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ABSTRACT 

This paper presents a system for specifying the behavior of 

asynchronous sequential circuits. The system consists of a special 

purpose Asynchronous Circuit Design Language (ACDL), a translator and 

a flow table generation algorithm. The language includes many special 

features which permit quick and precise specification of terminal 

behavior. It is best suited for problems originating from a word 

description of the circuit's operation. The translator is written 

with the XPL Translator Writing System and is a syntax-directed 

compilation method. From the translated ACDL specifications, the flow 

table algorithm generates a primitive flow table which is the required 

input for the conventional synthesis procedures of asynchronous 

sequential circuits. A thorough description of the translator and 

flow table programs is given in the Appendices. In addition a 

number of example problems illustrating the use of ACDL are provided. 
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I. INTRODUCTION 

A number of synthesis procedures for asynchronous sequential cir-

cuits now exist and many of these have been programmed for computer 

application. Although considerable work has been directed toward im-

proving the synthesis procedures, little has been done in interfacing 

the user to these procedures. 

This dissertation presents an Asynchronous Circuit Design Language 

(ACDL) system which interfaces the user to the conventional synthesis 

procedures of asynchronous sequential circuits as illustrated in Figure 

1. ACDL is a special purpose language used to describe the terminal 

behavior of asynchronous sequential circuits. This description is then 

translated, and interpreted into a primitive flow table which is the 

initial input requirement of the conventional synthesis procedures. 

USER 

ACDL 

INTERFACE 

Trans
lat'1r 

& 
Inter
preter 

-
Primi

tive 
Flow 
Table 

Figure 1. The Interfacing Characteristic of ACDL 

SYNTPESIS 
PROCEDURES 

Presently, a few procedures exist for specifying asynchronous se-

quential circuits when the terminal characteristics of the machine are 

easily expressed in input/output sequences [1,2]. However, only a 

small percentage of the designs are suitable for this type of terminal 

description. Hence typically, the designer will hand-construct a 
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primitive flow table from a word statement or mental conception of the 

problem. This is not an easy or straightforward task since word state

ments and mental conceptions are informal descriptions of the problem. 

After studying the specification problem for some time, it was 

decided that a language was needed that had the following three impor

tant characteristics: 

l) it should permit ease of expression by coinciding with the 

designer's thinking process, 

2) it should retain a formal meaning of the circuit description, 

3) it should have a structure which would permit relatively easy 

automatic translation. 

A review of all the well-known digital design languages was made 

to determine their applicability to the asynchronous circuit specifi

cation problem [3-9]. In general, it was found that these languages 

were intended for networks whose designs could best be described by 

functional operations and information transfers between basic hardware 

elements such as registers, switches, terminals, memory etc. None of 

the above languages were found to satisfy all of the desired character

istics mentioned for specifying the terminal (input/output) behavior of 

an asynchronous sequential circuit. Specific drawbacks of these 

languages included the inability to assign transition values to vari

ables, the inability to make proper declarations such as ''input con

straints" and the inability to list multiple independent sequence paths 

without introducing additional control variables or cluttering the 

listing with many "go to" type statements. 

ACDL was developed to meet the three important characteristics of 

the desired language and to overcome the drawbacks of the digital design 
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languages noted above. This language provides a means to satisfy the 

specification problem by enabling the user to express his circuit char

acteristics formally, so the design can be carried out automatically. 
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II. ASYNCHRONOUS SEQUENTIAL CIRCUITS 

Sequential circuits whose operation is not synchronized with clock 

pulses are called asynchronous sequential circuits. An important ad-

vantage of asynchronous sequential circuits is their ability to respond 

to input changes at basic device speed, rather than having to await the 

arrival of clocking signals. Also, many small circuits can be designed 

more easily and efficiently asychronously because it is not necessary 

to build a clock and synchronization circuitry. A further advantage 

of asynchronous design is seen in large circuits where signal lines 

are long and the skewing effect (difference in path propagation times) 

of the distributed clocking signals becomes a serious problem. 

The operation of an asynchronous sequential circuit is often de-

scribed by means of a flow table. As shown in Table I, it is a two-

dimensional array consisting of next-state entries with its columns 

representing the input states and its rows representing the internal 

states of the circuit. The row in which the circuit is currently oper-

ating is often referred to as the present internal state or just the 

present state. For example, if the present state of the circuit described 

by Table I is 1 and then an input of I 2 is applied, the next state or 

state that the circuit will go to is 2. 

TABLE I. FLOW TABLE 

Input states 

Il I2 13 

1 ~/0 2 3 

Internal 2 1 ~/0 3 

States 3 1 4 ~/0 
4 1 c;);l 3 
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If a next-state entry is found to be the same as the internal 

state representing that row, then the internal state is said to be 

stable with respect to that input column and is denoted by a circled 

next-state entry. Output states are usually only associated with stable 

next states as shown. 

An asynchronous circuit is said to be operating in fundamental 

mode if the inputs are never changed unless the circuit is in a stable 

state. This paper only treats asynchronous circuits operating in funda-

mental mode. Further information on this class of circuits can be found 

in references [10] and [11]. 

A. The Conventional Design Process 

The design process for asynchronous circuits can be divided into 

two major parts. The first part provides a formal description of the 

circuit's behavior such as a flow table. Based upon this formal de-

scription, the second part applies established synthesis techniques to 

generate the circuit design equations. These techniques include flow 

table reduction, internal-state assignment, hazard elimination and next

state and output equation generation [10,11]. 

Computer programs have made the synthesis techniques entirely 

automated. D. G. Raj-Karne [12] has recently programmed algorithms to 

provide either a Unicode Single Transition Time (USTT), Universal Totally 

Sequential (UTS) or combination USTT and UTS (Mixed Mode) state assign

ment. A flow table reduction algorithm and an algorithm to generate 

the static-hazard-free design equations have been programmed by R. J. 

Smith et al. [2,13]. 



B. Circuit Specification 

1. Initial Descriptions 

Presently, the most common initial description of a design is the 

English-word statement. This is an informal description that must be 

reworked into some type of formal description (usually a flow table). 

The word statement lacks total preciseness and often reflects uncer-

tainty for many input/output conditions. An example of a typical word 

statement description is: 

A sequential circuit is to have two inputs A and B and one 
output z. Z is to turn on only when B turns on, provided 
A is already on. Z is to turn off only when B turns off. 
Only one input can change state at a time. 

In some designs a word statement may be accompanied by a timing 

chart [14,15] to express more explicitly particular input/output se-

quences required of the circuit. The timing chart usually does not 

show all possible input/output sequences of the circuit but rather 

shows important sequences which may help clarify the word statement. 

An example of the timing chart for the above word statement is shown 

in Figure 2. 

A 

B 

z 

Figure 2. Timing Chart 

6 
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2. Primitive Flow Table 

In order to make the initial description more precise and appro-

priate for formal manipulation in the conventional synthesis procedures, 

the circuit specifications are made in the form of a flow table having 

exactly one stable state per row. This special table is called a prim-

itive flow table [10,11,14,15] and is illustrated in Table II for the 

word statement description discussed earlier. 

TABLE II. PRIMITIVE FLOW TABLE 

Internal A B 
State 00 01 11 10 z 

1 0 2 3 0 

2 1 0 4 0 

3 1 5 0 0 

4 2 Q 3 0 

5 6 0 3 1 

6 1 0 5 1 

In constructing the primitive flow table, first a static situation 

corresponding to the initial state of the circuit is defined. This is 

usually (but not always) the state where all inputs and outputs are zero 

as indicated by stable state 1 in Table II. When operating in the initial 

stable state, the remaining next-state entries for row 1 are completed. 

Dash entries represent illegal input transitions which are later used 

in the synthesis as don't-cares. The dash in row 1 means the input 

transition 00 to 11 is illegal which agrees with the word description 

constraint of no inputs changing simultaneously. It isn't until state 



5 is reached via state 3 that the output is set which concurs with the 

word description for setting z. 

For practice, the inexperienced reader should verify the remain

ing rows of the flow table. As seen from this example, considerable 

thought and time is required to construct the primitive flow table. 

3. Other Methods 

8 

A method of specifying asynchronous circuits using input/output 

(I/O) sequences which could be translated into a flow table was devel

oped by Altman [1]. However, the inefficiency of having to repeat long 

specification lists of I/O pairs at branch points and the inability to 

describe cyclic behavior of indeterminate duration greatly restricts 

the use of this method. 

By developing a looping and branching technique and enabling the 

use of don't-care specifications, Smith [2] extended Altman's method 

to satisfy the above deficiencies. Smith's method is based on the 

philosophy that independent I/O sequences define submachines or modules; 

and when properly interconnected, these modules form the required se

quential circuit. The method was primarily intended for those designs 

which originate from a circuit description having a set of I/O sequences 

and hence, is too restrictive to be a good, generalized design method. 

Since most designs originate from word descriptions or mental concep

tions of an operative nature, listing the set of all independent I/O 

sequences for these designs becomes a difficult and confusing task. 

A different approach to the synthesis of fundamental-mode asyn

chronous circuits was developed by Chuang [16] and is referred to as 

the transition logic synthesis method. In this method a binary level 
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transition of 0 to 1 or 1 to 0 is considered as a pulse, and the reali

zation of the circuit is similar to the standard pulse sequential cir

cuit synthesis method [10]. Since no distinction is made between 0 to 

1 and 1 to 0 transitions, the application of this method is limited to 

problems such as counters, where the toggling effect of the transition 

is of interest rather than the value of the transition's ending state. 

The specifications are made into an array called a transition flow table. 

Although the table may have fewer states than an equivalent primitive 

flow table, the unnatural specification method of flow table construc

tion still exists. 
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III. A DESCRIPTION OF ACDL 

This chapter contains a syntactic and semantic description of ACDL. 

The description begins with the lowest structural level of symbols and 

progresses to the higher structural levels of statements and programs. 

A. The Definition of a Metalanguage 

To prevent any ambiguities or paradoxes in the definition of ACDL, 

a metalanguage which is completely distinguishable from ACDL will be 

used in its description. To formalize the definitions in the metalan

guage, each definition is given in the form of a statement or construct, 

which is analogous to a formula. The metalanguage employed is Backus 

Normal Form (BNF) [17] and consists of the following symbols: 

<x> to be read as "the object named x 11 

:: = to be read as ''can be formed from" 

to be read as "or" (exclusive or) 

The metalanguage construct takes on the following meaning: "the 

object named in the corner braces may be formed from the objects named 

or specified on the right". Concatenation of names or objects is im

plied by the juxtaposition of names or objects in the construct. For 

clarity, those characters which are to form part of ACDL and the meta

language symbols will be set in standard type while the names of objects 

enclosed in corner braces will be italicized. 

B. Vocabulary of ACDL 

1. Symbols 

The set of symbols used in ACDL are defined as follows: 

<letter"-::= AlBIC I .•. IZI/11_1@1$1' 

<binary digit>::= Oil 



<nonbinary digit>::= 213141516171819 

<digit>: : = <binary digit> I <nonbinary digit> 

<Special character»: : = " I I I? 

<separator>: : = , 1; 1: 1. 1 ( I) 

<relation symbol>::= =J->1=> 

<replacement op >: : = <

<logical op >: : = --. I& I+ 

11 

The relation symbol '->' is the transition symbol and is read as 

"makes a transition to", and '=>' is the implication symbol which is 

read as "implies that" or "causes". The special characters have special 

meanings in ACDL, and each will be explained later in the description 

at the place it is used. All other symbols take on their standard 

interpretations [3-9], [18]. 

2. Constants and Identifiers 

The rules for constructing constants and identifiers from the 

symbols of ACDL are: 

<Constant>::= <number>J<level>l<transition> 

<number>::= <digit>l<number><digit> 

<level>::= <binary digit> 

<transition>::= <long transition> !<Short transition> 

<long transition>::= 0 ->111->0 

<Bhort transition>::= ->lJ->O 1->? 

<identifier>::= <letter>l<identifier> C::.Zetter>l<identifier> <digit> 

Circuit input variables will take on transition values as well as 

level values. In many cases, both the beginning and ending states of 

an input transition are important in determining the resulting output 
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level. The transition constant 1 0-)1 1 indicates a transition from 0 

to 1. The short transition is a shorthand notation for a long transi

tion constant. For example, 1 -)1 1 and 1 -)0 1 are short for '0-)1 1 and 

'1->o', respectively. The short transition '-)?' represents a don't

care transition which essentially says that a transition is to occur 

and "you don't care" if it is a 1 0-)1 1 or a 1 1-)0 1 transition. This 

shorthand notation is a valuable asset to the user in making quick and 

easy specifications. 

As in PL/I [18], the identifier may consist of both letters and 

digits with the restriction of beginning with a letter. Ideally, ACDL 

permits identifiers to be of an arbitrary length. However due to im

plementation restrictions of the current ACDL translator, the length 

of an identifier is limited to 256 characters. 

3. Relations and Expressions 

All expressions in ACDL are logical expressions. There are two 

types of logical expressions: the transition relation expressions and 

the Boolean variable expressions. The following rules for constructing 

these expressions will become more clear as the discussion progresses. 

<level relation>::= <identifier>= <level>l<level relation> 

& <identifier>= <levez>l(<level relation>) 

<transition relation>::= <identifier>= <long transition> 

!<identifier> <short transition> 

!<transition relation> & <identifier> 

=<long transition>l<transition relation> 

& <identifier> <short transition>l(<tran

sition relation>) 
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<compound relation>::= <transition r>elat-ton> WHILE <level r>e laLion> 

<transition expression>: : = <transition relation> kcompuund Y'e la

tion>l<tr>ansition expression> + <tr>an

sition relation>l<transition expr>ession> 

+<compound expression>j<dummy term>l 

(<transition expression>) 

<dummy term>::= LINKTEST ILK 1 T 

<Boolean expression>::= <logical factor>J<Boolean expr>ession> 

+ <logical factor> 

<logical factor>::= <logical term>l<logical factor> & <logical 

ter>m> 

<logical term>::= <logical pr>imary> 1...., <logical primarY> 

<logical primary>::= <level>l<identifier>I(<Boolean expression>) 

Since all expressions are logical quantities, they evaluate to 

either of two values; true or false. The level and transition rela

tions become true whenever the values of the identifiers equal the 

values of the constants. Similarly, the compound relation becomes true 

whenever the transition relation becomes true while the level relation 

is true. In circuit terminology this means some variables are to make 

a transition while others remain fixed. The dummy term, LINKTEST (LK'T) 

serves a special function which is described later in conjunction with 

the link statement. 

The Boolean expression is the standard logical variable expression 

[3-lO],[lSJ. Examples of this Boolean expression are given in Table III. 

Free parenthetical form is permitted in Boolean expressions. How

ever, if the order of logical operations is not specified by parenthesis, 

then the logical operators are applied in the standard hierarchical order 



14 

0 f I--. I ' I & I and I+ I [ 18 J • 

TABLE III. EXAMPLES OF BOOLEAN EXPRESSIONS 

Expression Explanation 

1 logic level 1 

A Boolean variable A 

Complement of z 

(A + B) & C Logical OR of A and B 
ANDed with C 

-.A + --. B Logical OR of the com-
plements of A and B 

Table IV further explains the use of the shorthand transition 

notation discussed earlier, and examples of the relation expression 

are given in Table v. 

TABLE IV. SHORTHAND NOTATION FOR RELATION EXPRESSIONS 

Expression Shorthand Notation 

X 0 -> 1 X -) 1 

X 1 -> 0 X -) 0 

(X 0 - > 1) + X -> ? 
(X 1 - > 0) 

4. Statement Labels 

As in all programming languages, labels provide a means to select 

statements for execution that do not follow in the listed sequence [3-~ 

18J. In ACDL there are two different types of labels: standard labels 

and output labels. These are further described as follows: 

<label>::= <standard label>: l<Output label>: 

<Standard label>::= <letter (except Z)>l<Standard label> 

<letter>l<standard label> <digit> 



Expression 

X1- >1 

X1- > 1 & 
X2->0 

X1->l + X2-)0 

X1->? 

Xl- >? & 
X2->? 

Xl->1 HHILE 
X2 = 1 

TABLE V. EXJ0WLES OF THE RELATION EXPRESSION 

Read As 

X1 makes a transition 
to 1 

X1 makes a transition 
to 1 and X2 makes a 
transition to 0 
simultaneously 

X1 makes a transition 
to 1 or X2 makes a 
transition to 0 

X1 makes a transition 

X1 makes a transition 
and X2 makes a tran
sition simultaneously 

Xl makes a transition 
to 1 while X2 equals 1 

Logical Meaning 

X1 goes from 0 to 1 

X1 goes from 0 to 1 and 
X2 goes from 1 to 0 
simultaneously 

Xl goes from 0 to 1 or 
X2 goes from 1 to 0 

X1 goes from 0 to 1 or 
X1 goes from 1 to 0 

X1 and X2 go from 
00 to 11 

or 11 to 00 
or 01 to 10 
or 10 to 01 

Xl goes from 0 to 1 
while X2 stays at 1 
i.e., inputs X1, X2 
go from state 01 to 
11 

Informal Meaning 

Xl turns on 
X1 goes up etc. 

X1 turns on at the same time 
X2 turns off 

Xl is to turn on or 
X2 is to turn off 

X1 changes state i.e. it either 
turns on or turns off 

X1 and X2 change state 
simultaneously 

Xl turns on while X2 is 
held on 

I-' 
U1 



<output Zabel>::= Z <output code>·! z (<output state set--:-.) 

<output state set>::= <output code> I <output state set>, <Output 

code> 

<output code>::= <binary digit>! <Output code> <f;inary digit:.,! 

<output code>/<number> 
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The letter Z is reserved for the beginning character of output 

labels, and it is followed by the current output state of the circuit. 

Hence, the output label serves two major purposes: 1) it provides the 

designer with the value of the present output state at a particular 

point in the design sequence; and 2) it indicates the next statement 

to be executed from that particular output state. The output state of 

the label is followed by a I <number> when it is necessary to distin

guish a previous output label having the same output state. If the I 

<number>> is not specified with the output label, the ACDL translator 

will assume a default value of 11 for the label. An output label may 

also be used to specify multiple output states in cases where the next 

statement to be executed is the same for each state. 

A standard label is essentially a valid identifier with the re

striction that the first character of the label cannot be the letter 

"Z". Examples of standard and output labels are given in Table VI. 

TABLE VI. EXAMPLES OF LABELS 

Label T~·]~e Examples 

Standard FIRST: 

Standard $31: 

Standard BEGIN HERE: 

Output ZOO: 

Output Z(OO, 0112, 11): 

Output ZllOI3: 
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5. Statements 

There are nine types of statements in ACDL. As in PL/I [18], all 

statements must be separated by a semicolon; otherwise, they can be 

written in free format. Each is described below. 

a. Design Statement 

A description of the design statement is given below. 

<design statement>::= DESIGN I DESIGN <accountinq information> 

<accounting information>::= <design number>l<design number>, 

<designer's name>l<design number>, 

<designer's name>, <date> 

<design number>::= <number> 

<designer's name>::= <identifier>kdesigner's name> <identifier.> 

<date>::= <identifier> <number>, <number> 

The design statement indicates the beginning of a new circuit de

sign. The accounting information is optional and may indicate the de

sign number, designer's name and date. 

b. Declare Statement 

The following is a description of the declare statement. 

<declare statement>::= DECLARE<declaration type>l<declare state

ment> <declaration type> 

<declaration type>::= <input declaration>)<constraints declaration> 

!<output declaration>)<global declaration> 

<input declaration>::= INPUTS: <Variable definition>l<input 

declaration>, <variable definition> 

<Variable definition>::= <identifier>l<identifier> ~initial 

condition> 

<initial condition>::= (<level>) 



<constraints declaration>::= CONSTR: <constraints> 

<Constraints>::= NONE]AUS]SIC] <transition expression> 

]<level relation>]<constraints> 
' 

<transition expression>j<constraints>, 

<level relation> 

<output declaration>::= OUTPUTS: <variable definition> 

18 

]<output declaration>, <Variable definition> 

<global declaration>::= GLOBAL: <list> 

<list>::= <automatic link transition statement>l<list>, 

<automatic link transition statement> 

The input and output declarations indicate the number and names 

of the input and output variables required in the design. The initial 

condition for each variable may or may not be given. If no initial 

value is explicitly shown, then an initial value of zero is assumed by 

default. 

The constraints declaration indicates those input transitions that 

are not allowed. To assist the designer in problems which permit only 

single inpul changes, the constraints specification is given by the 

mneumonic SIC which stands for "Single Input Change." The mneumonic 

AUS means thai. "All Unspecified Sequences" of input transitions, i.e. 

those sequences which are not explicitly described in the design, are 

not permitted to occur. This constraint is extremely useful in prob

lems where only a specific number of alternative sequences can occur. 

Level relation constraints restrict transitions to those input states 

which agree with the value of the relation. If there are no input 

transition constraints the word "NONE" must be written. 



The global declaration is used when there are certain transition 

conditions which arise frequently throughout the design and are in

dependent of any particular I/O sequence. Instead of repeating the 

transition statement many times in the design specifications, the 

statements are listed once in a global declaration. The global list 

consists of automatic link transition statements which are discussed 

later. 

Some examples of the design and declare statements are given in 

Table VII. 

TABLE VII. EXAMPLES OF THE DESIGN AND DECLARE STATEMENTS 

Statement Type 

Design 

Design 

Design 

Declare 

Declare 

DESIGN; 

DESIGN 103; 

Example 

DESIGN 103, JOHN DOE, APR 3, 1972; 

DECLARE INPUTS: A,B 

CONSTR: SIC, 

A=l and B=l 

OUTPUTS: Z; 

DECLARE INPUTS: Xl(l), X2(0) 
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CONSTR: Xl-)1 WHILE X2=1, X2->l WHILE Xl=l 

OUTPUTS: Zl, Z2 

GLOBAL: X2-)0=>zl<-O/; 

The initial conditions for the input variables are explicitly given in 

the example of the second declare statement, while they are left to 

default to zero in the first declare statement. 
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c. Start Statement 

The start statement is defined as: 

<Start statement>::= START 

This is always the first statement in the circuit's behavior descrip

tion. Therefore, it acts as the starting point for the design sequences 

by invoking the initial I/0 conditions and establishing the initial 

state of the machine. 

d. Transition Statement 

This statement is used to show input transitions and may re

late an input transition to an output change. A description of this 

statement is shown below. 

<transition statement>::= <basic transition statement> 

I <automatic link transition statement> 

<basic transition statement>::= <transition expression> 

!<transition expression> 

=><output change> 

<output change>::= <identifier><-<Boolean expression> 

l<output change>, <identifier><-

<Boolean expression> 

<automatic link transition statement>::= <transition expression> 

=> <output change> 

<auto lin~> 

<auto link>::= 111 <number> 

Since the inputs to the circuit change at random, the input transi

tions specified by the transition expression are essentially test con

ditions for particular changes. When the test conditions are satisfied 

the specified output change occurs. 
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The slash following the output change is an optional character 

used when automatic linking is desired. This concept is explained in 

a subsequent section on the list statement. Examples of basic transi-

tion statements are shown in Table VIII. 

TABLE VIII. EXAMPLES OF THE TRANSITION STATEMENT 

Statement Explanation 

A-)1; Input A is to make a transition to 1 

A->O=>z<-1; Input A making a transition to 0 implies 

(C-)l)+(B-)1) 
=)G(-1, R(-{); 

that output Z changes to 1 if not already 1 

Input C making a transition to 1 or input 
B making a transition to 1 causes output 
G to be replaced to 1 and R to be replaced 
to 0 

e. Link Statement 

Generally, there will be many sequences of transition state-

ments in a design specification and some subsequences of transition 

statements will be common to more than one sequence. Whenever a sub-

sequence leads to two or more sequence paths, as in the case of alter-

nate behaviors at a branch point, it is necessary to make the proper 

connection to each of these paths. These connections can be made with 

the link statement defined below. 

<link statement>::= <link conditional>l<link unconditional> 

<link conditional>::= <tests> <branch points> 

<tests>::=(<test condition>l<tests>, <test condition> 

<test condition>::= <transit1:on expression>l<level relation> 

!ELSE 

<branch points>::= )<single label> l<hranch points>, <single label> 



<single Zabel>::= <standar'd Zabel> lz<output code:> 

<"link unconditional>::= LINK <single Zabel> 
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The tests listed in the conditional link statement are the test 

conditions of the next transition statement for each new path, re

spectively. The next statement following the test condition for each 

path is given by the label corresponding by position to the test con

dition. Multiple output labels are not allowed in the link statement. 

This restriction, however, causes no branching limitations. Any state

ment having a multiple output label can be located by any one of its 

output states. 

Whenever an output change follows a test condition of the LINK, 

it is shown as the first statement of the new path. In this case the 

dummy term LINKTEST (abbrev. LK'T) is inserted as the transition ex

pression for this transition statement. This implies that the ·same 

test condition causing the link also causes the output change. 

The link unconditional is the same as a "go to" statement and is 

primarily used for branching back to a previously specified statement. 

f. Statement Block 

Closely associated with the link statement are statement 

blocks. A description of the statement block is given below. 

<statement bZocl?:>: := <beginning> <statement "list> <ending> 

<beginning>::= BEGIN; I <Zabel> BEGIN; 

<ending>::= ENDI<ZabeZ> END 

Actually the BEGIN and END statements act as separators which serve to 

segregate a block of statements from other statements. This block of 

statements between a BEGIN and END is called a statement block and can 
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only be entered from a link or list statement. Statement blocks may 

be nested within other statement blocks. After a statement block has 

been completed, control is transferred to the next statement in the 

listing which does not belong to another statement block of the same 

nested level. Examples of the link statement and statement blocks are 

given in Table IX. 

TABLE IX. 

Statements 

LINK L3; 

LINK (B-)l,A-)O)Ll,L2; 
Ll BEGIN; 

L2 

LK'T=)Z <-1; 

END; 
BEGIN; 
C-)1; 

END; 
B-)0; 

LINK(A=l,ELSE)RESET, 
CONTINUE; 

RESET: A-)0; 
CONTINUE: B -)1; 

EXAMPLES OF LINK STATEMENTS 

Explanation 

Link to the statement having the label L3 

The 1st test condition transfers control to 
statement block Ll where the 1st statement 
says that the link test B-)1 causes z<-1. 
After the 1st statement block is completed, 
control is transferred to the transition 
statement B-)0. If none of the Link state
ment test conditions are true for the cur
rent input transition, the sequence will not 
advance, but rather will remain at the Link 
statement until a test condition becomes 
true for some later transition. 

If input variable A is currently equal to 1, 
then branch to RESET else branch to CONTINUE. 

g. Automatic Linking and the List Statement 

Earlier it was noted that a slash "/" could follow the output 

change of a transition statement, and this slash meant automatic link-

ing. This linking is accomplished by branching to the statement 



identified by an output label having the current output state. The 

current output state is the state entered after the output change of 

the transition statement has ta~en place. Therefore, if automatic 

linking is designated with the slash, the designer must ensure that a 

unique and correct output label has been assigned to some statement. 

To distinguish between output states having the same value, but occur 

at different points in the sequence, the designer follows the slash 

with a digit which must agree with the trailing digit of the correct 

output state label. Again if no digit is specified after the slash, 

a default value of l is assumed. 
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Automatic linking saves the designer having to explicitly specify 

a link statement and hence, improves the clarity of the specification 

listing. It was the automatic linking feature which led to the devel

opment of the list statement defined as: 

<list statement.>::= LIST <list.> 

<list>::= <automatic link transition statement.>[<list.>, 

<automatic link transition statement.> 

The list statement is a special purpose link statement in which 

all test conditions lead directly to an output change. It does not 

specify an executable sequence of transition statements, but: rather, 

it is a set of statements from which only one is selected and executed. 

The test conditions of all automatic link transition statements in the 

list are scanned concurrently, and only one test condition may be true 

at a time. When a test condition becomes true, its corresponding out

put change indicates the next statement in the sequence via automatic 

linking. The transition statements within a LIST statement are separ

ated by commas, while the end of the list is indicated by the LIST 



statement's semicolon. Some examples of the list statement are given 

in Table X. 

TABLE X. EXAMPLES OF THE LIST STATEMENT 

Example Explanation 

ZOO: LIST 
Xl-)1 =) Zl<-1 /, 
X2-)l =) Z2<-l /; 

In the list statement either of the two 

listed input transitions can occur. If 

Xl-)1 then an automatic link is made to 
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ZlO: X2-)l; the statement having the output label ZlO. 

ZOl: Xl->1; 

ZlO: LIST 
A->o => Zl<-O, 

zz<-1 /2, 
B-)1 =) Z2<-l /; 

2(01,11): B-)0; 

ZOl/2: B-)1 WHILE A=l; 

Similarly, if X2-)l is true, then a branch 

will be made to ZOl upon completion of the 

output change Z2<-1. 

If the first test condition A-)0 occurs, a 

link will automatically be made to Z01/2. 

If the second test condition B-)1 occurs, 

a link will be made to the transition state-

ment B-)0 since Zll is contained in the 

multiple output label Z(OO,ll). 

6. Structure of an ACDL Program 

Now that the statements have been defined, it is worth examining 

the overall structure of a program. 



<progrcr:ni>: := <program head> <statement list> <ending>. 

<program head>::= <design statement>; <declare statement>; 

<start statement>; 

<statement list>::= <statement>l<statement list> <statement> 

<statement>::= <basic statement>l<statement block>; 
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<basic statement>::= <transition statement>;l<link statement>; 

!<list statement>;l<label> <basic statement> 

It is seen that the program ending also uses the word END. In 

this case END is followed by a period rather than a semicolon. The 

period signifies the end of the design as opposed to the end of a 

statement block. All links to this ending will indicate the end of 

certain sequences within the specifications. 

The statements which make up the program head must be listed in 

the order shown. These statements are not part of the input/output 

behavior of the design, but rather provide basic information about the 

design. For this reason labels are not assigned to statements in the 

program head. 

7. Comments and Translator Control Toggles 

Comments are defined as follows: 

<comment>: : = "<almost anything>" 

<almost anything>::= <any string of valid system 360 characters 

that does not contain a " > 

Comments help explain the program to persons reading it and are 

normally ignored by the translator. They do not result in the produc

tion of any translated text and they may be inserted any place a blank 

is allowed. 



27 

There is one case in which comments are not ignored. They may 

serve the special function of specifying control options which designate 

how the program is to be treated. For instance, a control option to 

perform and output a logic trace during the translation and/or execu-

tion of a program can be specified. A $ within a comment specifies 

that the next character is a control character. The valid control 

characters in ACDL are given in Table XI. Each control character acts 

as a toggle which can have the value of true or false. When $<chaYL 

acter> is encountered by the translator, the value of the correspond-

ing toggle is complemented. Therefore at the point where "$W" is first 

specified, the logic trace will be turned on, and will remain on until 

another "$W" is encountered which causes the trace to turn off. A 

more detailed description and use of the logic trace is given in Ap-

pendix B. 

TABLE XI. COMMENT CONTROL OPTIONS 

Character Control Option 

D 

L 

T 

u 

w 

Print translation statistics, sequence tables and symbol 
tables at end of translation (Initially disabled) 

List the source program (Initially enabled)* 

Begin a machine code trace of the ACDL translator and 
interpreter (Initially disabled)* 

Terminate the machine code trace of the ACDL translator 
and interpreter (Initially disabled)* 

Begin high level trace of translation and execution 
(Initially disabled) 

Set Margin. The portion of succeeding cards starting 
from the column containing the I will be ignored.* 

*These options were already a part of the XPL system (See reference [17]). 
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C. Sequences 

Statements in ACDL are executed in the sequential order in which 

they are listed, except when the physical sequence is interrupted by 

branching which results from explicit or automatic linking. The rules 

for interpreting sequences written in ACDL are: 

1) In a test condition of an ACDL statement, any undesignated in

put variables are considered as don't-cares in the specified 

input state transition. 

2) The sequence will advance to the next statement for any input 

state transition which agrees with a test condition of the 

current statement. 

3) The sequence remains quiescent (i.e. does not move) for any 

input state transition which does not agree with a test con

dition of the current statement. 

Before the designer can efficiently use ACDL, some idea as to what 

information is necessary for correctly specifying the operation of the 

sequential circuit is required. 

Definition: A set of minimum length sequences of input states 

which cause the next output change and starts from the I/0 state re

sulting from the previous output change is called a critical event. 

A critical event may be an incompletely specified sequence i.e., 

a sequence which contains don't-care variables in some states. In this 

case the critical event will actually represent more than one possible 

sequence resulting from the random changing of the don't-care variables. 

However, any intermediate states that are introduced by the don't-care 

variables will not affect the integrity of the critical event, i.e., 



these states neither cause an output change nor destroy any past his

tory of the critical event. 
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The designer must specify in ACDL all critical events of the cir

cuit. This is done by starting from the initial state of the circuit 

and listing the critical events which cause the first output changes. 

Continuing from these points in the sequences all subsequent critical 

events which cause further output changes are listed. The tree pro

cess is continued until the critical events for all possible output 

changes have been listed. 

Definition: A proposition of the design is a word statement (or 

mental conception) which implies one or more critical events. 

From the design propositions, the designer should be able to form

ally specify the critical events in ACDL. Likewise from the ACDL spec-

ifications, the propositions should be easily determined. Examples of 

various types of circuit designs in ACDL are given in Chapter V. 

D. Summary 

Table XII summarizes the statements available in ACDL. 



Statement 

Design 

Declare 

Start 

Transition 

TABLE XII. Sill!NARY OF ACDL 

General Format Description 

DESIGN 

DEClARE 
INPUTS: 

CONSTR: 

OUTPUT: 

GLOBAL: 

START; 

optional accounting information 
of design 11=, designer's name, 
and date; 

input names with or without 
initial conditions 
keywords, level expressions 
or transition expression 
constraints 
output names with or without 
initial conditions 
list of automatic link 
transition statements; 

input transition; (e.g. X->1;) 
or 
input transition=>output change with or 

without automatic linking specified; 
(e.g. X->l=>z<-1;) 

Use 

Begins ACDL program 

Defines all input 
variables, output 
variables, constraint 
transitions and global 
transitions of the 
design. 

The entry point of the 
sequence specifications. 

Expresses the I/0 
relationships of the 
critical events of the 
design. 

w 
0 



Link 

Statement 
block 

List 

Program 
end 

Connnent 

TABLE XII. (Continued) 

LINK (test condition list) label list; 

BEGIN ; 
statement list 
END ; 

LIST 

END. 

followed by a list of automatic 
link transition statements; 

"any valid character string" 

For branching in ACDL, 
where the test condition 
is an input level or 
transition test, causing 
a branch to the 
corresponding label. 

For listing independent 
sequence paths resulting 
from a link or list 
statement. 

For branching when all 
test conditions lead 
directly to an output 
change. 

Designates the end of the 
sequence specifications 
and end of the design. 

For clarification 
purposes and specifying 
control toggles. 

w 
1-' 
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IV. TRANSLATION AND INTERPRETATION 

After the design has been specified in ACDL, a translation process 

is needed to convert the specifications into appropriate intermediate 

text. The intermediate text is then interpreted to produce a primitive 

flow table as the final output. 

The translator and interpreter (flow table construction algorithm) 

is written in XPL, a special purpose translator writing language devel

oped by McKeeman et al. [17]. A brief description of the XPL system 

follows. 

A. The XPL Translator Writing System (TWS) 

A diagram of the translator writing system provided with XPL is 

shown in Figure 3. The major components included in the system are: 

l) a gratnmar analyzer (ANALYZER) 

2) a proto-compiler (SKELETON) and 

3) The XPL compiler (XCOM). 

ANALYZER [17] is a program which reads the BNF grammar describing the 

syntax of the user's language, determines whether it is acceptable to 

the parsing algorithm and constructs parsing decision tables for that 

algorithm. SKELETON [17], which is written in XPL, provides the basic 

framework of the user's compiler such as, the routines for scanning, 

input and parse-stack maintenance. XCOM [17] is the compiler for the 

XPL language, and produces a System 360 machine language object program. 

Depending on the amount of information supplied to TWS, the sys

tem will produce either a syntax checker, a translator or a combined 

translator/interpreter. If the user supplies only a syntax description 

(grammar) of his language in BNF, the resulting ANALYZER output deck 
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and the SKELETON deck produce a syntax checker for the language. If 

the semantic description of his language (written in XPL) is also in

serted into the SKELETON deck, the system will produce a translator. 

If in addition to the syntax and semantic descriptions, an interpreter 

is written in XPL and is placed behind the SKELETON deck, the system 

produces a combined translator/interpreter. 

illustrated in Figure 3. 

It is this case which is 

An important advantage of TWS is the ease in which changes to the 

user's language can be made. Only the syntactic definition and seman

tic description corresponding to the language change are updated in the 

translator. A detailed description of the current syntactic definition 

(BNF grammar) and semantic routines of ACDL has been provided in Appen

dix D and Appendices E and F, respectively. Appendix C lists the job 

setup requirements for making a computer run to update the ACDL trans

lator and the job setup for running a standard ACDL program. 

B. ACDL Translation 

From the syntax of a language, the translator knows what type of 

symbols are expected at every point in a language statement. The se

mantic routines then determine what action is to be taKen, if any, when 

these symbols are encountered. They also generate internal data-struc

tures which hold the results of the translation. These data-structures 

are referred to as the internal form or intermediate text. A descrip

tion of the internal form used in the ACDL translation follows. 

1. Internal Form 

The internal form of the ACDL translator consists of tables which 

can be dumped at the end of the translation (see Table XI). The tables 
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contain input/output sequence data as well as symbol information. As 

a means to increase program execution time, all input states are handled 

internally and recorded in the tables as decimal weights rather than 

as binary strings. 

The main table used to hold the I/0 sequence information is called 

the Primary Sequence Table. It stores the translated form of the state-

ments making up the critical sequences of the design. The first row 

of the table is assigned to the START statement, with subsequent rows 

being assigned to each transition statement and each test condition of 

a link statement. Input and output secondary tables act as backup for 

the primary sequence table when statements have more than one input 

test or output change respectively. This technique of table organiza

tion saves storage since the secondary tables do not require all the 

fields that are needed in the primary table. 

A special table called the Global Transition Table holds the in

formation from the globally declared transition statements. The struc

ture of this table is similar to the primary sequence table, and also 

uses the two secondary tables as backup tables. However, the Global 

Table functions differently in that all its input tests are queried 

continuously throughout the design. 

The Constraint Transition Table records those input transitions 

that have been explicitly declared as input constraints. Restricted 

input transitions resulting from the SIC or AUS declaration are not 

recorded in this table because violations of these conditions are detect

ed in an algorithmic manner. The constraint table does not use any 

backup tables. All restricted transitions are stored in sequential 

order in the table and are checked before examining any other tables. 
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The ACDL translation makes use of two separate symbol tables. One 

table is a standard symbol table used to record input, output and label 

names and their corresponding attributes. The other table is a special 

symbol table used to store output labels and statement pointers for 

automatic linking. Since only one table has to be searched for a par

ticular operation, the two-table organization provides efficient sym

bol information retrieval and is especially advantageous in the auto

matic linking process. 

A detailed description of the above tables and their corresponding 

fields is given in Appendix A. The appendix also includes an example 

program and corresponding table dump. 

Another feature of the internal form is the handling of the Boolean 

output expressions. These expressions are converted from standard in-

fix form to Reverse Polish form. The Reverse Polish form is stored in 

and executed from a single-dimensioned array. Special terminators are 

also stored in the array to indicate the beginning and end of an ex-

pression. For easy and rapid manipulation, the operators and operands 

are represented by their precedent values and symbol table indexes, 

respectively. For this reason, the Polish array was not included in 

the dump. However, the array is printed out whenever the logic trace 

is specified. 

C. Primitive Flow Table Construction 

Once the translation process has been completed, the interpreta-

tion process begins. Here the interpreter is an algorithm to construct 

a primitive flow table from the tables of the internal form. A flow 

chart describing the basic philosophy of the flow table algorithm is 

given in Figure 4. 
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Figure 4. Flow Chart of the Primitive Flow Table Construction Algorithm 
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In addition to the output state, the flow table algorithm assigns 

input and sequence attributes to each row of the flow table. Each at

tribute has its own function in the flow table construction algorithm. 

The sequence attribute is an index which points to the statement in 

the Primary Sequence Table that is tested during the construction of 

the corresponding flow table row. It essentially keeps track of a flow 

table state's position in the design sequence. The input attribute 

contains the input state for which the corresponding flow table row is 

stable. Input transitions for a flow table row are simulated by using 

the input attribute as the beginning state and the column inputs as the 

ending states. This permits the computation of next-state entries to 

be conducted in an orderly manner with stable entries being recognized 

whenever the input attribute equals a column state. 

To help understand the flow table algorithm, the following example 

problem [14] will be considered: 

Design a circuit which has two inputs, OSC and BTN, and one out

put, z. The input OSC is the output of a square wave oscillator, 

and BTN is a button which, when depressed, gates one and only 

one full width oscillator pulse to the output. If the button 

is depressed for too short of time, a pulse will not occur at 

the output. An output pulse can occur only if the button de

pression overlaps the leading edge of an oscillator pulse. The 

inputs cannot change simultaneously. 

The ACDL program for this design is: 
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DESIGN 1, JOHN BROWN, SEP 27, 1972; 

DECLARE 

INPUTS: osc, BTN 

CONSTR: SIC 

OUTPUTS: Z; 
Seq .4fo 

0 START; 

1 L2: BTN-)1; 

2 LINK (OSC-)1, 

3 BTN-)0) Ll, L2; 

4 Ll: LK'T=>z<-1; 

5 osc->o=>z <-o; 

6 END. 

To simulate the internal form, the sequence numbers assigned to the 

statements in the above program correspond to the row indices of the 

Primary Sequence Table in which their translated form is stored. The 

start statement has the sequence number 0, because the Primary Sequence 

Table begins at index 0. The sequence numbers of the above progran1 

also relate to the sequence number attribute of each flow table row. 

The first step in the algorithm is to define the initial state of 

the circuit. Since the start statement is responsible for setting up 

the initial conditions, this information is retrieved from row 0 of 

the Primary Sequence Table and assigned to the attributes of the first 

flow table row. At this point in the construction, the partial flow 

table resembles Table XIII (a) . The sequence number attribute of flow 

table row 1 corresponds to the sequence number of the next statement 

to be executed in the ACDL program. 
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The next step is to compute next-state entries for row 1 of the 

flow table. The next state for the first input column is stable since 

the input attribute equals this input column. For the next input 

column, the first three input tests of the algorithm failed and the 

critical transition test is performed. For this test, the flow table 

transition, 00 to 01, is compared to the test condition, BTN-)1, which 

is pointed to by the sequence attribute of 1. The test condition 

agrees with the flow table transition; therefore, the sequence advances. 

Since there is no previously defined state with correct attributes (i.e. 

Seq #=2, I=Ol, z=O), the new state 2 is defined as shown in Table XIII (b). 

The next input column implies the transition 00 to 10. Again the 

first three input tests failed, and since the flow table transition 

does not agree with the specified transition BTN-)1, the critical trans

ition test also fails. Therefore the sequence remains quiescent, and 

the next state retains the same sequence number and output state attri

butes as the present state. A new state 3 is defined because there is 

no previously defined state with the required attributes. 

The last input column implies the transition 00 to 11, which will 

be detected by the constraint transition test as an illegal transition. 

A don't care will be entered in this column and row 1 is complete as 

shown in Table XIII (c). The algorithm moves to the next incomplete 

flow table row which is row 2 in this example and repeats the same 

procedure. 

After all flow Lable rows are complete, the algorithm will termin-

ate and produce the resulting flow table shown in TableXIV. From this 

table it is observed neither the sequence attribute 4 nor 6 is associ

ated with any of the flow table rows. This is due to a property of 
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the algorithm which advances the sequence through non-active test con-

ditions such as LK'T, BEGIN, END and ELSE. The reader should now be 

able to verify the remaining flow table rows. 

Attributes 
Seq1fo _L 

1 00 

Attributes 
Seq# _I_ 

1 00 

2 01 

Attributes 
Seq1fo I 

1 00 

2 01 

1 10 

TABLE XIII. PARTIAL FLOW TABLE 

Present 
State 

1 

OSC BTN 
00 01 10 

(a) Definition of the Initial State 

Present osc BTN 
State 00 01 10 

1 G) 2 

2 

(b) Definition of State 2 

Present osc BTN 
State 00 01 10 

1 G) 2 3 

2 

3 

(c) Completion of Row 1 

11 

0 

11 z 

0 

0 

11 z 

0 

0 

0 

An important feature of the algorithm is its ability to distin-

guish different states having the same input/output attributes. As 

seen from states 2 and 6 in Table XIV, it is the sequence attribute 

which provides this distinction. 

To simplify the explanation of the flow table construction 

algorithm the previous example was performed without converting to 

internal form. Since the internal form is only a translated description 
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of the ACDL statement, it should be clear that the same philosophy 

will apply. A more detailed description of the flow table procedures 

as they utilize the internal form is given in the flow charts of 

Appendix F. 

TABLE XIV. RESULTING FLOW TABLE FOR EXAMPLE DESIGN 

Attributes Present osc BTN 
Seq11 I State 00 01 10 11 z 

1 00 1 G) 2 3 0 

2 01 2 1 0 4 0 

1 10 3 1 G) 5 0 

5 11 4 6 7 G) 1 

2 11 5 2 3 G) 0 

1 01 6 1 0 8 0 

5 10 7 1 G) 4 1 

1 11 8 6 3 0 0 
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V. DESIGN EXAMPLES 

This chapter is included to help the user become familiar with 

the ACDL specification process. It is felt this could best be accomp-

lished by providing a set of example problems which illustrate the dif-

ferent features of the language. In each example a word description 

of the design is given. A reference number after the word description 

indicates the source from which the example was selected. The ACDL 

program and the primitive flow table follow each word description. All 

flow tables have been generated automatically from the ACDL descriptions. 

Due to its large size (78 rows by 8 columns), the flow table for ex-

ample 8 is not shown. 

A. Example 1 

Design a Bounce Eliminator for a two position switch. The output 

state of the eliminator circuit is to indicate the desired position of 

the switch regardless of any contact bouncing which may occur when the 

switch is initially moved. It is assumed that the switch cannot bounce 

back far enough to contact the other position ~9] . 

The ACDL Design is: 

DESIGN 1 "BOUNCE ELIMINATOR"; 
DECLARE 

INPUTS: A(l), B(O) 
CONSTR: A=l & B=l 
OUTPUTS: Z; 

START; 
B->1 => z<-1; 
A->1 => z<-o; 
END. 
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TABLE XV. PRIMITIVE FLOW TABLE FOR EXAMPLE 1 

Present A B 
State 00 01 10 11 z 

1 2 3 CD 0 

2 G) 3 1 0 

3 4 G) 1 1 

4 G 3 1 1 

B. Example 2 

Design a fundamental mode sequential circuit with two inputs Xl 

and X2. The single output Z is to be 1 only when Xl,X2=01 provided 

that this is the fourth of a sequence of input combinations 00, 10, 11, 

01. Otherwise, Z=O. Both inputs will not change simultaneously [19]. 

The ACDL Design is: 

DESIGN 2, JOHN BROWN, SEP 25, 197 2; 
DECLARE 

INPUTS: Xl, X2 
CONSTR: SIC 
OUTPUTS: z· 

' START; 
Ll: Xl-)1 WHILE X2=0; 

LINK(X2-)l, Xl->O) L3, Ll; 
L3: LINK(Xl-)0, X2-)0) L4, Ll; 
L4: LK'T => z<-1; 

(Xl->?) + (X2-)?) => z<-o; 
END. 

TABLE XVI. PRIMITIVE FLOW TABLE FOR EXAMPLE 2 

Present Xl X2 
State 00 01 10 11 z 

1 1 2 3 0 

2 1 0 4 0 

3 1 0 5 0 

4 2 6 ffi 0 

5 7 6 0 

6 1 0 4 0 

7 1 G) 4 1 
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C. Example 3 

A circuit is to be designed in which two push buttons A and B 

control the lighting of two lamps G and R. Whenever both push buttons 

are released, neither lamp is to be lit. Starting with both buttons 

released, the operation of either button causes lamp G to light. Oper-

ation of the other button, with the first button still held down, 

causes lamp R to light. Henceforth, as long as either button remains 

operated, the button which first caused lamp R to light controls lamp 

R--causing it to extinguish when the button is released and to light 

when the button is operated. The other button controls lamp G in the 

same fashion. It is not possible to operate or release both buttons 

simultaneously [10]. 

The ACDL Design is: 

zoo: 

ZlO: 
Zll: 

ZOl: 
Zl0/2: 
Zll/2: 

ZOll2: 

DESIGN 3; 
DECLARE 

INPUTS: 
CONSTR: 
OUTPUTS: 
GLOBAL: 

START; 
LIST 

A,B 
SIC 
G,R 
(A-)0 WHILE B=O) + (B-)0 WHILE A=O) 
=> G(-0' R<-O I; 

A->1 => G<-1 /, 
B-)1 => G(-1 12; 

B-)1 => R(-1 I; 
LIST 

A->o => G<-o I, 
B->o => R<-o I; 

A->1 => G(-1 I; 
A->1 => R(-1 12; 
LIST 

A-)0 => R(-0 /2, 
B-)0 => G(-0 /2; 

B-)1 => G(-1 12; 
END. 
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TABLE XVII. PRIMITIVE FLOW TABLE FOR EXAMPLE 3 

Present A B 
State 00 01 10 11 GR 

1 G) 2 3 00 

2 1 G) 4 10 

3 1 G) 5 10 

4 2 6 G) 11 

5 7 3 G) 11 

6 1 0 4 01 

7 1 G) 5 01 

D. Example 4 

Design an asynchronous 3-bit Gray Code counter which has one input 

X and 3 outputs, Zl, Z2, Z3. The counter is to count as indicated in 

Table 18 [20]. 

TABLE XVIII. THREE BIT GRAY CODE 

Count Z1 Z2 Z3 

0 0 0 0 

1 0 0 1 

2 0 1 1 

3 0 1 0 

4 1 1 0 

5 1 1 1 

6 1 0 1 

7 1 0 0 
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The ACDL Design is: 

"GRAY CODE COUNTER" 
DESIGN 4; 
DECLARE 

INPUTS: X 
CONSTR: NONE 
OUTPUTS: Z1, Z2, Z3; 

START; 
Z(OOO, 011, 110, 101): x->1=>z3<- -.z3/; 
Z(001, 111): x->1=>z2<- -.z2/; 
Z(010, 100): X-)1=)Z1<- -.z1/; 

END. 

TABLE XIX. PRIMITIVE FLOW TABLE FOR EXAMPLE 4 

Present X 
State 0 1 Z1 Z2 Z3 

1 G) 2 0 0 0 

2 3 0 0 0 1 

3 G 4 0 0 1 

4 5 Q 0 1 1 

5 0 6 0 1 1 

6 7 0 0 1 0 

7 G) 8 0 1 0 

8 9 0 1 1 0 

9 G) 10 1 1 0 

10 11 @ 1 1 1 

11 @ 12 1 1 1 

12 13 @ 1 0 1 

13 @ 14 1 0 1 

14 15 @ 1 0 0 

15 @ 16 1 0 0 

16 1 @ 0 0 0 
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E. Example 5 

The timing signal Xl alternates between being off for 60 seconds 

(Xl=O) and on for 30 seconds (Xl=l). The only time Route 1 traffic 

can see a red light, a condition designated by z=l, is during an inter-

val in which Xl=l. Only at the start of an Xl=l interval can Z go on, 

and once on, it must remain on for the full interval. If a car on 

Crumb Road actuates a switch, a condition designated by X2=1 (when no 

car is over such a switch X2=0), while z=O, then Z should go on the 

next time Xl goes on [11]. 

The ACDL Design is: 

DESIGN 5; 
DECLARE 

INPUTS: 
CONSTR: 
OUTPUTS: 

START; 
X2-)l; 

Ll: Xl-)l=)Z(-1; 
Xl-)0=) Z(-0; 

Xl, X2 
NONE 
Z; 

LINK(X2=1, ELSE) Ll, L2; 
L2: END. 

TABLE XX. PRIMITIVE FLOW TABLE FOR EXAMPLE 5 

Present Xl X2 
State 00 01 10 11 z 

1 G) 2 3 4 0 

2 5 G) 6 7 0 

3 1 2 G) 4 0 

4 5 2 8 0 0 

5 G) 2 6 7 0 

6 9 10 0 7 1 

7 9 10 6 G 1 

8 5 2 G) 4 0 

9 G) 2 3 4 0 

10 5 @ 6 7 0 
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F. Example 6 

Design an asynchronous sequential circuit for which only the four 

alternative sequences shown in the timing chart of Figure 5 can occur[l~. 

1 2 3 4 5 6 7 
Xl 
X2 
X3 
Zl 
Z2 

Xl 
X2 
X3 
Zl 
Z2 

Xl 
X2 
X3 
Zl 
Z2 

Xl 
X2 
X3 
Zl 
Z2 

Figure 5. Timing Chart Indicating Allowable Sequences for Example 6 

The ACDL Design is: 

DESIGN 6; 
DECLARE INPUTS: Xl, X2, X3 

CONSTR: AUS 
OUTPUTS: Zl, Z2; 

START; 
LINK(Xl-)l,X3-)l)Ll, L2; 

Ll: BEGIN; 
LINK(X2-)l, X3-)l)L3, L4; 

L3: BEGIN; 
X3-) 1 =) Z 1 <- 1 ; 
X3- )0 =) Z 1 < -0 ; 
X2-)0; 
END; 



L4: BEGIN; 

Xl-)0; 
END; 

L2: BEGIN; 

xz->l=>zz < -1; 
X2- )0=)Z2 < -o; 
X3-)0; 
END; 

LINK(Xl-)1, X2->l)L5, L6; 
L5: BEGIN; 

X2- )l=)Zl < -1; 
xz->o=>zl<-o; 
Xl-)0; 
END; 

L6: BEGIN; 

X3 -)0; 
END; 
END. 

G. Example 7 

Xl-)1=)22(-1; 
xl->O=> zz<-o; 
X2-)0; 
END; 
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Design an asynchronous version of a clamp-gate circuit. The cir-

cuit has two serial inputs X and Y and an output z. The characteris-

tics are such that Z is made equal to the present value of X if Y=l, 

or to the previous value of X if Y=O [20]. 

The ACDL Design is: 

DESIGN 7 "CLAMP-GATE CIRCUIT"; 
DECLARE INPUTS: X,Y 

START; 

CONSTR: NONE 
OUTPUTS: z; 

LINK(Y-)? WHILE X =0 + Y-)? WHILE X=l, X-)?)Ll, L2; 
Ll: BEGIN; 

LK'T =) z<-X; 
END; 

L2: BEGIN; 
LK'T => z<-(Y&X) + (~Y&~X); 
END; 
END. 



TABLE XXI. 

Present X1 X2 X3 
State 000 001 010 

1 I G) 2 -
2 I - 0 -
3 I - - -
4 I - - -
5 I - - -
6 I - - -
7 I - - -
8 - - -
9 - - -

10 - - -
11 - - -
12 I - 16 -
13 I - 16 -
14 I - - -
15 I - - -
16 I 1 @ -
17 I 1 - -

PRIMITIVE FLOW TABLE FOR EXAMPLE 6 

011 100 101 110 

- 3 - -
4 - 5 -
- G) 6 7 

0 - - -
- - G) -
- - 0 -
- - - 0 

12 - - -
- - 13 -
- - 14 -
- - - 15 

@ - - -
- - ~ -
- 17 -4 

- 17 - @ 
- - - -
- @ - -

111 

-
-
-
8 

9 

10 

11 

l8J 

( 9) 

~ 1 

-
-
-
-
-
-

Z1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

Z2 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

V1 
I-' 
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TABLE XXII. PRIMITIVE FLOW TABLE FOR EXAMPLE 7 

Present X y 
State 00 01 10 11 z 

1 G) 2 3 4 0 

2 1 G) 3 4 0 

3 5 2 G) 4 0 

4 5 2 6 0 1 

5 G) 2 3 4 1 

6 5 2 0 4 1 

H. Example 8 

Design an asynchronous circuit which has 3 inputs A, B, and C and 

two outputs Zl and Z2 and operates according to the following descrip-

tion. If C turns on Zl goes on, or if A turns on Z2 goes on, provided 

B has turned on first in either case. However, B is not required to 

remain on until A or C turn on. Zl and Z2 turn off whenever C and A 

turn off, respectively. Only single input changes are permitted. 

The ACDL Design is: 

DESIGN 8; 
DEClARE INPUTS: A, B, C 

CONSTR: SIC 
OUTPUTS: Zl, Z2; 

START; 
ZOO: B->1; 
Sl: LIST 

Z10: 

ZOOI2: 
Ll: 

c->1 => zl<-1 1, 
A->1 => zz<-1 I; 

LIST 
c->o => z1 <-o I' 
A->1 => Z2(-1 I; 

LINK (A->1, B-)l)Ll, 
LK'T => zz<-1 12; 

s 1; 



Z01/2: LINK (A-)0, B-)1)L2, S1; 
L2: LK'T => Z2(-0 /; 

Z11: LIST 
c->o => z1<-o /2, 
A->O => Z2(-0 /2; 

Z10/2: LINK(C-)0, B-)1)L3,S1; 
L3: LK'T => Z1(-0 /; 

Z01: LIST 
c->1 => z1<-1 /, 
A->O => 22(-0 /3; 

Z00/3: LINK(C-)1, B->1)L4, S1; 
L4: LK'T => Zl(-1 /2; 

E~. 

As noted earlier, this example produces a 78 row primitive flow 

table which is not reproduced here. 
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VI. CONCLUSION 

ACDL has proven to be a flexible system for specifying the ter

minal behavior of asynchronous circuits in terms of its problem ver

satility which includes designs originating from word descriptions or 

I/0 sequences and other designs such as switches, flip-flops, counters 

etc. It is, however, best suited for problems originating from a word 

description of the circuit's operation since it was this type of prob

lem which motivated the development of the language. Problems origin

ating from I/0 sequences are specified easily, but somewhat less nat

urally, then with the I/0 sequence methods of Smith [2] and Altman [1]. 

The I/0 sequences have to be converted to the ACDL transition statements 

as opposed to a direct listing. 

In many problems, the critical event philosophy of listing only 

minimum sequences of input changes which cause output changes, greatly 

reduces the amount of information needed for specification. This fea

ture may enable the designer to handle some large problems, but usually 

the exponential rate of increase of input states and therefore input 

sequences makes the problem too cumbersome. For this reason, the pre

sent implementation of the language is limited to six input variables, 

but this could easily be extended if necessary. 

ACDL has also shown to be an efficient system in terms of computer 

and user specification times. As an indication of program execution 

time, the 78 row flow table which was generated for Example 8 of Chap

ter v, took only 6 seconds of CPU time. The byte storage capability 

of XPL permits efficient memory utilization of 120K bytes. User speci

fication is easier and saves time compared to constructing the 



primitive flow table by hand. Also a problem can be designed in dif

ferent ways by using the various features available in ACDL. 

The ACDL system was tested with many examples including those 

given in Chapter V. The examples tested were an attempt to use every 

feature of the language to verify the correctness of the flow table 

generation algorithm. Correct flow tables were produced for every 

example tested. 

55 

Further research in the area of this dissertation may be directed 

toward: 

1) the addition of pulse-mode design to the ACDL system, 

2) the capability to connect previously designed networks to a 

current design by a library call technique and 

3) the interconnection of the ACDL system with the available 

synthesis techniques to permit complete automated design. 
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APPENDIX A 

Description of the Internal Tables 

The tables of the internal form are printed whenever the control 

toggle $Dis specified in a comment statement (See Table XI). A de-

tailed description of each table is given below. To help clarify the 

description, an example design program is illustrated below and its 

corresponding table dump is shown in Table XXIII. 

ZOO: 
Z10: 
Zll: 

Z01: 

"$DUMP INTERNAL TABLES AT END OF COMPILATION" 
DESIGN 9 ; 
DECLARE INPUTS: 

CONSTR: 
OUTPUTS: 
GLOBAL: 

START ; 
A->1 => Z1(-1 
B-)1 => Z2<-1 
LIST 

I 
I 

A,B 
A-)? & B-)? 
Z1, Z2 
(A->0 WHILE B=O) 
=> Zl<-o, zz<-o 

A->o => Zl<-o I ' B-)0 => Z2(-0 I 
A-> 1 => Z1(-1 I ; 
END. 

+ (B-)0 WHILE A=O) 
I 

TABLE XXIII. A TABLE DUMP OF THE INTERNAL FORM FOR EXAMPLE DESIGN 9 

PRIMARY SEQUENCE TABLE 

59 

LEVEL BIT LINK BIT B INPUT E INPUT TAB1 OCHANGE TAB2 PTRAN N STMT 

1 0 0 0 0 0 0 0 1 

0 0 0 2 2 -5 0 0 -1 

0 0 0 1 3 -7 0 0 -1 

0 1 2 0 4 -9 0 0 -1 

0 0 1 0 5 -11 0 0 -1 

0 0 0 2 6 -13 0 0 -1 

0 0 222 0 0 0 0 0 1 



TABLE XXIII. (Continued) 

SECONDARY TABLE 1 

B INPUT E INPUT PTR1 MTRAN 
1 0 0 0 
1 3 0 0 
2 3 0 0 
3 1 0 0 
3 2 0 0 
1 3 0 0 

SECONDARY TABLE 2 

OCHANGE2 PTR2 
-3 0 

GLOBAL TRANSITION TABLE 

GB INPUT 
2 

GE INPUT GTAB1 GOCHANGE GTAB2 
0 1 -1 1 

CONSTRAINT TRANSITION TABLE 

CLEVEL BIT CB INPUT CE INPUT CTAB1 
0 0 3 0 
0 1 2 0 
0 2 1 0 
0 3 0 0 

STANDARD SYMBOL TABLE 

NAME VALUE TKN POSITION 
A 0 1 1 
B 0 1 2 
Z1 0 2 1 
Z2 0 2 2 

SPECIAL SYMBOL TABLE 

OLABEL AL DIGIT OINDEX 
00 1 1 
10 1 2 
11 1 3 
01 1 5 

GAL DIGIT 
1 

GTRAN 
1 
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1. Primary Sequence Table 

The rows of this table hold I/O specifications of the design. 

The table's indexing begins with row 0 which corresponds to the START 

statement. All input-state entries in the table are recorded as 

decimal weights. The fields of the table are: 
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1) LEVEL BIT - is set to 1 when the test condition of the state

ment is a level test rather than a transition test. 

2) LINK BIT - is set to 1 whenever another test condition of a 

link or list statement is to be checked next if the current 

test condition is not true. 

3) B INPUT - holds either a level input test, the beginning input 

state of a transition test or a special code for LK'T, ELSE, 

BEGIN and END conditions. The ELSE, BEGIN and END conditions 

have the code 222 while LK'T (or LINKTEST) has the code 141. 

4) E INPUT - holds the ending input state of a transition test. 

5) TAB1 - is a pointer to the next input test in secondary table 1 

when don't cares or expressions cause more than one test per 

test condition. A value of 0 indicates no further tests are 

to be checked. 

6) OCHANGE - contains information leading to the output change 

of a transition statement. A value of 0 indicates there is 

no output change. A positive integer is the address of a 

Boolean output expression. A negative integer is a pointer 

to the address of an output value in the standard symbol 

table. 



7) TAB2 - is a pointer to the next output variable change in 

secondary table 2 when more than 1 output variable changes 

concurrently in a transition statement. 
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8) PTRAN - is set to 1 when there exists another input test to 

be checked as part of a multiple transition expression of the 

current statement. 

9) N STMT - indicates the next statement to be executed. A 

positive integer is a pointer to a statement in the primary 

sequence table. A negative integer indicates automatic 

linking and denotes the automatic link digit. 

2. Secondary Table 1 

Whenever a test condition of a transition statement or a link 

statement implies more than one possible input state transition, this 

table is used to store these extra input tests. For example in a two 

variable input design, these extra tests can be the result of unspecified 

variables in a test condition, "Xl->1", a multiple transition expression, 

"Xl->1 + X2->0", or a don't care transition, "Xl->?". The TABl field 

of the primary sequence table is updated to the row number of the 

secondary table where the first extra test is stored. The four fields 

of secondary table 1 are: 

1) B INPUTl - holds either another level test or the beginning 

input state of another input transition for the current 

statement. 

2) E INPUTl - holds the ending input state of another input 

transition for the current statement. 

3) PTRl - is a pointer set to 1 when the next input test in this 

table is to follow the present test for the current statement. 
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4) ~ITRAN is set to 1 whenever the following input test in the 

table is to be checked as part of a multiple transition ex

pression of the current statement. 

3. Secondary Table 2 

When a transition statement contains more than one output change, 

this table holds the addresses of the additional output changes. The 

fields of this table are: 

1) OCHANGE2 - is the same as the output change field (OCHANGE) of 

the primary sequence table for the additional output variables 

of a transition statement. 

2) PTR2 - is a pointer set to 1 when the next output change in 

this table is to follow the present output change for the 

current statement. 

4. Global Transition Table 

This table is structurally similar to the primary sequence table, 

however, it only contains data from globally declared transition state

ments. It also uses the secondary tables as backup tables. The fields 

of this table are: 

1) GB INPUT - holds the beginning input state of a global tran-

sition test. 

2) GE INPUT - holds the ending input state of a global transition 

test. 

3) GTABl - same as TAB! in primary sequence table, except it is 

used for global statements. 

4) GOCHANGE - same as OCHANGE in primary sequence table except it 

is used for global statements. 



5) GTAB2 - same as TAB2 in primary sequence table except it is 

used for global statements. 

6) GAL DIGIT - denotes the automatic link digit of the corre

sponding global transition statement. 
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7) GTRAN - same as PTRAN in the primary sequence table except it 

is used for global transition statements. 

5. Constraints Transition Table 

This table stores all constrained input transitions except those 

declared by "SIC" and "AUS". The fields of this table are: 

1) CLEVEL BIT - is set to 1 when the input test of the constrained 

transition is a level test rather than a transition test. In 

this case it is the ending state of an input transition for 

which the level test is made. 

2) CB INPUT - holds the beginning input state of a constrained 

input transition. 

3) CE INPUT - holds the ending input state of a constrained in

put transition. 

4) CTAB1 - is a pointer set to 1 when the next row in this table 

contains another constraint to be checked. 

6. Standard Symbol Table 

The standard symbol table contains the names of input variables, 

output variables and standard labels and their corresponding attributes. 

This table includes the following fields: 

1) NAME - contains the names of inputs, outputs and standard 

labels. 

2) VALUE - contains the value of a variable or the primary 

sequence table index of a label. 



3) TKN - is a token field which is set to 0, 1 or 2 for dis

tinguishing labels, input variables, and output variables, 

respectively. 

4) POSITION - indicates the position of the input and output 

variables in an input and output state, respectively. 

7. Special Symbol Table 

This table is used to hold output labels and associated infer-

mat ion. It plays an important role in the automatic linking process. 

The fields of this table are: 
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1) OLABEL - contains the binary string representation of an out

put state which is designated in an output label. 

2) AL DIGIT - contains the automatic link digit of the output 

label. If no digit is specified it defaults to 1. 

3) OINDEX - contains the index of the corresponding statement 

in the primary sequence table. 
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APPENDIX B 

Use of the Logic Trace Switch "$W" 

The logic trace was extremely useful in debugging the translator/ 

interpreter program. For this reason the trace was not removed. In

stead, it is made readily available to the user in case changes to 

the language or program are desired in the future. The following will 

be a general description of the meaning and use of the information 

obtained when the logic trace is activated. 

The logic trace is a built-in trace of the translator and flow 

table construction program. Within the XPL program listing, the loca

tion of trace output statements is easily recognized because they 

have the following format: "If T_SW > 0 then .•. ". 

Whenever the logic trace is activated, the trace information 

follows the XPL program flow from procedure to procedure and within 

a procedure. Most of the trace information is just the current values 

of some variables. In these cases the variable names and their values 

are given. Comments defining all variables have been given in the 

program at their place of declaration. In a few cases duplicate in

formation is seen, but two different procedures have output this in

formation which allows the user to follow the procedure to procedure 

flow more easily. 

If the logic trace, $W, is activated at the beginning of the de

sign, a trace of the entire translation and flow table construction 

procedure is given. If "$W" is specified both at the beginning and 

end (i.e. ahead of END.) of the design, then the trace is only turned 



on for the translation process. Similarly if "$W" is only specified 

at the end of the design, the trace is just turned on for the flow 

table construction portion of the program. 
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APPENDIX C 

Job Setup 

This appendix provides the job setup or job control language (JCL) 

requirements for using the ACDL system on the IBM System 360 computer. 

The following listing shows the necessary cards to run an ACDL program 

when the ACDL translator/interpreter program is in object form and is 

residing on disk. 

//OS Job Card 
II* LIMITS=(R=l30) 
/ /S 1 EXEC XPLG 
I /G.PGM DD DSN=USER.S0150.TRACEY.ACDL.BEDNAR, 
II VOL=SER=USERVL,DISP=OLD,UNIT=DISK 
I /G .DATA DD ~·( 

ACDL Program 

If a recompilation of the translator/interpreter program is re-

quired, the job setup for this is: 

I /OS Job Card 
II* LIMITS=(R=(250),T=5,P=l00) 
/ /Sl EXEC XPLC 
//C.FILEl DD DSN=USER.S0150.TRACEY.ACDL.BEDNAR, 
II VOL=SER=USERVL,DISP=OLD,UNIT=DISK 
//C.SOURCE DD * 

Source deck of XPL program 

The job setup for running an ACDL program with the translator/ 

interpreter program in source deck form is: 



//OS Job Card 
II* LIMITS=(R=(250),T=5,P=200) 
//Sl EXEC XPLCG 
//C.SOURCE DD * 

Source Deck of XPL Program 

I* 
//G.DATA DD * 

ACDL Program 

I* 

The job setup for a BNF ANALYZER run is: 

//OS Job Card 
//* LIMITS=(R=l50,P=40,T=5,C=l00) 
//Sl EXEC XANALYZE 
//XPL.SYNTAX DD * 

BNF Description of ACDL 

$PUNCH 
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APPENDIX D 

BNF Description of ACDL 
for the Translator Writing System 

In order to conserve computer storage and execution time the pars-

ing algorithm of the ANALYZER program has the restriction of being con-

text bounded. Specifically, it will parse only those grammars for 

which it cancompute the stacking decision function by using no more 

than the top 2 symbols in the stack and the next symbol in the input 

text, and the production selection function, by using no more than 1 

symbol below the production in the stack and the next symbol in the 

input text [17]. 

In order to make the BNF grammar of ACDL compatible to the con-

text restrictions of ANALYZER, some changes to the description of 

Chapter III are required. The modified version of the grammar which 

was used as input to ANALYZER is shown below. In some cases, commas 

and parentheses required special definitions since these symbols were 

inadequate contexts for decision making. 

To incorporate changes or extensions to the current structure of 

ACDL into the translator program, deletions, additions or modifications 

are made as necessary to the productions shown in the BNF description 

below. The job setup for an ANALYZER run is given in APPENDIX C. 

The following is the present ANALYZER version of the BNF grammar 

for ACDL as it appears in the program listing. 



1 <PROGRAM> ::= <PROGRAM HEAD> <STATEMENT LIST> <ENDING> 

2 <STATEMENT LIST> 
3 

<STATEMENT> 
<STATEMENT LIST> <STATEMENT> 

4 <PROGRAM HEAD> ::= <DESIGN STMT> ; <DECLARE STMT> 

5 <STATEMENT> : :; <BASIC STMT> 
6 I <STMT BLOCK> 

7 <BASIC STMT> ::= <TRANSITION STMT> 
8 I <LINK STMT> ; 
9 I <LIST STMT> ; 

10 I <LABEL> <BASIC STMT> 

11 <ENDING> ::= END 
12 I <LABEL> END 

13 <BEGINNING> : := BEGIN ; 
14 I <LABEL> BEGIN 

15 <LABEL> :: = <SINGLE LABEL> : 
16 I <LETTER Z> <(2> <OUTPUT STATE SET> ) 

17 <SINGLE LABEL> 
18 

<IDENTIFIER> 
<IDENTIFIER> I <NUMBER> 

19 <LETTER z> ::= <IDENTIFIER> 

20 <OUTPUT STATE SET> ::= <OUTPUT CODE> 

<START S'IMT> 

21 I <OUTPUT STATE SET> , <OUTPUT CODE> 

22 <OUTPUT CODE> ::= <NUMBER> 
23 I <NUMBER> I <NUMBER> 

'-.I 
f-' 



24 <DESIGN STMT> ::= DESIGN 
25 I DESIGN <ACCOUNTING INFO> 

26 <ACCOUNTING INFO> 
27 
28 

29 <,3> : := 

<DESIGN NUMBER> 
<DESIGN NUMBER> <,3> <DESIGNERS NAME> 
<DESIGN NUMBER> <,3> <DESIGNERS NAME> <,3> <DATE> 

30 <DESIGN NUMBER> ::= <NUMBER> 

31 <DESIGNERS NAME> : := <IDENTIFIER> 
32 I <DESIGNERS NAME> <IDENTIFIER> 

33 <DATE> ::= <IDENTIFIER> <NUMBER> , <NUMBER> 

34 <DEClARE STMT> : := DEClARE <DEClARATION TYPE> 
35 I <DEClARE STMT> <DEClARATION TYPE> 

36 <DECLARATION TYPE> 
37 
38 
39 

<INPUT DCL> 
<CONSTRAINTS DCL> 
<OUTPUT DCL> 
<GLOBAL DCL> 

40 <INPUT DCL> : : = INPUTS : <VARIABLE DEFN> 
41 I <INPUT DCL> <, 2> <VARIABLE DEFN> 

42 <VARIABLE DEFN> ::= <IDENTIFIER> 
43 I <IDENTIFIER 1> <INITIAL CONDITION> 

44 <IDENTIFIER 1> ::= <IDENTIFIER> 

45 <INITIAL CONDITION> : := <( 1> <LEVEL> ) 

-...J 
N 



46 <( 1> : := ( 

47 <CONSTRAINTS DCL> ::= CONSTR <CONSTRAINTS> 

48 <CONSTRAINTS> : := NONE 
49 I AUS 
50 
51 
52 
53 
54 

SIC 
<TRANSITION TERM> 
<LEVEL FACTOR> 
<CONSTRAINTS> <,2> <TRANSITION TERM> 
<CONSTRAINTS> <, 2> <LEVEL FACTOR> 

55 <TRANSITION EXPRESSION> 
56 

··= <TRANSITION TERM> 
<TRANSITION EXPRESSION> + <TRANSITION TERM> 
<DUMMY TERM> 57 

58 <DUMMY TERM> : := LINKTEST 
59 I LK 'T 

60 <COMPOUND RElATION> : := <TRANSITION PART> WHILE <LEVEL PART> 

61 <TRANSITION PART> : := <TRANSITION FACTOR> 
62 I <( 2> <TRANSITION FACTOR> ) 

63 <LEVEL PART> : := <LEVEL FACTOR> 
64 I <( 2> <LEVEL FACTOR> ) 

65 <TRANSITION TERM> 
66 
67 

68 <(2> ::= ( 

: : = <TRANSITION PART> 
<COMPOUND RELATION> 
<( 2> <COMPOUND RElATION> ) 

-...,J 

w 



69 <TRANSITION FACTOR> 
70 

··= <TRANSITION RELATION> 
<TRANSITION FACTOR> & <TRANSITION RELATION> 

71 <LEVEL FACTOR> : := <LEVEL RELATION> 
72 I <LEVEL FACTOR> & <LEVEL RELATION> 

73 <TRANSITION RELATION> ::= <IDENTIFIER> = <TRANSITION~ 

74 I <IDENTIFIER> <SHORT TRAN> 

75 <LEVEL RELATION> : := <IDENTIFIER> = <LEVEL> 

76 <LEVEL'· : := <NUMBER> 

77 <TRANSITION> 

78 <SHORT TRAN> 
79 

80 <OUTPUT DCL> 
81 

82 <,2> : := 

. ·= 

"·= 

<NUMBER> - > <NUMBER> 

- " <Nill'lBER> 
- > ? 

OUTPUTS : <VARIABLE DEFN> 
<OUTPUT DCL> <,2" <VARIABLE DEFN"> 

83 <GLOBAL DCL> : := GLOBAL <LIST> 

84 <START STilT> : := START 

85 <STMT BLOCK> : := <BEGINNING:> <STATEHENT LIST> <ENDING:> 

86 <TRANSITION S1'1'1T> 
87 

88 <BASIC TRAN STilT> 
89 

· ·= <BASIC TRAN STilT"> 
<AUTO LINK TRAN STHT> 

··= <TRANSITION EXPRESSION"> 
<TRANSITION EXPRESSION~ = :---- <OUTPUT CHANGE'> 

'-J 

"" 



9 0 <AUTO LINK TRAN STMT> : : = <BASIC TRAN STMT> <AUTO LINK> 

91 <AUTO LINK> 
92 

. ·= I 

9 3 <0UTPUT CHANGE> 
94 

9 5 <REPlACEMENT OP> 

I <NUMBER> 

<IDENTIFIER> <REPLACEMENT OP> <0UTPUT EXPRESSION> 
<0UTPUT CHANGE> <,1> <IDENTIFIER> <REPlACEMENT OP> <0UTPUT EXPRESSION> 

. ·= < -

96 <0UTPUT EXPRESSION> ; := <LEVEL> 
97 I <BOOL EXPR> 

98 <BOOL EXPR> : := <lDG FACTOR> 
99 I <BOOL EXPR> + <LOG FACTOR> 

100 <LOG FACTOR> : : = <LOG TERM> 
101 I <LOG FACTOR> & <LOG TERN> 

102 <LOG TERM> : := <LOG PRIMARY> 
103 I ~ <LOG PRU!ARY> 

104 <LOG PRIMARY> ::= <IDENTIFIER> 
105 I <( 2> <BOOL EXPR> 

106 <LUTK STilT> : := LINK <PARANETER LIST> 

107 <PARArlETER LIST> 
108 
109 
110 
111 
112 
113 

• ·- <NO TESTS> 
<1 TEST> <1 lABEL> 
<2 TESTS> <2 LABELS: 
<3 TESTS- d LABELS> 
<4 TESTS'~ <4 LABELS> 
<5 TESTS> <5 LABELS 
<6 TESTS> <6 LABELS--

"-.) 

l.n 



114 <NO TESTS> ::= <SINGLE LABEL> 

115 <1 TEST> : := <( 1> <TEST CONDITION> 

116 <1 LABEL> : := 

117 <2 TESTS> : := 

118 <2 LABELS> : := 

119 <3 TESTS> . ·-.. -

120 <3 LABELS> : := 

121 <4 TESTS> : := 

122 <4 LABELS> .. -.. -

123 <5 TESTS> : := 

124 <5 LABELS> .. -.. -
125 <6 TESTS> : := 

126 <6 lABELS> : := 

127 <, 1> . ·= 

128 <TEST CONDITION> 
129 
130 

) <SINGLE LABEL> 

<1 TEST> <,1> <TEST CONDITION> 

<1 LABEL> <, 1> <SINGLE LABEL> 

<2 TESTS> <, 1> <TEST CONDITION> 

<2 LABELS> <,1> <SINGLE LABEL> 

<3 TESTS> <, 1> <TEST CONDITION> 

<3 LABELS> <, 1> <SINGLE LABEL> 

<4 TESTS> <, 1> <TEST CONDITION> 

<4 LABELS> <,1> <SINGLE LABEL> 

<5 TESTS> <, 1> <TEST CONDITION> 

<5 lABELS> <, 1> <SINGLE lABEL> 

::= <TRANSITION EXPRESSION> 
<LEVEL FACTOR> 
ELSE 

-..J 
0'1 
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APPENDIX E 

Program Structure 

The ACDL translation and flow table construction program 

consists of 44 procedures. Figure 6 indicates the overall structure 

of the program with respect to these procedures. 
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MAIN 
PROCEDURE I invokes INITIALIZATION 

invokes COMPILATION LOOP 
invokes PRINT SUMMARY 

INITIALIZATION 

COMPILATION 
LOOP 

invokes PRINT DATE AND TIME 
invokes SCAN 

PRINT 
DATE 
AND TIME 

SCAN 

[
invokes PRINT TIME 

PRINT_ TIME [ 

invokes ERROR 
invokes GET CARD 
invokes CHAR 

ERROR 

[
invokes I FORMAT 

I_FORMAT [ 

GET CARD [· 1nvokes ERROR 
invokes I FORMAT 

CHAR ~invokes GET CARD 

invokes STACKING 
invokes ERROR 
invokes SCAN 
invokes REDUCE 

Figure 6. Structure of the ACDL Translator/Interpreter Program -...J 
1.0 



STACKING 

REDUCE 

Figure 6. (Continued) 

invokes ERROR 
invokes STACK DUMP 
invokes RECOVER 

invokes SCAN 
invokes RIGHT CONFLICT 

RIGHT [ 
CONFLICT 

invokes PR OK 
invokes SYNTHESIZE 
invokes ERROR 
invokes STACK DUMP 
invokes RECOVER 

PR OK [· 1nvokes RIGHT CONFLICT 

SYNTHESIZE invokes ERROR 
invokes STACK DUMP 
invokes SPEC LOOKUP 
invokes STD LOOKUP 
invokes ENDING 
invokes BEGINNING 
invokes PAD ZEROS 
invokes VARSTORE 
invokes CONSTR TRAN 
invokes DEC Xrif 

::0 
0 



Figure 6. (Continued) 

invokes DC TRAN 
invokes MULTI TRAN 
invokes OVAR CHK 
invokes IVAR CHK 
invokes POLISHX 

SPEC [ 
LOOKUP invokes ERROR 

STD [ 
LOOKUP invokes ERROR 

ENDING [ 

BEGINNING [ 

PAD ZEROS [ 

VARSTORE [invokes ERROR 
invokes STD LOOKUP 

CONSTR I 
TRAN invokes CTRAN STORE 

invokes DC TRAN -

CTRAN [ 
STORE invokes DEC XFM 

-
DEC [ XFM invokes EXPN 

EXPN [ 

00 
f-' 



FLmv 
TABLE 

DC TRAN [. lnvokes EXPN 
invokes HULTI TRAN 

MULTI [ 
TRAN invokes DEC_XFM 

invokes ERROR 

OV AR CHK [ k ERROR lnvo es 
invokes STD LOOKUP 

IVAR CHK [invokes ERROR 
invokes STD LOOKUP 

POLISHX [ 

PRINT SUMMARY invokes PRINT DATE AND TIME 
invokes DUMPIT 

invokes LINKAGE 
invokes EXPN 

invokes PRINT TE1E 

DUMPIT [ 

invokes PRI~~y TABLE 
invokes GLOBAL TABLE 
invokes CONSTR TABLE 
invokes ERROR 
invokes OUTPUT FLO\V TABLE 

LINKAGE [ 

Figure 6. (Continued) 
co 
N 



PRIMARY TABLE . 
invokes TABLE! SEARCH 
invokes LINKAGE 
invokes POLISH EXEC 
invokes TABLE2 SEARCH 
invokes SPEC LOOKUP 

TABLE!_ [ 
SEARCH 

POLISH_ [ 
EXEC 

TABLE2 [ 
SEARCH invokes POLISH_EXEC 

-
GLOBAL TABLE r-invokes TABLE! SEARCH 

invokes POLISH EXEC 
invokes TABLE2 SEARCH 
invokes SPEC LOOKUP 
invokes LINKAGE 

L 

CONSTR TABLE [ 

OUTPUT FLOW ~ 
TABLE invokes PAD 

invokes I FORMAT 

PAD [ 

Figure 6. (Continued) 00 
w 
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APPENDIX F 

Procedure Descriptions 

This appendix presents a description of the procedures composing 

the translator and flow table synthesis algorithm. A brief descrip-

tion of the procedures' main functions is given. Functional flow 

charts accompany those procedure descriptions which require a more 

detailed explanation; however, their emphasis is directed toward the 

synthesis procedures rather than the analysis (parsing) procedures, 

since it is these procedures that are ACDL dependent. 

1. MAIN PROCEDURE Procedure* 

This procedure is the main entry point of the program. It is the 

master control for the translation process and collects timing informa-

tion for the different phases of the translation. 

2. INITIALIZATION Procedure* 

This procedure prints the headings for the compilation listing. 

It initializes the character classes for the scanner and various other 

global variables. No initializations of 0 have to be made since all 

variables are automatically initialized to 0 (or null in the case of 

character string variables) by the XPL compiler, XCOM, unless other-

wise indicated. 

3. PRINT DATE_AND_TIME Procedure* 

This procedure decodes the date into year, month and day, and then 

calls PRINT TIME to print it. 

This procedure is part of the original proto-compiler SKELETON of TWS 
[17]. 
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4. PRINT TIME Procedure* 

This procedure decodes time from hundreds of seconds into hours, 

minutes and seconds, and prints it together with its message para-

meter. 

5. SCAN Procedure* 

An ACDL program consists of a sequence of symbols interspersed 

with blanks and comments. A call to SCAN either produces the next 

symbol, removes the blanks and comments, or is responsible for the 

setting and resetting of control toggles. 

6. GET CARD Procedure* 

This procedure reads a source card and stores it in the global 

character variable TEXT. It also prints the card image unless control 

toggle $L has been specified, which inhibits the source program 

listing. 

7. CHAR Procedure* 

This procedure is used to advance the scan pointer by one 

character and to get a new card if necessary. 

8. I FORMAT Procedure* 

This procedure right justifies an integer in the field width 

specified. 

9. ERROR Procedure* 

This procedure prints error messages, counts total errors and 

severe errors and terminates compilation in case of excessive errors. 

10. * COMPILATION_LOOP Procedure 

This procedure coordinates the stacking of symbols and their 

* This procedure is part of the original proto-compiler SKELETON of TWS 
[17]. 
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reduction according to the BNF constructs. A flow chart for this 

procedure is shown in Figure 7. 

11. STACKING Procedure* 

This procedure is the basic decision function of the parsing 

algorithm. When the function is true, a symbol is stacked; when it 

is false, a reduction is made. If an error is detected, a recovery 

is initiated and a new value is computed. 

12. RECOVER Procedure* 

This procedure removes enough of the parse stack and input text 

to ensure that translation can proceed at least one more step without 

further errors. In many cases this procedure prevents single errors 

from causing multiple messages. 

13. RIGHT CONFLICT Procedure* 

The most recently scanned symbol is stored in the global variable 

TOKEN. This procedure decides if a string in the parse stack is 

reducible on the basis that the result of the reduction must yield an 

allowed pair between the top of the stack and TOKEN. Similarly, when 

an error is encountered, parsing is not resumed until an allowed pair 

is in TOKEN and on top of the parse stack. 

14. STACK DUMP Procedure* 

When syntactic errors are discovered by the analysis algorithm, 

the state of the parse stack is printed by this procedure as a 

diagnostic aid. 

15. REDUCE Procedure* 

This procedure looks up the proper reduction, calls SYNTHESIZE 

* This procedure is part of the original proto-compiler SKELETON of TWS 
[17]. 
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to produce the associated semantic action and then makes the reduc-

tion. 

16. PR OK Procedure* 

When there is more than one reducible string on the parse stack, 

this procedure uses the syntactic analysis tables to choose the proper 

reduction. 

17. SYNTHESIZE Procedure 

This procedure and the procedures it calls compose the semantic 

routines that are inserted into the skeleton deck. Corresponding to 

each production recognized by REDUCE, this procedure takes appropriate 

action to produce code and data images of the program being translated. 

Flow charts describing the action to be taken at the important pro-

ductions are given in Figure 8. The case number corresponds to the 

position of the production in the BNF description of Appendix D. No 

action is taken in the cases not shown. 

18. SPEC LOOKUP Procedure 

This procedure is a function procedure with two arguments, the 

output state symbol being searched for and the corresponding automatic 

link digit of the output state. The procedure searches the special 

symbol table in a sequential manner for the output symbol and auto-

matic link digit passed to it. If the output symbol and correct 

automatic link digit are not found, the procedure will add them to the 

table. The row number of the symbol table in which the arguments were 

found (or added) is returned as the value of the function. 

* This procedure is part of the original proto-compiler SKELETON of TWS 
[17]. 



88 

19. STD LOOKUP Procedure 

This procedure is a function procedure with the symbol being 

searched for as its argument. The procedure sequentially searches the 

standard symbol table for the symbol passed to it. If the symbol is 

not found, the procedure will add the symbol to the table. The row 

number of the table in which the symbol was found (or added) is 

returned as the value of the function. 

20. ENDING Procedure 

This procedure is used to handle the ends of statement blocks 

and the end of the design (see Figure 9). 

21. BEGINNING Procedure 

This procedure is a special procedure used to handle the beginning 

of statement blocks. A flow chart for this procedure is shown in 

Figure 10. 

22. PAD ZEROS Procedure 

This procedure adds zeros on the left of an integer until the 

specified field width is reached. 

23. VARSTORE Procedure 

This procedure stores input and output variables and their 

corresponding attributes in the standard symbol table via the function 

procedure STD_LOOKUP. 

24. CONSTR TRAN Procedure 

This procedure controls the construction of the constraint 

transition table. A flow chart describing this procedure is illustrated 

in Figure 11. 



25. DEC XFM Procedure 

This procedure transforms a binary representation of an input 

transition or level to a decimal representation as indicated in 

Figure 13. 

26. DC TRAN Procedure 
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This procedure is used to handle the don't-care shorthand transi

tion. The flow chart describing this procedure is illustrated in 

Figure 13. 

27. MULTI TRAN Procedure 

This procedure stores the additional input transitions resulting 

from don't-cares and multiple transition expressions in secondary 

table 1. Figure 14 illustrates the flow chart for this procedure. 

28. OVAR CHK Procedure 

This procedure checks the standard symbol table to see if output 

variables in transition statements have been properly defined. If not, 

an error message is printed. 

29. IVAR CHK Procedure 

This procedure checks the standard symbol table to see if input 

variables in transition statements have been properly defined. If not, 

an error message is printed. 

30. POLISHX Procedure 

This procedure translates a Boolean infix expression to Reverse 

Polish format. A flow chart describing this procedure is given in 

Figure 15. 

31. CTRAN STORE Procedure 

This procedure stores the input constraints in the constraint 

transition table. The flow chart for this procedure is illustrated in 

Figure 16. 
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32. EXPN Procedure 

This is a function procedure which performs the exponentiation 

operation. The result is returned as the value of the function. 

33. PRINT SUMMARY Procedure* 

This procedure prints the statistics of the translation which 

includes error statistics and translation times and rates. It also 

calls DUMPIT procedure to dump the internal tables if $D was given in 

an ACDL comment. 

34. DUMPIT Procedure 

This procedure dumps the internal form tables whenever the con-

trol toggle $D is specified in an ACDL comment. 

35. FLOW TABLE Procedure 

This procedure controls the construction of the primitive flow 

table. Its flow chart is shown in Figure 17. 

36. LINKAGE Procedure 

This is a function procedure which is a housekeeping routine for 

the state linkage table. The state linkage table records the internal 

states (i.e. flow table row numbers) that have been defined. There-

fore, this procedure determines whether or not a correct next-state 

entry has been previously defined. If not, it defines a new state 

and records it in the state linkage table. The procedure has 3 

arguments; the current input column state, the sequence # attribute 

of the next state, and the output attribute of the next state. The 

procedure returns the proper next-state entry as the value of its 

function. The flow chart for this procedure is given in Figure 18. 

* This procedure is part of the original proto-compiler SKELETON of TWS 
[17]. 



37. PRIMARY TABLE Procedure 

This procedure checks the primary sequence table to see if the 

current input transition was specified in the design. A flow chart 

describing this procedure is shown in Figure 19. 

38. GLOBAL TABLE Procedure 

This is a function procedure which checks the global transition 

table to see if the current input transition is a global transition. 

If so, the procedure returns a value of true as the value of its 

function. A flow chart describing this procedure is given in Figure 

20. 

39. CONSTR TABLE Procedure 

91 

This is a function procedure which checks the constraint transi

tion table to see if the current input transition is a constraint 

transition. If so, the procedure returns a value of 1, otherwise 0. 

The flow chart for this procedure is given in Figure 21. 

40. TABLEl SEARCH Procedure 

This is a function procedure which searches secondary table 1 for 

additional input test conditions resulting from don't cares or 

multiple transition expressions. The value returned by the procedure 

indicates the point where the calling procedure is to continue. 

Figure 22 illustrates the flow chart for this procedure. 

41. TABLE2 SEARCH Procedure 

This procedure searches secondary table 2 for additional output 

changes whenever more than one output variable changes concurrently 

in a transition statement. The flow chart for the procedure is shown 

in Figure 23. 
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42. POLISH EXEC Procedure 

This procedure interpretively executes a Reverse Polish Boolean 

expression. A flow chart of the procedure is given in Figure 24. 

43. OUTPUT_FLOW TABLE Procedure 

This procedure is used to print the resul .. ing primitive flow 

table in its standard format. Stable states are indicated by attach-

ing a minus sign to the next-state entry. 

44. PAD Procedure* 

This is a function procedure with two arguments; a character 

string variable and a format field width. The procedure adds blanks 

to the right of the character string variable to give it the field 

width specified. The padded string is then returned by the procedure. 

* This procedure is part of the original proto-compiler SKELETON 
of TWS [17]. 



COMPILATION_ 
LOOP 

Procedure 

End 

Get next 
symbol 

Enter 

Stack symbol. 
on 

parse stack 

Reduce 
stack 

Figure 7. Flow Chart of COMPILATION LOOP Procedure 

SYNTHESIZE 
Procedure 

(PRODUCTION_ 
NUMBER) 

Do the ease which 
corresponds to the 
production number 
passed. 

I 

Cases are shown on 
following pages: 

I 

(_End_____.) 
Figure 8. Flow Chart of SYNTHESIZE Procedure 
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Case 1. <PROGRAM> : := <PROGRAM HEAD> <STATEMENT LIST> <ENDING>. 

Enter 

Resolve a.cl
dressea ot a11 
undef:ined 
labela. 

stop 
compj.l.aUon. 

Ca11 ERROR 
and 

STACK_DUMP 

Figure 8. (Continued) 



Case 5. <STATEMENT> • ·= <.BASIC STMT> 

Update next stateeent 
addressee of prev1.ous 
unreso1ved etmt b1ock 
end:lngs. 

Case 7. <BASIC STMT> : := <rRANSITION STMT> 

Save current statement 
# ~n case statement ~s 
next statement fo11ow
~ng the end ot a state 
ment block. 

Figure 8. (Continued) 
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Case 11. <ENDING>··= END 
Case 12. <lABEL> END 

Case 13. 
Case 14. 

Enter 

Call 
ENDING 

End 

<BEGINNING> : := BEGIN; 
<lABEL> BEGIN; 

Eater 

Cal1 
BEXUNNING 

End 

Figure 8. (Continued) 
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Case 17. <SINGlE lABEL> <IDENTIFIER> 

Label precedes 
a statement. 

Store output state 
label and 1 ts 
attributes in the 
special symbol table. 

Figure 8. 

Push label on 
the undefined 
label stack. 

Store label and its 
attributes in the 
standard symbol table. 

End 

(Continued) 

97 



Case 18. <SINGLE LABEL> 

Enter 

Store ~abe~'s output 
state and its attri
butes in speci~ 
symbo~ tab~e. 

End 

<IDENTIFIER> I <NUMBER> 

No C~~ ERROR 
"Illegal. out
put ~abe~" 

Yes Push labe~ on 
\Uldefined 
~abe~ stack. 

Figure 8. (Continued) 
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Case 19. <LETTER Z> : := <IDENTIFIER> 

Enter 

Figure 8. (Continued) 

237261. 

Cal.l ERROR 
Output label does 
not begi.n w:l. th nz". 
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Case 22. <OUTPUT CODE>::= ~ER> 

Enter 

Automatic link 
digit is set to the 
de~ault value ot 1. 

Ca1l PAD_ZEROS 
to convert number to 
biaary output string. 

store output state and 
automatic l:l.nk digi. t 
in special symbol 
table. 

End 

Figure 8. (Continued) 
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Case 23. <OUTPUT CODE> : := <NUMBER> / <NUMBER> 

Enter 

Automatic link digit = 
nwaber following "/" 

Call PAD_ZEROS 
to convert number 
preceed1.ng "/" to 
binary output string. 

Store output state and 
automatic link digit 
in Special Symbol 
Table. 

End 

Figure 8. (Continued) 



Case 30. <DESIGN NUMBER>::= <NUMBER> 

Enter 

Retrieve design number 
from top of parse 
stack. 

End 

<DESIGNERS NAME> <IDENTIFIER> 
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Case 31. 
Case 32. <DESIGNERS NAME> <IDENTIFIER> 

Enter 

Retrieve designer's 
name from top ot parse 
stack. 

End 

Figure 8. (Continued) 



Case 33. <PATE> : := <IDENTIFIER> <NUMBER> , <NUMBER> 

Retrieve month, day and 
year trom parse stack. 

Case 36. <DEClARATION TYPE> • ·= <INPUT DEClARATION> 

Case 42. 
Case 44. 

Initi~ze temporary 
input state arrays 
to don't cares. 

<VARIABLE DEFN> ··=<IDENTIFIER> 
<IDENTIFIERl> : := <IDENTIFIER> 

Call V ARSTORE 
to store input (or 
output) variable. 

Figure 8. (Continued) 
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Case 48. <CONSTRAINTS>::= NONE 

Set a flag ~ndicat~ng 
no 1nput constraints. 

Case 49. <CONSTRAINTS> ··= AUS 

Set a t1ag ~nd1cat1ng 
al1 unspec~tied 1nput 
sequences are 
constrained. 

End 

Case 50. <CONSTRAINTS>::= SIC 

Set a f1ag ~dicating 
s1ngle 1nput change 
on1y. 

Figure 8. (Continued) 
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Case 51. <CONSTRAINTS> : := <TRANSITION TERM> 
Case 53. <CONSTRAINTS> <,2> 

<TRANSITION TERM> 

Call CONSTR_TRAN 

Case 52. 
Case 54. 

<CONSTRAINTS> : := <lEVEL FACTOR> 
<CONSTRAINTS> <,2> 
<lEVEL FACTOR> 

Enter 

Call CTRAN_STORE 

Reset the level
:l.nctieator nag. 

Figure 8. (Continued) 
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Case 55. <TRANSITION EXPRESSION>··= <TRANSITION TERM> 

Enter 

Store transition in 
Primary Sequence Table 
and Secondary Tab~e 2. 

Store transition in 
Global Tab~e and 
Secondary Table 2. 

Cal~ DC_TRAN 

Figure 8. (Continued) 
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Case 56. <TRANSITION EXPRESSION>::= <TRANSITION EXPRESSION> 
+ <TRANSITION TERM> 

Enter 

Call MULTI_TRAN 

Don't-care 
transition? Call DC_TRAN 

Figure 8. (Continued) 
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Case 58. 
Case 59. 

c 

<:DUMMY TERM> : := LINKTEST 
I.K'T 

Eater 

Record 141 into 
B_.INPUT field of cur-
rent row ~n Primary 
Sequence Tab1e. 

Incr•ent Pnmary 
Sequence Table po~nter 
by 1. 

ED.d 

Figure 8. (Continued) 
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Case 76. <LEVEL> : := <NUMBER> 

Enter 

No 

Call ERROR 
NWilber :is :Lnval.i.d 
level. 

store number :in corre
sponding var:Lable's 
VALUE field of Standard 1----1 

Symbol Table. 

Set a flag 
1ndi.cat:Lng 
:input level. 

!----·-"""'"Call IVAR_CHK 

Store number 1n :input 
state trans1t1on 
arrays. 

Figure 8. (Continued) 
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Case 76. (Continued) 

Set a fiag indi.cating 
an output 1eve1. 

Ca11 OVAR_CHK 

Store number in output 
expression array. 

End 

Figure 8. (Continued) 
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Case 77. <TRANSITION> 

Enter 

Call. IVAR_CHK 

Store numbers i.n i.nput 
state tranai.ti.on arrays. 

End 

<NUMBER> - > <NUMBER> 

Cal.l. ERROR 
Inval.:i.d 
transi.ti.on 

Figure 8. (Continued) 
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Case 78. <SHORT TRAN> : := - > <NUMBER> 

Enter 

Call IV AR_CHK 

Store number and ~ts 
complement in input 
state trans1 tion 
arrays. 

End 

Figure 8. (Continued) 

Call ERROR 
Invalid 
transi.t~on. 
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Case. 79. <SHORT TRAN> - > ? 

Enter 

Call IVAR_CBK 

Update input state 
transition arrays. 

Set a flag indicating 
don't-care transi. t1on. 

Increment the input 
state don't-care 
counter by 1. 

End 

Figure. 8. (Continued) 



Case 83. <GLOBAL DCL> GWBAL 

Reset global 
indi.cator 
flag. 

Case 84. <START STMT> · ·= START 

Store initia1 input 
state in input state 
transition array. 

<LIST> 

Call DEC_XFM 

Figure 8. (Continued) 
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Case 84. 

y 
B_INPUT field of 1st 
row in primary 
sequence table = 0 

I 
Reinitialize input 
state transition array 
to don't cares • 

(Continued) 

Store decimal weight of 
init. st. :lD. B_INPUT 
of prim. seq. table. 

. f:t~------------1 
Update N_STMT field of 
first row in primary 
sequence table. 

I 
Increment primary 
sequence table pointer 
by 1. 

I 
End 

Figure 8. (Continued) 
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Case 86. <rRANSITION STMT> • ·= <BASIC TRAN STMT> 

Update N_STMT t1e1d of 
current statement in 
Pr1mary Sequence 
Table to next state
ment #. 

Case 91. <AUTO LINK> • ·= / 

N_STMT fie1d of 
Primary Sequence 
Tab1e = -1. 

GAL_DIGIT field of 
Global Table = 1 • 

Figure 8. (Continued) 
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Case 92. <AUTO LINK> : := / <NUMBER> 

Enter 

N_S~T fi.eld of cur
rent row i.n Pri.mary 
Sequence Table = num
ber top of parse stk. 

End 

GAL_DIGIT .fi.eld of current 
row i.n Globa1 Table = 
number on top of parse 
stack. 

Figure 8. (Continued) 
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Case 93. -dJUTPUT CHANGE> • ·= <IDENTIFIER> <REPlACEMENT OP> 
-d)UTPUT EXPRESSION> 

OCHANGE field of 
Primary Sequence 
Tabl..e for this 
statement = - output 
array index. 

GOCHANGE field of 
Global Table for this 
statement = - output 
array index. 

Store Standard Symbol 
Table index of output 
variable undergoing 
change in output array. 

Figure 8. (Continued) 
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Case 93. (Continued) 

cu1 
OVAR_CHK 

Store Standard Symbo1 
Tab1e index of output 
var1ab1e undergoing 
change in output array. 

GOCHANGE fie1d for this 
statement = output ar
ray address of starting 
point of Reverse Po1ish 
expression. 

OCHANGE fie1d for this 
statement = output ar
ray address of starting 
point of Reverse Po11sh 
expression. 

Figure 8. (Continued) 
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Case 94. <OUTPUT CHANGE>::= <OUTPUT CHANGE> <,1> <IDENTIFIER> 
<REPLACEMENT OP> 

Enter 

Update GTAB2 to 
current 1.ndex of 
Secondary Table 2. 

No 

No 

<OUTPUT EXPRESSION> 

TAB2 po1.nter of 
current statement 

= 0 '? 

Set PTR2 of prev.Lous 
row 1.n Secondary Table 
2 to 1 1.ndicating 
another output change 
occurs 1.n next row. 

Figure 8. (Continued) 



Case 94. (Continued) 

Output expression 
a level? 

OCHANGE2 field ot 
current row in Seconda
ry Table 2 = - output 
array index. 

Store Standard Symbol 
Table index of output 
variable undergoing 
change in output array. 

End 

No 

Update TAB2 to current 
index of Secondary 
Table 2. 

Call OVAR_CHK 

Store Standard Symbol 
Table index of output 
variable undergoing 
change in output array. 

OCHANGE2 of current 
row in Secondary Table 
2 = output array ad
dress of starting pt. 
of Reverse Polish Exp'n 

Figure 8. (Continued) 
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Case 97. <OUTPUT EXPRESSION> : := <BOOL EXPR> 

Call ERROR 
Symbol i.s 
undefined. 

Store expression 
terminator symbol in 
output array. 

Case 104. <LOG PRIMARY> - <IDENTIFIER> 

Retrieve symbols of in
fix exp'n appearing be
fore identifier in par. 
stk & put in temp stk. 

Call POLISBX to convert 
partial exp'n in temp. 
stk from infix to Re
verse Polish format. 

dentifier input 
(or output) variable 

? 

Figure 8. (Continued) 

Call POLISHX 
to store 
variable in 
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Case 105. <LOG PRIMARY> <(2> <BOOL EXPR>) 

Cal.l POLISHX 
to handl.e right 
parenthesis. 

Case 106. <LINK STMT> • ·= LINK <PARAMETER LIST> 

Set LINK_BIT of last 
used row in Primary 
Sequence Table to o. 

Case 107. <PARAMETER LIST::;:, • ·= <NO TESTS> 

B_INPUT 
current 
in case 
follows 

= 222 and save 
row # of P.s.T. 
this link stmt 
a stmt block. 

Figure 8. (Continued) 
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Case 115. <1 TEST> • ·= <( 1> <TEST CONDITION> 

Save current stmt # u 
case this li.Dk atmt is 
the next stmt fo1low1ng 
the end of a stmt 
b1ock. 

Case 128. <rEST CONDITION> : := <TRANSITION EXPRESSION> 

Set LINK_BIT of 1ast 
used row ot Prilla.J:'Y' 
Sequence Tab1e to 1. 

Update test con
dition count by 1 • 

Figure 8. (Continued) 
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Case 129. <TEST CONDITION> : := <'LEVEL FACTOR~· 

Eater 

Set LEVEL_BIT of cur-
rent row in Primary 
Sequence Table to 1. 

Ca1l. DEC_XFM 

Store decimal weights 
ot level. input states 
in B_INPUT of Primary 
Sequence Tabl.e and B_ 
INPUT1 of Secondary 
Table 1. 

Set LINK_BIT in Pri-
mary Sequence Table 
and update test 
condition count by 1. 

End 

Figure 8. (Continued) 



Case 130. <TEST CONDITION> ELSE 

Assign spec~al code or 
222 to B_INPUT of cur
rent row ~ Primary 
Sequence Table. 

Increment Primary 
Sequence Table po~ter 
and test cond~t~on 
count by 1. 

Case 131. <LIST STMT> ::=LIST <LIST> 

Reset LINK_BIT of 
last used row ~n 
Primary Sequence 
Table to o. 

Figure 8. (Continued) 
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Case 132. <'LIST> • ·= <AUTO LINK TRAN STMT> 

EI:Lter 

Save current stmt # i.n 
case thi.s list stmt is 
the next atmt following 
the end of a atmt 
bl.ock.. 

Set LINK_BIT of last 
used row ill Primary 
Sequence Table to 1. 

End 

Figure 8. (Continued) 

Yea 
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Case 133. <LIST> · ·= <LIST> <, 1> <AUTO LINK TRAN STMT> 

Enter 

LINK_BIT of l.ast used 
row in Primary Sequence 
Tabl.e = 1. 

End 

Figure 8. (Continued) 

Yes 
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ENDING 
Procedure 1----- Enter 

Update N_STMT of previ
ous unresolved stmt b1k 
ends that are nested in 
current etmt block. 

Set B_INPU'l' of current 
row in Primary Sequence 
Table to 222 indicating 
no input test. 

Store Primary Sequence 
Table index of this 
ending in unresolved 
ending stack. 

Increment Primary 
Sequence Table pointer 
by 1. 

End 

No 

Figure 9. Flow Chart of ENDING Procedure 
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BEGINNING 
Procedure --- Enter 

Reset f1ag for beg. of 
stmt b1k & save current 
stmt # for resolving 
ends of nested blocks. 

Set B_INPUT of current 
row in Primary Sequence 
Tab1e to 222 indicating 
no input test. 

Update N_STMT of cur-
rent row in Primary 
Sequence Table to next 
stmt row #. 

Increment Primary 
Sequence Table pointer 
by 1. 

End 

Figure 10. Flow Chart of BEGINNING Procedure 
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CONSTR_TRAN 
Procedure 

1---- Enter 

Call 
CTRAN_STORE 

Figure 11. Flow Chart of CONSTR TRAN Procedure 

Cal.l 
DC_TRA.N 
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DEC_.DM 
Procedure 

--- --- Enter 

CalcUlate dec~mal 
value due to spec~t1ed 
port~ on ot trans~ t~o.a. 
(or level). 

Calculate decimal 
Values due to dOA't 
cares in the tranai.-
tion (or level). 

Store sum ot specified 
wta. & don't-care wta. 
of each tran. (or le-
vel) in dec. wt arrays. 

Re-initialize tem-
porary var:1ables and 
input state trans~-
tion arrays. 

End 

Figure 12. Flow Chart of DEC XFM Procedure 
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DC_TRAN 
Procedure 

Enter 

Generate transitions 
resulting from don't 
cares specified & store 
in input state arrays. 

Call 
MULTI_TRAN 

End 

Call 
CTRAN_STORE 

Figure 13. Flow Chart of DC TRAN Procedure 
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MULTI_TRA.N 
Procedure 

TABl = cur
rent index 
Secondary 
Table 1. 

Enter 

Call 
DEC_X.FM 

Set MTRAN of 
last used row in 
Secondary Table 1 
to 1. 

Store transition in
formation of decimal 
wt. arrays in Secondary 
Table 1. 

End 

GTAB1 = current 
index of 
Secondary Table 
1. 

Figure 14. Flow Chart of MULTI TRAN Procedure 
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POLISHX 
Procedure 
(E) 

Store operand 
:Ln output 
arra:y. 

Increment 
stack po:Lnt
er by 1. 

Store opera
tor on top 
of stack. 

Fetch next 
symbol. :Ln :Lnf:L:x 
express:Lon. 

Delete top 
'------------1 pos:L t:Lon of 

stack to re-
move "( 11 • 

Compare prece
dences of pre~
ous op. :Ln stk. 
& current op. 

Store r:Lght 
termi.nator :Ln 
output array. 

Figure 15. Flow Chart of POLISHX Procedure 
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Decrement 
stack po:Lnter 
by 1. 



CTRA.N_STORE 
Procedure Enter 

Cal.l. DEC _XFM 

Store deci.mal. wt. of 
1nput transi.ti.on (or 
l.evel) i.n Constra1nt 
Transi.ti.on Tabl.e. 

End 

CLEVEL_BIT in 
Constraint Tabl.e 
= 1 for th:l.a 
constraint. 

Figure 16. Flow Chart of CTRAN STORE Procedure 
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FLOW_TABLE 
Procedure Enter 

Define ~Dit~al state o 
flow table & its input, 
output & sequence 
attributes. 

Compute ~nput column 
headers for flow table 
and count number of 1 • s 
~n each header. 

Go to first 
input column. 

Next state 
= stable 
state. 

Next state = 
don't care. 

Figure 17. Flow Chart of FLOW TABLE Procedure 
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Increment next 
state array 
pointer by 1. 

No 

Figure 17. (Continued) 

Call 
PRIMA.RY_TABLE 

Increment 
present 
state point
er by 1 .. 
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LINKAGE 
Procedure (DL, 
INDEX, osnmoL) 

Retr.ieve next 
state from the 
defined state 
list. 

Retr:Leve 1st 
state defined 

139 

Store next unused cell 
# of defined state 
list in an array in
dexed by the decima1 
wt. or the input 
column state. 

New state = last 
defined state 
+ 1. 

Add the new 
state to the 
defined state 
list. 

Increment the 
defined state 
list po.inter 
by 1. 

Update the flow table 
row attributes for 
the new state. 

Return 
new state 

Figure 18. Flow Chart of LINKAGE Procedure 



JJ = 
N STMT 
(JJ) 

state = 
don't 
care 

PRIMARY_ 
TABLE 
Procedure 

Output & Sequenc 
attributes or 

res. st. 

Next-state entry 
= LINKAGE(Input 

'-----;col., Seq #, 
Out ut) 

JJ = sequence 
attribute of 
present state. 

Save the value 
of JJ in SAVEl. 

B_ 
INPUT(JJ) 

JJ = 
TAB1 (JJ) 

JJ = 
N_STMT(JJ) 

Set entry point 
flag to 1 for 
TABLE1_SEARCH 
P cedure. 

Figure 19. Flow Chart of PRIMARY TABLE Procedure 
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JJ = SAVEI 

Update values of 
output var1ables 
a Standard 
Symbol Table. 

Call 
POLISH_ 
EXEC 

Store output variable 
level change 1n value 
field of Standard 
Symbol Table. 

JJ = 
TAB2(JJ) 

Call 
TABLE2_ 
SEARCH 

Compute next 
state output 
attr. from 
values of 
output varia 
bles in Stan. 
S mbol Table 

Next-state entry 
= LINKAGE(Input 
column, Seq#, 
output state) 

Output attribute 
of next state is 
same as present 
state. 

Next-state entry 
= LINKAGE(Input 
column, JJ, Out
put state). 

Return 

Advance seq. 
thru any sub
sequent stmt 
blk endings. 

Yes 

Fetch Seq# attribute 
from corresponding 
output state row of 
Special Symbol Table. 

Figure 19. (Continued) 
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GLOBAL_ TABLE 
Procedure 

JJ = JJ + 1 

Save Global Table 
~ndex, JJ, of current 
statement in SAVEI. 

Yes 

JJ = GTAB1 (JJ) 

Call 
TABLE1_SEARCH 

Return 0 

Set entry point flag 
to 1 which spec~fies 
the entry point of 
TABLE1_SEARCH Proc. 

Figure 20. Flmv Chart of GLOBAL TABLE Procedure 
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JJ = SAVEl 

Update values of 
output variab~es 
in Stalldard 
Symbo~ Tab~e. 

No 

Store output variable 
level change in value 
field of Standard 
Symbol Tab~e. 

JJ = 
GTAB2(JJ) 

Call 
TABLE2_ 
SEARCH 

Figure 20. (Continued) 

Cal~ 

POLISH_EXEC 

Compute next-state 
output attr. from 
values of output vari
ables in Stan.Sym. Tab 

Fetch Seq# attribute 
from corresponding 
output state row of 
Special Symbol Tab~e. 

Next-state entry = 
LINKAGE(Input column, 
Seq#, Output state) 

Return 1 
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CONSTR TABLE 
Proced~e 

JJ = JJ + 1 

JJ = SAVE! 

Save the Constraint 
Tab1e index, JJ, of 
the current constraint 
in SAVEl. 

Input temporary 
= input attri
bute or present 
state. 

JJ = JJ + 1 

Input temporary 
= input column 
state. 

= JJ + 1 

Figure 21. Flow Chart of CONSTR_TABLE Procedure 
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TABLEl_SEARCH 
Procedure 

JJ = JJ + 1 

Save Table 1 index, JJ, 
of 1st input teet to 
be checked in AX. 

where SAVE! 
contains Primary Table 
row # of current input 
test. 

JJ = 
N_STMT(SAVEI) 

No 

Figure 22. Flow Chart of TABLEl SEARCH Procedure 
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JJ =AX 

....__--tJJ = JJ + 1 

Figure 22. (Continued) 



TABLE2_SEARCH 
Procedure 

JJ :Ls Tabl.e 2 
row index set in 
ca11:Lng proce
dure. 

Store output var:Labl.e 
1eve1 change :Ln 
var:Labl.e's va1ue 
fiel.d of Standard 
Symbol. Tabl.e. 

Yes 

JJ = SAVEl, where 
SAVEl contains the 
tabl.e :Lndex of the 
ca11:Lng procedure. 

End 

Ca11. 
POLISH_ 

EXEC 

Figure 23. Flow Chart of TABLE2 SEARCH Procedure 
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POLISH_EXEC 
Procedure 

Ree.ul.t = symbol 
table value of 
operand. 

Increment stack 

Update values of 
input variables 
in Standard 
Symbol Table. 

Fetch 1st (next) 
symbol of the Reverse 
Polish expression from 
out out 

Store result in 
symbol table val
ue field of out-

148 

pointer by 1. No 

Store operand 
on top of stack. 

Result = comple
ment of the value 
of the operand. 

Store result on 
top of stack. 

Reeul t = logical 
OR of the two 
elements. 

Figure 24. 

Yes 

Top of stack is 
temporary re
sul.t. 

Result = comple
ment of tempora
ry result. 

Result = logical 
AND of the two 
elements. 

Fetch two 
elements from 
top of stack. 

Get values from symbol 
table for those ele
ments that are 
operands. 

Flow Chart of POLISH EXEC Procedure 
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