
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1972

An asynchronous circuit design language system An asynchronous circuit design language system

Gregory Martin Bednar

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Electrical and Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Bednar, Gregory Martin, "An asynchronous circuit design language system" (1972). Doctoral Dissertations.
194.
https://scholarsmine.mst.edu/doctoral_dissertations/194

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/194?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

AN ASYNCHRONOUS CIRCUIT DESIGN. LANGUAGE SYSTEM

by

GREGORY MARTIN BEDNAR, 1944-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

1972

23?261

T2781
157 pages
c. I

ii

ABSTRACT

This paper presents a system for specifying the behavior of

asynchronous sequential circuits. The system consists of a special

purpose Asynchronous Circuit Design Language (ACDL), a translator and

a flow table generation algorithm. The language includes many special

features which permit quick and precise specification of terminal

behavior. It is best suited for problems originating from a word

description of the circuit's operation. The translator is written

with the XPL Translator Writing System and is a syntax-directed

compilation method. From the translated ACDL specifications, the flow

table algorithm generates a primitive flow table which is the required

input for the conventional synthesis procedures of asynchronous

sequential circuits. A thorough description of the translator and

flow table programs is given in the Appendices. In addition a

number of example problems illustrating the use of ACDL are provided.

iii

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to Dr. James H. Tracey,

not only for his assistance and supervision given me throughout this

project, but also for his personal concern shown me throughout the

pursuit of my degrees. In addition, I extend my thanks to Dr. Tracey

for providing me with the opportunity to work with him under a

National Science Foundation Research Grant.

I would also like to acknowledge Mr. Wayne Omohundro for his

helpful suggestions during this research.

Most of all, I wish to thank my wife, Carol, for her hard work,

understanding, and encouragement rendered during the writing of this

paper and pursuit of my degrees.

TABLE OF CONTENTS

ABSTRACT . . . •

ACKNOWlEDGEMENT

LIST OF ILLUSTRATIONS

LIST OF TABLES • . • •

I • INTRODUCTION

II. ASYNCHRONOUS SEQUENTIAL CIRCUITS

A. The Conventional Design Process

B. Circuit Specification
1. Initial Descriptions
2. Primitive Flow Table
3. Other Methods .

III. A DESCRIPTION OF ACDL •

A. The Definition of a Metalanguage •

B. Vocabulary of ACDL
1. Symbols
2. Constants and Identifiers
3. Relations and Expressions
4. Statement Labels
5. Statements

a. Design Statement
b. Declare Statement . . .
c. Start Statement
d. Transition Statement
e. Link Statement
f. Block Statement
g. Automatic Linking and the List

.

.

. .

.

Page

ii

• • . • iii

. . .

. . .

. . .

. . .

• vii

.

.

.

.

ix

1

4

5

6
6
7
8

10

10

10
10
11
12
14
17
17
17
20
20
21
22

Statement • • • • • • • • • • • • 23
6. Structure of an ACDL Program • • • • 2.5
7. Comments and Translator Control Toggles . 26

C. Sequences ••••• 28

D. Surrnna ry • . • . 29

iv

IV. TRANSLATION AND INTERPRETATION

A. The XPL Translator Writing System (TWS)

B. ACDL Translation ••
1. Internal Form •

C. Primitive Flow Table Construction .

V. DESIGN EXAMPLES •

A. Example 1
B. Example 2
c. Example 3
D. Example 4
E. Example 5
F. Example 6
G. Example 7
H. Example 8

VI. CONCLUSION

BIBLIOGRAPHY .

VITA • . .•

APPENDICES .

A. Description of the Internal Tables
1. Primary Sequence Table •
2. Secondary Table 1 • • • •
3. Secondary Table 2
4. Global Transition Table •••••
5. Constraints Transition Table
6. Standard Symbol Table
7. Special Symbol Table .

B. Use of the Logic Trace Switch "$W"

C. Job Setup •••••••

D. BNF Description of ACDL for the Translator
Writing System ••••.•••.

E. Program Structure

F. Procedure Descriptions •••••••..
1. MAIN PROCEDURE Procedure ••••••
2. INITIALIZATION Procedure •••••••••

Page

32

32

34
34

36

43

43
44
45
46
48
49
50
52

54

56

58

59

59
61
62
63
63
64
64
65

66

68

70

78

84
84
84

v

vi

Page

3. PRINT DATE AND TTME Procedure . 84
4. PRINT TTME Procedure 85
5. SCAN Procedure 85
6. GET CARD Procedure 85
7. CHAR Procedure 85
8. I FORMAT Procedure 85
9. ERROR Procedure . . 85

10. COMPILATION I.DOP Procedure 85
11. STACKING Procedure 86
12. RECOVER Procedure 86
13. RIGHT CONFLICT Procedure 86
14. STACK-DUMP Procedure 86
15. REDUCE Procedure 86
16. PR OK Procedure 87
17. SYNTHESIZE Procedure 87
18. SPEC LOOKUP Procedure 87
19. STD LOOKUP Procedure 88
20. ENDING Procedure 88
21. BEGINNING Procedure 88
22. PAD ZEROS Procedure . 88
23. VARSTORE Procedure 88
24. CONSTR TRAN Procedure 88
25. DEC XFM Procedure 89
26. DC TRAN Procedure 89
27. MULTI TRAN Procedure 89
28. OVAR CHK Procedure 89
29. IVAR-CHK Procedure 89
30. POLISHX Procedure 89
31. CTRAN STORE Procedure 89
32. EXPN Procedure 90
33. PRINT SUMMARY Procedure . 90
34. DUMPIT Procedure 90
35. FLOW TABLE Procedure 90
36. LINKAGE Procedure 90
37. PRIMARY TABLE Procedure 90
38. GLOBAL TABLE Procedure 91
39. CONSTR-TABLE Procedure 91
40. TABLE1 SEARCH Procedure 91
41. TABLE 2-SEARCH Procedure 91
42. POLISH-EXEC Procedure 92
43. OUTPUT FLOW TABLE Procedure . 92
44. PAD Procedure 92

vii

LIST OF ILLUSTRATIONS

Figures Page

1. The Interfacing Characteristics of ACDL . 1

2. Timing Chart 6

3. XPL Translator Writing System 33

4. Flow Chart of the Primitive Flow Table Construction
Algorithm 37

5. Timing Chart Indicating Allowable Sequences for
Example 6 . 49

6. Structure of the ACDL Translator/Interpreter
Program 79

7. Flow Chart of COMPilATION LOOP Procedure 93

8. Flow Chart of SYNTHESIZE Procedure 93

9. Flow Chart of ENDING Procedure 129

10. Flow Chart of BEGINNING Procedure 130

11. Flow Chart of CONSTR TRAN Procedure 131

12. Flow Chart of DEC XFM Procedure 132

13. Flow Chart of DC TRAN Procedure . 133

14. Flow Chart of MULTI TRAN Procedure 134

15. Flow Chart of POLISHX Procedure 135

16. Flow Chart of CTRAN STORE Procedure 136

17. Flow Chart of FLOW TABLE Procedure 137

18. Flow Chart of LINKAGE Procedure . . . 139

19. Flow Chart of PRIMARY TABLE Procedure 140

20. Flow Chart of GLOBAL TABLE Procedure 142

21. Flow Chart of CONSTR TABLE Procedure 144

Figures

22. Flow Chart of TABLEl SEARCH Procedure .

23. Flow Chart of TABLE2 SEARCH Procedure •

24. Flow Chart of POLISH EXEC Procedure .

Page

145

147

148

viii

ix

LIST OF TABLES

Table Page

I. FLOW TABLE •• 4

II. PRIMITIVE FLOW TABLE • 7

III. EXAMPLES OF BOOLEAN EXPRESSIONS 14

IV. SHORTHAND NOTATION FOR RELATION EXPRESSIONS 14

V. EXAMPLES OF THE RELATION EXPRESSION 15

VI. EXAMPLES OF LABELS • • • • 16

VII. EXAMPLES OF THE DESIGN AND DECLARE STATEMENTS 19

VIII. EXAMPLES OF THE TRANSITION STATEMENT 21

IX. EXAMPLES OF LINK STATEMENTS 23

X. EXAMPLES OF THE LIST STATEMENT • 25

XI. COMMENT CONTROL OPTIONS 27

XII. SUMMARY OF ACDL 30

XIII. PARTIAL FLOW TABLE 41

XIV. RESULTING FLOW TABLE FOR EXAMPLE DESIGN 42

XV. PRIMITIVE FLOW TABLE FOR EXAMPLE 1 . 44

XVI. PRIMITIVE FLOW TABLE FOR EXAMPLE 2 44

XVII. PRIMITIVE FLOW TABLE FOR EXAMPLE 3 . 46

XVIII. THREE BIT GRAY CODE 46

XIX. PRIMITIVE FLOW TABLE FOR EXAMPLE 4 47

XX. PRIMITIVE FLOW TABLE FOR EXAMPLE 5 48

XXI. PRIMITIVE FLOW TABLE FOR EXAMPLE 6 . 51

XXII. PRIMITIVE FLOW TABLE FOR EXAMPLE 7 52

XXIII. A TABLE DUMP OF THE INTERNAL FORM FOR EXAMPLE
DESIGN 9 . 59

1

I. INTRODUCTION

A number of synthesis procedures for asynchronous sequential cir-

cuits now exist and many of these have been programmed for computer

application. Although considerable work has been directed toward im-

proving the synthesis procedures, little has been done in interfacing

the user to these procedures.

This dissertation presents an Asynchronous Circuit Design Language

(ACDL) system which interfaces the user to the conventional synthesis

procedures of asynchronous sequential circuits as illustrated in Figure

1. ACDL is a special purpose language used to describe the terminal

behavior of asynchronous sequential circuits. This description is then

translated, and interpreted into a primitive flow table which is the

initial input requirement of the conventional synthesis procedures.

USER

ACDL

INTERFACE

Trans
lat'1r

&
Inter
preter

-
Primi

tive
Flow
Table

Figure 1. The Interfacing Characteristic of ACDL

SYNTPESIS
PROCEDURES

Presently, a few procedures exist for specifying asynchronous se-

quential circuits when the terminal characteristics of the machine are

easily expressed in input/output sequences [1,2]. However, only a

small percentage of the designs are suitable for this type of terminal

description. Hence typically, the designer will hand-construct a

2

primitive flow table from a word statement or mental conception of the

problem. This is not an easy or straightforward task since word state

ments and mental conceptions are informal descriptions of the problem.

After studying the specification problem for some time, it was

decided that a language was needed that had the following three impor

tant characteristics:

l) it should permit ease of expression by coinciding with the

designer's thinking process,

2) it should retain a formal meaning of the circuit description,

3) it should have a structure which would permit relatively easy

automatic translation.

A review of all the well-known digital design languages was made

to determine their applicability to the asynchronous circuit specifi

cation problem [3-9]. In general, it was found that these languages

were intended for networks whose designs could best be described by

functional operations and information transfers between basic hardware

elements such as registers, switches, terminals, memory etc. None of

the above languages were found to satisfy all of the desired character

istics mentioned for specifying the terminal (input/output) behavior of

an asynchronous sequential circuit. Specific drawbacks of these

languages included the inability to assign transition values to vari

ables, the inability to make proper declarations such as ''input con

straints" and the inability to list multiple independent sequence paths

without introducing additional control variables or cluttering the

listing with many "go to" type statements.

ACDL was developed to meet the three important characteristics of

the desired language and to overcome the drawbacks of the digital design

3

languages noted above. This language provides a means to satisfy the

specification problem by enabling the user to express his circuit char

acteristics formally, so the design can be carried out automatically.

4

II. ASYNCHRONOUS SEQUENTIAL CIRCUITS

Sequential circuits whose operation is not synchronized with clock

pulses are called asynchronous sequential circuits. An important ad-

vantage of asynchronous sequential circuits is their ability to respond

to input changes at basic device speed, rather than having to await the

arrival of clocking signals. Also, many small circuits can be designed

more easily and efficiently asychronously because it is not necessary

to build a clock and synchronization circuitry. A further advantage

of asynchronous design is seen in large circuits where signal lines

are long and the skewing effect (difference in path propagation times)

of the distributed clocking signals becomes a serious problem.

The operation of an asynchronous sequential circuit is often de-

scribed by means of a flow table. As shown in Table I, it is a two-

dimensional array consisting of next-state entries with its columns

representing the input states and its rows representing the internal

states of the circuit. The row in which the circuit is currently oper-

ating is often referred to as the present internal state or just the

present state. For example, if the present state of the circuit described

by Table I is 1 and then an input of I 2 is applied, the next state or

state that the circuit will go to is 2.

TABLE I. FLOW TABLE

Input states

Il I2 13

1 ~/0 2 3

Internal 2 1 ~/0 3

States 3 1 4 ~/0
4 1 c;);l 3

5

If a next-state entry is found to be the same as the internal

state representing that row, then the internal state is said to be

stable with respect to that input column and is denoted by a circled

next-state entry. Output states are usually only associated with stable

next states as shown.

An asynchronous circuit is said to be operating in fundamental

mode if the inputs are never changed unless the circuit is in a stable

state. This paper only treats asynchronous circuits operating in funda-

mental mode. Further information on this class of circuits can be found

in references [10] and [11].

A. The Conventional Design Process

The design process for asynchronous circuits can be divided into

two major parts. The first part provides a formal description of the

circuit's behavior such as a flow table. Based upon this formal de-

scription, the second part applies established synthesis techniques to

generate the circuit design equations. These techniques include flow

table reduction, internal-state assignment, hazard elimination and next

state and output equation generation [10,11].

Computer programs have made the synthesis techniques entirely

automated. D. G. Raj-Karne [12] has recently programmed algorithms to

provide either a Unicode Single Transition Time (USTT), Universal Totally

Sequential (UTS) or combination USTT and UTS (Mixed Mode) state assign

ment. A flow table reduction algorithm and an algorithm to generate

the static-hazard-free design equations have been programmed by R. J.

Smith et al. [2,13].

B. Circuit Specification

1. Initial Descriptions

Presently, the most common initial description of a design is the

English-word statement. This is an informal description that must be

reworked into some type of formal description (usually a flow table).

The word statement lacks total preciseness and often reflects uncer-

tainty for many input/output conditions. An example of a typical word

statement description is:

A sequential circuit is to have two inputs A and B and one
output z. Z is to turn on only when B turns on, provided
A is already on. Z is to turn off only when B turns off.
Only one input can change state at a time.

In some designs a word statement may be accompanied by a timing

chart [14,15] to express more explicitly particular input/output se-

quences required of the circuit. The timing chart usually does not

show all possible input/output sequences of the circuit but rather

shows important sequences which may help clarify the word statement.

An example of the timing chart for the above word statement is shown

in Figure 2.

A

B

z

Figure 2. Timing Chart

6

7

2. Primitive Flow Table

In order to make the initial description more precise and appro-

priate for formal manipulation in the conventional synthesis procedures,

the circuit specifications are made in the form of a flow table having

exactly one stable state per row. This special table is called a prim-

itive flow table [10,11,14,15] and is illustrated in Table II for the

word statement description discussed earlier.

TABLE II. PRIMITIVE FLOW TABLE

Internal A B
State 00 01 11 10 z

1 0 2 3 0

2 1 0 4 0

3 1 5 0 0

4 2 Q 3 0

5 6 0 3 1

6 1 0 5 1

In constructing the primitive flow table, first a static situation

corresponding to the initial state of the circuit is defined. This is

usually (but not always) the state where all inputs and outputs are zero

as indicated by stable state 1 in Table II. When operating in the initial

stable state, the remaining next-state entries for row 1 are completed.

Dash entries represent illegal input transitions which are later used

in the synthesis as don't-cares. The dash in row 1 means the input

transition 00 to 11 is illegal which agrees with the word description

constraint of no inputs changing simultaneously. It isn't until state

5 is reached via state 3 that the output is set which concurs with the

word description for setting z.

For practice, the inexperienced reader should verify the remain

ing rows of the flow table. As seen from this example, considerable

thought and time is required to construct the primitive flow table.

3. Other Methods

8

A method of specifying asynchronous circuits using input/output

(I/O) sequences which could be translated into a flow table was devel

oped by Altman [1]. However, the inefficiency of having to repeat long

specification lists of I/O pairs at branch points and the inability to

describe cyclic behavior of indeterminate duration greatly restricts

the use of this method.

By developing a looping and branching technique and enabling the

use of don't-care specifications, Smith [2] extended Altman's method

to satisfy the above deficiencies. Smith's method is based on the

philosophy that independent I/O sequences define submachines or modules;

and when properly interconnected, these modules form the required se

quential circuit. The method was primarily intended for those designs

which originate from a circuit description having a set of I/O sequences

and hence, is too restrictive to be a good, generalized design method.

Since most designs originate from word descriptions or mental concep

tions of an operative nature, listing the set of all independent I/O

sequences for these designs becomes a difficult and confusing task.

A different approach to the synthesis of fundamental-mode asyn

chronous circuits was developed by Chuang [16] and is referred to as

the transition logic synthesis method. In this method a binary level

9

transition of 0 to 1 or 1 to 0 is considered as a pulse, and the reali

zation of the circuit is similar to the standard pulse sequential cir

cuit synthesis method [10]. Since no distinction is made between 0 to

1 and 1 to 0 transitions, the application of this method is limited to

problems such as counters, where the toggling effect of the transition

is of interest rather than the value of the transition's ending state.

The specifications are made into an array called a transition flow table.

Although the table may have fewer states than an equivalent primitive

flow table, the unnatural specification method of flow table construc

tion still exists.

10

III. A DESCRIPTION OF ACDL

This chapter contains a syntactic and semantic description of ACDL.

The description begins with the lowest structural level of symbols and

progresses to the higher structural levels of statements and programs.

A. The Definition of a Metalanguage

To prevent any ambiguities or paradoxes in the definition of ACDL,

a metalanguage which is completely distinguishable from ACDL will be

used in its description. To formalize the definitions in the metalan

guage, each definition is given in the form of a statement or construct,

which is analogous to a formula. The metalanguage employed is Backus

Normal Form (BNF) [17] and consists of the following symbols:

<x> to be read as "the object named x 11

:: = to be read as ''can be formed from"

to be read as "or" (exclusive or)

The metalanguage construct takes on the following meaning: "the

object named in the corner braces may be formed from the objects named

or specified on the right". Concatenation of names or objects is im

plied by the juxtaposition of names or objects in the construct. For

clarity, those characters which are to form part of ACDL and the meta

language symbols will be set in standard type while the names of objects

enclosed in corner braces will be italicized.

B. Vocabulary of ACDL

1. Symbols

The set of symbols used in ACDL are defined as follows:

<letter"-::= AlBIC I .•. IZI/11_1@1$1'

<binary digit>::= Oil

<nonbinary digit>::= 213141516171819

<digit>: : = <binary digit> I <nonbinary digit>

<Special character»: : = " I I I?

<separator>: : = , 1; 1: 1. 1 (I)

<relation symbol>::= =J->1=>

<replacement op >: : = <

<logical op >: : = --. I& I+

11

The relation symbol '->' is the transition symbol and is read as

"makes a transition to", and '=>' is the implication symbol which is

read as "implies that" or "causes". The special characters have special

meanings in ACDL, and each will be explained later in the description

at the place it is used. All other symbols take on their standard

interpretations [3-9], [18].

2. Constants and Identifiers

The rules for constructing constants and identifiers from the

symbols of ACDL are:

<Constant>::= <number>J<level>l<transition>

<number>::= <digit>l<number><digit>

<level>::= <binary digit>

<transition>::= <long transition> !<Short transition>

<long transition>::= 0 ->111->0

<Bhort transition>::= ->lJ->O 1->?

<identifier>::= <letter>l<identifier> C::.Zetter>l<identifier> <digit>

Circuit input variables will take on transition values as well as

level values. In many cases, both the beginning and ending states of

an input transition are important in determining the resulting output

12

level. The transition constant 1 0-)1 1 indicates a transition from 0

to 1. The short transition is a shorthand notation for a long transi

tion constant. For example, 1 -)1 1 and 1 -)0 1 are short for '0-)1 1 and

'1->o', respectively. The short transition '-)?' represents a don't

care transition which essentially says that a transition is to occur

and "you don't care" if it is a 1 0-)1 1 or a 1 1-)0 1 transition. This

shorthand notation is a valuable asset to the user in making quick and

easy specifications.

As in PL/I [18], the identifier may consist of both letters and

digits with the restriction of beginning with a letter. Ideally, ACDL

permits identifiers to be of an arbitrary length. However due to im

plementation restrictions of the current ACDL translator, the length

of an identifier is limited to 256 characters.

3. Relations and Expressions

All expressions in ACDL are logical expressions. There are two

types of logical expressions: the transition relation expressions and

the Boolean variable expressions. The following rules for constructing

these expressions will become more clear as the discussion progresses.

<level relation>::= <identifier>= <level>l<level relation>

& <identifier>= <levez>l(<level relation>)

<transition relation>::= <identifier>= <long transition>

!<identifier> <short transition>

!<transition relation> & <identifier>

=<long transition>l<transition relation>

& <identifier> <short transition>l(<tran

sition relation>)

13

<compound relation>::= <transition r>elat-ton> WHILE <level r>e laLion>

<transition expression>: : = <transition relation> kcompuund Y'e la

tion>l<tr>ansition expression> + <tr>an

sition relation>l<transition expr>ession>

+<compound expression>j<dummy term>l

(<transition expression>)

<dummy term>::= LINKTEST ILK 1 T

<Boolean expression>::= <logical factor>J<Boolean expr>ession>

+ <logical factor>

<logical factor>::= <logical term>l<logical factor> & <logical

ter>m>

<logical term>::= <logical pr>imary> 1...., <logical primarY>

<logical primary>::= <level>l<identifier>I(<Boolean expression>)

Since all expressions are logical quantities, they evaluate to

either of two values; true or false. The level and transition rela

tions become true whenever the values of the identifiers equal the

values of the constants. Similarly, the compound relation becomes true

whenever the transition relation becomes true while the level relation

is true. In circuit terminology this means some variables are to make

a transition while others remain fixed. The dummy term, LINKTEST (LK'T)

serves a special function which is described later in conjunction with

the link statement.

The Boolean expression is the standard logical variable expression

[3-lO],[lSJ. Examples of this Boolean expression are given in Table III.

Free parenthetical form is permitted in Boolean expressions. How

ever, if the order of logical operations is not specified by parenthesis,

then the logical operators are applied in the standard hierarchical order

14

0 f I--. I ' I & I and I+ I [18 J •

TABLE III. EXAMPLES OF BOOLEAN EXPRESSIONS

Expression Explanation

1 logic level 1

A Boolean variable A

Complement of z

(A + B) & C Logical OR of A and B
ANDed with C

-.A + --. B Logical OR of the com-
plements of A and B

Table IV further explains the use of the shorthand transition

notation discussed earlier, and examples of the relation expression

are given in Table v.

TABLE IV. SHORTHAND NOTATION FOR RELATION EXPRESSIONS

Expression Shorthand Notation

X 0 -> 1 X -) 1

X 1 -> 0 X -) 0

(X 0 - > 1) + X -> ?
(X 1 - > 0)

4. Statement Labels

As in all programming languages, labels provide a means to select

statements for execution that do not follow in the listed sequence [3-~

18J. In ACDL there are two different types of labels: standard labels

and output labels. These are further described as follows:

<label>::= <standard label>: l<Output label>:

<Standard label>::= <letter (except Z)>l<Standard label>

<letter>l<standard label> <digit>

Expression

X1- >1

X1- > 1 &
X2->0

X1->l + X2-)0

X1->?

Xl- >? &
X2->?

Xl->1 HHILE
X2 = 1

TABLE V. EXJ0WLES OF THE RELATION EXPRESSION

Read As

X1 makes a transition
to 1

X1 makes a transition
to 1 and X2 makes a
transition to 0
simultaneously

X1 makes a transition
to 1 or X2 makes a
transition to 0

X1 makes a transition

X1 makes a transition
and X2 makes a tran
sition simultaneously

Xl makes a transition
to 1 while X2 equals 1

Logical Meaning

X1 goes from 0 to 1

X1 goes from 0 to 1 and
X2 goes from 1 to 0
simultaneously

Xl goes from 0 to 1 or
X2 goes from 1 to 0

X1 goes from 0 to 1 or
X1 goes from 1 to 0

X1 and X2 go from
00 to 11

or 11 to 00
or 01 to 10
or 10 to 01

Xl goes from 0 to 1
while X2 stays at 1
i.e., inputs X1, X2
go from state 01 to
11

Informal Meaning

Xl turns on
X1 goes up etc.

X1 turns on at the same time
X2 turns off

Xl is to turn on or
X2 is to turn off

X1 changes state i.e. it either
turns on or turns off

X1 and X2 change state
simultaneously

Xl turns on while X2 is
held on

I-'
U1

<output Zabel>::= Z <output code>·! z (<output state set--:-.)

<output state set>::= <output code> I <output state set>, <Output

code>

<output code>::= <binary digit>! <Output code> <f;inary digit:.,!

<output code>/<number>

16

The letter Z is reserved for the beginning character of output

labels, and it is followed by the current output state of the circuit.

Hence, the output label serves two major purposes: 1) it provides the

designer with the value of the present output state at a particular

point in the design sequence; and 2) it indicates the next statement

to be executed from that particular output state. The output state of

the label is followed by a I <number> when it is necessary to distin

guish a previous output label having the same output state. If the I

<number>> is not specified with the output label, the ACDL translator

will assume a default value of 11 for the label. An output label may

also be used to specify multiple output states in cases where the next

statement to be executed is the same for each state.

A standard label is essentially a valid identifier with the re

striction that the first character of the label cannot be the letter

"Z". Examples of standard and output labels are given in Table VI.

TABLE VI. EXAMPLES OF LABELS

Label T~·]~e Examples

Standard FIRST:

Standard $31:

Standard BEGIN HERE:

Output ZOO:

Output Z(OO, 0112, 11):

Output ZllOI3:

17

5. Statements

There are nine types of statements in ACDL. As in PL/I [18], all

statements must be separated by a semicolon; otherwise, they can be

written in free format. Each is described below.

a. Design Statement

A description of the design statement is given below.

<design statement>::= DESIGN I DESIGN <accountinq information>

<accounting information>::= <design number>l<design number>,

<designer's name>l<design number>,

<designer's name>, <date>

<design number>::= <number>

<designer's name>::= <identifier>kdesigner's name> <identifier.>

<date>::= <identifier> <number>, <number>

The design statement indicates the beginning of a new circuit de

sign. The accounting information is optional and may indicate the de

sign number, designer's name and date.

b. Declare Statement

The following is a description of the declare statement.

<declare statement>::= DECLARE<declaration type>l<declare state

ment> <declaration type>

<declaration type>::= <input declaration>)<constraints declaration>

!<output declaration>)<global declaration>

<input declaration>::= INPUTS: <Variable definition>l<input

declaration>, <variable definition>

<Variable definition>::= <identifier>l<identifier> ~initial

condition>

<initial condition>::= (<level>)

<constraints declaration>::= CONSTR: <constraints>

<Constraints>::= NONE]AUS]SIC] <transition expression>

]<level relation>]<constraints>
'

<transition expression>j<constraints>,

<level relation>

<output declaration>::= OUTPUTS: <variable definition>

18

]<output declaration>, <Variable definition>

<global declaration>::= GLOBAL: <list>

<list>::= <automatic link transition statement>l<list>,

<automatic link transition statement>

The input and output declarations indicate the number and names

of the input and output variables required in the design. The initial

condition for each variable may or may not be given. If no initial

value is explicitly shown, then an initial value of zero is assumed by

default.

The constraints declaration indicates those input transitions that

are not allowed. To assist the designer in problems which permit only

single inpul changes, the constraints specification is given by the

mneumonic SIC which stands for "Single Input Change." The mneumonic

AUS means thai. "All Unspecified Sequences" of input transitions, i.e.

those sequences which are not explicitly described in the design, are

not permitted to occur. This constraint is extremely useful in prob

lems where only a specific number of alternative sequences can occur.

Level relation constraints restrict transitions to those input states

which agree with the value of the relation. If there are no input

transition constraints the word "NONE" must be written.

The global declaration is used when there are certain transition

conditions which arise frequently throughout the design and are in

dependent of any particular I/O sequence. Instead of repeating the

transition statement many times in the design specifications, the

statements are listed once in a global declaration. The global list

consists of automatic link transition statements which are discussed

later.

Some examples of the design and declare statements are given in

Table VII.

TABLE VII. EXAMPLES OF THE DESIGN AND DECLARE STATEMENTS

Statement Type

Design

Design

Design

Declare

Declare

DESIGN;

DESIGN 103;

Example

DESIGN 103, JOHN DOE, APR 3, 1972;

DECLARE INPUTS: A,B

CONSTR: SIC,

A=l and B=l

OUTPUTS: Z;

DECLARE INPUTS: Xl(l), X2(0)

19

CONSTR: Xl-)1 WHILE X2=1, X2->l WHILE Xl=l

OUTPUTS: Zl, Z2

GLOBAL: X2-)0=>zl<-O/;

The initial conditions for the input variables are explicitly given in

the example of the second declare statement, while they are left to

default to zero in the first declare statement.

20

c. Start Statement

The start statement is defined as:

<Start statement>::= START

This is always the first statement in the circuit's behavior descrip

tion. Therefore, it acts as the starting point for the design sequences

by invoking the initial I/0 conditions and establishing the initial

state of the machine.

d. Transition Statement

This statement is used to show input transitions and may re

late an input transition to an output change. A description of this

statement is shown below.

<transition statement>::= <basic transition statement>

I <automatic link transition statement>

<basic transition statement>::= <transition expression>

!<transition expression>

=><output change>

<output change>::= <identifier><-<Boolean expression>

l<output change>, <identifier><-

<Boolean expression>

<automatic link transition statement>::= <transition expression>

=> <output change>

<auto lin~>

<auto link>::= 111 <number>

Since the inputs to the circuit change at random, the input transi

tions specified by the transition expression are essentially test con

ditions for particular changes. When the test conditions are satisfied

the specified output change occurs.

21

The slash following the output change is an optional character

used when automatic linking is desired. This concept is explained in

a subsequent section on the list statement. Examples of basic transi-

tion statements are shown in Table VIII.

TABLE VIII. EXAMPLES OF THE TRANSITION STATEMENT

Statement Explanation

A-)1; Input A is to make a transition to 1

A->O=>z<-1; Input A making a transition to 0 implies

(C-)l)+(B-)1)
=)G(-1, R(-{);

that output Z changes to 1 if not already 1

Input C making a transition to 1 or input
B making a transition to 1 causes output
G to be replaced to 1 and R to be replaced
to 0

e. Link Statement

Generally, there will be many sequences of transition state-

ments in a design specification and some subsequences of transition

statements will be common to more than one sequence. Whenever a sub-

sequence leads to two or more sequence paths, as in the case of alter-

nate behaviors at a branch point, it is necessary to make the proper

connection to each of these paths. These connections can be made with

the link statement defined below.

<link statement>::= <link conditional>l<link unconditional>

<link conditional>::= <tests> <branch points>

<tests>::=(<test condition>l<tests>, <test condition>

<test condition>::= <transit1:on expression>l<level relation>

!ELSE

<branch points>::=)<single label> l<hranch points>, <single label>

<single Zabel>::= <standar'd Zabel> lz<output code:>

<"link unconditional>::= LINK <single Zabel>

22

The tests listed in the conditional link statement are the test

conditions of the next transition statement for each new path, re

spectively. The next statement following the test condition for each

path is given by the label corresponding by position to the test con

dition. Multiple output labels are not allowed in the link statement.

This restriction, however, causes no branching limitations. Any state

ment having a multiple output label can be located by any one of its

output states.

Whenever an output change follows a test condition of the LINK,

it is shown as the first statement of the new path. In this case the

dummy term LINKTEST (abbrev. LK'T) is inserted as the transition ex

pression for this transition statement. This implies that the ·same

test condition causing the link also causes the output change.

The link unconditional is the same as a "go to" statement and is

primarily used for branching back to a previously specified statement.

f. Statement Block

Closely associated with the link statement are statement

blocks. A description of the statement block is given below.

<statement bZocl?:>: := <beginning> <statement "list> <ending>

<beginning>::= BEGIN; I <Zabel> BEGIN;

<ending>::= ENDI<ZabeZ> END

Actually the BEGIN and END statements act as separators which serve to

segregate a block of statements from other statements. This block of

statements between a BEGIN and END is called a statement block and can

23

only be entered from a link or list statement. Statement blocks may

be nested within other statement blocks. After a statement block has

been completed, control is transferred to the next statement in the

listing which does not belong to another statement block of the same

nested level. Examples of the link statement and statement blocks are

given in Table IX.

TABLE IX.

Statements

LINK L3;

LINK (B-)l,A-)O)Ll,L2;
Ll BEGIN;

L2

LK'T=)Z <-1;

END;
BEGIN;
C-)1;

END;
B-)0;

LINK(A=l,ELSE)RESET,
CONTINUE;

RESET: A-)0;
CONTINUE: B -)1;

EXAMPLES OF LINK STATEMENTS

Explanation

Link to the statement having the label L3

The 1st test condition transfers control to
statement block Ll where the 1st statement
says that the link test B-)1 causes z<-1.
After the 1st statement block is completed,
control is transferred to the transition
statement B-)0. If none of the Link state
ment test conditions are true for the cur
rent input transition, the sequence will not
advance, but rather will remain at the Link
statement until a test condition becomes
true for some later transition.

If input variable A is currently equal to 1,
then branch to RESET else branch to CONTINUE.

g. Automatic Linking and the List Statement

Earlier it was noted that a slash "/" could follow the output

change of a transition statement, and this slash meant automatic link-

ing. This linking is accomplished by branching to the statement

identified by an output label having the current output state. The

current output state is the state entered after the output change of

the transition statement has ta~en place. Therefore, if automatic

linking is designated with the slash, the designer must ensure that a

unique and correct output label has been assigned to some statement.

To distinguish between output states having the same value, but occur

at different points in the sequence, the designer follows the slash

with a digit which must agree with the trailing digit of the correct

output state label. Again if no digit is specified after the slash,

a default value of l is assumed.

24

Automatic linking saves the designer having to explicitly specify

a link statement and hence, improves the clarity of the specification

listing. It was the automatic linking feature which led to the devel

opment of the list statement defined as:

<list statement.>::= LIST <list.>

<list>::= <automatic link transition statement.>[<list.>,

<automatic link transition statement.>

The list statement is a special purpose link statement in which

all test conditions lead directly to an output change. It does not

specify an executable sequence of transition statements, but: rather,

it is a set of statements from which only one is selected and executed.

The test conditions of all automatic link transition statements in the

list are scanned concurrently, and only one test condition may be true

at a time. When a test condition becomes true, its corresponding out

put change indicates the next statement in the sequence via automatic

linking. The transition statements within a LIST statement are separ

ated by commas, while the end of the list is indicated by the LIST

statement's semicolon. Some examples of the list statement are given

in Table X.

TABLE X. EXAMPLES OF THE LIST STATEMENT

Example Explanation

ZOO: LIST
Xl-)1 =) Zl<-1 /,
X2-)l =) Z2<-l /;

In the list statement either of the two

listed input transitions can occur. If

Xl-)1 then an automatic link is made to

25

ZlO: X2-)l; the statement having the output label ZlO.

ZOl: Xl->1;

ZlO: LIST
A->o => Zl<-O,

zz<-1 /2,
B-)1 =) Z2<-l /;

2(01,11): B-)0;

ZOl/2: B-)1 WHILE A=l;

Similarly, if X2-)l is true, then a branch

will be made to ZOl upon completion of the

output change Z2<-1.

If the first test condition A-)0 occurs, a

link will automatically be made to Z01/2.

If the second test condition B-)1 occurs,

a link will be made to the transition state-

ment B-)0 since Zll is contained in the

multiple output label Z(OO,ll).

6. Structure of an ACDL Program

Now that the statements have been defined, it is worth examining

the overall structure of a program.

<progrcr:ni>: := <program head> <statement list> <ending>.

<program head>::= <design statement>; <declare statement>;

<start statement>;

<statement list>::= <statement>l<statement list> <statement>

<statement>::= <basic statement>l<statement block>;

26

<basic statement>::= <transition statement>;l<link statement>;

!<list statement>;l<label> <basic statement>

It is seen that the program ending also uses the word END. In

this case END is followed by a period rather than a semicolon. The

period signifies the end of the design as opposed to the end of a

statement block. All links to this ending will indicate the end of

certain sequences within the specifications.

The statements which make up the program head must be listed in

the order shown. These statements are not part of the input/output

behavior of the design, but rather provide basic information about the

design. For this reason labels are not assigned to statements in the

program head.

7. Comments and Translator Control Toggles

Comments are defined as follows:

<comment>: : = "<almost anything>"

<almost anything>::= <any string of valid system 360 characters

that does not contain a " >

Comments help explain the program to persons reading it and are

normally ignored by the translator. They do not result in the produc

tion of any translated text and they may be inserted any place a blank

is allowed.

27

There is one case in which comments are not ignored. They may

serve the special function of specifying control options which designate

how the program is to be treated. For instance, a control option to

perform and output a logic trace during the translation and/or execu-

tion of a program can be specified. A $ within a comment specifies

that the next character is a control character. The valid control

characters in ACDL are given in Table XI. Each control character acts

as a toggle which can have the value of true or false. When $<chaYL

acter> is encountered by the translator, the value of the correspond-

ing toggle is complemented. Therefore at the point where "$W" is first

specified, the logic trace will be turned on, and will remain on until

another "$W" is encountered which causes the trace to turn off. A

more detailed description and use of the logic trace is given in Ap-

pendix B.

TABLE XI. COMMENT CONTROL OPTIONS

Character Control Option

D

L

T

u

w

Print translation statistics, sequence tables and symbol
tables at end of translation (Initially disabled)

List the source program (Initially enabled)*

Begin a machine code trace of the ACDL translator and
interpreter (Initially disabled)*

Terminate the machine code trace of the ACDL translator
and interpreter (Initially disabled)*

Begin high level trace of translation and execution
(Initially disabled)

Set Margin. The portion of succeeding cards starting
from the column containing the I will be ignored.*

*These options were already a part of the XPL system (See reference [17]).

28

C. Sequences

Statements in ACDL are executed in the sequential order in which

they are listed, except when the physical sequence is interrupted by

branching which results from explicit or automatic linking. The rules

for interpreting sequences written in ACDL are:

1) In a test condition of an ACDL statement, any undesignated in

put variables are considered as don't-cares in the specified

input state transition.

2) The sequence will advance to the next statement for any input

state transition which agrees with a test condition of the

current statement.

3) The sequence remains quiescent (i.e. does not move) for any

input state transition which does not agree with a test con

dition of the current statement.

Before the designer can efficiently use ACDL, some idea as to what

information is necessary for correctly specifying the operation of the

sequential circuit is required.

Definition: A set of minimum length sequences of input states

which cause the next output change and starts from the I/0 state re

sulting from the previous output change is called a critical event.

A critical event may be an incompletely specified sequence i.e.,

a sequence which contains don't-care variables in some states. In this

case the critical event will actually represent more than one possible

sequence resulting from the random changing of the don't-care variables.

However, any intermediate states that are introduced by the don't-care

variables will not affect the integrity of the critical event, i.e.,

these states neither cause an output change nor destroy any past his

tory of the critical event.

29

The designer must specify in ACDL all critical events of the cir

cuit. This is done by starting from the initial state of the circuit

and listing the critical events which cause the first output changes.

Continuing from these points in the sequences all subsequent critical

events which cause further output changes are listed. The tree pro

cess is continued until the critical events for all possible output

changes have been listed.

Definition: A proposition of the design is a word statement (or

mental conception) which implies one or more critical events.

From the design propositions, the designer should be able to form

ally specify the critical events in ACDL. Likewise from the ACDL spec-

ifications, the propositions should be easily determined. Examples of

various types of circuit designs in ACDL are given in Chapter V.

D. Summary

Table XII summarizes the statements available in ACDL.

Statement

Design

Declare

Start

Transition

TABLE XII. Sill!NARY OF ACDL

General Format Description

DESIGN

DEClARE
INPUTS:

CONSTR:

OUTPUT:

GLOBAL:

START;

optional accounting information
of design 11=, designer's name,
and date;

input names with or without
initial conditions
keywords, level expressions
or transition expression
constraints
output names with or without
initial conditions
list of automatic link
transition statements;

input transition; (e.g. X->1;)
or
input transition=>output change with or

without automatic linking specified;
(e.g. X->l=>z<-1;)

Use

Begins ACDL program

Defines all input
variables, output
variables, constraint
transitions and global
transitions of the
design.

The entry point of the
sequence specifications.

Expresses the I/0
relationships of the
critical events of the
design.

w
0

Link

Statement
block

List

Program
end

Connnent

TABLE XII. (Continued)

LINK (test condition list) label list;

BEGIN ;
statement list
END ;

LIST

END.

followed by a list of automatic
link transition statements;

"any valid character string"

For branching in ACDL,
where the test condition
is an input level or
transition test, causing
a branch to the
corresponding label.

For listing independent
sequence paths resulting
from a link or list
statement.

For branching when all
test conditions lead
directly to an output
change.

Designates the end of the
sequence specifications
and end of the design.

For clarification
purposes and specifying
control toggles.

w
1-'

32

IV. TRANSLATION AND INTERPRETATION

After the design has been specified in ACDL, a translation process

is needed to convert the specifications into appropriate intermediate

text. The intermediate text is then interpreted to produce a primitive

flow table as the final output.

The translator and interpreter (flow table construction algorithm)

is written in XPL, a special purpose translator writing language devel

oped by McKeeman et al. [17]. A brief description of the XPL system

follows.

A. The XPL Translator Writing System (TWS)

A diagram of the translator writing system provided with XPL is

shown in Figure 3. The major components included in the system are:

l) a gratnmar analyzer (ANALYZER)

2) a proto-compiler (SKELETON) and

3) The XPL compiler (XCOM).

ANALYZER [17] is a program which reads the BNF grammar describing the

syntax of the user's language, determines whether it is acceptable to

the parsing algorithm and constructs parsing decision tables for that

algorithm. SKELETON [17], which is written in XPL, provides the basic

framework of the user's compiler such as, the routines for scanning,

input and parse-stack maintenance. XCOM [17] is the compiler for the

XPL language, and produces a System 360 machine language object program.

Depending on the amount of information supplied to TWS, the sys

tem will produce either a syntax checker, a translator or a combined

translator/interpreter. If the user supplies only a syntax description

(grammar) of his language in BNF, the resulting ANALYZER output deck

/
/

User
Supplied

I

I

I
I

I

+

~
I '

Syntax in
BNF

" ~

7

v

-

Semantics
in XPL

... BNF
Ill"'

ANALYZER

...... ...,..

/

Interpreter
in XPL

I
I

I

I

+

,.l-- -1
I I I

I I I
1 1 1)

I

I
I I

I
I

SKELETON
I

I

Compiler in
XPL

+

I
I

/ I
/

ANALYZER
Output

I

Figure 3. XPL Translator Writing System

XPL
Compiler

(XCOM)

w
w

34

and the SKELETON deck produce a syntax checker for the language. If

the semantic description of his language (written in XPL) is also in

serted into the SKELETON deck, the system will produce a translator.

If in addition to the syntax and semantic descriptions, an interpreter

is written in XPL and is placed behind the SKELETON deck, the system

produces a combined translator/interpreter.

illustrated in Figure 3.

It is this case which is

An important advantage of TWS is the ease in which changes to the

user's language can be made. Only the syntactic definition and seman

tic description corresponding to the language change are updated in the

translator. A detailed description of the current syntactic definition

(BNF grammar) and semantic routines of ACDL has been provided in Appen

dix D and Appendices E and F, respectively. Appendix C lists the job

setup requirements for making a computer run to update the ACDL trans

lator and the job setup for running a standard ACDL program.

B. ACDL Translation

From the syntax of a language, the translator knows what type of

symbols are expected at every point in a language statement. The se

mantic routines then determine what action is to be taKen, if any, when

these symbols are encountered. They also generate internal data-struc

tures which hold the results of the translation. These data-structures

are referred to as the internal form or intermediate text. A descrip

tion of the internal form used in the ACDL translation follows.

1. Internal Form

The internal form of the ACDL translator consists of tables which

can be dumped at the end of the translation (see Table XI). The tables

35

contain input/output sequence data as well as symbol information. As

a means to increase program execution time, all input states are handled

internally and recorded in the tables as decimal weights rather than

as binary strings.

The main table used to hold the I/0 sequence information is called

the Primary Sequence Table. It stores the translated form of the state-

ments making up the critical sequences of the design. The first row

of the table is assigned to the START statement, with subsequent rows

being assigned to each transition statement and each test condition of

a link statement. Input and output secondary tables act as backup for

the primary sequence table when statements have more than one input

test or output change respectively. This technique of table organiza

tion saves storage since the secondary tables do not require all the

fields that are needed in the primary table.

A special table called the Global Transition Table holds the in

formation from the globally declared transition statements. The struc

ture of this table is similar to the primary sequence table, and also

uses the two secondary tables as backup tables. However, the Global

Table functions differently in that all its input tests are queried

continuously throughout the design.

The Constraint Transition Table records those input transitions

that have been explicitly declared as input constraints. Restricted

input transitions resulting from the SIC or AUS declaration are not

recorded in this table because violations of these conditions are detect

ed in an algorithmic manner. The constraint table does not use any

backup tables. All restricted transitions are stored in sequential

order in the table and are checked before examining any other tables.

36

The ACDL translation makes use of two separate symbol tables. One

table is a standard symbol table used to record input, output and label

names and their corresponding attributes. The other table is a special

symbol table used to store output labels and statement pointers for

automatic linking. Since only one table has to be searched for a par

ticular operation, the two-table organization provides efficient sym

bol information retrieval and is especially advantageous in the auto

matic linking process.

A detailed description of the above tables and their corresponding

fields is given in Appendix A. The appendix also includes an example

program and corresponding table dump.

Another feature of the internal form is the handling of the Boolean

output expressions. These expressions are converted from standard in-

fix form to Reverse Polish form. The Reverse Polish form is stored in

and executed from a single-dimensioned array. Special terminators are

also stored in the array to indicate the beginning and end of an ex-

pression. For easy and rapid manipulation, the operators and operands

are represented by their precedent values and symbol table indexes,

respectively. For this reason, the Polish array was not included in

the dump. However, the array is printed out whenever the logic trace

is specified.

C. Primitive Flow Table Construction

Once the translation process has been completed, the interpreta-

tion process begins. Here the interpreter is an algorithm to construct

a primitive flow table from the tables of the internal form. A flow

chart describing the basic philosophy of the flow table algorithm is

given in Figure 4.

Go to 1st
:Lnput
col.WDn.

Next state
= stab1e
state.

Go to next
:Lnput
col.umn.

No

Det:Lne :1.n1.t.
1------ll:;..._--i state and re

cord :Lte
attributes.

state =
don't care.

Increment
present state
row number.

Sequence
advances.

Next state =
thi.e state.

.....__ __ p~·

Sequence
remains
qui.escent.

Def:Lne new
state and re-
cord :1.ts
attributes.

37

Figure 4. Flow Chart of the Primitive Flow Table Construction Algorithm

38

In addition to the output state, the flow table algorithm assigns

input and sequence attributes to each row of the flow table. Each at

tribute has its own function in the flow table construction algorithm.

The sequence attribute is an index which points to the statement in

the Primary Sequence Table that is tested during the construction of

the corresponding flow table row. It essentially keeps track of a flow

table state's position in the design sequence. The input attribute

contains the input state for which the corresponding flow table row is

stable. Input transitions for a flow table row are simulated by using

the input attribute as the beginning state and the column inputs as the

ending states. This permits the computation of next-state entries to

be conducted in an orderly manner with stable entries being recognized

whenever the input attribute equals a column state.

To help understand the flow table algorithm, the following example

problem [14] will be considered:

Design a circuit which has two inputs, OSC and BTN, and one out

put, z. The input OSC is the output of a square wave oscillator,

and BTN is a button which, when depressed, gates one and only

one full width oscillator pulse to the output. If the button

is depressed for too short of time, a pulse will not occur at

the output. An output pulse can occur only if the button de

pression overlaps the leading edge of an oscillator pulse. The

inputs cannot change simultaneously.

The ACDL program for this design is:

39

DESIGN 1, JOHN BROWN, SEP 27, 1972;

DECLARE

INPUTS: osc, BTN

CONSTR: SIC

OUTPUTS: Z;
Seq .4fo

0 START;

1 L2: BTN-)1;

2 LINK (OSC-)1,

3 BTN-)0) Ll, L2;

4 Ll: LK'T=>z<-1;

5 osc->o=>z <-o;

6 END.

To simulate the internal form, the sequence numbers assigned to the

statements in the above program correspond to the row indices of the

Primary Sequence Table in which their translated form is stored. The

start statement has the sequence number 0, because the Primary Sequence

Table begins at index 0. The sequence numbers of the above progran1

also relate to the sequence number attribute of each flow table row.

The first step in the algorithm is to define the initial state of

the circuit. Since the start statement is responsible for setting up

the initial conditions, this information is retrieved from row 0 of

the Primary Sequence Table and assigned to the attributes of the first

flow table row. At this point in the construction, the partial flow

table resembles Table XIII (a) . The sequence number attribute of flow

table row 1 corresponds to the sequence number of the next statement

to be executed in the ACDL program.

40

The next step is to compute next-state entries for row 1 of the

flow table. The next state for the first input column is stable since

the input attribute equals this input column. For the next input

column, the first three input tests of the algorithm failed and the

critical transition test is performed. For this test, the flow table

transition, 00 to 01, is compared to the test condition, BTN-)1, which

is pointed to by the sequence attribute of 1. The test condition

agrees with the flow table transition; therefore, the sequence advances.

Since there is no previously defined state with correct attributes (i.e.

Seq #=2, I=Ol, z=O), the new state 2 is defined as shown in Table XIII (b).

The next input column implies the transition 00 to 10. Again the

first three input tests failed, and since the flow table transition

does not agree with the specified transition BTN-)1, the critical trans

ition test also fails. Therefore the sequence remains quiescent, and

the next state retains the same sequence number and output state attri

butes as the present state. A new state 3 is defined because there is

no previously defined state with the required attributes.

The last input column implies the transition 00 to 11, which will

be detected by the constraint transition test as an illegal transition.

A don't care will be entered in this column and row 1 is complete as

shown in Table XIII (c). The algorithm moves to the next incomplete

flow table row which is row 2 in this example and repeats the same

procedure.

After all flow Lable rows are complete, the algorithm will termin-

ate and produce the resulting flow table shown in TableXIV. From this

table it is observed neither the sequence attribute 4 nor 6 is associ

ated with any of the flow table rows. This is due to a property of

41

the algorithm which advances the sequence through non-active test con-

ditions such as LK'T, BEGIN, END and ELSE. The reader should now be

able to verify the remaining flow table rows.

Attributes
Seq1fo _L

1 00

Attributes
Seq# _I_

1 00

2 01

Attributes
Seq1fo I

1 00

2 01

1 10

TABLE XIII. PARTIAL FLOW TABLE

Present
State

1

OSC BTN
00 01 10

(a) Definition of the Initial State

Present osc BTN
State 00 01 10

1 G) 2

2

(b) Definition of State 2

Present osc BTN
State 00 01 10

1 G) 2 3

2

3

(c) Completion of Row 1

11

0

11 z

0

0

11 z

0

0

0

An important feature of the algorithm is its ability to distin-

guish different states having the same input/output attributes. As

seen from states 2 and 6 in Table XIV, it is the sequence attribute

which provides this distinction.

To simplify the explanation of the flow table construction

algorithm the previous example was performed without converting to

internal form. Since the internal form is only a translated description

42

of the ACDL statement, it should be clear that the same philosophy

will apply. A more detailed description of the flow table procedures

as they utilize the internal form is given in the flow charts of

Appendix F.

TABLE XIV. RESULTING FLOW TABLE FOR EXAMPLE DESIGN

Attributes Present osc BTN
Seq11 I State 00 01 10 11 z

1 00 1 G) 2 3 0

2 01 2 1 0 4 0

1 10 3 1 G) 5 0

5 11 4 6 7 G) 1

2 11 5 2 3 G) 0

1 01 6 1 0 8 0

5 10 7 1 G) 4 1

1 11 8 6 3 0 0

43

V. DESIGN EXAMPLES

This chapter is included to help the user become familiar with

the ACDL specification process. It is felt this could best be accomp-

lished by providing a set of example problems which illustrate the dif-

ferent features of the language. In each example a word description

of the design is given. A reference number after the word description

indicates the source from which the example was selected. The ACDL

program and the primitive flow table follow each word description. All

flow tables have been generated automatically from the ACDL descriptions.

Due to its large size (78 rows by 8 columns), the flow table for ex-

ample 8 is not shown.

A. Example 1

Design a Bounce Eliminator for a two position switch. The output

state of the eliminator circuit is to indicate the desired position of

the switch regardless of any contact bouncing which may occur when the

switch is initially moved. It is assumed that the switch cannot bounce

back far enough to contact the other position ~9] .

The ACDL Design is:

DESIGN 1 "BOUNCE ELIMINATOR";
DECLARE

INPUTS: A(l), B(O)
CONSTR: A=l & B=l
OUTPUTS: Z;

START;
B->1 => z<-1;
A->1 => z<-o;
END.

44

TABLE XV. PRIMITIVE FLOW TABLE FOR EXAMPLE 1

Present A B
State 00 01 10 11 z

1 2 3 CD 0

2 G) 3 1 0

3 4 G) 1 1

4 G 3 1 1

B. Example 2

Design a fundamental mode sequential circuit with two inputs Xl

and X2. The single output Z is to be 1 only when Xl,X2=01 provided

that this is the fourth of a sequence of input combinations 00, 10, 11,

01. Otherwise, Z=O. Both inputs will not change simultaneously [19].

The ACDL Design is:

DESIGN 2, JOHN BROWN, SEP 25, 197 2;
DECLARE

INPUTS: Xl, X2
CONSTR: SIC
OUTPUTS: z·

' START;
Ll: Xl-)1 WHILE X2=0;

LINK(X2-)l, Xl->O) L3, Ll;
L3: LINK(Xl-)0, X2-)0) L4, Ll;
L4: LK'T => z<-1;

(Xl->?) + (X2-)?) => z<-o;
END.

TABLE XVI. PRIMITIVE FLOW TABLE FOR EXAMPLE 2

Present Xl X2
State 00 01 10 11 z

1 1 2 3 0

2 1 0 4 0

3 1 0 5 0

4 2 6 ffi 0

5 7 6 0

6 1 0 4 0

7 1 G) 4 1

45

C. Example 3

A circuit is to be designed in which two push buttons A and B

control the lighting of two lamps G and R. Whenever both push buttons

are released, neither lamp is to be lit. Starting with both buttons

released, the operation of either button causes lamp G to light. Oper-

ation of the other button, with the first button still held down,

causes lamp R to light. Henceforth, as long as either button remains

operated, the button which first caused lamp R to light controls lamp

R--causing it to extinguish when the button is released and to light

when the button is operated. The other button controls lamp G in the

same fashion. It is not possible to operate or release both buttons

simultaneously [10].

The ACDL Design is:

zoo:

ZlO:
Zll:

ZOl:
Zl0/2:
Zll/2:

ZOll2:

DESIGN 3;
DECLARE

INPUTS:
CONSTR:
OUTPUTS:
GLOBAL:

START;
LIST

A,B
SIC
G,R
(A-)0 WHILE B=O) + (B-)0 WHILE A=O)
=> G(-0' R<-O I;

A->1 => G<-1 /,
B-)1 => G(-1 12;

B-)1 => R(-1 I;
LIST

A->o => G<-o I,
B->o => R<-o I;

A->1 => G(-1 I;
A->1 => R(-1 12;
LIST

A-)0 => R(-0 /2,
B-)0 => G(-0 /2;

B-)1 => G(-1 12;
END.

46

TABLE XVII. PRIMITIVE FLOW TABLE FOR EXAMPLE 3

Present A B
State 00 01 10 11 GR

1 G) 2 3 00

2 1 G) 4 10

3 1 G) 5 10

4 2 6 G) 11

5 7 3 G) 11

6 1 0 4 01

7 1 G) 5 01

D. Example 4

Design an asynchronous 3-bit Gray Code counter which has one input

X and 3 outputs, Zl, Z2, Z3. The counter is to count as indicated in

Table 18 [20].

TABLE XVIII. THREE BIT GRAY CODE

Count Z1 Z2 Z3

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

5 1 1 1

6 1 0 1

7 1 0 0

47

The ACDL Design is:

"GRAY CODE COUNTER"
DESIGN 4;
DECLARE

INPUTS: X
CONSTR: NONE
OUTPUTS: Z1, Z2, Z3;

START;
Z(OOO, 011, 110, 101): x->1=>z3<- -.z3/;
Z(001, 111): x->1=>z2<- -.z2/;
Z(010, 100): X-)1=)Z1<- -.z1/;

END.

TABLE XIX. PRIMITIVE FLOW TABLE FOR EXAMPLE 4

Present X
State 0 1 Z1 Z2 Z3

1 G) 2 0 0 0

2 3 0 0 0 1

3 G 4 0 0 1

4 5 Q 0 1 1

5 0 6 0 1 1

6 7 0 0 1 0

7 G) 8 0 1 0

8 9 0 1 1 0

9 G) 10 1 1 0

10 11 @ 1 1 1

11 @ 12 1 1 1

12 13 @ 1 0 1

13 @ 14 1 0 1

14 15 @ 1 0 0

15 @ 16 1 0 0

16 1 @ 0 0 0

48

E. Example 5

The timing signal Xl alternates between being off for 60 seconds

(Xl=O) and on for 30 seconds (Xl=l). The only time Route 1 traffic

can see a red light, a condition designated by z=l, is during an inter-

val in which Xl=l. Only at the start of an Xl=l interval can Z go on,

and once on, it must remain on for the full interval. If a car on

Crumb Road actuates a switch, a condition designated by X2=1 (when no

car is over such a switch X2=0), while z=O, then Z should go on the

next time Xl goes on [11].

The ACDL Design is:

DESIGN 5;
DECLARE

INPUTS:
CONSTR:
OUTPUTS:

START;
X2-)l;

Ll: Xl-)l=)Z(-1;
Xl-)0=) Z(-0;

Xl, X2
NONE
Z;

LINK(X2=1, ELSE) Ll, L2;
L2: END.

TABLE XX. PRIMITIVE FLOW TABLE FOR EXAMPLE 5

Present Xl X2
State 00 01 10 11 z

1 G) 2 3 4 0

2 5 G) 6 7 0

3 1 2 G) 4 0

4 5 2 8 0 0

5 G) 2 6 7 0

6 9 10 0 7 1

7 9 10 6 G 1

8 5 2 G) 4 0

9 G) 2 3 4 0

10 5 @ 6 7 0

49

F. Example 6

Design an asynchronous sequential circuit for which only the four

alternative sequences shown in the timing chart of Figure 5 can occur[l~.

1 2 3 4 5 6 7
Xl
X2
X3
Zl
Z2

Xl
X2
X3
Zl
Z2

Xl
X2
X3
Zl
Z2

Xl
X2
X3
Zl
Z2

Figure 5. Timing Chart Indicating Allowable Sequences for Example 6

The ACDL Design is:

DESIGN 6;
DECLARE INPUTS: Xl, X2, X3

CONSTR: AUS
OUTPUTS: Zl, Z2;

START;
LINK(Xl-)l,X3-)l)Ll, L2;

Ll: BEGIN;
LINK(X2-)l, X3-)l)L3, L4;

L3: BEGIN;
X3-) 1 =) Z 1 <- 1 ;
X3-)0 =) Z 1 < -0 ;
X2-)0;
END;

L4: BEGIN;

Xl-)0;
END;

L2: BEGIN;

xz->l=>zz < -1;
X2-)0=)Z2 < -o;
X3-)0;
END;

LINK(Xl-)1, X2->l)L5, L6;
L5: BEGIN;

X2-)l=)Zl < -1;
xz->o=>zl<-o;
Xl-)0;
END;

L6: BEGIN;

X3 -)0;
END;
END.

G. Example 7

Xl-)1=)22(-1;
xl->O=> zz<-o;
X2-)0;
END;

50

Design an asynchronous version of a clamp-gate circuit. The cir-

cuit has two serial inputs X and Y and an output z. The characteris-

tics are such that Z is made equal to the present value of X if Y=l,

or to the previous value of X if Y=O [20].

The ACDL Design is:

DESIGN 7 "CLAMP-GATE CIRCUIT";
DECLARE INPUTS: X,Y

START;

CONSTR: NONE
OUTPUTS: z;

LINK(Y-)? WHILE X =0 + Y-)? WHILE X=l, X-)?)Ll, L2;
Ll: BEGIN;

LK'T =) z<-X;
END;

L2: BEGIN;
LK'T => z<-(Y&X) + (~Y&~X);
END;
END.

TABLE XXI.

Present X1 X2 X3
State 000 001 010

1 I G) 2 -
2 I - 0 -
3 I - - -
4 I - - -
5 I - - -
6 I - - -
7 I - - -
8 - - -
9 - - -

10 - - -
11 - - -
12 I - 16 -
13 I - 16 -
14 I - - -
15 I - - -
16 I 1 @ -
17 I 1 - -

PRIMITIVE FLOW TABLE FOR EXAMPLE 6

011 100 101 110

- 3 - -
4 - 5 -
- G) 6 7

0 - - -
- - G) -
- - 0 -
- - - 0

12 - - -
- - 13 -
- - 14 -
- - - 15

@ - - -
- - ~ -
- 17 -4

- 17 - @
- - - -
- @ - -

111

-
-
-
8

9

10

11

l8J

(9)

~ 1

-
-
-
-
-
-

Z1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

Z2

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

V1
I-'

52

TABLE XXII. PRIMITIVE FLOW TABLE FOR EXAMPLE 7

Present X y
State 00 01 10 11 z

1 G) 2 3 4 0

2 1 G) 3 4 0

3 5 2 G) 4 0

4 5 2 6 0 1

5 G) 2 3 4 1

6 5 2 0 4 1

H. Example 8

Design an asynchronous circuit which has 3 inputs A, B, and C and

two outputs Zl and Z2 and operates according to the following descrip-

tion. If C turns on Zl goes on, or if A turns on Z2 goes on, provided

B has turned on first in either case. However, B is not required to

remain on until A or C turn on. Zl and Z2 turn off whenever C and A

turn off, respectively. Only single input changes are permitted.

The ACDL Design is:

DESIGN 8;
DEClARE INPUTS: A, B, C

CONSTR: SIC
OUTPUTS: Zl, Z2;

START;
ZOO: B->1;
Sl: LIST

Z10:

ZOOI2:
Ll:

c->1 => zl<-1 1,
A->1 => zz<-1 I;

LIST
c->o => z1 <-o I'
A->1 => Z2(-1 I;

LINK (A->1, B-)l)Ll,
LK'T => zz<-1 12;

s 1;

Z01/2: LINK (A-)0, B-)1)L2, S1;
L2: LK'T => Z2(-0 /;

Z11: LIST
c->o => z1<-o /2,
A->O => Z2(-0 /2;

Z10/2: LINK(C-)0, B-)1)L3,S1;
L3: LK'T => Z1(-0 /;

Z01: LIST
c->1 => z1<-1 /,
A->O => 22(-0 /3;

Z00/3: LINK(C-)1, B->1)L4, S1;
L4: LK'T => Zl(-1 /2;

E~.

As noted earlier, this example produces a 78 row primitive flow

table which is not reproduced here.

53

54

VI. CONCLUSION

ACDL has proven to be a flexible system for specifying the ter

minal behavior of asynchronous circuits in terms of its problem ver

satility which includes designs originating from word descriptions or

I/0 sequences and other designs such as switches, flip-flops, counters

etc. It is, however, best suited for problems originating from a word

description of the circuit's operation since it was this type of prob

lem which motivated the development of the language. Problems origin

ating from I/0 sequences are specified easily, but somewhat less nat

urally, then with the I/0 sequence methods of Smith [2] and Altman [1].

The I/0 sequences have to be converted to the ACDL transition statements

as opposed to a direct listing.

In many problems, the critical event philosophy of listing only

minimum sequences of input changes which cause output changes, greatly

reduces the amount of information needed for specification. This fea

ture may enable the designer to handle some large problems, but usually

the exponential rate of increase of input states and therefore input

sequences makes the problem too cumbersome. For this reason, the pre

sent implementation of the language is limited to six input variables,

but this could easily be extended if necessary.

ACDL has also shown to be an efficient system in terms of computer

and user specification times. As an indication of program execution

time, the 78 row flow table which was generated for Example 8 of Chap

ter v, took only 6 seconds of CPU time. The byte storage capability

of XPL permits efficient memory utilization of 120K bytes. User speci

fication is easier and saves time compared to constructing the

primitive flow table by hand. Also a problem can be designed in dif

ferent ways by using the various features available in ACDL.

The ACDL system was tested with many examples including those

given in Chapter V. The examples tested were an attempt to use every

feature of the language to verify the correctness of the flow table

generation algorithm. Correct flow tables were produced for every

example tested.

55

Further research in the area of this dissertation may be directed

toward:

1) the addition of pulse-mode design to the ACDL system,

2) the capability to connect previously designed networks to a

current design by a library call technique and

3) the interconnection of the ACDL system with the available

synthesis techniques to permit complete automated design.

56

BIBLIOGRAPHY

1. R. A. Altman, "The Computer Aided Generation of Flow Tables for
Asynchronous Sequential Circuits," Masters Thesis, University
of Missouri-Rolla, 1968.

2. R. J. Smith II, "Synthesis Heuristics For Large Asynchronous
Sequential Circuits," Ph. D. Dissertation, University of
Missouri-Rolla, 1970.

3. T. C. Bartee, I. L. Lebow, and I. S. Reed, Theory~ Design of
Digital Machines, New York: McGraw-Hill, P. 324, 1962.

4. H. Schorr, "Computer-Aided Digital System Design and Analysis
Using a Register Transfer Language," IEEE Transactions on
Electronic Computers, Vol. EC-13, pp. 730-737, December 1964.

5. Y. Chu, "An ALGOL-like Computer Design Language," Comnrunications
of the ACM, Vol. 8, pp. 607-615, October 1965.

6. K. E. Iverson, A Programming Language, New York: John Wiley and
Sons, 1962.

7. J. R. Duley and D. L. Dietmeyer, "A Digital System Design
Language (DDL)," IEEE Transactions on Electronic Computers, Vol.
C-17, pp. 850-861, September 1968.

8. D. M. Rouse, "A Design Oriented Digital Design Language,"
Masters Thesis, University of Missouri-Rolla, 1969.

9. C. G. Bell and A. Newell, Computer Structures: Readings and
Examples, New York: McGraw-Hill, Inc., 1971.

10. E. J. McCluskey, Introduction to the Theory of Switching Circuits,
New York: McGraw-Hill, Inc., 1965.

11. S. H. Unger, Asynchronous Sequential Switching Circuits, New
York: John Wiley and Sons, Inc., 1969.

12. D. G. Raj-Karne, "A Method for Generating a UTS Assignment with
An Iterative State Transition Algorithm," Ph. D. Dissertation,
University of Missouri-Rolla, Expected Completion Date, 1972.

13. R. J. Smith, J. H. Tracey, W. L. Schoeffel, and G. K. Maki,
"Automation in the Design of Asynchronous Sequential Circuits,"
Proceedings 1968 Spring Joint Computer Conference, Vol. 32,
pp. 55-60, 1968.

14. G. A. Maley and J. Earle, The Logic Design of Transistor Digital
Computers, Englewood Cliffs, N.J.: Prentice-Hall, Inc. p. 261,

1963.

57

15. M. P. Marcus, Switching Circuits for Engineers, Second Edition,
Englewood Cliffs, N. J.: Prentice-Hall, Inc., p. 190, 1967.

16. Y. H. Chuang, "Transition Logic Circuits and a Synthesis Method,"
IEEE Transactions on Computers, Vol. C-18, pp.l54-168, February
1969.

17. W. M. McKeeman, J. J. Horning and D. B. Wortman, A Compiler
Generator, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1970.

18. C. T. Fike, PL/I for Scientific Programmers, Englewood, N. J.:

19.

Prentice-Hall, Inc., 1970.

F. J. Hill and G. R. Peterson,
and Logical Design, New York:

Introduction !£ Switching Theory
John Wiley and Sons, Inc., 1968.

20. D. Lewin, Logical Design of Switching Circuits, New York:
American Elsevier, Inc., 1969.

58

VITA

Gregory Martin Bednar was born on June 26, 1944, in St. Louis,

Missouri. He was graduated Valedictorian of his class from Cuba High

School, Cuba, Missouri. He received a Bachelor of Science degree in

Electrical Engineering from the University of Missouri-Rolla in August

1966. He was actively employed by IBM at Rochester, Minnesota, from

August 1966 to September 1967, after which he began two years active

duty as an officer in the United States Army. One year was spent in

Vietnam where he was awarded the Bronze Star, May 1969, and the Bronze

Star First Oak Leaf Cluster, July 1969, for Meritorious Achievement

in Ground Operations Against Hostile Forces. Since September 1969 he

has been enrolled in the Graduate School of the University of

Missouri-Rolla and completed a Master of Science degree in Electrical

Engineering in December 1970.

He is a member of IEEE, Eta Kappa Nu, Tau Beta Pi, and Phi Kappa

Phi.

He is married to the former Carol Jeanne Diderrich and is the

father of two children, Brian and Jeanne.

APPENDIX A

Description of the Internal Tables

The tables of the internal form are printed whenever the control

toggle $Dis specified in a comment statement (See Table XI). A de-

tailed description of each table is given below. To help clarify the

description, an example design program is illustrated below and its

corresponding table dump is shown in Table XXIII.

ZOO:
Z10:
Zll:

Z01:

"$DUMP INTERNAL TABLES AT END OF COMPILATION"
DESIGN 9 ;
DECLARE INPUTS:

CONSTR:
OUTPUTS:
GLOBAL:

START ;
A->1 => Z1(-1
B-)1 => Z2<-1
LIST

I
I

A,B
A-)? & B-)?
Z1, Z2
(A->0 WHILE B=O)
=> Zl<-o, zz<-o

A->o => Zl<-o I ' B-)0 => Z2(-0 I
A-> 1 => Z1(-1 I ;
END.

+ (B-)0 WHILE A=O)
I

TABLE XXIII. A TABLE DUMP OF THE INTERNAL FORM FOR EXAMPLE DESIGN 9

PRIMARY SEQUENCE TABLE

59

LEVEL BIT LINK BIT B INPUT E INPUT TAB1 OCHANGE TAB2 PTRAN N STMT

1 0 0 0 0 0 0 0 1

0 0 0 2 2 -5 0 0 -1

0 0 0 1 3 -7 0 0 -1

0 1 2 0 4 -9 0 0 -1

0 0 1 0 5 -11 0 0 -1

0 0 0 2 6 -13 0 0 -1

0 0 222 0 0 0 0 0 1

TABLE XXIII. (Continued)

SECONDARY TABLE 1

B INPUT E INPUT PTR1 MTRAN
1 0 0 0
1 3 0 0
2 3 0 0
3 1 0 0
3 2 0 0
1 3 0 0

SECONDARY TABLE 2

OCHANGE2 PTR2
-3 0

GLOBAL TRANSITION TABLE

GB INPUT
2

GE INPUT GTAB1 GOCHANGE GTAB2
0 1 -1 1

CONSTRAINT TRANSITION TABLE

CLEVEL BIT CB INPUT CE INPUT CTAB1
0 0 3 0
0 1 2 0
0 2 1 0
0 3 0 0

STANDARD SYMBOL TABLE

NAME VALUE TKN POSITION
A 0 1 1
B 0 1 2
Z1 0 2 1
Z2 0 2 2

SPECIAL SYMBOL TABLE

OLABEL AL DIGIT OINDEX
00 1 1
10 1 2
11 1 3
01 1 5

GAL DIGIT
1

GTRAN
1

60

1. Primary Sequence Table

The rows of this table hold I/O specifications of the design.

The table's indexing begins with row 0 which corresponds to the START

statement. All input-state entries in the table are recorded as

decimal weights. The fields of the table are:

61

1) LEVEL BIT - is set to 1 when the test condition of the state

ment is a level test rather than a transition test.

2) LINK BIT - is set to 1 whenever another test condition of a

link or list statement is to be checked next if the current

test condition is not true.

3) B INPUT - holds either a level input test, the beginning input

state of a transition test or a special code for LK'T, ELSE,

BEGIN and END conditions. The ELSE, BEGIN and END conditions

have the code 222 while LK'T (or LINKTEST) has the code 141.

4) E INPUT - holds the ending input state of a transition test.

5) TAB1 - is a pointer to the next input test in secondary table 1

when don't cares or expressions cause more than one test per

test condition. A value of 0 indicates no further tests are

to be checked.

6) OCHANGE - contains information leading to the output change

of a transition statement. A value of 0 indicates there is

no output change. A positive integer is the address of a

Boolean output expression. A negative integer is a pointer

to the address of an output value in the standard symbol

table.

7) TAB2 - is a pointer to the next output variable change in

secondary table 2 when more than 1 output variable changes

concurrently in a transition statement.

62

8) PTRAN - is set to 1 when there exists another input test to

be checked as part of a multiple transition expression of the

current statement.

9) N STMT - indicates the next statement to be executed. A

positive integer is a pointer to a statement in the primary

sequence table. A negative integer indicates automatic

linking and denotes the automatic link digit.

2. Secondary Table 1

Whenever a test condition of a transition statement or a link

statement implies more than one possible input state transition, this

table is used to store these extra input tests. For example in a two

variable input design, these extra tests can be the result of unspecified

variables in a test condition, "Xl->1", a multiple transition expression,

"Xl->1 + X2->0", or a don't care transition, "Xl->?". The TABl field

of the primary sequence table is updated to the row number of the

secondary table where the first extra test is stored. The four fields

of secondary table 1 are:

1) B INPUTl - holds either another level test or the beginning

input state of another input transition for the current

statement.

2) E INPUTl - holds the ending input state of another input

transition for the current statement.

3) PTRl - is a pointer set to 1 when the next input test in this

table is to follow the present test for the current statement.

63

4) ~ITRAN is set to 1 whenever the following input test in the

table is to be checked as part of a multiple transition ex

pression of the current statement.

3. Secondary Table 2

When a transition statement contains more than one output change,

this table holds the addresses of the additional output changes. The

fields of this table are:

1) OCHANGE2 - is the same as the output change field (OCHANGE) of

the primary sequence table for the additional output variables

of a transition statement.

2) PTR2 - is a pointer set to 1 when the next output change in

this table is to follow the present output change for the

current statement.

4. Global Transition Table

This table is structurally similar to the primary sequence table,

however, it only contains data from globally declared transition state

ments. It also uses the secondary tables as backup tables. The fields

of this table are:

1) GB INPUT - holds the beginning input state of a global tran-

sition test.

2) GE INPUT - holds the ending input state of a global transition

test.

3) GTABl - same as TAB! in primary sequence table, except it is

used for global statements.

4) GOCHANGE - same as OCHANGE in primary sequence table except it

is used for global statements.

5) GTAB2 - same as TAB2 in primary sequence table except it is

used for global statements.

6) GAL DIGIT - denotes the automatic link digit of the corre

sponding global transition statement.

64

7) GTRAN - same as PTRAN in the primary sequence table except it

is used for global transition statements.

5. Constraints Transition Table

This table stores all constrained input transitions except those

declared by "SIC" and "AUS". The fields of this table are:

1) CLEVEL BIT - is set to 1 when the input test of the constrained

transition is a level test rather than a transition test. In

this case it is the ending state of an input transition for

which the level test is made.

2) CB INPUT - holds the beginning input state of a constrained

input transition.

3) CE INPUT - holds the ending input state of a constrained in

put transition.

4) CTAB1 - is a pointer set to 1 when the next row in this table

contains another constraint to be checked.

6. Standard Symbol Table

The standard symbol table contains the names of input variables,

output variables and standard labels and their corresponding attributes.

This table includes the following fields:

1) NAME - contains the names of inputs, outputs and standard

labels.

2) VALUE - contains the value of a variable or the primary

sequence table index of a label.

3) TKN - is a token field which is set to 0, 1 or 2 for dis

tinguishing labels, input variables, and output variables,

respectively.

4) POSITION - indicates the position of the input and output

variables in an input and output state, respectively.

7. Special Symbol Table

This table is used to hold output labels and associated infer-

mat ion. It plays an important role in the automatic linking process.

The fields of this table are:

65

1) OLABEL - contains the binary string representation of an out

put state which is designated in an output label.

2) AL DIGIT - contains the automatic link digit of the output

label. If no digit is specified it defaults to 1.

3) OINDEX - contains the index of the corresponding statement

in the primary sequence table.

66

APPENDIX B

Use of the Logic Trace Switch "$W"

The logic trace was extremely useful in debugging the translator/

interpreter program. For this reason the trace was not removed. In

stead, it is made readily available to the user in case changes to

the language or program are desired in the future. The following will

be a general description of the meaning and use of the information

obtained when the logic trace is activated.

The logic trace is a built-in trace of the translator and flow

table construction program. Within the XPL program listing, the loca

tion of trace output statements is easily recognized because they

have the following format: "If T_SW > 0 then .•. ".

Whenever the logic trace is activated, the trace information

follows the XPL program flow from procedure to procedure and within

a procedure. Most of the trace information is just the current values

of some variables. In these cases the variable names and their values

are given. Comments defining all variables have been given in the

program at their place of declaration. In a few cases duplicate in

formation is seen, but two different procedures have output this in

formation which allows the user to follow the procedure to procedure

flow more easily.

If the logic trace, $W, is activated at the beginning of the de

sign, a trace of the entire translation and flow table construction

procedure is given. If "$W" is specified both at the beginning and

end (i.e. ahead of END.) of the design, then the trace is only turned

on for the translation process. Similarly if "$W" is only specified

at the end of the design, the trace is just turned on for the flow

table construction portion of the program.

67

68

APPENDIX C

Job Setup

This appendix provides the job setup or job control language (JCL)

requirements for using the ACDL system on the IBM System 360 computer.

The following listing shows the necessary cards to run an ACDL program

when the ACDL translator/interpreter program is in object form and is

residing on disk.

//OS Job Card
II* LIMITS=(R=l30)
/ /S 1 EXEC XPLG
I /G.PGM DD DSN=USER.S0150.TRACEY.ACDL.BEDNAR,
II VOL=SER=USERVL,DISP=OLD,UNIT=DISK
I /G .DATA DD ~·(

ACDL Program

If a recompilation of the translator/interpreter program is re-

quired, the job setup for this is:

I /OS Job Card
II* LIMITS=(R=(250),T=5,P=l00)
/ /Sl EXEC XPLC
//C.FILEl DD DSN=USER.S0150.TRACEY.ACDL.BEDNAR,
II VOL=SER=USERVL,DISP=OLD,UNIT=DISK
//C.SOURCE DD *

Source deck of XPL program

The job setup for running an ACDL program with the translator/

interpreter program in source deck form is:

//OS Job Card
II* LIMITS=(R=(250),T=5,P=200)
//Sl EXEC XPLCG
//C.SOURCE DD *

Source Deck of XPL Program

I*
//G.DATA DD *

ACDL Program

I*

The job setup for a BNF ANALYZER run is:

//OS Job Card
//* LIMITS=(R=l50,P=40,T=5,C=l00)
//Sl EXEC XANALYZE
//XPL.SYNTAX DD *

BNF Description of ACDL

$PUNCH

69

70

APPENDIX D

BNF Description of ACDL
for the Translator Writing System

In order to conserve computer storage and execution time the pars-

ing algorithm of the ANALYZER program has the restriction of being con-

text bounded. Specifically, it will parse only those grammars for

which it cancompute the stacking decision function by using no more

than the top 2 symbols in the stack and the next symbol in the input

text, and the production selection function, by using no more than 1

symbol below the production in the stack and the next symbol in the

input text [17].

In order to make the BNF grammar of ACDL compatible to the con-

text restrictions of ANALYZER, some changes to the description of

Chapter III are required. The modified version of the grammar which

was used as input to ANALYZER is shown below. In some cases, commas

and parentheses required special definitions since these symbols were

inadequate contexts for decision making.

To incorporate changes or extensions to the current structure of

ACDL into the translator program, deletions, additions or modifications

are made as necessary to the productions shown in the BNF description

below. The job setup for an ANALYZER run is given in APPENDIX C.

The following is the present ANALYZER version of the BNF grammar

for ACDL as it appears in the program listing.

1 <PROGRAM> ::= <PROGRAM HEAD> <STATEMENT LIST> <ENDING>

2 <STATEMENT LIST>
3

<STATEMENT>
<STATEMENT LIST> <STATEMENT>

4 <PROGRAM HEAD> ::= <DESIGN STMT> ; <DECLARE STMT>

5 <STATEMENT> : :; <BASIC STMT>
6 I <STMT BLOCK>

7 <BASIC STMT> ::= <TRANSITION STMT>
8 I <LINK STMT> ;
9 I <LIST STMT> ;

10 I <LABEL> <BASIC STMT>

11 <ENDING> ::= END
12 I <LABEL> END

13 <BEGINNING> : := BEGIN ;
14 I <LABEL> BEGIN

15 <LABEL> :: = <SINGLE LABEL> :
16 I <LETTER Z> <(2> <OUTPUT STATE SET>)

17 <SINGLE LABEL>
18

<IDENTIFIER>
<IDENTIFIER> I <NUMBER>

19 <LETTER z> ::= <IDENTIFIER>

20 <OUTPUT STATE SET> ::= <OUTPUT CODE>

<START S'IMT>

21 I <OUTPUT STATE SET> , <OUTPUT CODE>

22 <OUTPUT CODE> ::= <NUMBER>
23 I <NUMBER> I <NUMBER>

'-.I
f-'

24 <DESIGN STMT> ::= DESIGN
25 I DESIGN <ACCOUNTING INFO>

26 <ACCOUNTING INFO>
27
28

29 <,3> : :=

<DESIGN NUMBER>
<DESIGN NUMBER> <,3> <DESIGNERS NAME>
<DESIGN NUMBER> <,3> <DESIGNERS NAME> <,3> <DATE>

30 <DESIGN NUMBER> ::= <NUMBER>

31 <DESIGNERS NAME> : := <IDENTIFIER>
32 I <DESIGNERS NAME> <IDENTIFIER>

33 <DATE> ::= <IDENTIFIER> <NUMBER> , <NUMBER>

34 <DEClARE STMT> : := DEClARE <DEClARATION TYPE>
35 I <DEClARE STMT> <DEClARATION TYPE>

36 <DECLARATION TYPE>
37
38
39

<INPUT DCL>
<CONSTRAINTS DCL>
<OUTPUT DCL>
<GLOBAL DCL>

40 <INPUT DCL> : : = INPUTS : <VARIABLE DEFN>
41 I <INPUT DCL> <, 2> <VARIABLE DEFN>

42 <VARIABLE DEFN> ::= <IDENTIFIER>
43 I <IDENTIFIER 1> <INITIAL CONDITION>

44 <IDENTIFIER 1> ::= <IDENTIFIER>

45 <INITIAL CONDITION> : := <(1> <LEVEL>)

-...J
N

46 <(1> : := (

47 <CONSTRAINTS DCL> ::= CONSTR <CONSTRAINTS>

48 <CONSTRAINTS> : := NONE
49 I AUS
50
51
52
53
54

SIC
<TRANSITION TERM>
<LEVEL FACTOR>
<CONSTRAINTS> <,2> <TRANSITION TERM>
<CONSTRAINTS> <, 2> <LEVEL FACTOR>

55 <TRANSITION EXPRESSION>
56

··= <TRANSITION TERM>
<TRANSITION EXPRESSION> + <TRANSITION TERM>
<DUMMY TERM> 57

58 <DUMMY TERM> : := LINKTEST
59 I LK 'T

60 <COMPOUND RElATION> : := <TRANSITION PART> WHILE <LEVEL PART>

61 <TRANSITION PART> : := <TRANSITION FACTOR>
62 I <(2> <TRANSITION FACTOR>)

63 <LEVEL PART> : := <LEVEL FACTOR>
64 I <(2> <LEVEL FACTOR>)

65 <TRANSITION TERM>
66
67

68 <(2> ::= (

: : = <TRANSITION PART>
<COMPOUND RELATION>
<(2> <COMPOUND RElATION>)

-...,J

w

69 <TRANSITION FACTOR>
70

··= <TRANSITION RELATION>
<TRANSITION FACTOR> & <TRANSITION RELATION>

71 <LEVEL FACTOR> : := <LEVEL RELATION>
72 I <LEVEL FACTOR> & <LEVEL RELATION>

73 <TRANSITION RELATION> ::= <IDENTIFIER> = <TRANSITION~

74 I <IDENTIFIER> <SHORT TRAN>

75 <LEVEL RELATION> : := <IDENTIFIER> = <LEVEL>

76 <LEVEL'· : := <NUMBER>

77 <TRANSITION>

78 <SHORT TRAN>
79

80 <OUTPUT DCL>
81

82 <,2> : :=

. ·=

"·=

<NUMBER> - > <NUMBER>

- " <Nill'lBER>
- > ?

OUTPUTS : <VARIABLE DEFN>
<OUTPUT DCL> <,2" <VARIABLE DEFN">

83 <GLOBAL DCL> : := GLOBAL <LIST>

84 <START STilT> : := START

85 <STMT BLOCK> : := <BEGINNING:> <STATEHENT LIST> <ENDING:>

86 <TRANSITION S1'1'1T>
87

88 <BASIC TRAN STilT>
89

· ·= <BASIC TRAN STilT">
<AUTO LINK TRAN STHT>

··= <TRANSITION EXPRESSION">
<TRANSITION EXPRESSION~ = :---- <OUTPUT CHANGE'>

'-J

""

9 0 <AUTO LINK TRAN STMT> : : = <BASIC TRAN STMT> <AUTO LINK>

91 <AUTO LINK>
92

. ·= I

9 3 <0UTPUT CHANGE>
94

9 5 <REPlACEMENT OP>

I <NUMBER>

<IDENTIFIER> <REPLACEMENT OP> <0UTPUT EXPRESSION>
<0UTPUT CHANGE> <,1> <IDENTIFIER> <REPlACEMENT OP> <0UTPUT EXPRESSION>

. ·= < -

96 <0UTPUT EXPRESSION> ; := <LEVEL>
97 I <BOOL EXPR>

98 <BOOL EXPR> : := <lDG FACTOR>
99 I <BOOL EXPR> + <LOG FACTOR>

100 <LOG FACTOR> : : = <LOG TERM>
101 I <LOG FACTOR> & <LOG TERN>

102 <LOG TERM> : := <LOG PRIMARY>
103 I ~ <LOG PRU!ARY>

104 <LOG PRIMARY> ::= <IDENTIFIER>
105 I <(2> <BOOL EXPR>

106 <LUTK STilT> : := LINK <PARANETER LIST>

107 <PARArlETER LIST>
108
109
110
111
112
113

• ·- <NO TESTS>
<1 TEST> <1 lABEL>
<2 TESTS> <2 LABELS:
<3 TESTS- d LABELS>
<4 TESTS'~ <4 LABELS>
<5 TESTS> <5 LABELS
<6 TESTS> <6 LABELS--

"-.)

l.n

114 <NO TESTS> ::= <SINGLE LABEL>

115 <1 TEST> : := <(1> <TEST CONDITION>

116 <1 LABEL> : :=

117 <2 TESTS> : :=

118 <2 LABELS> : :=

119 <3 TESTS> . ·-.. -

120 <3 LABELS> : :=

121 <4 TESTS> : :=

122 <4 LABELS> .. -.. -

123 <5 TESTS> : :=

124 <5 LABELS> .. -.. -
125 <6 TESTS> : :=

126 <6 lABELS> : :=

127 <, 1> . ·=

128 <TEST CONDITION>
129
130

) <SINGLE LABEL>

<1 TEST> <,1> <TEST CONDITION>

<1 LABEL> <, 1> <SINGLE LABEL>

<2 TESTS> <, 1> <TEST CONDITION>

<2 LABELS> <,1> <SINGLE LABEL>

<3 TESTS> <, 1> <TEST CONDITION>

<3 LABELS> <, 1> <SINGLE LABEL>

<4 TESTS> <, 1> <TEST CONDITION>

<4 LABELS> <,1> <SINGLE LABEL>

<5 TESTS> <, 1> <TEST CONDITION>

<5 lABELS> <, 1> <SINGLE lABEL>

::= <TRANSITION EXPRESSION>
<LEVEL FACTOR>
ELSE

-..J
0'1

77

(
\

E-t

fS (
/)

:z;

~

E-t

~

A
 ::I

E-t

(
\

fS~
U

)p

E-t
:z;~

(/)
H

~
(
\

\)
r-l

E-t
~
v

(
/)

H

H

.-:1

/\
.-:1

~
~

II
:=>::I

..
~
v

(
\

u
-

E-t

fS (
/)

(
\

E-t
E-t

(
/)

(
/)

~
H

\)

r-l
N

C""l

C
"')

C
""lC

""l::C

r-1

r-1

r-1
 u
s p...
<

f)-

APPENDIX E

Program Structure

The ACDL translation and flow table construction program

consists of 44 procedures. Figure 6 indicates the overall structure

of the program with respect to these procedures.

78

MAIN
PROCEDURE I invokes INITIALIZATION

invokes COMPILATION LOOP
invokes PRINT SUMMARY

INITIALIZATION

COMPILATION
LOOP

invokes PRINT DATE AND TIME
invokes SCAN

PRINT
DATE
AND TIME

SCAN

[
invokes PRINT TIME

PRINT_ TIME [

invokes ERROR
invokes GET CARD
invokes CHAR

ERROR

[
invokes I FORMAT

I_FORMAT [

GET CARD [· 1nvokes ERROR
invokes I FORMAT

CHAR ~invokes GET CARD

invokes STACKING
invokes ERROR
invokes SCAN
invokes REDUCE

Figure 6. Structure of the ACDL Translator/Interpreter Program -...J
1.0

STACKING

REDUCE

Figure 6. (Continued)

invokes ERROR
invokes STACK DUMP
invokes RECOVER

invokes SCAN
invokes RIGHT CONFLICT

RIGHT [
CONFLICT

invokes PR OK
invokes SYNTHESIZE
invokes ERROR
invokes STACK DUMP
invokes RECOVER

PR OK [· 1nvokes RIGHT CONFLICT

SYNTHESIZE invokes ERROR
invokes STACK DUMP
invokes SPEC LOOKUP
invokes STD LOOKUP
invokes ENDING
invokes BEGINNING
invokes PAD ZEROS
invokes VARSTORE
invokes CONSTR TRAN
invokes DEC Xrif

::0
0

Figure 6. (Continued)

invokes DC TRAN
invokes MULTI TRAN
invokes OVAR CHK
invokes IVAR CHK
invokes POLISHX

SPEC [
LOOKUP invokes ERROR

STD [
LOOKUP invokes ERROR

ENDING [

BEGINNING [

PAD ZEROS [

VARSTORE [invokes ERROR
invokes STD LOOKUP

CONSTR I
TRAN invokes CTRAN STORE

invokes DC TRAN -

CTRAN [
STORE invokes DEC XFM

-
DEC [XFM invokes EXPN

EXPN [

00
f-'

FLmv
TABLE

DC TRAN [. lnvokes EXPN
invokes HULTI TRAN

MULTI [
TRAN invokes DEC_XFM

invokes ERROR

OV AR CHK [k ERROR lnvo es
invokes STD LOOKUP

IVAR CHK [invokes ERROR
invokes STD LOOKUP

POLISHX [

PRINT SUMMARY invokes PRINT DATE AND TIME
invokes DUMPIT

invokes LINKAGE
invokes EXPN

invokes PRINT TE1E

DUMPIT [

invokes PRI~~y TABLE
invokes GLOBAL TABLE
invokes CONSTR TABLE
invokes ERROR
invokes OUTPUT FLO\V TABLE

LINKAGE [

Figure 6. (Continued)
co
N

PRIMARY TABLE .
invokes TABLE! SEARCH
invokes LINKAGE
invokes POLISH EXEC
invokes TABLE2 SEARCH
invokes SPEC LOOKUP

TABLE!_ [
SEARCH

POLISH_ [
EXEC

TABLE2 [
SEARCH invokes POLISH_EXEC

-
GLOBAL TABLE r-invokes TABLE! SEARCH

invokes POLISH EXEC
invokes TABLE2 SEARCH
invokes SPEC LOOKUP
invokes LINKAGE

L

CONSTR TABLE [

OUTPUT FLOW ~
TABLE invokes PAD

invokes I FORMAT

PAD [

Figure 6. (Continued) 00
w

84

APPENDIX F

Procedure Descriptions

This appendix presents a description of the procedures composing

the translator and flow table synthesis algorithm. A brief descrip-

tion of the procedures' main functions is given. Functional flow

charts accompany those procedure descriptions which require a more

detailed explanation; however, their emphasis is directed toward the

synthesis procedures rather than the analysis (parsing) procedures,

since it is these procedures that are ACDL dependent.

1. MAIN PROCEDURE Procedure*

This procedure is the main entry point of the program. It is the

master control for the translation process and collects timing informa-

tion for the different phases of the translation.

2. INITIALIZATION Procedure*

This procedure prints the headings for the compilation listing.

It initializes the character classes for the scanner and various other

global variables. No initializations of 0 have to be made since all

variables are automatically initialized to 0 (or null in the case of

character string variables) by the XPL compiler, XCOM, unless other-

wise indicated.

3. PRINT DATE_AND_TIME Procedure*

This procedure decodes the date into year, month and day, and then

calls PRINT TIME to print it.

This procedure is part of the original proto-compiler SKELETON of TWS
[17].

85

4. PRINT TIME Procedure*

This procedure decodes time from hundreds of seconds into hours,

minutes and seconds, and prints it together with its message para-

meter.

5. SCAN Procedure*

An ACDL program consists of a sequence of symbols interspersed

with blanks and comments. A call to SCAN either produces the next

symbol, removes the blanks and comments, or is responsible for the

setting and resetting of control toggles.

6. GET CARD Procedure*

This procedure reads a source card and stores it in the global

character variable TEXT. It also prints the card image unless control

toggle $L has been specified, which inhibits the source program

listing.

7. CHAR Procedure*

This procedure is used to advance the scan pointer by one

character and to get a new card if necessary.

8. I FORMAT Procedure*

This procedure right justifies an integer in the field width

specified.

9. ERROR Procedure*

This procedure prints error messages, counts total errors and

severe errors and terminates compilation in case of excessive errors.

10. * COMPILATION_LOOP Procedure

This procedure coordinates the stacking of symbols and their

* This procedure is part of the original proto-compiler SKELETON of TWS
[17].

86

reduction according to the BNF constructs. A flow chart for this

procedure is shown in Figure 7.

11. STACKING Procedure*

This procedure is the basic decision function of the parsing

algorithm. When the function is true, a symbol is stacked; when it

is false, a reduction is made. If an error is detected, a recovery

is initiated and a new value is computed.

12. RECOVER Procedure*

This procedure removes enough of the parse stack and input text

to ensure that translation can proceed at least one more step without

further errors. In many cases this procedure prevents single errors

from causing multiple messages.

13. RIGHT CONFLICT Procedure*

The most recently scanned symbol is stored in the global variable

TOKEN. This procedure decides if a string in the parse stack is

reducible on the basis that the result of the reduction must yield an

allowed pair between the top of the stack and TOKEN. Similarly, when

an error is encountered, parsing is not resumed until an allowed pair

is in TOKEN and on top of the parse stack.

14. STACK DUMP Procedure*

When syntactic errors are discovered by the analysis algorithm,

the state of the parse stack is printed by this procedure as a

diagnostic aid.

15. REDUCE Procedure*

This procedure looks up the proper reduction, calls SYNTHESIZE

* This procedure is part of the original proto-compiler SKELETON of TWS
[17].

87

to produce the associated semantic action and then makes the reduc-

tion.

16. PR OK Procedure*

When there is more than one reducible string on the parse stack,

this procedure uses the syntactic analysis tables to choose the proper

reduction.

17. SYNTHESIZE Procedure

This procedure and the procedures it calls compose the semantic

routines that are inserted into the skeleton deck. Corresponding to

each production recognized by REDUCE, this procedure takes appropriate

action to produce code and data images of the program being translated.

Flow charts describing the action to be taken at the important pro-

ductions are given in Figure 8. The case number corresponds to the

position of the production in the BNF description of Appendix D. No

action is taken in the cases not shown.

18. SPEC LOOKUP Procedure

This procedure is a function procedure with two arguments, the

output state symbol being searched for and the corresponding automatic

link digit of the output state. The procedure searches the special

symbol table in a sequential manner for the output symbol and auto-

matic link digit passed to it. If the output symbol and correct

automatic link digit are not found, the procedure will add them to the

table. The row number of the symbol table in which the arguments were

found (or added) is returned as the value of the function.

* This procedure is part of the original proto-compiler SKELETON of TWS
[17].

88

19. STD LOOKUP Procedure

This procedure is a function procedure with the symbol being

searched for as its argument. The procedure sequentially searches the

standard symbol table for the symbol passed to it. If the symbol is

not found, the procedure will add the symbol to the table. The row

number of the table in which the symbol was found (or added) is

returned as the value of the function.

20. ENDING Procedure

This procedure is used to handle the ends of statement blocks

and the end of the design (see Figure 9).

21. BEGINNING Procedure

This procedure is a special procedure used to handle the beginning

of statement blocks. A flow chart for this procedure is shown in

Figure 10.

22. PAD ZEROS Procedure

This procedure adds zeros on the left of an integer until the

specified field width is reached.

23. VARSTORE Procedure

This procedure stores input and output variables and their

corresponding attributes in the standard symbol table via the function

procedure STD_LOOKUP.

24. CONSTR TRAN Procedure

This procedure controls the construction of the constraint

transition table. A flow chart describing this procedure is illustrated

in Figure 11.

25. DEC XFM Procedure

This procedure transforms a binary representation of an input

transition or level to a decimal representation as indicated in

Figure 13.

26. DC TRAN Procedure

89

This procedure is used to handle the don't-care shorthand transi

tion. The flow chart describing this procedure is illustrated in

Figure 13.

27. MULTI TRAN Procedure

This procedure stores the additional input transitions resulting

from don't-cares and multiple transition expressions in secondary

table 1. Figure 14 illustrates the flow chart for this procedure.

28. OVAR CHK Procedure

This procedure checks the standard symbol table to see if output

variables in transition statements have been properly defined. If not,

an error message is printed.

29. IVAR CHK Procedure

This procedure checks the standard symbol table to see if input

variables in transition statements have been properly defined. If not,

an error message is printed.

30. POLISHX Procedure

This procedure translates a Boolean infix expression to Reverse

Polish format. A flow chart describing this procedure is given in

Figure 15.

31. CTRAN STORE Procedure

This procedure stores the input constraints in the constraint

transition table. The flow chart for this procedure is illustrated in

Figure 16.

90

32. EXPN Procedure

This is a function procedure which performs the exponentiation

operation. The result is returned as the value of the function.

33. PRINT SUMMARY Procedure*

This procedure prints the statistics of the translation which

includes error statistics and translation times and rates. It also

calls DUMPIT procedure to dump the internal tables if $D was given in

an ACDL comment.

34. DUMPIT Procedure

This procedure dumps the internal form tables whenever the con-

trol toggle $D is specified in an ACDL comment.

35. FLOW TABLE Procedure

This procedure controls the construction of the primitive flow

table. Its flow chart is shown in Figure 17.

36. LINKAGE Procedure

This is a function procedure which is a housekeeping routine for

the state linkage table. The state linkage table records the internal

states (i.e. flow table row numbers) that have been defined. There-

fore, this procedure determines whether or not a correct next-state

entry has been previously defined. If not, it defines a new state

and records it in the state linkage table. The procedure has 3

arguments; the current input column state, the sequence # attribute

of the next state, and the output attribute of the next state. The

procedure returns the proper next-state entry as the value of its

function. The flow chart for this procedure is given in Figure 18.

* This procedure is part of the original proto-compiler SKELETON of TWS
[17].

37. PRIMARY TABLE Procedure

This procedure checks the primary sequence table to see if the

current input transition was specified in the design. A flow chart

describing this procedure is shown in Figure 19.

38. GLOBAL TABLE Procedure

This is a function procedure which checks the global transition

table to see if the current input transition is a global transition.

If so, the procedure returns a value of true as the value of its

function. A flow chart describing this procedure is given in Figure

20.

39. CONSTR TABLE Procedure

91

This is a function procedure which checks the constraint transi

tion table to see if the current input transition is a constraint

transition. If so, the procedure returns a value of 1, otherwise 0.

The flow chart for this procedure is given in Figure 21.

40. TABLEl SEARCH Procedure

This is a function procedure which searches secondary table 1 for

additional input test conditions resulting from don't cares or

multiple transition expressions. The value returned by the procedure

indicates the point where the calling procedure is to continue.

Figure 22 illustrates the flow chart for this procedure.

41. TABLE2 SEARCH Procedure

This procedure searches secondary table 2 for additional output

changes whenever more than one output variable changes concurrently

in a transition statement. The flow chart for the procedure is shown

in Figure 23.

92

42. POLISH EXEC Procedure

This procedure interpretively executes a Reverse Polish Boolean

expression. A flow chart of the procedure is given in Figure 24.

43. OUTPUT_FLOW TABLE Procedure

This procedure is used to print the resul .. ing primitive flow

table in its standard format. Stable states are indicated by attach-

ing a minus sign to the next-state entry.

44. PAD Procedure*

This is a function procedure with two arguments; a character

string variable and a format field width. The procedure adds blanks

to the right of the character string variable to give it the field

width specified. The padded string is then returned by the procedure.

* This procedure is part of the original proto-compiler SKELETON
of TWS [17].

COMPILATION_
LOOP

Procedure

End

Get next
symbol

Enter

Stack symbol.
on

parse stack

Reduce
stack

Figure 7. Flow Chart of COMPILATION LOOP Procedure

SYNTHESIZE
Procedure

(PRODUCTION_
NUMBER)

Do the ease which
corresponds to the
production number
passed.

I

Cases are shown on
following pages:

I

(_End_____.)
Figure 8. Flow Chart of SYNTHESIZE Procedure

93

94

Case 1. <PROGRAM> : := <PROGRAM HEAD> <STATEMENT LIST> <ENDING>.

Enter

Resolve a.cl
dressea ot a11
undef:ined
labela.

stop
compj.l.aUon.

Ca11 ERROR
and

STACK_DUMP

Figure 8. (Continued)

Case 5. <STATEMENT> • ·= <.BASIC STMT>

Update next stateeent
addressee of prev1.ous
unreso1ved etmt b1ock
end:lngs.

Case 7. <BASIC STMT> : := <rRANSITION STMT>

Save current statement
~n case statement ~s
next statement fo11ow
~ng the end ot a state
ment block.

Figure 8. (Continued)

95

Case 11. <ENDING>··= END
Case 12. <lABEL> END

Case 13.
Case 14.

Enter

Call
ENDING

End

<BEGINNING> : := BEGIN;
<lABEL> BEGIN;

Eater

Cal1
BEXUNNING

End

Figure 8. (Continued)

96

Case 17. <SINGlE lABEL> <IDENTIFIER>

Label precedes
a statement.

Store output state
label and 1 ts
attributes in the
special symbol table.

Figure 8.

Push label on
the undefined
label stack.

Store label and its
attributes in the
standard symbol table.

End

(Continued)

97

Case 18. <SINGLE LABEL>

Enter

Store ~abe~'s output
state and its attri
butes in speci~
symbo~ tab~e.

End

<IDENTIFIER> I <NUMBER>

No C~~ ERROR
"Illegal. out
put ~abe~"

Yes Push labe~ on
\Uldefined
~abe~ stack.

Figure 8. (Continued)

98

Case 19. <LETTER Z> : := <IDENTIFIER>

Enter

Figure 8. (Continued)

237261.

Cal.l ERROR
Output label does
not begi.n w:l. th nz".

99

100

Case 22. <OUTPUT CODE>::= ~ER>

Enter

Automatic link
digit is set to the
de~ault value ot 1.

Ca1l PAD_ZEROS
to convert number to
biaary output string.

store output state and
automatic l:l.nk digi. t
in special symbol
table.

End

Figure 8. (Continued)

101

Case 23. <OUTPUT CODE> : := <NUMBER> / <NUMBER>

Enter

Automatic link digit =
nwaber following "/"

Call PAD_ZEROS
to convert number
preceed1.ng "/" to
binary output string.

Store output state and
automatic link digit
in Special Symbol
Table.

End

Figure 8. (Continued)

Case 30. <DESIGN NUMBER>::= <NUMBER>

Enter

Retrieve design number
from top of parse
stack.

End

<DESIGNERS NAME> <IDENTIFIER>

102

Case 31.
Case 32. <DESIGNERS NAME> <IDENTIFIER>

Enter

Retrieve designer's
name from top ot parse
stack.

End

Figure 8. (Continued)

Case 33. <PATE> : := <IDENTIFIER> <NUMBER> , <NUMBER>

Retrieve month, day and
year trom parse stack.

Case 36. <DEClARATION TYPE> • ·= <INPUT DEClARATION>

Case 42.
Case 44.

Initi~ze temporary
input state arrays
to don't cares.

<VARIABLE DEFN> ··=<IDENTIFIER>
<IDENTIFIERl> : := <IDENTIFIER>

Call V ARSTORE
to store input (or
output) variable.

Figure 8. (Continued)

103

Case 48. <CONSTRAINTS>::= NONE

Set a flag ~ndicat~ng
no 1nput constraints.

Case 49. <CONSTRAINTS> ··= AUS

Set a t1ag ~nd1cat1ng
al1 unspec~tied 1nput
sequences are
constrained.

End

Case 50. <CONSTRAINTS>::= SIC

Set a f1ag ~dicating
s1ngle 1nput change
on1y.

Figure 8. (Continued)

104

Case 51. <CONSTRAINTS> : := <TRANSITION TERM>
Case 53. <CONSTRAINTS> <,2>

<TRANSITION TERM>

Call CONSTR_TRAN

Case 52.
Case 54.

<CONSTRAINTS> : := <lEVEL FACTOR>
<CONSTRAINTS> <,2>
<lEVEL FACTOR>

Enter

Call CTRAN_STORE

Reset the level
:l.nctieator nag.

Figure 8. (Continued)

105

Case 55. <TRANSITION EXPRESSION>··= <TRANSITION TERM>

Enter

Store transition in
Primary Sequence Table
and Secondary Tab~e 2.

Store transition in
Global Tab~e and
Secondary Table 2.

Cal~ DC_TRAN

Figure 8. (Continued)

106

Case 56. <TRANSITION EXPRESSION>::= <TRANSITION EXPRESSION>
+ <TRANSITION TERM>

Enter

Call MULTI_TRAN

Don't-care
transition? Call DC_TRAN

Figure 8. (Continued)

107

Case 58.
Case 59.

c

<:DUMMY TERM> : := LINKTEST
I.K'T

Eater

Record 141 into
B_.INPUT field of cur-
rent row ~n Primary
Sequence Tab1e.

Incr•ent Pnmary
Sequence Table po~nter
by 1.

ED.d

Figure 8. (Continued)

108

Case 76. <LEVEL> : := <NUMBER>

Enter

No

Call ERROR
NWilber :is :Lnval.i.d
level.

store number :in corre
sponding var:Lable's
VALUE field of Standard 1----1

Symbol Table.

Set a flag
1ndi.cat:Lng
:input level.

!----·-"""'"Call IVAR_CHK

Store number 1n :input
state trans1t1on
arrays.

Figure 8. (Continued)

109

Case 76. (Continued)

Set a fiag indi.cating
an output 1eve1.

Ca11 OVAR_CHK

Store number in output
expression array.

End

Figure 8. (Continued)

110

Case 77. <TRANSITION>

Enter

Call. IVAR_CHK

Store numbers i.n i.nput
state tranai.ti.on arrays.

End

<NUMBER> - > <NUMBER>

Cal.l. ERROR
Inval.:i.d
transi.ti.on

Figure 8. (Continued)

111

Case 78. <SHORT TRAN> : := - > <NUMBER>

Enter

Call IV AR_CHK

Store number and ~ts
complement in input
state trans1 tion
arrays.

End

Figure 8. (Continued)

Call ERROR
Invalid
transi.t~on.

112

113

Case. 79. <SHORT TRAN> - > ?

Enter

Call IVAR_CBK

Update input state
transition arrays.

Set a flag indicating
don't-care transi. t1on.

Increment the input
state don't-care
counter by 1.

End

Figure. 8. (Continued)

Case 83. <GLOBAL DCL> GWBAL

Reset global
indi.cator
flag.

Case 84. <START STMT> · ·= START

Store initia1 input
state in input state
transition array.

<LIST>

Call DEC_XFM

Figure 8. (Continued)

114

Case 84.

y
B_INPUT field of 1st
row in primary
sequence table = 0

I
Reinitialize input
state transition array
to don't cares •

(Continued)

Store decimal weight of
init. st. :lD. B_INPUT
of prim. seq. table.

. f:t~------------1
Update N_STMT field of
first row in primary
sequence table.

I
Increment primary
sequence table pointer
by 1.

I
End

Figure 8. (Continued)

115

Case 86. <rRANSITION STMT> • ·= <BASIC TRAN STMT>

Update N_STMT t1e1d of
current statement in
Pr1mary Sequence
Table to next state
ment #.

Case 91. <AUTO LINK> • ·= /

N_STMT fie1d of
Primary Sequence
Tab1e = -1.

GAL_DIGIT field of
Global Table = 1 •

Figure 8. (Continued)

116

Case 92. <AUTO LINK> : := / <NUMBER>

Enter

N_S~T fi.eld of cur
rent row i.n Pri.mary
Sequence Table = num
ber top of parse stk.

End

GAL_DIGIT .fi.eld of current
row i.n Globa1 Table =
number on top of parse
stack.

Figure 8. (Continued)

117

Case 93. -dJUTPUT CHANGE> • ·= <IDENTIFIER> <REPlACEMENT OP>
-d)UTPUT EXPRESSION>

OCHANGE field of
Primary Sequence
Tabl..e for this
statement = - output
array index.

GOCHANGE field of
Global Table for this
statement = - output
array index.

Store Standard Symbol
Table index of output
variable undergoing
change in output array.

Figure 8. (Continued)

118

Case 93. (Continued)

cu1
OVAR_CHK

Store Standard Symbo1
Tab1e index of output
var1ab1e undergoing
change in output array.

GOCHANGE fie1d for this
statement = output ar
ray address of starting
point of Reverse Po1ish
expression.

OCHANGE fie1d for this
statement = output ar
ray address of starting
point of Reverse Po11sh
expression.

Figure 8. (Continued)

119

120

Case 94. <OUTPUT CHANGE>::= <OUTPUT CHANGE> <,1> <IDENTIFIER>
<REPLACEMENT OP>

Enter

Update GTAB2 to
current 1.ndex of
Secondary Table 2.

No

No

<OUTPUT EXPRESSION>

TAB2 po1.nter of
current statement

= 0 '?

Set PTR2 of prev.Lous
row 1.n Secondary Table
2 to 1 1.ndicating
another output change
occurs 1.n next row.

Figure 8. (Continued)

Case 94. (Continued)

Output expression
a level?

OCHANGE2 field ot
current row in Seconda
ry Table 2 = - output
array index.

Store Standard Symbol
Table index of output
variable undergoing
change in output array.

End

No

Update TAB2 to current
index of Secondary
Table 2.

Call OVAR_CHK

Store Standard Symbol
Table index of output
variable undergoing
change in output array.

OCHANGE2 of current
row in Secondary Table
2 = output array ad
dress of starting pt.
of Reverse Polish Exp'n

Figure 8. (Continued)

121

Case 97. <OUTPUT EXPRESSION> : := <BOOL EXPR>

Call ERROR
Symbol i.s
undefined.

Store expression
terminator symbol in
output array.

Case 104. <LOG PRIMARY> - <IDENTIFIER>

Retrieve symbols of in
fix exp'n appearing be
fore identifier in par.
stk & put in temp stk.

Call POLISBX to convert
partial exp'n in temp.
stk from infix to Re
verse Polish format.

dentifier input
(or output) variable

?

Figure 8. (Continued)

Call POLISHX
to store
variable in

122

Case 105. <LOG PRIMARY> <(2> <BOOL EXPR>)

Cal.l POLISHX
to handl.e right
parenthesis.

Case 106. <LINK STMT> • ·= LINK <PARAMETER LIST>

Set LINK_BIT of last
used row in Primary
Sequence Table to o.

Case 107. <PARAMETER LIST::;:, • ·= <NO TESTS>

B_INPUT
current
in case
follows

= 222 and save
row # of P.s.T.
this link stmt
a stmt block.

Figure 8. (Continued)

123

Case 115. <1 TEST> • ·= <(1> <TEST CONDITION>

Save current stmt # u
case this li.Dk atmt is
the next stmt fo1low1ng
the end of a stmt
b1ock.

Case 128. <rEST CONDITION> : := <TRANSITION EXPRESSION>

Set LINK_BIT of 1ast
used row ot Prilla.J:'Y'
Sequence Tab1e to 1.

Update test con
dition count by 1 •

Figure 8. (Continued)

124

125

Case 129. <TEST CONDITION> : := <'LEVEL FACTOR~·

Eater

Set LEVEL_BIT of cur-
rent row in Primary
Sequence Table to 1.

Ca1l. DEC_XFM

Store decimal weights
ot level. input states
in B_INPUT of Primary
Sequence Tabl.e and B_
INPUT1 of Secondary
Table 1.

Set LINK_BIT in Pri-
mary Sequence Table
and update test
condition count by 1.

End

Figure 8. (Continued)

Case 130. <TEST CONDITION> ELSE

Assign spec~al code or
222 to B_INPUT of cur
rent row ~ Primary
Sequence Table.

Increment Primary
Sequence Table po~ter
and test cond~t~on
count by 1.

Case 131. <LIST STMT> ::=LIST <LIST>

Reset LINK_BIT of
last used row ~n
Primary Sequence
Table to o.

Figure 8. (Continued)

126

Case 132. <'LIST> • ·= <AUTO LINK TRAN STMT>

EI:Lter

Save current stmt # i.n
case thi.s list stmt is
the next atmt following
the end of a atmt
bl.ock..

Set LINK_BIT of last
used row ill Primary
Sequence Table to 1.

End

Figure 8. (Continued)

Yea

127

Case 133. <LIST> · ·= <LIST> <, 1> <AUTO LINK TRAN STMT>

Enter

LINK_BIT of l.ast used
row in Primary Sequence
Tabl.e = 1.

End

Figure 8. (Continued)

Yes

128

ENDING
Procedure 1----- Enter

Update N_STMT of previ
ous unresolved stmt b1k
ends that are nested in
current etmt block.

Set B_INPU'l' of current
row in Primary Sequence
Table to 222 indicating
no input test.

Store Primary Sequence
Table index of this
ending in unresolved
ending stack.

Increment Primary
Sequence Table pointer
by 1.

End

No

Figure 9. Flow Chart of ENDING Procedure

129

BEGINNING
Procedure --- Enter

Reset f1ag for beg. of
stmt b1k & save current
stmt # for resolving
ends of nested blocks.

Set B_INPUT of current
row in Primary Sequence
Tab1e to 222 indicating
no input test.

Update N_STMT of cur-
rent row in Primary
Sequence Table to next
stmt row #.

Increment Primary
Sequence Table pointer
by 1.

End

Figure 10. Flow Chart of BEGINNING Procedure

130

CONSTR_TRAN
Procedure

1---- Enter

Call
CTRAN_STORE

Figure 11. Flow Chart of CONSTR TRAN Procedure

Cal.l
DC_TRA.N

131

DEC_.DM
Procedure

--- --- Enter

CalcUlate dec~mal
value due to spec~t1ed
port~ on ot trans~ t~o.a.
(or level).

Calculate decimal
Values due to dOA't
cares in the tranai.-
tion (or level).

Store sum ot specified
wta. & don't-care wta.
of each tran. (or le-
vel) in dec. wt arrays.

Re-initialize tem-
porary var:1ables and
input state trans~-
tion arrays.

End

Figure 12. Flow Chart of DEC XFM Procedure

132

DC_TRAN
Procedure

Enter

Generate transitions
resulting from don't
cares specified & store
in input state arrays.

Call
MULTI_TRAN

End

Call
CTRAN_STORE

Figure 13. Flow Chart of DC TRAN Procedure

133

MULTI_TRA.N
Procedure

TABl = cur
rent index
Secondary
Table 1.

Enter

Call
DEC_X.FM

Set MTRAN of
last used row in
Secondary Table 1
to 1.

Store transition in
formation of decimal
wt. arrays in Secondary
Table 1.

End

GTAB1 = current
index of
Secondary Table
1.

Figure 14. Flow Chart of MULTI TRAN Procedure

134

POLISHX
Procedure
(E)

Store operand
:Ln output
arra:y.

Increment
stack po:Lnt
er by 1.

Store opera
tor on top
of stack.

Fetch next
symbol. :Ln :Lnf:L:x
express:Lon.

Delete top
'------------1 pos:L t:Lon of

stack to re-
move "(11 •

Compare prece
dences of pre~
ous op. :Ln stk.
& current op.

Store r:Lght
termi.nator :Ln
output array.

Figure 15. Flow Chart of POLISHX Procedure

135

Decrement
stack po:Lnter
by 1.

CTRA.N_STORE
Procedure Enter

Cal.l. DEC _XFM

Store deci.mal. wt. of
1nput transi.ti.on (or
l.evel) i.n Constra1nt
Transi.ti.on Tabl.e.

End

CLEVEL_BIT in
Constraint Tabl.e
= 1 for th:l.a
constraint.

Figure 16. Flow Chart of CTRAN STORE Procedure

136

FLOW_TABLE
Procedure Enter

Define ~Dit~al state o
flow table & its input,
output & sequence
attributes.

Compute ~nput column
headers for flow table
and count number of 1 • s
~n each header.

Go to first
input column.

Next state
= stable
state.

Next state =
don't care.

Figure 17. Flow Chart of FLOW TABLE Procedure

137

Increment next
state array
pointer by 1.

No

Figure 17. (Continued)

Call
PRIMA.RY_TABLE

Increment
present
state point
er by 1 ..

138

LINKAGE
Procedure (DL,
INDEX, osnmoL)

Retr.ieve next
state from the
defined state
list.

Retr:Leve 1st
state defined

139

Store next unused cell
of defined state
list in an array in
dexed by the decima1
wt. or the input
column state.

New state = last
defined state
+ 1.

Add the new
state to the
defined state
list.

Increment the
defined state
list po.inter
by 1.

Update the flow table
row attributes for
the new state.

Return
new state

Figure 18. Flow Chart of LINKAGE Procedure

JJ =
N STMT
(JJ)

state =
don't
care

PRIMARY_
TABLE
Procedure

Output & Sequenc
attributes or

res. st.

Next-state entry
= LINKAGE(Input

'-----;col., Seq #,
Out ut)

JJ = sequence
attribute of
present state.

Save the value
of JJ in SAVEl.

B_
INPUT(JJ)

JJ =
TAB1 (JJ)

JJ =
N_STMT(JJ)

Set entry point
flag to 1 for
TABLE1_SEARCH
P cedure.

Figure 19. Flow Chart of PRIMARY TABLE Procedure

140

JJ = SAVEI

Update values of
output var1ables
a Standard
Symbol Table.

Call
POLISH_
EXEC

Store output variable
level change 1n value
field of Standard
Symbol Table.

JJ =
TAB2(JJ)

Call
TABLE2_
SEARCH

Compute next
state output
attr. from
values of
output varia
bles in Stan.
S mbol Table

Next-state entry
= LINKAGE(Input
column, Seq#,
output state)

Output attribute
of next state is
same as present
state.

Next-state entry
= LINKAGE(Input
column, JJ, Out
put state).

Return

Advance seq.
thru any sub
sequent stmt
blk endings.

Yes

Fetch Seq# attribute
from corresponding
output state row of
Special Symbol Table.

Figure 19. (Continued)

141

GLOBAL_ TABLE
Procedure

JJ = JJ + 1

Save Global Table
~ndex, JJ, of current
statement in SAVEI.

Yes

JJ = GTAB1 (JJ)

Call
TABLE1_SEARCH

Return 0

Set entry point flag
to 1 which spec~fies
the entry point of
TABLE1_SEARCH Proc.

Figure 20. Flmv Chart of GLOBAL TABLE Procedure

142

JJ = SAVEl

Update values of
output variab~es
in Stalldard
Symbo~ Tab~e.

No

Store output variable
level change in value
field of Standard
Symbol Tab~e.

JJ =
GTAB2(JJ)

Call
TABLE2_
SEARCH

Figure 20. (Continued)

Cal~

POLISH_EXEC

Compute next-state
output attr. from
values of output vari
ables in Stan.Sym. Tab

Fetch Seq# attribute
from corresponding
output state row of
Special Symbol Tab~e.

Next-state entry =
LINKAGE(Input column,
Seq#, Output state)

Return 1

143

CONSTR TABLE
Proced~e

JJ = JJ + 1

JJ = SAVE!

Save the Constraint
Tab1e index, JJ, of
the current constraint
in SAVEl.

Input temporary
= input attri
bute or present
state.

JJ = JJ + 1

Input temporary
= input column
state.

= JJ + 1

Figure 21. Flow Chart of CONSTR_TABLE Procedure

144

care

TABLEl_SEARCH
Procedure

JJ = JJ + 1

Save Table 1 index, JJ,
of 1st input teet to
be checked in AX.

where SAVE!
contains Primary Table
row # of current input
test.

JJ =
N_STMT(SAVEI)

No

Figure 22. Flow Chart of TABLEl SEARCH Procedure

145

Return 1

146

JJ =AX

....__--tJJ = JJ + 1

Figure 22. (Continued)

TABLE2_SEARCH
Procedure

JJ :Ls Tabl.e 2
row index set in
ca11:Lng proce
dure.

Store output var:Labl.e
1eve1 change :Ln
var:Labl.e's va1ue
fiel.d of Standard
Symbol. Tabl.e.

Yes

JJ = SAVEl, where
SAVEl contains the
tabl.e :Lndex of the
ca11:Lng procedure.

End

Ca11.
POLISH_

EXEC

Figure 23. Flow Chart of TABLE2 SEARCH Procedure

147

POLISH_EXEC
Procedure

Ree.ul.t = symbol
table value of
operand.

Increment stack

Update values of
input variables
in Standard
Symbol Table.

Fetch 1st (next)
symbol of the Reverse
Polish expression from
out out

Store result in
symbol table val
ue field of out-

148

pointer by 1. No

Store operand
on top of stack.

Result = comple
ment of the value
of the operand.

Store result on
top of stack.

Reeul t = logical
OR of the two
elements.

Figure 24.

Yes

Top of stack is
temporary re
sul.t.

Result = comple
ment of tempora
ry result.

Result = logical
AND of the two
elements.

Fetch two
elements from
top of stack.

Get values from symbol
table for those ele
ments that are
operands.

Flow Chart of POLISH EXEC Procedure

	An asynchronous circuit design language system
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093
	Page0094
	Page0095
	Page0096
	Page0097
	Page0098
	Page0099
	Page0100
	Page0101
	Page0102
	Page0103
	Page0104
	Page0105
	Page0106
	Page0107
	Page0108
	Page0109
	Page0110
	Page0111
	Page0112
	Page0113
	Page0114
	Page0115
	Page0116
	Page0117
	Page0118
	Page0119
	Page0120
	Page0121
	Page0122
	Page0123
	Page0124
	Page0125
	Page0126
	Page0127
	Page0128
	Page0129
	Page0130
	Page0131
	Page0132
	Page0133
	Page0134
	Page0135
	Page0136
	Page0137
	Page0138
	Page0139
	Page0140
	Page0141
	Page0142
	Page0143
	Page0144
	Page0145
	Page0146
	Page0147
	Page0148
	Page0149
	Page0150
	Page0151
	Page0152
	Page0153
	Page0154
	Page0155
	Page0156
	Page0157

