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ABSTRACT

Light transmission through photo-sensitive multi-mode fibers (MMF) with

controlled volume disorder is investigated. Experiment shows that a segment of

disordered MMF as short as 10 cm is sufficient to distribute power uniformly over

all co-propagating modes and the intensity at the output surface of the fiber follows

the Rayleigh negative exponential function. To explain the experimental findings, a

comprehensive theoretical model is developed with three main results.

First, statistical properties of all components of the dielectric tensor are ob-

tained and analyzed in the framework a microscopical model of photo-sensitivity in

a germano-silicate glasses. Secondly, it is shown that induced birefringence is insuffi-

cient to explain mode mixing, and that cross-polarization mode coupling is essential.

Such a coupling is shown to originate from the spatial correlation in the off-diagonal

elements of the dielectric tensor. Third, a hybrid theory to describe propagation

in a fiber with a spatially correlated disorder is developed. The proposed theory

treats the deterministic part of the light via coupled-amplitude equations, and the

randomly-phased component with coupled-power equations.

The complete theory developed in this work has a predictive power – it can

guide the design of an artificial disorder based on the desired transmission properties

of the fiber. Experiment shows that mixing all co-propagating modes can, indeed, be

attained in a short segment of a suitably designed disordered MMF without a pro-

hibitive loss. Such fibers can be useful for e.g. maximizing the information capacity

multi-mode fiber links.
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1. INTRODUCTION

1.1. OPTICAL FIBERS IN COMMUNICATION

1.1.1. Historical Perspective. Presently, both long and medium range

data communication are dominated by optical fibers. Using light in communication

has increased the information transfer rate by a factor of 10 every four years. New

methods and devices had to be developed to sustain such an enhancement. These ad-

vances were largely enabled by two basic ideas dating back to the nineteenth century.

The first idea was formulated in the mid-19th century by Daniel Colladon and John

Tyndall [1], see Fig.1.1, which described a “light pipe” that can guide light along

a curved path due to the effect of total internal reflection. The second idea came

from Alexander Graham Bell who, in 1880, invented a “photo-phone” [2], as shown

in Fig.1.2. In this device, the light beam intensity was modulated by an audio signal

in a flexible mirror; and modulated light beam was then transmitted through the air.

The receiver demodulated the signal by a photo-sensitive material that changed its

resistivity in response to variations of light intensity. The photo-phone was ultimately

found to be impractical due to instabilities in the atmosphere that created fluctua-

tions, degrading the signal’s quality. This early setback highlighted the importance

of maintaining an orderly flow of light from the transmitter to the receiver.

Combining the ideas behind the light-pipe and the photo-phone led to the de-

velopment of early optical fibers. It initially appeared that the problems plaguing the

photo-phone could be eliminated by replacing the over-the-air transmission channel

with fluctuation-free glass fiber. The first study to examine the possibility of using

optical fibers commercially for data transmission [5] concluded that the distance over
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Figure 1.1: Light propagation in a curved path due to total internel reflection [3].
This effect was initially demonstrated by Daniel Colladon and further
popularized by John Tyndall.

which the communication could be achieved was limited largely by Rayleigh scat-

tering on imperfections in the medium. Once again, optical communication was set

back by a disorder (albeit of a different kind) in the transmission channel. The de-

velopment of ultra-pure glasses by Corning Glass, together with erbium-doped fiber

amplifiers, led to revolution in the development optical communication [6].

1.1.2. Information Capacity of Optical Fiber. During the initial re-

search and development of optical fibers, the single-mode fiber (SMF) emerged as

a de-facto standard for long-range communication [7]. The proliferation of audio-

and video-communication and the internet led to an ever-increasing demand for net-

work capacity. It also stimulated research to increase the transmission capacity of
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Figure 1.2: Alexander Graham Bell invented the photo-phone in 1880 [4]. This was
the first demonstration of the basic principle of the long-range optical
communication.

SMF [8]. Thus far, the demand has been met – various techniques, including both

dense wavelength division multiplexing and advanced high efficiency coding, led to

a ten-fold increase in demonstrated capacity every four years over the last thirty

years. However, current projections suggest that the available network capacity will

be exhausted around the year 2015 [8].

Studies of the fundamental limits have shown [9, 10, 11] that the information

capacity of an optical channel is given by

C = WDM× log2

[

det
(

Î + SNR × (1/N)t̂t̂†
)]

bits s−1 Hz−1, (1.1)

where WDM is the wavelength division multiplexing factor, SNR is a signal-to-noise

ratio, Î is an N × N unitary matrix, and t̂ is an N × N matrix which describes
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transmission through the channel. Currently, increasing WDM and SNR factors has

been exhausted in dense wavelength division multiplexing and high efficiency coding

approaches, respectively. The former is limited by the gain bandwidth in the erbium-

doped fiber amplifiers [12], and the latter is constrained by non-linear effects that

distort the high-intensity signal [13, 14, 15].

1.1.3. Space Division Multiplexing. Equation (1.1) reveals that informa-

tion capacity can be further increased if the number of fiber’s spatial degrees (modes

in e.g., a multi-mode (MMF) or a multi-core fiber (MCF) [16], see Fig.1.3) is in-

creased. In essence, increasing N allows one to increase SNR without producing

the detrimental effects of non-linearities because the power is distributed over many

modes. Although the idea of using MMF and MCF dates back to the early days of

fiber communication [17, 18], it has only recently become the focus of intense research.

This research has been stimulated by the convergence of technological advances and

practical need [16].

The difficulty that impedes wide-spread use of MMF in communication is a

result of the added complexity in independently addressing and detecting individual

fiber modes. Furthermore, mode-mixing during propagation limits the maximum

length of the fiber, for which such approach can be still utilized. Another drawback

of MMF is modal dispersion [19] – light propagates at different velocities in different

modes.

It has been pointed out [11] that, to achieve an increased capacity in Eq. (1.1),

the matrix t̂ does not need to be diagonal, as it is in the case of completely non-

interacting modes. If the matrix is both known (e.g., via a series of training pulses)

and invertable, the communication can proceed with an increased information capac-

ity. The theoretical limit on improving a transmission signal’s bandwidth is propor-

tional to the number of sources/receivers. Such an approach has become known as

the multiple-input-multiple-output (MIMO) technique [20] and is widely used in the
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Figure 1.3: Cross sections of (a) multi-core and (b) multi-mode fibers.

wireless communication; it has become the backbone of IEEE 802.11n standard (and

its successors) for local area networks (LANs) [9, 10, 21]. The same MIMO technology

can also be applied to unlock the information capacity of multi-mode-fibers [20, 22].

1.1.4. Mode Coupling. Researchers have formulated numerous approaches,

such as M-ary coding [23], electronic equalization [24, 25], and sub-carrier multiplex-

ing, selective modal excitation [26], to maximize the capacity of MMF. Largely be-

cause these approaches are complex and costly, their practical implementation has

been limited. Theoretical analysis of a multi-channel system’s information capac-

ity, has shown that it is maximized if the elements of the transmission matrix t̂ are

random-Gaussian [10]. This limit can be achieved if one radically changes the view

on modal coupling – rather than minimizing it, one has to promote mode coupling

[27].
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Mode coupling causes the exchange of power among modes during signal prop-

agation. In a MMF, mode coupling leads to a statistical equilibrium (i.e., equilib-

rium mode distribution) after certain characteristic length has been traversed [28, 29].

One can intentionally increase mode coupling in a MMF by introducing either bends

[30, 31], stresses, or random imperfections. Obtaining fully coupled modes in conven-

tional fibers requires sufficiently long segments of MMF, this is because concentration

of imperfections is low. In the most disordered case of plastic optical fibers, the char-

acteristic length for mode mixing is on the order of 10m [32].

The primary goal of this study is to introduce a different technique to excite

all modes equally in a short segment of fiber (10cm) and therefore, to enhance the

communication capacity. To achieve this goal, an artificial disorder is introduced

in a photo-sensitive multi-mode step-index Germanium-doped silica fiber [33], see

Fig.1.4. Doping by germanium atoms leads to an oxygen-deficient defect formation

[34]. Illumination by a UV source with a sufficiently short wavelength breaks these

bonds that, in turn, modifies the absorption spectrum of the glass. The real part of

the refractive index is changed through the Kramers-Kronig relation. Such approach

been used before to laser-write a wide variety of fiber gratings [35].

In this work, we developed a method for fabricating a controllable artificial

disorder in the photo-sensitive fiber. We demonstrate that unlike the disorder which

occurs in fibers naturally, the artificial disorder can be manipulated to promote mode

coupling while at the same time suppressing the radiative loss.

1.1.5. Radiative Loss. Radiative loss is the attenuation of the light beam’s

intensity as it travels through the fiber’s core. It is caused by e.g. scattering from

the rough fiber wall, the finite size of the cladding, or inhomogeneities in the fiber’s

material [29], see Fig.1.5. Managing these losses in an optical fiber is important

when a light signal is transmitting through the long fiber. The radiative loss due to
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Figure 1.4: Doping of silica fiber with Ge creates highly directional Ge-Si bonds which
can be broken by illuminating with UV light. This causes the refractive
index to change.

Rayleigh scattering on molecular inclusions introduced in its fabrication process is

the dominant loss mechanism in a glass fiber.

In conventional fibers, the Rayleigh scattering is responsible for both mode

coupling and radiative loss [36]. Therefore, increase in mode coupling is inevitably

accompanied by increased losses. In contrast, this study, demonstrates that in opti-

cal fibers with purposefully introduced modulations of the refractive index, one can

promote mode coupling while maintaining a manageable amount of loss.

1.2. EXPERIMENTAL WORK

The experimental setup in this study is designed to inscribe volume disorder in

the Ge-doped fiber core by exposing it to UV light from frequency-doubled Argon-ion

laser with an operating wavelength of 244nm. Doping by Ge created weak, highly
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Figure 1.5: Light propagates in the core of the fiber due to total internal reflection
and scatters to the cladding due to impurities. The latter called radiative
loss.

directional Ge-Si bonds that could be broken by the short wavelength UV light. The

unpolarized UV light passed through a diffuser creating a speckle fluctuation pattern

with both high and low intensities [37]. In the region of high intensity, the refractive

index is modified [33] and, thus, a disorder in the core is introduced.

Once the disorder has been created, 543nm light is used to perform transmis-

sion measurements, see Fig. 1.7. The fiber is illuminated with a linearly polarized

light. The output light is detected separately by in both orthogonal polarization

channels. The results of experimental measurement are explained using new theory

developed in this work.

1.3. THEORETICAL WORK

The artificial disorder introduced in the experimental setup in Fig. 1.6 differs

markedly from the Rayleigh-type commonly encountered in optical fibers. Scatterer

can no longer be approximated as point. Furthermore, special attention has to be

paid to the photo-induced birefringence, introduced by the polarized light [38] used
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Figure 1.6: Schematic diagram of the experimental setup.

in the fabrication process. Hence, theoretical study starts with the microscopical

model of photo-induced refractive index change introduced by Kamal and Russell

[34]. Statistical properties of disorder are determined by those of the UV light’s

electric field. Expressions for the photo-induced change in both the dielectric tensor

and its fluctuations are obtained with the Rayleigh-Sommerfield theory [39].

Once the statistical properties are found, the light propagation in the dis-

ordered fiber can be described theoretically. A new hybrid theory that combines

coupled-power with coupled-mode approaches is derived for this purpose.

1.3.1. Hybrid Coupled-Power/Coupled-Mode Theory. The coupled-

mode theory has been highly successful in describing properties of ordinary optical

fibers [40]. Any deviation from the perfect order can potentially lead to coupling of



10

Figure 1.7: Optical transmission measurement. A linearly-polarized light is launched
into the artificially disordered fiber. The output light is detected and
analysed seperatly for X and Y polarizations.

the modes and, hence, to a transfer of power from one guided mode to another, as

well as to the radiative modes.

The coupled-mode equations determine the amplitudes of all modes at a point

z along the wave guide. They can be written in the following form:

dcν(z)

dz
=
∑

ν′

Kνν′(z)cν′(z)e
i(βν−β

ν
′ )z, (1.2)

where cν(z) is the amplitude at position z along the fiber, βν is the propagation con-

stant, ν is the mode number, and Kνν′ are the coupling coefficients. In this work,

MMFs with artificial disorder support a relatively large number of modes (∼ 20).

Randomly varying coupling coefficients Kνν′ induce both cross- and intra-polarization

coupling between co-propagating modes. Although coupled-mode approach accounts

for all possible interactions between the modes with both polarizations, it is imprac-

tical for describing the random coupling between large number of modes.

In this work, modal coefficients cν(z) are separated into two terms: (i) de-

terministic component 〈cν,i(z)〉 which is treated via coupled-mode approach, and

(ii) random component δcν,i(z) = cν,i(z) − 〈cν,i(z)〉 described using coupled-power
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approach[40]. The new hybrid theory is developed by combining these two ap-

proaches. It is tested experimentally and is found to accurately describe the output

of the fibers with the artificial disorder.

1.4. OUTLINE OF THE DISSERTATION

In this dissertation, each chapter has been published as a journal article. Each

chapter has an abstract, a introduction and a conclusion. The papers I and III de-

scribe the experimental procedure, demonstrate an efficient mode mixing and intro-

duce a practical approach to control the statistical properties of the photo-induced

fluctuations of the dielectric constant. The scalar theory theory presented in paper

I describes the polarization-insensitive experiments without account of birefringence.

In the paper II, the detailed microscopical model describing the changes in the sus-

ceptibility tensor during the process of fabricating the artificially disordered fiber is

developed. In addition, paper II reports the statistical analysis of the light transmis-

sion through the disordered fiber. It describes the transient process of de-polarization

of the light launched in to such fibers. The predictions of the theory are corroborated

by the polarization-resolved experiments.
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ABSTRACT∗

We present results of experimental and theoretical studies of polarization-

resolved light transmission through optical fiber with disorder generated in its germanium-

doped core via UV radiation transmitted through a diffuser. In samples longer than
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certain characteristic length, the power transmitted with preserved polarization is

observed to be distributed over all forward-propagating modes as evidenced by the

Rayleigh negative exponential distribution of the near-field intensity at the output

surface of the fiber. Furthermore, the transmitted power becomes also equally dis-

tributed over both polarizations. To describe optical properties of the fibers with

the experimentally induced disorder, a theoretical model based on coupled mode

theory is developed. The obtained analytical expression for the correlation function

describing spatial properties of the disorder shows that it is highly anisotropic. Our

calculations demonstrate that this experimentally controllable anisotropy can lead

to suppression of the radiative leakage of the propagating modes so that inter-mode

coupling becomes the dominant scattering process. The obtained theoretical expres-

sions for the polarization-resolved transmission fit very well the experimental data

and the information extracted from the fit shows that radiative leakage is indeed

small. The reported technique provides an easy way to fabricate different configura-

tions of controlled disorder in optical fibers suitable for such applications as random

fiber lasers.
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1. INTRODUCTION

In recent years, there has been a considerable interest in optical disordered

media. This is largely due to the new functionalities brought about when disorder

is introduced into a homogeneous and periodic systems. A random laser[41], where

laser action is ensured by coherent feedback in disordered structures, such as powders

or porous crystals, is a striking example of this. In the paper [21] the advantages

of disordered systems in wireless communications of high information capacity have

been shown. It has also been reported [42] that the disorder induced in nonlinear

crystals can greatly improve the efficiency of operation of nonlinear optical devices. It

appears that disordered media open numerous possibilities for applications in sensors,

nano-photonics and, more generally, in various light transmission systems.

Localization of electromagnetic radiation in strongly disordered random me-

dia has attracted great interest from both fundamental and practical points of view

[43]. Studied in the optical as well as in the microwave spectral regions, the phe-

nomenon of localization depends on the dimensionality of the system. In particular,

in surface- [44] [45] and volume- [46] disordered waveguides it leads to arbitrarily

small transmission, which diminishes exponentially with the length of the system.

This disorder-induced confinement can be employed in such an application as a laser.

Disorder-induced confinement has been shown to lead to unusual while at the

same time useful properties in photonic-crystal waveguides [47] and in optical fibers

[48],[49],[50],[51],[52]. An optical fiber is an extremely promising experimental system

for random lasing applications[53]: Lizárraga et al.[54] reported coherent random

lasing on randomly distributed Bragg gratings in single mode optical fibers, whereas

Turitsyn et al. [52] demonstrated an incoherent random lasing.

In this report we present experiments on the fabrication of random variations

of the refractive index throughout the core of a Ge-doped multi-mode optical fiber,
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whose parameters can be controlled in our experimental setup. The characteristics of

the disorder created are evaluated from an analysis of the intensity distribution of the

near-fields at the output of the fiber and by the analysis of the speckle size dependence

of the total intensity of the transmitted light. The experimental results are compared,

and agreement is found, with the predictions of the coupled mode theory, which is

adapted to the particular type of volume disorder considered in this work. We show

that the by varying the correlation size of the disorder, scattering sufficiently strong

to achieve the complete mixing of the forward propagating modes can be achieved

in a short centimeter-length segment of a multi-mode fiber. We also demonstrate

that disorder with strongly anisotropic correlation function can lead to a dramatic

suppression of radiative losses, so that coupling between modes becomes dominant.

Thus, the scattering is much more efficient compared to the weak scattering off the

material impurities as in, e.g. Ref. [52], and, unlike Bragg gratings, it is broad-band

in propagation constant of a mode or the frequency of the light. The above properties

of our system make is a promising candidate for fabrication of a compact multi-mode

random fiber laser. This can be achieved by sandwiching the disordered segment of

the fiber between two Bragg gratings which would provide a feedback.

The paper consists of the following sections. In Section 2 the experimental

setup used for the fabrication of the fiber samples with disorder is described. In

Section 3, one can find the experimental and numerical results on the intensity distri-

bution of the light emerging from an optical fiber with different scales of the disorder.

In Section 4 theoretical analysis of the optical properties of a fiber with speckled per-

turbations of the refractive index in its core is presented. Finally, discussion and the

outlook are presented in Section 5.
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2. FABRICATION OF THE DISORDER

The experimental setup utilized for the fabrication of disorder in optical fibers

is schematically depicted in Fig. 1. In our experiments we employed a step-index

optical fiber (PS1250/1500 of Fibercore) sensitized by Ge. The main parameters of

the fiber are: the core diameter is 7.66 microns, the cladding diameter is 125 microns,

and the numerical aperture (NA) NA = 0.13 with the refractive indices of the core and

the cladding 1.463 and 1.457, respectively. The cutoff wavelength of the fiber with

these parameters is about 1200 nm. The disorder was introduced in the Ge-doped

fiber core by exposing it to UV light from an intracavity frequency doubled Argon-ion

laser (244nm) which passed through a cylindrical lens and a diffuser, creating, in this

way, a speckle pattern in a plane parallel to the fiber axis. The light beam generated

by the UV laser was initially expanded by a cylindrical lens with a focal length 12

cm in order to form an elliptical spot with desired dimensions at the diffuser plane.

The beam transmitted through the diffuser was used for exposing the photo-sensitive

fiber. Speckle, as the strongly fluctuating, grainy intensity pattern resulting from

the interference of randomly scattered coherent waves, resulted in fluctuations of the

illuminating UV intensity in the fiber core. An expression for the size of a speckle,

Eqs. (1.6)-(1.8) is derived in Sec. 4 below. It depends on the distance between the

diffuser and the fiber axis, D, the size of the illuminated region in the diffuser plane

Lx,z, and the wavelength of the recording UV light λUV . Variations of D in the range

2−8 mm and of Lx,z in the range of 8-10 mm allowed us to obtain an average speckle

size along the fiber axis between 200 and 600 nm.

The length of each segment with the fabricated disorder was 1-2 cm. The

experimental geometry allowed us to record the segments with lengths up to 5 cm.

In order to achieve disorder with similar statistical parameters in each segment, the

same exposure time was used for all segments, namely, about 10 minutes at a mean
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Figure 1: The experimental setup.

power of the UV laser of about 100 mW. We observed experimentally that after this

exposure the intensity distribution of the output probe light at the fiber output did

not change. Every next segment with a random distribution of the refractive index

was recorded directly after the preceding one. The total lengths of the fabricated

disordered part (Ls) were 2, 4, 6, 8, 10 and 15 cm.

After forming the disordered segment we launched the probe beam of the He-

Ne laser operated at λ = 543 nm into the fiber, and detected the image of the output

intensity distribution by a CCD camera (ST-402ME SBIG). The selected wavelength

543 nm of the probe beam ensured a low mode-number propagation regime, and cor-

responded to the sensitivity range of the CCD camera quite well. The light emerging
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from the fiber passed through the microscope objective x100, which imaged the out-

put end of the fiber on the CCD camera. In front of the CCD camera there was a

polarizer utilized for characterization of the transmitted light.

3. EXPERIMENTAL RESULTS

The resulting V parameter of the utilized fibers was 5.8171 at the probe wave-

length, and the expected number of the guided linearly polarized modes is N = 20.

By varying the angle of incidence of the probe beam, different combinations of modes

were excited and the corresponding near-field transmitted intensity was recorded. It

appears that these measurements can be made quite reliably. Indeed, (i) the light

polarization was preserved in the straight fiber without disorder; (ii) the ambient

temperature was controlled be special air condition system that excluded the fluc-

tuation of the parameters of the fiber samples during measurements. At the input

of the optical fiber, the polarized light goes through a half wave-plate and a linear

polarizer. The output light was detected separately for both polarizations: a) after

passing through a polarizer of the same orientation as at the input (pp - polarization),

or b) perpendicularly polarized (ps - polarization). We analyzed the output light of

each polarization independently. The polarization extinction ratio of the laser source

and the fiber output was measured in the linear transmission regime.

Examples of the intensity distribution of the light emerging from the fiber,

obtained for different realizations of the disorder and for different angles of the in-

cident beam with disordered segments of the fiber of 1 cm (a) and 2 cm (b) length,

are presented in Fig. 2. The left column presents results of pp-polarization measure-

ments, the right column presents results of ps - polarization measurements. Different

realizations were obtained by slightly bending the disordered part of the fiber.
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Figure 2: Examples of the output intensity distribution observed in some realizations
with the disordered part of the fiber 1 cm (a) and 2 cm (b). The left column
in each figure presents pp - polarized distribution, and the right column
presents the ps - polarized one. The angles of incidence are 0◦, 2◦ and 5◦

from the top to the bottom images.

In Fig. 3 the ensemble averaged intensities of the output light measured exper-

imentally as functions of the length of the disordered parts of the fiber are presented.

The averaging was performed over ten realizations. The solid and dashed lines are

the fit with the theoretical expression Eqs. (1.24,1.25) obtained from Eq. (1.19) in

the next section. The theoretical and experimental results show excellent agreement.

4. COUPLED-MODE THEORY IN FIBERS WITH SPECKLED PER-
TURBATIONS OF REFRACTIVE INDEX

As is shown in Sec. 3, the random fluctuations of refractive index imprinted in

the core of the photo-sensitive fiber result in mixing of different forward propagating
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Figure 3: Experimentally measured total co- (open symbols) cross-polarized (solid
symbols) transmission as a function of the length of the disordered part
of the fiber for different polarization of the transmitted beam. The circles
correspond to an angle of incidence of 0◦, the triangles to 2◦, and the
squares to 5◦. Solid and dashed lines represent the theoretical fit with
Eqs. (1.24,1.25) with parameters α = 0.064cm−1, σ2 = 0.1917cm−1.

modes. To describe this process and to obtain the characteristic (mixing) length

of the disordered segment of fiber, we employ the coupled-power method developed

by Marcuse [40]. However, because the disorder induced by the speckle pattern,

see Sec. 3, does not allow a factorization of the refractive index modulations into a

product of a function of the transverse coordinates and a function of the longitudinal

coordinate δn(x, y, z) 6= δn(x, y)×f(z), the original derivation is not applicable. The

goal of this section is to obtain a system of coupled-power equations applicable to

the experimentally induced disorder. In process of derivation we verify that coupling

between the forward and backward propagating modes is negligible. We also give
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detailed estimates of the radiative loss due to scattering into non-guiding modes. We

show that because of the highly asymmetric correlation function of the disorder, the

radiative loss is greatly reduced so it becomes comparable to the coupling coefficients

between guided modes.

4.1. Statistical Properties of Disorder. To begin our analysis, we need

to obtain the statistical properties of the disorder, specifically, the two-point corre-

lator of the fluctuations of the dielectric function 〈δε(r)δε(r′)〉, where the angular

brackets denote averaging over different realizations of disorder. Here we defined

the fluctuation of the dielectric function δε(r) = ε(r) − 〈ε(r)〉, which has the prop-

erty 〈δε(r)〉 = 0. We make an assumption that in the process of exposure to the

ultra-violet (UV) radiation the material in the fiber core remains in a linear regime,

i.e.

〈δε(r)δε(r′)〉 = 〈δε2〉 |〈A(r)A∗(r′)〉|2

〈|A(r)|2〉〈|A(r′)|2〉
≡ 〈δε2〉 |µ(r′, r)|2 , (1.1)

where A(r) are statistically uniform complex field amplitudes of the UV light

scattered by the diffuser. The amplitudes can be computed in the paraxial approx-

imation with the help of the Fresnel diffraction integral which propagates the fields

delta-correlated in the plane of the diffuser; the procedure is described in Sec. 4.4 of

Ref. [55]. In our problem we are interested in 〈δε(r)δε(r′)〉 as a function of all three

spatial coordinates, including both those perpendicular (x- and z-axes) and parallel

(y-axis) to the direction of the UV illumination. In the geometry considered it is

impossible to obtain such an expression in a compact form. To proceed we assume

that

µ(r′, r) ≈ µ(r′ − r) ≈ µ(x− x′, 0, z − z′)µ(0, y − y′, 0). (1.2)
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In this expression the first factor describes the correlation in the plane perpen-

dicular to the UV propagation whereas the second factor describes the depth of the

speckle. The expressions for these functions can now be computed with the knowl-

edge that the gausssian UV laser beam is spread out by the cylindrical lens to cover

the spot

I(x̃, z̃) ∝ exp
[

−x̃2/L2
x − z̃2/L2

z

]

, (1.3)

where x̃, z̃ denote the coordinates in the plane of the diffuser. The intensity

distribution in Eq. (1.3) allows one to compute the Fresnel integrals [55] which define

the correlation functions µ(x−x′, 0, z−z′) and µ(0, y−y′, 0) in Eq. (1.2). Performing

the integrations we obtain

|µ(x− x′, 0, z − z′)|2 = exp

[

−
(

x− x′

Sx

)2
]

× exp

[

−
(

z − z′

Sz

)2
]

(1.4)

|µ(0, y − y′, 0)|2 = 1
(

1 +

[

πL2
x

λUVD2
(y − y′)

]2
)1/2(

1 +

[

πL2
z

λUVD2
(y − y′)

]2
)1/2

≈ 1
(

1 +

[

y − y′

S2
y

]2
)1/2

. (1.5)

The length Si were introduced to describe the spatial dimensions of the speck-

les:

Sx =
λUVD√
2πncoreLx

≈ 0.15
λUVD

Lx
(1.6)
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Sy =

√
3λUVD

2

πncoreL2
z

≈ 0.38
λUVD

2

L2
z

(1.7)

Sz =
λUVD√
2πncoreLz

≈ 0.15
λUVD

Lz
, (1.8)

where D denotes the distance from the diffuser to the fiber core during the

exposure; all dimensions are scaled by the refractive index of the core; and Lz ≫ Lx

is assumed in Eq. (1.5). Finally, by substituting Eqs. (1.4,1.5) into Eq. (1.1), we

obtain the sought expression for the second order statistics of disorder introduced in

imprinting the speckle pattern in the core of the photo-sensitive optical fiber:

〈δε(r)δε(r′)〉 ≈ 〈δε2〉 exp
[

−
(

x− x′

Sx

)2
]

1
[

1 +

(

y − y′

S2
y

)2
]1/2

exp

[

−
(

z − z′

Sz

)2
]

.

(1.9)

The parameter 〈δε2〉 = 2ncore∆nUV is related to the change in the refractive

index ∆nUV due to the UV irradiation. We note that the above approximate expres-

sion remains valid for |y − y′| ≤ Sy. For |y − y′| ≫ Sy the factor omitted in Eq. (1.5)

has to be also included to ensure that the function is normalizable.

4.2. Derivation of Coupled-Power Equations. We begin our derivation

of a system of coupled-power equations by expressing the electric field in terms of

the linearly x- and y-polarized (LP) modes in the weakly guiding step-index fiber

without disorder

E(r) ≈
∑

ν

cν(z)e
i(ωt−βνz) (Et,ν(x, y) + êzEz,ν(x, y)) . (1.10)
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Here the summation runs over all modes ν of the fiber including the odd

and even modes of both x- (odd ν’s) and y-polarizations (even ν’s), assumed to be

normalized as

βν

∫ ∫

[Et,ν(x, y) · Et,ν′(x, y)] dxdy = δνν′ , (1.11)

where δνν′ is the Kronecker symbol. Eq. (2.13) contains contributions from

only forward propagating modes. In Sec. 4.3 we will support this assumption by

showing that the coupling coefficients into the backward propagating modes is negli-

gible.

Further, in Eq. (2.13) the transverse Et,ν(x, y) and the longitudinal êzEz,ν(x, y)

components of the individual modes are retained despite the smallness of the latter.

As will be seen below, retaining the longitudinal components is crucial because it

gives the dominant contribution to the coupling between the modes with the orthog-

onal polarizations. βν is the propagation constant of the νth mode, and cν(z) is its

amplitude at position z along the fiber.

Following [40], we obtain the coupled amplitude equation

dcν(z)

dz
=
∑

ν′

Kνν′(z)cν′(z)e
i(βν−β

ν
′ )z, (1.12)

where

Kνν′(z) =
ω2

2c2

∫ ∫

δε(r) [Et,ν(x, y) · Et,ν′(x, y) + Ez,ν(x, y)Ez,ν′(x, y)] dxdy (1.13)

are the amplitude coupling coefficients. The system of equations Eq. (1.12)

can be used to obtain the solution for a particular realization of the random function
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δε(r). The ensemble-averaged information can be obtained by defining the power in

each mode as Pν = 〈|cν |2〉 which satisfies the evolution equation

dPν

dz
= 〈c∗ν

dcν
dz

〉+ c.c. , (1.14)

where c.c. stands for the complex conjugate. We proceed by substituting

Eqs. (1.12,1.13) into Eq. (1.14). Evaluation of the ensemble average 〈...〉 requires the

following two assumptions. 〈Pν(z)〉 is assumed to vary on scales much larger than

that of the disorder Sz ∼ λ. This assumption is easily satisfied because the magnitude

of the refractive index fluctuations is small – ∆nUV ≪ 1. The experimental data in

Fig. 3 further corroborates this assertion.

At this point, our derivation departs from that of Marcuse [40]. To evaluate

〈|Kνν′(z)|2〉, instead of the stringent requirement that the function describing the

disorder in the refractive index can be factorized as δn(x, y, z) 6= δn(x, y) × f(z),

we use a much weaker assumption that z-dependence is factorizable in 〈δε(r)δε(r′)〉.

Indeed, the multiplicative property of the correlation in the speckle in Eq. (1.9) that

separates the dependencies on the transverse (x and y) and the longitudinal (z)

coordinates, enables one to complete the derivation of the system of coupled-power

equations

dPν

dz
=
∑

ν′

hνν′ (Pν′ − Pν) (1.15)

with the power coupling coefficients given by the following expression

hνν′ = 〈δε2〉ω
4π log(2)SxSySz

c4
e−S2

z
|βν−β

ν
′ |
2/4×

∫ ∫

[Et,ν(x, y) · Et,ν′(x, y) + Ez,ν(x, y)Ez,ν′(x, y)]2 dxdy (1.16)
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In obtaining Eq. (1.16),

We approximated exp
[

− (x− x′)2 /S2
x

]

×
[

1 + (y − y′)2 /S2
y

]−1/2
by the product of

two delta functions 4π1/2 log(2)SxSyδ (x− x′) δ (y − y′) with the coefficients chosen

so that both pairs of functions enclose identical area. This approximation is justified

fairly well in our case because Sx,y are smaller than the characteristic scale, a, of

the field variation in the transverse direction for all guided modes. In case of the

function that describes y-dependence, the full expression Eq. (1.5) was used to obtain

the normalization and the correction terms logarithmic in Lx/Lz were omitted in the

result.

4.3. Efficiency of Backscattering. In process of derivation of the coupled

power equations Eqs. (1.15,1.16) we neglected the possibility of scattering from a

forward propagating mode into one of the backward propagating modes. This is an

important process which, if efficient, can give rise to the phenomenon of Anderson

localization which originates in the studies of mesoscopic systems in condensed mat-

ter physics[56]. Multiple scattering and interference of the forward- and backward-

propagating waves can suppress transmission and lead to an exponential decay of the

transmission coefficient. This dependence may appear similar to that observed in

Fig. 3.

To estimate the efficiency of the backscatering process in our system, we com-

pute the forward-to-backward coupling coefficients. The derivation follows the steps

similar to those in Sec. 4.2 with the final expression for h+,−
νν′ being given by the for-

mula similar to Eq. (1.16) with an exception that exp
[

−S2
z |βν − βν′ |2 /4

]

≃ 1 factor

is replaced by exp
[

−S2
z |βν + βν′ |2 /4

]

≪ 1. One can see that this difference, proves

to be extremely important because |βν − βν′| ≪ |βν + βν′ | ≃ 2ncore × (2π/λ) and

Sz . λ in our fibers.
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The above estimate shows that the backscattering mechanism is, indeed,

strongly suppressed in the considered system as it was assumed in the previous sec-

tion. As a consequence, we do not expect our system to exhibit the phenomenon of

Anderson localization.

4.4. Radiative Losses. Optical fiber with unwanted or purposefully intro-

duced, as in our case, modulations of the refractive index are invariably suscep-

tible to the radiative losses. Indeed, the index nonuniformity couples the modes

guided in the core of the fiber to the non-guided modes that extend into the cladding

and are effectively lost. Even the fibers of the highest quality suffer from radiative

loss from Rayleigh scattering on molecular inclusions introduced in its fabrication

process[36]. The consequence of this loss is the exponential decay of the power in a

mode Pν(z) ∝ exp [−ανz]. Unlike the losses suffered in waveguides with rough sur-

faces, the radiative loss in the volume-disordered fibers, such as fibers with molecular

defects, should not exhibit a strong dependence on the mode index ν. Because the

fibers studied in this work are of the latter kind, we will assume αν ≡ α hereafter.

In Chapter 4 of Ref. [40] Marcuse has derived an expression for α in case of

Rayleigh scattering. It is interesting to note that under quite general conditions the

ratio between coupling coefficients and the scattering loss appears to be independent

of the disorder parameters[57]

α

hνν′
≃ 2

3π
k2
0n

2
coreA, (1.17)

where k0 = 2π/λ and A is the area of the fiber core. One can easily see that the

above estimate gives α/hνν′ ≫ 1 for a step index fiber with (ncore−ncladding)/ncore ≪

1. Evaluating this ratio for our system gives a number on the order of a thousand.

Although the above estimate is made under assumption of Rayleigh scattering, it

may still be applicable in our case. This is because the Rayleigh criterion involves



28

not only the smallness of the scatterer compared to the wavelength of light but also

the difference between its refractive index and that of the surrounding [58]. Below,

we expose a flaw in this logic and show that Eq. (1.17) is not applicable to our system

and that instead α ∼ hνν′

Unlike a deterministic scattering off a single particle, the scattering in a ran-

dom system has to properly account for the exact autocorrelation function given in

our system by Eq. (1.9). The combined effect for a group of scatters can be greatly

diminished if the phases of the partial waves are sufficiently random. Quantitatively

this effect is described [40] by the following integral

α ∝ I =

∫

dΩ∆k (êscat · êz)2
∞

∫∫∫

−∞

duxduyduz〈δε(r)δε(r+ u)〉 exp [i∆k · u] . (1.18)

Here, ∆k ≈ ncorek0 (êscat − êz) defines the change of wave vector after scat-

tering and
∫

dΩ∆k... denotes the solid angle integration over all possible scattering

directions.

Rayleigh approximation in Eq. (1.18) amounts to assuming that disorder is

correlated in the volume L3
corr much less then λ3, that results in exp [i∆k · u] ≃

1. In the optical fibers with photo-induced disorder considered in our work, this

assumption is no longer valid. Thus, Rayleigh result I = (4π/3) 〈δε2〉L3
corr needs to

be re-evaluated for the correlator Eq. (1.9) we obtained in Sec. 4.1.

Calculation of the triple integral in Eq. (1.18) is facilitated by the fact that

〈δε(r)δε(r+u)〉 is factorizable into three functions each of which depend only on one

spatial variable. The integrals over ux and uz give rise to
√
πSx,z exp [−(∆kx,zSx,z/2)

2].

The integral over uy does not give, in general, a compact expression. However, in a

special case when Lx = Lz it leads to a simple expression which illuminates the general

tendency: πSy exp [−∆kySy]. Inspection of all three integrals shows that the result
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of the triple integral in Eq. (1.18) is a function which is very strongly peaked around

|∆k| = 0. Therefore, the remaining integration over solid angles should produce the

result much smaller then 4π/3 predicted for the isotropic (Rayleigh) scattering. To

complete our calculation of the absorption coefficient α we perform the integral over

dΩ in Eq. 1.18 numerically and report the results in Fig. 7.

4.5. Solution of Coupled-Power Equations. The system of coupled-power

Eqs. (1.15) obtained in Sec. 4.2 did not account for loss. This omission can be rectified

by a phenomenological correction due Marcuse [40]

dPν

dz
= −αPν +

∑

ν′

hνν′ (Pν′ − Pν) (1.19)

Such a treatment of loss can be rigorously justified in the case when the such

a loss is independent of the mode index [29]. As already mentioned in the preceding

section, this a reasonable assumption for the volume disordered fibers that we also

adopt here.

Solution of Eqs. (1.19) proceeds with two steps. First, the effect of the radia-

tive loss is factored out with substitution

Pν(z) = P (lossless)
ν (z)× exp [−αz] , (1.20)

which reduces Eqs. (1.19) back to Eqs. (1.15) satisfied now by P
(lossless)
ν (z).

In the second step, the solution for P
(lossless)
ν (z) is obtained by the following

ansatz

P (lossless)
ν (z) = Aν exp [−σz] , (1.21)

where σn and the corresponding set of A
(n)
ν are to be determined by substitu-

tion of Eq. (1.21) into Eq. (1.15). Here σn are the eigenvalues of the secular equation
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det

[

hνν′ − δνν′
∑

τ

hντ + σ

]

= 0 (1.22)

arranged in increasing order. The overall solution for Pν(z) takes form

Pν(z) = e−αz ×
[

∑

n

cnA
(n)
ν e−σnz

]

, with cn =

[

∑

n

A(n)
ν Pν(0)

]

. (1.23)

Because the effect of radiative loss has been factored out in Eq. (1.20), the

conservation of the total power for P
(lossless)
ν requires σ1 ≡ 0 and, subsequently,

A
(1)
ν = const = 1/N leads to uniform distribution of the power over all modes.

The knowledge of σn allows estimation of the characteristic lengths of the disordered

region of the fiber beyond which such asymptotic state is achieved, ℓ(xx) ≡ σ−1
3 , and

for cross-polarized modes, ℓ(xy) ≡ σ−1
2 . Assuming that the fiber is excited with some

mode combination (with total input power equal to unity) of the same polarization,

which we assume to be x for definitiveness, and recalling mode numbering convention

in Eq. (2.13) we obtain

P (x)(z) ≡
N/2−1
∑

ν=0

P2ν+1 ≈ e−αz × 1

2

[

1 + e−σ2z
]

, (1.24)

P (y)(z) ≡
N/2
∑

ν=1

P2ν ≈ e−αz × 1

2

[

1− e−σ2z
]

. (1.25)

The above equations have the following properties. Without loss and polariza-

tion coupling, P (x)(z) = 1 reflects power conservation. In the presence of absorption

P (x)(z) + P (y)(z) = exp[−αz] exhibits attenuation due to the radiative losses.

In the case when coupling between two orthogonal subsets of LP modes of the

fiber is weak, σ2 ≪ α ≪ σ3, Eq. (1.23) yields P (y)(z) ∼ 0, P (x)(z) ≃ exp[−αz] and
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the system reaches the state when the power is equally distributed only over (N/2)

modes with initially excited polarization, x:

P2ν+1(z) ≈ e−αz ×
[(

P2ν+1(0)−
2

N

)

e−σ3z +
2

N

]

, P2ν(z) ∼ 0. (1.26)

The above analysis shows that the redistribution of the power carried by the

forward propagating modes can be detected by making the following observations:

• Making polarization-resolved measurement of the light intensity at the output

surface of the fiber and averaging it over several disorder configurations should

show that intensity profile approaches the limit. Alternatively, the conclusion

that a perfect mixing (in a statistical sense, i.e. Pν(z → ∞) → const) indeed

occurs in our experimental system can also be tested through measurements

of the distribution of the near-field intensity at different spatial locations for

just one realization of disorder. A random sum of different modes of the fiber

∑

ν cνEt,ν(x, y) with Pν ≈ const is expected [55] to result in the Rayleigh nega-

tive exponential distribution of the intensity. In an optical fiber, however, the

coefficients cν are not completely random because the total power carried by all

modes is constrained by
∑

ν |cν(z)|
2 = exp [−αz]. This constraint, similar to

the power conservation in the lossless fibers [37], makes the distribution deviate

slightly from the Rayleigh form. As can be seen from Fig. 4, the agreement

between theory and experiment is very good, whereas the level of precision of

the experimental data does not allow distinguishing between the two theoreti-

cal functions – unconstrained and constrained random sums of all modes of the

fiber.
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• The dependence of P (x)(z = Ls), P
(y)(z = Ls) on the length of the disordered

segment of the fiber, Ls, is expected to be described by Eqs. (1.24,1.25). We

observe that the power carried by a particular mode ν,

Pν = βν

∫ ∫

[Et,ν(x, y) · Et,ν′(x, y)] dxdy is equal to the product of nearly ν-

independent βν ≈ n1k0 and the field intensity integrated over the surface

of the fiber I. Therefore, even in case of superposition of several modes

with the same polarization, the area-integrated intensity at the output fact,

I(x,y) =
∫ ∫

∣

∣

∣

∑

ν cνE
(x,y)
t,ν (x, y)

∣

∣

∣

2

dxdy =
∑

ν

∫ ∫

|cν |2
∣

∣

∣
E (x,y)
t,ν (x, y)

∣

∣

∣

2

dxdy ≈

(1/n1k0)
∑

ν P
(x,y)
ν is proportional to P (x)(z) and P (y)(z) given by Eqs. (1.24,1.25).

The outcome of the fit by these expressions to the experimental data in Fig. 3

allows one to extract the characteristic mixing length ℓ(xy) = σ−1
2 and loss co-

efficient α.
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Figure 4: The distributions which correspond to an unconstrained random sum
(shown as a dashed curve) and to a constrained random sum (shown with
the solid line) of all modes of the fiber, are compared to the experimentally
observed distributions of the near-field intensity measured in co- (circles)
and cross-polarized (squares) channels in a sample with L=8cm. The thin
symbols correspond to an angle of incidence of 2◦, and the bold ones to an
angle of incidence of 5◦.
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Approximate expressions for the mixing lengths can be obtained in a compact

analytic form by taking into account the fact that both the transverse Et,ν(x, y) and

the longitudinal êzEz,ν(x, y) modal profiles are spread out over the entire core of the

fiber. This observation together with Eq. (1.11) allows one to estimate

∫ ∫

[Et,ν(x, y) · Et,ν′(x, y) + Ez,ν(x, y)Ez,ν′(x, y)]2 dxdy (1.27)

≈











[n2
core(ω

2/c2)πa2]
−1

xx, yy

(NA/2)4 [n2
core(ω

2/c2)πa2]
−1

xy, yx .
(1.28)

where a is radius of the fiber core. In the second case of the cross-polarized

modes we also used the fact that the amplitude of the Ez,ν(x, y) component is a factor

NA/2 smaller compared to the amplitude of the transverse fields. The approxima-

tions in Eq. (1.28), σ2,3 ∼ h22,33 and Sz |βν − βν′| ≪ 1 allow us to obtain our final

result in a closed analytical form

ℓ(xx)−1 ≡ σ3 ∼ ∆n

2ncore

πω2SxSySz

c2a2
=

∆n

n4
core

λ3
UVD

4

λ2a2LxL3
z

,

ℓ(xy)−1 ≡ σ2 ∼ ℓ
(xx)−1
mixing

(

NA

2

)4

, (1.29)

where Eqs. (1.6)-(1.8) were used.

In Fig. 5 we plot the dependence of the speckle size as a function of the distance

D between the diffuser and the fiber core. It is clear that tuning this parameter

allows one to widely tune the characteristic size of the prepared disorder. This is an

attractive feature of the fabrication technique described in Sec. 2.

In Fig. 6 three expressions for ℓ(xx) obtained in this section are compared.

As expected, for small speckle size (small D), the approximation of Eq. (1.9) by a
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Figure 5: The size of the speckle defined by Eqs. (1.6)-(1.8) with Lx = 0.3mm and
Lz = 2mm as a function of the distance between the diffuser and the core
of the photo-sensitive fiber.

product of delta functions appears to be justified and gives a quite accurate result

when compared to the direct numerical evaluation of hνν′.

Numerical evaluation of the exact expressions in Eq. (1.16,1.22) with the ex-

perimentally relevant parameters (Lx = 0.5mm, Lz = 3mm and D = 0.5cm) yields

σ3 = ℓ(xx)−1 ≃ 0.15cm−1, σ2 = ℓ(xy)−1 ≃ 3×10−6cm−1, and α ≃ 0.015cm−1,see Fig. 7.

5. CONCLUSIONS

We have studied the transmission of light through a volume disordered mul-

timode optical fiber. The disorder was introduced in the germanium-doped core of

the fiber via UV radiation transmitted through a diffuser. The disorder generated in

an optical fiber can be controlled by the experimental conditions, and is determined

by the speckle size and the value of the induced difference in refractive index. The

measurement of the transmission as a function of the length of the disordered sec-

tion demonstrates the uniform distribution of the power over all forward-propagating
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Figure 6: Compares the values of the characteristic length ℓ(xx)−1 ≡ σ3 after which
all forward propagating modes with one polarization become equally pop-
ulated. It is found numerically from Eq. (1.16) without (solid line) and
with (circles) the delta function approximation to the order of magnitude
estimate (squares) in Eq. (1.29).

modes beyond Ls = 15cm. For long sections of a disordered fiber, the experimentally

measured distribution of the near-field intensity at the output surface of the fiber is

well described by the Rayleigh negative exponential function. The presented tech-

nique provides an easy way to fabricate different configurations of controlled disorder

in optical fibers suitable for applications as a coherent and incoherent random fiber

laser. Although the specific type of disorder studied in our work leads to mixing of

only forward-propagating modes, the feedback necessary to produce laser action can

be achieved by surrounding the disordered fiber with Bragg gratings.

Analysis of Fig. 3 shows that the power transfer into the cross-polarized modes

occurs quite efficiently with ℓ(xy) ≃ ℓ(xx). This differs from the predictions of the

coupled mode theory developed in Sec. 4 that gives ℓ(xy) ≫ ℓ(xx). We attribute this

enhanced cross-polarization coupling to (i) birefringence effect induced by the bending

of the fiber, and (ii) strongly anisotropic disorder pattern defined by Eq. (1.9). Indeed,
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Figure 7: Compares the amplitude of the radiative loss rate computed from Eq. (1.18)
to the inter-mode coupling rate σ3. The plot shows that for the disorder
patterns generated with D > 4mm the coupling becomes dominant effect.
This conclusion is borne out by the experimental results in Fig. 3.

although no polarization mixing is observed in the blank fibers (before the disorder

is introduced), to generate the statistical ensemble of different realization, the 30-cm

long fiber sample was displaced in lateral directions, while both of the sample’s ends

were fixed by fiber clips. As a result of fiber bending and tension, a pronounced

birefringence was induced. For our experimental condition we estimate the minimum

radius of the bending as 250 cm, which gives birefringence ∆n ∼ 4 × 10−5 [59].

Formally, the induced birefringence enables coupling via the transverse components

of the modes field, that is expected to remove the small factor (NA/2)4 which lead

to ℓ(xy) ≫ ℓ(xx) condition in Eq. (1.28). The effect of induced birefringence will be

reported in a separate publication.
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ABSTRACT∗

We develop and experimentally verify a theory of evolution of polarization in

artificially-disordered multi-mode optical fibers. Starting with a microscopic model

of photo-induced index change, we obtain the first and second order statistics of the

dielectric tensor in a Ge-doped fiber, where a volume disorder is intentionally in-

scribed via UV radiation transmitted through a diffuser. A hybrid coupled-power &

coupled-mode theory is developed to describe the transient process of de-polarization

of light launched into such a fiber. After certain characteristic distance, the power is

∗Published in Optical Express 20, 3620-3632 (2012).
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predicted to be equally distributed over all co-propagating modes of the fiber regard-

less of their polarization. Polarization-resolved experiments, confirm the predicted

evolution of the state of polarization. Complete mode mixing in a segment of fiber

as short as ∼ 10cm after 3.6dB insertion loss is experimentally observed. Equal ex-

citation of all modes in such a multi-mode fiber creates the conditions to maximize

the information capacity of the system under e.g. multiple-input-multiple-output

(MIMO) transmission setup.
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1. INTRODUCTION

The last decade has witnessed a shift in the general perception of disorder in

optical systems from a nuisance [60] to an exploitable feature which may enable some

unique functionalities [32, 42, 61, 62, 63]. An ability to control light propagation

in complex media [62] via spatial light modulator (SLM) exposed a deep connection

to the problem of time reversal in acoustics [64] and renewed interest in such sys-

tems. SLM has also been used to manipulate certain aspects of propagation, e.g. to

compensate modal dispersion, in multi-mode optical fibers MMF [19, 65].

Mutiple-input-multiple-output (MIMO) approach [9, 10, 21] has become the

backbone of the wireless IEEE 802.11n standard for local area networks (LANs). It

takes advantage of the differences in propagation from multiple sources to multiple

receivers to maximize the bandwidth of the transmitted signal – with the theoretical

limit of improvement over single-input-single-output (SISO) being proportional to

number of sources or receivers, whichever is smallest [10].

A similar approach has also been applied to MMF [11]. It relies on the modal-

coupling diversity (MCD) to take advantage of all available degrees of freedom in a

MMF. Importantly, the method does not require orthogonal coupling to the individual

modes of the fiber and its effectiveness is not degraded by inter-mode coupling in the

fiber [66, 67]. To maximize MCD, the mode coupling coefficients in the fiber link

should be sufficiently random – Gaussian [10, 22]. In conventional fibers, meeting

this condition requires sufficiently long segments of MMF because concentration of

imperfections is low. In the most disordered case of plastic optical fibers (POF) the

characteristic length for mode mixing is on the order of ∼ 10m [32]. Improving the

efficiency of inter-mode coupling and randomization by increasing the concentration

of defects has the drawback of enhanced losses.
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In this work we investigate both theoretically and experimentally photo-sensitive

multi-mode Ge-doped silica fibers with artificially induced disorder. Our thorough

account of the photo-induced birefringence allows us to develop a theory which cap-

tures the effect of direct coupling between two sets of modes with both orthogonal

polarizations. Experimental observations demonstrate that the transition to the fully

mode-mixed state occurs in very short fibers of length ∼ 10cm. Because of such short

length of the fiber, other sources of birefringence can be neglected. Furthermore, it

should be possible to mitigate the trade-off between strength of inter-mode coupling

and the radiative losses by controlling spatial correlations of the disorder [68].

Coupled-power theory [40] has been widely used to describe the modal distri-

bution, as well as the temporal characteristics of pulse propagation and pulse band-

width [28, 32, 69]. However, power-coupling models fail to properly describe the effect

of birefringence because the latter affects the amplitudes and phases of the cross-

polarized modes. Here we develop a hybrid coupled-power/coupled-mode approach

which shows that the limiting modal distribution is uniform – all co-propagating

modes (including those with orthogonal polarization) of the MMF are statistically

equally excited. This implies optimum MCD to maximize the information capac-

ity in transmission through MMF. Moreover, the developed formalism allowed us to

describe and interpret a crossover from an initial mode distribution to the limiting

one.

2. PROPERTIES OF PHOTO-INDUCED DISORDER

2.1. Microscopic Model of Birefringence. Photo-sensitivity of the germano-

silicate fibers [33] allows one to modify the refractive index in the core of optical fibers.

This effect has been used to laser-write a wide variety of fiber gratings [35]. Dop-

ing by germanium atoms leads to oxygen-deficient defect formation. Illumination by
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a UV source with a sufficiently short wavelength breaks these bonds that, in turn,

modifies the absorption spectrum of the glass. The real part of the refractive index

is changed through the Kramers-Kronig relation.

It has also been observed that under certain conditions the photo-modified

fibers become birefringent. Three contributions to photo-induced birefringence have

been identified: (i) a contribution which depends on the polarization of the UV laser

source [34, 38]; (ii) a contribution due to spatial non-uniformity of the incident UV

beam [70] ; and (iii) a contribution related to modification in glass stresses [71].

Commonly, the first contribution is the dominant one. A detailed microscopical

model describing the dependence of the birefringence on the polarization state of the

UV radiation was developed Kamal and Russell in Ref. [34].

The Kamal-Russell model relates the macroscopic change in the local suscep-

tibility tensor ∆χij (~r) to the change in the volume density of the highly directional

breakable bonds ∆ρ (~r, θ, φ) in the germano-silicate glass as

∆χij (~r) = αb

∫

∆ρ (~r, θ, φ)uiujdΩ, (2.1)

where αb is the polarizability of the bond, ~u = (sin θ cosφ, sin θ sinφ, cos θ)

define the orientation of the bond, and the integral is taken of over all solid angles

Ω. The process of severing the bond is described by the Fermi golden rule with the

dipole – electric field interaction Hamiltonian. The change ∆ρ (~r, θ, φ) in the initially

isotropically uniform distribution ρ/(4π) is related to the cumulative effect of UV

radiation during the time of the exposure. Photo-induced change in the susceptibility

tensor is then related to the UV electric fields

∆χxx (~r) = C0

[

3
∣

∣E(UV )
x (~r)

∣

∣

2
+
∣

∣E(UV )
y (~r)

∣

∣

2
+
∣

∣E(UV )
z (~r)

∣

∣

2
]

, (2.2)
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∆χxy (~r) = C0

[

E(UV )
x (~r)E(UV )∗

y (~r) + E(UV )∗
x (~r)E(UV )

y (~r)
]

, (2.3)

where C0 encompasses all material-related parameters, not essential to the fur-

ther discussion. The remaining components of the tensor are obtained from Eq. (2.2)

and Eq. (2.3) via permutation of the subscripts. Using this result, in the next section

we obtain the relationship between statistics of the speckle pattern of the incident

UV light and the spatial correlation of the elements of the dielectric tensor.

2.2. Statistical Properties of the UV Light Used to Fabricate the

Disorder. As we will see in the following sections, to describe coupling between dif-

ferent modes of our disordered fiber we need first to determine the spatial correlations

of the random fluctuations of the dielectric tensor around its average n2
core+〈∆χij(~r)〉

〈δǫij(~r)δǫij(~r′)〉 ≡ 〈(∆χij(~r)− 〈∆χij(~r)〉) · (∆χij(~r
′)− 〈∆χij(~r

′)〉)〉 . (2.4)

Eq. (2.2) and Eq. (2.3) relate the change of susceptibilities to the electric field

used to fabricate the pattern. Hence the problem of obtaining correlators in

Eq. (2.4) reduces to the problem in determining correlations between UV fields.

Below, we proceed to determine the statistical properties of E
(UV )
i (~r).

Vector components of the UV electric field produced by the diffuser, c.f. Fig. 1,

can be found with the help of Rayleigh-Sommerfeld vector diffraction theory [39]:

E(UV )
x (~r) = −D + y

2π

∫ ∫

ik exp [ikR]

R2
E

(UV )
x̃ (x̃, z̃)dx̃dz̃, (2.5)

E(UV )
y (~r) =

1

2π

∫ ∫

ik exp [ikR]

R2

(

E
(UV )
x̃ (x̃, z̃)(x− x̃) + E

(UV )
z̃ (x̃, z̃)(z − z̃)

)

dx̃dz̃,

(2.6)
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Figure 1: UV irradiation geometry is shown. Expanded unpolarized λUV = 244nm
UV light from an Ar laser illuminates an elongated area on the surface of
a diffuser. A complex interference pattern is incident onto the core of the
Ge-doped photosensitive fiber.

In these equations we adopt the following notations: (x̃, z̃) are coordinates in

the plane of the diffuser; ~r = (x, y, z) are coordinates in the fiber core; E
(UV )
x̃ (x̃, z̃) and

E
(UV )
z̃ (x̃, z̃) are two components of the UV electric fields in the plane of the diffuser;

E
(UV )
i (~r) are the UV field components in the fiber core; R denotes the distance from

(x̃, z̃) to ~r; and k = 2π/λUV . Expression for E
(UV )
z (~r) is analogous to Eq. (2.5).

We assume that the fields originating at the diffuser are δ-correlated Gaussian

[55]:

〈

E
(UV )
x̃ (x̃, z̃)E

(UV )∗
x̃ (x̃′, z̃′)

〉

=
〈

E
(UV )
z̃ (x̃, z̃)E

(UV )∗
z̃ (x̃′, z̃′)

〉

= (1/2)I
(UV )
0 (x̃, z̃)κδ(x̃− x̃′)δ(z̃ − z̃′), (2.7)
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〈

E
(UV )
x̃ (x̃, z̃)E

(UV )
x̃ (x̃′, z̃′)

〉

=
〈

E
(UV )
z̃ (x̃, z̃)E

(UV )
z̃ (x̃′, z̃′)

〉

=
〈

E
(UV )
x̃ (x̃, z̃)E

(UV )
z̃ (x̃′, z̃′)

〉

= 0, (2.8)

where I
(UV )
0 (x̃, z̃) = (πLxLz)

−1 × exp [−x̃2/L2
x − z̃2/L2

z] is a Gaussian beam

profile, expanded along z-axis, which illuminates the diffuser. Using Eq. (2.5),

Eq. (2.6), Eq. (2.7) and Eq. (2.8) we obtain

〈

E(UV )
x (~r)E(UV )∗

x (~r′)
〉

=
κ(D + y)(D + y′)

λ2
UV

∫ ∫

exp [ik(R− R′)]

R2R′2
I
(UV )
0 (x̃, z̃)dx̃dz̃.

(2.9)

The correlation between the other components of the field can be obtained

analogously. Because E
(UV )
y (~r) depends on the both E

(UV )
x̃ (x̃′, z̃′) and E

(UV )
z̃ (x̃′, z̃′)

in Eq. (2.6),
〈

E
(UV )
x (~r)E

(UV )∗
y (~r′)

〉

and
〈

E
(UV )
y (~r)E

(UV )∗
z (~r′)

〉

remain non-zero.

Analytical evaluation of Eq. (2.9) and the corresponding expressions for the

other combinations of the field components proves to be challenging under the exper-

imentally relevant conditions, c.f. Ref. [68]. Indeed, the mathematically convenient

paraxial approximation is not well justified because the dimensions of the illuminated

spot, Lx and Lz, are comparable to the distance to fiber core D. Furthermore, un-

der this approximation E
(UV )
y (~r) vanishes entirely and the effect of cross-polarization

mode coupling is washed out even though the fiber becomes birefringent because of

the strong E
(UV )
x (~r).

To circumvent the limitations imposed by the paraxial approximation in Eq. (2.9),

we evaluated the integrals numerically. The results shown in Fig. 2 demonstrate

that the photo-induced speckle pattern is highly anisotropic. Moreover, correlators
〈

E
(UV )
x (~r)E

(UV )∗
y (~r′)

〉

and
〈

E
(UV )
y (~r)E

(UV )∗
z (~r′)

〉

field components have y − z and
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Figure 2: Correlations between field components of the UV light used to fabricate
disorder in the core of the photo-sensitive optical fiber. Eq. (2.9) and sim-
ilar expression for the other field components, originating from Rayleigh-
Sommerfeld integrals in Eq. (2.5) and Eq. (2.6), are evaluated numerically
under the experimentally relevant conditions – Lx = 3mm, Lz = 5mm, D =

5mm. Not shown are
〈

E
(UV )
x (~r)E

(UV )∗
z (~r′)

〉

which vanishes completely

and
〈

E
(UV )
z (~r)E

(UV )∗
z (~r′)

〉

which is identical to
〈

E
(UV )
x (~r)E

(UV )∗
x (~r′)

〉

.

x−y nodal planes respectively due to symmetries in the integral in Eq. (2.6) defining

y-component of the field.
〈

E
(UV )
x (~r)E

(UV )∗
z (~r′)

〉

vanishes completely and correlator
〈

E
(UV )
z (~r)E

(UV )∗
z (~r′)

〉

is identical to Eq. (2.9). We note that the effect of refrac-

tion of the incident UV light at the air-cladding interface is not accounted for in

the derivation of Eq. (2.9), but it is not expected to change our results qualitatively.

However we do have to scale the spatial dimensions of the speckles by the refractive

index of the fiber core. This can be accomplished by λUV → λUV /ncore substitution

in Fig. 2 and Fig. 3.

Scalar theory [68] yields zero 〈δǫxy(~r)δǫxy(~r′)〉 and, hence, it does not contain

a mechanism to explain cross-polarization coupling by the photo-induced disorder.

However, the scalar theory correctly predicts the highly anisotropic structure of cor-

relations in the diagonal components of the dielectric tensor 〈δǫii(~r)δǫii(~r′)〉. This is

a consequence of Eq. (2.2) and Eq. (2.4) (see also Fig. 2(a) and Fig. 2(b)) which is
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linked to suppression of the radiative leakage in such a fiber[68]. We expect the same

conclusion to hold for theory presented in this work, which properly accounts for the

birefringence effects.

The correlators
〈

E
(UV )
i (~r)E

(UV )∗
j (~r′)

〉

depend not only on ∆~r ≡ ~r − ~r′ but

also on
(

~r + ~r′
)

/2, due to non-uniform illumination of the diffuser. However, we

find that this dependence affects only weakly both magnitude and the shape of the

field-field correlators for −Lz/2 < (z + z′)/2 < Lz/2.

Figure 3: Statistical properties of the spatially fluctuating dielectric tensor are de-
scribed by correlators 〈δǫij(~r)δǫij(~r′)〉 in Eqs. (2.12). To evaluate these
expression we used the same set of parameters as in Fig. 2. Only the x− y
part of the entire tensor relevant to inter-mode coupling are shown.

2.3. Statistical Properties of Disorder. In the next step we obtain the

expressions for the photo-induced changes in the dielectric tensor and its fluctuations.

Assuming that individual field components represent Gaussian random variables we

find the following expression for the change in the spatial average dielectric tensor

〈ǫ̂〉 − n2
core:

∆ǫxx = 〈ǫxx〉 − n2
core = C0

(

4
〈

∣

∣E(UV )
x

∣

∣

2
〉

+ 2
〈

∣

∣E(UV )
y

∣

∣

2
〉)

(2.10)

∆ǫyy = 〈ǫyy〉 − n2
core = C0

(

2
〈

∣

∣E(UV )
x

∣

∣

2
〉

+ 3
〈

∣

∣E(UV )
y

∣

∣

2
〉)

(2.11)
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where all off-diagonal elements are equal to zero, 〈ǫxx〉 = 〈ǫzz〉, and we assumed

that the diffuser in Fig. 1 is illuminated by an unpolarized beam, i.e.

〈

∣

∣

∣
E

(UV )
x

∣

∣

∣

2
〉

=
〈

∣

∣

∣
E

(UV )
z

∣

∣

∣

2
〉

. We immediately observe that the change is anisotropic leading to bire-

fringence. This is an effect well known in fabrication of Bragg gratings [35]. The

birefringence along the fiber axis can be suppressed by polarizing the UV light along

the axis of the fiber (z-axis), which is in accordance with experiments [38].

Statistical properties of the spatially fluctuating dielectric tensor are described

by 〈δǫij(~r)δǫij(~r′)〉. Substituting Eq. (2.2) and Eq. (2.3) into Eq. (2.4) we obtain

〈δǫij(~r)δǫij(~r′)〉 /C2
0

xx : 10
∣

∣

〈

E(UV )
x E ′(UV )∗

x

〉∣

∣

2
+
∣

∣

〈

E(UV )
y E ′(UV )∗

y

〉∣

∣

2
+ 6

∣

∣

〈

E(UV )
x E ′(UV )∗

y

〉∣

∣

2

+ 2
∣

∣

〈

E(UV )
y E ′(UV )∗

z

〉∣

∣

2

yy : 2
∣

∣

〈

E(UV )
x E ′(UV )∗

x

〉∣

∣

2
+ 9

∣

∣

〈

E(UV )
y E ′(UV )∗

y

〉∣

∣

2
+ 6

∣

∣

〈

E(UV )
x E ′(UV )∗

y

〉∣

∣

2

+ 6
∣

∣

〈

E(UV )
y E ′(UV )∗

z

〉∣

∣

2

xy : Re
[

〈

E(UV )
x E ′(UV )∗

x

〉 〈

E(UV )
y E ′(UV )∗

y

〉

+
〈

E(UV )
x E ′(UV )∗

y

〉2
+ c.c.

]

, (2.12)

where we use shorthand notations E
(UV )
i (~r) → E

(UV )
i and E

(UV )
i (~r′) → E

′(UV )
i

and chose to show only a 2×2 section (x−y) of the entire tensor, which will be relevant

to our further discussion. c.c. represents complex conjugate. By substituting the UV

field correlators from Sec. 2.2 we obtain the desired result. The spatial correlations in

the photo-induced fluctuations of the dielectric tensor are evaluated numerically and

shown in Fig. 3. We observe that the general structure of the correlator is similar
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to that of
∣

∣

∣

〈

E
(UV )
x E

′(UV )∗
x

〉∣

∣

∣

2

, even for 〈δǫxy(~r)δǫxy(~r′)〉. The relative magnitudes of

different components depend on such factors as the fabrication geometry, c.f. Fig. 1,

which allows one to design disordered optical fibers with a desired set of statistical

properties.

The natural scale to measure and compare magnitudes of different quantities

in Eq. (2.10), Eq. (2.11) and Eq. (2.12) is ∆ǫxx. We find that under the experi-

mental conditions ∆ǫyy/∆ǫxx ≃ 0.7, 〈δǫ2xx〉 /∆ǫ2xx ≃ 0.5,
〈

δǫ2yy
〉

/∆ǫ2xx ≃ 0.16, and
〈

δǫ2xy
〉

/∆ǫ2xx ≃ 0.04. These values will become important when we interpret the

results of the experiment further below.

3. HYBRID COUPLED-POWER / COUPLED-MODE THEORY

3.1. Motivation. Even (nominally) single-mode fiber (SMF) supports two

propagating modes with orthogonal polarization. Geometric and stress imperfections

along the length of the single-mode fiber give rise to randomly varying birefringence

[72]. Two perpendicular polarization states of the same mode become coupled with

the characteristic length on the order of kilometers. This effect, known as polar-

ization modal dispersion (PMD), can be described based on coupled-mode equations

formalism [73].

In MMF different modes generally propagate with different group delays, an

effect known as inter-modal dispersion. We note that, although inter-modal disper-

sion in MMF causes the output intensity profile to change with the propagation

distance, it does not lead to the mixing of modes as in PMD in SMF. Meanwhile,

various imperfections in the fiber geometry do give rise to mode-coupling described

in language of coupled-power equations [32, 40]. Increasing concentrations of imper-

fections to stimulate coupling between the guided modes also inevitably results in

coupling to the radiative modes.



50

In MMF with designed disorder considered in this work both cross- and intra-

polarization couplings between co-propagating modes occur on the same very short

scale of several centimeters. Meanwhile, the radiative leakage occurs at scale one

order of magnitude longer. This relationship between different length scales will

inform our further analysis.

In choosing the applicable theoretical approach for this problem we were

guided by the following considerations. In our system, the coupled-power method

cannot provide an adequate description of an evolution of the state of polarization

(induced by birefringence) because it does not account for phases of the perpendicular

polarization states of the same mode. On the other hand, the couple-mode approach

becomes too cumbersome because we consider MMFs supporting a relatively large

number (on the order of tens) of modes. This also disallows the continuum approx-

imation in the coupled-power method [69] because this number is not sufficiently

large.

3.2. Separation into Deterministic and Stochastic Contributions. In

Sec. 2.3 we obtained Eq. (2.10) and Eq. (2.11) for the statistical average dielectric

tensor which shows that the fiber becomes (linearly) birefringent. Hence we begin

our analysis by expressing the electric field in terms of x- and y- linearly polarized co-

propagating modes (orientation of the axes is shown in Fig. 1) in the weakly guiding

birefringent step-index fiber with the average dielectric tensor

Ei (x, y, z) ≈
∑

ν

cν,i(z)e
i(ωt−βν)zEν,i(x, y). (2.13)

Here we adopt mode notations with two subscripts: ν enumerates N/2 lin-

early polarized (LP) modes whereas i = {x, y} explicitly denotes the polarization

of the mode. βν ≡ (βν,x + βν,y) /2 is the propagation constant averaged over two

polarization states of ν’th mode. Birefringence results in mode dispersion ∆βν ≡
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(βν,x − βν,y). The transverse field profiles Eν,i(x, y) are assumed to be normalized

as βν,i

∫ ∫

[Eν,i(x, y)Eν′,i′(x, y)] dxdy = δνν′δii′ , where δνν′ and δii′ are the Kronecker

symbols. In these notations cν,i(z) satisfy coupled-mode equations

dcν,i(z)/dz = (±i∆βν/2− α/2) cν,i(z) +
∑

ν′,i′

Kνν′,ii′(z)cν′,i′(z)e
i(βν−β

ν
′)z, (2.14)

where α is the loss coefficient (assumed to be mode independent [29]) and

Kνν′,ii′(z) = (ω2/2ic2)
∫ ∫

Eν,i(x, y)δεii′(x, y, z)Eν′,i′(x, y)dxdy are mode coupling co-

efficients. The sign of the polarization dispersion term is chosen positive for x and

negative for y modes. We note that x− y axes depicted in Fig. 1 constitute principal

axes of the statistically averaged dielectric tensor, c.f. Eq. (2.10) and Eq. (2.11).

Next we separate the modal coefficients into a deterministic (ballistic) and

random components via

cν,i(z) = 〈cν,i(z)〉+ δcν,i(z), (2.15)

where 〈...〉 denotes disorder average. By definition 〈δcν,i(z)〉 ≡ 0. Below

we describe the deterministic component with coupled-mode (amplitude) equations

whereas the random contribution will be treated within the coupled-power approach.

In doing so, we explicitly account for polarization rotation only in the transition

regime (via coupled-mode equation for the amplitudes) of sufficiently short samples

when the ballistic signal has not yet had a chance to reach the equilibrium mode

distribution. As the energy is removed from the ballistic signal and transfered into

randomly phased component, described by δcν,i(z), the effects of inter-mode scatter-

ing and polarization dispersion compete. Therefore, the coupled-power description

of δcν,i(z) is justified because, as it will be evident from the experimental analysis in

Sec. 4, both processes occur on the same characteristic length scale and because the



52

inter-mode scattering also involves cross-polarization coupling on the similar scale,

c.f. Eqs. (2.12).

3.3. Coupled-Mode Description of Mode Amplitudes. Obtaining the

evolution equations for 〈cν,i(z)〉 from Eq. (2.15) involves the task of computing values

for 〈Kνν′,ii′(z)cν′,i′(z)〉. The latter can be accomplished by employing approach used

in an analysis of dynamical systems. First, we formally integrate Eq. (2.15) to obtain

cν′,i′(z) on the left hand side of the equation. Then we multiply both sides by Kην,ji(z)

and perform a statistical average. Assuming that δǫij(x, y, z) is a random delta-

correlated Gaussian process, enables us to compute the average. This assumption is

justified because there is a large disparity in correlation scales between cν′,i′(z) and

δǫij(x, y, z) – centimeters and λUV respectively, c.f. Sec. 2.2. We obtain

d 〈cν,i(z)〉 /dz = (±i∆βν/2− α/2− hν,i/2) 〈cν,i(z)〉 , (2.16)

with coupling coefficients are defined by

hν,i =
∑

ν′′,i′′

hνν′′,ii′′ (2.17)

hνν′′,ii′′ =
(

ω4/4c4
)

〈δǫii′′δǫi′′i〉Vii′′i′′i

∫ ∫

E2
ν,i(x, y)E2

ν′′,i′′(x, y)dxdy, (2.18)

where we approximated 〈δǫii′′ (~r) δǫi′′i (~r′′)〉 ≃ 〈δǫii′′δǫi′′i〉Vii′′i′′iδ (~r − ~r′′). Vii′′i′′i

is the correlation volume of the UV speckle pattern of the fabricated disorder, c.f.

Sec. 2.2 and Ref. [68]. In arriving at Eq. (2.16) we neglected the terms involv-

ing 〈cν′,i′(z)〉 cross channel scattering, ν 6= ν ′, i′ 6= i, on the right hand side.

This is justified because: (a) for co-polarized modes coupling term involves factor
∫ ∫

Eν,i(x, y)E2
ν′′,i′′(x, y)Eν′,i(x, y)dxdy which is small for ν 6= ν ′ due to orthogonality
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of Eν,i(x, y); (b) for cross-polarized modes the factor 〈δǫii′′δǫi′′i′〉 is small (i 6= i′), c.f.

Sec. 2.3.

We conclude this section by writing the solution of the derived Eq. (2.16)

〈cν,i(z)〉 ≃ cν,i(0) exp [(±i∆βν/2− α/2− hν,i/2) z] (2.19)

where cν,i(0) denote the modal amplitudes upon injection into the fiber at

z = 0. The solution above describes the evolution of the state of polarization of

ν’th mode and its exponential attenuation due to loss (α term) and decoherence (hν,i

term). This latter process transfers power from the ballistic to random component,

which we treat next.

3.4. Coupled-Power Equations for Random Component. Derivation

for the coupled power equations [68] satisfied by P
(δ)
ν,i ≡

〈

|δcν,i|2
〉

leads to a new

source term hν,iP
(b)
ν,i (z) ≡ hν,i |〈cν,i(z)〉|2 in the otherwise cannonical coupled power

equation [40]:

dP
(δ)
ν,i /dz = hν,iP

(b)
ν,i − αP

(δ)
ν,i +

∑

ν′,i′

hνν′,ii′

(

P
(δ)
ν′,i′ − P

(δ)
ν,i

)

. (2.20)

The source term represents in-flux from the ballistic component described by

Eq. (2.16). The above equation should be supplemented with the initial conditions

P
(δ)
ν,i (0) = 0.

The approximate solution of Eq. (2.20) can be obtained at both small and

large values of z. For modes with non-zero (ballistic) source terms we find P
(δ)
ν,i (z) ≈

hν,i |cν,i(0)|2×z and P
(δ)
ν,i (z) ≈

[

∑

ν′,i′ hνν′,ii′hν′,i′ |cν′,i′(0)|2
]

×z2 for the rest. This so-

lution is valid for z < min [hν,i]. For z ≫ σ2 when the source terms become negligible,

the power becomes equipartitioned among all N modes P
(δ)
ν,i (z) ≈ (1/N) exp [−αz].

Here σ2 ∼ hνν′,ii′ denotes the second smallest eigenvalue of the secular equation

det [hνν′,ii′ + (σ − hν,i) δνν′δii′ ] = 0 [40, 68].



54

To obtain solution for arbitrary z we use the forth order Runge-Kutta method

to solve Eqs. (2.20) numerically under experimentally relevant conditions; α = 0

is assumed for clarity. At z = 0 the only non-zero terms are cν,x(0) = (2/N)1/2.

Figure 4(a) depicts P
(δ)
ν,x (z) and P

(δ)
ν,y (z) as blue and gold lines respectively. P

(δ)
ν,x (z)

are peaked at small z before equilibration is reached among the modes of both po-

larizations. The dashed line depicts the 1/N level. We observe that efficient cross-

polarization coupling due to induced birefringence makes intra- and inter-polarization

equilibration occur at similar lengths scales, i.e. σ−1
2 ∼ 2σ−1

3 which is explicitly

confirmed numerically. The inset in Fig. 4(a) depicts
∑

ν P
(δ)
ν,i (z) demonstrating

an equilibration at 1/2 level shown as a black dashed line. Also depicted are the

ballistic component
∑

ν P
(b)
ν,x(z), dashed line, and the total power in x polarization

∑

ν P
(b)
ν,x(z) +

∑

ν P
(δ)
ν,x (z), dotted line.
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Figure 4: (a) Runge-Kutta numerical solution of Eqs. (2.20) with α = 0. Only

x-polarized LP modes are exited: cν,x(0) = (2/N)1/2. The power be-
comes equally distributed among the modes of both polarizations (x –
blue, y – gold) before equilibrating at 1/N level shown as a dashed

line.
∑

ν P
(δ)
ν,i (z) converging at 1/2 are shown in the inset. The bal-

listic component
∑

ν P
(b)
ν,x(z) and the total power in the x polarization

∑

ν P
(b)
ν,x(z) +

∑

ν P
(δ)
ν,x (z) are depicted with dashed and dotted lines re-

spectively. (b) Evolution along the fiber length of elements of the Stokes
vector ~s(z). The Poincaré sphere plot describes the transition from the
linearly polarized light with the degree of polarization P ≡ |~s| = 1 at z = 0
to unpolarized light with P = 0 in the limit z → ∞. Blue, green and red
lines correspond to the light linearly polarized at φ = 0, π/8, and π/4 with
respect to the x primary axis of the average dielectric tensor respectively.
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3.5. De-Polarization and Stokes Parameters. The direct consequence

of the cross-polarization mode coupling caused by the induced birefringence, c.f.

Eq. (2.12), is a de-polarization of the initial excitation. This process is conveniently

described by Stokes parameters [74]. Separation of the modal amplitudes into the

deterministic (ballistic) and random contributions, c.f. Eq. (2.15), enables us to

obtain the following expressions:

S0 =
∑N/2

ν=1

(

P
(b)
ν,x + P

(δ)
ν,x − P

(b)
ν,y − P

(δ)
ν,y

)

;

S1 =
∑N/2

ν=1

(

P
(b)
ν,x + P

(δ)
ν,x − P

(b)
ν,y − P

(δ)
ν,y

)

;

S2 =
∑N/2

ν=1

(

〈cν,x〉
〈

c∗ν,y
〉

+
〈

c∗ν,x
〉

〈cν,y〉
)

;

S3 = i
∑N/2

ν=1

(

〈cν,x〉
〈

c∗ν,y
〉

−
〈

c∗ν,x
〉

〈cν,y〉
)

. (2.21)

Three-component Stokes vector is defined as s1−3 = S1−3/S0. In these no-

tations the fully polarized light, regardless of its state of polarization, corresponds

to the Stokes vector at the surface of the Poincaré sphere |~s| = 1. In contrast, a

completely unpolarized light has the state of polarization P ≡ |~s| = 0.

Figure (4) depicts the evolution of the Stokes vector along the length of the

fiber. Blue, green and red lines correspond to the initial linear polarizations at

the angles φ = 0, π/8, π/4 with respect to the principal axis of the fiber: cν,x =

(2/N)1/2 cos (φ) , cν,y = (2/N)1/2 sin (φ) is assumed. In each case, we observe a re-

laxation of the state of polarization from P = 1 at z = 0 to P = 0 at z ≫ σ−1
2 . This

concludes our demonstration of complete mixing on the same short length scale σ−1
2

of the both co- and cross-polarized modes in the artificially disordered fiber.
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4. EXPERIMENTAL CORROBORATION

4.1. Experimental Setup. In this experiment we employed a step-index

silica fiber doped by Ge (PS1250/1500 of Fibercore). The main parameters of the

fiber are a core diameter of 7.66µm, cladding diameter of 125µm, and numerical

aperture (NA) of 0.13, with the refractive indices of the core and the cladding being

1.463 and 1.457, respectively. Three samples of fiber (about 20cm) included the

disordered part of 2, 4 and 12cm respectively. Fabrication and characterization of

the volume disorder is described in details in Ref. [68].

At the input of the optical fiber the polarized light goes through a half wave-

plate and a linear polarizer oriented along axis x′, which makes angle φ with respect

to the principal axis of the fiber x. The output light was detected separately for

both polarizations: a) after passing through a polarizer of the same orientation as at

the input (x′x′ - polarization), or b) perpendicularly polarized (x′y′ - polarization).

We analyzed the output light of each polarization independently. Measurement was

repeated 10 times for different random bending of the fiber. The bending of the

fiber was sufficient to change the disorder but not sufficient to introduce appreciable

additional birefringence. Both polarizers were rotated synchronously by 10◦ (i.e. φ

was incrementally increased) and measurements were repeated.

At the probe laser light wavelength λ = 543nm used in measurements, the

number of guided LP modes (counting both polarizations) is N = 20. The aver-

age integrated intensity of outgoing light for two perpendicular orientations of the

polarizer are presented in Fig. 5 for rotations in the interval 0◦ − 90◦.

4.2. Comparison of Theory and Polarization-Resolved Measurement.

After obtaining the solutions for 〈cν,i(z)〉 and P
(δ)
ν,i (z) describing the evolution of the

ballistic and stochastic components in Eq. (2.15) in the principal axes coordinate
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system x − y, we perform the coordinate transformation to the axes x′ − y′ rotated

by angle φ. We obtain

P







x′

y′






= Px







cos(φ)2

sin(φ)2






+ Py







sin(φ)2

cos(φ)2






± 2 sin(φ) cos(φ)ℜ

[

∑

ν

〈cν,x〉
〈

c∗ν,y
〉

]

,

(2.22)

where Pi ≡ |〈cν,i〉|2 + P
(δ)
ν,i and ℜ[. . .] denotes the real part.

Eq. (2.22) can be evaluated numerically as in Sec. 3.4. However, it is illumi-

nating to find a closed-form analytical expression describing the evolution of power

in each polarization Pi′ . This task can be accomplished with an assumption that the

asymptotic expression for Pi(z) = [(Pi(0)− 1/2) exp(−σ2z) + 1/2] exp(−αz) is valid

for the entire range of 0 < z < ∞. The inset in Fig. 4 shows the adequacy of such

an approximation. We arrive at our final result

P







x′

y′






(z) = e−αz
















Px(0)







cos(φ)2

sin(φ)2






+ Py(0)







sin(φ)2

cos(φ)2






− 1

2






e−σ2z +

1

2

±2 sin(φ) cos(φ)
2

N

∑

ν

P 1/2
ν,x (0)P

1/2
ν,y (0) exp

(

−hν,x + hν,y

2
z

)

cos (∆βνz)

}

(2.23)

where, as previously, we take Px(0) + Py(0) = 1. The above expression de-

scribes the following effects: (i) attenuation due to radiative losses – α term; (ii)

assymptotic equal distribution of power over all N co-propogating modes of the fiber

– σ2 term; (iii) de-polariation of the incindent light – hν,i term; (iv) change of the

polarization state is the decaying ballistic signal – ∆βν term. Furthermore, the ex-

pression above conserves power at every z. Figure 5 demonstrates that Eq. (2.23)

describes the experiment well: it captures both the polarization and length depen-

dences of the transmitted signal.
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Figure 5: (a) Experimental data in L = 2, 4 and 12cm samples for the ensemble-
averaged transmission for x′x′ (circles) and x′y′ (squares) polarization chan-
nels as the function of the angle φ between x′ and the principal axis x. In
all cases the incident light is polarized along x′ axis. For clarity, the data
is normalized as Px′x′(z) → Px′x′(z)/

∫

(Px′x′(z) + Px′y′(z)) dφ and similarly
for Px′y′(z) to eliminate the effect of attenuation × exp(−αz). Solid lines
show the theoretical fit with Eq. 2.23 by combining the

∑

ν term into a sin-
gle fitting parameter. Two converging surface envelopes 1/2±exp(−σ2z)/2
are shown a guide for an eye demostrating almost complete mode mixing at
L = 12cm. (b) Normalized by Px(z)+Py(z) to eliminate the exp(−αz) fac-
tor, Px(z), Py(z) show convergence toward 1/2. To acheive alighnment with
the principal axes of fiber, the experimental data (symbols) was obtained
in-situ during fabrication of the additional segments of disordered fiber.
Solid lines obtained for φ = 0 from the fit in (a) show somewhat slower
decay, that is attributed to unintentional twisting in process of generating
ensemble realizations by bending of the fiber.
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5. CONCLUSIONS

In this work we obtained two main results. First, beginning with a microscop-

ical model of photo-sensitivity in a germano-silicate glasses, we analytically derived

formulae describing the spatial correlations between the components of the dielectric

tensor, c.f. Sec. 2.3. We made the connection between the statistical properties,

including the polarization statistics, of the incident UV light and those of the arti-

ficial disorder inscribed in the core of the fiber. Importantly, as it has been shown

by Korotkova in Ref. [75], the statistics of (the UV) light changes when the light

propagates in a free space. This suggests that the spatial properties of the UV light,

and hence of the artificial disorder, can be manipulated by altering the illuminations

geometry during the disorder writing process.

The second result concerns the description of the light propagation in the fiber

with the artificially correlated disorder. Our previous study based on coupled power

theory [68] could not explain strong mixing of cross-polarized co-propagating modes

observed experimentally. We suggested that an induced birefringence might be the

cause. This work shows that the actual answer is more complicated. On one hand,

the existence of the linear birefringence on average, c.f. Eq. (2.10) and Eq. (2.11),

causes only a periodic evolution of the two polarization states of each mode in the

fiber. By itself this effect does not lead to equilibration of power among all modes in

two polarization channels. Instead, the coupling is the result of the non-zero corre-

lations between the off-diagonal components of the dielectric tensor, c.f. Eq. (2.12),

which in turn are caused by the non-trivial correlations between x− and y− com-

ponents of the UV writing beam, c.f. Fig. 2. Unlike intra-polarization coupling, the

magnitude of the cross-polarization coupling is directly related to existence of the lon-

gitudinal component of the UV field used in fabrication of disorder. Thus, our choice

of the near-field illumination (small reparation between diffuser and fiber in Fig. 1)
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is critical. Our theory predicts significantly weaker coupling between orthogonally-

polarized modes in the paraxial regime when the only remaining coupling due to

bending-stresses may become dominant.

Modeling light propagation in the disordered birefringent fiber poses a chal-

lenge for a coupled-power description. In fact, it becomes inadequate because co-

herent process of evolution of polarization cannot be captured. To overcome this

limitation, in this work we developed a hybrid theory which treats the deterministic

(ballistic) part of the light via coupled-amplitude equations, whereas the randomly-

phased component is treated with a coupled-power equations, c.f. Sec. 3. Neglecting

the polarization change in the random component is justified in our artificially disor-

dered fiber because the process of scattering occurs on a very short length scale on

the order of 1cm.

Comparison with experiment in Sec. 4 suggests that very short ∼ 10cm seg-

ments of the fabricated multi-mode fibers with designed disorder can be used as

mode-scrambler / descrambler mixing efficiently all modes with both states of polar-

ization. Furthermore, we previously estimated and confirmed experimentally that the

mixing can be accomplished without significant radiative losses, 3.6dB in Ref. [68].

This makes our fibers with custom-made disorder suitable for such applications as

e.g. hardware encryption and power-management in high-power fiber laser systems.

The complete mode mixing is also required to achieve the maximum channel capacity

in MIMO transmission in the multi-mode optical fibers.
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ABSTRACT∗

This paper presents results of experimental and theoretical studies of light

transmission through optical fibers with disorder generated in its germanium-doped

core via UV radiation transmitted through a diffuser. The experimental results on

transmission of the radiation of 543 nm wavelength demonstrate the presence of the

disorder in the core of the optical fiber beyond certain characteristic length, the

transmitted power is observed to be distributed over all modes of the fiber. A theo-

retical model based on coupled-power theory is developed. An analytical expression

∗Proceeding of SPIE Vol 7839, 78391O-1 , (2010).
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for the mixing length is obtained and agrees well with the experiment. For long sec-

tions of disordered fiber, the experimentally measured distribution of the near-field

intensity at the output surface of the fiber is well described by the Rayleigh negative

exponential function. This suggests a statistically uniform distribution of the trans-

mitted power over all modes, that agrees with the prediction of the theoretical model.

The reported technique provides an easy way to fabricate different configurations of

the controlled disorder in optical fibers suitable for such applications as random fiber

lasers. Keyword: multiple scattering; fiber optics; coupling theory.
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1. INTRODUCTION

During recent years, there has been a considerable interest in optical disordered

media. This is largely due to the important benefits observed when a disorder is

induced into a rmundane systems. Random laser[76], where laser action is ensured

by a coherent feedback in disordered structures, such as powder or porous crystals,

is a striking example. In the paper[21] the advantages of the disordered systems in

wireless communications of high information capacity have been shown. It has also

been reported[42] that the disorder induced in nonlinear crystals can greatly improve

efficiency of operation of the nonlinear optical devices. It appears that disordered

media open numerous possibilities for applications in sensors, nanophotonics and,

more generally, in various system of light transmission.

In this report we present experiments on fabrication of random variations of

the refractive index throughout the core of Ge-doped optical fiber, whose parameters

can be controlled in our experimental setup. The characteristics of the created dis-

order are evaluated from an analysis of the intensity distribution of the near-fields at

the output of the fiber and by the analysis of the size dependence of the total intensity

of the transmitted light. The experimental results are compared and an agreement

is found with the predictions of the coupled-power theory which is adapted to the

particular type of volume disorder considered in this work.

1.1. Fabrication of the Disorder. The experimental setup utilized for the

fabrication of the disorder in optical fibers is schematically depicted in Fig. 1. In our

experiments we employed the step-index optical fiber (PS1250/1500 of Fiber core)

sensitized by Ge. The main parameters of the fiber are: the core diameter is 7.66

microns, the cladding diameter is 125 microns, NA = 0.13 with the refractive index

of the core and the cladding 1.463 and 1.457, respectively. The cutoff wavelength of
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the fiber with these parameters was about 1200 nm. The volume disorder was intro-

duced in the Ge-doped fiber core by exposing it to the UV light from an intracavity

frequency doubled Argon-ion laser (244nm) which passed through a cylindrical lens

and a diffuser creating, in this way, a speckle pattern in the plane parallel to the fiber

axis. The light beam generated by the UV laser was initially expanded by a cylin-

drical lens with the focal length 12 cm in order to form the necessary spot width on

the diffuser plane. The beam transmitted through the diffuser was used for exposing

the photo-sensitive fiber. Speckle, as the strongly fluctuating, grainy intensity pat-

tern resulting from the interference of randomly scattered coherent waves, resulted in

fluctuations of the illuminating UV intensity in the fiber core. The average speckle

spot size is defined as[77] r = λ ∗ d/π ∗ w where is the distance between the diffuser

and Variations of the in the range 2-8 mm and of in the range of 8-10 mm allowed us

to obtain the average speckle size between 200 and 600 nm.

The length of each segment with the fabricated disordered length was 1-2 cm.

Experimental geometry allowed us to record the segments with greater lengths (50

mm). In order to achieve the disorder with similar statistical parameters in each

segment, the exposure time was used the same for all segments, and namely, about

10 minutes at mean power of the UV laser about 60 mW. We observed experimentally

that after this exposure the intensity distribution of the output probe light at the

fiber output didn’t change. Every next segment with random distributed of the

refractive index was recorded directly after the preceding one. The total lengths of

the fabricated disordered part were of 2, 4, 6, 8, 10 and 15 cm. It is noteworthy

to mention that fabrications of the longer samples was not necessary because, after

passing 8 cm of the disordered fiber, the transmission saturates and practically stops

changing with an increase of the disordered part of the fiber.

After forming the bulk disordered segment we launched the probe beam of

the He-Ne laser operated at nm into the fiber, and detected the image of the output
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Figure 1: The experimental setup.

intensity distribution by a charge-coupled device (CCD camera, ST-402ME SBIG).

The selected wavelength 543 nm of the probe beam ensured a low mode-number

propagation regime and corresponded to the sensitivity range of the CCD camera

quite well. The light emerging from the fiber passed through the microscope objective

x100 which imaged the output fiber plane on the CCD camera. In front of the CCD

camera there was a polarizer utilized for characterization of the transmitted light.

2. EXPERIMENTAL RESULTS

The resulting V parameter of the utilized fibers was 5.8171 at the probe wave-

length and the expected number of the guided linearly polarized LPlm modes is 20.

By varying the angle of the probe beam incidence, different combinations of modes
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were excited and the corresponding near-field transmitted intensity was recorded. It

appears that these measurements can be made quite reliably. Indeed, (i) the light

polarization was preserved in the fiber without disorder; (ii) the ambient temperature

fluctuations did not change significantly the parameters of the fiber samples during

measurements. At the input of the optical fiber, the polarized light goes through a

half wave-plate and a linear polarizer. The output light was detected separately for

both polarizations: a) after passing through a polarizer of the same orientation as at

the input (pp - polarization) or b) perpendicularly polarized (ps - polarization). We

analyzed the the output light of each polarization independently. The polarization

extinction ratio of the laser source and the fiber output was measured in the linear

transmission regime respectively.

The examples of the intensity distribution of the light emerging from the fiber

obtained for different realizations and for different angles of the incident beam with

the disordered segment of the fiber of 1 cm (a) and 2 cm (b) long are presented in Fig.2.

Left column corresponds to pp-polarization measurements , right columns represents

ps polarization measurements. Different realization was obtained by slightly bending

of the disordered part of the fiber.

In Fig.3 the ensemble averaged intensities of the output light measured exper-

imentally as function of the length of the disordered parts of the fiber is presented.

The averaging was performed over 10 realizations. One can see that with increas-

ing of angle of incidence, that increases the weightr coefficients for the higher order

modes, the characteristic length of the mode coupling goes down.

3. COUPLED-MODE THEORY IN FIBERS WITH BULK RANDOM
PERTURBATIONS OF REFRACTIVE INDEX

The data presented in Figs.2,3 suggests that the random fluctuations of re-

fractive index imprinted in the core of a photo-sensitive fiber result in mixing among
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Figure 2: The output intensity distribution observed in some realizations with the
disordered part of the fiber 1 cm (a) and 2 cm (b) length; left column in
each figure presents pp polarized distribution, and right column presents
the ps polarized one. The angles of incidence are 0◦, 2◦ and 5◦ from the
top to the bottom images.

different propagating modes. To describe this process and to obtain the characteris-

tic (mixing) length of the disordered segment of fiber, we employ the coupled-power

method developed by Marcuse[40]. However, because the disorder induced by the

UV speckle pattern does not allow a factorization of the refractive index modula-

tions into the functions of the transverse and longitudinal coordinates δn(x, y, z) =

δn(x, y)timesf(z), the original derivation is not applicable. We demonstrate that the

coupled-power theory can still be developed due to the factorization of the disorder’s

second order correlator
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Figure 3: Experimentally observed total transmission as a function of the length of
the disordered part of the fiber. The black symbol correspond to 0◦ of the
angle of incidence, the blue symbols to 2◦, and the black ones to 5◦.
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where δε(r) is the fluctuation of the dielectric function due to presence of

disorder and Sx,y,z correspond to the speckle dimensions. The derived equation

dPµ

dz
=
∑

ν

[hµνPν − hνµPµ] (3.2)
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describes the evolution of the disorder-averaged power in each mode Pµ . The

obtained expression for the coupling coefficients (not shown here due to space con-

siderations) allows one to compute a characteristic length after which modes become

perfectly mixed. Its expression can be simplified to obtain the following analytical

result

ℓ(xx)−1 ∼ ∆n

2ncore

πω2SxSySz

c2a2
(3.3)

where a is the core radius. Substituting the experimental parameters of the

system we find lmixing ≈ 5cm. The agreement with the experimental data shown in

Fig.3 is good, given the fact that the exact value of ∆n is not directly accessible, we

estimated it to be of the order of 10−4.

One known prediction of a coupled mode theory is that the power is equally

distributed over all modes of the fiber[40]. The fact that the intensity transmitted

through the long sections of the disordered fiber reaches a saturation (within ex-

perimental precision) beyond L=15cm agrees well with the theoretical predictions.

It also suggests that the coupling to the radiative modes and other loss mechanism

do not play a significant role in transmission. The conclusion that a perfect mixing

(in statistical sense) occurs in our experimental system can also be tested through

measurements of the statistical distribution of the polarization-resolved near-field in-

tensity. Indeed, a random sum of different modes of the fiber is expected[55] to result

in the Rayleigh negative exponential distribution. This predict based on the above

theory is fully borne out experimentally.
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SECTION

2. CONCLUSIONS

This thesis work presented the detailed theoretical and experimental investiga-

tions of the intentionally introduced disorder in a photo-sensitive multi-mode optical

fiber. Starting with the microscopic model of photo-sensitivity in the germanium-

doped silica fibers, we studied the statistical properties of the volume disorder and

described an experimental procedure to manipulate it.

Transmission of light through a fiber is commonly described with coupled-

power or coupled-mode theories. However, both theories by themselves failed in

the case of fiber with the artificial correlated disorder considered in this work. To

properly describe the novel fiber, hybrid coupled-power -coupled-mode theory was

developed. It simultaneously accounts for such effects as birefringence and co- and

cross-polarization mode coupling. It was shown that after∼ 10cm distance, the power

can be equally distributed over all co-propagating modes including both polarization

channels.

The theory developed in this work has been corroborated in experiment, where

it was also shown that a thorough mode mixing can be accomplished without sig-

nificant radiative losses. This makes our fibers with custom-made disorder suitable

for such applications as e.g. hardware encryption in data transmission and power-

management in high-power fiber laser systems. The complete mode mixing is also

required to achieve the maximum information capacity in Multi-Input Multi-Output

(MIMO) transmission via the multi-mode optical fibers.
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