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ABSTRACT

The relentless technology scaling has led to significantly reduced noise margin

and complicated functionalities. As such, design time techniques per se are less likely

to ensure power integrity, resulting in runtime voltage emergencies. To alleviate the

issue, recently several works have shed light on the possibilities of dynamic noise

management systems. Most of these works rely on on-chip noise sensors to accurately

capture voltage emergencies. However, they all assume that the placement of the

sensors is given. It remains an open problem in the literature how to optimally place

a given number of noise sensors for best voltage emergency detection. In the first

chapter, the problem of noise sensor placement is defined along with a novel sensing

quality metric (SQM) to be maximized.

The threshold voltage for noise sensors to report emergencies serves as a critical

tuning knob between the system failure rate and false alarms. In the second chapter,

the problem of minimizing the system alarm rate subject to a given system failure

rate constraint is first formulated. It is further shown that with the help of Iddq

measurements during testing which reveal process variation information, it is possible

and efficient to compute a per-chip optimal threshold voltage threshold.

In the third chapter, a novel framework to predict the resonance frequency

using existing on-chip noise sensors, based on the theory of 1-bit compressed sensing

is proposed. The proposed framework can help to achieve the resonance frequency of

individual chips so as to effectively avoid resonance noise at runtime.
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1. EAGLE-EYE: A NEAR-OPTIMAL STATISTICAL FRAMEWORK
FOR NOISE SENSOR PLACEMENT

1.1. INTRODUCTION

The continuous increase in power density brought by the CMOS scaling has

resulted in a monotonic decrease of the supply voltage. On the other hand, to avoid

excessive leakage power, the threshold voltage cannot be scaled at the same pace,

as illustrated in Figure 1.1 [1]. The reduced noise margin, along with the boost in

functional complexity, has posed severe threat to the power integrity of the chips.

Noise margin violation, which is also known as voltage emergency, leads to undesired

effects such as delay degradation, timing violation, etc. which may finally cause

system malfunctioning [11, 33].

Figure 1.1: Supply voltage and threshold voltage scaling trends in International Tech-
nology Roadmap for Semiconductors[1]. By 2015 the voltage margin for
Low Standby Power (LSP) technology will drop below 0.2 V

The strict definition of voltage emergency is the situation when the amplitude

of the noise exceeds a given threshold voltage Vt for a minimum duration (threshold
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time) of Tt [24]. In other words, the definition captures not just the amplitude of

noise, but also the temporal span. An example is shown in Figure 1.2, the duration

of the first peak is longer than the threshold time to cause voltage emergency. On the

other hand, the second peak is too short to cause it. The rationale behind this is that

the impact of power supply noise on timing is more of an accumulative effect, and

a very narrow voltage droop is unlikely to cause any timing issues. Conventionally,

Figure 1.2: Definition of voltage emergency

on-chip power integrity is ensured through design time approaches such as decap

insertion [5, 35] or metal wire sizing [20] [15]. However, increasingly stringent design

constraints with narrowed noise margins and complicated functionalities make such

practices expensive, if not impossible, to address all power integrity issues at design

time. As such, a recent trend of research innovation [11, 16, 27, 33] is to employ

runtime noise management systems at the microarchitecture level to address the power

integrity issue. Most of them adopted a centralized control system with distributed

noise sensors, and were based on the detection of voltage emergencies. Obviously,

the quality of such a microarchitecture level solution with runtime noise management

greatly depends on the locations of those distributed noise sensors. Such a problem

is, however, largely not addressed in literature.

How to place a limited number of noise sensors is important in order to mini-

mize the hardware overhead and, at the same time, minimize the miss rate of voltage



3

emergency detections, where the miss rate is defined as the probability of noise sensors

not detecting any voltage emergencies, while a voltage emergency in fact occurring

somewhere on the chip. Failure to detect voltage emergencies may lead to severe

performance penalties. For example, the study in [11] showed that undetected volt-

age emergencies can induce as much as 17% delay degradation. The runtime noise

management systems and the associated noise sensor placement problem will become

increasingly important in the near future with even tighter noise margin and higher

computing demand. Hence a rigorous study in this area is warranted.

In this chapter, the noise sensor placement problem for microarchitecture-

level runtime noise management is formally formulated, and a statistical near-optimal

framework is devised to solve it while considering the correlated noise distributions.

The main contents of this chapter are as follows: 1) A formal formulation of the noise

sensor placement problem for micro-architecture level runtime noise management; 2)

A novel metric called sensing quality metric (SQM) to quantitatively evaluate the

quality of any noise sensor placement; 3) An efficient approximation algorithm with

O(sn) complexity, where n is the number of candidate nodes for sensor placement

and s is the number of sensors placed; 4) A proof that the proposed algorithm can

achieve the best-possible approximation to the optimal solution among all polynomial-

complexity algorithms.

The remainder of this chapter is organized as follows. Related background

information is reviewed in Section 1.2, and the noise sensor placement problem is

formulated in Section 1.3. Proposed algorithm is presented in Section 1.4. Concluding

remarks are given in Section 1.6.

1.2. PRELIMINARIES

1.2.1. Microarchitecture-level Runtime Noise Management. Most ex-

isting microarchitecture-level runtime noise management systems adopt a structure

with distributed noise sensors and a centralized control system where the voltage
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emergencies are determined by comparing the sensed noise with a threshold. There

are two different types of thresholds. Following the same conventions as [11], in this

chapter the hard threshold as the strict constraint beyond which the system will mal-

function (e.g. timing violation) are defined. On the other hand, the soft threshold is

less strict, beyond which the system becomes less reliable due to effects such as delay

degradation. Noise emergency is defined as the time when the noise surpasses/violates

either the soft or the hard threshold, depending on the application. Depending on

the way voltage emergencies are handled, microarchitecture-level runtime noise man-

agement can be divided into three different categories: retroactive system with soft

threshold [16, 27], retroactive system with hard threshold [33], and proactive system

with soft threshold [11].

Retroactive systems with soft threshold voltage use noise sensors to monitor

the supply voltage for specific soft threshold crossings, which indicates potential sys-

tem reliability reduction. When this occurs, the instruction execution will then be

throttled at the microarchitecture-level to prevent potential system failures. However,

significant overhead is induced by over-protecting the systems to ensure correctness.

Retroactive systems with hard threshold improve such scheme by allowing the errors

to occur, but system states need to be rolled back to restore the correct values once

the noise emergency is detected. Proactive systems with soft threshold, on the other

hand, try to recognize and track the patterns of activities that may lead to voltage

emergencies, and hence invoke the throttling mechanism based on the prediction to

prevent voltage emergencies from actually happening.

In either of these approaches, the optimal deployment of noise sensors (e.g.,

sensor design, placement, etc.) plays a central role to accurately capture voltage

emergencies with lowest overhead.

1.2.2. Noise Sensor Placement. For dynamic noise management such as

throttling (e.g.[11, 33]), it is only needed to know whether noise emergencies have
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occurred rather than the detailed noise map, which requires significantly less infor-

mation. Consider a motivational design with only one single (and fixed) noise hot

spot that is uncorrelated to other parts on the chip. In this case, only one noise sensor

right at the hot spot is sufficient to detect all emergencies.

For noise sensor placement, the goal is to provide a binary decision on whether

a voltage emergency has occurred somewhere on chip. The goal of the noise sensor

placement is to accurately monitor and report the voltage emergency (where the chip

max noise larger than a given threshold t) with a limited number of noise sensors and

the binary information provided by the noise sensors.

1.3. PROBLEM FORMULATION

In this section, it is formally formulated the noise sensor placement problem,

and the target metric to be optimized.

1.3.1. Problem Statement. It is assumed that the following information is

given as input: 1) n candidate nodes in the power grid for noise sensor placement;2)

threshold voltage t for the voltage emergencies, which is specified by the designer and

is the same for all the sensors; 3) the total number of noise sensors t to be placed.

The objective is to identify s nodes ri(1 ≤ i ≤ s) out of the n candidates to be

sensed, so that the miss rate of the voltage emergency detection is minimized. The

candidate nodes are those which allow noise sensor placement. Again, the miss rate

is defined as the probability that the placed noise sensors do not detect any voltage

emergencies while a voltage emergency does occur somewhere on chip, including those

places that are not allowed to place a noise sensor. Note that the actual locations of

the sensors can be anywhere in the area adjacent to ri. However, for the simplicity

of presentation, in this chapter it is said a sensor is being placed at ri if the sensor is

used to sense the voltage at ri.
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In the formulation, one challenging problem is to quantitatively evaluate the

miss rate with given noise sensor placements. As it is impossible to obtain all pos-

sible voltage drop (noise) waveforms through transient simulation, same as [37] it is

proposed to model the noise ∆Vi , including the fluctuations in the reference voltage,

noise sensor process variation, etc., at any node i of the power grid as a random vari-

able. Those random variables have different means and variances, and are correlated

spatially. Specifically, the noise of i-th node, either Gaussian or non-Gaussian, can

be represented as [37].

∆Vi = Fi(∆X) = Hi(G) + ∆Ri (1.1)

where ∆X is a set of common correlated factors that result the variation of voltage

noise through function Fi. Through modelling techniques, the noise can be repre-

sented by function Hi(G), where G is an m-dimensional uncorrelated random vari-

able that models the global variation sources (common for all nodes) which can be

extracted from ∆X through either principle component analysis (PCA) for Gaussian

or independent component analysis (ICA) for non-Gaussian distributions of ∆X. The

dimension of m decides the approximation accuracy. In addition, ∆Ri models the in-

dependent source of noise variation specific to node i which comes from model error,

noise sensor process variation, fluctuations in reference voltage. In addition, the func-

tional forms of Fi and Hi can be either linear or nonlinear [7]. In the context of such

statistical formulation, it is ready to put forward a novel sensing quality metric that

can be computed without involving Monte Carlo simulations.

1.3.2. Sensing Quality Metric (SQM). Mathematically, the miss rate can

be cast as

Miss Rate = P (∆Vmax ≤ t|max(∆Vri(1 ≤ i ≤ s)) (1.2)
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where ∆Vmax is the maximum noise among all the nodes in the power grid,

∆Vri(1 ≤ i ≤ s) are the noise at the s nodes where the sensors are connected, and t

is the threshold voltage.

Equation (1.2) still provides little insight into the optimization problem. It

can further simplified by using the Bayes law as follows.

P (∆Vmax ≥ t|max(∆Vri(1 ≤ i ≤ s)) ≤ t)

=1− P (∆Vmax ≤ t|max(∆Vri(1 ≤ i ≤ s)) ≤ t)

=1− P (∆Vmax ≤ t,max(∆Vri(1 ≤ i ≤ s)) ≤ t)

P (max(∆Vri(1 ≤ i ≤ s)) ≤ t)

=1− P (∆Vmax ≤ t)

P (max(∆Vri(1 ≤ i ≤ s)) ≤ t)
(1.3)

where the last equality utilizes the fact that if the maximum on-chip nois

∆Vmax is below threshold t, then the noise at any node must be below it.

Since for a given design, P (∆Vmax ≤ t) is a constant independent of the sensor

placement, it becomes clear that, in order to minimize the miss rate, it is equivalent

to minimizing the following metric

P (max(∆Vri(1 ≤ i ≤ s)) ≤ t) (1.4)

Or alternatively, it is equivalent to maximize

P (max(∆Vri(1 ≤ i ≤ s)) ≥ t) (1.5)

Accordingly, the following definition can be derived for the Sensing Quality

Metric (SQM).

Definition 1: The Sensing Quality Metric (SQM) for a set of nodes to be

sensed is defined as the probability of the maximum noise among them goes beyond

the threshold voltage as in Equation (1.5).
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Intuitively, the SQM can be interpreted as the probability that a voltage emer-

gency can be detected for the given sensor placement. In order to compute SQM, it

is needed to evaluate the statistical max of a set of correlated random variables. Such

techniques have been developed in the recent statistical timing analysis and power

analysis research, for example, [37] for Gaussian random variables and [7] for non-

Gaussian ones. The essence of those techniques is to represent the random variables

as a function of the underlying common sources of process variations such as in (1.1).

1.4. ALGORITHM

1.4.1. Overview. Considering SQM, the objective turns to find s nodes

among n candidates so that SQM of the set S of all selected nodes is maximized.

A nave approach would be to enumerate all the possible combinations, which results

in a complexity of
(
n
s

)
, which is exponential to s. Apparently, this is not a feasible

method for large n and relatively large s in the problem.

To balance the complexity and quality of the solution, it is resorted to a

compact greedy method, as shown in Figure 1.3. Basically, during each iteration, it

always selects a node that could maximally increase the SQM of the set of selected

nodes so far. By propagating the canonical form as shown in Equation (1.1), SQM(S∪

k) could be easily calculated with the statistical max operation [7]. Since there

are totally s iterations and the maximum number of SQM to be calculated is n,

the algorithm complexity could be easily analysed as O(sn). The simplicity of this

algorithm prompts us to ask the following question: how good is the resulted solution?

Will it be far from the optimal solution? In Section 1.4.2, the proof of optimality will

be presented.

1.4.2. Proof of Optimality. In this section, the greedy method shown in

Figure 1.3 is fomally proved to be the best-possible polynomial complexity approxi-

mation algorithm for maximizing the SQM.
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Figure 1.3: Proposed algorithm for noise sensor placement

The proof is inspired by a different interpretation of the SQM. Represented by

the function form such as in Equation (1.1), the statistical noise of each node can be

seen to lie in the variation space Ω(δY ), which is spanned by the random variables

corresponding to global and local variation as defined in (1.1).

As such, the SQM of node i actually defines the mapping from ∆vi to the

subspace ωi ⊆ Ω as

ωi = {∆Y |∆vi = H(∆G) + ∆Ri ≤ t} (1.6)

In other works, the SQM of a single node covers a subspace in Ω, and the SQM of a

set of nodes T = (ni(1 ≤ i ≤ s) is the union of subspaces occupied by each of there

nodes.

ωSQM = ∪ωni(1 ≤ i ≤ s) (1.7)

Thus, SQM can also be quantitatively evaluated as the portion of the entire variation

space occupied by selected nodes

SQM(T ) =
|ωSQM |
|Ω|

(1.8)
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where |•| is the Lebesgure measure (i.e., probability-weighted volume of the variation

space).

From (1.7) and (1.8), it is clear that maximizing SQM(T) is equivalent to

solving the max variation space cover (MVSC) problem, where it is needed to find a

set of subspaces whose union covers the maximum volume in the variation space. The

algorithm in Figure 1.3 can then be interpreted as to select a subspace for maximum

incremental coverage at each iteration.

A related problem, the max set cover (MSC) problem [10], has been extensively

studied and proven to be NP-hard. The MSC problem can be stated as follows: Given

a set M = ai, , an, a collection H composed of subsets li ⊆ M and an integer k, the

MSC problem tries to select k elements from H such that they cover the maximum

number of elements in M . However, the proofs and conclusions in the MSC problem

do not directly apply to the MVSC problem, as the former is defined in discrete space,

while the latter works in continuous space. Similar to MSC problem, the MVSC

problem is also NP-Hard. It will be showed in the following that that the proposed

algorithm in Figure 1.3 can achieve the best polynomial approximation bound.

Corollary 1: The best polynomial-complexity approximation of MVSC is at

most 1− 1
e
.

Proof: It comes from that the MVSC problem is the super-set of the MSC

problem, and the MSC problem has best polynomial-complexity approximation 1− 1
e

[10].

Next, the optimality of the greedy algorithm in Figure 1.3 will be proved using

the variation space interpretation. As shown in Figure 1.4, OPT can be defined as the

maximally covered variation space by the optimally placed s noise sensors through a

black-box algorithm. ωi is the space covered by the sensor placed in the i-th iteration

of the algorithm in Figure 1.3, and ξi is the space that has not been covered after the

i-th iteration, i.e.,

|ξi| = |OPT | −
i∑

j=1

|ωj| (1.9)
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Figure 1.4: Variation space coverage of SQM

The algorithm in Figure 1.3 has the following properties.

Lemma 1: |ωi+1| ≥ |ξi|
s

.

Proof: Since the optimal solution uses s subspaces to cover OPT , after i-th

iteration, there must exist an unselected subspace ωi+1
′ covering at least 1

s
fraction of

ξi (otherwise ξi and thus OPT cannot be covered by the union of any s subspaces).

Since in the (i + 1)-th iteration the algorithm selects the subspace which maximally

reduces the uncovered space, the selected subspace ωi+1 should reduce as much un-

covered subspace as ωi+1
′ does. Thus, it can be concluded that ωi+1 should have a

volume of at least |ξi|
s

.

Lemma 2 : |ξi+1| ≤ (1− 1
s
)i+1|OPT |

Proof: By induction. For i = 0, Lemma 2 is true; Assume Lemma 2 is true

for i, i.e.,

|ξi| ≤ (1− 1

s
)i|OPT | (1.10)

Thus from Lemma 1,

|ξi+1| = |OPT | −
i+1∑
j=1

|ωj| = |ξi| − |ωi+1| ≤ |ξi| −
|ξi|
s
≤ (1− 1

s
)i+1|OPT | (1.11)

From Lemma 1 and Lemma 2, the following theorem can be proved.
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Theorem 2: The algorithm in Figure 1.3 is (1− 1
e
) approximation of OPT.

Proof: Replace s with i+ 1 in Lemma 2,

|ξs| ≤ (1− 1

s
)s|OPT | ≤ |OPT |

s
(1.12)

From Corollary 1 and Theorem 2, it is straightforward to get the following

corollary.

Corollary 2: The proposed greedy algorithm in Figure 1.3 is the best-possible

polynomial time algorithm for maximizing SQM.

1.5. EXPERIMENTAL RESULTS

The proposed greedy algorithm in Figure 1.3 is implemented in C++ on a

machine with two quad-core 2.4 GHz Intel Xeon E5620 CPUs and 96 GB memories.

A similar method as [37] is adopted to obtain the statistical noise model Zi for Vdd

nets N1, N2 and N3, which are extracted from real industrial power grid designs.

As summarized in Table 1.1, the #i, #n and #r stand for the number of current

sources, the number of nodes and the number of resistors of each net, respectively.

In addition, it is assumed that all the noises are Gaussian, and apply PCA to get

the linear canonical form [37]. A zero-mean Gaussian random variable ∆Ri is further

added to model the independent noise variation of each node which may come from

PCA model error, noise sensor process variation, fluctuations in reference voltage,

etc. In the experiments, threshold time Tt is set to 1ns. To compare the quality

Table 1.1: Benchmark information

Benchmark #i #n #r
N1 5,387 5,387 4,720
N2 18,419 19,240 38,366
N3 100,527 102,178 197,470

of the sensor placement result, three alternative noise sensor placement techniques

are implemented. The first method simply selects the top-s nodes with maximum
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average noise for sensor placement (denoted as Ave-noise), while the second and

third methods map noise to temperature and employ the state-of-the-art temperature

sensor allocation techniques Eigenmap [31] and [32], respectively. Note that the

former targets at recovering the whole noise map, while the later targets at capturing

the hot spots at all times.

Table 1.2 compares the miss rate of the three methods. The miss rate is

directly calculated as p/q, where q is the total number of time steps in the transient

noise waveforms and p is the number of time steps in which a voltage emergency is

missed (i.e., the placed sensors fail to detect the voltage emergency). The 90 mV

threshold is set as 5% of the nominal Vdd (1.8V) according to the reported hard

threshold value in literature [11]. The results in Table 1.2 indicate that compared

with Ave-noise, the method in [32] and EigenMap [31], Eagle-Eye on average reduces

the miss rate of voltage emergency detections by 7.4x, 6.2x and 15x, respectively.

The drastic improvement should mainly be credited to the difference in optimization

objectives between these methods. The runtime comparison in Table 1.3 also shows

that Eagle-Eye is on average 96x faster than EigenMap and 3.2x faster than [32].

Such runtime reduction comes from the fact that the statistical max operations used

in Eagle-Eye is much faster than the complex matrix operations needed in EigenMap

and [32]. Figure 1.5 shows how the SQM changes with the number of placed sensors

Table 1.2: Miss rate comparisons (#sensor = 10, t = 90mV)

Benchmark
Miss Rate

Ave-noise Reda, S EigenMap Eagle-Eye
N1 17%(8.5x) 19%(9.5x) 75%(38x) 2%(1x)
N2 38%(19x) 30%(15x) 47%(24x) 2%(1x)
N3 18%(3.0x) 13%(2.2x) 29%(4.8x) 6%(1x)
Average 24.3%(7.4x) 20.6%(6.2x) 50.3%(15x) 3.3%(1x)

under different threshold voltages. In addition to the hard threshold (5%Vdd, 90mV),

two soft thresholds 87 mV and 85 mV are also used. Based on the observation in

(1.5), it is natural to see that, under all thresholds, SQM increases with the number
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Table 1.3: Runtime comparisons (#sensor = 10, t = 90mV)

Benchmark
Runtime(sec)

Ave-noise Reda, S EigenMap Eagle-Eye
N1 0.01 (1/14x) 0.25 (1.8x) 1.68 (12x) 0.14 (1x)
N2 0.01 (1/20x) 0.67 (3.4x) 27.12(136x) 0.20(1x)
N3 0.03 (1/10x) 1.03 (3.4x) 31.65 (106x) 0.30 (1x)
Average 0.02 (1/11x) 0.65 (3.2x) 20.15 (96x) 0.21 (1x)

of sensors. In all test cases, with fewer than 10 sensors, SQM reaches 90% of its

maximum. This suggests that only a small number of sensors are indeed necessary,

which means the framework will induce very little hardware overhead. The miss rate

also drops with the number of sensors as expected. Interestingly, it is observed a rapid

drop of miss rate at certain knee points of the number of noise sensors. This suggests

the existence of a few nodes in the given power grid design, the union of which can

be used as a good statistical indicator for the full-chip voltage emergencies. The

number of nodes needed to form such a representative noise indicator increases as the

threshold decreases. It is also found from this experiment that there is no overlap

between those groups of nodes being selected at different thresholds.

Figure 1.6 compares the miss rate of different approaches with different number

of noise sensors at 90 mV threshold on N2. Apparently, with the increase of the

sensor number, the miss rate of Eagle-Eye quickly drops below 2%, while those of

the Ave-noise and [32] are much slower. This is because [32] focuses on capturing

the maximum noise locations at all times. When the number of sensors is limited,

it may not select the nodes that have less noise but are better indicators of full-chip

voltage emergencies. Even worse, the miss rate of EigenMap fluctuates extensively.

This is because EigenMap emphasizes more on recovering the entire noise map. As

such, it fails to capture the representative nodes as they are relatively uncorrelated

to the other power grid nodes in the design.

It is further studied how SQM and miss rate change as the threshold voltage

increases, and the result is shown in Figure 1.7 for N2 with 10 sensors. It is interesting
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Figure 1.5: SQM and miss rate vs. the number of sensors of N2

that although SQM decreases in general with the increase of threshold voltage, which

is intuitive from (1.5), the miss rate fluctuates with the overall trend of decreasing.

The sudden drop of miss rate can be noted, again due to the existence of a few nodes

whose union form a good statistical indicator for full-chip voltage emergencies for 85

mV threshold voltage and above.

Finally, for the same benchmark N2, sensor number 10 and threshold voltage

90 mV, Figure 1.8 studies the impact of sensing inaccuracy (i.e., ∆Ri in (1.1) induced

by factors such as measurement error and process variations of the sensors) on the final

sensor placement result. Here ∆Ri is represented as a zero-mean Gaussian random

variable. Obviously, when the sensing inaccuracy is small (≤ 20%), the miss rate

and SQM remain flat, which shows the Eagle-Eye has strong resistance against small

sensing inaccuracy. However, as the sensing inaccuracy increases, the chip noises

become largely randomized. As such, it is harder to select a good statistical indicator

for full-chip voltage emergencies, which translates into a rapid increase in the miss

rate. The increase in SQM comes from the increased noise variations. Although not
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Figure 1.6: Miss rate vs. the number of sensors for different approaches (threshold =
90 mV, N2)

Figure 1.7: SQM and miss rate vs. threshold (number of sensors = 10, N2)

shown, it is also observed that the resistance to sensing inaccuracy becomes stronger

as the sensor number increases.
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Figure 1.8: SQM and miss rate vs. sensing inaccuracy (threshold = 90 mV, # of
sensors = 10, N2)

1.6. CONCLUSION

In this chapter, a compact, fast and near-optimal solution for noise sensor

placement is proposed. It can help to detect voltage emergencies efficiently and

provide sensor placement strategy for runtime power management systems. Exper-

imental results on a set of industrial power grid designs show that compared with

a simple average-noise based heuristic and two state-of-the-art temperature sensor

placement algorithms aiming at recovering the full map or capturing the hot spots

at all times, the proposed method on average can reduce the miss rate of voltage

emergency detections by 7.4x, 15x and 6.2x, respectively.
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2. ON THE OPTIMAL THRESHOLD VOLTAGE COMPUTATION OF
ON-CHIP NOISE SENSORS

2.1. ABSTRACT

Runtime noise management systems typically rely on on-chip noise sensors

to accurately capture voltage emergencies. As such, the threshold voltage for noise

sensors to report emergencies serves as a critical tuning knob between the system

failure rate and false alarms. Unfortunately, the problem of optimal threshold volt-

age computation remains open in literature despite its importance. The problem is

further complicated by process variations, which introduce significant variations in

load currents and thus in noise across different chips. A uniform noise margin may

not work optimally for all the chips. In this chapter, the problem of minimizing the

system alarm rate subject to a given system failure rate constraint is first formu-

lated. A uniform scheme is then put forward to find an optimal solution for all chips.

Compared to a seemingly more intuitive approach which is too conservative, experi-

mental results over a set of industrial designs show an average of 20.6% reduction in

system alarm rate under the same system failure rate constraint. It is further shown

that with the help of Iddq measurements during testing which reveal process variation

information, it is possible and efficient to compute a per-chip optimal threshold volt-

age threshold. It further reduce the alarm rate by 12.3% on average compared with

uniform threshold approach.

2.2. INTRODUCTION

The relentless CMOS scaling has increased the power density drastically, sup-

pressing the chip supply voltage. On the other hand, to avoid excessive leakage power,

the threshold voltage of transistors cannot be scaled at the same pace. As a result,



19

it is becoming increasingly difficult to ensure power integrity through design time

techniques such as decoupling capacitance budgeting [35], power grid sizing [8], etc.

To alleviate the problem, microarchitecture level noise management systems

have been studied recently, trying to address power integrity issues at runtime. In

most of these systems, noise sensors are deployed to detect voltage emergencies, which

are defined as the situations when the amplitude of the noise exceeds a given thresh-

old voltage Vt for a minimum duration (threshold time) of Tt [16]. Once a voltage

emergency is detected, system level controls such as instruction throttling [16, 27]

or commit-and-rollback [33] can be applied to ensure the correct operation of the

system.

Two things play central roles in these runtime noise management systems:

the placement of the noise sensors, as well as the threshold voltage Vt and threshold

time Tt to decide the occurrence of voltage emergencies. Near-optimal noise sensor

placement method is proposed in [41], which provides a promising solution to the

first problem. However, the second problem still remains largely unexplored in the

literature. As such, these thresholds are normally decided empirically by experienced

designers.

As threshold voltage and threshold time have a combined effect on circuit

performance, in this chapter it assumes that threshold time is given and focus on the

optimal decision of threshold voltage. There are two types of threshold voltages. The

hard threshold th is the strict bound which is fixed once a chip is fabricated. When

the noise exceeds this bound for a duration of at least Tt, the system malfunctions.

In this chapter, this type of voltage emergencies is called as real voltage emergencies.

On the other hand, since it can only place a limited number of noise sensors on

chip and the sensors are not always accurate, not all real voltage emergencies can be

detected. Also the system takes time to respond to the voltage emergencies reported

by sensors. Accordingly, a soft threshold ts, which is lower than th so as to leave

enough voltage emergency detection margin, is typically used by the sensors to serve
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as an alarm for potential real voltage emergency and system failure. In other words,

the system uses ts to report voltage emergencies while the real voltage emergency

(system malfunction) actually happens when th is crossed.

As will be shown in Section 2.3.2, the value of ts has large impacts on the

system performance. If ts is set too high (i.e., close to th), the system may suffer from

large system failure rate, i.e., the undetected voltage emergencies can potentially

cause system failures, resulting in reboots. Here the system failure rate is defined as

the probability that the placed noise sensors do not detect any voltage emergencies

while the maximum noise on chip is over th, i.e., a real voltage emergency occurs. On

the other hand, if ts is set too low, the chance of false alarms (i.e., the noise crosses ts

but not th) increases. Since the system relies on the sensor signals to act, these false

alarms will introduce runtime performance loss (RPL) to handle the nonexistent real

voltage emergencies. It is thus imperative to identify an optimal ts that balances the

system failure rate and RPL.

The problem is further complicated by the process variations across chips as

well as environmental uncertainties. Variations introduce significant difference in

load currents and thus in noise across different chips. On the other hand, they also

introduce difference in critical path delay, and thus in th. In other words, a uniform

threshold voltage may not work well for all chips and it is better to be calculated on

a per-chip basis. Moreover, noise sensors themselves also suffer from on-chip noise

coupling and other environmental uncertainties, which may give inaccurate sensing

results. As such, it is needed to take these uncertainties into consideration when

computing the optimal threshold voltage.

In this chapter a statistical approach is proposed to compute the optimal soft

threshold voltage ts, under which the alarm rate is minimized while satisfying the

user supplied system failure rate constraint. In detail, two scenarios are analyzed.

In the first scenario, a single uniform ts is caculated for all chips with the same de-

sign. Compared to a seemingly more intuitive approach which is too conservative,
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experimental results show 20.6% average alarm rate reduction over a set of industrial

designs under the same system failure rate constraint. In addition, considering the

existence of process variations, a per-chip optimal ts is further proposed based on

the chip leakage current Iddq measurement during testing, assuming fixed th. Experi-

mental results show that such an approach further reduces the alarm rate by 12.3%

compared with the uniform ts approach under the same system failure rate constraint.

To the best of our knowledge, this is the first work that systematically formulates and

solves the optimal soft noise threshold voltage computation problem for on-chip noise

sensors.

The rest of this chapter is organized as follows. Backgrounds and preliminaries

are introduced in Section 2.3. The problem of optimal threshold voltage computation

formally formulate in Section 2.4. Section 2.5 provides a method to compute a uniform

soft threshold voltage for all chips, while the per-chip threshold voltage computation

is illustrated in Section 2.6. Section 2.7 shows the experimental results by comparing

the different threshold computation methods. Conclusions are given in Section 2.8.

2.3. PRELIMINARIES

2.3.1. Runtime Noise Management Systems. Runtime noise manage-

ment systems at microarchitecture level are normally composed of a centralized con-

troller and distributed noise sensors. Voltage emergencies are detected by comparing

the sensed noise with a threshold voltage over a period of threshold time. In general,

these systems can be classified into three categories: retroactive systems with hard

threshold voltage th [33], retroactive systems with soft threshold voltage ts [16, 27]

and proactive systems with soft threshold voltage ts [11].

The retroactive systems with hard threshold voltage works by setting the noise

sensor threshold to strict th [33]. Once th crossing is detected (i.e., real voltage emer-

gency occurs), the system needs to be recovered to its previous correct status through

mechanisms such as commit-and-rollback. Otherwise the system will malfunction due
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to the excessive noise. To avoid the large overhead introduced by full system rollback,

recently the retroactive system with soft threshold voltage [16, 27] has been proposed.

By detecting the less strict ts crossing, the system signals alarms for potential th cross-

ing. When such an alarm is reported, the system can take immediate actions such as

instruction throttling to prevent real voltage emergencies from happening and thus

avoiding the overhead from system rollback. By leaving proper margins between ts

and th, such systems can be kept running without real voltage emergencies. The

proactive system with soft threshold [11] takes one step further, which tries to rec-

ognize and track the patterns of activities that may lead real voltage emergencies,

and invoke the throttling mechanism based on the prediction in advance to prevent

voltage emergencies.

This chapter focuses on systems using soft threshold voltage ts since they incur

less system overhead, and propose statistical techniques to decide the optimal value

for ts.

2.3.2. Impact of Soft Threshold Voltage. This section provides readers

with a better understanding of the impact of ts on voltage emergency detection quality

and system performance, through a graphical approach. Figure 2.1 shows the joint

probability density function (JPDF) of the chip max noise Zmax (i.e., fixed once the

chip is fabricated) and sensed max noise ZS (i.e., fixed once the sensor placement is

given). The ellipses in Figure 2.1 represent contours of equal probability. The joint

distribution can be obtained by regression on samples from simulations.

The horizontal line represents the hard threshold voltage th, i.e., Zmax = th.

The dashed vertical line represents the soft noise threshold voltage, which crosses the

horizontal axis at ts, i.e., ZS = ts. As such, the area below (above) the horizontal

line has Zmax < th (Zmax > th), i.e., no real voltage emergency occurs (real voltage

emergency occurs). In addition, based on ts, the area to the left of the dashed vertical

line is where the sensors will not report an alarm, while the area to the right of this

line is where alarms will be signaled by the sensors. As such, four regions are evident:
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Figure 2.1: Joint distribution of the chip maximum noise and sensed maximum noise

1) The region marked with no emergency represents the safe cases, i.e., no

voltage emergencies detected by the sensors, and no real voltage emergencies occur

anywhere on the chip.

2) The region marked with real emergencies detected comprises the cases where

real voltage emergencies actually happen and the sensors signal alarms for voltage

emergencies.

3) The region marked with error represents the situations where the sensors

fail to detect real voltage emergencies. Such miss will lead to system failures and

should be minimized.

4) The region marked with RPL contains the cases when sensors signal alarms

for voltage emergencies while no real voltage emergency is occurring anywhere on

the chip. These are false alarms that will introduce system overhead by triggering

unnecessary noise management procedures such as instruction throttling. As a result,

it is desirable to limit such performance loss due to false alarms under a certain level.

From Figure 2.1 it can be seen that as the soft threshold increases (the dashed

vertical line moves towards right), the chances of system failure (the error region)

increases but the RPL due to false alarm decreases (and vice versa). To the extreme,
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when RPL = 0, ts = th. While the tradeoff can be considered in many different

ways, this chapter considers the problem of minimizing the chances of alarm rate

to avoid runtime performance loss, while the system failure rate is constrained by a

user-specified level.

2.4. PROBLEM FORMULATION

It is difficult to analyze the voltage emergency when both threshold voltage

and threshold time are coupled together. As such, a method to transform the noise

waveform ∆Vi(t) of node i at time t is utilized, which can be obtained from SPICE

simulation, as follows:

zi(t) = min
t−Tt≤t′≤t

∆Vi(t
′) (2.1)

In other words, at each time instance, the minimum of the noise is taken within the

time window of length Tt backward. The reason to use such transform is that the

criterion to check for voltage emergencies now becomes very simple: it occurs at node

i if and only if at some time instance t0, zi(t0) is higher than the threshold voltage

Vt
∗. In other words, the transformation in (2.1) allows to include threshold time Tt

implicitly.

One challenging problem is to quantitatively evaluate the system failure rate

with given noise sensor placements. As it is impossible to obtain all possible voltage

droop (noise) waveforms and thus all possible zi waveforms at a node i through

transient simulation, same as [38] it is proposed to model the variation of zi over

time, as a random variable Zi:

Zi = Fi(X) = Hi(G) + ∆Ri (2.2)

∗Note Vt can be either soft or hard threshold voltage. In this chapter, Vt = ts is used for voltage
emergency detection, and Vt = th is used to decide if an real voltage emergency has occurred.
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where X is a set of common correlated factors that lead to the noise variation through

function Fi. Through modeling techniques, the noise can be represented by func-

tion Hi(G), where G is an m-dimensional uncorrelated random variable that models

the global variation sources (common for all nodes) which can be extracted from X

through principle component analysis (PCA). The dimension m decides the approx-

imation accuracy. ∆Ri models the independent source of noise variation specific to

node i which comes from model error, noise sensor process variation, fluctuations in

reference voltage, etc. Linear form of Fi and Hi are used in this chapter, however,

this is not a limitation of the proposed method.

Note that in this chapter it is assumed that the noise follows Gaussian distri-

butions. It has been shown in [9] that this in general holds except near the tail when

the noise is small, which will introduce some minor errors in our scheme. The impact

of this error is revealed in some of the experiments to be reported later.

From the analysis in Section 2.3.1, as long as the sensors signal an alarm, the

system will react and cause performance degradation. Accordingly, it is of interest to

minimize the chances that the sensors signal alarms, or the alarm rate. Considering

the tradeoffs revealed in Section 2.3.2, it is proposed to minimize the alarm rate under

a given system failure rate. With the above noise model, to best utilize the runtime

noise management system, it is needed to minimize the alarm rate under a given

system failure rate constraint. With the above noise model, the problem of optimal

threshold voltage computation can be formulated as follows: given the chip max noise

Zmax and the sensed max noise ZS = max(Zri(1 ≤ i ≤ s)) (i.e., r1, r2, . . . , rs are the s

nodes with pre-placed noise sensors) distributions, hard threshold th and a maximum

allowed system failure rate q specified by users, compute the soft threshold voltage ts

as the solution of the optimization problem

arg min
ts

P (ZS ≥ ts) (2.3)
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s.t. P (Zmax ≥ th|ZS ≤ ts) ≤ q. (2.4)

where P (ZS ≥ ts) represents the system alarm rate (i.e., the probability of the soft

threshold crossing), and system failure rate is expressed as P (Zmax ≥ th|ZS ≤ ts)

(i.e., the probability of undetected real voltage emergencies when the soft threshold

of sensors is not crossed).

2.5. UNIFORM SOFT THRESHOLD COMPUTATION

In this section, two algorithms are presented to solve the above problem effi-

ciently.

2.5.1. An Intuitive Approach. The intuitive approach is to consider the

statistical difference ∆Z = Zmax − ZS between the chip max noise and the sensed

max noise. When the sensors miss a voltage emergency, ZS ≤ ts, i.e., ts is the higher

bound for ZS. Consequently,

P (Zmax ≥ th|ZS ≤ ts) =

P (ZS + ∆Z ≥ th|ZS ≤ ts) ≤ P (ts + ∆Z ≥ th|ZS ≤ ts)

(2.5)

However, since ∆Z is correlated to ts, this gives no straightforward way to calculate

the feasible ts.

To solve this problem, it is noticed that the chip max noise can be decomposed

into a linear combination of a part that is correlated to sensed max noise, and a part

that is uncorrelated as follows

Zmax = αZS + ∆ZS (2.6)

where ∆Zs is uncorrelated with the sensed max noise. α is proportional to the

correlation between Zmax and ZS, and lies between 0.5 and 0.8 in our experiments.
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As a result, the system failure rate can be derived as

P (Zmax ≥ th|ZS ≤ ts) =
P (Zmax ≥ th, ZS ≤ ts)

P (ZS ≤ ts)

=
P (αZS + ∆ZS ≥ th, ZS ≤ ts)

P (ZS ≤ ts)
≤ P (αts + ∆ZS ≥ th, ZS ≤ ts)

P (ZS ≤ ts)

=
P (αts + ∆ZS ≥ th)P (ZS ≤ ts)

P (ZS ≤ ts)
= P (αts + ∆ZS ≥ th)

(2.7)

In order to satisfy system failure rate ≤ q, it is equal to have P (αts + ∆ZS ≥

th) ≤ q, and therefore a conservative estimate for the soft threshold is

ts =
1

α
(th − σsΦ−1(q)− µs) (2.8)

where Φ−1 represents the inverse of the CDF of a unit Gaussian, and µs , σs are

the mean and standard deviation of ∆ZS. However, although (2.8) gives a feasible

solution to the problem, the solution is too conservative and thus sub-optimal. In the

next section, an exact method is proposed to generate a statistical optimal solution

for the uniform ts calculation.

2.5.2. An Exact Approach. As the chip max noise and the sensed max

noise can both be expressed in the form of (2.2), the uniform soft threshold can be

computed exactly.

Denote Q = P (Zmax ≥ th|ZS ≤ ts), and have

Q = P (Zmax ≥ th|ZS ≤ ts)

=
P (Zmax ≥ th, ZS ≤ ts)

P (ZS ≤ ts)

=

∫ ts
−∞

∫∞
th
pc(Zmax, ZS)dZmaxdZS∫ ts
−∞ pt(ZS)dZS

(2.9)

The derivative of the constraint function (2.4) with respect to ts is

dQ

dts
=
A′B − AB′

B2
=
A′

B2
(B − AB′

A′
) (2.10)



28

where

A =

∫ ts

−∞

∫ ∞
th

pc(Zmax, ZS)dZmaxdZS

=

∫ ts

−∞

(
pt(ZS)

∫ ∞
th

pc(Zmax|ZS)dZmax

)
dZS

(2.11)

B =

∫ ts

−∞
pt(ZS)dZS (2.12)

A′ =
dC

dts
= pt(ts)

∫ ∞
th

pc(Zmax|ts)dZmax (2.13)

B′ =
dB

dts
= pt(ts) (2.14)

Using (2.11)(2.13)(2.14), AB′

A′
can be expressed as

AB′

A′
=

∫ ts

−∞
pt(ZS)

∫∞
th
pc(Zmax|ZS)dZmax∫∞

th
pc(Zmax|ts)dZmax

dZS (2.15)

In the above equations, pc(Zmax|ZS) means the conditional probability density of

Zmax at the given value of ZS. pc(Zmax|ts) implies pc(Zmax|ZS = ts). In this way, AB′

A′

can be expressed as

∫ ∞
th

pc(Zmax|ZS)dZmax

= 1− Φ

(
th − µmax − ρσmaxσS

(ZS − µs)
σmax

√
1− ρ2

) (2.16)

∫ ∞
th

pc(Zmax|ts)dZmax = 1− Φ

(
th − µmax − ρσmaxσS

(ts − µs)
σmax

√
1− ρ2

)
(2.17)
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The two integrals (2.16) and (2.17) differ from each other only in the appear-

ance of ZS and ts. As ZS ≤ ts, it can be concluded that:

0 <

∫∞
th
pc(Zmax|ZS)dZmax∫∞

th
pc(Zmax|ts)dZmax


< 1, ifρ > 0

= 1, ifρ = 0

> 1, ifρ < 0

 (2.18)

From (2.18), it is clear that (B− AB′

A′
)in (2.10) is positive (negative) when ρ is negative

(positive). From (2.13), A
′
> 0 as well. Combining these two conclusions, it can be

seen that the constraint function derivative in (2.10) is positive (negative) when ρ is

positive (negative). The objective function is therefore also a monotone function of

ts.

Denote R = P (ZS ≥ ts), and have

R =

∫ ∞
ts

pt(ZS)dZS (2.19)

From (2.19), it is clear that the objective function is also a monotone function

of ts.

Both the objective function (2.3) and the constraint (2.4) are monotone func-

tions of ts. As such, the optimal soft threshold can be computed from the constraint

P (Zmax ≥ th|ZS ≤ ts) = q (2.20)

Rewriting (2.9), it can be obtained that

∫ ts

−∞

∫ ∞
th

pc(Zmax, ZS)dZmaxdZS = q

∫ ts

−∞
pt(ZS)dZS (2.21)

Taking into consideration that pc(Zmax, ZS) and pt(ZS) are Gaussian PDFs, this equa-

tion can be simplified. The double integral of the left-hand side can be reduced to a

one-dimensional integral by analytic integration over ZS and the right-hand side can
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also be integrated analytically. The resulting equation has only a single-dimensional

integral, thus (2.21) can be solved numerically.

2.6. PER-CHIP SOFT THRESHOLD COMPUTATION

The uniform solution in Section 2.5 may not be optimal for all chips due to

the existence of process variations and their impacts on noise margin [4, 25]. On the

other hand, the leakage current Iddq, which is easy to measure during testing, has

been observed to have strong correlation with the chip max noise in literature [22].

As such, by measuring Iddq value during testing stage, it is able to quan-

titatively evaluate or sample the per-chip max noise Zmax information under pro-

cess variation. This is done by first building the correlation between Iddq and Zmax

through linear regression of Monte Carlo simulation results. Figure 2.2 illustrates

the corresponding results in 45 nm technology, which further confirms the strong

correlation between Iddq and Zmax. During testing, the Zmax can then be easily

decided from the measured Iddq using this pre-built correlation. With such extra

per-chip Zmax information, the optimal ts for each chip can then be calculated based

on the following derivations. Given the chip max noise Zmax, the sensed max noise

ZS = max(Zri(1 ≤ i ≤ s)) , and the Iddq distribution ZD in the form of (2.2), hard

threshold th and a maximum allowed system failure rate q, for each value of Iddq(ZD)

compute the soft threshold ts as the solution of the optimization problem

arg min
ts(ZD)

P (ZS ≥ ts(ZD)) (2.22)

s.t. P (Zmax ≥ th|ZS ≤ ts(ZD)) ≤ q. (2.23)

The difference between (2.3)(2.4) and (2.22)(2.23) is that in (2.22)(2.23) the soft

threshold is dependent on Iddq measurement.
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Figure 2.2: Relation between Iddq and max noise. The experiment is done by HSPICE
simulation of a NAND gate in 45nm node

2.6.1. Per-Chip Optimal Threshold Computation with Fixed Hard

Threshold. Now both the objective function and constraint are functionals. This

difference can be more obvious if reformulating the probabilities as integrals.

arg min

∫ ∞
−∞

∫ ∞
ts(ZD)

pt(ZS)dZSdZD (2.24)

s.t.

∫∞
−∞

∫ ts(ZD)

−∞

∫∞
th
pc(Zmax, ZS, ZD)dZmaxdZSdZD∫∞

−∞

∫ ts(ZD)

−∞ pt(ZS, ZD)dZSdZD
≤ q. (2.25)

The constraint (2.25) can be formulated in the form of an equality using the

obvious fact that the optimal solution is achieved when system failure rate is exactly
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as required and no less. The constraint (2.25) can be rewritten as

∫ ∞
−∞

∫ ts(ZD)

−∞

∫ ∞
th

pc(Zmax, ZS, ZD)dZmaxdZSdZD

− q
∫ ∞
−∞

∫ ts(ZD)

−∞
pt(ZS, ZD)dZSdZD = 0.

(2.26)

The objective (2.24) is equivalent to arg max
∫∞
−∞

∫ ts(ZD)

−∞ pt(ZS)dZSdZD. Thus

the Lagrangian can be written as

∫ ∞
−∞

∫ ts(ZD)

−∞
((1 + λq)pt(ZS, ZD)

− λ
∫ ∞
th

pc(Zmax, ZS, ZD)dZmax)dZSdZD

(2.27)

where λ is the Lagrange multiplier.

y(x) satisfies ∂H
∂y

= 0 when the functional
∫∞
−∞H(x, y(x))dx reaches its opti-

mum in variational calculus [30]. Therefore, for ts(ZD, λ), when the optimum value

is reached:

(1 + λq)pt(ts, ZD)− λ
∫ ∞
th

pc(Zmax, ts, ZD)dZmax = 0. (2.28)

(2.28) by λpt(ts, ZD) and apply the formula for conditional probability, and getting

∫ ∞
th

pc(Zmax|ts, ZD)dZmax = q +
1

λ
. (2.29)

On the other hand, the vector of noise Z, vector of mean values µ and corre-

lation matrix Σ of the JPDF pc(Zmax, ZS, ZD) are partitioned as follows

Z =


Zmax

ZS

ZD

 =

Zmax
ZSD

 (2.30)
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µ =


µmax

µS

µD

 =

µmax
µSD

 (2.31)

Σ =


σ2
max ρmax,S ρmax,D

ρmax,S σ2
S ρS,D

ρmax,D ρS,D σ2
D


=

 σ2
max ρmax,SD

ρZmax,SD ΣSD


(2.32)

Then the conditional PDF pc(Zmax|ts, ZD) is a Gaussian distribution [29], and its

mean µ̂max and variance σ̂max are given by

µ̂max = µmax + ρmax,SDΣ−1
SD(ts(ZD)− µSD) (2.33)

σ̂2
max = σ2

max − ρmax,SDΣ−1
SDρ

S
SD (2.34)

where according to equation (2.30)

ZSD =

ts(ZD)

ZD

 (2.35)

Performing integration of the Gaussian PDF in (2.29),

µ̂max = th − σ̂maxΦ−1(q +
1

λ
) (2.36)

where Φ(x) is the standard normal CDF.

Substituting expressions for ρmax,SD, ΣSD, ZSD and µSD into (2.33) and per-

forming matrix-vector multiplication it can be shown that

µ̂max = µmax + αts(ZD) + βZD − αµS − βµD (2.37)
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where α and β are expressed through variances and covariances of the sensed max

noise, chip max noise and Iddq(ZD).

Excluding µ̂max from (2.36) and (2.37), and solving for ts

ts(ZD) =
β

α
(th + µD − ZD) + µS −

µmax
α

+
σ̂max
α

Φ−1(q +
1

λ
). (2.38)

It is observed that threshold is a linear function of Iddq(ZD). Rewriting it as

ts(ZD) = γZD + η (2.39)

The Lagrange multiplier λ can easily be found by computing η. By changing the

order of integration in the numerator of (2.25) and transforming nested integrals into

an integral over the area ZS ≤ ts(ZD) = γZD + η,

∫∞
th

(
∫∫

ZS≤γZD+η
pc(Zmax, ZS, ZD)dZSdZD)dZmax∫∫

ZS≤γZD+η
pt(ZS, ZD)dZSdZD

= q. (2.40)

Rotating the coordinate system by variable transformations

ZD =
u− γv√

1 + γ2
, ZS =

γu+ v√
1 + γ2

(2.41)

and converting the integrals over the area back into nested integrals, and getting

∫∞
th

∫ η√
1+γ2

−∞
∫∞
−∞ pc(Zmax,

γu+v√
1+γ2

, u−γv√
1+γ2

)dudvdZmax∫ η√
1+γ2

−∞
∫∞
−∞ pt(

γu+v√
1+γ2

, u−γv√
1+γ2

)dudv

= q. (2.42)

The region of integration of the two inner integrals of the numerator is a half

plane, and these integrals can be expressed analytically in terms of the standard

Gaussian CDF function Φ(x). This transforms (2.42) into a single integral.
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(2.42) can be efficiently solved for η by any root-finding technique with nu-

merical integration technique. Substituting the computed value of η into (2.39), the

optimal value of the soft threshold can be achieved.

2.6.2. Per-Chip Soft Threshold Computation with Varying Hard

Threshold. It should be pointed out that the soft threshold voltages set accord-

ing to the above approach are pessimistic, as it has not considered the fact that the

hard threshold th may also vary due to process variations. Figure 2.3 shows hard

threshold for different Iddq test and suggests a linear relation between Iddq and hard

threshold for a NAND gate. The hard threshold th is calculated as the maximum

voltage drop allowed to keep the delay above a constant threshold. From the figure

it can be seen that as Iddq increases, th also increases. This is expected as a larger

Iddq actually corresponds to a faster gate and accordingly more room is available for

delay degradation.

Figure 2.3: Relation between Iddq and hard threshold th. The experiment is done by
HSPICE simulation of a NAND Gate in 45nm node
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Thus, lower Iddq will result in slower chip, and accordingly lower th under the

same supply voltage and clock frequency. As a result, system failure rate increases

with decreased th. In other words, the ts obtained from the framework in Section 2.6.1

will result in system failure rate constraint violation when Iddq gets lower (over pes-

simistic). This can also be clearly seen from Figure 2.3. Accordingly, it turns to solve

the following problem: repeat (2.22) and (2.23) with th changed to th(ZD).

Assume there is a linear relationship between Iddq and ZD, i.e.,

th = κZD (2.43)

where κ is some constant that can be decided once the design and process is deter-

mined. Thus (2.40) turns to

∫ ( ∫∞
κZD

∫
ZS≤γZD+η

pc(Zmax, ZS, ZD)dZSdZmax)dZD∫∫
ZS≤γZD+η

pt(ZS, ZD
)
dZSdZD

= q. (2.44)

After solving (2.44), to get η, which has to be solved numerically in this case, the

optimal soft threshold for varying hard threshold with (2.39) can be achieved. In

(2.44), denote

T =

∫ ( ∫∞
κZD

∫
ZS≤γZD+η

pc(Zmax, ZS, ZD)dZSdZmax)dZD∫∫
ZS≤γZD+η

pt(ZS, ZD
)
dZSdZD

(2.45)

thus

dT

dκ
=
−ZD(

∫∫
ZS≤γZD+η

pc(Zmax, ZS, ZD)dZSdZD)dZmax∫∫
ZS≤γZD+η

pt(ZS, ZD)dZSdZD
< 0 (2.46)

(2.46) suggests the higher the κ, the smaller the system failure rate. According

to Figure 2.1, a less strict (higher) ts can be computed under the constraint.

From the above derivation, it is clear that it the optimal soft threshold for

each chip based on Iddq measurement can be determined.

It is worthwhile to justify the feasibility of our per-chip soft threshold setting

approach. This approach, although novel in the context of noise sensors, is tightly
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linked to the established practice of per-chip supply voltage setting based on process

variations [6, 36]. If the threshold voltage for the noise sensors comes from external

reference, then it can easily tuned by adjusting the corresponding voltage regulator on

the board. However, such a practice can be expensive for large volume productions.

To save cost, we can adopt a voltage binning based approach[19, 21] by implementing

several voltage regulators with different output voltages on chip and using a MUX to

select the one nearest to the computed optimal threshold. This will result in higher

alarm rate under the same system failure rate constraint, but can reduce the cost

drastically.

In terms of time complexity, three steps are needed for fixed hard threshold

and varying hard threshold optimal soft threshold computation as follows: 1) Measure

Iddq of each chip during testing; 2) Calculate the optimal soft threshold ts following

Section 2.6; and 3) Set the soft threshold ts for each chip. Step 1 is standard in

chip testing, so no extra cost is incurred. Step 2 takes little time as only a single

variable equation needs to be solved. Step 3 bears a cost similar to existing practices

of per-chip supply voltage setting, so is also applicable to large volume production.

2.7. EXPERIMENTAL RESULTS

Various optimal threshold voltage computation methods are implemented dis-

cussed above in MATLAB, and performed experiments on a workstation with dual

six-core, 2.4 GHz, Intel Xeon E5645 CPU and 96 GB memory. A set of three power

grids extracted from in-house designs at 45 nm technology node are used, with detailed

info listed in Table 2.1.The noise is obtained using SPICE simulation and modeled

using the approach discussed in Section 2.4. For each design, 10 sensors are placed

according to the method described in [41]. The threshold time Tt is set to 1 ns for

intuitive, exact and per-chip methods based on nominal design. Finally, to include

process variation impact, for each design 40 chips are simulated with different pro-

cess parameters sampled according to the foundry rule. The hard threshold for the
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intuitive method, the exact uniform method and the per-chip method with fixed hard

threshold is set based on the nominal case. Design N1 is first used to compute the

intuitive soft threshold from Section 2.5.1, the exact uniform soft threshold from Sec-

tion 2.5.2 and the per-chip fixed hard threshold and per-chip varying hard threshold

methods from Section 2.6, for different system failure rate requirements.

Table 2.1: Benchmark information. #i, #n, #r stand for the number of current
sources, nodes and resistance, respectively.

Design #i #n #r
N1 5,387 5,387 4,720
N2 18,419 19,240 38,366
N3 100,527 102,178 197,470

Figure 2.4 shows the comparison of achieved system failure rate between dif-

ferent thresholds at various required system failure rates, averaged over 40 chips.

As expected, the system failure rate achieved by the per-chip method with varying

hard threshold is almost the same as the required system failure rate, higher than

those achieved by intuitive and exact methods. When system failure rate constraint

is tight, achieved system failure rate for per-chip method with fixed threshold may

cause system failure rate violation, because it does not consider the possible varia-

tion in th. While the intuitive method and the uniform method also assume fixed

hard threshold, the large margin between the achieved system failure rate and the

required system failure rate prevent the violation from happening. The intuitive uni-

form threshold always gives the lowest system failure rate. This suggests that among

the three thresholds, only the per-chip threshold can fully utilize the allowed sys-

tem failure rate to attain the lowest system failure rate by taking the most detailed

chip information into consideration. When the required system failure rate is loose

enough (e.g. 5%), all the three thresholds from intuitive, exact and per-chip methods

approach the hard threshold in the nominal case, and accordingly they all achieve

the same system failure rate on average.
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To verify the above discussion, same design and setting are used to compare

the alarm rate rate between the three thresholds for different system failure rate

requirement, and the results are depicted in Figure 2.5. Apparently, the per-chip

threshold achieves the lowest rate among the three. Per-chip method with fixed and

varying hard threshold can reduce the alarm rate by 21.7% and 12.3% on average

compared with uniform threshold approach. Alarm rate of per-chip method with

fixed hard threshold is the lowest because it does not consider the possible variation

in th and has potential system failure rate violations.

Figure 2.4: Achieved system failure rate vs. required system failure rate for different
soft threshold computation methods using design N1

Figure 2.6 and Figure 2.7 show the computed threshold under different system

failure rate constraints. Not surprisingly, the intuitive threshold is the highest and the

per-chip threshold is the lowest, which agrees with the observations in Figure 2.4 and

Figure 2.5. When required system failure rate is high enough, all the four thresholds

are equal to the hard threshold. In addition, as shown in Section 2.6, optimal per-chip
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Figure 2.5: Alarm rate vs. required system failure rate for different soft threshold
computation methods using design N1

threshold is a linear function of the measured Iddq, which is also verified in Figure 2.7.

As chip noise increases due to process variation (i.e., measured Iddq increases), a higher

soft threshold is needed for the same system failure rate value. Figure 2.8 shows the

linear relation between computed soft threshold and κ. In different technology node,

κ is different, thus resulted in different soft threshold ts.

Finally, Table 2.2 gives the complete comparison results on achieved system

failure rate and alarm rate for all the designs, under different required system failure

rate. From the table it can be seen that the per-chip threshold always gives the

highest achieved system failure rate, and accordingly the lowest alarm rate. It is

worthwhile to note that for N3, the system failure rate achieved by per-chip threshold

is sometimes smaller than the required system failure rate. This is primarily due to

the modeling error (e.g. in Gaussian approximation and PCA) when the design is

large. On average, the exact uniform threshold achieves 20.6% lower system failure

rate compared with the intuitive uniform threshold under the same system failure rate
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Figure 2.6: Intuitive and exact uniform thresholds vs. required system failure rate
using design N1

constraint. In addition, the per-chip threshold is able to further reduce the system

failure rate by 12.3% compared with the exact uniform threshold.

2.8. CONCLUSIONS

In this chapter, the problem of optimal soft threshold voltage computation is

formally formulated and solved, which is important for runtime noise management

systems. Compared with an intuitive approach which tends to be too conservative, an

exact approach is first proposed and achieves an average of 20.6% reduction in alarm

rate under the same system failure rate constraint. Furthermore, by utilizing the

Iddq information which can be easily measured during testing, the uncertainties from

process variations can be partially captured, leading to per-chip optimal approach

further reduce the system failure rate by 12.3% on average compared with uniform

threshold approach.
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Figure 2.7: Per-chip threshold vs. measured Iddq at different required system failure
rate using design N1

Figure 2.8: Per-chip (varying hard threshold) threshold vs. κ at different required
system failure rate using design N1
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Table 2.2: Comparison of different soft threshold computation methods

Benchmark Required system failure rate 1% 2% 3% 4% 5%

N1
Achieved system failure rate

Intuitive 0.3% 0.3% 2.7% 3.9% 5%
Exact 0.5% 1.0% 2.9% 4% 5%

Per-Chip (fixed hard threshold) 1.3% 2.7% 3.4% 4.2% 5.3%
Per-Chip (varying hard threshold) 1.0% 2% 3% 4% 5%

Alaram Rate

Intuitive 0.6 0.6 0.4 0.3 0.02
Exact 0.5 0.5 0.4 0.3 0.02

Per-Chip (fixed hard threshold) 0.4 0.4 0.3 0.2 0.01
Per-Chip (varying hard threshold) 0.5 0.4 0.3 0.3 0.02

N2
Achieved system failure rate

Intuitive 0.5% 0.8% 1.0% 2.0% 3.0%
Exact 0.5% 0.8% 2.0% 2.0% 3.4%

Per-Chip (fixed hard threshold) 1.3% 2.1% 3.0% 4.3% 5.7%
Per-Chip (varying hard threshold) 1.0% 2.0% 3.0% 4.0% 5.0%

Alarm Rate

Intuitive 0.4 0.3 0.3 0.1 0.09
Exact 0.4 0.3 0.1 0.09 0.09

Per-Chip (fixed hard threshold) 0.3 0.3 0.1 0.04 0.03
Per-Chip (varying hard threshold) 0.3 0.3 0.1 0.08 0.04

N3
Achieved system failure rate

Intuitive 1.0% 1.0% 2.0% 2.0% 2.0%
Exact 1.0% 2.0% 3.0% 3.0% 3.0%

Per-Chip (fixed hard threshold) 1.0% 2.0% 3.0% 5.0% 5.0%
Per-Chip (varying hard threshold) 1.0% 2.0% 3.0% 3.0% 5.0%

Alarm Rate
Intuitive 0.3 0.3 0.3 0.2 0.2

Exact 0.3 0.2 0.1 0.1 0.1
Per-Chip (fixed hard threshold) 0.3 0.2 0.1 0.03 0.03

Per-Chip (varying hard threshold) 0.3 0.2 0.1 0.1 0.03
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3. 1-BIT COMPRESSED SENSING BASED FRAMEWORK FOR
BUILT-IN RESONANCE FREQUENCY PREDICTION USING

ON-CHIP NOISE SENSORS

3.1. ABSTRACT

Significant noise will occur when the load currents of a chip contain frequency

components that are close to its resonance frequency, which is mainly decided by

power delivery network (PDN) capacitance and package inductance. Yet with tech-

nology scaling, the wire parasitic capacitance, which suffers from large process vari-

ations, starts to become a dominant contributor in the PDN capacitance, leading

to a large resonance frequency variation across dies. It is thus important to know

the resonance frequency of individual chips to effectively avoid resonance noise at

runtime. Existing methods are mostly based on frequency sweeping, which are too

expensive to apply to individual chips. In this chapter, a novel framework to predict

the resonance frequency is proposed using existing on-chip noise sensors, based on

the theory of 1-bit compressed sensing. Experimental results on industrial designs

show that compared with frequency sweeping, the proposed framework can achieve

up to 7.6× measurement time reduction under the same accuracy, with 15% reso-

nance frequency variation. the need of as well as a practical solution to the resonance

frequency prediction for individual chips.

3.2. INTRODUCTION

The capacitance and inductance components in the power delivery network

(PDN) from board, package and die form resonant tanks that resonate at multiple

frequencies. The dominant resonance frequency fres, mainly due to the package in-

ductance and on-die PDN capacitance [39], usually occurs at low-to middle frequency

range (50 MHz to 400 MHz) [42]. Figure 3.1 shows an example PDN impedance plot
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from an industrial design. As can be seen from the figure, the peak at fres is much

sharper and higher than at other resonance frequencies.

When the current spectrum of a chip contains a frequency component close

to fres (e.g., due to looping sequences of instruction execution), it will introduce

persistent undershoots and overshoots known as first droop or resonance noise, a

major focus of power integrity engineers. Resonance noise not only compromises chip

performance and hold-time margins, but also impairs gate oxide integrity or even

causes chip breakdown [34] [44]. Due to the very nature of PDN, resonance noise

cannot be fully removed. It is therefore a crucial design target to control the impact

of resonance noise.

Unlike IR drop noise which can be suppressed through design time solutions

such as decoupling capacitance (decap) insertion [35] or wire sizing [8], the reduction

of resonance noise largely relies on runtime schemes to prevent load spectrum from

hitting the resonance frequency. For example, a frequency actuator based method is

proposed in [34], while the authors of [43] provide an on-die resonance-suppression

circuit technique that uses band-limited active damping. In [28], load patterns that

lead to resonance frequency are pre-characterized and scrambled/manipulated upon

detection at runtime. A critical requirement for all these approaches is the a-priori

information of the resonance frequency.

Conventionally, the resonance frequency is obtained through frequency sweep-

ing. For example, the methods in [17][18] use a specially designed set of instructions

to create two known running states and measure the PDN impedance at various fre-

quencies. On the other hand, the methods in [39][42] use clock switching to achieve

similar target. All these methods require one measurement at each frequency point.

The resonance frequency can then be obtained by finding the frequency that corre-

sponds to the maximum impedance. Apparently, the impedance sweeping is a very

time-consuming task and can only accommodate a limited number of test/sample

chips. Accordingly, these methods are effective only when all the chips fabricated for
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Figure 3.1: A representative PDN impedance from an in-house 45 nm industrial de-
sign

the same design have very similar resonance frequencies. This assumption has been

taken for granted for many years.

Unfortunately, with details to be discussed in Section 3.3.2, it is no longer

valid as technology scales beyond 45 nm. The main cause is the gradual dominance

of wire capacitance, which has large variations, in on-die PDN capacitance. It is

thus imperative to have an efficient method to estimate the resonance frequency of

each individual chip during testing. Unfortunately, this problem has never been paid

attention to in the literature, not to mention the corresponding solutions.

In this chapter, a novel built-in resonance frequency prediction framework is

proposed for per-chip application. It takes advantage of on-chip noise sensors, which

are placed for runtime voltage emergency detection, to measure the noise for different

load patterns. It then estimates the resonance frequency using 1-bit compressed sens-

ing theory, a recent advance in signal processing. Experimental results on a few 45 nm

industrial designs show that compared with frequency sweeping, our proposed frame-

work can achieve up to 7.6× measurement time reduction under the same accuracy,

with 15% resonance frequency variation. To the best of the authors knowledge, this
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is the very first work to present the need for per-chip resonance frequency prediction,

and the first to put forward a practical solution.

The remainder of this chapter is organized as follows. The impact of resonance

frequency variation and the design of on-chip noise sensors are reviewed in Section

3.3. The per-chip resonance frequency prediction framework is presented in Section

3.4. Experimental results are discussed in Section 3.5 and concluding remarks are

given in Section 3.6.

3.3. PRELIMINARIES AND MOTIVATION

3.3.1. On-Die Capacitance Breakdown and Its Impact on Power

Supply Noise. On-die decaps between a specific power domain and the ground net

includes the intentional decap inserted by designers and the intrinsic decap. Inten-

tional decap, like metal-oxide-semiconductor (MOS) decap and metal-insulator-metal

(MIM) cap, is known to the designers and can be counted from the layout. In tradi-

tion, the major contributors to the intrinsic decap are considered to be wire capaci-

tance and active devices capacitance [45]. Wire capacitance includes power/ground

and signal wires coupling capacitance, which plays an important role in the intrinsic

decap value. As the technology enters into sub-22nm regime, due to the selective

scaling which only reduces wire length and width but not height to avoid resistance

increase, wire capacitance is gradually dominated by fringing capacitance. Compared

with decap (gate capacitance) which scales with both gate length and width, fringing

capacitance only scales with wire length, which is much slower. Thus, in many IPs, it

is common that the wire cap is more than the device parasitics cap, which has been

silicon validated on on-market products [45]. For example, the on-die capacitance

breakdown of an in house 32 nm DDR I/O test chip is shown in Table 3.1. From

the table it is clear that the wire capacitance constitutes more than half of the total

on-die capacitance.
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Table 3.1: On-die capacitance breakdown of a 32 nm DDR I/O test chip

Intrinsic decap Intentional
decap

Total
PG
coupling

Active
device

Power-
to-signal

Ground-
to-signal

17% 3% 26% 4% 49% 99%

Furthermore, driven by cost saving, in some power domains, substantial amount

of intentional decap is removed and the system relies on the intrinsic cap to main-

tain functionality. While for some sensitive domains, like PLL, intentional decap is

still dominant. For interconnect dominant domains, like I/O, DDR controller, due

to the low cost guideline and area scaling demands, the intentional decap is kept at

a minimum value. The system relies on the parasitics cap to ensure operation. For

example, it has been validated that even after removing all the intentional decaps in

the DDR I/O design, the chip can still function correctly.

As a result, wire capacitance will gradually become dominant in PDN capac-

itance for many IPs, esp. the I/Os for low cost SoC chips. This can be clearly seen

in Figure 3.2 obtained from [45][1]. The recent trends of runtime noise management

system deployment [33][11] and silicon cost reduction [2] further reduce decap and

speed up the domination of wire capacitance.

3.3.2. Resonance Frequency Variation. For 45 nm technology and be-

yond, the variation of resonance frequency increases drastically with technology scal-

ing, which can be inferred from the following two observations.

First, as mentioned in Section 3.3.1, wire capacitance will dominate decap in

the near future. Second, it has been established that due to process variations the

total decap in a chip does not vary much [26], while the wire capacitance can vary

greatly (from 10%-25%) [13]. The large variation in wire capacitance comes from the

fact that PDN wires are very thick and long and any small variation in wire geometry

will lead to a much larger variation in its capacitance. Specifically, the combination

of all process variations (lithography, etch, chemical-mechanical planarization) results
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Figure 3.2: Percentage of decap and wire capacitance in on-die PDN capacitance [1].
Wire capacitance will dominate in the near future

in variations of wire spacing, height, profile and metal composition (barrier/copper

ratio), which in turn strongly influence wire capacitance values. Such variation will

further increase with technology scaling.

Combining the above two observations, it is now obvious that the variation in

on-die PDN capacitance, and accordingly the variation in resonance frequency, will

increase with technology scaling. To see the impact of such variation on noise, Fig-

ure 3.3 shows the maximum noise in a PDN loaded with periodic ON/OFF switching

currents. The frequency of the current load is changed from 10 Hz to 10 GHz and the

resonance frequency fres of this PDN is 100 MHz. It can be observed from the figure

that the resonance noise increases sharply when the load frequency approaches fres.

Also, multiple local maxima can be observed when fres is some (small) multiples of

the load frequency. The maxima decrease as they move away from fres. All these

suggest that a small deviation in resonance frequency prediction can lead to a large

increase in the noise by letting the load frequency or its multiples get closer to fres.

3.3.3. On-Chip Noise Sensors. While many different types of noise sensor

designs exist in literature, the On-Die Droop Detector design in [23] is chosen to be
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Figure 3.3: Resonance noise in PDN for load patterns with different frequencies

reviewed as it has been widely applied in both academia and industry. However, it

is understood that the framework to be proposed later can be applied to any noise

sensor designs performing the same duty.

The detailed design is shown in Figure 3.4, which is composed of the Refer-

ence Unit and the Detector Module(s). The Detector Module(s) utilize the reference

currents Iref+/Iref-, provided by the Reference Unit, to set the differential threshold

voltage Vref . The binary output of the Detector Modules indicates if the noise has

exceeded the threshold.

Such a binary output is common in most noise sensor designs. Instead of

directly providing analog noise amplitudes, they provide a binary output indicating

whether the noise has surpassed a threshold voltage or not to support control decisions

such as throttling or rollback. This is to enhance the reliability of the design and more

importantly, to reduce the associated hardware cost. Only a single wire is needed to

connect the sensor to the controller.

In this chapter, it is assumed that all the noise sensors are placed (e.g., follow-

ing the method in [40] so that the maximum noise in a chip can always be captured).
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In addition, it is assumed that the threshold of these sensors is configurable during

testing stage - only one threshold voltage is sufficient for this chapter’s purpose.

Figure 3.4: On-Die Droop Detector (ODDD) proposed in [23]

3.4. PROPOSED FRAMEWORK

In this section, the overall framework of the per-chip resonance frequency

prediction system is first presented, and then each module is discussed in detail.

3.4.1. Overview. The proposed general approach is based on the recovery

of PDN impedance through measured noise. This seems to be similar to the existing

impedance characterization methods [17][18][39][42]. However, the author aim at

developing a built-in framework (i.e. no external measurements) and avoid the costly

frequency sweeping. Accordingly, three major differences, all for the sake of prediction

efficiency improvement, push us to seek for a new solution.

First, instead of measuring noise externally, on-chip noise sensors which can

significantly save time and measurement cost are used. It is worthwhile to note that

these sensors are placed for runtime noise management, and the proposed framework

takes advantage of them for an alternative purpose. As a tradeoff, it will not be

able to get the amplitude of the noise, but rather a binary signal indicating whether
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the noise has exceeded a pre-set threshold (details in Section 3.3.3). This poses a

challenge in the impedance recovery.

Second, since all the loads must be generated on chip, it is not possible to

have single-frequency loads (i.e., sine waveforms). The only shape available is the

periodic triangular waveform, which is widely used to model short-circuit currents

during switching [34][35]. The waveform contains the fundamental frequency decided

by the period as well as its multiples. This in fact leads to both opportunity and

challenge in the impedance recovery.

Finally, it is assumed that the impedance can be treated as sparse in the

frequency domain in the sense that the amplitude at resonance frequency (peak) is

much higher than those at frequencies far away from it. This brings an opportunity

for efficiency improvement, through the utilization of various compressed sensing

frameworks.

The proposed hardware framework for per-chip resonance frequency prediction

is shown in Figure 3.5.

Load
Generator

system PDN

Measurement
Matrix
Calcu-
lation

Noise
Sensor

fres
Prediction

f ′res

Figure 3.5: Per-chip resonance frequency prediction framework

Load Generator module generates a low frequency clock signal BCLK which

bypasses regular clock signal and drives flip-flops across the chip for noise generation.

Measurement Matrix Calculation module calculates the amplitudes of the har-

monics for a few loads driven by BCLK signals of different frequencies and provides
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the measurement matrix needed for impedance recovery. The noise sensors are applied

to compare the generated noise with the pre-set threshold.

Finally, using the binary outputs from the noise sensors and the related mea-

surement matrix, the Resonance Frequency Prediction module predicts the resonance

frequency and reports the result.

The details of the Load generator will be provided, Measurement Matrix Cal-

culation and Resonance Frequency Prediction modules below.

3.4.2. Load Generator. Load generation scheme as shown in Figure 3.6

is proposed to use, which generates a periodic current consumption stimulated at

variable low frequencies in the bypass mode. When BYPASSEN signal is low, regular

clock generated by PLL will be driven to clock node CLK through the MUX and the

clock driver CLKDRV. When BYPASSEN is high, the bypass clock signal BCLK,

generated by a T flip-flop driven by a programmable counter, will be driven to the

CLK node. CLK can drive the flip-flops across the chip via CLK network, which

can create a very representative stimulus that consumes the current from all power

delivery bumps of the die.

Figure 3.6: Load generation scheme

Two things are worthwhile noting here. First, the counter and the T flip-flop

are driven by the clock from PLL, so the period of the output of the T flip-flop Td

must be some multiples of the period of the clock from PLL Tc. Accordingly, the
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period of the load currents to the PDN will also be Td. By programming the counter,

Td can be changed.

Second, although BCLK is a square waveform which contains frequency com-

ponents mainly at DC, fd and 3fd (fd = 1/Td), the load currents are periodic

triangular-shaped waveforms. As the rise and fall time of the triangles are very

small (a few ps at most), the spectrum of the load currents has abundant discrete

components in a wide frequency range. To see this, in Figure 3.7 the spectrum of

a single triangular waveform with 10 ps rise and fall time has been plotted. As can

be seen from the figure, significant frequency components exist up to 60-80 GHz.

Depending on the BCLK frequency fd, the spectrum of the corresponding periodic

triangular waveforms will just be the discrete sampling of the one shown in Figure 3.7

with fd as the sampling frequency.

Figure 3.7: Spectrum of a single triangular waveform with 10 ps rise and fall time

3.4.3. Measurement Matrix Calculation. This is the module to generate

the matrix needed for impedance recovery. Starting with the Fourier transform of the

PDN load f(t) generated by the flip-flops across the chip. As discussed in the previous

section, f(t) has a frequency of fd = 1/Td. The transform can be expressed as

F (jω) = I0

∞∑
k=−∞

akδ(ω − 2kπfd) (3.1)
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where I0 is a constant that reflects the amplitude of the load. ak are the corresponding

Fourier transform coefficients for the load with unit amplitude, which can be obtained

directly for any given Tc and Td. According to the discussion in the previous section,

F (jω) contains abundant frequency components and ak will not decay fast with k.

Further denote x as a vector formed by the impedance of the PDN uniformly

sampled from −fmax to fmax, i.e.,

x = (x−n, . . . , x−1, x0, x1, . . . , xn)T , (3.2)

where xi is the impedance at i× fmax/n. x0 is the DC impedance. fmax needs to be

large enough such that the corresponding impedance is much smaller compared with

the peak. Apparently, the frequency resolution of such a representation is fmax/n.

The PDN voltage response (noise) in the frequency domain can then be ex-

pressed as

∆v(jω) = I0

fmax/fd∑
k=−fmax/fd

akδ(ω − 2kπfd)x kfdn

fmax

. (3.3)

In the above equation it has implicitly assumed that fmax/n is small enough such

that fd is some multiples of fmax/n and the corresponding terms in x exist.

As such, the corresponding time domain noise can be obtained by performing

inverse Fourier Transform on ∆v(jω) as

∆v(t) =
I0

2π

fmax/fd∑
k=−fmax/fd

ake
j(2kπfd)tx kfdn

fmax

(3.4)

Since the PDN is linear and time-invariant and f(t) is periodic with period Td, g(t)

should also be periodic with the same period. At the end of each period,

∆v(Td) =
I0

2π

fmax/fd∑
k=−fmax/fd

ake
j(2kπfd)Tdx kfdn

fmax

=
I0

2π

fmax/fd∑
k=−fmax/fd

akx kfdn

fmax

. (3.5)
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(3.5) establishes a linear equation between the impedance vector x and the

measured noise in time domain ∆v(Td). For simplicity of presentation, superscript is

used to denote different loads (measurements). Consider a total of m different loads

(m measurements) with frequencies f 1
d , . . ., fmd . In order to cover all the frequencies in

x, it is required that one of these frequencies (assuming f 1
d without loss of generosity)

equals fmax/n. This ensures that every element in x will have corresponding coeffi-

cients in Φ. It further required that fmax is always some multiples of f id (1 ≤ i ≤ m),

i.e., fmax = N if id where N i is an integer. Then the results can be expressed in a

compact matrix form as

Φx = ∆V , (3.6)

where Φ (m× n) takes the form

Φ =



a1
−N1 a1

−N1+1
. . . . . . . . . . . . . . .

a1
−N1 0 . . . a1

−N1+1
. . . . . . . . .

a2
−N2 0 . . . . . . . . . a2

−N2+1
. . .

...
...

...
...

...
...

...



When forming Φ, it ignored the constant I0
2π

in (3.5), as it only cares the relative

amplitudes of different elements in x to find out the resonance frequency. In addition,

∆V =

(
∆v1(T 1

d ) ∆v2(T 2
d ) . . .

)T
(3.7)

3.4.4. Resonance Frequency Prediction. Now it is ready to recover x

based on (3.6) and the measurement from noise sensors at the end of a cycle (t = Td).

In reality the sensors need to wait for the noise to become stable with periodic pattern

and then perform the measurement. As mentioned earlier, the sensors will not be able

to directly obtain ∆V . Instead, they will return a binary vector y, which indicates

if the noise has exceeded a given threshold t. Thus the following equation can be

achieved:

y = sign(∆V − t) = sign(Φx− t) (3.8)
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where t is the given threshold. The objective now is to accurately estimate x and find

out the largest element.

An efficient solution lies in the fact that, as stated in the beginning of this

section, most of the elements in x are very small as compared with the maximum.

This inspires us to assume that x can be well approximated by the K most significant

coefficients, where K can be decided by the width at the half peak of the impedance.

that is, x is K-compressible. Such reconstruction problem can then be solved in

compressed sensing frameworks, in which Φ becomes the measurement matrix, and

y is the observation vector. This shall enable us to use only a very small number of

measurements and recover x accurately. In addition, as the observation vector only

contains sign information, recent breakthroughs on 1-bit compressed sensing from the

signal processing community [3][14] can be resorted to. Casting the problem as

x̂ = arg min
x
‖x‖1 (3.9)

s.t. Y (Φx− t1) ≥ 0 (3.10)

where Y is a diagonal matrix and diag(Y ) = y.

Pointing out that the above formulation is different from many of those in

classic 1-bit compressed sensing framework: there is no constraint that bounds the

`2-norm of x. Such constraint is typically in place to avoid the trivial solution of

x = 0. However, in this chapter’s case, t > 0 and thus x = 0 is not a feasible solution.

The one-sided `1-norm in (3.9) is related to the hinge-loss function in machine

learning literature [12]. This binary classification algorithm seeks to enforce the same

consistency function as in (3.10) by minimizing a function ‖{t1 − y � (Φx)}+‖1,

where {‖u‖+} sets all negative elements in u to zero and u�v denotes the Hadamard

product, i.e., (u� v)i = uivi. When t > 0, the objective is both convex and has a

non-trivial solution.
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Thus, rather than minimizing the one-sided `1 norm, we can minimize the

hinge-loss through gradient descent method as

al+1 = xl − δ

2
ΘT (sign(Θxl − t)− 1) (3.11)

where Θ = y � Φ scales the rows of Φ by the signs of y, and δ is a small positive

number (0.1 in the experiments). The overview of the proposed algorithm is shown

in Algorithm 3.1. The steps are self-evident so this chapter will not explain them in

detail in the interest of space.

Algorithm 3.1 Resonance frequency prediction

1: INPUT: y from noise sensors, Φ, fmax and n from measurement matrix calculation, and t, K,
and δ > 0 from user specification.

2: OUTPUT: Estimated fres.
3: Set l = 0, x0 = 0.
4: Set al+1 = xl − δ

2ΘT (A(x
l
)− 1), where A(x) = sign(Φx− t1);

5: xl+1 = ηK(al+1), where ηK(u) keeps the K-terms with maximum absolute values in u and sets
others to 0;

6: l = l + 1.
7: If dH(y,A(x

l
)) = 0 or l = max iter, stop. Otherwise, go to Step 2. dH(u, v) is the Hamming

distance between u and v.
8: p = arg maxi xi; fres = p

nfmax.

3.5. EXPERIMENTAL RESULTS

For rapid prototyping, the resonance frequency prediction framework has been

implemented discussed above in MATLAB, and performed experiments on a work-

station with dual six-core, 2.4 GHz, Intel Xeon E5645 CPU and 96 GB memory. A

set of three on-chip power grid designs extracted from in-house designs at 45 nm

technology node are simulated in a commercial SPICE simulator, with detailed info

listed in Table 3.2. Their impedance characteristics are characterized through SPICE

and reported in Table 3.3. SPICE is also used to simulate the power supply noise

under different loads in three benchmarks, which serves as input to the MATLAB

framework.
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The parasitic inductance and capacitance of the packages are modeled as

lumped elements attached to the bumps in the grids. Due to the discrete nature

of the proposed method as well as the frequency sweeping based methods, the reso-

nance frequencies are rounded to the nearest integer. As can be seen from the table,

the three designs have distinct impedance characteristics, which will play an impor-

tant role in the results to be discussed. Finally, the load currents are extracted and

modeled as triangular waveforms with 10 ps rise and fall time.

The noise sensors are placed according to [40] for each design. It is also

assumed that they all use the same threshold in the same design. x is constructed

by setting fmax to 10fres with 1 MHz step. The frequencies of the load patterns

fd are randomly generated in the range between 1 MHz and 100 MHz with 1 MHz

resolution. Finally, following Figure 3.2, assuming 15% variation in the resonance

frequency. This will decide the number of samples needed by the existing methods

to find out the resonance frequency through frequency sweeping [17][18][39][42].

The experiment started with the comparison between the proposed method

and the frequency sweeping based methods in terms of the number of measurements

needed to get the frequency. The threshold voltage is set to 20 mV. The sweeping

based methods need to go through each possible frequency point in the ±15% range

of fres with step size 1 MHz. From Table 3.4 it can be seen that the proposed

method can achieve up to 7.6× reduction in the number of measurements and thus

in measurement time. Note that the speedup increases with the variation in fres. In

addition, out of the three designs, N3 needs the fewest measurements while N1 needs

the most. This is due to the difference in the impedance peak width of the three

designs. As can be seen from Table 3.3, N3 has the narrowest impedance peak and

N1 has the widest. A narrower peak corresponds to a sparser vector x, which needs

less information to recover. The same table also reports the MATLAB runtime for

Algorithm 3.1. Apparently, the runtime is negligible compared with the measurement

time, which could be further reduced by hardware implementation.
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Table 3.2: Benchmark information. #n, #r, #c, #l stand for the number of nodes,
resistance, capacitance and inductance respectively.

Benchmark #n #r #c #l
N1 30, 638 30,027 10,774 277
N2 127,238 208 325 36,838 330
N3 851,584 1,401,572 201,054 955

Table 3.3: Impedance information for each design. The resonance frequency fres,
peak width at half maximum ∆f , peak impedance Zp and DC impedance
Z0 are reported.

Benchmark
fres

(MHz)
∆f

(MHz)
Zp

(mΩ)
Z0

(µΩ)
N1 158 250 38.1 10.9
N2 80 75 26.7 1.3
N3 126 48 25.8 1.0

Figure 3.8 further demonstrates the frequency prediction error versus the num-

ber of measurements for the three designs. The threshold of the sensors is set to 20

mV. From the figure it can be seen that N1 always has the maximum error for the

same number of measurements. This is again because N1 has the widest impedance

peak. For all the designs, the prediction error drops quickly with the increase of mea-

surement numbers. In addition, Figure 3.9 compares the prediction accuracy versus

the threshold of the noise sensors, which is identical for the same design, using 10

measurements. From the figure we can see that an optimal threshold exists for all

the three designs. This is because if the threshold is set too low (high), noise sensors

will output 1(0) for most of the measurements, resulting in a loss of the information.

Table 3.4: Comparison of the number of measurements needed (#N) between the
proposed method and the frequency sweeping based methods to achieve
1 MHz maximum error. The MATLAB runtime of Algorithm 3.1 is also
reported.

Ckt Sweeping based methods Proposed method
#N #N runtime (ms)

N1 47 (1) 10 (1/4.7×) 1.5
N2 24 (1) 6 (1/4.0×) 0.9
N3 38 (1) 5 (1/7.6×) 0.7
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Figure 3.8: Prediction error vs. number of measurements. Sensor threshold = 20 mV

In addition, for the same prediction error, the threshold of N3 is the lowest, while

that of N1 is the largest. This is because of the difference in maximum noise (peak

impedance), as can be seen from Table 3.3. In future work, how to efficiently select

the optimal threshold for a given design will be studied. In the above experiments,

it is assumed that any frequency between 1 MHz and 100 MHz can be selected with

a minimum resolution of 1 MHz. Figure 3.10 shows prediction error if increasing

this minimum resolution (e.g., when the resolution is 2 MHz, only 2 MHz, 4 MHz,

6 MHz, etc. can be selected). A higher resolution results in reduced hardware com-

plexity. From the figure we can see that as expected, for all the three designs the

error increases with the resolution. If the prediction error to be within 5 MHz, the

resolution cannot be higher than 3 MHz. Figure 3.11 shows the impact of noise in

sensor measurements on the prediction accuracy, where SNR is the signal to noise

ratio. A zero-mean Gaussian random noise is injected into the voltages measured by

the noise sensors. From the figure it can be seen that when SNR > 20 dB, accurate

prediction can be guaranteed, which shows that the proposed method has strong re-

sistance against small noise. In addition, N1 is most sensitive to noise (largest slope),
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followed by N3. N2 is least sensitive. This is due to the difference in impedance peak

width. A wider peak needs more information to recover (less sparse) and thus is more

sensitive to noise in measurements.

Finally, Figure 3.12 shows the variation of prediction error due to sensor loca-

tions for benchmark N1. As it can be observed from Figure 3.12, prediction error is

randomly distributed. While the errors are all relatively small (<10MHz) compared

to ∆f (250MHz), the result suggests that it is possible to find optimal locations of

the sensors for best resonance frequency prediction.

3.6. CONCLUSIONS

The increased contribution from wire capacitance due to technology scaling

will lead to significant variations in the resonance frequency of PDN, making it im-

perative to obtain the per-chip information for effective resonance noise management.

Unfortunately, existing methods are based on frequency sweeping which is too slow.

In this chapter, a novel built-in resonance frequency prediction framework have been

proposed using existing on-chip noise sensors. It is based on recent advances in 1-

bit compressed sensing. Experimental results on a few industrial designs show that

compared with frequency sweeping, the proposed framework can achieve up to 7.6×

measurement time reduction under the same accuracy, with 15% resonance frequency

variation. To the best of the authors knowledge, this is the very first work to point

out the need of as well as a practical solution to the resonance frequency prediction

for individual chips.
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Figure 3.9: Prediction error vs. sensor threshold. Number of measurements = 10

Figure 3.10: Prediction error vs. minimum resolution. Number of measurements =
10, sensor threshold = 20 mV
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Figure 3.11: Prediction error vs. noise in sensor measurements. Number of measure-
ments = 10, sensor threshold = 20 mV

Figure 3.12: Prediction error with sensors in different locations for Benchmark N1.
Number of measurements = 10, sensor threshold = 20 mV
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