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ABSTRACT 

In this study, a carbon–based solid acid catalyst was prepared via hydrothermal 
carbonization method (HTC) using glucose and pyrolysed waste tyre as carbon precursors and 
aqueous solution of H2SO4 as sulfonation agent. Prepared catalysts were characterized by X–ray 
diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared FT–IR and 
Brunauer–Emmett–Teller (BET). As the result, catalysts were manufactured with the appropriate 
physical and chemical characteristics and high acidity. 
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1. INTRODUCTION 

Biomass is one of the most promising renewable and sustainable alternative for energy and 
chemical production. As an energy source, biomass can be utilized without depleting the existing 
reserves. Current research interest is, therefore, to convert biomass to fuels and chemicals [1]. In 
recent years, many researchers have found alternative source material for the production of 
biofuel to replace fossil fuels urgently. The use of materials derived from biomass to produce 
biofuels and chemicals for plastics as well as pharmaceuticals not only enhances the value of the 
agricultural production but also contributes to solving environmental pollution issues and 
ensuring ecological balance. From the time being, efficient use of biomass is only 10% 
compared with that generated biomass energy. Meanwhile, resource-products are regarded as 
one of the potential sources of raw materials for energy production [2, 3]. 

For the effective consumption of cellulose, the primary and essential step is the hydrolysis 
of cellulose into glucose [1, 4]. Many studies have been concentrated on homogeneous acids and 
celluloses in a long period of time. With homogeneous acids, although they exhibit reasonable 
prices and good catalytic activities but practical applications are difficult due to a lot of problems 
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including reactor corrosion, waste treatment and poor recyclability [5–7]. In contrast to 
homogeneous acids, celluloses that can be derived from aspergillus niger, trichoderma reesei 
are more selective and competitive to hydrolyze cellulose into glucose at lower reaction 
temperature [8]. However, enzymatic hydrolyses of cellulose is a slow process, which will spend 
a long time to achieve a satisfactory yield of glucose [9]. In addition, prior to enzymatic 
hydrolysis of cellulose into glucose, an energy and cost–intensive pretreatment is necessary to 
remove the recalcitrance to celluloses. At this moment, celluloses are still very expensive [10]. 
From the viewpoint of green chemistry and industrialization, solid acid catalysts such as metal 
oxides, H–form zeolites, heteropoly acids, functionalized carbonaceous acids and magnetic 
functionalized carbon acids, which are separable, recoverable and reusable, should be the 
excellent choices for the hydrolysis of cellulose into glucose, because they have tremendous 
potentials to overcome the above–mentioned limitation [11]. In other words, solid acids catalysts 
case opens up opportunity to explore more efficient, economical, simple and greener processes 
for the hydrolysis of cellulose into glucose.  

In this study, the solid acid catalysts (CS, CS1, CS2 and CP) were synthesized by 
hydrothermal carbonization (HTC) and characterized using analytical techniques such as XRD, 
SEM, EDS, FT–IR. Finally, their catalysts were high acidity and used for hydrolysis of cellulose 
from rice straw into glucose. 

2. MATERIALS AND METHODS 

2.1. Materials 

Glucose (> 99.5 % – Xilong, China), Ethanol (96 % – Xilong, China), H2SO4 (98 % –
Xilong, China) and carbon from pyrolysed waste tyre. All the chemicals were used without 
further purification.  

2.2. Synthesis of carbonaceous material from glucose (CS) 

The glucose–derived carbonaceous material without in–situ functionalization was prepared 
by hydrothermal carbonization of glucose in the absence of any additive. Typically, 20 g of 
glucose was dissolved in 60 mL of water, and the mixture was then loaded into a 100 mL 
stainless steel autoclave. After that, it was heated up to 180 °C and kept for 10 h at the 
autogenous pressure. The resulting solid product was isolated by centrifugation, washed 
repeatedly with ethanol and water for several times, and oven–dried at 80 °C for 12 h. The 
obtained carbonaceous solid material is denoted as glucose–derived carbonaceous material 

2.3. The synthesis of functional groups attached carbon catalyst 

To realize in–situ functionalization of the carbonaceous material bearing with –SO3H 
groups on surface, H2SO4 solution was used in the sulfonation processes. The as–synthesized 10 
g CS was dispersed in a sulfuric acid solution under stirring. The suspension was placed in a 100 
mL stainless steel auto clave and maintained at 180 °C for 4 h. The black products were filtered, 
washed and then dried following the same procedures in CS preparation. Sulfuric acid solutions 
with different concentrations were employed in the sulfonation processes. The sulfonated CS 
solid acid catalysts were labeled as CS1, CS2 according to the sulfuric acid and water volumetric 
ratios of 1:1 and 2:1, respectively. The sulfonation of CP (carbon from pyrolysed waste tyre) 
was prepared following the same procedures in CS2 sulfonation. 
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Table 2. Specific surface area and acid density. 

Samples SBET (m2/g) Acid density (mmol/g) 
CS 38.55 0.24 

CS1 43.95 0.42 
CS2 55.37 1.08 
CP 45.16 0.58 

The acid site densities of catalysts were determined by EDX analytic method (Table 2) and 
acid–base back–titration. The acid titration experiments demonstrated that much higher acid site 
densities than the estimations based on sulfur elemental analysis. The higher estimated acid 
densities from titration are due to phenolic –OH and –COOH groups originating from 
incomplete carbonization of glucose. The strong sulfonation also may oxidize aliphatic CH3/CH2 
groups to carboxylic acid groups, which may further explain the significant increase in total acid 
densit after sulfonation. The strength and density of acid sites of carbon–based solid acid is a 
vital factor closely related to the catalytic activity. The sulfonated CS have both strong and weak 
acid sites on the surfaces. As shown in Table 2, the total acid density on the surface increase 
from CS, CS1 and CS2 with increasing the concentration of the sulfuric acid solutions. 

The preparation of catalysts includes two stages. Firstly, glucose is thermally treated by 
hydrothermal carbonization at 180 °C for 10 h to obtain a solid carbon material. Then, the 
obtained carbon material is sulfonated with different concentrations of sulfuric acid to introduce 
–SO3H groups at 180 °C for 4 h. Specific surface area of CS2, CS1 and CP are 55.372 m2/g, 
43.949 m2/g and 45.162 m2/g, respectively. High acid density of CS1; CS2, CP are 0.417 
mmol/g, 1.083 mmol/g, 0.58 mmol/g in turn. This indicated that catalytic activity mainly 
depends on total acid density regardless of its specific surface area. The carbon catalyst exhibits 
high catalytic performance in the presence of hydrophilic molecules despite its relatively low 
specific area, attributable to the incorporation of high densities of hydrophilic molecules into the 
carbon bulk binding with the flexible carbon sheets [15]. 

4. CONCLUSIONS 

Rice straw treated with the two–stage process composed of separating hemicellulose with 
acid sulfuric and lignin by the aid of sulfomethylation agent for 7 h may be used as raw material 
for hydrolysis reaction of cellulose into glucose in support of the catalyst. Successful 
synthesized carbon catalyst containing –SO3H functional groups via hydrothermal carbon 
chemistry (HTC) method from glucose precursors and pyrolysed tire. Synthesized catalyst has 
great activity in the hydrolysis reaction of cellulose from rice straw into glucose. 
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