-

View metadata, citation and similar papers at core.ac.uk brought to you by .i CORE

provided by Vietnam Academy of Science and Technology: Journals Online

Tap chi Khoa hoc va Céng nghé 49 (2) (2011) 9-25

ON THE STATE-OPTIMIZATION APPROACH TO SYSTEM
PROBLEMS: CLOSED-LOOP THINKING SOLUTIONS

Nguyen Thuy Anh*, Nguyen Le Anh?

'Institute of Electronics and Telecommunication Hanoi University of Technology
Department of Electronics, Hanoi Television Technical College

Received May 15, 2010

ABSTRACT

State-optimization approach has been proposed to treating various different system
problems in optimal projection equations (OPEQ). While the OPEQ for problems of open-loop
thinking is found consisting of two modified Lyapunov equations, excepting the rank conditions
whereas required in system identification and its related robust problems, the one for closed-loop
thinking consists of two modified either Reccatti or Lyapunov equations, excepting conditions
for compensating system happened to be in a problem like that of order reduction for controller.

Apart from addditonally constrained-conditions and simplicity in the solution form have
been obtainable for each problem, it has been found the system identification problem switching
over to computing the solution of OPEQ and the physical nature of medeled states possibly
retaining in optimal order reduction problem.

1. INTRODUCTION

System problems may be divided into four major parts which are modeling, setting up the
mathematical equations, analysis and design [1]. However, if the discussion is limited to linear
systems described in the state space equations, the system problems may be then regarded to
belong to either open- or closed-loop thinking ones. There have many research workers been
devoted to tackling various different aspects of open- and closed-loop thinking problems from
both theoretical and practical angles. Among the myriad references available in literature, two
notable methodology contributions related with present paper are from the internally system-
theoretic argument and from the treatment in optimal projection equations (OPEQ).

Internal system philosophy based on the contribution of dynamical elements (state
variables) to the system input/output relationship has been originated firstly to so-called singular
values by Moore in 1981 [2] for an open-loop thinking system and further developed to
characteristic values for a closed-loop thinking one by Jonekheere and Silverman [3], and by
Mustafa and Glover [4]. The contribution of states to the system input/ouput relationship can be
measured on the basics of diagonalizing simultaneous both controllability and observability
gramians of the system of any loopwise thinking to the very same diagonalized matrix
(internally balanced conditions). This methodology is found promising for system problems of
both thinking-wises in the analysis part. However, the major drawback lies on the optimality in
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designing as no where optimal design gives to troublesome in closed-looping like the one for the
controller, especially in a problem of projective control. The component cost ranking principle
proposed by Skelton [5] based on determining contributions of dynamical elements to a
quadratic errors criterion, from the opinion of the authors, may be regarded as a special method
of the earlier philosophy since no rigorous guarantee of optimality is possible although the
propose has been guided by an optimality consideration. However, it suggests researches to be
carried out on combining an optimality consideration and the internally balanced conditions for
the design purpose.

Last more than three decades, an American scientists group (Bernstein, Haddad and
Hyland) have devoted a tremendous effort in publishing a series of research papers on different
system problems in both loop-wise thinking [6 - 10]. From the first-order necessary conditions
for an optimality consideration of each problem, an optimal projection matrix has been realized
and used for developing suitable OPEQ. Important significance of treatment in OPEQ
philosophy lies on the question of multi-extreme as certain constraint conditions, bounds like
internally balanced condition, H,, performance bounds, Petersen-Hollt, Guaranteed cost bounds
and so on, are able to be accommodated suitably in due OPEQ development course for each
problem. This methodology is hence found being applicable to both analysis and design
purposes. With a careful analysis, it is found that the minimization has in all the cases been
carried out with respect to parameters, which are inherently non-separable from state-variables
for an output function. This gives rise to a drawback in regards to some difficulties lying on the
complexity of mathematical involvement also on the optimal projection nature, which in most of
the cases is an oblique one, leading to the requirement of other conditions for computing the
solution of OPEQ. Further, although additionally constraint conditions are able to be facilitated
in OPEQ, but not a single provision for retaining the physical nature of desired states in the
result. This disvalues significance of the methodology from the analysis point of view.

Concept of state-optimization has been originated by San [11] from the fact that between
two systems of sate-variable equations there exists always a non-similarity transformation on
each to other state vectors and then the optimality for back-transform is achieved owing the role
of pseudo-inverse of that non-similarity. San has shown that for a given system the non-
similarity transformation may be freely chosen; hence the retaining physical nature of modeled
states is possible in transformed version [17]. If the non-similarity transformation is factorized in
terms of a partial isometry, an orthogonal projection matrix can be formed, facilitating the
possibility of obtaining a simpler form for OPEQ. Thus, the state-optimization methodology
overcomes the drawbacks and enjoys the merits of both early mentioned approaches.

Arrangement of the paper as follows: Two lemmas proposed for preliminary are retaken in
I1. The first one is related with defining a criterion for the state optimization and the other is with
factorizing a non-similarity transformation in terms of a partial isometry. In Il1, two problems in
closed-loop thinking and the respective results [13, 14] are retaken. Both problems have been
firstly transferred into open-loop thinking so that the result obtained for the opened-loop
thinking can be employed for that in the closed-loop thinking. In the last part of Il is used for
applications to telecommunication network modeling and the results on robust considerations.
Concluding remarks and directions for further researches are mentioned in V.

2. PRELIMINARY

2.1. Notations
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Throughout the paper, following conventions are used
- All systems are taken to be linear, time-invariant, causal and multi-variable.
- Bold capital letters are denoted for matrices, while low-case bolt letters are for vectors.

- IR stands for real, [&(.) for either expectation or average value of (.) when t approaches to
infinity.

-p(), ()7, ()" stand for rank, transpose, pseudoinverse of (.).

- Stability matrix is the one having all eigenvalues on the left hand side of the S-plane.

- Non-negative (positive) definite matrix is a symmetric one having only non-negative
(positive) eigenvalues.

1/2
. 2 2
- All the vectors norms are Euclideans or 1> norms, ||x|| = (Z, ‘xj‘ ) .

- Controllability and observability gramians of a system are denoted by
t t
W, = [e"BVBTe" dt, W, = [e*'CTCe™dt (2.1)
0 0

Satisfying dual Lyapunov equations
AW, + WCAT +BVB' =0

2.2
W,A+A"W,+C'RC=0 (22)

whereV = E(uu’), R is non-negative weighted matrix of order q.

2.2. Introduction to Pseudo-inverse and Transformation in system problems

Concept of generalized inverse seems to have been first mentioned, called as pseudo-
inverse by Fredholm in 1903, originating for integral operator. Generalized inverses have been
studied extending to differential operators, Green’s functions by numerous authors, particularly
by Hilbert in 1904, Myller in 1906, Westfall in 1090, Hurwitz in 1912, etc. Generalized inverse
has been antedated to matrices on defining first by Moore in 1920 as general reciprocal. The
uniqueness of pseudo-inverse of a finite dimensional matrix has been shown by Penrose in 1955,
satisfying four equations [12]

TXT =T (i), XTX =X (i), (TX)*=TX (iii), (XT)*=XT (iv) (2.3
where (.)* denotes for conjugate transpose of (.).

The above four equations are commonly known as Moore-Penrose ones and the unique
matrix X on satisfying these equations is usually referred to as the Moore-Penrose inverse and
often denoted by T~.

Assume that an available system (S) and an invited (or assumed) model (AM) are described
in the state-space equations as
X‘n = Anxn + Bnun

(S): y, =C. X, (2.4)
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(AM): v =C x" 25)

where the letters n and m in the subscripts stand for (S) and (AM) also for their order numbers
respectively with all of the vectors and matrices are supposed to be appropriately dimensioned.

It was observed that indifferent from orders of the two, there exists always a transformation
between two state vectors (referred to as state transformation) and a transformation between two
output vectors (named as output transformation). If both (S) and (AM) are subjected to the same
input vector, output transformation is seen to be similarity (an invertible matrix) one as
dimension of the output vector of (AM) is the same as that of (S), but it is not the case always
for state transformation. Even if state transformation is a non-similarity one, the output vectors
are match able, however. As non-similarity transformation on state variable vectors is not a bi-
directional one, giving rise to the idea of optimization with respect to the state variables.

2.3. Definitions and Lemmas
2.3.1. Definitions

Problem that deals with system be tackled inherently in closed-loop configuration is
referred to as closed-loop thinking one [1].

Projection matrix resulted from the first order necessary conditions for an optimality
process is termed as an optimal projection. System of equations resulted from the necessary
conditions for an optimality expressing in terms of components of optimal projection is called as
optimal projection equations (OPEQ) [7, 11].

2.3.2. Lemmas

Lemma 2.1. Let the vector x, of n independently specified states of a (S) be given. Assume that
an (AM) is chosen having vector X, of m independently specified states, m < n. Then there

exists a non-similarity transformation Te R™", p(T) = m, on x, for obtaining x, such that if the

number of (S) output is less than or equal to that of (AM) order, g < m, then T'x,, leads to the
minimum norm amongst the least-squares of output-errors.

Proof. Details can be found in [11]. It is necessary showing that with the condition mentioned in
lemma one can easily obtain the weighted least-squares criterion on the output errors

Joo = | Vo =Y "R(Y, — ¥, )it (26)
0
from the criterion for state optimization
Ja = [l ~ T, It @)
(0]
with R stands for non-negative weighted matrix of the appropriate dimension.
Usually, order n of (S) is not known, order m of (AM) may be highly chosen. In such a

case, the validity of the lemma is kept; see the remark I1.1 of [11] for the details of argument.
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Lemma 2.2. Let the state vector x, of (S) be a transformed state vector of (AM) as
X,=T'X,, TeR™, p(T)=n<m. (2.8)

Then T can be factorized as
T=EG=HE (2.9)
where, E = B(X_X] ) € R™" is a partial isometry, G = B(X X' ) e R™, H =E(x_X_ ) e R™",

both are non-negative definite matrices.

Proof. See [11] for details.

Remark 2.1. It is noted that since T is constant X, = T'X_ is also valid.

It is known thato, =EE", 5, =E'E are optimal in the sense that one state vector is
optimized with respect to the other; moreover both are of orthogonal projection matrix.

Although x, and x., are definitely specified but T is not unique determined due to mismatch
between the dimensions of two state vectors. The question arises regarding the construction of T
so that X, is obtainable from the knowledge of X

3. TYPICAL CLOSED-LOOP THINKING PROBLEMS
3.1. Order reduction for state estimation
3.1.1. Statement of the problem
Given an n-th order (S) described by
X, =AX,+Bu, (3.1)
y, =C.X, (3.2)
with order n, of jointly controllable and observable part of (S) less thann, n, <n.
Determine a reduced-order state estimator of order e, g <e
X, = AX, +B.u, (3.3)
Y. =C.X, (3.4)
where u, =|u; |yHT cRPI,
Conditions to be satisfied are

e A,B,C, : Controllable and observable; A,,B, : Stabilisable, A,,C

e’ e
Detectable,
Maximum value assignable to e,
L, model-reduction criterion on the state-error,
L, model-reduction criterion on the output-error.
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3.1.2. Solution of the problem

Theorem 3.1. For a linear, n-th order, time-invariant parameters (S) there exist full row rank

matrices K € R*", L € R% and a linear combination of (S) outputs M, such that the optimal
parameters of state estimator of order e are given by

A, =K A -MC, K*,B,=K B,|M, C,=LC K" (3.5)

The maximum value of e which can be considered for the order of the reduced-order state
esti-mator to be controllable and observable is the irreducible order of (S).

Further, there exist a partial isometry E, € R*" and non-negative definite H, € R™ such
that with optimal orthogonal projectore, =EJE, € R™,p 6, =€ and two non-negative
definite matricesQ, = H_E_Q.E,, P =H_E_P,E, € R™", the following conditions are to be

e e—e!? e—e e—e
satisfied
G, [HeAnQ: +Q:A-rI1—He + HeBnVlB-rll—He ] - (3 6)
o,[HM C,Q;-ViB/H, + QC]-H.B,V,, MTH,+HMV,MH,|=0 '
o [H;ATP, +P/A H; |-
. (3.7)
6.H;CIM"P] +PMC,H,5, +6,H,C]L'R,LC,H;c,|=0
Proof. After some mathematical manipulations, with L € R%* (3.1) and (3.2) become
X, =A_X_+B_u, (3.8)
y.=C.x_ (3.9)

Where x_=X,, A.=A,-MC,, McR™, pM =q, B.=B,|MeR™™,
C_.=LC,.

The closed-loop thinking problem becomes an open-loop one and the result obtained for
order reduction of model can be adopted; see [13] for the details.

Remark 3.1. Optimal reduced-order state estimation has been turned to that of unregulated (S). If
M and L are assumed to make model described by (3.8) and (3.9) be regulated, the problem is
dealing with order reduction for a dynamic compensation. And in such a case, the maximum
value that can be assignable to e is n.

Corresponding to the optimal parameters, (3.8) is written for implementing a full order state
estimator

x, =EHA HEx +EHM y -C H'E]x, +E.HB, u, (3.10)
The error referring to the input side arisen due to non-similarity transformation M is given
by EEHM y, -C HE!X, .
3.2. Problem of order reduction for controller
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3.2.1. Brief summary on the standard Linear Quadratic Gaussian (LQG) problem

If zero mean Gaussian white noises wy(t) and w,(t) are assumed to be vectors of un-
correlated, normalized adding to the input and output of a (S)

x (t) = AX(t) + Bu(t) + w,(t)] (3.11)
y(t) = Cx(t) +w,(t) . (3.12)

Then, subject of standard (normalized) LQG is to find out from all linear feedback the one
that corresponds to the minimum of a scalar functional cost

) trex] [Cx
J= IlmE{}I{ } dt (3.13)
t—o t 0 u u
for which the the solution is stated as.

Let (A, B, C) be of minimal. Then, there exists a normalized LQG controller (A, B, C)
having parameters determined as

A=A-BB'II-¥C'C,B=¥C",C=-B'll (3.14)

where IT and W are the respective unique positive definite solution of controlling algebraic
Riccati equation (CARE) and of filtering algebraic equation (FARE).

ATI+TIA+C'C-TIBB'TI =0 (3.15)
A¥Y+WA'+BB' -PYC'C¥Y =0 (3.16)

Corresponding to the optimum solution, value of the LQG functional cost is
J = tr[BTnB +BTH‘I’HB] (3.17)

Eigenvalues of II¥ are known as the LQG-characteristic values of (S) and found
similarity invariants. This invariability permits one to obtain an LQG-balanced realization and in
such a case, both II and W are of the diagonal form. That motivates reduction scheme for
closed-loop thinking by truncation off the least significant states. For improving the performance
of reduced controller, Hoo bound is adopted [4, 10]. However, still an important question
remains to be addressed with respect to the stabilization of (S).

3.2.2. Statement of the controller reduction problem

Given an n-th order (S) having appropriately dimensioned vectors and parameter matrices

X =Ax+Bu (3.18)
y = CX (3.19)
Determine a controller of ordere, q<e<n
X, =AX, +B.u,,u, =y (3.20)
Y. =C.X, (3.21)
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with p-, g-dimensional vectors u,, Y, , and appropriately dimensioned matrices A, B,, C,.
Conditions to be satisfied

(A,,B,,C,): Controllable and observable; (A, B,) : Stabilizable, (C,, A,) : Detectable.

e L, model-reduction criterion on the state-error for the reduced controller is minimized,
with an n-dimensional state vector x of the full order LQG controller associated with (S),
an exn matrix T and a positive definite matrix Ra.

e L, model-reduction criterion on the output-error for reduced controller is minimized, with
a g-dimensional output vector y, of the full order LQG controller associated with (S), an
exn matrix K of order g, and a positive definite matrix R,.

3.2.3. Solution to the problem

Theorem 3.2. For a linear, n-th order, time-invariant parameters system there exists a partial
isometry E, € R™"and two non-negative definite matrices Q., P, such that optimal parameters
of a jointly controllable and observable controller of order e are given by

A, =EHA-BB'II-YC'C)H'E'", B,=E_H¥YC', C, =-B'IIH'E] (3.22)

In which two positive definite matrices Iland W are the unique solution of CARE and
FARE respectively and H is related with the states of full order LQG controller.

The following conditions are to be satisfied

¢ [H(BB'II+¥C'C)Q, —%H‘I’CTVCH] >0 (3.23)
o, [H'(BB'II+¥YC'C)P, —%H'lﬂBBTHH'l] >0 (3.24)

whereQ, = H'E/QE,, P, =HE_PE,, 6, =E_E_ and Q, P are controllability, observability
gramians of the reduced-order LQG controller.

Proof. Details are available in [14, 22].
3.2.4. Compensating system by reduced controller

Given an n-th order (S) by (3.18) and (3.19) and r-th order (reduced-order) controller
obtained by theorem 3.2 denoting by
% =AX,+BQ, (3.25)
g =CX (3.26)
Conditions §, =u,y =0, for compensating are performed with respect to normalized
LQG by u —>u+w,(t), 0, — 0, +w,(t) on satisfying

oo wonf-[s V]se-o
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That gives rise to a system of six equations reducible to the one of four ones; two are
boundary conditions exactly those in (3.23) and (3.24), the other two are modified Lyapunov
inequalities

BB'MIH'E'Q,, + Q,EH'TIBB' —BB' >0 (3.27)
C'CYHE'P, + P,LEHYC'C+C'C=0 (3.28)

Compensating (S) by a reduced controller has been found not guarantee until proper
measures are taken, hence the normalized LQG has been considered, forming an augmented
system. From the result of standard normalized LQG problem [17], (reduced-order controller
internal stabilizes (S), the augmented system is to be stable) has given rise to a system of six
equations deducible to four modified ones; two modified Lyapunov resulted from the reduction
and two modified Riccati found being responsible for LQG. However, two of the mentioned four
have been found being the conditions (3.23) and (3.24) in theorem 3.2. Other two (Riccati ones)
are found decoupling readily due to the role of operational factorization.

Remarks 3.2. Reduced controller can be obtained by state-optimization approach in three steps;
LQG is used for obtaining an equivalent open-loop model, reduction is performed on the open
equivalent, LQG is used for compensation. This implies that an optimal performance of reduced
controller can be obtained by a steep-wise design. This result agrees with that obtained by
performing a parameter-optimization simultaneously on LQG and on model reduction, by which
an optimal performance of reduced controller can not be achieved by step-wise process.

3.3. A robustness of modeling for electronic interface
3.3.1. Electronic interface modeling

Whenever CPU is still set up on the basics of classical set theory (binary algebraic), then
the dynamics of telecommunication nodes is almost kept unchanged; whatever measure have
been taken that would consider for interfacing techniques only (a transformation between a set
of non- to standard of working conditions required by CPU). State-descriptive model

transferring non-standard set u, (t) to a standard y, (t) of CPU with intercepted noise W, (t) is
[18, 20]

X; (t) = Ax, (t) + Byu, (t) + B,w, (1) (3.29)
Y, (1) =Cx (t) (3.30)
Transferring from standard u,(t) of CPU to a non-standard Yy, (t) out side with noise
W, (t) is

X, (t) = A,X, (t) + B,u, (t) + B,w,(t) (3.31)
Y, (t) = C,x,(t) (3.32)
On working conditions to be satisfied u, (t) =V, (t) and u, (t) =y, (t) then obtains
X5 () = AgX, (1) + B,u,(t) (3.33)
Y, (t) = Cx, (t) (3.34)
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Where
T

T T
X0 =D7O O], u®=[w O wO] . v.O=y 0 y;0]
A, B.C B, 0 C, 0
A3 _ 1 12 ’ 83 _ 1 , C3 _ 1 '
B,C, A, 0 B, 0 C,
3.3.2. Electronic soft-switch modeling
Since nothing can be done with CPU, the “soft” is in the sense that “soft computing” is
applied to the above interfaces to fit electronic switches with various different environments [18,
20]. A specification u,(t) =[u,(t) u,(t) ...u4q(t)]T is made in the input to (3.29) for
identifying environments and model for interfacing to standard medium y,(t) in this case
becomes

X, (t) = A, X, (t)+B,u,(t) +B,w,(t) (3.35)

Y, (t) = C4X4 (t) (3-36)

Transferring from the standard medium of CPU back to specified environments is
described

X5 (t) = AsXs (1) + Bgus (t) + Bowi () (3.37)
Ys (t) = C5X5 (t) (3.38)

where U, (t) = [Ug, (t) — K, X, (t)1"; u,,(t) consists informations of standard medium, KX, (t)
carries informations on linear dynamic transfer in according to Riccati equation [21].

On transformation conditionsy, (t) = u,, (t), y:(t) =u,(t), one obtains

X (t) = AgX, (t) + B, (t) (3.39)
Y )= CeXs () (3.40)
where
x®=[x1® xO] . u®O=[wO wWo]. vo=[yit) vi®o].
A, = {B:é:ﬂ B;CS , B, = 804 {B(;} ’CG{% CO}
-B.,K, > B., °

“Soft-characterizing” makes rise to presence of B, in Bg andB.,K, in A, and this model
is a generalized version of that described by (3.33) and (3.34).

3.3.3. Robust of Electronic interface modeling [20 - 22]
3.3.3.1. Necessary conditions for robust performance
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a) Assumption
e A,is a stability matrix,

(A;,B,,C,) : Controllable and observable; (A, B,) : stabilisable, (C;, A,) : detectable.
AA =diag(as,, .., i), BB =diag(B},. .. Bi,). C/C, =diag(vi,. - vin)-
AA; =diag(od,, .., o3, ), B,B; =diag (B, ... B, ), C;C, =diag(va,. - . Vi)
F.(5) = [C OMIS-Al -Blcz}l[sl o}{ﬁl Fﬂ

0 C,||-B,C, Is-A, 0 B, F* F?

21
(9

Conditions for Bi-directional tranferring; i.e., HF;ZH =

b) Conditions for each transfering

o For forward transferring

— ylM BlM
1

Is-A )"
! (S l) l+a,,

< (1+ 04y ) B Vo
(1 + alM ) (1 + a2m ) + BlmBZm’yleZm

27 X2

[l <

(Is-AZ)-

F12 — F21 <|IF F22 Ylmﬁlm « ’YZMBZM (1+a1M)
H H H H ” ”H H< 1+(X 1+(X’IM)(1+G‘2M)+Y1mY2mB1mBZm

Fll F l FlZ ’YlMBlM{ 1+u )X ’YIMBIM’YZMBZM }
Pl Filrsl) < g o ey ) B Bt

e For back transferring

|B ” ﬁZMYZM
l+a,,

(1 + a’ZM )BlM71M
(1+ a‘lm )(1 + aZM ) + YZmYZmBImBZm

(1 + aZM) % YIMYZMBIMBZM
(1+a’2m) (1+alm)(l+a2M)+Yle2m51mBZm

FZZ C F l FZl ’YZMBZM { 1+(X'ZM x BlMBZMylMYZM }
Fl<te Rt iesl < Troy, " (Uray ) (1 o)+ BBt

c¢) Conditions on applying Nyquist diagrams for each transfering

-1
1) - BlFN Cl <

11
FZLN

<|c

21 12 11
FaN = F3N FSN =

<[l

e For forwarding
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ylMBlM {1_'_ 1+0“1M « YlMYZMﬁlMBZM }Sl
1+(le 1—’_a‘lm (1+a’1M)(1+a2m)+’Y1m’Y2mB1mBZm

e For backwarding

’YZMBZM {1 + 1+ G’ZM x ’YlM’YZMBlMBZM } S 1
1+ aZm 1 + O‘Zm (1 + O‘lm ) (1 + G’ZM ) + Ylm’YZmBImBZm

3.3.3.2. Uncertainty structure

a) Assumption
e Uncertainty parameters
(X5 (1) + Ax; (1) = (A, + AA,) (X, (1) + Ax, (1)) + (B, + AB,)u,(t)
(Y, (1) + Ay, (1)) = (C, + AC,)(X, (1) + Ax, (1))

Y;(5) +AY;(s)
UB(S)

e  Consistent conditions and matrix-norm to every blocks of transfer matrix for forward
and back transferring are satisfied.

Fi(s) = = (C,+AC,)[Is- (A, +AA,)] " (B, +AB,)

b) Bounded parameters

For each-ward transferring, block components of transfer matrix can be considered as a
plant or a controller suitably, and boundary conditions are then obtained.

o For forwarding

'Y3MB3M Sl(a) and (1+a3M)’Y4MB4M
l+a,, (1+ (X3M)(1+a4m)+[33m[34myamy4m

e For backwarding

<1 (b)

Y4MB4M <1 (a) and (l+ Oy )Y3Mﬁ3M <1 (b)
1+ (X4m (1+ U“Sm ) (1 + 0‘4M ) + BSmBAmYamY4m

3.3.3.3. Sufficient conditions
a) Assumption

e Parameters are bounded,
o Conditions for Bi-directional tranferring are satisfied also in the case of uncertainty.

b) Conditions obtained

e For forwarding
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[AYIM + ABlM + A(xlm j{l_’_ YlM BIM x (l+ alM )YZMBZM } S 1
71M BIM 1 + a‘lm 1 + a’lm (1 + alM )(1 + a2m ) + YleZmﬁlmBZm
e For backwarding

[A’YZM + A[32M + A()”Zm }{14_ YZMBZM x (1+a2M)YlMB1M }Sl
YZM BZM 1 + U‘Zm 1 + G‘Zm (1 + alm ) (]' + (’“ZM ) + YleZmBlmBZm

3.3.4. Robust of electronic soft-switch modeling [19, 20]
3.3.4.1. Establishing necessary conditions
a) Assumption

o A,is a stability matrix,

e (As,B;.C,): Controllable and observable; (A, B,) : stabilisable, (Cg, A;) : detectable,

e Nominal values of Ag, B, Cg are those coresponding to the case when wg(t) = 0. With a
chosen value of A,and A, (3.39) and (3.40) become

X5 (1) = AgXg(t) andy ¢ (t) = CoX4 (1) -
b) Paramater estimation process

Minimizing a functional cost weighted with

Sll 812 Sll O Sll SlZ
Sl = |:S%1 S%Z:| ! SZ :|: 02 SZZ:| and S3 = |:S:l ng:|

J(B,,B51, B, C;. Cs K, ) =E {Xg (0)S X (1) +Xg (1)S,Y6 (1) +Ye ()S5Ye (t)(t)} =1tr(QsR;) (4.41)
within the set for (A, B,,C,)to be controllable and observable, where Q, =IE‘:{x6(t)xGT (t)} :
R ={S1+S,Cs+C{S,Cq  , the necessary conditions are obtained as [19, 20]

{A,+B.CQNQ})'}QI +Qi{A, +B,CQY (le)-l}T +VE=0 (3.42)
{AQF(QF)*+B,C,| Q¥ +Q} {ASQ? Q)"+ {Ei } =0 (3.43)

B51(:4 12 22\-1 22 22 B51C4 12 22\-1 ! 22
A, + B K Q. (QF) Q7 +Q 1A, + B K Q. Q) ¢ +V. =0 (3.44)
52" N4 52" 4
{A+(P)* leBACS}T PZ +P? {A,+(P?)'PI'B,C,} +CISYC,+S/C, +S =0 (3.45)

T
{<P;2>-1F>:1A4 B }} PE+P{(PY) 'PIA +B.C,|+CISIC,+57 =0 (3.46)
52 4
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(A + (Pﬁzz)‘lP621B4C5}T PZ? + P {A, +(P?)'P'B,C,} +CISIC, +SYC,+S =0 (3.47)
Using combinations of the necessay conditions, the unknown are determinated.
¢) Comments on the uniqueness of parameter set

Different combinations amongst the above necessay conditions may give rise different sets
of solutions. The fact is that no sufficient condition has been found; the solution may correspond
to a local extreme. Moreover, in the state space description, one solution set may be the image of
other set obtaining by a similarity transformation.

However, in the case when V, = S; = S, = S3 = | and diag(Q,) = diag(P,), and unique
solution set may be obtained. These are the conditions for bi-directional transformation.

3.3.4.2. Establishing necessary conditions for robustness
a) Assumption

e Uncertain parameters
Xy (1) + A5 (1) = (Ag + AA (X4 (1) + Ax, (1)) + (B + AB,)w(t)
y(t) + Ay (t) = (Cs + AC, ) (x4 (t) + Ax, (1))
Qs = SUPEE { (X, + AxXg)(Xg +AX;)"}, Ry = SUP{S,+5,(Co+AC,)+(Co+AC;)"S;(Cs+ACs)}

¢ Using the same functional cost and constraint conditions,
e Using Petersen-Hollot bound.

b) Sufficient conditions

e Weighted cost function becomes
Jy(enr) =tr(QR) 2 I (.,..n,.) +r(AQR,)

e AA,is astability matrix of appropriate dimension satisfying the following condition
(A, + AA)AQ, + AQ, (A, +AA,)" +B,B; +Q(Q6 AA, ,‘I’(Be,ABB))-V6 =0
where () =AA,Q, +QAA; +¥, () with ¥,()=AB,B; + B,AB; + AB,AB;

e In the case when an estimation of technical quality, an optimization process is
required to carry out with the use of Lagragian function defined as

A()=tr {deGAPG +[ (A, +AA)AQ, +AQ, (A, +AA,)" +BB] | APG}
where 0 < A4 < 1 and AP is a Lagrangian multipler; they are not 0 in the same time.

¢) Comments on the technique used
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Robustness of closed loop thinking problems is found complicate one by adopting
parameter-optimization technique used by other authors. A great effort would be reduced in
tackling the mentioned robustness by adopting the state-optimization approach.

It is found also that robust problems play an important role in estimating technology
standard, which is on the direction for further researchs.

4. CONCLUDING REMARKS

Optimal projection equation (OPEQ) has been recognized to play an important contribution
to finding the uniqueness amongst multi-extreme in the effect sense of an aditionally constrained
condition. However, a complexity happened to be in mathematical involvement of that OPEQ on
adopting parameter-optimization process from both aspects; in the establishment and in the
solution to the mentioned OPEQ. State-optimization has been found removing that complexity
due to the role of factorization in term of a partial isometry and mentioned factorization has an
effect of that of an additionally constrained condition to the optimization process.

State-optimization approach can be employed to treating different various problems where
an optimization is asked for. In the case of an infinite-dimensional (S) like distributed parameter,
non-linear modeled by a series, ect., where partial or functional equations are required, then the
concept of generaliazed Green function and its inverse are to be adopted, however. This may
gives rise to the concept of a poly-optimization in stead of state-optimization and various
researches can be carried out in this direction apart from treating the above mentioned infinite-
dimensional (S) also for treating many different optimization problems happened to be in non-
finite dimensional space.
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TOM TAT

VE PHUONG PHAP TOI UU THEO TRANG THAI VOI CAC BAI TOAN HE THONG:

XU LI THEO TU DUY HE KIiN

C6 thé phan cac bai toan thugc linh vyc Ii thuyét hé thdng thanh 4 nhém chinh: mé phong,

X&c 13p phuong trinh toan hoc, phan tich h¢ va thiét ké hé thdng. Khi gioi han nhitng ban luan
doi véi mot hé thong duoc mo ta boi hé phuong trinh trong khong gian trang thai thi co the phan
cé&c bai toan thanh nhdm phu thugc vao kiéu xir Ii: cach cua tu duy hé hd va cua tu duy hé kin.
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Gan day nhat, c6 hai phuong phép tiép can dang chuy dbi voi ca hai kiéu xir If 1a sir dung diéu
kién can bang ndi va hé phuong trinh quy chiéu t6i uu (OPEQ). Phuong phap dé xuat dung diéu
kién can bang noi c6 uu diém ndi troi 1a sir dung duogc tinh bat bién vé dong gop cua dong hoc
Va0 qué trinh tao ra quan hé vao ra cua hé, nhung lai bi han ché trén quan diém tbi wu do khong
biét duogc nghiém tdi wvu. Phuong phap xay dung OPEQ loai bo han ché vé tinh téi wu nhung lai
dbi mat vai tinh phtic tap vé mat st dung toan hoc trong qué trinh phéat trién, tim nghiém cua
OPEQ, tuy rang phuong phap OPEQ dugc xac dinh 14 tim ra diéu kién rang budc thém vao céc
diéu kién ban dau cua bai toan téi wu. Phuong phép t6i wu theo trang thai dugc minh ching da
thu hudng cac uu diém, bo lai han ché cua ca hai phuong phép da néu va con tao ra hiéu tng
nhu ctia mot diéu kién rang buéc mai nho viéc thira sé hoad phép bién doi khong déng nhat giira
c4c vector trang théi cua hai hé dong hoc theo dang cu thanh phan (partial isometry).

Bai bao nay gom 4 phan. Phan dau giéi thiéu tong quat vé nhitng noi dung trinh bay trong
bai béo. Phan thtr hai, tom tit nhitng diém co ban lién quan dén tiéu chi t6i vu va thira s6 hoé
bién ddi khong ddng nhat 1am sé cir dé giai quyét cac bai toan dién hinh kiéu xt Ii theo cach cua
tu duy hé ho da dugc trinh bay ¢ bai trudc va st dung két qua da thu duoc xu |i cac bai toan theo
cach cua tu duy h¢ kin. Noi dung ap dung va cac két qua tuong tmg dugc trinh bay trong phan
thir ba cua bai bao. Tuy cac phép chiéu toi uu tim thiy boi phuong phap téi wu trang thai déu
vuong, nhung tinh phic tap vé mat toan hoc van con hién dién kha rd nét & qua trinh xur Ii, xay
dung cac hé phuong trinh OPEQ di vai cac bai toan thuoc kiéu xt Ii theo cach tu duy hé kin va
hién dién & hau hét cac qua trinh x4c dinh nghiém cua cac bai ton vé tinh bén viing.
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