition is similar to Middlebrook criterion. This criterion (as with other sim-

ilar criterion) is conservative and should be considered a sufficient condition and purely

empirical in nature. If the condition is not satisfied, then it does not imply instability. The

important application of empirical criterion lies in improving overall system stability by

mitigating harmonics while integrating SSTs into the distribution system.
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To test this hypothesis, the filter impedance at SST 856 is doubled. The resulting

source and input impedances at bus 856 are shown in Figure 9. In this case with the larger

filter size, the source impedance lies significantly below the input impedance of the SST,

implying that the system should now be stable. The corresponding current and voltages are

shown in Figs. 10(a)-10(c) for when the SST at 856 is energized at 3 seconds. These results

are much improved over the original responses shown in Figs. 3(a)-3(c) and indicate that

the system can be stabilized by appropriately sizing the SST input filter with respect to the

source impedance.

The next step is to extend this hypothesis to encompass the entire system and all

SSTs. To explore this behavior, all 16 SSTs are placed in the phase b of IEEE 34 bus

testsystem. The electrically farthest SST in phase b is at bus 890 as indicated by the circle

in Figure 11. The source and input impedances at bus 890 are shown in Figure 12. Note

that in this case the input impedance magnitude is exceeded by the source impedance for

a wide range of frequencies. Applying the proposed stability criterion indicates that this

system will most likely exhibit instabilities, which indeed the system does. The left side of

Figure 14 shows the ac voltage, ac current, and dc voltage of the SST located at node 890.

The SST is connected to the system under no-load at 3 seconds. Note that all states exhibit

considerable erratic behavior.

The design approach will now be extended to the SST at bus 890. Figure 13 shows the

source impedance at SST 890 against several input impedances having filter sizes ranging

from the original filter size (5.8%) up to three times the original filter size. This figure

includes the trace for the original filter size shown in Figure 12. In addition, traces for

twice (2×) and three times (3×) the original filter size. The source impedance crosses both

the original and double filter sizes but not the 3× trace. The proposed criterion indicates

that if the filter size at 890 is selected to meet or exceed 3× the original filter size, then the

system will be stable. This design approach is validated with the simulation results shown

in Figure 14. These results are obtained for a filter size of 3× the original filter size at
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all SSTs. The waveforms in Figure 14 compare the system responses for the original and

resized filters. It is apparent that the system can be stabilized with appropriate filter sizing.

There is a qualitative synergy between the proposed approach and input admittance

passivity. A purely passive system acts like a first order system for all frequencies [12].

For a system to be passive, the real part of the impedance or admittance must be positive

for all frequencies. Similarly, the phase of the impedance must lie between between −π/2

and π/2. References [9]-[11] explain the role of an empirical input admittance criterion for

improving the stability of converters. It can be inferred from the definition of passivity that

for a particular frequency, if the impedance is active (i.e. not passive), then oscillations of

this particular frequency can become amplified. Furthermore, due to limitations in control

bandwidth it is not possible to have a passive impedance over all frequencies. However,

control strategies can be designed to shape the impedance to be passive for a desired range

of frequencies at which oscillations in the system can occur. Thus, the choice of filter size

can move the impedance phase into regions which are more easily controllable.

Increased filter size may adversely affect efficiency due to changes in current. In

our experience, the resulting decrease in efficiency was usually less than 0.1%. This result

is based on simulation trials and may differ from actual performance. The decrease in

efficiency must be weighed against the improvement in system stability.

As a final note, different filter sizes may have an impact on the dynamic operation

of the SST, but this effect is limited due to the number of frequency changes and control

from SST input to output. There are two dc links (high voltage and low voltage) and a high

frequency transformer (see Figure 1) thus limiting most filter size effects to the feeder side

of the SST.
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Figure 14 Bus 890 SST responses with all 16 SSTs on system
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we establish the potential for instability when SSTs are energized in a

distribution system. This type of “harmonic resonance” or “negative impedance” is seldom

experienced in legacy power systems, but may become increasingly prevalent in systems

with high penetrations of power electronics-based components that are connected directly

to the AC grid. We have proposed a design criterion for the SST input filter to mitigate

instabilities in the system. This design approach was validated through simulation on the

IEEE 34 bus distribution system testbed.

In this paper, we concentrated on the energization of the SSTs. This is under SST

no-load conditions. Furthermore, we considered each phase of the distribution system

individually. Future work will focus on the impact of various load types on stability. Fur-

thermore, we will expand this analysis to a three-phase system in which mutual coupling

may impact the “per-phase” analysis we’ve presented.
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6. SST CONTROL

The stability discussion presented in the previous sections tacitly assumed that all of

the internal SST controllers are stable and that all instability occurred due to the mismatch

in the source and input impedances. The SST is designed to be stable as a standalone device

(this can be validated by observing that the system remains stable when only one SST is

energized close to the substation). However, for completeness, we include the models of

the SST controllers in this appendix.

6.1. ACTIVE RECTIFIER

The control of the active rectifier is a DQ vector controller with cross coupling terms.

A phase-locked-loop (PLL) is used to calculate the frequency (ωe) and phase (θe) of the

source voltage (Vhs). The DQ vector controller is shown in Figure 15 where the starred val-

ues (∗) indicate commanded values. If unity power factor is desired, then the commanded

value of I∗q is set to zero. The PI gains are tuned using the method presented in [15]. The

input voltage Vin is calculated

Vin =
√

V 2
dd +V 2

qq sin(ωet +φ) (3)

where

φ = tan−1 Vqq

Vdd

where Vhdc is the high voltage dc voltage.

A correction factor of π radians is added or subtracted from φ depending on the sign

of Vdd . If Vdd is positive, the φ is not corrected. If Vdd is negative and Vqq is positive, then

π radians are added to φ. Similarly, if Vdd is negative and Vqq is negative, then π radians are
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Figure 15 DQ vector controller

subtracted from φ.

6.2. DUAL ACTIVE BRIDGE AND INVERTER

The dual active bridge converter (DAB) consists of a high voltage H-bridge, a high

frequency transformer, and a low voltage H-bridge. The low voltage dc link voltage Vldc is

regulated by the dual active bridge converter. The DAB is bi-directional. The active power

flows across the DAB:

PDAB =
VhdcVldcddc (1−ddc)

2Ll fh
(4)

where ddc is the ratio of the time delay between the high and low bridges to one half of

a switching period. Ll is the leakage inductance and fh is the switching frequency. The

control is shown in Figure 16.
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Figure 16 DAB controller
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The DC/AC split phase inverter is shown in Figure 17. Each phase consists of a

controlled voltage source with an LC filter and load. The positive (Vp) and negative (Vn)

output voltages have a 180◦ phase shift. The output voltages are regulated at an RMS

voltage of 120 V at 60 Hz. The duty cycle control for D1 and D2 is shown in Figure 18.
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1. INTRODUCTION

An empirical design criterion for solid state transformers (SST) is proposed in [1] for

ensuring steady-state stability by shaping the input impedance of the SST under no load

operating conditions. This letter extends the proposed design criterion for full load condi-

tions and provides a method for stability assessment of distribution system with solid state

transformers under loaded conditions. This design criterion is similar to the Middlebrook

criterion. Regardless of the type of load connected to the SST, the front end of the SST (the

high voltage active rectifier shown in Figure 1) will appear as a constant power load to the

ac grid [5]. It is well known that these loads have negative impedance characteristics and

can reduce damping and create steady-state instabilities [3] [4].
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transformer 
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ac/dc converter dc/dc converter dc/ac converter

high voltage stage low voltage stage

Figure 1 Solid state transformer

This letter extends the no load design criterion based on the SST input impedance [1]

to full load conditions.

A modified method is introduced for calculating the source impedance seen by the

solid state transformer and a stability assessment is performed for each SST in the system.
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The principal goal of the assessment method is to predict steady-state instabilities due to

each SST by using line and load data, the location of SSTs, and the input impedance of

each SST.

To illustrate the full load design process, SSTs are placed at 16 locations in the IEEE

34 bus test system [12]. SSTs operate at unity power factor and thus absorb only active

power from the distribution system, but may supply reactive power to the load through

the secondary voltage-source converter. The voltages at the secondary are held to 1.0 per

unit, whereas the primary side voltages are functions of the voltage drops along the distri-

bution line. The primary side node voltages have a significant impact on the SST source

impedance.
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2. STABILITY ASSESSMENT AND DESIGN

The principal goal of the letter is to provide a general filter design procedure to avoid

instabilities in the system with SSTs. Since the design process accounts for SST loading,

several modifications are required during the calculations of the impedances to accurately

reflect the node voltages.

The source impedance is the impedance looking from the SST towards the substation

and is calculated for each bus at which an SST is connected. Since all SSTs are connected

in shunt, the Thevenin equivalent source impedance seen by a SST is a parallel combina-

tion of other SST impedances and line impedances. The input impedance of the SST is

difficult to calculate analytically due to the multiple stages and controls, therefore a har-

monic perturbation technique is used to numerically extract the input impedance from the

SST model. To calculate the impedance at each frequency, a sinusoidal voltage harmonic

having a peak magnitude of 3.36% of the fundamental component of the phase voltage is

injected into the circuit model of the active rectifier. The resulting current is measured and

the respective current harmonic peak magnitude and phase are calculated using a discrete

Fourier transform. The input impedance is the ratio of the voltage phasor to the current

phasor. This process is repeated to extract the input impedance for frequencies ranging

from 10 Hz to 15 kHz.

Figure 2 shows the source impedances and input impedance of the SST at node 890

with multiple filter sizes. An RL filter is typically placed at the input of the SST to mitigate

harmonics. The base filter impedance is 5.8∠89.62◦% on a 7.2kV/200kVA base. To vary

the filter size, the percent impedance was varied; the impedance angle remained constant.

Note that at high frequencies, the inductance will dominate the filter impedance. In [1],

it was determined that to maintain stability, the input filter must be sized such that input

impedance exceeded the source impedance over all frequency ranges. At the base filter
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impedance, this stability criterion is violated. However, by increasing the filter size (3× in

this example), the criterion is satisfied and stability is guaranteed.

The “modified source impedance” shown in Figure 2 is the input impedance of the

SST calculated from the updated procedure that accounts for load and voltage conditions,

whereas “source impedance” denotes the no-load case. Note that the modified source

impedance provides a less conservative prediction of stability, allowing smaller filter sizes

to be used while maintaining the stability margin stated by the criterion.
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3. SYSTEM TOPOLOGY CHANGES

One of the resulting benefits from the assessment process is that if the stability re-

quirements are satisfied, then there will be no impact on the stability due to order in which

the SSTs are connected to the distribution system. To illustrate this, Figure 3 shows the

active power measured at the substation for two different connection orders of 16 SSTs in

the IEEE 34 bus test system. Note that the system reaches a stable operating point after

each SST added regardless of configuration.
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Figure 4 Bus 890 SST responses during pre-fault and post-fault condition

Another important result based on the assessment procedure is that a system config-

uration change after a fault will not cause instability. For example, a single phase fault

occurs at bus 834 at 3 seconds and is cleared in 4 ms. The radial feeder downstream from

node 858 is disconnected from the system and the 8 SSTs on the disconnected feeder are

disengaged. Figure 4 shows the pre- and post-fault voltage, current and dc link voltage of

the SST at node 890. At three seconds, a dip in the dc link voltage can be seen due to fault.

Since the fault is cleared within 4 ms, the dc link voltage returns to the pre-fault voltage
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even though the system configuration has changed. Similar results are observed for other

SSTs after the change in system configuration. As the system configuration changes, the

equivalent impedance seen by each SST varies between the boundaries of maximum source

impedance and modified source impedance accordingly. Therefore, if the input impedance

of each SST is designed such that it does not overlap these boundaries, then instabilities

due to system configuration change can be avoided.

Note however, that the fault current profile on a SST dominated distribution feeder is

considerably different than that of a conventional feeder [6]. When a fault occurs on the

feeder, the SST is designed to disengage from the system if the ac bus voltage drops below

0.7 pu or above 1.2 pu and will continue to draw active power otherwise. For this reason,

the impact of the filter size is only one of many considerations a protection scheme must

consider and the long-term implications are not known at this time.



35

4. CONCLUSIONS

In this letter, we extended the application of the impedance-based stability criterion

to the distribution system with SSTs during loaded conditions. For a given filter size,

this criterion provides a stability guarantee for the system. Furthermore, if the SST filters

throughout the system are designed with regards to the stability criterion, then system sta-

bility is guaranteed regardless of configuration. This leads to two resulting applications:

(1) the order of connection of SSTs will not generate instability if the criterion is satisfied,

and (2) a system configuration change due to a fault will not produce instability.
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1. INTRODUCTION

The concept of “smart-grid” is predicated on the ability to implement localized con-

trol in power systems. The current trend in power system is to move away from centralized

control and develop demand side controls to improve system response and reliability. Lo-

cal voltage control is one of the examples of decentralization in power systems. This paper

proposes a DQDV algorithm that is integrated with suitable power electronic devices such

as an SST to reduce the voltage variation along the feeder. Local voltage control has several

advantages that include (1) voltage regulation independent of load profile, (2) fast response

time, (3) no centralized calculations, and (4) no communication requirement between the

SSTs and the substation. The main strategy of the local voltage control is to enforce strict

voltage constraints for the bus voltage by injecting or absorbing reactive power through the

SST. The amount of reactive power required is computed by the proposed DQDV algorithm

and injected or absorbed via the SST power electronic interface with the system.

Solid state transformers (SST) are powerful alternatives to conventional distribution

transformers [1]-[4]. As shown in Figure 1, a solid state transformer has three stages:

the active rectifier, the bidirectional dual active bridge dc/dc converter, and the split phase

inverter. The ability to provide load side voltage regulation is a key feature of the SST. Ad-

ditionally, due to the active rectifier, the SST can provide simultaneous active compensation

at the point of feeder coupling, therefore it can easily contribute reactive power support for

voltage regulation. The feeder side of the SST is an active rectifier and as a result, appears

as a constant power load to the ac grid, irrespective of the load connected on the low voltage

side [5]. The SST has the capability to regulate the user side voltage to 1.0 per unit even if

ac grid voltage is much higher or lower. Furthermore, the SST has the ability to reflect any

desired power factor, within the limits of the SST rating. For example, it may be desired

for each SST to operate at unity power factor, or to compensate for reactive line losses such
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that the substation operates at unity power factor. Another approach is to provide sufficient

control to maintain all system voltages within a pre-specified range.
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ac/dc converter dc/dc converter dc/ac converter
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Figure 1 Solid state transformer

SST-based volt-var control was first introduced in [6]. The primary goal of the control

strategy in [6] is to minimize system power losses while enforcing voltage limits across the

system. The method proposed in [6] is a centralized approach that assumed that all SSTs

participate in the volt-var control. Furthermore, implementation of the volt-var control

requires communication of all bus voltages to the central controller. The concept of local

voltage control that we introduce in this paper is in sharp contrast to the strategy introduced

in [6] in that our proposed method does not require centralized computation nor is it applied

at every SST. Only a subset of SSTs at particular “pilot” nodes participate in the volt-var

control, leaving the remaining SSTs available for other functions. In the absence of voltage

control, the SSTs in this paper operate in unity power factor mode by default.
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2. ONLINE DQDV ALGORITHM FOR LOCAL VOLT-VAR CONTROL

The SST can perform voltage regulation on the high voltage ac side as well as the

low voltage ac side. The proposed volt-var control is used to control the voltage at the high

voltage ac side. In this work, it is assumed that all magnetic transformers in the distribution

system have been replaced by solid state transformers. This is a generalization and in

practice, not all transformers are required to be SSTs, only the transformers at the pilot

buses. In the absence of voltage control, the SSTs operate in unity power factor mode. The

main goal of the algorithm is to enforce strict real time voltage constraints for sensitive

buses with the help of reactive power compensation from the SSTs. The VVC proposed

in this paper is accomplished in two steps. In the first step, the pilot buses are identified.

In the second step, the proposed voltage control algorithm is implemented to enforce strict

voltage constraints.

Voltage and line current sensitivities can be used to identify sensitive buses in a radial

distribution system. As the distance from the substation increases, the voltage sensitivity

of the buses also increases [7]. Efficient calculation of voltage and current sensitivities is

necessary for properly estimating sensitive buses. A new approach of calculating voltage

and current sensitivities is proposed in [8]. Although we adopt the method of [7], there are

a variety of ways to locate sensitive buses and it is plausible that other methods may be

effective. Sensitivity in relation to location can also be used to locate sensitive buses in a

distribution system [9]. Loss sensitivity factors can also be used to locate sensitive buses in

radial distribution system. The loss sensitivity factor is able to predict which bus or buses

will have the biggest loss reduction when reactive power is injected through that bus [10].

A reactive power margin can also be used to identify the weakest bus in the distribution

system [11]. Any of these methods are suitable for determining the pilot buses for SST-

based volt-var control. The pilot SSTs are typically selected to be electrically distant from
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Figure 2 DQDV algorithm flowchart

one another such that their volt-var control effects are localized and do not cause “ringing”

in control efforts between SSTs.

Figure 2 shows the flowchart of the proposed DQDV algorithm. The bus voltage and

load power are the inputs and the reactive power command is the output. The core concept

of algorithm is to determine the required reactive power injection/absorption to maintain

the bus voltage within strict limits. The lower voltage constraint is set to be 0.95 pu and

the upper voltage constraint of 1.05 pu are selected as strict voltage limits for buses where

local voltage control is performed. There are three parallel paths in the algorithm, as shown

in Figure 2. These paths are as follows:

• If the current bus voltage is below 0.95 per unit, the algorithm will command the

active rectifier to inject reactive power into ac grid at the next time step. The injection

of reactive power increases by a rate defined by α.

• If the current bus voltage is above 1.05 per unit, the algorithm will command the

active rectifier to absorb reactive power into ac grid at the next time step. The ab-

sorption of reactive power increases by a rate defined by α.

• If the current bus voltage is between 0.95 and 1.05 per unit, the algorithm maintains
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the previous reactive power command

The rate α can be defined as amount of reactive power injected or absorbed per time

interval. The magnitude of α is a variable and can be tuned as per the operating speed

requirement. In real time, the algorithm behaves as linear discrete integrator and integrates

Q with respect to time with gain equal to α.

The algorithm also enforces a power constraint on the reactive power command. The

power constraint states that reactive power command and current real power measurement

should not exceed the apparent power rating of the SST. If the limit is violated, then the

previously stored reactive power command should override the calculated reactive power

command. The power constraint is applied for both the injection and absorption processes.

The reactive power command is translated to the current command I∗q and is input to the

DQ vector control of the front end active rectifier as described in Section 5.
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3. THE DQDV ALGORITHM IN A RADIAL SYSTEM

The IEEE 34 bus test system is selected as the test system for the implementation of

the DQDV algorithm. The IEEE 34 system one-line diagram is shown in Figure 3. The

IEEE 34 bus test system has several attractive features for use as a test bed case: (1) it is

an unbalanced three phase system, (2) without SST volt-var control, voltage regulators are

required to maintain the feeder voltages, and (3) the system data is publicly available [12].

Since the voltage rating of the single phase SST is 7.2 kV, the voltage rating of the original

IEEE 34 has been changed from 24.9 kV L-L to 12.47 kV L-L. All parameters, including

line impedances, have been converted to a consistent base. SSTs are placed at all load buses

and unless they are a pilot SST, they will hold unity power factor. Pilot SSTs are located at

bus 890 (all phases) and bus 822 (a phase - denoted by a circle), bus 810 (b phase - denoted

by a square), and 806 (c phase - denoted by a diamond). Since the phases are not balanced

and are not all three-phase, the pilot SSTs are located on different phases.
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Figure 3 The IEEE 34 bus distribution test system

The following assumptions are made regarding the test system:
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• The substation is modeled as a constant voltage source

• The substation voltage is set to 1.05 per unit

• The rated phase (line) input high-side voltage is 7.2 (12.47) kV

• The regulated output voltage of the SST is 120V/240V

• The SSTs are aggregated to provide a 200 kVA power rating at each bus

• The SSTs are all single-phase

• All loads are converted to wye-connected RL loads

• The SSTs are energized under no load conditions and then connected to distribution

system

The peak load data is given in Table 1. The load varies throughout the day in ac-

cordance with the normalized load curve shown in Figure 4, which represents a typical

residential load. The solar insolation at each pilot bus is shown in Figure 5.
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Table 1: Peak Load data of IEEE 34

Node kWA kVArA kWB kVArB kWC kVArC
806 0 0 30 15 25 14
810 0 0 16 8 0 0
820 34 17 0 0 0 0
822 135 70 0 0 0 0
824 0 0 5 2 0 0
826 0 0 40 20 0 0
828 0 0 0 0 4 2
830 17 8 10 5 25 10
856 0 0 4 2 0 0
858 7 3 2 1 6 3
864 2 1 0 0 0 0
834 4 2 15 8 13 7
860 36 24 40 26 130 71
836 30 15 10 6 42 22
840 27 16 31 18 9 7
838 0 0 28 14 0 0
844 144 110 135 105 135 105
846 0 0 25 12 20 11
848 20 16 43 27 20 16
890 130 75 130 75 130 75

Figs. 6-8 show the results of the algorithm on the voltage magnitude at bus 890. Note

that without volt-var control, the competing effects of the diurnal load and the solar inso-

lation cause the uncontrolled voltages to violate both the minimum and maximum voltage

limits. However, once the VVC algorithm is implemented, the voltages are maintained

within the operational boundaries.

To see the impact of the proposed volt-var control at the substation, the active and

reactive power measured at the substation with and without control is shown in Figure 9.

Note that due to the high penetration of solar power, the active power at the substation

goes negative indicating that the distribution feeder is supplying active power through the

substation to the remainder of the network. Note that without VVC, the power factor at
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the substation is maintained at near unity as a design feature of the SSTs. However, as the

SST pilot buses assume volt-var control, the reactive power changes to accommodate the

commanded controls. However, even with the proposed VVC, the power factor is still near

unity.

Lastly, it is important to also note that the load side voltage is unaffected by the

variation in voltages at the feeder side. Figure 10 shows the corresponding load side voltage

(phase a) at bus 890. The other phases have similar profiles.
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4. THE DQDV ALGORITHM IN A MESHED SYSTEM

To validate that the proposed algorithm also works in a meshed system, the IEEE 34

bus test system is modified to a meshed topology as shown in Figure 11. Each parallel

connecting line is 6 miles long. The second feeder is a three phase balanced feeder and

has four additional SST buses. The distance between any two buses is 9 miles. The line

impedance per mile used for the second feeder is based on the line data of the IEEE 34

system. The peak load magnitude of these loads per phase are 75 kW and 38 kVAr. The

pilot SSTs are the same as in the original system. The results of the proposed volt-var

control for the meshed system is shown in Figure 12-14. As in the radial system, the

proposed volt-var control is able to effectively maintain the bus voltages within the desired

range.
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Figure 11 The meshed 34 bus distribution system
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5. SST CONTROL

The proposed volt-var control is a high-level control in that it determines the com-

manded reactive power. The SST is responsible for converting the commanded reactive

power into the appropriate output voltage in a timely manner. Figure 1 shows a simplified

representation of the actual topology of a single phase solid state transformer. The actual

topology of an SST can be found in [13]. Throughout this paper, the SST was simulated in

PSCAD using an average value model of the SST. The average value models were devel-

oped directly from the switching models and validated experimentally [13]. Each SST is

rated at 20 kVA and 7.2 kV respectively [13]. Ten SSTs are aggregated to achieve a power

rating of 200 kVA in order to supply power to large loads. The SST model consists of two

regulated dc link voltages. The high voltage dc link is regulated at 11.4 kV by the active

rectifier and the low voltage dc link is regulated at 400 V by the dual active bridge con-

verter. The split phase inverter regulates the ac output voltage at the load side to 120/240

V.

A DQ vector controller with cross coupling terms, shown in Figure 15, is used for

control of the active rectifier. Frequency (ωe) and phase (θe) of the source voltage (Vhs)

are calculated using a phase-locked-loop (PLL). The starred values shown in Figure 15

indicate the commanded values. For unity factor operation, the commanded value of I∗q

is set to zero. I∗q is positive for reactive power injection into the distribution system and

negative for reactive power absorption.

For voltage regulation, the commanded value of I∗q is calculated and its magnitude

depends on the amount of reactive power to be injected into, or absorbed from, the ac

grid. Since the rating of SST is 200 kVA, Q is allowed to vary from from -200 kVAr to

200 kVAr. The gain α is selected such that 2 kVArs are injected every 0.1 seconds, but α

can be adjusted to provide faster or slower response as needed. This update speed is well
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within the computational speed of the microprocessor allowing straightforward real-time

implementation. An example of the SST response is shown in Figs. 16 and 17. The control

is started at 1.0 second at which time the voltage is below the 0.95 minimum voltage level.

Every 0.1 seconds, the reactive power injection is increased by 2 kVAr until the required

voltage limit is reached, after which the voltage is maintained at a constant value. Figure

17 shows the response of the high voltage DC link of the active rectifier. Note that the

voltage is stable at the desired DC voltage of 3800 V. The small oscillations in the DC link

voltage are normal and can be mitigated by filters (which are not included in the average

value model used in this study).
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6. CONCLUSION

A local DQDV algorithm is proposed to perform voltage control in distribution sys-

tems with SSTs. Pilot buses for voltage control are identified in the distribution system and

an SST is used to regulate bus voltage. Other power electronic devices such as PV array in-

verters can perform the same function. The main goal of the integrated algorithm and SST

package is to enforce strict voltage constraints at the bus to which the SST is connected.

Voltage regulation is maintained independent of the load and solar generation profile. Since

the computations are performed locally, there is no required communication between the

SSTs and the substation. The proposed algorithm is validated on both a radial and meshed

distribution system. Furthermore, the results are verified via a time response appropriate

model of the SST to validate that the SST is able to perform the commanded control.
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SECTION

2. CONCLUSION

In Paper I, we demonstrated an instability caused by deploying SSTs in the distribu-

tion systems. Harmonic resonance is caused by an impedance mismatch of the distribution

system with the SSTs. We have proposed a design criterion for the SST input filter to avoid

harmonic resonance and mitigate the instabilities in the system under no load conditions.

A stability analysis was performed for each phase in the distribution system individually.

In Paper II, we extended the application of the impedance based stability criterion to

the distribution system with SSTs under loaded conditions. For a given filter size, this crite-

rion provides a stability guarantee for the system. If the SST filters are designed according

to stability criterion, then system stability is guaranteed regardless of configuration. This

leads to two important implications: (1) the order of connection of the SSTs will not gen-

erate any instability if the criterion is satisfied, and (2) a system configuration change will

not generate instability. This stability assessment can be applied to each of the three phases

independently.

In Paper III, a local DQDV algorithm is proposed to perform voltage control in the

distribution system. Pilot buses for voltage control are identified in the distribution system

and an SST is used to regulate the bus voltage. SSTs at non-pilot buses maintain unity

power factor. The main goal of the algorithm is to enforce strict voltage constraints during

high solar power generation and peak load conditions. Since the computations are per-

formed locally, there is no need for communication between the SSTs and the substation.

The proposed algorithm is validated for both radial and meshed distribution system.
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