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ABSTRACT

Traditionally, optimal control of dynamical systems with known system dynamics
is obtained in a backward-in-time and offline manner either by using Riccati or
Hamilton-Jacobi-Bellman (HJB) equation. In contrast, in this dissertation, finite-horizon
optimal regulation has been investigated for both linear and nonlinear systems in a
forward-in-time manner when system dynamics are uncertain. Value and policy iterations
are not used while the value function (or Q-function for linear systems) and control input
are updated once a sampling interval consistent with standard adaptive control.

First, the optimal adaptive control of linear discrete-time systems with unknown
system dynamics is presented in Paper I by using Q-learning and Bellman equation while
satisfying the terminal constraint. A novel update law that uses history information of the
cost to go is derived. Paper II considers the design of the linear quadratic regulator in the
presence of state and input quantization. Quantization errors are eliminated via a dynamic
quantizer design and the parameter update law is redesigned from Paper I.

Furthermore, an optimal adaptive state feedback controller is developed in Paper
III for the general nonlinear discrete-time systems in affine form without the knowledge
of system dynamics. In Paper IV, a NN-based observer is proposed to reconstruct the
state vector and identify the dynamics so that the control scheme from Paper III is
extended to output feedback. Finally, the optimal regulation of quantized nonlinear
systems with input constraint is considered in Paper V by introducing a non-quadratic
cost functional. Closed-loop stability is demonstrated for all the controller designs
developed in this dissertation by using Lyapunov analysis while all the proposed schemes

function in an online and forward-in-time manner so that they are practically viable.
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1.INTRODUCTION

Optimal control of discrete-time linear and nonlinear systems has been one of the
key focus topics of the control area for past several decades [1][2]. In contrast to the
infinite-horizon case, which has been intensively studied in the literature [7]-[16], the
finite-horizon optimal control that enjoys great practical merits, has been still not well
developed due to inherent challenges resulting from time-dependent nature and the
terminal constraint, etc. For both infinite and finite horizon optimal control, system
dynamics are needed.

Two major differences between finite and infinite-horizon optimal control are
briefly given here. First, for infinite-horizon case, the solution to the Hamilton-Jacobi-
Bellman (HJB) equation for nonlinear systems or the Riccati equation (RE) for the case
of linear systems is time-invariant, whereas in the case of finite-horizon, the solution for
either HIB equation or RE becomes essentially time-dependent. Second, a terminal state
constraint, which needs to be tackled properly, is imposed for the finite-horizon. By
contrast, the terminal constraint is not asserted for the infinite-horizon case. Therefore,
solving finite-horizon optimal control presents a great challenge due to the time-
dependent nature and with additional requirement on satisfying the terminal constraint.

Traditionally, in the finite-horizon optimal control of linear systems with
quadratic performance index (PI), or referred to as linear quadratic regulator (LQR), the

optimal control policy is obtained by solving the RE from the terminal value S , where
S 1s the weighting matrix for the terminal states. However, though this method

theoretically yields an optimal control policy, it is not suitable for real-time

implementation due to its backward-in-time and offline feature. Further, for a general



nonlinear affine system, finding optimal control policy is much more difficult even under
infinite-horizon case, since the solution to the HJB equation normally does not have a
closed-form solution [1][2]. Only approximate and iterative approach is normally
utilized.

Given the importance and challenges mentioned above for the finite-horizon
optimal control problem, this topic has attracted many control researchers over the past
decades who had made great strides to tackle this challenging but promising problem. In
next subsection, we present an overview of the current methodologies as well as some
discussion on their shortcomings. Subsequently, the organization and contributions of this

dissertation are introduced.

1.1 OVERVIEW OF THE OPTIMAL CONTROL METHODOLOGIES
Theoretically, for infinite-horizon optimal control policy for an affine nonlinear
system can be obtained by solving the HJB equation, which is essentially an algebraic
equation. When considering the case of LQR, the HIB equation further reduces to the
algebraic RE (ARE). However, for most cases, it is impossible to solve the HIB equation
since it is generally a nonlinear partial differential (or difference) equation [1][2].
Therefore, offline scheme with an approximator, e.g., neural networks (NN), is utilized to
find the approximated solution to the HIB equation [9][14], where the NN weights are
trained a priori within an operating region before they are implemented in the controller.
The effort in [9][14] provides some insight into solving the nonlinear optimal
control problem, whereas offline training is not preferable for realistic implementation

since it is not currently clear how much training is needed for a given system. In addition,



when the dynamics of the system are not known even partially, which is normally the
case in a realistic scenario the optimal control policy cannot be obtained even for the
linear systems. Hence, optimal control of dynamic systems by relaxing the requirement
on the knowledge of system dynamics poses another challenging problem for the control
researchers.

To overcome the difficulties mentioned above, approximate dynamic
programming (ADP) has been widely promoted in control community. Policy and/or
value iteration serves as a key technique to solve the optimal control. Basically, the
iteration-based scheme utilizes an initial stabilizing control input and updates not only the
cost/value function, which becomes the solution to the HIB equation, but also the control
policy “iteratively” until the estimated control converges to the optimal one all within a
sampling interval. This approach enjoys great advantages over the conventional method
since the control policy can be obtained in a forward-in-time manner. For LQR problems,
Q-learning methodology is rather popular since the complete system dynamics can be
relaxed by iteratively approximating an action-dependent Q-function [11][15][19], which
in turn provides the Kalman gain.

Even though iteration-based method has been proven to be an effective way of
solving optimal control problem with many successful applications, however, either
policy or value iteration, requires significant number of iterations within each time step to
guarantee convergence. This poses a challenge in the control design since the number of
iterations for convergence is not known beforehand. It has been shown in [12] that with
an inadequate number of iterations, the system can become unstable. To circumvent this

shortcoming, the authors in [7] proposed a novel “time-based” methodology for general



nonlinear discrete-time systems in affine form where the optimal control policy can be
obtained based on the history information of the system, thus relaxing the need of
performing policy/value iterations. The solution of the HIB equation is approximated by
utilizing two NNs at each time step and thus the approach yields an online and forward-
in-time algorithm. In [8], the authors considered the optimal regulation of a linear system
under network imperfections. The idea of Q-learning in the case of linear system is used
to relax the system dynamics with an adaptive estimator effectively learning the Q-
function and thus relaxing the iterations or offline training phase. However, the
algorithms presented in both [7][8] mainly deal with the infinite-horizon case.

Regarding the finite-horizon optimal control, the terminal constraint as well as the
time-varying nature of the solution to either RE or HJB equation needs to be properly
taken care of. Other than the theoretical approach [1][2], the author in [3] tackled the
problem by solving the generalized HIB (GHJB) equation, which does not depend upon
the solution of the system, in a successive way. The terminal constraint is forced to
satisfy at an iteration such that the boundary condition can be properly satisfied with the
improved control policy. The coefficients of the value function approximator are solved
by using Galerkin projections. This however requires extensive computation of a large
number of integrals. Later in [4], the author extended the work in [3] by utilizing NN to
reduce the computation burden. The NN with the structure of a time-varying weights and
state-dependent activation function is used to handle the time-dependent nature of the
finite-horizon value function approximation. The optimal control policy is obtained by
backward integration of an ordinary differential equation (ODE) from the known terminal

NN weights. Therefore, [3] and [4] still yields a backward-in-time solution.



On the other hand, the authors in [5] employed the iterative ADP technique to
handle the finite-horizon optimal regulation. A greatest lower bound ( ¢ -bound) of all the
performance indices is introduced and it is shown that the ¢ -optimal control scheme can
obtain the suboptimal solutions within a fixed finite number of control steps that make
the policy iterations converge to the optimal value with an ¢ -error. However, the
terminal time is not specified in [5] and the terminal state is fixed at the origin. Later in
[6], the authors considered the finite-horizon optimal control of nonlinear discrete-time
systems with input constraint by using offline training scheme. The time-varying nature
of finite-horizon is handled by utilizing a NN which incorporates constant weights and
time-varying activation function. The idea proposed in [6] is essentially a standard direct
heuristic dynamic programming (DHDP)-based scheme by using policy/value iterations.
The terminal constraint is satisfied by introducing an augmented vector incorporating the

terminal value of the co-state A(N). Hence, [5] and [6] tackled the finite-horizon optimal

control problem is essentially iteration-based.

Although the previous work [3][4][5][6] provided some good insights into solving
the finite-horizon optimal control problem, the solutions, however, are either backward-
in-time or iterative, and are unsuitable for hardware implementation. Furthermore, all the
aforementioned works require the knowledge of the system dynamics which is another
bottleneck as mentioned before. Therefore, a control scheme, which can be implemented
in an online and forward-in-time manner without needing the system dynamics, is still

unresolved and yet to be developed.



1.2  ORGANIZATION OF THE DISSERTATION

In this dissertation, a suite of novel finite-horizon time-based optimal regulation

schemes for both linear and nonlinear systems are developed without needing the

knowledge of system dynamics. The proposed method yields an online and forward-in-

time design scheme which is more preferable under practical situations. This dissertation

is presented in the form of five chapters as outlined in Figure 1. The first two papers deal

with the linear system, whereas nonlinear systems are considered in the last three papers.

|

/ Linear Systems

Online Finite-Horizon Optimal Control

\( Nonlinear Systems

[

S
{

Paper 1: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-
Horizon Optimal Adaptive Control of Uncertain Linear
Discrete-time Systems”, under review with Optimal Control
Applications and Method and “Fixed Final Time Optimal
Adaptive Control of Linear Discrete-time Systems in Input-
Output Form”, accepted by Journal of Artificial Intelligence

Kand Soft Computing Research. (Invited paper). /

Ve
Paper 2: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-
Horizon Optimal Adaptive Control of Uncertain Quantized
Linear Discrete-time System”, under review with International

Journal on Adaptive Control and Signal Processing.

~

J

Paper 3: Qiming Zhao, Hao Xu and S. Jagannathan, “Neural
Network-based Finite-Horizon Optimal Control of Uncertain
Affine Nonlinear Discrete-time Systems”, minor revision and
resubmitted to /[EEE Transactions on Neural Networks and

o

\

Paper 4: Qiming Zhao, Hao Xu and S. Jagannathan, “Fixed
Final-Time near Optimal Regulation of Nonlinear Discrete-
time Systems in Affine Form using Output Feedback”, under
review with Acta Automatica Sinica.

\_

J

Paper 5: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-
Horizon Near Optimal Control of Quantized Nonlinear
Discrete-time Systems with Input Constraint using Neural
Networks”. Under review with IEEE Transactions on Neural

Networks and Learning Systems.

Figure 1.1. Outline of the dissertation



In the first paper, the finite-horizon optimal adaptive control of linear discrete-
time systems with unknown system dynamics is presented by using ADP technique in a
forward-in-time manner. An adaptive estimator (AE) is introduced with the idea of Q-
learning to relax the requirement of system dynamics. The time-varying nature of the
solution to the Bellman equation is handled by utilizing a time-dependent basis function
while the terminal constraint is incorporated as part of the update law of the AE in
solving the optimal feedback control. The proposed optimal regulation scheme of the
uncertain linear system requires an initial admissible control input and yields a forward-
in-time and online solution without using value and/or policy iterations. Furthermore, an
adaptive observer is proposed so that the optimal adaptive control design depends only on
the reconstructed states so as to realize an optimal output feedback control design. For the
time invariant linear discrete-time systems, the closed-loop dynamics becomes non-
autonomous and involved, but verified by using standard Lyapunov and Geometric
sequence theory.

The second paper investigates the adaptive finite-horizon optimal regulation
design for unknown linear discrete-time control systems under the quantization effect for
both system states and control inputs. First, dynamic quantizer with time-varying step-
size 1s utilized to mitigate the quantization error wherein it is shown that the quantization
error will decrease overtime thus overcoming the drawback of the traditional uniform
quantizer. Next, to relax the knowledge of system dynamics and achieve optimality, the
Q-learning methodology is adopted under Bellman’s principle. An adaptive online
estimator, which learns the time-varying value function, is updated at each time step so

that policy and/or value iteration are not performed. Furthermore, an additional error term



corresponding to the terminal constraint is defined and minimized along the system
trajectory. Consequently, the optimality can be achieved while satisfying the terminal
constraint in the presence of quantization errors. The proposed design scheme yields a
forward-in-time online scheme, which enjoys great practical merits. Lyapunov analysis is
used to show the boundedness of the closed-loop system.

On the other hand, in the third paper, the finite-horizon optimal control design for
nonlinear discrete-time systems in affine form is presented. In contrast with the
traditional ADP methodology, which requires at least partial knowledge of the system
dynamics, the complete system dynamics are relaxed by utilizing a novel NN-based
identifier to learn the control coefficient matrix. The identifier is then used together with
the actor-critic-based scheme to learn the time-varying solution, referred to as the value
function, of the HJB equation in an online and forward-in-time manner. NNs with
constant weights and time-varying activation functions are considered to handle the time-
varying nature of the value function. To properly satisfy the terminal constraint, an
additional error term is incorporated in the novel update law such that the terminal
constraint error is also minimized over time. Policy and/or value iterations are not needed
and the NN weights are updated once a sampling instant. Stability of the closed-loop
system is verified by standard Lyapunov theory under non-autonomous analysis.

In the fourth paper, the idea is extended to the finite-horizon optimal control of
affine nonlinear system using output feedback. An extended version of NN-based
Luenberger observer is first proposed to reconstruct the system states as well as identify
the dynamics of the system. The novel structure of the observer relaxes the need for a

separate identifier to construct the control coefficient matrix. Next, reinforcement



learning methodology with actor-critic structure is utilized to approximate the time-
varying solution of the HJB equation by using a neural network. To properly satisfy the
terminal constraint, a new error term is defined and incorporated in the NN update law so
that the terminal constraint error is also minimized over time. The NNs with constant
weights and time-dependent activation function is employed to approximate the time-
varying value function which subsequently is utilized to generate the finite horizon near
optimal control policy due to NN reconstruction errors. The proposed scheme functions
in a forward-in-time manner without offline training phase. Lyapunov analysis is used to
investigate the stability of the overall closed-loop system.

Finally, in the fifth paper, the finite-horizon optimal regulation scheme is further
extended to nonlinear discrete-time systems with input constraints and quantization
effect. First, by utilizing a non-quadratic cost functional, the effect of actor saturation is
taken into consideration while guaranteeing the optimality. Next, the observer design
from the fourth paper is used to handle the unavailability of the system states as well as
the control coefficient matrix. The actor-critic structure is employed to estimate both the
time-dependent value function and the control signals by NNs with constant weights and
time-varying activation functions. The terminal constraint, similar as previous papers, is
properly satisfied by minimizing a newly defined error term as time evolves. Finally,
quantization error is effectively mitigated by using the idea of dynamic quantizer design
that is introduced in the second paper. As a result, the input constrained optimal
regulation problem is tackled in a forward-in-time and online manner which enjoys great

practical merits.
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1.3 CONTRIBUTIONS OF THE DISSERTATION

In the past literature, the finite-horizon optimal control is tackled by either
backward-in-time solution [3][4] or through offline training [5][6]. The main objective of
this dissertation is to develop an online finite-horizon time-based optimal regulation
scheme which performs in a forward-in-time fashion. Hence the contributions of this
dissertation can be summarized as follows.

In the first paper, the main contributions include the development of finite-
horizon optimal adaptive control of uncertain linear discrete-time systems with state and
output feedback via an observer provided the observer converges faster than the
controller. The terminal constraint is incorporated in the controller design. Boundedness
of the regulation and parameter estimation errors are demonstrated by using Lyapunov
and geometric sequence analysis. The proposed controller functions forward-in-time with
no offline training phase. In addition, the controller does not use value and policy
iterations while the cost function and optimal control input are updated once a sampling
interval consistent with the standard adaptive control.

The contributions of second paper involve the design of the dynamic quantizer
design coupled with the development of finite-horizon optimal adaptive control of
uncertain linear discrete-time systems. First a new parameter is introduced in this paper to
ensure that the quantizer does not saturate while the quantization error will decrease
overtime due to the analysis of the quantization error bound. The terminal state constraint
is incorporated and satisfied in the novel controller design scheme. Boundedness of the

regulation, parameter estimation and quantization errors are demonstrated by using
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Lyapunov stability analysis. If the time interval is stretched, the asymptotic stability of
the closed-loop system is demonstrated.

In the third paper, the major contributions include the development of an optimal
adaptive NN control scheme in finite-horizon for nonlinear discrete-time systems.
Normally under the ADP scheme, at least partial dynamics, i.e., the control coefficient
matrix are needed to generate the optimal control policy [7][24]. Therefore, a novel NN-
based online identifier is first proposed to learn the control coefficient matrix such that
the complete system dynamics are not needed. Actor-critic scheme is utilized to learn the
time-varying solution of the HIB equation by two NNs with constant and time-varying
activation function. Novel update law incorporating the terminal constraint error is
developed based on generalized gradient-descent algorithm. Therefore, the proposed
design scheme performs in a forward-in-time manner whereas iteration-based
methodology is not needed. Lyapunov analysis verifies the stability of all the parameter
estimation errors and the overall closed-loop system.

The contributions of the fourth paper include novel design of finite-horizon
optimal regulation of nonlinear discrete-time systems when the system states are not
available. An extended Luenberger observer is proposed to estimate both the system
states and the control coefficient matrix, which is subsequently used for the optimal
controller design. The novel structure of the observer relaxes the need for a separate
identifier thus simplifies the overall design.

Finally, the fifth paper further extends our finite-horizon optimal regulatior to the
quantized nonlinear systems with input constraint. Though input constrained optimal

control is not a new topic [6][14], however, to the best knowledge of the authors,
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developing an (near) optimal regulator for quantized control systems under finite-horizon

scenario in a forward-in-time fashion without using iteration-based approach still remains

unresolved. By adopting a newly defined non-quadratic cost functional [25], we are able

to successfully utilize our developed ideas from [26], [27] and Paper IV to estimate the

value function in a new form so that the optimality can be eventually achieved.

Policy/value iteration are not needed due to our parameter tuning laws which are updated

once a sampling interval.
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PAPER
I. FINITE-HORIZON OPTIMAL ADAPTIVE CONTROL OF UNCERTAIN

LINEAR DISCRETE-TIME SYSTEMS

Qiming Zhao, Hao Xu and S. Jagannathan

Abstract — In this paper, the finite-horizon optimal adaptive control of linear discrete-
time systems with unknown system dynamics is presented in a forward-in-time manner by
using adaptive dynamic programming (ADP). An adaptive estimator (AE) is introduced
with the idea of Q-learning to relax the requirement of system dynamics. The time-
varying nature of the solution to the Bellman equation is handled by utilizing a time-
dependent basis function while the terminal constraint is incorporated as part of the
update law of the AE in solving the optimal feedback control. The proposed optimal
regulation scheme of the uncertain linear system requires an initial admissible control
input and yields a forward-in-time and online solution without using value and/or policy
iterations. Furthermore, an adaptive observer is proposed so that the optimal adaptive
control design depends only on the reconstructed states so as to realize an optimal output
feedback control design. For the time invariant linear discrete-time systems, the closed-
loop dynamics becomes non-autonomous and involved, but verified by using standard
Lyapunov and Geometric sequence theory. Effectiveness of the proposed approach is

verified by simulation results.
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1.INTRODUCTION

Optimal control of linear systems with quadratic performance index or linear
quadratic regulator (LQR) design has been one of the key research problems in control
theory. Traditional optimal control [1] addresses finite-horizon problem in an offline and
backward-in-time manner by solving Riccati equation (RE) when the system dynamics
are known.

For optimal control of a linear system with infinite-horizon, the algebraic Riccati
equation (ARE) is utilized to obtain its time invariant solution. In contrast, in finite-
horizon scenario, the solution is inherently time-varying [1], and can only be obtained by
solving the RE in a backward-in-time manner from the terminal weighting matrix given
the full information of the system dynamics. In the absence of system dynamics, RE
cannot be solved.

To address optimal regulation problem, model predictive control (MPC) has been
widely investigated [2][3]. However, MPC are essentially open-loop control, and the
prediction horizon needs to be carefully formulated. In the recent years, adaptive or
neural network (NN) based optimal control has been intensely studied for both linear and
nonlinear systems with uncertain dynamics in the case of infinite-horizon [4][5][6].
However, the finite-horizon optimal adaptive control of linear and nonlinear systems still
remains an open problem for the control researchers when the system dynamics become
uncertain. Moreover, solving the optimal control in a forward-in-time manner is quite
challenging and involved.

In the past literature, the author in [7] considered the finite-horizon problem for

nonlinear systems via iterating backward from terminal time ¢, and by solving the so-
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called generalized Hamilton-Jacobi-Bellman (HJB) equation via Galerkin method. In [8],
the authors proposed a fixed final time optimal control laws using NN with time-varying
weights and state-dependent activation function to solve backward-in-time the time-
varying HIB equation for affine nonlinear continuous-time systems.

In [9], the authors considered the finite-horizon optimal control problem with
input-constraints by using standard direct heuristic dynamic programming (DHDP)-based
offline NN scheme with constant NN weight matrix and time-varying activation function.
The terminal constraint is satisfied by introducing the augmented vector incorporating the
terminal value of the co-state A(N). On the other hand, in [10], the authors considered
the discrete-time finite-horizon optimal problem under adaptive dynamic programming
(ADP) scheme by using value and policy iterations. Here, the terminal time is not
specified and final state is fixed at the origin.

The approaches in [7][8][9][10] provided a good insight into the finite-horizon
optimal control problem while the solution is iterative, and either backward-in-time
and/or offline. It is shown in [11] that iterative schemes require a significant number of
iterations within a sampling interval for stability and are unsuitable for real-time control.
However, a finite-horizon optimal scheme that can be implemented online and forward-
in-time without using policy and value iterations is yet to be developed.

Motivated by the drawbacks aforementioned, in this work, the ADP technique via
reinforcement learning (RL) is used to solve the finite-horizon optimal regulation of an
uncertain linear discrete-time system in an online and forward-in-time manner without
using value and/or policy iteration. The Bellman equation is utilized with an estimated Q-

function such that the requirement for the system dynamics is relaxed.
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An additional error term corresponding to the terminal constraint is defined and
minimized at each time step. Lyapunov theory is utilized to show the stability of our
proposed scheme under non-autonomous dynamic system framework. In the proposed
scheme, the cost function and control input are updated once a sampling interval
consistent with the standard adaptive control notion. In addition, in applications where
the system states are unavailable for measurement, an adaptive observer is proposed such
that the optimal state feedback controller design scheme can be extended to the output
feedback case.

Therefore, the main contributions of this paper include the development of finite-
horizon optimal adaptive control of uncertain linear discrete-time systems with state and
output feedback via an observer. The terminal constraint is incorporated in the controller
design. Boundedness of the regulation and parameter estimation errors are demonstrated
by using Lyapunov and geometric sequence analysis. The proposed controller functions
forward-in-time with no offline training phase. The controller does not use value and
policy iterations while the cost function and optimal control input are updated once a
sampling interval consistent with the standard adaptive control.

The remainder of this paper is organized as follows. In Section 2, the finite-
horizon optimal control scheme for the uncertain linear discrete-time system along with
the stability analysis is presented for the case of full state feedback. Section 2.3 extends
the optimal control scheme to the uncertain linear discrete-time system by using output
feedback. In Section 3, simulation results are shown to verify the feasibility of proposed

method. Conclusions are provided in Section 4.
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2.FINITE-HORIZON OPTIMAL CONTROL DESIGN UNDER Q-LEARNING

SCHEME WITH STATE FEEDBACK

In this section, finite-horizon optimal control scheme for linear systems with
uncertain system dynamics is proposed for the state feedback case. A Q-function [14][15]
is first defined and then estimated adaptively by using RL, which is in turn utilized to
design the controller by relaxing the system dynamics. An additional error term
corresponding to the terminal constraint is also defined and minimized over time. Finally,
the stability of the closed-loop system is verified based on the Lyapunov stability theory.

The case when the system states are not measurable will be considered in section 2.3.

2.1 PROBLEM FORMULATION

Consider the time-invariant linear discrete-time system described in state-space
form given by

X, =Ax, +Bu, (1)

where x, € QQ_ cR" is the state vector and u, € Q, < R" is the system state vector and
control input vector at time step k , respectively, while the system matrices 4 € R"" and
B e R"™ are assumed to be unknown. Moreover, it is assumed that the control input
matrix B satisfies |B|, < B, where |o] . denotes the Frobenius norm.

In this paper, the free final state optimal regulation problem is addressed [1]. The
objective of the controller design is to determine a feedback control policy that minimizes

the following time-varying value or cost function

J, = xS Xy +§(xfl’ixi +uiTR[u[) (2)

i=k
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where P, € 'R™ is positive semi-definite matrix, R, € R"™" is positive definite matrix
and assumed to be symmetric, respectively, whereas S, € R"" is the positive semi-

definite symmetric penalty matrix for the terminal state x,, with [k, N] being the time of

interest while N is considered being the final time instant. It should be noted that in

finite-horizon scenario, the control inputs becomes essentially time-dependent, i.e.
u, = p(x; k).

Remark 1: Equation (2) gives the general form of the cost function in quadratic
form. In the finite-horizon case, S, is known as the RE solution at the terminal step and
xS\ X, is the terminal state constraint for the cost function. As N — oo, the problem
becomes infinite-horizon optimal control with § =0 and the Riccati equation reduces

to an algebraic Riccati equation (ARE).

It i1s well-known that from optimal control theory [1], the finite-horizon optimal
control u, , can be obtained by solving the RE which is given by

S, =A'[S,,,-S, . BB'S,_ B+R)'B'S_14+P, (3)

in a backward-in-time manner provided system matrices are known with time-varying

Kalman gain matrix K, given by

u;, =—K;x,=—(B'S,,B+R,)"'B'S,, A-x, (4)

Solving the RE equation when system matrices being unknown is a major

challenge. In the next subsection, it will be shown that the finite-horizon optimal control

for such linear discrete-time systems with uncertain dynamics can be tackled in a

forward-in-time and online manner. In addition, value and/or policy iterations are not
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needed and the system dynamics are not required for the controller design since a Q-

learning adaptive approach [15] is utilized.

2.2 FINITE-HORIZON OPTIMAL CONTROL DESIGN

In this subsection, a Q-function is estimated and subsequently utilized in
obtaining the optimal control.

2.2.1 Q-function Setup. Before proceeding, it should be noted that for the
finite-horizon case, the value-function, denoted as V' (x,,N —k), becomes time-varying
[1] and is a function of both system states and time-to-go function. Since the value
function V(x,,N—k) is equal to the cost function J, , according to [1], the value
function can also be represented in the quadratic form of the system states for (1) as

V(x, ,N-k)=x/S,x, 5)
where §, is the solution sequence to the Riccati equation.

According to the optimal control theory [1], define the Hamiltonian as

H(x, ,u,, N=-k)=r(x,,u, ,k)+V(x, ,N-k-1)-V(x,,N—k) (6)
where 7(x,,u,,k)=x.P.x, +u, R u, is the time-varying cost-to-go function due to the
time-dependency of the control inputs u, .

The optimal control input, according to [1], is given by using
OH(x,,u,,N—k)/ou, =0, which yields (4). Instead of generating the optimal control
input backward-in-time using (4), the value function is estimated and used to derive the

control input in forward-in-time and an online manner without using value and policy

iterations.



21

Define the time-varying optimal action dependent value function or Q-function,

Q(xkaukaN_k)a as

Q(xk’uk’N_k):V(xka"ksk)+Jk+l:Lfk} Gk[xk} (7)

The standard Bellman equation can be written as

xk ! xk
G, =r(x,u,k)+J,
u, u;

T T T
=x, Px;, +u Ru +x,.,85.,x,.,

[ x, ! P, 0] x . )
= +(Ax, + Bu,) S,,,(Ax, + Bu,)
uw, |0 R, ]u,
— T -
| x| | P +A'S, A4 A'S, B | X
LUy B'S, A R +B'S, B u,
Therefore, the time-varying matrix G, can be expressed as
G - P+4'S.,.4 A'S, B | |G¥ G" ©)
¢ B'S,.A R +B'S_B| |G* G"
By using (9) and (4), the control gain matrix is expressed in terms of G, as
K, =(G")' G (10)

From the above analysis, the time-varying Q-function O(x,,u, ,N—k) estimate
includes the information of G, matrix which can be obtained online. Subsequently, the
control inputs can be obtained from (10) without using the knowledge of the system
dynamics 4 and B.

Remark 2: The above derivations are based on Bellman’s principle of optimality

under finite-horizon scenario. When the time span of interest goes to infinity, the solution
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of RE becomes a constant rather than time-varying, i.e., §,,, =S when k — oo, where

S 1is the constant solution matrix to the ARE [1].

Next, the process of estimating the time-varying Q function and the Kalman gain
is introduced by using an adaptive approach.

2.2.2 Model-free Online Tuning with Q-function Estimator. To overcome
the disadvantage of iteration-based scheme, in this subsection, the finite-horizon optimal
control design is proposed by using the past information of the system states and control
inputs. To properly satisfy the terminal constraint, an additional error term is introduced
such that this error is also minimized. Before proceeding, the following assumption and
lemma are introduced for the time-varying function approximation.

Assumption 1 [21] (Linear-in-the-unknown-parameters): The slowly time-
varying Q-function Q(x,,u,,N—k) can be expressed as the linear in the unknown
parameters (LIP).

By using adaptive control theory [21] and assumption 1, O(x, ,u, ,N—k) can be
expressed in vector form in vector form as

O(x,,u, ,N—-k)=2,G,z, = 8,7, (11)

where z, =[x, w.]"eR', with I=m+n, Z, =(Z0, s Z0Zus>Zia>" > Zu1ZusZ0) 1S

the Kronecker product quadratic polynomial basis vector, and g, = vec(G, ) with vec(e)

a vector function that acts on /x/ matrices and gives a /x(/+1)/2 =L column vector.

The output of vec(G,) is constructed by stacking the columns of the squared matrix into

a one-column vector with the off-diagonal elements summed as G +G" .
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Lemma 1: Let g(k) be a smooth and uniformly piecewise-continuous function in

a compact set Q < R. Then, for each ¢ >0, there exist constant elements 4,,....,60, €R

m

with me N as well as the elements ¢, (k),...,¢,, (k) € R of basis function, such that

‘g(k)—i@lqﬁi(k) <¢g,  ke[O,N] (12)

Proof: Omitted due to the space limitation.
Based on Assumption 1 and Lemma 1, the smooth and uniformly piecewise-

continuous function g, can be represented as
g, =0"p(N—k) (13)
where @ € R" is target parameter vector and @(N—k) e R”" is the time-varying basis

function matrix, with entries as functions of  time-to-go, 1e.,

¢11(N_k) ¢12(N_k) ¢1L(N_k)

N-k N-k) - N-k
oty | #N R aN=D) g (N

with ¢, (N —k) = exp(—tanh(N— k)",
¢L1(N_k) ¢L2(N_k) Tt ¢LL(N_k)
for i, j =1,2,---L. This time-based function reflects the time-dependency nature of finite-

horizon. Further, based on universal approximation theory, @(N—k) is piecewise-
continuous [12][13].
From [1], the standard Bellman equation is given in terms of the Q-function as
O(x;,u,, . N=k—=1)-0O(x,,u,,N=k)+r(x,,u,,k)=0 (14)
However, (14) does not hold when the estimated value g, is applied. To

approximate the time-varying matrix G, , or alternatively g,, define
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&, =0{p(N~k) (15)
where ék is the estimated value of target parameter vector €.

Therefore, the approximation of the Q-function can be written as

O(x,.u . N=k) = &7, =0{p(N-b)Z, = 0; X, (16)
where X, =p(N—k)z, € R" is a time-dependent regression function incorporating the
terminal time N while satisfying H)? . H =0 when z, =0.

Remark 3: For the infinite-horizon case, (15) does not have the time-varying
term @(N —k), since the desired value of vector g is constant, or time-invariant [5]. By
contrast, for the finite-horizon case, the desired value of g, is considered to be slowly
time-varying. Hence the basis function should be a function of time and can take the form
of product of the time-dependent basis function and system state vector [16].

With the approximated value of time-varying Q-function, the estimated Bellman
equation can be written as

e = O0(x oty N—k =)= O(x, ,u, N —k)+r(x, ,u, k) (17)
where e, ., is the Bellman estimation error along the system trajectory.

Using the delayed value for convenience, from (16) and (17), we have

e, =r(xk71’uk71,k—1)+ég)?k —ékT)?,H (18)
=r(x,_,u,_,k—1)+ ékTA)_(k_l

where AX, =X, - X_,.

Next, define an auxiliary error vector which incorporates the history of cost-to-go

€rrors as
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— T

E =T, +0,2, (19)
with Ek:[ek,ek_l,---,ek_j]eiﬂlx(”b , I, =[r(x,_,u_,k-1),r(x_,,u_,,k—2), -,
r(x,

u,_, k—1— ])] c mlx(j'*'l) and ‘Qk—l — [AXk—I’ AXk—2’ ey AXVk—l—j] c g}{Lx(jH) for

_j7 —j’

0<j<k-1.
It can be seen from (19) that =, includes a time history of previous j+1
Bellman estimation errors recalculated using the most recent ék .
The dynamics of the auxiliary vector are generated similar to (19) as
=T, +0A/E+1‘Qk (20)
In the finite-horizon optimal control problem, the terminal constraint of the cost

function should also be taken in account. Define the estimated value function for the

terminal stage as

0, (x) =0, p(0)z, 21)
In (21), it is important to note that the time-dependent basis function (N —k) is
taken as ¢@(0) since from the definition of ¢, the time index is taken in the reverse order.

Finally, define the error vector for the terminal constraint as
Ein=&in —8x =00(0) -~ gy (22)
with g, being bounded by ||gN|| <gyv-
Remark 4: For finite-horizon case, the error term Z, , which indicates the

difference between the estimated value and true value for the terminal constraint, or

“target”, (in our case, g\ ), is critical for the controller design. The terminal constraint is
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satisfied by minimizing £,  along the system evolution. Another error term =, which

can be regarded as temporal difference (TD) error, is always needed for tuning the
parameter for both finite-horizon and infinite-horizon case. For infinite-horizon case, see
[5] and [6].
Now define the total error vector as
o) =5 +Z,

N (23)

F total
To incorporate the terminal constraint, we further define
AIT, = 2, +9(0) (24)
The update law for tuning ék is selected as
0. =AI_7k<AI_7kTAI_Ik)_1 (OaE;fr,total -r; +gN) (25)
where 0 < & <1 is the tuning rate. It also can be seen from (25) that the update law is
essentially the least-squares update.
Expanding (25) with (23), (25) can be written as
0. = Aﬁk(m;mk)_l(“gg -y +gN)+“Aﬁk(Aﬁ;Aﬁk)_l‘EkT,N (26)
Recall from AT, =, +¢(0) , and substituting 2, = AIT, —(0) into (20)
yields

=I, +é1;r+1‘gk =rI, +ékT+1(AI_7k —(0))

k+1
=I, + ékTHAI_Tk - ékT+1(0(0) (27)
=I, + 01:'F+1AI_TI¢ - §k+1,N

To find the error dynamics, substituting (26) into (27), we have

Z.,=T, +é1;r+1mk _ékTH(”(O)

(28)

— — T
=, +0= \ — 0,.,.9(0)
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From(28), it can be seen that the Bellman estimation error is coupled with the

terminal constraint estimation error. Hence, the dynamics for £, is given by

—
=
=

- = + =
k+1total = = k+1 T = k+I,N

— AT —
=0=, N~ 000+ E, |

Ry Fl

+
+

F]

k,N

Define the approximation error for ék as

~

Substituting (31) into (20) yields

- nT _ T AT
= fet1 _Fk +0k+l‘gk =—0 'Qk +0k+1‘gk
AT
= _0k+l‘Qk

Recalling that =, | ., =&, + &, \, we further have
0.9 =-0aE, —a=,  +5,.\
Note that =, =g, —&y= 07 p(0)— 0" p(0) =—6, p(0)
E,an =—0.,0(0), then (33) becomes
0.2 =00 R _ +abp(0)-0, ¢(0)
Therefore, we have

0..(2, +p(0) =] (2,_, +¢(0))

(29)

(30)

€2))

(32)

(33)

, and  similarly

(34)

(35)

Recall from (24) that AIT . =9, +¢(0), (35) can be finally expressed as

Sp— s
0, . All, =a0, All, |

(36)
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Remark 5: It is observed, from the definition (16), that when the system states,
which are the inputs to the time-varying Q-function estimator, have converged to zero,
the Q-function approximation is no longer updated. It can be seen as a persistency of
excitation (PE) requirement for the inputs to the Q-function estimator wherein the system
states must be persistently exiting long enough for the estimator to learn the Q-function.
The PE condition requirement is standard in adaptive control and can be satisfied by
adding exploration noise [20] to the augmented system state vector. In this paper,
exploration noise is added to satisfy the PE condition [5]. When the estimator effectively
learns the Q-function, the PE can be removed thus the terminal state will not affected by
the addition of the noise signal.

Next, the estimation of the optimal feedback control input and the entire scheme
is introduced.

2.2.3 Estimation of the Optimal Feedback Control and Algorithm. Before
proceeding, the flowchart of proposed scheme is shown in Figure 1. We start our
proposed algorithm with an initial admissible control which is defined next. After
collecting both the Bellman error and terminal constraint error, the parameters for the
adaptive estimator are updated once a sampling interval beginning with an initial time
and until the terminal time instant in an online and forward-in-time fashion. Next, the
following assumption and definition are needed.

Assumption 2: The system (A, B) is controllable and system states x, € Q_ are
measurable.

Definition 1 [4]: Let 2, denote the set of admissible control. A control function

u:R" —R" is defined to be admissible if the following is true:
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u is continuous on Q_;

u(x)),_, =0;

u(x) stabilize the system (1) on Q ;
J(x(0),u) <o0,Vx(0) Q2.

Since the design scheme is similar to policy iteration, we need to solve a fixed-
point equation rather than recursive equation. The initial admissible control guarantees
the solution of the fixed-potion equation exists, thus the approximation process can be
effectively done by our proposed scheme.

Start Proposed
Algorithm

&
d

A\ 4
~ Initialization
Vo(x)=0,u=u,

Update the finite horizon Bellman Equation
and terminal constraint error

E =TI k-1 +013 Q.
EiN :0; #0)—gy
|

Update the adaptive estimator parameters with auxiliary
error vectors

0., :Mk(AH:AHk)_] ((L’:’Ztotoal_rl;r +8\)
with AIT, =€, +¢(0)

v

Update finite horizon control policy
G, =vec (§,) =vec” (6] p(N-F)
i, =—(G{") ' G x,

k=k+1,Vk=12,...N—1

Update the time interval

Figure 1. Flowchart of the finite-horizon optimal control design
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Recall from (10), the estimated optimal control input can be obtained as
i, =~(G") G - x, (37)
From (37), it can be seen that the Kalman gain can be calculated based on the
information of ék matrix, which is obtained by estimating the Q-function. This relaxes

the requirement of the system dynamics while (25) relaxes the value and policy iterations.
Here the Q-function (11) and control policy (37) are updated once a sampling interval.

2.2.4 Stability Analysis. In this subsection, it will be shown that both the
estimation error @ . and the closed-loop system are uniformly ultimately bounded (UUB).
Due to the nature of time-dependency, the system becomes essentially non-autonomous
in contrast with [9] and [10]. First, the boundedness of estimation error gk will be shown
in Theorem 1. Before proceeding, the following definition is needed.

Definition 2 [17]: An equilibrium point x, is said to be uniformly ultimately
bounded (UUB) if there exists a compact set Q_cR" so that for all x, €, there
exists a bound B and a time 7'(B, x,)) such that ||xk —xe” <B forall k=k,+T.

Theorem 1: Let the initial conditions for the Q-function estimator vectors g, be
bounded in the set Q, which contains the ideal parameter vector g, . Given u,(k)€Q,

an initial admissible control policy for the linear system (1). Let the assumptions stated in

the paper hold including the controllability of the system (1) and system states vector
x, € Q_ being measurable. Let the update law for tuning ék be given by (25). Then,

there exists a positive constant « satisfying 0<a <1 such that the stability of the Q-

function estimator is guaranteed at the terminal stage N. Furthermore, when the time of
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interest goes to infinity, i.e., k — oo, the parameter estimation error 5k will converge to

zero asymptotically.

Proof: See Appendix.

Next, we will show the boundedness of the closed-loop system. Before
establishing the theorem on system stability, the following lemma is needed.

Lemma 2 [5]: (Bounds on the closed-loop dynamics with optimal control): Let
the optimal control policy, u, € Q) , be applied to the linear discrete-time system (1).
Then, the closed-loop system dynamics Ax, + Bu, are bounded above with the bounds

satisfying

+||? 2
|x, +Bu; | < pfx,| (38)
where 0 < p < % is a constant.

Proof: See [5].
Theorem 2 (Boundedness of the Closed-loop System): Let the linear discrete-time

system (1) be controllable and the system states be measurable. Let the initial conditions

for the Q-function estimator vectors g, be bounded in the set Q, which contains the

ideal parameter vector g,. Let u,(k) (2, be an initial admissible controlpolicy for the

system such that (38) holds with some p . Let the parameter vector of Q-function
estimator be tuned and the control policy estimation be provided by (25) and (37),
respectively. Then, there exists a constant « satisfying 0 <a <1 such that the closed-
loop system is uniformly bounded at the terminal stage N . Further, when k — o, the

bounds for both the states and estimation error will converge to zero asymptotically.
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Moreover, due to (A.14), the estimated control input will converge to ideal optimal
control (i.e. #, — u, ) while time goes to infinity (i.e. k£ — ).

Proof: See Appendix.

2.3 FINITE-HORIZON OPTIMAL CONTROL WITH OUTPUT FEEDBACK

In this section, the finite-horizon optimal adaptive control scheme for the linear
discrete-time systems with uncertain dynamics is derived with an adaptive observer when
the system states are not measurable.

Consider the system

x,,, =Ax, +Bu, (39)
¥, =Cx,

where x, €eQ R, u, €QQ, cR"” and y, € Q) < R” are the system states, control

input and system output, respectively, while the system matrices 4 € R"” and BeR""

pxn

are assumed to be unknown, and output matrix C € R”™" is assumed to be known.

Then, the cost function is given as

Jk = yT]\;MNyN +N24(y;rHiyi +”iTRi”i)

i=k

N-1
= xIC"M\Cx + Y (x'C"H,Cx, +ul Ru,) (40)

i=k

N-1
T T T
= xSy Xy + Z(xl. Px, +u, R[ui)

i=k
where §, =C"MC and P=C"H.C.
Assumption 3: The system (A,B) is controllable and (A4,C) is observable.

Moreover, the system output vector y, €€ is measurable.



33

Define an adaptive observer as

X, =A%, +Bu, — L (y, - C%,) (41)

A A

where X, eQ, cR" is the reconstructed system states, 4, B are estimated system

dynamics and I:k is the observer gain.

The observer error is given by

X,
Xy =X — X =(A-LO)X, +[4, B, L. u,

7, (42)

=(A-LOX, +3w(z,)

where 9" =[4, B, L1eR™ , r=m+n+p , A, =A—A,, B, =B—-B, ,

~

L,=L-L,, and w(z,)=[% u] 51 eR . Note that in (42), since system (39) is
observable, there always exists an observer gain L € R™” such that 4— LC is Hurwitz.
Hence, the first term in (42) is always stable. We need to design for §k such that the

stability of second term in (42) can be ensured.

Next, define an auxiliary observer error as

C'Y,, =(A-LOC'Y, +8/¢(z,) (43)
where C* e R™” is the pseudo inverse of C, ¥, =[¥, ¥, - Vi 1eR”",
() =w(z) wi(ze) - wiz,_, )]eR"™" and v is the observability index.

The update law for the proposed adaptive observer is given as

G, =8, + p—SEIVL 44)
1+ ¢ (¢ (2|

where [ >0 is the tuning rate.
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The parameter estimation error can be revealed to be

~

vT
19k+1 — lgk _ﬂ é‘(zk )Yk+1

1+[¢" o

(45)

Next, the boundedness of the parameter estimation error for the adaptive observer
is demonstrated, as shown in the following Lemma.

Lemma 3 (Boundedness of the parameter estimation error for the adaptive
observer): Let the linear discrete-time system (39) be controllable and observable while

its output is measurable. Let the initial conditions for the Q-function estimator vectors g,
be bounded in the set Q, which contains the ideal parameter vector g, . Let the adaptive

observer be given by (41) and the update law for the parameter estimation be provided as

in (44). Then  there exists a  positive constant [  satisfying

A
A+ +Hw )| +1

such that given any positive ¢ > 0, there exists a

finite N such that Hgk H < &(9,,N). Furthermore, when k — oo, the adaptive observer is

asymptotically stable.
Proof: See Appendix.

Our objective is still trying to approximate the matrix G,, or equivalently, g, .

Based on the proposed adaptive observer design, the total error can be derived from

Bellman equation as

~ T Ara A AT ~ ~
_ X Pk + Ak Sk+1Ak Ak k+1Bk Xk
Ciotalk+1 = noA A Ta A
u Bk Sk Ak Rk + b, Sk Bk u
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- -’%gsk’%k + 2(1‘]1{-’%1; + ék”k)T§k+1ik;k
~ P LS L, +(0;9(0)-8,)0 (46)
= —0TAX, +r(%,,u,, k)~ 0] p(0)0
where AX . 1s defined similarly as state feedback case but using the reconstructed system
states x,, O is arow vector consisting of “1”s, i.e., O =[1,1,---,1].
Adding and subtracting r(x,,u,,k), (46) further becomes
Crotal k1 — 0kT°'k +6' Lf(x0) = f(x )]+ g(x,) — g(x,) 47)
where o, = A)%k -9(0)0 , f(x,)=kron([x,,u,]) , f(x,)=kron([x,,u,]) , with
kron(e)  denoting the Kronecker product quadratic polynomial, and
T T 2 ~Tp 2 T

gx)=xPx +uRu,, g(x,)=xPx +uRu,.

Notice that since f(x,) and g(x,) are in quadratic form and hence satisfy

Lipschitz condition, i.e., |f(x,)— f(X)|<L/|%,] and |g(x,)—g(%,)| < L,|X,||, where
L, and L, are positive Lipchitz constants [18].
The update law for Q-function estimator is finally given as
n ~ o.e
0k+1 — 0k + }/ kT total,k+1 (48)
o.,0,+1

with y >0 the tuning rate. Furthermore, the error dynamics for ék can be found to be

~

0k+1 = 0k -

(PN
k*total,k+1
Y oo (49)
o.,0,+1

Remark 6: For output feedback, the error term e, is guaranteed to converge

due to the convergence of 5/( , which is shown in the closed-loop proof given in the
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appendix. Note that Lemma 3 guarantees the convergence of the observer error X, and

hence the optimality is ensured by the update law for tuning ék together with the

proposed adaptive observer design scheme.
Next, the boundedness of the closed-loop system will be shown in next theorem.
Theorem 3: (Boundedness of the Closed-loop System with adaptive observer):
Let the linear discrete-time system (39) be controllable and observable while its output is

measurable. Let the initial conditions for the Q-function estimator vectors g, be bounded
in the set QQ, which contains the ideal parameter vector g, . Let u,(k) €, be an initial

admissible control policy for the system (39). Let the parameter vector of the adaptive

observer and Q-function estimator be tuned by (44) and (48), respectively. Then, there

. o 1 . .
exists a constant y satisfying 0 <y < 3 such that given any ¢ >0, there exists a final

time instant N such that |x|<&(x,,N),

% < ex.N)

\5k H <&(@,,N) and

Hgk H < 5(§k,N). Furthermore, when k — oo, the closed-loop system is asymptotically

stable. Moreover, due to (A.21), the estimated control input will converge close to
optimal control input within the final time instant N and @, — u; as k — .

Proof: See Appendix.

3.SIMULATION RESULTS

In this section, a practical example for the case of both state feedback output
feedback are given to show the feasibility of our proposed finite-horizon optimal control

design.
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3.1 FINITE-HORIZON OPTIMAL CONTROL WITH STATE FEEDBACK
First, the proposed Q-learning-based finite-horizon optimal control design for
state feedback case is evaluated by a numerical example. The example is taken as a

continuous-time F-16 aircraft plant with quadratic cost function given by [19]:

—1.01887 0.90506 —0.00215 0
x=| 082225 -1.07741 -0.17555|x+| O |u (50)
0 0 -20.2 20.2

The system state vector is x=[a g J,], where « is the angle of attack, g is
the pitch rate and o, is the elevator deflection angle. The control input is the elevator

actuator voltage.

Discretizing the system with a sampling interval of 7, = 0.1sec, the discrete-time

linear system is given by

0.9065 0.0816 —0.0009 0
x,,, =|0.0741 09012 —0.0159 |x, +|—0.0008 |u, (51)
0 0 0.9048 0.0952

The performance index is given as (2) with the weighting matrices P,, R, and
the terminal constraint matrix S, are selected as identity matrices with appropriate
dimension. The terminal constraint  vector is hence given as
g, =[1.8272, 0.2816, —0.002, —0.0022, 1.8188, —0.0128, —0.0174, 1.0176, 0.2303,1.7524]" .
The initial system states and initial admissible control gain are chosen as
x, =[1, —1, 0.5]" and K, =[-0.3, 0.3, 1.2], respectively.

The designing parameter is selected as o =0.001. The time-dependent basis

function @(N —k) is chosen as a function of time-to-go with saturation. Note that for
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finite time period, @(N —k) is always bounded. Saturation for ¢(N —k) is to ensure the

magnitude of @(N — k) is within a reasonable range such that the parameter estimation is

computable. The initial values for ék are set to zeros.

First, we examine the response of the system and the control input with our

proposed finite-horizon optimal control design scheme. The augmented states are
generated as z, =[x;, u;]" €eR* and hence z, € R'’. From Figure 2, it can be seen

that both the system states and the control input finally converge close to zero, which
verifies the feasibility of our proposed design scheme.

Next, to verify the optimality and satisfying the terminal constraint, the error
histories are plotted in Figure 3. From Figure 3, it clearly shows that the Bellman error
eventually converges close to zero, which ensures the optimality of the system. It is more

important to note that the history of terminal constraint error e, also converges close to

zero, which illustrates the fact that the terminal constraint is also satisfied with our

proposed controller design.

0.5¢e,

0.5 7

System Response

0.3

0.24
0.1 K
0

0.1

Control Inputs

0 1 2 3 4 5
Time (sec)

Figure 2. System response and control inputs
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Finally, for comparison purpose, the error of cost function between traditional
backward-in-time RE-based method and our proposed algorithm are shown in Figure 3. It
can be seen clearly from the figure that the difference between two costs converges close
to zero. It should note that the error between two costs converges more quickly than the
system response, which illustrates that the proposed algorithm indeed yields an (near)

optimal control policy.

15

\ = ©Beliman
0.5

Error Histories

Cost Function Error
o

0 1 2 3 4
Time (sec)

Figure 3. Convergence of error terms and cost function error between traditional and proposed method

3.2 FINITE-HORIZON OPTIMAL CONTROL WITH OUTPUT FEEDBACK

Consider the same F-16 model with output [19]:

—1.01887 0.90506 —0.00215 0
x=| 0.82225 -1.07741 —-0.17555|x+| O |u 5
0 0 -20.2 20.2 (52)

y=[0,57.2958,0]x
The weighting matrices P, , R, and the terminal constraint matrix § are

selected to be the same as the state feedback case, and hence the terminal constraint
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vector g, is also the same as state feedback case. The initial system states and states
estimate are selected to be [—1,1,1] and zeros, respectively, and initial admissible control
gain is chosen to be K, =[0.3,-0.3,-1.2] . The designing parameter is selected as
£ =0.1 and y =0.001. The time-dependent basis function @(N —k) is chosen similar as
the state feedback case as a polynomial of time-to-go with saturation. The initial values

for 0, and 9k are both randomly selected between [0,1]. Due to space constraints,

simulation results for only observer convergence and total error results are included here.
From Figure 4, it can be seen clearly that the observer error converges as time
evolves, which illustrates that the estimated state becomes close to the true value in a

short time indicating the feasibility of the proposed adaptive observer design scheme.

—_c,
—_c,
0.5 e,
° |
i
g 0
2
Q
[7]
o
o
-0.57
-1
0 5 10 15 20

Time (Sec)

Figure 4. Observer error

It is more important to notice the evolution of the error term, which is shown in
Figure 5. The convergence of the total error illustrates the fact that the optimality is

guaranteed by the proposed scheme.
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3.5
3
2.5
o
o 2
0
£ 15
o
g
)|
0.5 k
0
5 10 15 20
Time (Sec)

Figure 5. Convergence of the total error

4. CONCLUSIONS

In this paper, the finite-horizon optimal control of linear discrete-time systems
with unknown system dynamics is addressed by using the ADP technique. The dynamics
of the system are not required with an adaptive estimator generating the Q-function. An
additional error is defined and incorporated in the update law so that the terminal
constraint for the finite-horizon can be properly satisfied. An initial admissible control
ensures the stability of the system while the adaptive estimator learns the value function

and the kernel matrix G, . In addition, the proposed control design scheme is extended to

output feedback case by novel adaptive observer design. All the parameters are tuned in
an online and forward-in-time manner. Stability of the overall closed-loop system is
demonstrated by Lyapunov analysis. Policy and value iterations are not needed. The
proposed approach yields a forward-in-time and online control design scheme which

offers many practical benefits.
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APPENDIX

Proof of Theorem I: Consider the Lyapunov candidate function as
~ ~ — ~ — ~ — 2
L0, k)= tr{(akTAHk—l ) 0kTAHk—1} = HakTAHk—l H

where tr{e} denotes the trace operator.
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(A.1)

Note that L(gk,k) is a time-dependent Lyapunov candidate function due to the time-

varying nature of AIT 1 - Also note that since AIT 1 1s the state-dependent function and

assumed to be piecewise continuous with a finite time span of interest, then AIT, | is

bounded by AIT™ <AIT, , <AII[™ for 0 <k <N—1, where AII™ and AIT™ are the

constant lower and upper bound of AIT ., for each step k. It should be noted that finding

the bounds for AIT + 1s due to the reason that the proof is essentially under non-

autonomous scheme [18]. Hence we have

L(0,)<L@, k)<L, @,

2

~ ~ — .2 ~ ~ P
where L,(0,) = HB:AH,T{‘ >0 and L,(0,) =H0,CTAH,?“_}X >0.

Therefore, L(gk ,k) 1is positive definite and decrescent [18].
The first difference of L(gk,k) is given by

AL(O,,k) = L(0,,,,k+1) - L(0,,k)
= tr{ (ngHAﬁk )T 5kT+lAﬁk} —tr{ (ngAI_Ik—l )T ngAI_Ik—l}
~ — 2 ~ — 2
o ZVA S RV

Recall from the dynamics of the paratermer estimation error (36), we have

(A.2)

(A.3)



45

AL@, 1) <|aff AT, || ~[7 AT
<a’lo;adl, | - |6 o, | "o
<~(-aforat, |

2

<—(1-a’)6; AL

Therefore, AL(Ek,k) is negative definite while L(gk,k) is positive definite. By
Lyapunov second method [23], the parameter estimation error 5k remains bounded at the

terminal stage N . Furthermore, gk will converge to zero as k — 0.

Proof of Theorem 2: Consider the Lyapunov candidate function as

L=L(0,,k)+L(x,) (A.6)
;Y . . T . ﬂ’min (R)
where L(0, ,k) is defined in Theorem 1 and L(x,) = x, Ax,, with 4= FI , where
M

B,, is the upper bound for the unknown matrix B, I is the identity matrix with
appropriate dimension and A_. (R) is the smallest eigenvalue of weighting matrix R .
Next, we consider each term in (A.6) individually.

The first difference of L(gk,k) is given by Theorem 1 as

AL@, k)= L(0,,,,k+1)—L(0, k)
, (A7)

<—(1-a)|6; AL

Next, we consider L(x, ). Define A = ||A

, by using Cauchy-Schwartz inequality, the first

difference of L(x,) 1s given as
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AL(x,) = L(x,,,) — L(x,) = X, 4%, — x; Ax,
= A|Ax, + Bu, — Bii,|" — A|x,| (A.8)

2 ~ 12 2

<2A|Ax, + Bu,| +2A|Bu,| - Alx,|
where u, is the difference between the optimal control input and the approximated
control signal. Moreover, according to the control input design, u, =a, —u, = K Xy

and then we have HIN( k” = HK K k” < gKugk , with ¢, is a positive Lipschitz constant.

Next, applying Lemma 2 yields
2 ~ |12
AL(x,) < —(1-2p)A|x,|" +2A|Ba,| (A.9)
Combining (A.7) and (A.9), the first difference AL is given by

AL<~(1-a)6; AT | - (1-2p)A|Ax, + Bu, | +2A| B, |

<~(1-a|or AT - (1-2p)A)Ax, + Bu, [ + 2, R X[ (a.10)

< (=TT =2, BIF[ o] -a-20)0x

where X, is the gradient of X i

Therefore, AL is negative definite while AL is positive definite. By Lyapunov second
method [17], the system states x, and parameter estimation error 5k remain bounded at
the terminal stage N.

Furthermore, assume the system is initialized within a bound B_, i.e. ||x0|| <B,, and

x,0°

initial estimated Q-function error bounded as B, ,. According to geometric theory [22],

2 ST A 77 2
||xk|| and Hﬂk AIl, H can be represented as

Al +|6]amT, , H2 <ABY,+B, + kf:ALi (A.11)
i=0
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Using geometric sequence property, equation (A.11) can be further derived as
2 1+a?)
2 5T A a
Al +[67 AT, | < @2p)* B2, *(TJ B, =B, (A.12)

Therefore, the bounds for the system states and Q-function estimation error can be

written as
e < % =B,, (A.13)
Or
o] < A\/,—f_fﬂ? =By, (A.13b)

Note that since 0 < p<%, O<a<l and B B, , are all bounded, then (2p)",

x,0

0,0

2\
(1+2a j and the bound B, , and B, will be decrease as k increases. Also note that

as N — oo, the system states x, and estimated Q-function will converge to zeros as
B.,=0and B,, =0.
Next, recall to (A.13) and (A.8), while time goes to fixed final time NT,, we have the

upper bound of #, —u; as

A . . i ~
u _”kH = | K.x, _kakH _HkakH

B (A.14)
< Q'KH‘ng”xk” SGBoiBoy =&
where B, , and B, are given in (A.13a) and (A.13b).

Since when time goes to infinity (i.e. £ — ), all the bounds will converge to zeros (i.e.

B,,=0and B,, =0). Moreover, due to (A.14), estimated control input will tend to
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ideal optimal control (i.e. &, — u, ) while time goes to infinity (i.e. £ — o).

Proof of Lemma 3: Define the Lyapunov candidate function as
Loy = il;rAgk + nggk (A.15)
where A= 4’1 , with I an identity matrix with appropriate dimension and

¢l
A+[¢GEOINHA+ ) +1

. The first difference of L, , is given as

T §k£l§k+l _ggﬁk _§kT§k (A.16)
Recalling the dynamics for X, N,M and 8 in (42), (43) and (45), respectively, (A.16)

becomes

ALAO,k =((4- LC)JN"k + ‘aler//(zk ))T A((A- LC)JNCk + §le//(zk ) - gl;r/b?k + §k£l§k+l - ‘nglgk
<2XT(A-LC)" A(A-LOX, — %] A%, +2p " (2,)3,. 43w (z,)
+(§k y; C(zk) el J [gk y; {(zk) el ]_5}:5/{
é‘ (zk)g(zk)+1 C (zk)C(zk)+l
3 ¢@)(A-LOY, +5'¢(z,)" (AT
M (2 ) (7)) +1

2 (A=LOY, +87¢(@))¢" (2)¢E)(A-LOY, +3/¢(z,)"
(€ (z)¢(z)+1)?

<—(1-2)AJ%, | + 2 O8] -2

+5

<—(1-212 =3CIHA|Z, || —2ﬂ{l—ﬂ ~Blw )| - L:r(ﬁ)" ]H H

where A=||A|| and C =||C|| . Therefore, based on Lyapunov stability theory, the

parameter estimation error will converge to zero as k — oo. Furthermore, the design

1
J2+3C

parameter [, satisfies 0 </, <
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Proof of Theorem 3: Define the Lyapunov candidate function as
L= Lx,k + HILAE,k + HZLAO,k
where L., =x/x,, L, =tr(0;0,),and L, , is defined in (A.15).

The first difference of L, by substituting the error dynamics, is given by
AL = ALx,k + HIALAE,k + HzALAO,k
T T AT AT
= X X — XX, H I (tr(0,0,) — (6, 6,))
+ Hz (§;+1A§k+l + gk—ilgkﬂ - szAik - nggk)
2
=|4x, + Bu; - Bu; + Bu,| —|x,[’ (A.18)
0. .C ' 0,.C
+TIt 5 _ kS total,k+1 5 _ kZtotalk+1 | 5T5
1{[k ]/O',Et)'k-l-l ¢ ya,fak+1 Lo
+ Hz(-’NCkTﬂA"NCkH + §k];—1§k+l - -’NCIEA-’N"k - §kT§k)

Note that u =u, —u =—K,x, +K,x, —K,x, , then we have

HI? kH:HK ‘ K kHSgKH@H. Applying Cauchy-Schwartz inequality and recalling from
Lemma 2, (A.18) becomes

AL =2 Ax, + Bu'[

wKul% [ + 48326, H e, | +11,tx(0,76,)

0'c.c e Glo.e ~
k 7 k%“total k+1 2 total,k+1™ k ' k “total,k+1 T
- 7H1t{T— + 7710t = —-I1,tr(6, 6,)

.0, +1 .0, +1

~T ~ aT a ~T 4~ aTa
+IL, (X A%, + 809, — X, AX, = 9. 8,)

<—(1-2p)|x,| +4BLKL|%, | +4BLL|6,

1 -
(ool

2 L0y (L + L), B
7AW )y 1 i1 - 222 - 30 Al !

o0, +1

- 21—12,3(1 -p- IB”l//(zk )”2 - ﬁ;(ﬂl: )” JH g H
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<—(1-2p)|x,|" —4BLL

~n [ 27°TLO5 (L5 + L)
o -

o 1 +4BLK} ]||3c’k I

3 (A.19)

1+[¢ ol

<~ 0-2p)x [ ot ol ~olf]

477105 (L% +
where I1, =8B}¢. /7| 1- Tl ~5y|, I, = ! ‘TM( ! g)+83541<§4 (a-212 -3¢12)A)
o,0,+1 6,0, +1

- 2H2ﬁ{1 —B- Bl —i}

are positive constants and O <@ <1.

Therefore, first difference of Lyapunov function AL is negative definite while Lypaunov
function L is positive definite. Moreover, using Lyapunov second method and geometric
sequence theory, within finite horizon, the system states, parameter estimation error, state
quantization error bound and control input quantization error bound will be uniformly

ultimately bounded with ultimate bounds depending on initial condition

Boy.Beo.B; B, with |xO) <B,,. [RO <B.,. [ <8;,. |3 <B;,. and
terminal time NT, i.e.,
|x " <(1-1-2p))B,, =B,,, Vk =01 N
”’)ch ”2 <(- w)ka,o =By Vk=0,,---,N
0 (A.20)
| <a-o)'5;,=5,,. k=01, N
B <a-ors, =8, vkeoL

Furthermore, since 0 < p<% and 0 <@ <1, the bounds in (A.20) are monotonically

decreasing as k increases. Furthermore, when time goes infinity, i.e. N — oo, all the

bounds tend to zero and asymptotically stability of the closed-loop system is achieved.
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Eventually, recall to (A.18) and (A.19), while time goes to fixed final time NT,, we have

the upper bound for &, — u; as

|t — i) = | &, %, - KGx | = | K ox, - K 5 + K%
<c, Hﬁk H”xk” +¢p H@HII%II + K% (A.21)
SgKB~ B +(gKB§,k +KM)BE,k E‘c"uo

0.k x.k

where B; , B, and B, are given in (A.20). Since all the bounds will converge to

zeros when N — oo, the estimated control input will tend to optimal control (i.e.

u, > u, ) dueto (A.21).
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I1. FINITE-HORIZON ADAPTIVE OPTIMAL CONTROL OF UNCERTAIN

QUANTIZED LINEAR DISCRETE-TIME SYSTEM

Qiming Zhao, Hao Xu and S. Jagannathan

Abstract — In this paper, the adaptive finite-horizon optimal regulation design for
unknown linear quantized discrete-time control systems is introduced. First, to mitigate
the quantization error from input and state quantization, dynamic quantizer with time-
varying step-size is utilized wherein it is shown that the quantization error will decrease
overtime thus overcoming the drawback of the traditional uniform quantizer. Next, to
relax the knowledge of system dynamics and achieve optimality, the Q-learning
methodology is adopted under Bellman’s principle by using quantized state and input
vector. Due to the time-dependency nature of finite-horizon, an adaptive online estimator,
which learns the time-varying value function, is updated at each time step so that policy
and/or value iteration are not needed. Further, an additional error term corresponding to
the terminal constraint is defined and minimized along the system trajectory. The
proposed design scheme yields a forward-in-time online scheme, which enjoys great
practical merits. Lyapunov analysis is used to show the boundedness of the closed-loop
system and when the time horizon is stretched to infinity, asymptotic stability of the
closed-loop system is demonstrated. Simulation results are included to verify the
theoretical claim. The net result is the design of the optimal adaptive controller for

uncertain quantized linear discrete-time system in a forward-in-time manner.
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1.INTRODUCTION

In traditional feedback control systems, it is quite common to assume that the
measured signals are transmitted to the controller and the control inputs are delivered
back to the plant with arbitrarily high precision. However, in practice, the interface
between the plant and the controller is often connected via analog to digital (A/D) and
digital to analog (D/A) devices which quantize the signals. In addition, in the recent
years, networked control system (NCS) is being considered as a next step for control
where signals are quantized due to the presence of a communication network within the
control loop. As a result, the quantized control system (QCS) has attracted a great deal of
attention to the control researchers since quantization process always exists in the
computer-based control systems.

In the past literature, the study on the effect of quantization in feedback control
systems is normally categorized based on whether or not the quantizer is static or
dynamic. The static quantizer, for which the quantization region does not change with
time, was first analyzed for unstable linear systems in [1] by means of quantized state
feedback. Later in [2], it is pointed out that logarithmic quantizers are preferred.

In the case of dynamic quantizer, for which the quantization region can be
adjusted overtime based on the idea of scaling quantization levels, the authors in [3]
addressed a hybrid quantized control methodology for feedback stabilization for both
continuous and discrete time linear systems while demonstrating globally asymptotic
stability. In [4], the author introduced a “zoom” parameter to extend the idea of changing
the sensitivity of the quantizer to both linear and nonlinear systems. For these systems,

however, stabilization of the closed-loop system in the presence of quantization is the
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major issue that was addressed when the system dynamics are known whereas the
quantization effects in the presence of uncertain system dynamics and optimal control
designs for such systems are not yet considered.

On the other hand, traditional optimal control theory [7] addresses both finite and
infinite-horizon linear quadratic regulation (LQR) in an offline and backward-in-time
manner provided the linear system dynamics are known beforehand. In the past couple of
decades, significant effort has been in place to obtain optimal control in the absence of
system dynamics in a forward-in-time manner by using adaptive dynamic programming
(ADP) schemes [12][13][14]. Normally, to relax the system dynamics and attain
optimality, the ADP schemes use policy and/or value iterations to solve either Riccati
equation (RE) in the case of linear systems and Hamilton-Jacobi-Bellman (HJB) equation
in the case of nonlinear systems to generate infinite-horizon based adaptive optimal
control [8][11].

While iterative approach seems interesting, one has to use a significant number of
iterations within a sampling interval for obtaining the solution to the RE or HIB. To
overcome significant number of iterations within each sampling interval in the iterative-
based schemes for convergence, in [10], a time-based ADP is introduced to generate
infinite-horizon optimal control for a class of nonlinear affine discrete-time systems.
Finite-horizon optimal control, in contrast, is quite difficult to solve since a terminal
constraint has to be satisfied while the control is generally time-varying in contrast with
the infinite-horizon scenario wherein the terminal constraint is ignored and the control

input is time invariant.
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For finite-horizon optimal regulation, the authors in [15][16] and [17] provided a
good insight using either backward-in-time, or iterative and offline techniques. However,
the adaptive optimal control over finite-horizon for uncertain linear systems in a forward-
in-time manner without using iterative or offline techniques still remains unresolved.
Moreover, to be best knowledge of the authors, no known technique exists for the optimal
adaptive control of uncertain quantized linear discrete-time systems.

Motivated by the deficiencies aforementioned, in this paper, the ADP technique
via reinforcement learning (RL) is used to solve the finite-horizon optimal regulation of
uncertain linear quantized discrete-time control systems in an online and forward-in-time
manner without performing value and/or policy iterations.

First, to handle the quantization effect within the control loop, a dynamic
quantizer with finite number of bits is proposed. The quantization error will be addressed
through the adaptive optimal controller design. Subsequently, the Bellman equation,
utilized for optimal adaptive control, is investigated with approximated action-dependent
value function [14] by using quantized state and input vector such that the requirement
for the system dynamics is not needed. Finally, a terminal constraint error is defined and
incorporated in the novel update law such that this term will be minimized at each time
step in order to solve the optimal control. Lyapunov approach is utilized to show the
stability of our proposed scheme. The addition of state and input quantization makes the
optimal control design and its analysis more involved whereas it is addressed in the
paper.

The main contributions of this paper include the novel dynamic quantizer design

by using a new parameter coupled with the development of finite-horizon optimal
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adaptive control of uncertain quantized linear discrete-time systems in a forward-in-time
manner. The new parameter ensures that the quantizer does not saturate while the
quantization error will decrease overtime instead of treating these quantization errors as
disturbances. The terminal state constraint is incorporated in the novel controller design
scheme. Boundedness of the regulation, parameter estimation and quantization errors are
demonstrated by using Lyapunov stability analysis. The proposed controller functions
forward-in-time and online. If the time interval is stretched, the asymptotic stability of the
closed-loop system including the convergence of the quantization errors along with the
state is demonstrated.

The remainder of this paper is organized as follows. In Section 2, background is
briefly introduced. In Section 3, the main algorithm developed for the finite-horizon
optimal control for quantized control systems is presented. Stability analysis is provided
in Section 4. In Section 5, simulation results are given to verify the feasibility of the

proposed method. Conclusive remarks are provided in Section 6.

2.BACKGROUND

2.1 SYSTEM DESCRIPTION

Consider the linear system described by
x,,, =Ax, +Bu, (1)
where x, e Q2. cR" is the system state vector and assumed to be mearuable,

u, €Q, < R"” is the control input received at the actuator at time step £ when the

quantizers are not present, while the system matrices 4€R"™ and Be®R"™™ are
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unavailable at the controller. Before proceeding further, the following assumptions are
needed.

Assumption 1 (Controllability): Original linear time-invariant (LTI) system (i.e.
(A, B)) is controllable.

Assumption 2 (Boundedness of the input matrix): The control input matrix B
satisfies ||B||F < B,,, where ||0||F denotes the Frobenius norm.

Now, in the presence of state and input quantizers, the general structure of the
QCSs considered in this paper is shown in Figure 1. The state measurements are first

quantized by a dynamic quantizer before being transmitted to the controller. Similarly,

the control inputs are also quantized before the signals are sent to the actuator.

Plant
Actuator > » Sensor
X, =Ax; +Bu,
b
uantizer >

Q i Quantizer
Controller
uqk = Kk . xZ

Figure 1. Block diagram of the QCSs

Next a brief background on dynamic quantizer is introduced before introducing

the controller design with the quantized state and control input.

2.2 QUANTIZER REPRESENTATION
Consider the uniform quantizer with finite number of bits shown in Figure 2. Let

z be the signal to be quantized and M be the quantization range for the quantizer. If z



58

does not belong to the quantization range, the quantizer saturates. Let e be the

quantization error, then it is assumed that the following two conditions hold [4]:

Lif |Z/<M, then e=lg(z)—Z<A/2

. 2)
2.if  |7>M, then |g(z)|>M-A/2

where ¢(z) = A-(I_z/ AJ+1/ 2) is a nonlinear mapping that represents a general uniform

quantizer representation with the step-size A defined as A:M/ 2" with R being the

number of bits of the quantizer.

Quantized
value
A Ideal Quantizer
4A -
3A /] M
25 Realistic Quantizer
A Desired Output
ot >
’ A A 2A 3A 4A .- Original value
-2A
-3A

Figure 2. Ideal and realistic uniform quantizer

In addition, theoretically, when the number of bits of the quantizer approaches
infinity the quantization error will reduce to zero and hence infinite precision of the
quantizer can be achieved. In the realistic scenario, however, both the quantization range
and the number of bits cannot be arbitrarily large. To circumvent these drawbacks, a

dynamic quantizer scheme is proposed in this paper in the form similar to [4] as
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2! = pg(z/ 1) 3)
where u is a scaling factor.
The introduction of u has two purposes. It will be shown in the next section that

with the proposed dynamic quantizer design, not only the saturation can be avoided but
also the quantization error will be eventually eliminated in contrast with the traditional
uniform quantizer wherein the quantization errors never vanish.

Next the optimal control of uncertain linear discrete-time system is introduced in

the presence of input and state quantization.

2.3 PROBLEM FORMULATION
Now under this closed-loop configuration, consider the time-invariant linear
discrete-time system (1) in the state-space form under the influence of both state and

input quantization described by

x,, = Ax, + Bu; 4)
where x, e Q< R" is the system state vector and u; € 2, < R" is the control input
vector received at the actuator at time step k . Therefore, due to the quantization, we have

‘4 g - : .
u; =u, ,where ug, is the quantized control input.

Remark 1: In this paper, the superscripts represent the quantized signals, denoted

as x;andu;, . The subscript for the control inputs #, represents the unquantized control
inputs computed based on the quantized system states, denoted as #, . It should be noted

that in the QCS, only the quantized system state vector, x;, instead of the true state

vector x,, is available to the controller. In contrast, the controller has the information of
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both u , and u],, and hence u,, will be used in the problem formulation. On the other

hand, the quantized control inputs, u/, , will be considered in the error analysis in section

2 and the comprehensive closed-loop stability analysis in section 4.
Separating the quantization error from the actual control inputs ;' , the system
dynamics (4) can be represented as
X, =Ax, +B(uqk te,,)=Ax, +Bu, +Be,, (5)
where e, is the bounded quantization error for the control input as long as the control

signals are within the quantization range.

Remark 2: Note that from (5), the system dynamics can be viewed as the system
with only state quantization plus an additional but bounded disturbance term caused by
the control input quantization provided the quantizer for the control input does not
saturate. The boundedness of quantization error can be ensured by the novel dynamic
quantizer design proposed in the next section so that the control input signals do not
saturate.

The objective of the controller design is to determine a state feedback control

policy that minimizes the following cost function

N-1
Ji :xITISNxN +Zr(xi’uqi’i) (6)

i=k

where [k, N] is time interval of interest, »(x,,u_,,k) is a positive definite utility function

qk>
which penalizes the system states x, and the control inputs u, , at each intermediate time

k m [k,N] . In this paper, the utility function 1is taken the form

r(x,u,,k)=x.0,x, +u, Ru,, where the weighting matrices @, € R™ is positive
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semi-definite, R, € R™™ is positive definite and symmetric, respectively while

S, € R™ is a positive semi-definite symmetric penalty matrix for the terminal state x,.

3.ADP BASED FINITE-HORIZON OPTIMAL REGULATION DESIGN

In this section, the finite-horizon optimal regulation problem for linear quantized
control systems with uncertain system dynamics is addressed. Under ideal case when no
saturation occurs, traditional uniform quantizer only yields a bounded response which is
not preferable. The process of reducing the quantization error overtime poses a great
obstacle for the optimal control design. Therefore, the dynamic quantizer design is first
proposed to overcome this difficulty.

Next, to relax the requirement on system dynamics, an action-dependent value-
function [13][14], which is defined and estimated adaptively by using the reinforcement
learning scheme, will be in turn utilized to design the optimal adaptive controller. The
Bellman equation error, which is essential to achieve optimality, is analyzed under
quantization effect and parameter estimation. In addition, to satisfy the terminal
constraint, an additional error term is defined and minimized as time evolves. Therefore,
the objective of the controller design is to minimize both the errors so that the finite-

horizon optimal regulation problem is properly investigated.

3.1 DYNAMIC QUANTIZER DESIGN

To handle the saturation caused by limited quantization range for a realistic

quantizer, new parameters g, and g, , are introduced. The proposed dynamic
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quantizers for the state and input are defined as

xZ = lux,kq(xk/ﬂx,k) (7)
ulo=p,,q(u, /1)

where g, u,, are the time-varying scaling parameters to be defined later for the

system state and control input quantizers, respectively.

Normally, the dynamics of the quantization error cannot be established since it is
mainly a round-off error. Instead, we will consider the quantization error bound as
presented next, which will aid in the stability analysis. Given the dynamic quantizer in
the form (7), the quantization error with respect to the system states and the control inputs

are bounded, as long as no saturation occurs and the bound is given by

1
i —
‘ = “xk - xk” S Elux,kAx,k = Cnixk

ex,k
(8)
— q < 1 —
eu,k ‘ - Huqk - uqk” = Eluu,kAu,k - eMu,k
where e, , and e, , are the upper bounds for the state and input quantization error.
Next, define the scaling parameter £, and g, , as
e =[x ]/BM. g1, =g /M) ©)

where 0< f<land O<y<1.
Recall from representation (7) that the signals to be quantized can be “scaled”
back into the quantization range with the decaying rate of S* and »*, and thus

eliminating the saturation effect.
The convergence of the quantization error for both system states and control

inputs will be demonstrated together with the adaptive estimator design in section 3.
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Remark 3: The scaling parameter z,, and g, , have the following properties:
First, 4., and g, , are adjusted to eliminate saturation, which are more applicable in the
realistic situations. Second, ., and g, , are time-varying parameters and updated at
each time interval which in turn results in a monotonic decrease in the quantization error
bound. Finally, updating s, and g, , only requires the signals to be quantized, which

differs from [4] in which y is a constant and can only obtained by using the system

dynamics.

3.2 OPTIMAL REGULATION DESIGN
In this subsection, an action-dependent value-function is first defined and then
estimated adaptively. As a result, the estimated action-dependent value-function is
utilized to obtain the optimal control and relax the requirement of the system dynamics.
3.2.1 Action-Dependent Value-Function Setup. Before proceeding, it is
important to note that in the case of finite-horizon, the value function becomes time-

varying [7] and is a function of both system states and time-to-go, and it is denoted as
V(x,,N—k). Since the value function is equal to the cost function J, [7], the value
function V(x,,N—k) for LQR can also be expressed in the quadratic form of the system
states as

V(x,,N-k)=x/S,x, (10)
with §, being the solution sequence to the Riccati equation obtained backward-in-time

from the terminal value S, as

S, =A'[S,,~S,.B(B'S,,B+R)"'B'S, 14+0, (11)
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Next, define the Hamiltonian for the QCS as

H(x,,u, ,N-k)=r(x,u,,k)+V(x,_ , ,N-k-1)-V(x,,N=k) (12)

qk> qk>

By using [7], the optimal control inputs are obtained via stationarity condition,

ie., H(x,,u,,N-k)/u, =0, which yields

u,=—(R,+B"S,B)"'B'S, A-x, +(R,+B"S,B)" x w3
(BTSkAex,k —Re,, _BTSkBeu,k _BTSkex,k+1)

It can be seen clearly from (13) that the optimal control input calculated based on

quantized  system  states enjoy the same  optimal control  gain,
K, =(R,+B'S,B)'B'S A, as that of the case when quantization is not taken into

account, plus an additional term corresponding to the quantization errors that would

vanish with the proposed design as shown later. Since the only available signal to the
controller is the quantized measurement x;/ , then using the “certainty equivalence”

principle, the control inputs applied to the system is calculated as
u,=—(R,+B'S,B)"'B'S, A x| (14)
Remark 4: From (11), it is clear that the conventional approach of finding
optimal solution is essentially an offline scheme given the system matrices 4 and B as
needed in (14). To relax the system dynamics, under infinite-horizon case, policy
iterations are utilized to estimate the value function and derive the control inputs in a
forward-in-time manner [8]. However, inadequate number of iterations will lead to the
instability of the system [19]. In this paper, the iterative approach is not utilized and the

proposed online estimator parameters are updates once a sampling interval.
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Next, we will show that the system dynamics are not required by applying ADP
methodology. Since the Kalman gain in (14) is the same as standard Kalman gain without
quantization, assume that there is no quantization effect in the system by considering the
system (1). Recalling the time-varying nature of finite-horizon control, define a time-

varying optimal action dependent value function V,,(x,,u,,N—k) as

X ' Xy
Vio(Xou , N—k)=r(x,,u k)+J,,, = u G, (15)

k u;

The standard Bellman equation is given by

xk ! xk
G, =r(x,u,k)+J,,
u; u,

T T T
=x,0,x, +tu, Ru, +x,,,8,,x,,

— T~
x 0 x (16)
=" 2 “le (Ax, +Bu,)' S, (Ax, + Bu,)
u, | L0 R u,
B r T T
_ | X 0, +4°§,,4 A°S,.,B X
Lu, B'S, . A R +B'S,. B|u,
Therefore, define the time-varying matrix G, as
+A4'S, A A'S, B ¢G> G
Gk :|:Qk : k+1 /—;+1 :| :|: l;x l;uj| (17)
B S A R +B S, B G~ G
Compared to (14), the control gain can be expressed in terms of G, as
K, =(G")' G (18)

From the above analysis, the time-varying action-dependent value function

V.o(x,,u,,N—=Fk) includes the information of G, matrix which can be solved online.

Therefore, the control inputs can be obtained from (17) instead of using system dynamics

A and B as given in (14).
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3.2.2 Model-free Online Tuning of Action-Dependent Value-Function with
Quantized Signals. In this subsection, finite-horizon optimal control design is proposed
without using iteration-based scheme. Recalling the definition of the action-dependent
value function V,,(x,,u,,N—k), the following assumption and lemma are introduced
before proceeding further.

Assumption 3 (Linear-in-the-unknown-parameters): The action-dependent value
function V,,(x,,u,,N—k) is slowly varying and can be expressed as the linear in the
unknown parameters (LIP).

By adaptive control theory [23] and the definition of the action-dependent value

function, using Assumption 1, the action-dependent value function V,,(x,,u,,N—k)
can be written in the vector form as
Vio (X, u ,N=k)=2G,.z, = g%, (19)
where z, =[x] u/]" eR"™ is the regression function, 3z, =(z;,," 2,2,
Zys s ZyaZus-Ze) 18 the Kronecker product quadratic polynomial basis vector, and
g, =vec(G,), with vec(e) a vector function that acts on a /x/ matrix and gives a
[x(l+1)/2=L column vector. The output of vec(G,) is constructed by stacking the
columns of the square matrix into a one column vector with the off-diagonal elements
summed as G:, +G", .
Lemma 1: Let g(k) be a smooth and uniformly piecewise-continuous function in
a compact set Q < R. Then, for each £ >0, there exist constant elements 4,.,....,6, € R

>¥m

with m e N as well as the elements @, (k),...,9, (k) € R of basis function, such that
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‘g(k)—i%(k) <e,  kelON] (20)

Proof: Omitted due to the space limitation.

Based on Assumption 3 and Lemma 1, the smooth and uniformly piecewise-
continuous function, the smooth and uniformly piecewise-continuous function g, can be
represented as

g =0"o(N—k) 21)
where @ € R" is target parameter vector and @(N —k) e R”" is the time-varying basis

function matrix, with entries as functions of  time-to-go, 1e.,

¢11(N_k) ¢12(N_k) ¢1L(N_k)

N-k N-k) - N-k
o(N—k) = ¢21(: ) ¢22(: ) ) ¢2L(: )

with ¢, (N—k) = exp(—tanh(N—k)""'™),
¢u(N-k) ¢,(N=k) - ¢,(N-k)
for i, j=1,2,---L. This time-based function reflects the time-dependency nature of finite-
horizon. Furthermore, based on universal approximation theory and given definition,
o(N —k) is piecewise-continuous.
Therefore, the action-dependent value function can be written in terms of @ as
Vo (x4, ,N=k)=0"p(N—-k)zZ, (22)
From [7], the standard Bellman equation can be written in terms of
Vo (x,,u,,N=Fk) as
Vip (X8, N=k=1) =V, (x,,u, ,N=k)+r(x, ,u,,k)=0 (23)
Remark 5: In the infinite-horizon case, (21) does not have the time-varying term

o(N —k), since the desired value of vector g is a constant, or time-invariant [9]. By
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contrast, in the finite-horizon case, the desired value of g, is considered to be slowly
time-varying. Hence the basis function should be a function of time and can take the form
of product of the time-dependent basis function and the system states [20].
To approximate the time-varying matrix G, , or alternatively g, , define
& =0p(N-k) (24)
where 6 , 1s the estimation of the time-invariant part of the target parameter vector g, .
Next, when taking both the quantization effect and the estimated value of g, , the
Bellman equation (23) becomes
esox =(3)" Grozly = (@) Gzl +(x{) Qux{ +(ufy)" Ry, (25)
where z! =[(x!)" (qu)T]T e R is the regression function with quantized
information, ey, , is the error in the Bellman equation, which can be regarded as

temporal difference error (TDE).
Furthermore, e,,, can be represented as
€rok = w(z,2)) +(z} )T Gz} — (3, )T G,z —(x) )T Ox| - (”Zk)T Ru;]k]
—[(z} )T G,z — (3, )T G,z —(x] )T Ox/ - ("Zk)T R”Zk]
=y (z,2)+(z]) Gzl —(3].) Gzl (26)

=y (z,,2)+ 0 [p(N-K)z{ —p(N -k -1)z,,]
=w(z,,20) + 0] AE(ZL LK)

T T T T T T
where v(z,,2]) =2, G2 —2,1Gr 2y — X, QX — 1y Rouy —[(z W2n = (2h) Gagi, —

(x])'Qux] —(ul)" Roul,] and A&(z], k) =p(N-k)z! —p(N—k—1)z},, .
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Since the action-dependent value-function and the utility are in quadratic form, by

EMx i
eMu,k

L, >0 is the Lipchitz constant. Therefore, we have

2

Lipchitz continuity, we have Ht//(zk,z,f)HSLw SLwefdx’k +Lwefdu,k , where

€pox = Ly/eizu,k + L(//e]%/[u,k + ngAQZ(ZZ k) (27)
Recall that for the optimal control with finite-horizon, the terminal constraint of

cost/value function should be taken into account properly. Therefore, define the estimated

value function at the terminal stage as
Vip (x5,0) = 0, 9(0)z,, (28)
In (28), note that the time-dependent basis function @(N —k) is taken as ¢(0) at
the terminal stage, since from definition, ¢(e®) is a function of time-to-go and the time

index is taken in the reverse order. Next, define the terminal constraint error vector as
exi =8n ~&ni = &x ~00(0)=0,p(0) (29)
where g, 1s upper bounded by ||gN || <gu-
Remark 6: For both infinite and finite-horizon cases, the TDE e, is always

required for tuning the parameter, see [9] and [10] for the infinite-horizon case without

quantization. In finite-horizon case, the terminal error ey, , which indicates the

difference between the estimated value and true value of the terminal constraint, or

“target” (in our case, g\ ), is critical for the controller design. The terminal constraint is

satisfied by minimizing e, , along the system evolution.
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Remark 7: The Bellman equation with and without quantization effects are not
same. The former requires [x],u;, ] whereas the latter uses [x,,u,]. In order to design

the optimal adaptive controller, the estimated Bellman equation with quantization effects
need to eventually converge to the standard Bellman equation.

Next, define the update law for the adaptive estimator as

Ag(z;fi s k)(Ly/elf/Ix,k + Ll//elilu,k )><

5 A Aé(zZSk)e;Q,k sen(AS&(z),k))
0k+1 - 01( +a€ T/ _q q +a9 T/.4q q (30)
A& (z{k)AS(z], k) +1 A& (2, k)AS(z, k) +1
0 T
a, o( )ezN,k
o[ +1

~ A

Define the estimation error as €, =6 —0, . Then we have

[A(f(z,‘j JOLy s + Ly s )x]

b -0 —o Aé:(zlgﬁk)egg,k —a sgn(AS&(z) . k)
RTINS @A )+ T AET (2] Az k) + 1
p(0)ey,
—® o
o) +1
G g ASGLRY Ge) AL KOS K)

AT GIOALGL T AL (GIAEG! k) + 1
L ASGLRNL Gy + L, s SASGEL D) p(0)p" (01,
’ AE" (21 )M (] k) +1 " o) +1
i g MGLONEGLRO,  p(0)9" (00,
COTASTEDASGELR L ) +1
Aé(z, k) sgn(AS(z], k) »

—a ((Ll//elf/lx,k +Lz//elf/lu,k) _WT(zk’zZ))
’ AET(ZIR)AE(z! k) +1
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Hence, we have

i< AE(Z! AT E(zE K)O, . 9(0)p" (0)0,
k+1 k 0 AfT(sz)Af(zZ,k)+l 0 ||¢(0)||2 +1

1)

Remark 8: It is observed from the definition (19) that the value function becomes

Zero Whenuz,‘j H = 0. Hence, when the quantized system states have converged to zero, the

value function approximation is no longer updated. This can be viewed as a persistency
of excitation (PE) requirement for the inputs to the value function estimator wherein the
system states must be persistently exiting long enough for the estimator to learn the
action-dependent value function. The PE condition can be satisfied by adding exploration
noise [22] to the augmented state vector. In this paper, exploration noise is added to

satisfy the PE condition while it is removed once the parameters converge.

3.3 ESTIMATION OF THE OPTIMAL FEEDBACK CONTROL
The optimal control can be obtained by minimizing the value function [7]. Recall

from (18), the approximated optimal control can be obtained as
u, =K x{ =~(G")" G x{ (32)

From (32), the optimal control gain can be calculated based on the information of

A

G, matrix, which is obtained by estimating the action-dependent value function. This

relaxes the requirement of the system dynamics while the parameter estimate is updated
by (30) once a sampling interval, which relaxes the value and policy iterations.

The flowchart of proposed scheme is shown in Figure 3. We start our proposed
algorithm with an initial admissible control which is defined next. The system states are

quantized before transmitting to the controller. After collecting both the Bellman error



72

and terminal constraint error, the parameters for the adaptive estimator are updated once a
sampling interval beginning with an initial time and until the terminal time instant in an
online and forward-in-time fashion. After the update of the adaptive estimator, the control
inputs are quantized by our proposed dynamic quantizer before transmitting back to the

plant.

éart Proposed Algorith%

v

Initialization

I}O(x) =0,u=u,

v

System Model with Unknown Dynamics
X, = Ax;, + Bu,

v

State Quantizer

i x/ = L1 9 (X / M)
Update the finite horizon Bellman Equation and terminal constraint error
~r .
Cpok = w(z,,20) +0, AS(z] k), ek =8N~ 8Nk

v

Update the adaptive estimator parameters
{Aé(z;’,k)(Lwef,mk +L,¢%,)
xsgnAs(zy,k)) w POy,
AS'GLIASGLD+L Y o) +1

v

Update finite horizon control policy
- Aon T ~ A1 -
G, =vec (g)=vec (G,pN-k)), u,=~G") G x;
v

Control Input Quantizer

A

PO A&z kg,
0.,=0,+a, AET (20 P’
& (z{DAS(z k) +1

0

u;[k = luu,kq(uqk//uu,k)
k=N-12

Update the time interval

Figure 3. Flowchart of the finite-horizon optimal regulation for QCS
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4.STABILITY ANALYSIS

In this section, convergence of quantization error, parameter estimation error and

closed-loop stability will be analyzed. It will be shown that all the errors, i.e., e_,, e

x.k?> Yuk

~

0, will converge to zero asymptotically. Before proceeding, the following definitions are

needed.

Definition 1 [21]: An equilibrium point x, is said to be uniformly ultimately
bounded (UUB) if there exists a compact set Q cR" so that for all x,€Q_, there

exists a bound B and a time 7'(B,x,) such that ||xk - X,

<Bforall k>k,+T.
Definition 2 [11]: Let (2, denote the set of admissible control. A control function

u:R" > NR" is defined to be admissible if the following is true:

u is continuous on Q. ;

u(x),_, =0
u(x) stabilize the system (1) on Q ;
J(x(0),u) < 0,Vx(0) e Q.

Since the design scheme is similar to policy iteration, we need to solve a fixed-
point equation rather than recursive equation. The initial admissible control guarantees
the solution of the fixed-potion equation exists, thus the approximation process can be
effectively done by our proposed scheme.

Now, we are ready to show our main mathematical claims.

Theorem 1 (Convergence of the adaptive estimator error): Let the initial

conditions for g, be bounded in a set Q, which contains the ideal parameter vector g, .
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Let u,(k) € Q, be an initial admissible control policy for the linear system (4). Let the
assumptions stated in the paper hold including the controllability of the system (1) and

system state vector x, € Q) _ being measurable. Let the update law for tuning ék be

given by (30). Then, with a positive constant «, satisfying 0 < ¢, < k there exists a
&> 0 depending on the initial value B;  and terminal stage N, such that for a fixed

final time instant N, we have H@H < g(gk,N) . Further the term 8(§k,N) will converge to

zero asymptotically as N — oo,

Proof: See Appendix.

After establishing the convergence of the parameter estimation, we are ready to
show the convergence of the quantization error for both system states and control inputs.
Before proceeding, the following lemma is needed.

Lemma 2 [9]: (Bounds on the closed-loop dynamics with optimal control)

Consider the linear discrete-time system defined in (4), then with the optimal control

policy u, for (4) such that the closed-loop system dynamics Ax, + Bu, can be written as

|, + B[ < pllx, (33)

1.
where 0 < p < 3 is a constant.

Proof: See [9].
Lemma 3 (Convergence of the state quantization error): Consider the dynamic
quantizer for the system states given in (7). Let the zoom parameter for state quantizer be

updated by (9). Let the adaptive estimator be updated according to (30). Then, there
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exists a &£ >0 depending on the initial value ey, , and the terminal stage N, such that
for a fixed final time instant N, we have Hex’ku <&(e,,,N). Furthermore, &(e, ,,N) will

converge to zero asymptotically as N — oo,

Proof: See Appendix.

Lemma 4 (Convergence of the input quantization error): Consider the dynamic
quantizer for the control inputs given in (7). Let the zoom parameter for the input

quantizer be updated by (9). Let the adaptive estimator be updated according to (30).

Then, there exists a € >0 depending on the initial value ey, , and the terminal stage N,

such that for a fixed final time instant N, we have

e,.| <é&(e,,,N). Further the term

(e, ., N) will converge to zero asymptotically as N — co.

Proof: See Appendix.
Theorem 2 (Boundedness of the closed-loop system): Let the linear discrete-time

system (1) be controllable and system state be measurable. Let the initial conditions for

&, be bounded in a set Q, which contains the ideal parameter vector g, . Let
u,(k) € Q, be an initial admissible control policy for the system (1) such that (33) holds
for some p. Let the scaling parameter x,, and g, , be updated by (9) with both input

and state quantizers present. Further let the parameter vector of the action-dependent

value function estimator be tuned based on (30). Then, with the positive constants «,, S
o 1 . .
and y satistfying 0 < o, < 7 0< <1 and 0<y <1, there exist some & >0 depending

on the initial value B, ,,B; ,ey, >y and the terminal stage N, such that for a fixed
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final time instant N, we have ||xk||S8(xk,N), ex,kHSg(ex’k,N) and

gkugg(gk’N) )

e,.|<e(e,,,N). Furthermore, by using geometric theory, when N - o0, &(x,N),

g(ﬁk,N) , &le.,N) and &(e,,,N) will converge to zero, ie., the system is

asymptotically stable. Moreover, the estimated control input with quantization will

converge to ideal optimal control (i.e. &, —u; ) while time goes to infinity (i.e. N —o0).

Proof: See Appendix.

Remark 9: The idea behind this paper can be extended to the NCS, since the
signals need to be quantized before transmitting through the network. The network
imperfections such as network-induced delays and packet dropouts can be incorporated
into the system by establishing the augmented system [5] and the quantizer design in the
NCS can be implemented by the same methodology introduced in this paper due to its

advantages mentioned in section 3.1. In the NCS, however, due to the effect of packet

dropouts, the scaling parameters x , and g, should be transmitted through a high

reliable link so that the quantized signal can be accurately reconstructed on the other side

of the network. This issue warrants more discussion and will be done separately.

5.SIMULATION RESULTS

In this section, an example is given to illustrate the feasibility of our proposed
dynamic quantizer scheme and the finite-horizon optimal control scheme. Consider the

discrete-time system given as

0 -0.8 0 (34)
X = X, + U
Mlog 1.8 [ =1t
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while the performance index is given as in (6) with the weighting matrices @, R and
the terminal constraint matrix S are selected as the identity matrix with appropriate
dimension. The terminal constraint  vector s hence given as
gy =[1.64, 2.88, —1.6, —0.0002, 4.88, —3.6, 2]". The initial system states and initial
admissible control gain are chosen to be x,=[0.5, 0.5]" and K,=[-0.5, —1],

respectively.

For the dynamic quantizer design, the parameters are selected as £ =0.9 and
y=0.9 . For the value function estimator, the designing parameter is chosen as
o, =0.001. The time-dependent basis function @(N—k) is selected as a function of
time-to-go with saturation. Note that for finite time period, @(N —k) is always bounded.

Saturation for @(N —k) is to ensure the magnitude of @(N —k) is within a reasonable

range such that the parameter estimation is computable. The initial values for ék are

randomly selected. The simulation results are given as below.

First, the system response and control input are plotted in Figure 4 and Figure 5,
respectively. It is clearly shown from the figures that both system states and control
signal converges close to zero within a finite time span, which illustrates the stability of

our proposed algorithm.



78

0.6

== X

0.4

0.2

System Response

2 4 6 8 10
Time (sec)

Figure 4. System response
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Figure 5. Control inputs

Next, to show the feasibility of the quantizer design, the quantization errors with
4-bit quantizer and 8-bit quantizer are plotted in Figure 6 and Figure 7, respectively, by
using our proposed quantizer and the traditional static quantizer. From Figure 6, it can be
seen that with a small number of bits, the traditional static quantizer cannot even
guarantee the stability of the system due to the relatively large quantization errors, while
the proposed dynamic quantizer can keep the system remain stable. This aspect will be
advantageous in the NCS since a fewer number of bits for the quantizer indicates lower

network traffic preventing congestion.
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On the other hand, when the number of bits for the quantizer is increased to eight,
it is clearly shown from Figure 8 that with the proposed dynamic quantizer, the
quantization error shrinks over time, whereas in the case of traditional static quantizer as
shown in Figure 9, the quantization error remains bounded as time evolves. This
illustrates the fact that the effect of the quantization error can be properly handled by our

proposed quantizer design.
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Figure 9. Quantization error with traditional static quantizer with R=8

Next, to show the optimality of our proposed scheme, the error history is given in
Figure 10. It can be seen from Figure 10 that the Bellman error converges to zero, which
shows that the optimality is indeed achieved. More importantly, the terminal constraint
error shown in Figure 10 also converges close to zero as time evolves, which illustrates
that the terminal constraint is also properly satisfied with our finite-horizon optimal
control design algorithm. It should be noted that the terminal constraint error does not

converge exactly to zero due to the choice of the time-dependent regression function. A
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more appropriate regression function would yield a better convergence of the terminal

constraint error which will be considered as our future work.
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Figure 10. Error history

Finally, for comparison purpose, the difference of the cost function between the
backward-in-time RE-based approach and our proposed forward-in-time scheme is
shown in Figure 11. The simulation result clearly shows that the difference of the cost
also converges to zero much quicker than the system response validating the proposed

scheme.
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Figure 11. Difference of the cost between proposed and traditional approach
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6. CONCLUSIONS

In this paper, the finite-horizon optimal control of linear discrete-time quantized

control systems with unknown system dynamics is addressed. A novel dynamic quantizer

is proposed to eliminate the saturation effect and quantization error. Dynamics of the

system are not needed with an adaptive estimator generating the action-dependent value

function V,,(x,,u,,N—k). An additional error is defined and incorporated in the update

law so that the terminal constraint for the finite-horizon can be properly satisfied. An

initial admissible control ensures the stability of the system while the adaptive estimator

learns the value function and the kernel matrix G, . All the parameters are tuned in an

online and forward-in-time manner. Policy and value iterations are not needed. Stability

of the overall closed-loop system is demonstrated by Lyapunov analysis.
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APPENDIX

Proof of Theorem 1I:

Consider the Lyapunov candidate function as
Ly, = 0kT0k (A.1)

The first difference of L, is given, according to (31), by

AL =31 .. 33, <| 5, - DGOSR, a, ¢(0)¢T50)5k 5
Y AEGALGLI T ) +1

G, —a, MGLDAEGLOG, _ 900 (08, |_5r7
"ASTGRALGLR T o) +1

0, AE@lL AL (.00, 0/ p(0)p" (00,
AT OASGLDFL T o [+

kTok -2a,

+(% ASGLAS (000, 9O (00, | _51g
AL DASGLRHL T o[ 41
OIALGLIAET G000,y 890" (000,
TASTGELRASGLDFL T e +1
1202 BASGLOAS G100, L, - 0/ 000" (00,
AG (=i, )AS (2, k) +1 leCo)]” +1

0/ A8 A 000, (0000 (010,
N GLRASGLR L T )

A&, loco)|” H~ “
1+AEL ||(p(0)|| +1

<2a,(1-a,)

<2a,(-a, )(

a&, ool
L+AE G [0 +1

Define ¢ = 20[0(1%)[ J We have 0< A&’ SHAé(zZ ,k)“2 due

to the PE condition, then,
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AE2 O )~
Magza"(la”)[nigz IHE/:))II | H]H A=l (A-2)

Therefore, by Lyapunov stability theory, the estimation error 5k will converge to zero as

k — 0.

Proof of Lemma 3: Recall from the quantizer design, for the state quantization, the

quantization error is always bounded by e, ,, as shown in (8). Therefore, instead of

dealing with the quantization error directly, we focus on the analysis of quantization error

bound. Recalling from (8), we have

el%/lx,kﬂ _ /ux k+1Ax k+1 ||xk+1 ”2 (A3)
el%/lx,k lux,kAx, ||xk ||2
Substituting the system dynamics (5) into (A.3) yields
Crrx o _ ”Axk +Bu,, +Be,, Hz _ HAxk +BK, x! +Be,, ’
Ui .l .l
|Ax, + BK;x, + BR, x{ - BKx, + Be,, ’ "

2
[

2

HAxk +BKx, +BK x, —BIA(kex’k +Be,,

2
]

. and K, = K; — K, is the Kalman

gain error.
Applying Cauchy-Schwartz inequality and using Lemma 1, (A.4) can be further written

as



86

2

et . 3”Axk + BKZka2 N 3HBI?kxk — BIE'kex’k 3”36”{
el%/lx,k ||xk||2 ||xk||2 ||xk |2 @&s)
o|BK x| 6|BR,e,, ’ 3Be,
<3p+ 5 . .
e e o

Recall from (18) and the definition of the adaptive estimator, we have
K =(G")'G™ = f(g,) and similarly K, =(G")"'G"™ = f(g,) , then the Kalman

gain error can be represented as

|&.| =1 r@ol<L|gl=L o sN-b|<Lg.]o] @6

where L, is a positive Lipchitz constant, ¢, always exists since the time of interest is

finite and hence @(N —k) is always bounded. Hence, (A.5) becomes

A

6B, |K

2 2
EMx k41 2 l& 112 k 3By €.k
ekl < 3p+6BMHKkH — s

EMx k ||xk|

(A.7)

68|k, Hz 383 e, [

<3p+6ByL ¢, H‘ZHZ "

2% [,
Furthermore, since HK : H <K,,, we have

5 , ) e R R 2
€. Ch i 1 Huqku < 1 kakH 1| Kexs +Kkex,kH

e el 27 el 20 2T ]

~ A 2 A 12
1 |Kx, +Ke,, +Kx 1 _ . 3K
<> i ”;’h;‘ i <> 3B L g0 |0 + 22; +3K2,
k

Therefore, (A.7) becomes
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2 632 K ’ 31K 2
R R e 2B sm g o] il g

9B K.

2R

<3p+ B L2, (6+9/2™ |6, H +Bu 6+9/22R]\K H

Hence, for the quantizer, there exists a finite number of bits R , such that for all R > R,,

,
we have
2R, 9B K 3-3p
=y (6+9/2 ] SRS (A.8)

Therefore, (A.7) can be written as

2
e <354 BLI2 G2, (6+9/22“f]0 H +(1-3p)/2
ey (A.9)

<(1+3p)/2+ BLL g (6.+9/27 |,

Recall from Theorem 1, since 0<a, <% , thus 0<¢ <1, which further implies

Hﬁk H2 <(1-¢)* Hgouz Hence, (A.9) becomes

2

Suekl < (143p)/2+ B2 42, (6+9/2° J1-¢)* o, (A.10)

Mxk

Therefore, there exists a finite number 4, such that for all % >k, ,

r

BLL 42, (6+9/22R’ )(1 o)

0 H <(1-3p)/2. Hence,

2
ekl _ < (143p)/2+(1-3p)/2 <1 (A.11)

Mx,k

According to (A.11), within finite-horizon, the quantization error bound for system state

is UUB with ultimate bound depending on initial quantization error bound eidx’o and
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terminal time, NT, i.e.,

2 k 2

i ST Ccos Vk=0,1,---,N (A.12)
Further, the quantization error bound for the system states e, , converges to zero

asymptotically as k — co. Since quantization error never exceeds the bound, then the

state quantization error also converge to zero as k — .

Proof of Lemma 4: Recall form (32), the control inputs is given as

u, —K,x' =K x! - K, x! (A.13)

where K =K, - K ; 1s the Kalman gain error.

Similar to the state quantization, we have the quantization error bound for the control

input as
u L ~ L ~
s =t Ko | L+ S e |
<(1+1/2" )KMeMx,k + (1 +1/2°)L [0 fernes (A.14)
= CMMuk
Define the Lyapunov candidate function as  L(eyy, ;) = ef,[Mu’k :
The first difference of L(eyy,, ) is given by
AL(eMMu,k) = e]%/[Mu,kH - el%/IMu,k
= (1 + 1/2R )2 KI\Z/Iel%/lx,kH + (1 + 1/2R )Li’¢r31ax 5k+l eMx,k+l
(42" K, ~ (14128262, [8] € (A.15)
A=)+ 2" f Ky ~ =142 F 22,0 s

2
< &MMu,k
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where O<5<%min{1—772,1—§2772}<1.
According to (A.15), within finite horizon, the quantization error bound for control input
is UUB with ultimate bound depending on initial quantization error bound eiAMu’o and
terminal time NT_, i.e.,

ewur < (1= 8) exnos Vk=0,,--,N (A.16)
Moreover, since first difference of Lyapunov function AL(ey,,,,)is negative definite
while Lypaunov function L(ey,, ) is positive definite, we have ey,,,, —>0 as k — 0.

Since —>0as k > .

eu,k S eMu,k S eN[Mu,k s eu,k

Proof of Theorem 2: Consider the Lyapunov candidate function as

L=AL(x,)+AAL®G,) + AA (-7, ey )
+ ASASL(eMx,k) + A4A5L(eMu,k)

(A.17)

where L(x,)=x,x, , L(gk,eMx’k)z“gk“zeéuﬂk , L(eMx,k):efM . Ley,,) :ef,lu,k ,
A =24B3 L4 [(1=C), A, =24BL L4, [(1-CPn) , A, =12BLKE /(1-7n*) and
A, =12B2 /(A=) A+128)VKZ) , A, = @/max{12BL L2 gL, O LY, 6BLKL, 3BL)
with 0 < @ < min{l, max{12B% 2 g2, ©%,¢2, 6BLK?, 3B31 <1,

Next, consider each term in (A.17) individually. Applying Cauchy-Schwartz inequality

and recalling Lemma 1, we have
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AL(x,) = xZ+1xk+1 - xzxk = ||xk+l||2 - ”xk”2 = HAxk + Bu - ||xk||2

= HAxk +BK x, + BK,x! - BK x, + Be,, ’ —|x, ||2

< 3”Axk + BK,kaH2 +6B; HI? qux,fuz +6B. K, e, g 3By le. ? —||xk||2
<—(1-3p)x [ + 128 L 8, 0] @l [ + 12822426, i

+ 6By Kyen., +3Byens

<—(1-3p)x | + 128242, [0, @382 + 1282242, [0

H eMxk

+ 6By Kyen. . +3Byen
where ||®|| = ||[A B]” <0, and the history information satisfying

S S LN
Next, recalling from Theorem 1, Lemma 2 and Lemma 3, the total difference of the
Lyapunov candidate function is given by
AL = AAL(x) + A AALG,) + AA (1= 0 )AL(G, e,y )
+ ASAAL(ey, )+ A AAL(ey, )

<-A;(1-3p)|x, [ + As12BL L2 42,

\ O%LEL + A12BL L B2,

AEH
+ AS6BLK e s + 3N B, — A A (1= 0)|0, H

—AA A=) 1+1/28F K2ed

~ M A =B s~ A A= 2P)]B|

—A A=) 1+1/28f g2, [,

2
H EMx &

<A1 =3p)] - B - ae, - ot

1
where O<p<§, O0<A;<land O<@<1.

Therefore, first difference of Lyapunov function AL is negative definite while Lypaunov
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function L is positive definite. Moreover, using standard Lyapunov theory and geometric
sequence theory, within finite horizon, the system states, parameter estimation error, state
quantization error bound and control input quantization error bound will be uniformly

ultimately bounded with ultimate bounds depending on initial condition

B, 45 B; 4> €05 €h With || < B, 50H2 <Bj;,, ex’ouz <epioo |€uo ‘2 < ey, and
terminal time NT_, i.e.,
||xk||2 = (1_(1_3p)A5)ka,O EBx,k’ vk :0713"'5N
il <0-073,,5,..
) ’ ’ (A.18)
e..| <t-@)e,, =B, Vk=01---N
e <-@) e, =B, .. Vk=0,-N

Further, since 0 < p<% and O<w@ <1, the bounds in (A.18) are monotonically

decreasing as k increases. When time goes infinity, i.e. N — o0, all the bounds tend to
zero and the asymptotic stability of the closed-loop system is achieved.

Eventually, while time goes to fixed final time NT,, we have the upper bound for
ul,—u as

"q * _ ol q * _ i~ * i
H”qk - uk” = Hkak T, _kakH = Hkak tKe.,—Ke, +e,

| (A.19)

<Gk Hak H”xk ” +Ck Hgk H”ex,k ” + Ky ||ex,k ” t|€Cuk
SgKﬂBgﬁka,k +(§K\/¥J€+KM)\/E+\/§E£‘MS

where B; . B, . B, ,.B, ,are given in (A.18). Since all the bounds will converge to

zeros when N — oo, the estimated control input will tend to optimal control (i.e. @], —u;)

due to (A.19).
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III. NEURAL NETWORK-BASED FINITE-HORIZON OPTIMAL CONTROL OF

UNCERTAIN AFFINE NONLINEAR DISCRETE-TIME SYSTEMS

Qiming Zhao, Hao Xu and S. Jagannathan

Abstract — In this work, the finite-horizon optimal control design for nonlinear discrete-
time systems in affine form is presented. In contrast with the traditional approximate
dynamic programming (ADP) methodology, which requires at least partial knowledge of
the system dynamics, in this paper, the complete system dynamics are relaxed by utilizing
a novel neural network (NN)-based identifier to learn the control coefficient matrix. The
identifier is then used together with the actor-critic-based scheme to learn the time-
varying solution, referred to as the value function, of the Hamilton-Jacobi-Bellman
(HJB) equation in an online and forward-in-time manner. Due to the time-dependency of
the solution, NNs with constant weights and time-varying activation functions are
considered to handle the time-varying nature of the value function. To properly satisfy
the terminal constraint, an additional error term is incorporated in the novel update law
such that the terminal constraint error is also minimized over time. Policy and/or value
iterations are not needed and the NN weights are updated once a sampling instant. The
uniform ultimate boundedness (UUB) of the closed-loop system is verified by standard
Lyapunov stability theory under non-autonomous analysis. Numerical examples are

provided to illustrate the effectiveness of the proposed method.
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1.INTRODUCTION

Conventionally, for linear systems with quadratic cost, the optimal regulation
problem (LQR) can be tackled by solving the well-known Riccati Equation (RE) [1] with
full knowledge of system dynamics A4 and B . In addition, the solution is obtained offline
and backward-in-time from the terminal constraint. In the case of infinite-horizon, the
solution of the RE becomes a constant and the RE becomes the algebraic Riccati equation
(ARE). However, the optimal control of nonlinear systems in affine form is more
challenging since it requires the solution to the HIB equation. For infinite-horizon case,
the HJB solution reduces to a time-invariant partial differential or difference equation.
Therefore, in recent years, adaptive or NN-based optimal control over infinite-horizon
has been studied for both linear and nonlinear systems, see [2][3][4]. However, the finite-
horizon optimal control problem still remains unresolved for the control researchers.

First, for general affine nonlinear systems, the solution to the HJB equation is
inherently time-varying [1] which complicates the analysis. Second, a terminal constraint
1s imposed on the cost function whereas this constraint is taken as zero in infinite-horizon
case. The traditional ADP techniques [4][7][8] address the optimal control problem by
solving the HJB equation iteratively. Though iteration-based solutions are mature, they
are unsuitable for real-time implementation since inadequate number of iterations in a
sampling interval can cause instability [2].

In the past literature, the author in [5] considered the finite-horizon optimal
control of continuous-time nonlinear systems by iteratively solving the generalized HIB
(GHJB) equation via Galerkin method from the terminal time. The authors in [6]

proposed a fixed final-time optimal control for general affine nonlinear continuous-time
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systems by using a NN with time-dependent weights and state-dependent activation
function to solve the HJB equation through backward integration.

On the other hand, in [7], the authors considered the finite-horizon optimal control
of nonlinear discrete-time systems with input constraints by using off-line trained direct
heuristic dynamic programming (DHDP)-based scheme utilizing a NN which
incorporates constant weights and time-varying activation function. Similarly in [8], the
authors considered the finite-horizon optimal control of discrete-time systems by using
iteration-based ADP technique. However, in [8], the terminal time is not specified.

The past literature [5][6][7][8] for solving the finite-horizon optimal control of
nonlinear systems utilize either backward-in-time integration or iteration-based oftline
training, which requires significant number of iterations within each sampling interval to
guarantee the system stability. On the other hand, other ADP schemes [17] normally
relax the drift dynamics while the control coefficient matrix is still needed [3]. Therefore,
a real-time finite horizon optimal control scheme, which can be implemented in an online
and forward-in-time manner with completely unknown system dynamics and without
using value and policy iterations, is yet to be developed.

Therefore, in this paper, a novel approach is addressed to solve the finite-horizon
optimal control of uncertain affine nonlinear discrete-time systems in an online and
forward-in-time manner. First, the control coefficient matrix is generated by using a
novel NN-based identifier which functions in an online manner. Next, an error term
corresponding to the terminal constraint is defined and minimized overtime such that the
terminal constraint can be properly satisfied. To handle the time-varying nature of the

solution to the HJB equation or value function, NNs with constant weights and time-
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varying activation functions are utilized. In addition, in contrast with [7] and [8], the
control policy is updated once every sampling instant and hence value/policy iterations
are not performed. Finally, due to the time-dependency of the optimal control policy, the
closed-loop system becomes essentially non-autonomous, and the stability of our
proposed design scheme is demonstrated by Lyapunov stability analysis.

The main contribution of the paper includes the development of an optimal
adaptive NN control scheme in finite horizon for nonlinear discrete-time systems without
using value and/or policy iterations. An online identifier to generate the system dynamics
is introduced and tuning laws for all the NNs are also derived. Lypunov stability is given.

The rest of the paper is organized as follows. In section 2, background and
formulation of finite-horizon optimal control for affine nonlinear discrete-time systems
are introduced. In section 3 the main control design scheme along with the stability
analysis are addressed. In section 4, simulation results are given to verify the feasibility

of our approach. Conclusive remarks are provided in Section 5.

2.BACKGROUND AND PROBLEM FORMULATION

In this paper, the finite-horizon optimal regulation for discrete-time affine

nonlinear systems is investigated. The system is described as
X =f(x)+g(x)u, (1)
where x, e Q< R" are the system states, f(x,)eR" and g(x,)eR"™ are smooth

unknown nonlinear dynamics, and u, € 2, < R" is the control input vector. It is also

assumed in this paper that 0 < || g(x, )|| < gy with g,, being a positive constant.
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Assumption 1: The nonlinear system given in (1) is controllable. Moreover, the

system states x, € Q) are measurable.

The objective of the optimal control design is to determine a state feedback
control policy which minimizes the following time-varying value or cost function given
by

N-1

V(x,,k) :l//(xN)+ZL(xk’uk9k) (2)
=i

where [i,N] is the time span of interest, y/(x,) is the terminal constraint that penalizes
the terminal state x, L(x,,u,,k)=0(x,,k)+u, R.u, is an in-general time-varying
function of the state and control input at each intermediate time k in [i,N], where
O(x,,k)eR , R, eR™" are positive semi-definite function and positive definite
symmetric weighting matrix, respectively. It should be noted that in finite-horizon
scenario, the control inputs can be time-varying, i.e., u, = u(x, ,k)eQ,,.
Setting k£ = N, the terminal constraint for the value function is given as
V(xy,N) =wp(xy) 3)
Remark 1: In general, the terminal penalty w(x,) is a function of state at
terminal stage N and not necessarily to be in quadratic form. In the case of standard
LQR, w(x,) takes the quadratic form as w(xy)=x,Q,X, and the optimal control
policy can be obtained by solving the RE in a backward-in-time fashion from the terminal
value Q) . It is also important to note that in the case of finite-horizon, the value function

(2) becomes essentially time-dependent, in contrast with the infinite-horizon case where

this problem is developed in a forward-in-time manner [2][3].
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By Bellman’s principle of optimality [1], the optimal cost from k& onwards is

equal to

V" (%K) = min{L(x, 1, )+ V" (0 k +1)} (4)
The optimal control policy u, that minimizes the value function V*(x,,k) is

obtained by using the stationarity condition oV *(x,,k)/0u, =0 and revealed to be

. 1. oV(x,,,k+1)
u, =_ER ‘g7 (x,) 8;1
k+1

)

From (5), it is clear that even the full system dynamics are available, the optimal
control cannot be obtained for nonlinear discrete-time systems due to the dependency on

future state x,,,. To avoid this drawback and relax the requirement for system dynamics,

iteration-based schemes are normally utilized with NNs by performing offline-training
[4]. However, iteration-based schemes are not preferred for hardware implementation
since the number of iterations to ensure stability cannot be easily determined. Moreover,
iterative approaches cannot be implemented when the system dynamics are completely

unknown, since at least the control coefficient matrix g(x, ) is required to generate the

control policy [3]. In contrast, in this work, a solution is found with completely unknown

dynamics without utilizing iterative approach, as given in next section.

3.NEURAL NETWORK-BASED FINITE-HORIZON OPTIMAL REGULATION

WITH COMPLETELY UNKNOWN DYNAMICS

In this section, the finite-horizon optimal regulation scheme for nonlinear

discrete-time systems in affine form with completely unknown system dynamics is
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addressed. First, to relax the requirement of system dynamics, a novel NN-based
identifier is designed to learn the true system dynamics in an online manner. Next, the
actor-critic methodology is proposed to approximate the time-varying value function with
a “critic” network, while the control inputs are generated by the “actor” network, with
both NNs having the structure of constant weights and time-varying activation function.
In order to satisfy the terminal constraint, an additional error term is defined and
incorporated in the novel NN updating law such that this error is also minimized
overtime. The stability of the closed-loop system is demonstrated, under non-autonomous
analysis, by Lyapunov theory to show that the parameter estimation remains bounded as

the system evolves.

3.1 NN-BASED IDENTIFIER DESIGN
Due to the online learning capability, NNs are commonly used for estimation and
control. According to the universal approximation property [19], the system dynamics (1)

can be rewritten on a compact set QQ by using NN representation as

X, = f(x)+g(x)u,

T T
= Wf o, (x,)+ Ept Wg o, (x)u, + & Uy

e x0T 1 (6)
[0 ke o]

=W'o(x,)u, +&,

w. o,.(x 0 1
where W =| e R | o(x,)= 706 eRPU g = e R
w, 0 ag(xk) u,

and &,_, =[¢, &,]u,, €R", with L being the number of hidden neurons. In addition,

the target NN weights are assumed to be upper bounded by ||W|| <W,, where W,, is a
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positive constant, while the NN activation function and reconstruction error are assumed
to be bounded above as ||0(xk)||S0'M and ||Ek||SEM , with oy, and &, positive
constants. Note that to match the dimension, W can be constructed by stacking zeros in
W, or W,, which does not change the universal approximation property of the NN.
Therefore, system dynamics x, can be identified by updating the target NN weight

matrix W .

Using NN identifier, the system states at & can be estimated by
X, = WkTO-(xk—l)l_lk—l (7)
Define the identification error as
€, =X, —X, =X, — WkTJ(xk—l)ﬁk—l 3
Then the identification error dynamics of (8) can be expressed as
€ =X Xy =X, — WkTHG (x,)u, )

Next, by incorporating the history information, define an augmented error vector

as
= =X-We_u_ (10)
where X, =[x, x. - xk_l]emnx(lﬂ)’ @k_l =[U(xk_1) U(xk_z) g(xk_l_1 )]
i, 0 0
e R and U, = 0 Ek;z 0 : e SR (HHmIx(D)
0 0 W,

It can be seen that (10) includes a time history of previous /+1 identification

errors recalculated using the most recent weights Wk .



100

Similar to (10), the dynamics for the augmented identification error vector

becomes
E.=X.,-W 06U, (11)
Next, the update law for the NN identifier weights Wk can be defined as
Wen=0U, (UO0U,) (X, ~a5)) (12)
where 0 < <1 is a design parameter.
Substituting (12) into (11) yields

Eia =X~ W/L@kUk
= Xk+1 - (QkUk ’ (Ulﬂcr@l;r@kUk)il (XkT+1 - “EkT ))T@kUk
=X, — (X, —a&, )(UkT@kT@kUk)_l U/EQI—{@kUk

(13)
= aZ,

Remark 2: For the above identification scheme, @, U, needs to be persistently
exciting (PE) long enough for the NN identifier to learn the true system dynamics. PE
condition is well-known in the adaptive control theory [21] and can be satisfied by adding
probing noise [20].

Next, to find the NN weights estimation error dynamics, define Wk = W—Wk.
Recall from (6) and (7), the identification error dynamics can be expressed as

A T — — 2T —
e, =X — X, =W o(x)u, +& —W,_ o(x,)u, (14)
~ o
=W o(x)u, +&

Using e, ., = e, from (13), we have

€= WkT+1O'(xk Y, +&, = a(WkTO-(xk—l Y, +&.,) (15)
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Or equivalently,
WkTHG(xk oy = aWkTo-(xk—l)l’_lk—l g — & (16)
Next, the boundedness of the NN weights estimation error W, will be

demonstrated in Theorem 1. The following definition is needed before proceeding.

Definition [19]: An equilibrium point x, is said to be uniformly ultimately
bounded (UUB) if there exists a compact set Q < R" so that for all initial state
x, € Q_, there exists a bound B and a time 7'(B, x,) such that ||xk -X, || < B for all
k>2k,+T.

Theorem 1 (Boundedness of the NN identifier): Let the nonlinear system (1) be
controllable while the system state x, € Q2 be measurable. Let the initial NN identifier
weights W, be selected within a compact set Q,, which contains the ideal weights W .

Given the admissible control input u, € Q,, let the proposed NN identifier be defined as

in (7) and the update law for tuning the NN weights be given in (12). Under the

assumption that @, U, in Remark 2 satisfies persistency of excitation (PE) condition,

then there exists a positive constant o satisfying 0 < a < > such that the identification

~

error e, as well as the NN weights estimation error W, are UUB, with the bound given
in (A.5) and (A.6).
Proof: See Appendix.

Remark 3: In the proof, the inequality 0<®©2 <[@,| <|@,U,|" holds since

O U, satisfies the PE condition [2] such that the NN identifier is able to learn the system
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dynamics. It should be also noted that the control input is assumed to be bounded, which
is consistent with the literature, for the identification scheme since the main purpose of
this section is to show the effectiveness of our identifier design. This assumption will be
relaxed in our final theorem, where the convergence of the overall closed-loop system is

shown with our proposed control design.

3.2 OPTIMAL NN CONTROLLER DESIGN
In this subsection, the finite-horizon optimal regulation design is proposed. To
handle the time-dependency of the value function, two NNs with the structure of constant
weights and time-varying activation functions are utilized to approximate the time-
varying value function and the control input, respectively. An additional error term
corresponding to the terminal constraint is also defined and minimized overtime such that
the terminal constraint can be properly satisfied. Due to the time-dependency nature for
finite-horizon, the closed-loop stability of the system will be shown by Lyapunov theory.
By universal approximation property of NNs [19] and actor-critic methodology,
the value function and control inputs can be represented by a “critic” NN and an “actor”
NN, respectively, as
Vix, k)y=W,)o,(x,,N=k)+¢&,(x,,k) (17)
and
u(lx, . k)=W, o, (x, ,N-k)+¢&,(x,,k) (18)
where W, and W, are the constant target NN weights, o, (x,,N—k) and

o,(x,,N—k) are the time-varying activation functions incorporating the time-to-go,

g (x,,k) and ¢,(x,,k) are the NN reconstruction errors for the critic and action
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network, respectively. The target NN weights are assumed to be upper bounded by

W, |<w,, and |W,

<W, , respectively, where both W,, and W, are positive

constants [17]. The NN activation functions and the reconstruction errors are also

assumed to be upper bounded by ||6V(xk,N—k)||SGVM , Gu(xk,N—k)”SGMM ,

|8V(xk,k)| <&y and

gu(xk,k)| <& With o, O, & and &, all positive constants
[19]. In addition, in this work, the gradient of the reconstruction error is also assumed to

be upper bounded byHé‘gV)k Jox, || < &> With &, a positive constant [3][14].

Remark 4: In this paper, we utilize two NNs (critic and actor) to approximate the
value function as well as the control inputs. Unlike continuous-time system, where the
control inputs can be obtained directly from the information of critic NN, the actor NN is
needed in discrete-time system since the future value x,,, is not available. Therefore, the

actor NN is utilized to relax the need for x, ., .

Similarly as (17), the terminal constraint of the value function can also be written

in NN representation as

V(xy,N) =W, 0, (x.,0) + &, (xy,N) (19)
with o, (x,0) and &,(xy,N) having the same meaning as o,(x,,N—k) and
g, (x,,k) but corresponding to the terminal state. Note that the activation function is
taking the form o, (x,,0) at terminal stage since from the definition, the time-varying

activation function incorporates the time-to-go.
Remark 5: The fundamental difference between this work and [7] is that our

proposed algorithm yields a completely forward-in-time and online solution without
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using both value and policy iteration and offline training, whereas the algorithm proposed
in [7] was essentially an iteration-based DHDP scheme which is performed offline.
3.2.1 Value Function Approximation. The time-varying value function

V(x,,k) can be approximated by the critic NN and written as

V(x.,k) =W, c,(x, ,N=k) (20)
where V(x,,k) represents the estimated value function (2) and WH is estimation of the
target NN weights W, . The basis function should satisfy ”GV (0)” =0 for ||x|| =0 to

guarantee that 1/(0) =0 can be satisfied [1].
The terminal constraint can be represented by
V(s N) = W40, (%.0) 1)
where X is an estimation of the terminal state. It should be noted that since the true
value of x is not known, X, can be considered to be a “guess” of x,, and can be chosen

randomly as long as x, lies within the stability region for a stabilizing control policy
[4107].
To ensure optimality, the Bellman equation should hold along the system
trajectory. According to the principle of optimality, the true Bellman equation is given by
r(x,,u, k)+V(x,, .k+1)-V(x,,k)=0 (22)
However, (22) no longer holds when the NN approximation is considered.
Therefore, with estimated values, the Bellman equation (22) becomes
el =r(x,,u, k) +V(x,,k+1)=V(x,,k)

=r(x,,u,, k) + W, o, (x,, , N-k=1)-W, 0, (x,,N-k) (23)

= r(x,, 1, k) + W, Ac, (x,,N~k)
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where e} is the Bellman error along the system trajectory, and
Aoy (x,N=k)=0,(x,,N-k-D) -0, (x,,N-k).

Next, recall from (21), define an additional error term corresponding to the
terminal constraint as
& =y (xy)~W,,0, (%.0) (24)
The objective of the optimal control design is thus to minimize the Bellman error
e; as well as the terminal constraint error e, as the system evolves. Hence, define the
total error as
e =el +e) (25)
Based on gradient descent, the update law for critic NN can be defined as

o, (x,,N— k)elimal

W,..=W,, —a
ri T T o (x, ,N=k)o, (x,,N — k)

(26)

where o,(x,,N—-k)=Ao,(x,,N—k)—o,(x,,0), while ,(x,,N—k) is bounded by
o, < ||<71 (x,,N— k)|| <o, and @, is a design parameter with its range given in
Theorem 2.

Remark 6: Two points needs to be clarified in the update law (26). First, the total

error is minimized such that the optimality can be achieved as well as the terminal

constraint can be also properly satisfied. Second, the activation function o, (x,,N —k) is

also a combination of the activation function along the system trajectory and the
activation function at the terminal stage. For the infinite-horizon case, the update law
becomes a standard gradient descent algorithm with time-invariant activation function,

and also the terms corresponding to the terminal constraint become all zero, i.e.,



106

e =e’ and o,(x,)=Ac,(x,).

Next, to find the error dynamics, define WM =W, - WV’,( . Recalling the Bellman
equation (22) and the definition of the value function (17), we have

r(x,u, k)+V(x,,, . k+1)=V(x, k)
=r(x,u k)+W/ o, (x, . N—k-1)+¢g,(x,, . k+])

(27)
- WVTO_V(xk N—k)—¢,(x,,k)
=r(x,,u k)+W/ Ac,(x, ,N-k)+As,(x,,k)=0
where e =w(x,)—W, o, (xy,0).
Hence, we have
r(xkaukak):_WVTAO-V(xkaN_k)_AgV(xkak) (28)
Substituting (28) into (23) yields
el =r(x,,u k) + W, Ao, (x,,N—k)
=W, Ao, (x,,.N—k)—Ag, (x,.k)+ W, Ao, (x, . N—k) (29)

=W, Ao, (x,,N-K)—Ag, (x,.k)
Next Recalling from (19), then the terminal constraint error e, can be written as
N T A
e, =y (xy)—W,,0,(xy,0)
=W, 0, (x,0) + &, (x,0) =W, .0, (X,0)
= WVTGV (xN ’0) - WVTo-V ('QN 70) + WVTo-V ('%N 70) (30)
+ &5 (Xy,0) — WI/T,kJV (%x,0)

= NVT,kO-V (xy,0) + WVTgV (xy,0) + &, (x,0)

where G, (xy,0) =0, (xy,0)—0, (x.0).
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Hence, the total error (25) becomes

total _ B N
ek —€k +€k

=W, Ao, (x, N=k) = As, (x,, k) + W)}, 0, (%,,0) o

+ WVT&V (xN 90) + gV (xN 90)

=W, 0,(x, ,N=k)+ W5, (x,,0) + &(x,, k)
where g(x,,k)=—A¢g, (x,,k)+&,(xy,0).
Finally, by substituting (31) into the update law (26), the error dynamics for WV,,{

is revealed to be

- - o, (x,,N=k)o! (x,,N-k)W,,
W,a=W,,—a, l+o!

o, (x,,N=k)o,(x;,N-k)
o J1 (xk :N_k)(gl;r (xN aO)WV +g(xk ak))
" l+o0/(x,,N=k)o,(x,,N—k)

(32)

Next, the boundedness of the estimation error for the critic NN weights is
presented, as in the following theorem.
Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1)

be controllable while the system state x, €{)_ be measurable. Let the initial critic NN
weights WV, , are selected within a compact set €, which contains the ideal weights W, .

Let u,(x,)eQ, be an admissible control for the system (1). Let the update law for the

critic NN be given as (26). Under the assumptions stated in this paper, there exists a

2
Im

positive constant 0 <, < 5
3d+0opy)

such that the critic NN weights estimation error

WN/V’,( is UUB with a computable bound B, given in (A.12).

Proof: See Appendix.
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3.2.2 Approximation of Optimal Feedback Control Signal. In this
subsection, the optimal control policy is obtained such that the estimated value function

(20) is minimized. The action NN approximation of (18) is defined as
i(x, k) =W,,0,(x, ,N=k) (33)
where Wu’ . 1s the estimation of the target action NN weights.

Next, define the actor error as the difference between the control policy applied to

(1) and the control policy which minimizes the estimated value function (20), denoted as

u(x,, k)= (x,,k)—i,(x,,k) (34)
where u,(x,,k) = W:ko-u (x,,N—k) and

V(X k+D) 1

N | A A ~
ity (x,,k)=—=R"'g" (x,) --R lgT(xk)vo_I;F(xk+l9N_k—1)WV,k’
2 0x,., 2

where V denotes the gradient, g(x,) is the estimated control coefficient matrix from the

NN-based identifier and T}(xkﬂ, k +1) is the approximated value function from the critic

network.

Hence, (34) becomes
~ - 1 . ~
u(x, k)= WuT,kO_u (x,,N—k)+ ER_]gT (x, )VO'; (x4, N—k— I)WV,k (35)

The update law for tuning the action NN weights can be then defined as

g Cu(x N-RE" (x,. k) (36)
e e T o) (% N =)o, (x, ,N =)

where «, >0 is a design parameter.

Recall that the control policy (18) minimizes the value function (17), then we

have



109
u(x, k)=W'o, (x, ,N-k)+e&,(x, k)
LR Vol (%, N—k-DW, +Ve, (x,...k+1))
=75 8 (X \V Oy (X, W, Ep(Xpis )
Or equivalently,
0=W,fou(xk,N—k>+s,,<xk,k)+%R‘gT<xk>x

(37)
Vo (%, N = k=W, 42 R g (8)Ve, (3K + 1)

To find the error dynamics for the actor NN weights Wu, . » define
W,, =W, -W,,.Subtracting (37) from (35) yields
~u(x k) =W, 0, (x, , N=k)+ %R‘l g (x)Vor(x,,N-—k-DW,
+%RlgT(xk)Vg;(xk+l,k+1)—%RlgT(xk)x (38)
Vo, (X, N=k-DW,, +¢&,(x,,k)
Next, for simplicity, rewriteo,, =o,(x,,N—k),Vo,,,, =Vo,(x,,,N-k-1),
Ve =Vey(x, N=k=1) . g, =g(x) , & =8kx) , g =gk, and
E,x =€,(x;,k), then add and subtract %R‘l &' (x,)Voy, W, and arranging terms
yields

- ~ 1 - ) ~ ~
u(x, k)= _WuT,kO-u,k _ER lgl;rvo-;,k+lWV _ER lggvo-;,kHWV,k —Euk (39)

~ n ~ | . .
where g, =g, —&, and &, :ER 'g, Ve, +&,, . Furthermore, it can be easily

concluded that €, , satisfies ng,k H <é&,u»> Where &, 1s a positive constant.
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Finally, the error dynamics for the actor NN weights are revealed to be

T7 T7 O-u,kﬁT(xkﬂk)

u

T
1+ CuiOui

=~ Ok =T I o oiero 1
=W..—a, T W0, +-R gVo,, W, (40)
1+ CuiCuk 2

RGO W 4B
It should be noted that from the above analysis, the control matrix g(x,) is not
needed for updating the actor NN, in contrast with [3]. Instead, the approximated control
matrix g(x,) from the NN identifier is utilized to find the control input, hence the partial
knowledge of the system dynamics are relaxed.

To complete this subsection, the flowchart of this scheme is shown in Figure 1.

We first collect the information for the steps k£ =1,2,---,/+1 with the initial admissible

control, which is defined later, for the first time identifier NN weights update. Then the
NNs for the, critic, actor and identifier are updated based on our proposed weights tuning

laws at each sampling interval in an online and forward-in-time fashion.

3.3 CONVERGENCE ANALYSIS
In this subsection, it will be shown that the closed-loop system will remain
bounded. Before proceeding, the following definition and lemma are needed.

Definition [4]: Let (2, denote the set of admissible control. A control function

u:R" > NR" is defined to be admissible if the following is true:

u is continuous on Q. ;

u(x)|,_, =0;
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u(x) stabilize the system (1) on Q _;
J(x(0),u) < 0,Vx(0) € Q.

Since the design scheme is similar to policy iteration, we need to solve a fixed-
point equation rather than recursive equation. The initial admissible control guarantees

the solution of the fixed-potion equation exists, thus the approximation process can be
effectively done by our proposed scheme.

Start Proposed
Algorithm

<
<

A4

. Initialization
Vo(x)=0,u=u,

Update the NN-based Identifier
7 THT 14T =T
Win=0U, - (U, 0,0U,) (X, —oE;

A 4

Update the Value Function and the Critic Network Weights
V(xp,k) =W oy (x, N=F)

o (x,N- k)e/tcOtal

"1+ 07 (x,,N=k)o, (x,, N —k)

:

Update the Control Input and the Action Network Weights
a(xy k) =Wl o, (x N -k)
o, (x, , N=kya"(x,,k)
“1+of(x;,N-k)o,(x,,N—k)

Wysa =Wy -«

Wu,k+l = Wu,k -«

k=k+1, Vk=12,.,N-1
Update the time interval

Figure 1. Flowchart of the finite-horizon optimal control design
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Lemma 1 (Bounds on the optimal closed-loop dynamics): Consider the discrete-

time affine nonlinear system defined in (1), then there exists an optimal control policy u,

for (1) such that the closed-loop system dynamics f(x, )+ g(x,)u, can be written as

x|’ (41)

* 2 *
|G+ gxom;| <k
. 1.
where 0 < k™ < 5 1S a constant.

Theorem 3 (Convergence of finite-horizon optimal control signal) Let the

nonlinear system (1) be controllable while the system state x, €2 be measurable. Let
the initial NN weights for the identifier, critic network and actor network Wk , WV’,( and
W"’k be selected within compact set Q2 ,,, €, and Q ,, which contains the ideal weights

W, W, and W,. Let u,(x,)<Q, be an initial stabilizing control policy for the system
(1). Let the NN weights update law for the identifier, critic network and actor network be
provided by (12), (26) and (36), respectively. Then, under the assumption stated in this

paper, there exists positive constants « ,«,, ,«, satisfying

O<a< (42)
2
3
O<a,<—= (43)
7
02
O<q, <—m 44
" 41+ 0l) “44)

such that the system state x,, NN identification error e, , identifier weight estimation

errors W, , critic and actor network weights estimation errors WN/V) , and Wu’ . are all UUB
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at terminal stage N with the bound b, b2, b,, b; and by shown in (A.22) ~ (A.26).

Moreover, the estimated control input is bounded closed to the optimal value such that

u (x,,k)—a(x,, k)” <¢g, forasmall positive constant ¢ .

Proof: See Appendix.

4. SIMULATIONS

In this section, the proposed algorithm is evaluated by two numerical examples. A
linear system is first utilized followed by a practical two-link robot nonlinear system. For

the linear system, one can compare the RE-based solution with the proposed scheme.

4.1 LINEAR CASE
The proposed finite-horizon optimal control design scheme is first evaluated by a

linear example. Consider the system

08 1 1
Xy = 0 06xk+05uk (45)

The weighting matrices for the performance index (2) are selected to be

Q(x,,k)=0.5xx, and R, =1. For comparison purpose, the terminal constraint is
selected to be y(x,)=0. Non-zero terminal constraint is considered in nonlinear case.

For the NN setup, for linear systems, the input to the identifier NN is chosen to be

z, =[x, .u, ], the time-varying activation functions for both critic and action network are
chosen as o,(x,,N-k)=0,(x,,N—k)=[x,,x, exp(-7),x,,X, exp(~7), X, , X2, x,%,7]" ,

which results 7 neurons, and 7 =(N—k)/N is the normalized time-to-go.
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The design parameters are chosen as =04, a, =0.1 and «, =0.01. The
initial admissible control gain is selected as K(0)=[0.3, —0.3] and the initial system
states are selected as x, =[0.5,-0.5]" . The critic and action NN weights are both

initialized as zeros. Simulation results are shown as below.
First, the system response is shown in Figure 2. It can be clearly seen from Figure
2 that the system states converge close to the origin within finite time. This confirms that

the system remains stable under our proposed design scheme.

0.5

- X

System Response

4 6 8 10
Time (sec)

Figure 2. System response

Next, to show the feasibility of the proposed optimal control design scheme, the
Bellman error as well as the terminal constraint error is plotted in Figure 3. It is shown
from this figure that the Bellman equation error converges close to zero, which illustrates
the fact that our proposed controller design indeed achieves optimality. It is more
important to note that the convergence of the terminal constraint error indicates that the

terminal constraint is also properly satisfied.
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Figure 3. Error history

Next, the convergence of critic and actor NN weights is shown in Figure 4 and
Figure 5, respectively. From the results, it can be clearly seen that both weights converge

to constants and remain bounded, as desired.
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Figure 4. Convergence of critic NN weights
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Figure 5. Convergence of actor NN weights

Finally, to compare our proposed design with traditional Riccati equation-based
design, the cost is depicted in Figure 6. It can be seen from the figure that the difference
between the cost computed from traditional RE-based and our proposed approach
converges more quickly than the system states, which illustrates the validity of our

proposed method.

0.05

-0.05

-0.1

Error between the Costs

-0.15

-0.2

0 2 4 6 8 10
Time (sec)

Figure 6. Cost between two methods
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4.2 NONLINEAR CASE

Now, consider the two-link planar robot arm depicted in Figure 7.

(x2,y2)

(x1,y1)

v

Figure 7. Two-link planar robot arm

The continuous-time dynamics of the two-link robot arm is given by [22]:

{a +B+2ncosq, f+1ncos qz]ijl_ J{— n(24,4,)sin q2:|
B +ncosq, B 74y sin ¢,

ae, cos g, +1e, c0s(q, + ¢q,) | 7]
1 mmaay T

(46)

where a=(m, +m,)a} , B=m,a;, , n=m,a,a,, e=g/a, . In the simulation, the
parameters are chosen to be m, =m, =lkg , @, =a, =Im and g=10m/s> . Hence,
a=2, f=1,n=1and e =10.

Define the system states as x =[x,,x,,%;,x,]" =[4,,9,,4,-4,]" and the control
inputs as u =[u,,u,]" =[r,,7,]". Then the system dynamics can be written in the affine

form as x = f(x)+g(x)u, where
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X3
Xy
—(2x,x, +X; —x; —Xx; coSX,)sinx, S 0
+20cosx, —10cos(x, +x,)cos x, 0 0
Fx)= cos? x, -2 and g(x) = 1 —1-cosx,
’ - 2 2
(2x,X, + X, +2X,X, COSX, +X; COS X, +3x; 2-cos"x, 2-cos”x,
) —1-cosx, 3+2cosx,
+2x; cos x, +20(cos(x, + x,) —cos x; ) x ) —cos’r. 2—cos’x
L 2 2

(I+cosx,)—10cos x, cos(x, +x,)

cos’ x, =2
Discretizing the continuous-time system with a sufficient small sampling interval

T. , then the discrete-time version of the system can be written as

X = f(x,)+g(x, )u, , where

T x5 +xy,
T Xy + Xy,
2 2 2 .
— (2232, + Xy — X3 — X3, COS X, )SINX,,
+20cos x,, —10cos(x,, +x,,)cosx,,

2
f(x)= (cos’ x,, =2)/T,
(25, X, + X5, +2X;,X,, COSX,, +X;, COSX,,

+ X5

+3x5, +2x7, cos x,, +20(cos(x,, +X,,)—cosx,, )X
(I4+cosx,, )—10cosx,, cos(x,, +x,,)

(0052 Xor =~ 2)/Ts

+ Xy

0 0
0 0
1 —1—cosx,,
g(x,)= (0052 Xy — 2)/TS (COS2 Xy — 2)/Ts
_l_cosxzk 3+2COSX2k
| (cos”xy ~2)/T, (cos” 3, =2/, |

In the simulation, we choose 7, =0.001, and the value function is given in the

form of (2), with Q(x,,k)=x,x, an identity matrix with appropriate dimension and
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R=0.0051 . The initial states and admissible control gain are selected to be
x(0)=[z/3, n/6, 0, 0]" and K(0)=[-50,0-50,0;20,0,20,—20], and the terminal
constraint is given asy/(x, ) =8.

For the NN setup, the activation function for the identifier is constructed from the

MJ2( n 2p
expansion of the even polynomial Z[Z xl.j , where M is the order of approximation
B=1\_i=l

and n is the dimension of the system. In our case, n =4 and we choose M =4, which
results in 45 neurons. For the critic and action network, the state-dependent part of the
time-varying activation functions is also chosen to be the expansion of the even
polynomial with M =4 and M =2, which results in 45 and 10 neurons, respectively,
while the time-dependent part are selected as the polynomials of time-to-go with
saturation, i.e., {0,(N—k)/L, ,(N=k)/(L, -1),---,N—k}, where N is the terminal time
and L. is the number of neurons. In our case, L, =45 and L, =10. Note that saturation
for the time-dependent part of the activation function is to ensure its magnitude is within
a reasonable range such that the parameter estimation is computable. The tuning

parameters are chosen as o =0.3, «;, =0.01 and o, =0.1. All the initial NN weights

are randomly selected between [0, 1]. The simulation results are shown as below.

First, the system response, control inputs and identification errors are given in
Figure 8 and Figure 9, respectively. It can be seen clearly from these two figures that the
system states, control inputs and identification errors converge close to the origin in finite
time, which shows the stability of the system and effectiveness of the NN identifier

design.
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Next, to show the feasibility of our proposed optimal control design scheme, the
error histories are plotted in Figure 10. Similar trends as the linear case are shown from
Figure 10 that both Bellman equation error and terminal constraint error converge close
to zero as system evolves, which illustrates that the proposed algorithm not only achieves

optimality but also satisfies the terminal constraint.
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Finally, due to the large number of neurons for the critic and actor NN, the norm

of the NN weights is shown in Figure 11. It can be clearly seen from the figure that the

actual NN weights converge to a constant, as desired.

N\

== Critic NN Weights
=== Actor NN Weights
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o

Norm of NN Weights
w

N
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Figure 11. Convergence of critic and actor NN weights
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5. CONCLUSIONS

In this paper, the finite-horizon optimal control of affine nonlinear discrete-time

systems is addressed with completely unknown system dynamics. First, the NN-based
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identifier generates suitable control coefficient matrix such that the control input can be
computed. Next, the actor-critic structure is utilized to approximately find the optimal
control policy. The time-varying nature for finite-horizon optimal control problem is
handled by using NNs with constant weights and time-varying activation functions. An
additional error term corresponding to the terminal constraint is minimized to guarantee
that the terminal constraint can be properly satisfied. In addition, the proposed algorithm
is implemented by utilizing a history of cost to go errors instead of traditional iteration-
based scheme. The proposed algorithm yields an online and forward-in-time design
scheme which enjoys great practical advantages. The convergence of the parameter
estimation and closed-loop system are demonstrated by using Lyapunov stability theory

under non-autonomous analysis. Simulation results verify the theoretical claim.
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APPENDIX

Proof of Theorem 1: First observe that 0 < ®> < ||0k||2 < ||6')kU f ’ , where ® _ is a positive

constant. This is ensured by the PE condition. Define the Lyapunov candidate function as
T 2 v T T — 2
Ly (k) = ef e, +OLte (W W)+ W o(x, )i, | (A.1)

where tr(e) denotes the trace operator. The first difference of L, (k) becomes

ALy, (k) = Lip (k +1) = Ly, (k)

T 2 T 117 T 2 T T11
=e..8, +O tr(W W, )—e.e —O (W W,)

2

o) -l ox a | (A2)

< e/f+1ek+1 - eljek + ®12ntr((WkT+10_(xk u, )’ (szlo-(xk u, ))_ ®i1tr(WkTWk)

~ ) ~ T
+ ‘ W .o(x)u, H - HWk o(x,_, )uk—1H

Recall e,,, = e, and (16), (A.1) can be further written as

ALy, (k)< a2||ek "2 _”ek "2 + “WkTJrlU(xk u, “2 - ®r2ntr(WkTWk)

~ B 3 et e
+“aWk o(x, u,, +ag, _ng _“Wk O-(xk—l)uk—lu

(A3)
<-(-a e[ + 2ol o(x, i, +at, -5
SR A AS A CA T |
Using Cauchy-Schwartz inequality, (A.2) can be written as
ALy (K < ~(1-a e[ +4a* 7o, i, |
s, & 2V, - o(x, | "

<~(1-ade,[ @[ -1~ 40 W o(x,a, |+, &

<~(1-ade, [ -0 +az,

— — 12 — . .
where 4||0a9k_1 —8k|| < Ag,, due to the boundedness of the NN reconstruction error, with
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Ag,, apositive constant.
Therefore, the first difference of L (k) is less than zero outside of a compact set as long

the following conditions hold

Ag.
lell> | ——5 =0. (A-5)
(1-a”)
Or
~ Ag,
HWkH M —p (A.6)
Proof of Theorem 2: Define the Lyapunov candidate function as
LV (Wv,k )= WVTk WV,k (A7)
The first difference of L, (WV’,() is given by
ALV (WV,k) = WVT,k+1 Wv,kn - WVTk WV,k (A-8)
Denote o,, =o,(x,,N —k) for simplicity. Substituting (32) into (A.8) yields
ALV (WV,k) = WVT,k+1WV,k+1 - WVT,k WV,k
_ ' i .
_lw _ 01 Ouy i a Oy (O-V (xy,0W), +&(x, >k)) y
e 1+o0,0, ’ 1+o,.0,
= UlTkUUcWVk ch(g;(xN OW, +g(xk9k))_ ST
w,-a, T v T Wy Wy
l+0,0, l1+0,0, T
T ST 11 T (~T k )WN/
__ oWy Wy s _ 9% \9y (X3, O, +e(x, )W, ,
’ 1+0,.0, 1+0,0,
(A.9)

T
‘ l+o0,0,

T
l+o0,0,

2 ||O-1];co-lkWV,k Oy (5; (X3, 00, +&(x;, k))Hz

i
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T

Notice that O-”‘—?”‘ <1 and applying Cauchy-Schwartz inequality yields
1+o0,0,

T T 117 T (=T T
oo Wy Wy i Oy (O-V (xx0W), +e(x,, k))WV,k
- +2a,

T
1+0,0, l+0,0,

ALV (WV,k) < _2aV

2
+ Za;[L?”‘J W, + LH%(&; (X O, +e(x,. b))

l+o,0 (+o0,0,)
T ~ 2
<201, || (A10)
20, TWlE (5 LUATCY oo sl
1k~ 1k
2

Note that o, is a time-dependent activation function and hence the Lyapunov candidate

function becomes non-autonomous. Recall that the time span of interest is finite and o,

is a smooth function, then o,, is bounded by 0< o, < ||0'1 k” <o,y- Then separating the

o (BT (x OW, +2(x, )W, ,

T
l+o0,,0,

term

and recalling the bounds ||5V (xN)||£20VM ,

||WV || <W, and ||£(xk , k)|| <3&,, (A.10) becomes

(o2

AL, (W, )< -2a,

12m 7 2 2|7 2
o L0 I R
M

8a, ﬁ“ﬁ?ﬁ 1883, + 207 W, | +207 8o 73 +186%,)
<24, 1fa T e T e (A1)

o, (14201, BO2, WL +36a, 60, )+ 1862,

20—2 ~ 2

i 2

<-ay o —3a, “”V,k” +E&m
1+0oy
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where &2y, =a, (1+ 2, )80, W +36a, 6%, )+ 186,
From (A.11), it can be seen that the non-autonomous Lyapunov candidate is upper
bounded by a time-invariant function. Therefore, AL, (WM) is less than zero outside of

a compact set as long as the following condition holds:

(A.12)

Proof of Theorem 3:

First, denote u, =a(x k), f, =f(x,), g.=g(x,), & =&(x,), g, =2g(x,) for
simplicity.

Define the Lyapunov candidate function as

a’A

=——* I +L . +L,+AL +L,+L A.13
2g§4(1+O'jM) X ID V u A B ( )

where L =x/x, , Ly , L, are defined in (A.1) and (A.7), respectively,
T T 1w 2 2 Ty \2 T —
L,=te{W, W}, Ly=W,, W,,;) and L, =0, tr(W, W,)" + HWk U(xk—l)uk—lu :

Define

2
o
2 2 Ay R 4
a, G 1+ 0oy C)

A =min , -, ;
20,11, 4a 11,0y, a,ll, 20,11 0y,

where
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I, = max (gMVO'VMR)2(8+9au)’3a3(gMVJVMR)2 |
2 2(3c, +8)

1, = max W VouR) (a, +8),3a,f(WVMVaVMR)2 |
2 2(3ar, +8)

and T1, =§(VGVMR)2(3au +8).

Next, the terms in (A.13) will be considered individually. First,

AL, = ka+1xk+l _xgxk = ”fk + g1, ”2 _”xk ”2
5 (A.14)
. . ~ 2
:ka + 8 U — 8 Uy +gk”k” _”xk”
By using Lemma 1, Cauchy-Schwartz inequality twice and recalling the bounds, (A.14)
becomes
A2 . .12 2
AL, < Zka +gk”k” +2Hgkuk _gkukH _”xk”

< (126" 4282 | W0y + s ~W 0|

(A.15)

< (-2 x| + 2830, + e

<—(1-2k" P 1aglel,

xk||2 +4g§4‘

Eu,k
where =, =W, 0,
Next, recalling (40) and using the bound, the first difference AL, can be represented as

ALu = tr(Wu—l:k-*—lI/Vu,k-*-l) - tr(WuTk Wu,k)

2T A.l
_ 205" tr(ii (TT W )+ auau,kgu,k tr(lNl I,NlT) ( 6)
= TUET: Ui
1+UuT,k(7u,k o (1+Ug,ko'u,k)2

T
Noticing that 10"# <1, then substituting (39) into (A.16) and using cyclic property
+ o-uk O_uk

of trace operator and applying norm with upper bounds, (A.16) becomes, after collecting
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the terms, as

a,2-a,) =

=k

AL, <—

u

> a2 (WpVo,uR) a2 (guVonR) 1~ |2
+ J&il + 7|
4(1+o*ukauk) 4l+0),0,,)

T
1+0'ukauk

AN a (VO‘VMR) H NVkH ” k”

> ar (W Vo,uRE )
+ &
41+0,,0.;)

(1+O-uko_uk)

(1+a o, )

L a+a) - wné’k”Jrvo'ngMHWv,kH
=~ uk

1 T ~
OO v g ]+ 204 @)z

2 2 ~ T
OO (7, | <]
a,Vo,,R ( g ”

—Zu T (W o Vo R+2E W
2(1+O-1;r,ko_u,k) MEM ™M MMX

V.k

. (A.17)

N a,
(1+0' e )

(guVomRE M) ‘WV k H

where R= HRi1 H .

Next, observe that

— 2__ u

2 2
Recall that similar as the critic NN, o, , is a time-dependent activation function and

bounded, due to the smoothness of o, , and finite time span, by 0<o,,, SHo-u’k H SO

Then (A.17) becomes, after completing the squares w.r.t. HEMH , HWV’I‘H’ ||§k|| and

P72
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a,3-3a,) > a, (g VouR) (8+9%,) )~ |
AL S_# E + L u W
! 2(1+02,) wk 2(1+02,) “ V’kH
+aAWmV0mRYQ%+8W§r+6aAV0mea%$HW W
2(1+0,) B 41+02,)GBa, +8) 1
L 32, (Vo R)* (e, +8) HW “2”5 P+ 6a,(Vo,,R)’ a, W, &
4(1+0,) P 44 02, Ba, +8) F
+‘?I%v1 +§22M "'5321\4 +§42M
3
where £, = M g2,
(1+0um)
52 = 2au(ngo-VMR)2(8+9au) auEuM ’
™ (1+O-5m) ngo_VMR(8+9a") ’
2
20, W\Vo,uR)’ .z,
™= M (a, +8) M ,
(I+0o,,) WVouR(@, +8)

72 :3au(VO-VMR)2(3au+8) 2, W8V o R+ 28 01) 2
™ 41+02) Ga, +8)Vo,, R

Finally, using Young’s inequality and recalling from the definition of IT, ~ I1,, we have

2

+ O;u WV IR (e, +8)|E, ||2 + 3?” (Vo,uR)*(Ga, + S)HWV,ku4
2 (Vo R G+ + LBy
2O o 7+ T+ B+ B

= (fo a):> o e (A1)

= S R IR R
+auH3“WV’k“ +auH3||gk|| +éy tEm T Em téum
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~

Next, consider L, = (W, W, , )*using (A.11), we have

ALA = (WVT,k+1WV,k+1)2 - (WVT,kWV,k)Z

T T 117 T T T T 117
- (WV,k+1WV,k+1 + WV,k WV,k )(WV,k+1WV,k+1 - WV,k WV,k)

_[2 -, (% -3a, DHWV"Hz + gfm} x

i 207 ~ |2
—ay lnz1 o 30‘V HWV,k H + gleM
l+oy

a [l% ] 3aV][z ] aV[lin?M g, DHW”H“

IN

(A.19)

Next, consider L, = ((E)fntr(WkTWk))2 +HVT/,{TO'(xk_1 o, H4

Recalling the NN weights estimation error dynamics (16) and applying Cauchy- Swartz
inequality, we have
AL, = (@207 W, ] - (@ W)
+ “Wkila(xk u, H4 - “W,jo(x,ﬁ1 o, “4

S _®?n Wk 4 + 2HWkTO'(xk—1)‘_‘k-1 “4 _“WkTo-(xk—l)ﬁk—l‘r + Aglsl
(A.20)

~

IA
|
@
5 &

=

. Al T — 1 =2
+16a “Wk G(xkfl)u,HH —HWk O'(xk71)uk71H +Ag,

IN

|
@
E E
=

- ! _16a4)HWkTG(xk—1 )‘_‘k—1H4 + Agl\zll

~ |14 5

+ A&y

IA
|
@
5 &

=

Finally, combing all the above terms yields the first difference of the Lyapunov candidate



function as

aih
=—————AL_+AL,+AL, + AAL,+AL, +AL
26 (g < T TR TR
a’(1-2k")A 2 12
_Zum T P | —(1-
“2gatronol T 2van, ol ~-eled

o S Lol

4 4
-0 W, +e

where

2 ~
ah f;‘fle -3a, J(l ~a, (lio;‘l“M —3a DHWV,k H4
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(A.21)

Eral (1 +2/02 )AgM (1 +2/02 )'51VM F A, +En F ey +E)FAEy +EN +

2a.eh,/(1+02,) . Hence, the non-autonomous Lyapunov candidate is upper bounded

by a time-invariant function. Therefore, AL is less than zero outside of a compact set as

long as the following conditions hold:

2 2
ey P T s
al(1-2k")A

Or
Iz Jz(lwiM)smEb_
YN @, 3-Ta,)A F
Or
Jeu]|> 7 =b.,
Or

i et =

(A.22)

(A.23)

(A.24)

(A.25)
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W, | > min =b; (A.26)

Note that the range for «, and k~ will always guarantee b, >0 and b >0. The range

for o will guarantee b, >0 and by >0. The range for «, will guarantee bWV >0 since

0<a, <o [41+0o}y,) <or, [31+07,), which will guarantee that the second term
shown in (A.26) is positive.
Eventually, the difference between the ideal optimal control and proposed near optimal

control inputs is represented as

u'(x,,k)—u(x,, k)H
=W o, (e )+ 2, (x ) = Wio, (x,. 00 (A.27)
“Pho e e, o)

<b: +e,, =€

us

where b is given in (A.23).
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IV. FIXED FINAL-TIME NEAR OPTIMAL REGULATION OF NONLINEAR

DISCRETE-TIME SYSEMS IN AFFINE FORM USING OUTPUT FEEDBACK

Qiming Zhao, Hao Xu and S. Jagannathan

Abstract — In this paper, the output feedback based finite-horizon near optimal
regulation of nonlinear affine discrete-time systems with unknown system dynamics is
considered. First, a neural network (NN)-based Luenberger observer is proposed to
reconstruct both the system states and the control coefficient matrix. In other words, the
observer design relaxes the need for a separate identifier to construct the control
coefficient matrix. Next, reinforcement learning methodology with actor-critic structure
is utilized to approximate the time-varying solution, referred to as the value function, of
the Hamilton-Jacobi-Bellman (HJB) equation by using a neural network (NN). To
properly satisfy the terminal constraint, a new error term is defined and incorporated in
the NN update law so that the terminal constraint error is also minimized over time. The
NNs with constant weights and time-dependent activation function is employed to
approximate the time-varying value function which subsequently is utilized to generate
the finite horizon near optimal control policy due to NN reconstruction errors. The
proposed scheme functions in a forward-in-time manner without offline training phase.
Lyapunov analysis is used to investigate the stability of the overall closed-loop system.
Simulation results are given to show the effectiveness and feasibility of the proposed

method.
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1.INTRODUCTION

Optimal control has been one of the key topic areas in control for over half a
century due to both theoretical merit and a gamut of practical applications. Traditionally,
for infinite-horizon optimal regulation of linear systems with quadratic cost function
(LQR), a constant solution to the algebraic Riccati equation (ARE) can be found given
the system dynamics [1][2] which is subsequently utilized to obtain the optimal policy.
For general nonlinear systems, the optimal solution can be obtained by solving the
Hamilton-Jacobi-Bellman (HJB) equation, which however, is not an easy task since the
HIJB equation normally does not have an analytical solution.

In the recent decades, with full state feedback, reinforcement learning
methodology is widely used by many researchers to address the optimal control under the
infinite-horizon scenario for both linear and nonlinear systems [5][6][7][8]. However, in
many practical situations, the system state vector is difficult or expensive to measure.
Several traditional nonlinear observers, such as high-gain or sliding mode observers, have
been developed during the past few decades [3][4]. However, the above mentioned
observer designs are applicable to systems which are expressed in a specific system
structure such as Brunovisky-form, and require the system dynamics a priori.

The optimal regulation of nonlinear systems can be addressed either for infinite or
finite fixed time scenario. The finite-horizon optimal regulation still remains unresolved
due to the following reasons. First, the solution to the optimal control of finite-horizon
nonlinear system becomes essentially time-varying thus complicating the analysis, in
contrast with the infinite-horizon case, where the solution is time-independent. In

addition, the terminal constraint is explicitly imposed in the cost function, whereas in the
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infinite-horizon case, the terminal constraint is normally ignored. Finally, addition of
online approximators such as neural networks (NNs) to overcome the system dynamics
and generating an approximate solution to the time dependent HJB equation in a forward-
in-time manner while satisfying the terminal constraint as well as proving closed-loop
stability with the NNs are quite involved.

The past literature [9][10][11][12] provided some insights into solving finite-
horizon optimal regulation of nonlinear system. The developed techniques functioned
either backward-in-time [9][10] or require offline training [11][12] with iteration-based
scheme. However, backward-in-time solution hinders the real time implementation, while
inadequate number of iterations will lead to instability [6]. Further, the state vector is
needed in all these techniques [9][10][11][12]. Therefore, a finite-horizon optimal
regulation scheme, which can be implemented in an online and forward-in-time manner
with completely unknown system dynamics and without using both state measurements
and value and policy iterations, is yet to be developed.

Motivated by the aforementioned deficiencies, in this paper, an extended
Luenberger observer is first proposed to estimate the system states as well as the control
coefficient matrix. The actor-critic architecture is utilized to generate the optimal control
policy wherein the value function is approximated by using the critic NN and the optimal
policy is generated by using the approximated value function and the control coefficient
matrix.

To handle the time-varying nature of the solution to the HJB equation or value
function, NNs with constant weights and time-varying activation functions are utilized. In

addition, in contrast with [11] and [12], the control policy is updated once every sampling
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instant and hence value/policy iterations are not performed. An error term corresponding
to the terminal constraint is defined and minimized overtime such that the terminal
constraint can be properly satisfied. A novel update law for tuning the NN is developed
such that the critic NN weights will be tuned not only by using Bellman error but also the
terminal constraint errors. Finally, stability of our proposed design scheme is
demonstrated by Lyapunov stability analysis.

Therefore, the main contribution of the paper includes the development of a novel
approach to solve the finite-horizon output feedback based near optimal control of
uncertain nonlinear discrete-time systems in affine form in an online and forward-in-time
manner without utilizing value and/or policy iterations. A novel online observer is
introduced for generating the state vector and control coefficient matrix while an explicit
need for an identifier is relaxed. Tuning laws for all the NNs are also derived. Lyapunov
stability is also demonstrated.

The rest of the paper is organized as follows. In Section 2, background and
formulation of finite-horizon optimal control for affine nonlinear discrete-time systems
are introduced. In Section 3 the main control design scheme along with the stability
analysis is addressed. In Section 4, simulation results are given to verify the feasibility of

our approach. Conclusive remarks are provided in Section 5.

2.BACKGROUND AND PROBLEM FORMULATION

Consider the following nonlinear system

X = f(x)+g(x,)u,

(1)
y, =Cx,
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where x, €eQ . cR", u, €Q, cR" and y, €Q R’ are the system states, control

inputs and system outputs, respectively, f(x,)eR", g(x,)eR"™ are smooth unknown
nonlinear dynamics, and C € R”™ is the known output matrix. It is assumed that the
control coefficient matrix g(x,) is bounded above such that 0<||g(xk)||< gy » Where

gy 18 a positive constant. Before proceeding, the following assumption is needed.
Assumption: The nonlinear system given in (1) is controllable and observable.

Moreover, the system output y, €€ is measurable.

The objective of the optimal control design is to determine a feedback control

policy that minimizes the following time-varying value or cost function given by
N-1
V(e k) = pey) + D r(x,,m;,0) 2)
i=k

where [k,N] is the time interval of interest, ¢(x,) is the terminal constraint that
penalizes the terminal state x, r(x,,u,,k) is the cost-to-go function at each time step
k and takes the quadratic form as r(x,,u,,k) = Q(x,,k)+u, R.u,, where O(x,,k) e R
is greater than or equal to zero and R, € R™" is a positive definite symmetric weighting

matrix, respectively. By setting k = N, the terminal constraint for the value function is

given as
V(xy,N)=d(xy) 3)
Remark 1: Generally, the terminal constraint ¢(x,) is a function of state at
terminal stage N and not necessarily to be in quadratic form. In the case of standard

LQR, ¢(x,) takes the quadratic form as @(x,)=x.Q.Xxy and the optimal control
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policy can be obtained by solving the Riccati equation (RE) in a backward-in-time

fashion from the terminal value Q, .

It is also important to note that in the case of finite-horizon, the value function (2)
becomes essentially time-varying, in contrast with the infinite-horizon case [6][7]. By

Bellman’s principle of optimality [1][2], the optimal cost from k onwards is equal to
V" (%K) = min{r(x, )+ V" (x, .k +1)] 4)
The optimal control policy #, that minimizes the value function V" (x,,k) is

obtained by using the stationarity condition 0V (x,,k) / ou, =0 and revealed to be

) V" (x,., k+1
up = R g () TS
k+1

()
From (5), it is clear that even when the full system state vector and dynamics are

available, the optimal control cannot be obtained for the nonlinear discrete-time system

due to the need for the future state vector x,,,. To avoid this drawback and relax the

requirement for system dynamics, iteration-based schemes are normally utilized by using
NNs with offline-training.

However, iteration-based schemes are not preferred for hardware implementation
since the number of iterations to ensure the stability cannot be easily determined [6].
Moreover, the iterative approaches cannot be implemented when the dynamics of the

system are completely unknown, since at least the control coefficient matrix g(x,) is

required to generate the control policy [7]. Finally, optimal policy needs to be found even
when the states are unavailable. Therefore, in this work, a solution is found with
unavailable system states and completely unknown system dynamics without utilizing the

iterative approach, as given in the next section.
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3.FINITE-HORIZON NEAR OPTIMAL REGULATOR DESIGN WITH OUTPUT

FEEDBACK

In this section, the output feedback-based finite-horizon near optimal regulation
scheme for nonlinear discrete-time systems in affine form with completely unknown
system dynamics is addressed. First, due to the unavailability of the system states and
uncertain system dynamics, an extended version of Luenberger observer is proposed to
reconstruct both the system states and control coefficient matrix in an online manner.
Thus the proposed observer design relaxes the need for an explicit identifier. Next, the
reinforcement learning methodology is utilized to approximate the time-varying value
function with actor-critic structure, while both NNs are represented by constant weights
and time-varying activation functions. In addition, an error term corresponding to the
terminal constraint is defined and minimized overtime so that the terminal constraint can
be properly satisfied. The stability of the closed-loop system is demonstrated, by
Lyapunov theory to show that the parameter estimation remains bounded as the system

evolves.

3.1 NN-OBSERVER DESIGN
The system dynamics (1) can be reformulated as

x,, =Ax, + F(x,)+ g(x,)u, ©)
Y, =Cx,

where A is a Hurwitz matrix such that (A, C) is observable and F(x,)= f(x,)— Ax, .

A NN has been proven to be an effective method in the estimation and control of

nonlinear systems due to its online learning capability [16]. According to the universal
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approximation property [19], the system states can be represented by using NN on a
compact set Q2 as

X, =Ax, + F(x,)+ g(x,)u,

T T
=Ax, +W,o.(x,)+ Wg O'g(xk)uk +é&n +E,U,

PRLANACO R 1 (7)
=Ax, + W, 0 o, (x,) |:uk:|+[8Fk 8gk][uj

=Ax, +W'o(x,)u, +&,

op(x,) 0

1
c ERLX(1+m) , — 9%(1+m) i

u,

w
where W = [WF} eR", o(x,) :[

g

& =[en &yulu, €R", with L being the number of hidden neurons. In addition, the

target NN weights, activation function and reconstruction error are assumed to be upper

bounded by ||W||SWM ,

O'(xk)”SO'M and ||§k||S§M , where W,,, o and &, are
positive constants. Then, the system states x,,, =Ax, + F(x,)+g(x,)u, can be

identified by updating the target NN weight matrix W .
Since the true system states are unavailable for the controller, we propose the

following extended Luenberger observer described by

'%kﬂ = A-’%k + WkTG("zk)l_lk +L(y, - C-’%k) ®)
j’k = C)%k

where Wkﬂ is the estimated value of the target NN weights W, x, is the reconstructed

system state vector, p, is the estimated output vector and L € R™” is the observer gain

selected by the designer, respectively.
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Now express the state estimation error as

X = X — X

= Ax, + WTO_(xk Yu, +&, —(Ax, + szla("%k Yu, + L(y, — Cx,)) ©)

—AX +W o(x)u, +W'6(x,, X ), +&,

=A.X, + WkTO-(&k)I'_’k + &0,
where A, =A—-LC is the closed-loop matrix, Wk = W—Wk is the NN weights
estimation error, &(x,,%,) =o(x,)—o(x,) and &, =W 'G(x,,X,)u, +&, are bounded
terms due to the bounded values of ideal NN weights, activation functions and
reconstruction errors.

Remark 2: It should be noted that the proposed observer (8) has two essential
purposes. First, the observer presented in (8) generates the reconstructed system states for
the controller design. Second, the structure of the observer is novel in that it also
generates the control coefficient matrix g(x,), which will be viewed as a NN-based
identifier. Thus, the NN-based observer (8) can be viewed both as a standard observer
and an identifier whose estimate of the control coefficient matrix g(x, ), is utilized in the
near optimal control design shown in the next section.

Now select the tuning law for the NN weights as

Wk+1 = (1_al)Wk +fio(xX w1 (10)
where «,, f, are the tuning parameters, y,,, =y, —J,, 1s the output error and

I € R™" is selected to match the dimension.
Hence, the NN weight estimation error dynamics, by recalling from (9), are

revealed to be
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W/c+1 =W - Wk+1
= (l_al)Wk +aW - po(x)uy,.,l' 1)
=(l—a)W, +aW - po(x)ux A C'I"
- Bo(R)u o (X )W,C'I - Bio(%)idEn 1"
Next, the boundedness of the NN weights estimation error Wk will be
demonstrated in Theorem 1. Before proceeding, the following definition is required.
Definition 1 [19]: An equilibrium point x, is said to be uniformly ultimately

bounded (UUB) if there exists a compact set Q< R" so that for all initial statex, € Q _,

<B forall k>k,+T.

there exists a bound B and a time 7'(B, x,) such that ||xk - X,

Theorem 1 (Boundedness of the observer error): Let the nonlinear system (1) be

controllable and observable while the system output, y, €Q) , be measurable. Let the

initial NN observer weights Wk are selected within compact set (2, which contains the

ideal weights W . Given an initial admissible control input u, € Q, and let the proposed
observer be given as in (8) and the update law for tuning the NN weights be given by (10).

Let the control signal be persistently exciting (PE). Then, there exist positive constants

2-\2 <a;<land 0<f < 2(1_?[)_2“2(10
||0(xk)uk|| +1

a, and f, satisfying , with 4. denoting

the minimum eigenvalue, such that the observer error X, and the NN weights estimation

errors Wk are all UUB, with the bounds given by (A.6) and (A.7).

Proof: See Appendix.
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3.2 REINFORCEMENT LEARNING BASED NEAR OPTIMAL
CONTROLLER DESIGN
In this subsection, we present the finite-horizon near optimal regulator which
requires neither the system states nor the system dynamics. The reason we consider this
design being near optimal rather than optimal is due to the observer NN reconstruction
errors. Based on the observer design proposed in Section 3.1, the feedback signal for the

controller only requires the reconstructed state vector x, generated by the observer and

the control coefficient matrix. To overcome the drawback of dependency on the future
value of system states (5) as stated in Section 2, reinforcement learning-based
methodology with an actor-critic structure is adopted to approximate the value function
and control inputs individually.

The value function is obtained approximately by using the temporal difference
error while the optimal control policy is generated by minimizing this value function. The
time-varying nature of the value function and control inputs are handled by utilizing NNs
with constant weights and time-varying activation functions. In addition, the terminal
constraint in the cost function can be properly satisfied by defining and minimizing a new

error term corresponding to the terminal constraint ¢(x, ) overtime. As a result, the

proposed algorithm performs in an online and forward-in-time manner which enjoys
great practical benefits.

According to the universal approximation property of NNs [19] and actor-critic
methodology, the value function and control inputs can be represented by a “critic” NN

and an “actor” NN, respectively, as

V(x.k) =W, 0,(x,.k)+¢,(x,,k) (12)
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and

u(x, k) =W, 0, (x,. k) +,(x,, k) (13)
where W, e R and W, e R™" are the constant target NN weights, with Z, and L,
the number of hidden neurons, o, (x,,k) € R” and o, (x,,k) € R™ are the time-varying
activation functions, ¢,(x,,k) and ¢,(x,,k) are the NN reconstruction errors for the

critic and action network, respectively. Under standard assumption, the target NN

weights are considered bounded above such that ||WV||SWVM and ||Wu

W s
respectively, where both W,,, and W,,, are positive constants [19].

The NN activation functions and the reconstruction errors are also assumed to be

bounded above such that "(TV(xk,k)”SGVM , Gu(xk,k)"SGuM, |8V(xk,k)|S8VM and

&, (xk,k)| <é&ns With o, o0 €y and €, all positive constants [19]. In addition, in
this work, the gradient of the reconstruction error is also assumed to be bounded above

such as |0g, , /ox, .| <&, with &, a positive constant [7][15]. The terminal constraint
V.k k+1 ™ mw ap

of the value function is defined, similar to (17), as

V(x4 N) = W5, (30 N) + &, (%, N) (14)
with o,(xy,N) and ¢,(x,,N) represent the activation and construction error
corresponding to the terminal state x, .

Remark 3: The fundamental difference between this work and [11] is that our
proposed scheme yields a completely forward-in-time and online solution without using

value/policy iteration and offline training, whereas the scheme proposed in [11] is
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essentially an iteration-based DHDP scheme and NN weights are trained offline. In
addition, state availability is relaxed in this work.
3.2.1 Value Function Approximation. According to (17), the time-varying

value function V(x,,k) can be approximated by using a NN as
V(& k) = W0, (%K) (15)
where I}(fck,k) represents the approximated value function at time step £ . W,,k and
o,(x,,k) are the estimated critic NN weights and “reconstructed” activation function
with the estimated states vector X, as the inputs.
The value function at the terminal stage can be represented by
V(x:N) =W, ,0, (. N) (16)
where x is an estimation of the terminal state. It should be noted that since the true
value of x, is not known, X, can be considered to be an “estimate” of x and can be

chosen randomly as long as x, lies within a region for a stabilizing control policy

[8][11].
To ensure optimality, the Bellman equation should hold along the system
trajectory. According to the principle of optimality, the true Bellman equation is given by
O(x,,.k)+ () Ru; +V" (x,,,,k+1)=V"(x,,k)=0 (17)
However, (22) no longer holds when the reconstructed system state vector x, and

NN approximation are considered. Therefore, with estimated values, the Bellman

equation (22) becomes
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eaos = O(X,, k) + 1 Ruy +V (%, k+1) =V (%, k)
= O(%,, k) +u Ru, + W, 0, (R, k+) - W, 0, (%, k) (18)

= O(%,.k) + u; Ru, =W, Ao, (%)
where ey, is the Bellman equation residual error along the system trajectory, and
Ao, (x,,k)=0,(x,,k)—0o,(x,,,k+]).

Next, using (21), define an additional error term corresponding to the terminal

constraint as
ey =w(xy) _Wl}:ko-V (xy,N) (19)
The objective of the optimal control design is thus to minimize the Bellman
equation residual error ey, as well as the terminal constraint error ey, , so that the
optimality can be achieved and the terminal constraint can be properly satisfied. Next,

based on gradient descent approach, the update law for critic NN can be defined as

W -W. +a AO_V("}kak)eBO,k o O'V()ACN,N)eN,k
B T T  AGT (R, )AG, (RL,k) ) 1+0) (R, N)o, (%4, N)

(20)

where ¢, i1s a design parameter.

Now define W, =W, —W, . The standard Bellman equation (22) can be
expressed by NN representation as

0=0(x,.k)+})" Ru, —W,Ac,(x,,k)—Ae,(x,,k) (21)

where Ao, (x,.k)=0,(x,,k)—0,(x,,,k+1)and Ag,(x,,k)=¢,(x,,k)—¢,(x,,,,k+1).

Subtracting (23) from (21), ey, can be further derived as

€gox = O(x,,k)+ ”kTR”k - WVT,kAO-V (x,,k)
—O(x,, k)= ()" Ru; + W, Ao, (x,,k)+Ag, (x,,k)
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=O(x,,k)+ul Ru, —O(x,,k)—(u))" Ru, =W, Ac, (%,,k)+ W, Ao, (%, k)
-W/ Ao, (%, k) + W/ Ac, (x,,k)+Ag, (x,,k)

<Q(x,, k) +u; Ru, —O(x,,k)—(u})" Ru, + W, Ao, (%,,k) (22)
+WAG, (x,,%,,k)+Ag, (x,,k)

<L %] +W iAo, (R,,k)+Aeyy (x, k)
where L, is a positive Lipschitz constant for Q(X,,k)+u, Ru, —Q(x,,k)—(u;)" Ru;
due to the quadratic form in both system states and control inputs. In addition,
AG,(x,,Xx,,k)=A0, (x,,k)— Ao, (x,,k) and Ag,, (x,,k) =W,/ AG,(x,,X,.k)+ A&, (x,,k)
are all bounded terms due to the boundedness of ideal NN weights, activation functions
and reconstruction errors.

Recalling from (14), the terminal constraint error ey, can be further expressed as

exy =W (x)~ W0, (2. N)

=W 0, (X, N) + &, (X, N) =W, 0, (£, N)

=W, 0, (x,N) =W, 0, (%, N) + &, (x,, N) )
+ W/, (%, N) = W0, (2. N)
=W, o, (X, N)+ WG, (xy, %y, N) + &, (xy,N)

=W, o, (X4, N)+ &
where &, (xy,Xy,N)=0,(xy,N)—0, (x4, N) and g, =W, G, (xy, Xy, N)+&, (xy,N)
are bounded due to bounded ideal NN weights, activation function and reconstruction
errors.
Finally, the error dynamics for critic NN weights are revealed to be

W W —a Aoy, (X,,k)ey, —a o, (X4, N)ey,
T T b Aoy (R, A, (X, 140 (X0, N)oy, (X, N)

24)
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Next, the boundedness of the critic NN weights will be demonstrated, as shown in
the following theorem. Before proceeding, the following definition is needed.

Definition 2 [8]: Let Q, denote the set of admissible control. A control function

u:R" —>N" is defined to be admissible if the following is true:
u is continuous on Q  ;
u(x)),_, =0;
u(x) stabilize the system (1) on Q _;
J(x(0),u) <o0,Vx(0) Q2.
Since the design scheme is similar to policy iteration, we need to solve a fixed-
point equation rather than recursive equation. The initial admissible control guarantees
the solution of the fixed-potion equation exists, thus the approximation process can be

effectively done by our proposed scheme.

Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1)
be controllable and observable while the system output, y, €2, be measurable. Let the
initial critic NN weights WVk are selected within compact set €2, which contains the

ideal weights W, . Let u(0) € 2, be an initial admissible control input for the system (1).

Let the value function be approximated by a critic NN and the tuning law be given by

(26). Then, under the assumptions stated in this paper, there exists a positive constant «,

~

satisfying 0 <« < P such that the critic NN weights estimation error W,, is UUB with

a computable bound bWV given in (A.16).

Proof: See Appendix.
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3.2.2 Control Input Approximation. In this subsection, the near optimal
control policy is obtained such that the estimated value function (15) is minimized.

Recalling (18), the estimation of the control inputs by using NN can be represented as
(%, k) =W 0, (%K) (25)

where u(x,,k) represents the approximated control input vector at time step &, Wuk and

o,(x,,k) are the estimated values of the actor NN weights and “reconstructed”

activation function with the estimated state vector x, as the input.

Define the control input error as

Cu = ﬁ()’ék’k)_ﬁl (&kak) (26)
A 1 AT 5 a . . .
where u,(x,,k) = _ER_I &' (x,)VV(x,.,,k+1) is the control policy that minimizes the

approximated value function I}(fck,k), V denotes the gradient of the estimated value

function with respect to the system states, g(x,) is the approximated control coefficient

matrix generated by the NN-based observer and I}(.Qk+1,k +1) is the approximated value

function from the critic network.
Therefore, the control error (26) becomes

€ = i’(j‘\:k k) — ﬁl(‘i\:k k)

b o | U T . 27)
=W, o, (x.,k)+ > R g (x,)Vo,(x,,,k+D)W,
The actor NN weights tuning law is then defined as
W W _ O-u('%kak)ezk (28)

=W a
uk+1 uk u 1+G;r(-%k,k)6u(&k’k)

where «, >0 is a design parameter.
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To find the error dynamics for the actor NN weights, first observe that

u(xkﬂk) = WuTGu (xk’k) + gu (xk7k)

1 (29)
= _ERilgT (X )(Vo, (X k + DWW, + Ve, (x,,,k +1)
Or equivalently,
0=W,0,(x,k) +&,x,,k) +%R1gT(xk oy (x,,,k+DW,
. (30)
+ ER_lgT(xk Ve (X, k+1)
Subtracting (30) from (27), we have
Cuc = W;co-u (%, k) + %ngA’T(i\:k oy (%, k+ I)WVk -W, o,(x,.k)-&,(x,.k)
—%ngT(xk)VUE (X, K+ DWW, _%ngT(xk)ng (X, k+1)
= W0, (3.0 = W5, (x .3, 0) &, (x,.K)
31

1 . ~ | ~ . -
+ERilgT(xk)vo-;(ka’k-i_I)WVk +ER ' (X )VE) (X, Xk + DWW,

| T . A
+ER (T (X)) -g (x Vo (X, k+DW),

| — T [
_ER g (xk)VO-V(ka’k-i_l)WV_ER g (x)Ve,(x,.,k+1)

where &,(x,,X,.k)=0,(x,,k)—0,(x,,k) and V&) (x,,, X, . k+1)=Vo,(x, . .k+1)—
VO'; ('Qkﬂak + 1) :

For simplicity, denote &, =G,(x,,X,.k) , V6, =Vo, (X, ,k+1) ,

V&, =V&i(x,. .. .k+1) , Voo, =Vo,(x,,.k+1) and Ve, =Ve,(x,,k+1),

then (31) can be further derived as
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euk == NuTko-u(’%k’k)_WuTguk _gu (xk’k)+%R_lgT(xk)vo-;k+lWV
| T | ~T

_ER g (xk)vo-Vk+1WVk+ER g (x)Vo, W,
| . T | R R

_ER lgT(xk)Vo';mWVk +5R I(gT(xk)_gT(xk))VGIIkHWV
1. . n 1. . AT

+ER 1(gT(xk)_gT(xk))vo-I-/rk+lWV _ER l(gT(xk)_gT(xk))Vo-;kﬂWVk
l—lTA AT 2 AT 17 1—1T T 1—1T

_ER (g (x)-g (x)Vo, . W, _ER 8 (xk)VGWcHWV_ER g (x)Ve,,
~ R 1 . AT i | .

:_W;co-u(xkak)_ER lgT(xk)Vo-;mWWc _ER lgT(xk)VG;mWV

(32)

| . R T | R, T o~
_ER l(gT(xk)_gT(xk))vo-ngWVk +5R lgT(xk)VO_;kﬂWVk +&,

where g(x,)=g(x,)—g(x,) and &, =-¢,(x,k) +%R_lgT (X )V W, +%R_l X

- N I _ ~ .
(gT(xk)—gT(xk))VO';mW,,—ER1gT(xk)V€W(+1—WTO'uk is bounded due to the

u

bounded ideal NN weights, activation function and reconstruction errors. Then the error

dynamics for the actor NN weights are revealed to be

W =W +«
uh+1 uk u 1+(7MT (Sck,k)o',, (-i.k’k)

- o, (%, kel (33)

Remark 4: The update law for tuning the actor NN weights is based on gradient
descent approach and it is similar to [7] with the difference being the estimated state

vector x,is utilized as the input to the actor NN activation function instead of actual
system state vector x, . In addition, total error comprising of Bellman error and terminal

constraint error are utilized to tune the weights whereas in [7], the terminal constraint is
ignored. Further, the optimal control scheme in this work utilizes the identified control

coefficient matrix g(x,) , whereas in [7], the control coefficient matrix g(x,) is
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assumed to be known. Due to these differences, the stability analysis differs significantly
from [7].

To complete this subsection, the flowchart of our proposed finite-horizon near
optimal regulation scheme is shown in Figure 1.

Start Proposed
Algorithm

<&
<
y

A
Initialize the System
(observer states, NN weights)

v
Update the Observer
~ ~ AT A N— ~
X = Ax + W o(x )y + Ly, —Cxy)
Vi = O
v

Update the NN-based Identifier
Wia = (—a)W; + Bio(X)u vl
]

Update the Value Function and the Critic Network Weights
A - R
Vi(xp,k)=Wyop (X, k)
AO'V(xkak)eBo,k

1+ Aoy (%, k)Acy, (%, ,k)
Oy (;CNaN)eN,k
4 - -

1+ 0y (Xy,N)oy, (Xy,N)

v

Update the Control Input and the Action Network Weights
AL A ST ~
u(xkik) = Wuko-u (xk’k)

Wi =Wy +ay

+a

I T
% 77, O-u(xk’k)euk
Wuk+l - Wuk -0y
T, ~ A
l+o0,(x;,k)o,(x,,k)
Yes
3 Update the time interval
k=N?
End

Figure 1. Flowchart of the proposed finite-horizon near optimal regulator

We initialize the system with an admissible control as well as proper parameter

selection and NN weights initialization. Then, the NNs for observer, critic and actor are
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updated based on our proposed weights tuning laws at each sampling interval beginning
with an initial time and until the final fixed time instant in an online and forward-in-time

fashion.

3.3 STABILITY ANALYSIS

In this subsection, the system stability will be investigated. It will be shown that
the overall closed-loop system remain bounded under the proposed near optimal regulator
design.

Theorem 3 (Boundedness of the closed-loop system) Let the nonlinear system (1)
be controllable and observable while the system output, y, €, be measurable. Let the
initial NN weights for the observer, critic network and actor network Wk, WV’ , and Wu, ‘
be selected within compact set €, Q, and Q ,, which contains the ideal weights W,

W, and W,. Let u(0) € Q, be an initial admissible control input for the system (1). Let

the observer be given by (8) and the NN weights update law for the observer, critic
network and action network be provided by (10), (26) and (28), respectively. Then,

under the assumptions stated in this paper, there exists positive constant o, ,«,,, such
that the observer error X,, NN observer weight estimation errors W, , critic and action

network weights estimation errors W,, and W,, are all UUB, with the ultimate bounds
given by (A.20) ~ (A.23). Moreover, the estimated control input is bounded closed to the

optimal value such that ‘

u(x,,k)—ua(x,, k)” <¢,, forasmall positive constant ¢, .

Proof: See appendix.
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4.SIMULATION RESULTS

In this section, a practical example is considered to illustrate our proposed near

optimal regulation design scheme. Consider the Van der Pol oscillator with the dynamics

given as
X =X,
X, :(l—xlz)xz—x1 +u (34)
y=x

The Euler method is utilized to discretize the system with a step size of 7 =5ms.
The weighting matrices in (2) are selected as Q(x,,k)=0.1x,x, and R, =1,

0.5 0.1

while 4 =
0 0.025

] The terminal constraint is chosen as ¢(x,)=1. For the NN

setup, the inputs for the NN observer is selected as z, =[x,.u,]. The time-varying
activation functions for both the critic and actor network are chosen as
o, (X,,N-k)=0,(x,,N-k)=[%,% exp(—-1),%,, X, exp(—1), %7, %7, %, X,7, X, 7, X3 T

,X,%,,%,%,7]", which results in 10 neurons, and 7 = (N —k)/N is the normalized time-to-

go.

The design parameters are chosen as «;, =0.7, f,=001, ¢, =0.1, and
a, =0.03. The initial system states and the observer states are selected as x, =[0.1,0.1]"
and x, =[0,0]", respectively. The observer gain is chosen as L=[-0.3, 0.1]" and the

matching matrix is selected as [ = [1, I]T. The observer, critic and action NN weights are

all initialized at random. Simulation results are shown as below.
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First, the system response is shown in Figure 2 and Figure 3. From the figures, it
is clear that both system states and control inputs clearly converge close enough to the
origin within finite time period, which illustrates the stability of the proposed design

scheme.

0.1

System Resonse

5 10 15
Time (sec)
Figure 2. System response
0.05
Y 0 N~
5
[=3
£
3 -0.05
T
o
o
-0.1 J
-0.15
0 5 10 15
Time (sec)

Figure 3. Control signal
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Next, the history of observer error is plotted in Figure 4. From the figure, the
convergence of the observer error clearly shows the feasibility of the proposed observer

design.

0.3 o
_"1
0.25 \ ——e,
0.2 \
W g
g o
£ 0.05
7] 7N
< 0'- \ / K\ apmu
(o] ‘. \" / DN Sy
t .
-0.05= 3
A4
01-%—2
-0.15
0 5 10 15

Time (sec)

Figure 4. Observer error

Next, the error history in the design procedure is given in Figure 5 and Figure 6.
From Figure 5, the Bellman equation error converges close to zero within approximately
5 seconds, which illustrates the fact that the optimality is indeed achieved. More
importantly, the evolution of the terminal constraint error is shown in Figure 6.
Convergence of the terminal constraint error demonstrates that the terminal constraint is

also satisfied by our proposed design scheme.
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0.3
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Bellman Equtation Error
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Figure 5. History of bellman equation error

Terminal Constraint Error

5 10 15
Time (sec)

Figure 6. History of terminal constraint error

Next, the convergence of critic and actor NN weights is shown in Figure 7 and
Figure 8, respectively. It can be observed from the results that both the weights converge

and remain bounded, as desired.
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Figure 7. Convergence of critic NN weights
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Figure 8. Convergence of actor NN weights

Finally, the comparison of the cost with a stabilizing control and our proposed
near optimal control scheme is given in Figure 9. It can be seen clearly from the figure

that both the cost converge to the terminal constraint ¢(x, ) =1, while our design renders

a lower cost when compared with the non-optimal controller design.
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== Proposed Optimal Control
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Figure 9. Comparison of the cost

5. CONCLUSIONS

In this paper, the reinforcement learning-based fixed final time near optimal
regulator design by using output feedback for nonlinear discrete-time system in affine
form with completely unknown system dynamics is addressed. Compared to the
traditional finite-horizon optimal regulation design, the proposed scheme not only relaxes
the requirement on availability of the system states and control coefficient matrix, but
also functions in an online and forward-in-time manner instead of performing offline
training and value/policy iteration.

The NN-based Luenberger observer relaxes the need for an additional identifier,
while time-dependency nature of the finite-horizon is handled by a NN structure with
constant weights and time-varying activation function. The terminal constraint is properly
satisfied by minimizing an additional error term along the system trajectory. All NN
weights are tuned online by using proposed update laws and Lyapunov stability theory

demonstrated that the approximated control inputs converges close to its optimal value as
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time evolves. The performance of the proposed finite time near optimal regulator is

demonstrated via simulation.
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APPENDIX

Proof of Theorem I: Consider the Lyapunov function candidate as

Lo(k)=Lg,+Ly, (A.1)

2
where Ly, =¥, %, . Ly, =trW AW} and A= -« Jrﬂlmin iy , with 7eR"™ the
1

identity matrix and 0 < x2, <|o(%,)@,| is ensured to exist by the PE conditions, and
tr{e} denotes the trace operator.
The first difference of L, (k) is given by

AL (k) =AL;, +AL;, (A.2)

Next, we consider each term in (A.2) individually. First, recall from the observer error

dynamics (9), we have

ALz, = ikTH';CJkH - Eszk

=(4.x, + WkTJ('i’-k Wy + g, ) (A%, + WkTU(-’%k Wy +Eg) — ggik

=X AT AR, +[o(X )W o(X )0+ 808, + 2% AW o(x)u,  (A3)
+2%] A]E,, + 285 W o(x)u - % %,

0 A H2||0(fck)t7k I +3len’

where y =3|4,| .

Next, recall the NN weight estimation error dynamics (11), we have
ALy, =tr{W AW, } — e, AW}

< 21— triW AW+ 622 AW + 6 2 Ao (2 )a, [ ||4. | Jrc] %,

AC

—4(l-a) B Ay (IC)W/(T ||G('§:k u, ”2 Wk + 21312/\”(7(32% u, ”2 ”lCHZHWk HZ

+682N|o (& )m | 1C] 60| — triw T AW}
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2

<—(1=2(1-a ) WeW, AW} + 622 AW + 6 82 Aok u, || A el %[

AC

~25,((1- )20y (10) ~ B0 )it [ A X oy [ |7
+657 Ao ([ il eo| (A4)
e %

~25,((1~ ) Ay (10) ~ B )it [ IAX o R 7 + v

<~(1-20-a) )P + 62 Ao |

AC

where A = ||| and &, = 62 AW + 682 A|o(x ), | 1A o -
Therefore, the first difference of the total Lyapunov candidate, by combining (A.3) and
(A.4), is given as

AL (k)=AL,, +AL;,

<~(-pE | + 3| o GOm [ +3eul -1 -20-a)H AP

2B\
1+;(2

min

<=+ 4ic] a+ ZE - loa,

. loGom, | + 281 AJZ ] + & (A.5)

~ 12
—(=20-a) A + oy
where g0y = 3[Eoy|” + &wn - By standard Lyapunov stability theory, AL, is less than

zero outside a compact set as long as the following conditions hold:

B €om
. s, (A.6)
S e AT

~ &
wl> sz 020 (A-D

Note that in (A.6) the denominator is guaranteed to be positive, i.e.,

1
<r<
T i ar )

, by properly selecting the designed parameters A, L and /.
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Proof of Theorem 2: First, for simplicity, denote A, =Ao,(x,.k) ,

A&y =Ag,;(x, k) and 6, = 0, (X, N). Consider the following Lyapunov candidate
Ly, (k)= LOW,) +TIL(%,) + TIL(OW, ) (A.8)

where LW, )=W W, , L&)=('%) LW,)=(teW ' AW,})*  and

o, (143a))L;,
(1+AG% )(1-37%)

min

. Next, take each term in (A.8) individually. The first difference

of L(WW ), by recalling (24), is given by

SRS TS ~ e
AL(WVk) = WVk+1WWc+1 - WWcWVk
A . T
=~ AGVkeBO,k OyNeNk
= WVk_aVl AATA,\ _aV1 AT ~ X
+ O-Vk O-Vk +o—VNo-VN
A A A9
~ Aoy epo, Oynen i =T (A-9)
W, -« -a -w, W,
Vk 4 1 A AT A A 14 1+ AT ~ Vk Vk
+ O-Vk O-Vk GVNo-VN
TTA A T A 2 AT A A 2 AT A
_ WAy epo, Wyomens | > €osA0ypAdy 2 ONkOWNON
- 14 AT N - v AT ~ v AT N 2 14 N N 2
1+Ac,,AGy, 14+ 6,0 (1+Ac,Acy,) (A+o,80n)

Recall from (22) and (23), the first difference of L(WVk) can be further derived as
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WinG, (L& +Wiad, +8c ) | W6, W56 +6n)

Vv

AL(W, ) < 2a
W) ' 1+ A6, A6, 1+ 66
(Lm||37,{||2 + W, AG,, +AgVBk)2A&;kA&Vk o (7,26 +2n ) 5h6n
(1+AG,,AG,,)’ Y (1+6560)

+a;

~ A ~ 2 ~ ~ ~ ~ ~ A
LW MG, %] 2y WiaAGuAS Wy o WyAS,Asyy

T 14 A6, AG, "1+ AGAG, " 1+AG,,AG,
W6, 6hW, Wis L,|%
-2a, IUVNGVN *-2a, _O-TVNgVN 3oy ST A
+6 O 1+ 6,40 1+Ac, Aoy,
A W, AG, AGW,
+3a,§—8TVB" —+3a; & O-WfT il
1+Ao, Aoy, 1+Aoc, Aoy,
TAG A ;
o TSyt
O +AO—VkAO_Vk
a,(1-60,) Wy AS, AGL W, —a (-2 )WV—IE&VN6IENWVI¢
2 1+AG,,AG,, ' " 14606
2~ (14
+a, (1+3aV)—’”A)TC"” &)y
1+ Ao AGW (A 10)
aV(l 6aV) AO-mm
2 1+AG), [ - 1-20) 12 HWW”
a,(1+3a,) 5~ 4
+1V_|_A—O'\-§n:Lm||xk” +8VTM
where &,,, =, (1+3a,) b g (1+2a )—SVN
e "1+ AGLAG, T "1+ A, AG,

Next, consider L(X,). Recall (A.3) and apply Cauchy-Schwartz inequality, the first

difference of L(X,) is given by
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AL(-’NCk) = (zlll}kﬂ)z - (-’N‘fkTik)2
~ i 2 ~ — -
<[l L fosoml + el |

N ~ |2 . _
[(1 RS+ Jom + 3||80k||2}

) (A.11)
e CURSE (AN ZEATA RS
+ 2715 (37 lo)m | + 36l
< (1= 2% +367, | oz +36E0 ]
Next, take L(W, ). Recall (A.4) and write the difference L(W,) as
AL(W,) = (W L AW, 3 = (W AW, )
< (=20~ a) AP ~2pnM oo, 7.
+62 Mo (), || A, FICT IR + eyt x (0 -20-a)) AP
~25 Mo [ 7| +6p2Mlo w4 PR + v
< {-(1-20-a) AW ~280M|oGom | ||
+6 82 Ao (X T [ A [T [%, ] +wn} ¥
(a-20-a) AW - 2p8lo 0w 7.
+6 B2 A|o (X )T A [T %, + )

<—(1-8(1-a) W[, [ + 53 ~80-a,) B |o (R, [

4

+21082 02 |o (%),

AC

il ] +1280° Mo Geom | ||

<-(1-8(-a) W[ -4 -a,)* -3 s |o 0w | 7.

4

+210A2 Ll |%]" + 562

AC

where 77 = 2(1 - 0,) s, (10) - B |o(X i |

Therefore, combining (A.11) and (A.12) yields
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AL(X,)+AL(W,)

<—(1-2 )R] +36], H4||G($ck )i, ||“ ¥ 36||§0k '~ -8 -a) W[

—42(1 - ) =3 B’ |lC|| ||xk|| +560,

<—(1-3)|% | — 4oz )m,| HWk“ —(1—8(1—051)4)/\2”@” +e,
where g, =368, +5&2-
Finally, combining (A.10) and (A.13) yields the first difference of total Lyapunov
candidate as

AL, (k) = AL(W,,) + TIAL(, ) + TIAL(W,)

o, (1-6a,) ASZ,
2 1+ A&z

IN

HWWH -, (1-2a,) 20—  win HWVkH (A.14)

Ca,(1+3a,)

ot A L ENTA Y A Y —(1—8(1—a1)4)HA2HWkH4 te,

where &, =¢,,,, +11lg,. By using standard Lyapunov stability analysis, AL is less than

zero outside a compact set as long as the following conditions hold:

- &
X, || > =bh. A.15
” k” 4 aV(1+3aV)L2 X ( )
1+AGL, "
Or
- £
W | > ! =b. A.l6
Wal> | ey a2 " 9
2 1+A6—2 ray(=2ay) 5
Or

P> 1/411;(;‘“ +( —21(1 “a) A’ bi (A.17)
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Proof of Theorem 3: Consider the following Lyapunov candidate as
L(k)=L(k)+ LWV (k)+ ZLW,, (k) (A.18)

where L, (k) and LWV (k) are defined in (A.1) and (A.8), respectively, and

ay (1 B Zay )&jqin éuM
a,5+45,, Vo, 62 +28,,
(1-20-a)*)A(+ 64, e
2auo_§ (1 + O,\_iun + 5uMﬂ’max (R_l ))

LW,, (k)= HWuk H with X = min

Denote 6, =o,(x,,k), g, =g'(x,), & =g'(x,) and g/ =g"(x,) for simplicity,

then the first difference of LW" (k) recalling from (33) and (32), is given by

AL, (k) =|Ww,

uk+1

A T
O-ukeuk
AT A~

Wuk Wuk + au 1 Wuk
+ O-uk Uuk

A A

T 17 A -1 T AT [p
> 0,0uWu —a ouR & Vo Wy

uk

“1+6" 6 “2(0+6,.6.,)

uk ™~ uk
A 1~Ty AT
ouR g Vo W,
AT ~
2(1+O-uko-uk)

u

l

IN

~ k
A —1{AT T AT “
—a ouR (gk — 8 )VO-VkHWVk
u AT A

2(1+0,0,)

A —1~T AT 7 A =T
o R g Vo, Wy " O i Euk

u

AT A u AT A
2(1 + O-uko-uk) 1 + O-uko-uk

2
o ~

u min W
|
1+0, . ]

-2 2 AT ~ =T
||R gMGukGukguk

5 R ~ 12
iicir s WADS =) (RN

2 2 AT A AT A 2 —
X0, 155 |12 "R 0wV Oy Vo WonEam
Wk ta AT ~ 2 u
4(1+6,,6,) H
AT A )
” CuOuR "

41+6%6,.)°| |

+au(1+4”§5uk”]vg;m 7,

IA
T
R

uk +au

AT A 2 2=
GukaukR gMguM

AT A N2
(1+656.)° |

u

~ =T
O-ukguk
AT A

~ 12 ~

2
oW +e. 1 W,
+O—uko-uk

u

u min

“1+6°

umin

1 A (R s _
uag{4||§uk|| + 4(im+ (0_2 ))J“Wkuz T

umin

<-a w.,

+a (A.19)
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5 (R g,

~ 41+ 0, ) _ .
where Em :au ) EuM > 0<Gumin < O <o—umax and
+A (R )vo-VmaxWVM + O-umax
41+ O'umm) 1+ O'umm
AT
HVO-WH-I SVO)

Combine (A.5), (A.14) and (A.19) to obtain the first difference of the total Lyapunov

candidate as
AL(k)= AL (k) + ALWV (k) + AZL (k)

<~ (1= A+ I+ 2 )NE] + o~ [ Joom

aV(l 60(,,) AG. H Vk”

~ 12
_(]—Z(I—O!I)Z)AHWkH 1+A0

a, (1+3a,)
1+AG2,

-, (1-2a,) 0 H W] - R A s (e RTAN T

—(1-8(1~ Ot))HAquH +tée - 052@‘

1+6. W
1 A R’ ~ _
+a Z(H i, ||JVGVW Vk” +a,Xo (4”3 1 4(1+(O_ ) J“Wk“2+28m
<=y + 207 )& + cen - loom
e R e e |
-2 A i |t P - S0 1
~(1-80-a) N[~z lfz—ﬂg\ W,

umin

where €.y =&om + & 280y -

By using standard Lyapunov stability analysis, AL is less than zero outside a compact set

as long as the following conditions hold:



\/ Eom
1=+ 4yfic]Ha+ 22y

%, || > min =b,
Ecm
4l o, (1+3ay) 5

1+AGL, "

~ &
il

a,(1-6a,) A6’ G

2 1+AS2 +ay(1=2ay) 2,

~2
min

Eom

NP ’
lo()m,| +(1-2(1-))A

M1l
S

=

7> min

A oM
2 2 2
ALy . +(1-8(1-a;)")IIA

1+62

umin
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(A.20)

(A21)

(A.22)

(A.23)

Eventually, the difference between the ideal optimal control and proposed near optimal

control inputs is represented as

W (x,, k)= (%, 0
=[wio. e ve, (x k)W io, (2,0
= i, k) W) 6, () 4 2, ()|

< bW” Ot W

5u(xk,fck,k)||+5uM

< bpf/" O + la WuMch + guM = guu

(A.24)

where /_ is the Lipschitz constant of o (), and b_ , b. are given in (A.23) and (A.20).
o u W, X
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V. FINITE-HORIZON NEAR OPTIMAL CONTROL OF QUANTIZED
NONLINEAR DISCRETE-TIME SYSTEMS WITH INPUT CONSTRAINT

USING NEURAL NETWORKS

Qiming Zhao, Hao Xu and S. Jagannathan
Abstract — In this work, the output feedback based finite-horizon near optimal regulation
of uncertain quantized affine nonlinear discrete-time systems with control constraint is
considered. First, the effect of control constraint is handled by a nonquadratic cost
functional. Next, a neural network (NN)-based Luenberger observer is proposed to
reconstruct both the system states and the control coefficient matrix so that a separate
identifier is not needed. Then, approximate dynamic programming methodology with
actor-critic structure is utilized to approximate the time-varying solution of the
Hamilton-Jacobi-Bellman (HJB) by using NNs with constant weights and time-dependent
activation functions. A new error term is defined and incorporated in the NN update law
so that the terminal constraint error is also minimized over time. Finally, a novel
dynamic quantizer for the control inputs with adaptive step-size is designed to eliminate
the quantization error overtime thus overcoming the drawback of the traditional uniform
quantizer. The proposed scheme functions in a forward-in-time manner without offline
training phase. Lyapunov analysis is used to investigate the stability of the overall
closed-loop system. Simulation results are given to show the effectiveness and feasibility

of the proposed method.
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1.INTRODUCTION

Actuator saturation is very common in practical control system applications due
to physical limitations imposed on the controller and the plant. Control of systems with
saturating actuators has been one of the focuses of many researchers for many years
[1][2]. However, most of these approaches considered only stabilization whereas
optimality is not considered. To address optimal control problem with input constraint,
the author in [6] presented a general framework for the design of optimal control laws
based on dynamic programing. It has been shown in [6] that the use of a non-quadratic
functional can effectively tackle the input constraint while achieving optimality.

On the other hand, under practical applications, the interface between the plant
and the controller is often connected via analog to digital (A/D) and digital to analog
(D/A) devices which quantize the signals. As a result, the design of control systems with
quantization effect has attracted a great deal of attention to the control researchers since
quantization process is unavoidable in the computer-based control systems. However,
quantization error never vanishes when the signals are processed by a traditional uniform
quantizer [7]. In addition, in many practical situations, the system state vector is difficult
or expensive to measure. Several traditional nonlinear observers, such as high-gain or
sliding mode observers, have been developed during the past few decades [12][11].
However, the above mentioned observer designs [12][11] are applicable to systems which
are expressed in a specific system structure such as Brunovisky-form, and require the
system dynamics a priori.

On the other hand, the optimal regulation of nonlinear systems can be addressed

either for infinite or finite fixed time scenario. The finite-horizon optimal regulation still



174

remains unresolved due to the following reasons. First, the solution to the optimal control
of finite-horizon nonlinear system becomes essentially time-varying thus complicating
the analysis, in contrast with the infinite-horizon case, where the solution is time-
independent. In addition, the terminal constraint is explicitly imposed in the cost
function, whereas in the infinite-horizon case, the terminal constraint is normally ignored.
The past literature [16][17][18][19] provided some insights into solving finite-
horizon optimal regulation of nonlinear system. However, the developed techniques
functioned either backward-in-time [16][17] or require offline training [18][19] with
iteration-based scheme which are not suitable for real-time implementation. Further, all
the existing literature [16][17][18][19] considered only state feedback case without
quantization effect. Therefore, the input-constraint finite-horizon optimal regulation
scheme for nonlinear quantized systems, which can be implemented in an online and
forward-in-time manner with completely unknown system dynamics and without using
both state measurements and value and policy iterations, is yet to be developed.
Motivated by the aforementioned deficiencies, in this paper, an extended
Luenberger observer is first proposed to estimate the system states as well as the control
coefficient matrix. The actor-critic architecture is then utilized to generate the near
optimal control policy wherein the value function is approximated by using the critic NN
and the optimal policy is generated by using the approximated value function and the
control coefficient matrix provided an initial admissible control is chosen. Finally, a
novel dynamic quantizer is proposed to mitigate the effect of quantization error for the
control inputs. Due to the presence of observer errors, the control policy will be near

optimal.
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To handle the time-varying nature of the solution to the HJB equation or value
function, NNs with constant weights and time-varying activation functions are utilized. In
addition, in contrast with [18] and [19], the control policy is updated once every sampling
instant and hence value/policy iterations are not performed. An error term corresponding
to the terminal constraint is defined and minimized overtime such that the terminal
constraint can be properly satisfied. A novel update law for tuning the NN is developed
such that the critic NN weights will be tuned not only by using Bellman error but also the
terminal constraint errors. Finally, stability of our proposed design scheme is
demonstrated by using Lyapunov stability analysis.

Therefore, the main contribution of the paper includes the development of a novel
approach to solve the finite-horizon output feedback based near optimal control of
uncertain quantized nonlinear discrete-time systems in affine form in an online and
forward-in-time manner without utilizing value and/or policy iterations. A novel dynamic
quantizer as well as an online observer is introduced for eliminating the quantization
error and generating the state vector and control coefficient matrix so that an explicit
need for an identifier is relaxed, Tuning laws for all the NNs are also derived. Lyapunov
stability is also demonstrated.

The remainder of this paper is organized as follows. In section 2, background and
formulation of finite-horizon optimal control problem for nonlinear quantized systems are
given. Section 3 presents the main algorithm developed for the finite-horizon problem. In
Section 4, simulation results are shown to verify the feasibility of proposed method.

Conclusions are provided in section 5.
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2.PROBLEM FORMULATION

In this paper, the finite-horizon optimal control of general affine quantized

nonlinear discrete-time system is studied. Consider the system of the form

X =f(x)+ g(xk)uqk

y,=Cx,

(1)

where x, € Q. cR" and y, €QQ, <R’ are the system states and outputs, respectively.
u,=q,m)eQ, cR" is the quantized control input vector, where g,(e) is the
dynamic quantizer defined later, u, e U c R™, where U = {u = (u,,u,,--,u, ) R" :
a,<u;, <b,,i=12,---,m} is the saturated control with a, and b, being the constant
bounds [5], f(x,):R" > R", g(x,):R" > R are unknown nonlinear dynamics and
C € R”" is the known output matrix. In addition, the input matrix g(x,) is considered

to be bounded such that0 < ||g(xk )|| < gy, wWhere g,, is a positive constant. The general

structure of the quantized nonlinear discrete-time system considered in this paper is

illustrated in Figure 1.

Plant v
—> Actuator —» x;.; = f(x;)+ g(x;)u, —> Sensor -k
Vi =Cxy

Uy
Dynamic
Quantizer

A

u . .
k Controller with Constraint
u, = /u(xk >k) B

Figure 1. Block diagram of the quantized system with input saturation
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It is important to note that digital communication network is usually used to
connect sensor, controller and actuator in practical scenario [13]. Due to limited
communication bandwidth, system states and control inputs should be quantized before
transmission [23]. In our previous work [24], state quantization has been considered.
Therefore, control input quantization is considered here.

Assumption 1: The nonlinear system given in (1) is controllable and observable.

Moreover, the system output, y, €€, is measurable.

The objective of the control design is to determine a feedback control policy that

minimizes the following time-varying cost function
N-1
V(X k) =p () + D (Q(x,,0) + W (u,)) 2)
i=k

which is subjected to the system dynamics (1), [k, N] is the time interval of interest,
w(xy) 1s the terminal constraint that penalizes the terminal state x,, € Q , O(x,,k)eR
is positive semi-definite function and W(u,) R is positive definite. It should be noted
that in the finite-horizon scenario, the control inputs can be time-varying, i.e.,
u, = u(x,,k)eQ,.
Setting & = N, the terminal constraint for the value function is given as
V(xy,N)=wy(xy) 3)
For unconstrained control inputs, W(u,) 1is generally taking the form
W(u,)=u, Ru,, with ReR™™ a positive definite and symmetric weighting matrix.

However, in this paper, to confront the actuator saturation, we employ a non-quadratic

functional [6] as:
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W) =2["(p” ) Rav “)
with

o) =[g(v) - 4O,

-1 -1 -1 )
o (w)=[¢ (k) - ¢ (u,(k))]

where veQ cR", peQ, cR", and ¢(e) is a bounded one-to-one function that

belongs to C? ( p >1). Define the notation w(v) =@~ (v)R, and

J;)m w' (v)dv = I:l(k) w(v)dv, +---+ ﬂm(k) w, (v,)dv,, (6)
is a scalar, for u, €eQ, cR", veQ cR"” and w(v)=[w, -+ w,1€Q cR".
Moreover, it is a monotonic odd function with its first derivative bounded by a
constant U . An example is the hyperbolic tangent function @(e)=tanh(e). Note that
W(u,) is positive definite since ¢~' () is monotonic odd and R is positive definite.

By Bellman’s principle of optimality [3][4], the optimal value function should

satisfy the following HJB equation

V' (X, k) = min{Q(x, k) + W () + V" (x,.,, k +1)]

7
= min {Q(xk,k) +2[" (07 ) Ry + V" (x,.,. k + 1)} 7

The optimal control policy u, € Q, that minimizes the value function V" (x,,k)

1s revealed to be

u, =argmin {Q(xk k) + 2jouk ((o"l (v))T Rav+V7(x,,.k+ 1)}

. (®)
oV (xk+1 ,k + 1)
Xy

1.
=_(0£5R 1gT(xk)
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It is clear from (8) that the optimal control policy cannot be obtained for the
nonlinear discrete-time system even with available system state vector due to the

dependency on the future state vector x,,, € Q2 . To avoid this drawback and relax the

requirement for system dynamics, iteration-based schemes are normally utilized by using
NNs with offline-training [15]. However, iteration-based schemes are not preferable for
hardware implementation since the number of iterations to ensure the stability cannot be
easily determined [13]. Moreover, the iterative approaches cannot be implemented when
the dynamics of the system are completely unknown, since at least the control coefficient

matrix g(x,) is required to generate the control policy [14]. Therefore, in this work, a

solution is found with unavailable system states and completely unknown system
dynamics without utilizing the iterative approach and in the presence of quantization
effect, as will be given in the next section.

Finally, to take into account the quantization effect on the control inputs, consider
the uniform quantizer with finite number of bits shown in Figure 2. Let z be the signal to
be quantized and M be the quantization range for the quantizer. If z does not belong to
the quantization range, the quantizer saturates. Let e be the quantization error, it is

assumed that the following two conditions hold [10]:

Lif |Z/<M, then e=lg(z)—Z<A/2

_ ©)
2.if |>M, then |g(z)|>M-4/2

where q(z) :A-(|_z/ AJ+ 1/ 2) is a nonlinear mapping that represents a general uniform

quantizer representation with the step-size A defined as A=M/2" with R being the

number of bits of the quantizer.
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In addition, theoretically, when the number of bits of the quantizer approaches

infinity the quantization error will reduce to zero and hence infinite precision of the

quantizer can be achieved. In the realistic scenario, however, both the quantization range

and the number of bits cannot be arbitrarily large. To circumvent these drawbacks, a

dynamic quantizer scheme is proposed in this paper in the form similar to [10] as

z,=q,(2)=pq(z/ 1)

where u is a scaling factor.

3.FINITE-HORIZON NEAR OPTIMAL REGULATOR DESIGN USING

OUTPUT FEEDBACK WITH CONTROL CONSTRAINT

(10)

In this section, the output feedback-based finite-horizon near optimal regulation

scheme for uncertain quantized nonlinear discrete-time systems with input constraint is

addressed. First, due to the unavailability of the system states and uncertain system
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dynamics, an extended version of Luenberger observer is proposed to reconstruct both
the system states and control coefficient matrix in an online manner.

Thus the proposed observer design relaxes the need for an explicit identifier.
Next, the approximate dynamic programming methodology is utilized to approximate the
time-varying value function with actor-critic structure, while both NNs are represented by
constant weights and time-varying activation functions. Furthermore, an error term
corresponding to the terminal constraint is defined and minimized overtime so that the
terminal constraint can be properly satisfied. Finally, a novel dynamic quantizer is
proposed to reduce the quantization error overtime. The stability of the closed-loop
system is demonstrated by Lyapunov theory to show that the parameter estimation
remains bounded as the system evolves provided an initial admissible control input is

chosen.

3.1 OBSERVER DESIGN

The system dynamics (1) can be reformulated as

Xy =Ax, + F(x)+g(x)u,

(11)
y, =Cx,

where A is a Hurwitz matrix such that (A4, C) is observable and F(x,) = f(x,)— Ax, .
A NN has been proven to be an effective method in the estimation and control of

nonlinear systems due to its online learning capability [21]. According to the universal

approximation property [22], the system states can be represented by using NN on a

compact set 2 as



182

X, =Ax, + F(x,)+g(x, )uqk

T T
=Ax, +W,o.(x,)+ Wg o, (xk)uqk +&p &,

iy W. ! o.(x,) 0 1 1 (12)
= Ax, + Wg 0 Cfg(xk) ‘s +[&x sgk] ‘.

= Ax, +W'o(x, Yu,, +&

w op(x;) 0 . 1
where W =| 1 lew, o(x)=| " eRP g 2| et and
Wg 0 O'g(xk) g u,

& =[en &yulu, €R", with L being the number of hidden neurons. In addition, the

target NN weights, activation function and reconstruction error are assumed to be upper

bounded by ||W|| Wy,

o(x, )|| <oy and”Ek || <&y, where W,,, o,, and &,, are positive
constants. Then, the system states x,,, = Ax, + F(x,)+ g(x,)u,, can be identified by

updating the target NN weight matrix W .
Since the true system states are unavailable for the controller, we propose the

following extended Luenberger observer described by

X, = Ax, + WkTO-(&k )ﬁqk +L(y, — Cx,) (13)
j’k = C"zk

where Wk is the estimated value of the target NN weights W, x, is the reconstructed

system state vector, y, is the estimated output vector and L € R"” is the observer gain

selected by the designer, respectively. Then the state estimation error can be express as

X =Xy — Xy
= Ax, +W'o(x, a,, + & —(Ax, + W..o(X, ), + L(y, — Cx,))
- (14)
~ A N— T ~ AN — —
=AXx, + WkTO'(xk)uqk +W O'(xk,xk)uqk +¢&,

_ ~ =T A — —
=A.x, +W, O-(xk)uqk +&p
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where 4. =A—-LC is the closed-loop matrix, W, . = W—Wk is the NN weights
estimation error, &(x,,X,)=0c(x,)-o(x,) and &, =W'5(x,,X, )u,, +¢& are bounded
terms due to the bounded values of ideal NN weights, activation functions and
reconstruction errors.

Remark 1: It should be noted that the proposed observer (13) has two essential
purposes. First, the observer presented in (13) generates the reconstructed system states
for the controller design. Second, the structure of the observer is novel in that it also

generates the control coefficient matrix g(x,), which will be viewed as a NN-based

identifier. Thus, the NN-based observer (13) can be viewed both as a standard observer

and an identifier whose estimate of the control coefficient matrix g(x,), is utilized in the

near optimal control design shown in the next section.

Now select the tuning law for the NN weights as
W, =0-a)W, +ﬂ16(&k)l_lqki/;r+llT (15)
where «,, p, are the tuning parameters, y,,, = ¥,., — Vi, is the output error and

[ € R is selected to match the dimension.
Hence, the NN weight estimation error dynamics, by recalling from (14), are
revealed to be
Wk+1 =W - Wk+1
=(—a)W, +a W - Bo(x,)u, 51" 6
= (1—a)W, +aW - Bio(%,)u, X AIC"I"

- Bo(x)u o (x)W.C'I" - po(x,)u,z,C'1"
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Next, the boundedness of the NN weights estimation error Wk will be

demonstrated in Theorem 1. Before proceeding, the following definitions are required.

Definition 1 [22]: An equilibrium point x, is said to be uniformly ultimately
bounded (UUB) if there exists a compact set Q< R" so that for all initial state x, € Q _,

<Bforall k 2k, +T.

there exists a bound B and a time 7'(B, x,)) such that ||xk - X,
Definition 2 [15]: Let €2, denote the set of admissible control. A control function

u:R" —R" is defined to be admissible if the following is true:
u is continuous on Q. ;
u(x),_, =0

u(x) stabilize the system (1) on Q _;

J(x(0),u) <00, Vx(0) e Q.

Since the design scheme is similar to policy iteration, we need to solve a fixed-
point equation rather than recursive equation. The initial admissible control guarantees
the solution of the fixed-potion equation exists, thus the approximation process can be
effectively done by our proposed scheme.

Theorem 1 (Boundedness of the observer error): Let the nonlinear system (1) be

controllable and observable while the system output, y, €Q) , be measurable. Let the

initial NN observer weights Wk be selected within compact set (2,, which contains the

ideal weights W . Given the admissible control input, #(0)eQ,  and let the proposed

observer be given as in (13) and the update law for tuning the NN weights be given by

(15). Let the control signal be persistently exciting (PE). Then, there exist positive
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— 20-a,)A . (1
2 \/5<a1<1 and 0< f, < 1=a)Ay, (€)

constants ¢; and f, satisfying , with 4.

n 2
“O'(xk)uqku +1
denoting the minimum eigenvalue, such that the observer error X, and the NN weights

estimation errors Wk are all UUB, with the bounds given by (A.6) and (A.7).

Proof: See Appendix.

3.2 ADP BASED NEAR OPTIAML REGULATOR DESIGN
According to the universal approximation property of NNs [22] and actor-critic
methodology, the value function and control inputs can be represented by a “critic” NN

and an “actor” NN, respectively, as

V(x. k) =W, 0, (x,. k) + &, (x,. k) (17)
and

u(x, k) =W, o, (x..k)+e,(x.k) (18)
where W, e R" and W, € R are the constant target NN weights, with L, and L,
the number of hidden neurons, o, (x,,k) € R™ and &, (x,,k) € R" are the time-varying
activation functions, ¢,(x,,k) and &,(x,,k) are the NN reconstruction errors for the
critic and action network, respectively. Under standard assumption, the target NN
weights are considered bounded above such that ||WV|| <W,, and ||Wu|| W s
respectively, where both W), and W, are positive constants [22].

The NN activation functions and the reconstruction errors are also assumed to be

bounded above such that ”GV(xk,k)”SO'VM , Gu(xk,k)”SGuM, gV(xk,k)|S£VM and
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&, (xk,k)| <&, With 0,,,, o, &, and &, all positive constants [22]. In addition, in
this work, the gradient of the reconstruction error is also assumed to be bounded above

such as H@g,,’k Jox,,,|| < &4y » With &y, A positive constant [14]. The terminal constraint of

the value function is defined, similar to (18), as
V(x,N) =W,/ 0, (x,N)+&,(xy,N) (19)
with o, (x,N) and ¢,(x,,N) represent the activation and construction error
corresponding to the terminal state x.
3.2.1 Value Function Approximation. According to (17), the time-varying
value function V(x,,k) can be approximated by using a NN as
V(&) =Wy, (%K) (20)
where I}(fck,k) represents the approximated value function at time step & . WW and
o,(x,,k) are the estimated critic NN weights and “reconstructed” activation function
with the estimated states vector x, as the inputs.
The value function at the terminal stage can be represented by
V(. N) = W0, (2. N) @D
where X is an estimation of the terminal state. It should be noted that since the true
value of x is not known, x, can be considered to be an “estimate” of x, and can be

chosen randomly as long as x, lies within a region for a stabilizing control policy

[15][18].
To ensure optimality, the Bellman equation should hold along the system

trajectory. According to the principle of optimality, the true Bellman equation is given by
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O(x, )+ W) +V (x,,,k+)=V"(x,,k)=0 (22)
However, (22) no longer holds when the reconstructed system state vector x, and

NN approximation are considered. Therefore, with estimated values, the Bellman

equation (22) becomes

€pip = O(x,, k) +W(u,)+ I}('i:kﬂ’k +1)- I}(-’%k k)
= (R, k) + W () + W0, (R, k+1) = W0, (%K) (23)
= Q% k) + W () -Wy Ao, (%,.k)

where ey, is the Bellman equation residual error along the system trajectory, and
Aoy (X,k) =0, (X, k) =0y (X, k+1).
Next, using (21), define an additional error term corresponding to the terminal
constraint as
exs =Y(0) = Wiy (3, N) (24)
The objective of the optimal control design is thus to minimize the Bellman
equation residual error ey, as well as the terminal constraint error e, , so that the

optimality can be achieved and the terminal constraint can be properly satisfied. Next,

based on gradient descent approach, the update law for critic NN can be defined as

A . (A, (R,,k)+ 0, (R k +1) 20,0, B))ey

W,.=W, +ta
A M Ae X ,k)+o,'(x,. . k+1)+20 B
4 k V k+1 M1

X (25)
o, (xy ’N)eN,k

-
1407 (24, N)oy, (£, N)

where «, is a design parameter, o, '(x,,,,k+1) is the gradient of o,(x,,,,k+1) and

B, e R" is a constant vector.
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Now define WW =W, - WVk . The standard Bellman equation (22) can be
expressed by NN representation as
0=0(x,.k)+W () —W, Aoy (x,.k) = Ae, (x, k) (26)
where Ao, (x,,k)=0,(x,,k)—0,(x,,,,k+1)and Ag,(x,,k)=¢,(x,,k)—¢&,(x,,,,k+]).
Subtracting (23) from (26), e, can be further derived as
eny = QX )+ W ()~ Wi Ao, (3, k) + Wi Ao, (f (X,)+ g(X)u, k+1)
~WiAo, (f(%)+g(®)u.k+1)
~0(x,, k) =W (u)+ W, Ao, (x,, k) +Ag, (x,, k)
= QG )+ (1)~ Q(x,. k)~ W ()~ Wi A, (R, k) + W, Ao, (%, k)

—W/ Ao, (X,.k)+ W, Ao, (x,,k)+Ag, (x,,k)
Wi AG, (f (%) +g(X ), k+ 1) =Wt Ac, (f (%) +g(X )u,,k+1)

+ I"N/V;O-VMBI sgn(WVk)

euk

< Lol& [ +2[" (0" o)) Rav+ WiAo, (&) + Win L,
+W/AG, (x,,X,,k)+Ae, (x,, k)

<(Ly + WL, |%, ||2 +2Rmax(u,, u)ii, + W, Ao, (X,,k) 27)

+WIAG, (x,, %, k) + Ag, (x,, k) +2W 00, + W,r 0B, sen(W,,)

~ 12 ~ T A
< (Ly + Wi L % | + 2Ruy i |+ Wi Ao, (%, k)

+ 2W Oy + Wi o B, sgn(W,,) + Ag,p (x,, k)
where L, is a positive Lipschitz constant for Q(e,k) due to the selected quadratic form
in system states and L, is a positive Lipschitz constant for o, (e,k) . In addition,
AG, (x,,X,,k)=Ac,(x,,k)— Ao, (x,,k) and Ag,, (x,.k) =W, AG, (x,,X,,k)+Ag, (x, k)
are all bounded terms due to the boundedness of ideal NN weights, activation functions

and reconstruction errors.
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Recalling from (19), the terminal constraint error ey, can be further expressed as

exy =W (x) ~ W0y (2. N)
=W, 0, (x.N) + &, (x,N) - W0, (%, N)
=W/, (%, N) =W, 0, (£, N) + 6, (x, N) 08)
+ W, 0, (23, N) = W0, (%4, N)
= W0, (2. N) + W, G, (xy, £, N) + £, (x,N)

=W, o, (%, N)+ &
where &, (xy,Xy,N)=0,(xy,N)—0,(xy,N) and ¢,, =W, G, (xy,Xy,N)+¢&,(xy,N)
are bounded due to the bounded ideal NN weights, activation function and reconstruction
errors.
Finally, the error dynamics for critic NN weights are revealed to be

P (Ao, (R,,k)+0, (%, k+1)+20,,B, ey,
o ! ' 1-l-”AO-V("%kak)+O-V'(')’%kJrlﬂk+1)+20VMBZ"2

‘ (29)
o, (xy ’N)eN,k

-
"1+ 07 (¢, N)o, (£, N)

Next, the boundedness of the critic NN weights will be demonstrated, as shown in
the following theorem.
Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1)

be controllable and observable while the system output, y, €Q) , be measurable. Let the

initial critic NN weights WW be selected within compact set 2, which contains the ideal

weights W, . Let u(0) €Q), be an initial admissible control input for the system (1). Let

the value function be approximated by a critic NN and the tuning law be given by (25).

Then, under the assumption stated in this paper, there exists a positive constant «,,
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satisfying 0 < @, <1/6 such that the critic NN weights estimation error WW is UUB with
a computable bound b, given in (A.16).

Proof: See Appendix.
3.2.2 Control Input Approximation. In this subsection, the near optimal
control policy is obtained such that the estimated value function (20) is minimized.

Recalling (18), the estimation of the control inputs by using NN can be represented as
u(%,. k) =W,i0,(%.k) (30)

where u(x,,k) represents the approximated control input vector at time step &, Wuk and

o,(x,,k) are the estimated values of the actor NN weights and ‘“reconstructed”

activation function with the estimated state vector x, as the input.

Define the control input error as

e, =u(x,,k)—u(x,,k) €1y
where u, (x,,k)= —(p(%R‘lng (X )Vo, (X, k+ I)WW) is the control policy that

minimizes the approximated value function I}(fck,k), V denotes the gradient of the

estimated value function with respect to the system states, g(x,) is the approximated

control coefficient matrix generated by the NN-based observer and I}(fck+1 ,k +1) is the

approximated value function from the critic network.

Therefore, the control error (31) becomes

e, =u(x, k)—u(x. k)

T A | T T,z I (32)
=W, o,(x,.,k)+¢ ER g (x,)Vo,(x,,,k+DW,,
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The actor NN weights tuning law is then defined as

I R €0 (33)
uk+1 uk u 1+O'; (x,,k)o,(x,,k)

where «, > 0 is a design parameter.

To find the error dynamics for the actor NN weights, first observe that

u(x, k)= WMTGM (x;,k)+¢,(x;,k)

(34)
= _(o(%R_]gT (x )V O-II (X, k+DW, +Ve, (x,,,k+ 1))}

Or equivalently,

0=Woc, (x,.k)+¢e,(x,,k)

1 (35)
+¢(5R ' (X )V} (0. k+ DWW, +Ve, (xk+1,k+1>>j

Subtracting (35) from (32), we have
Cu = Wuio_u (X, k) + ¢(%R_1§T(-’2k WVoy (X, k+ 1)WVk ) -W,/ o, (x, k) +e,(x, k)

|
_(D[ER lgT(xk )(vo_g(xk+l’k +DW, +Ve, (x,,,k+ 1)))

—Wlo, (X,.k)-W o, (%, k)+W o, (%, .k)+¢, -W o, (x, k)+e,(x, . k)

= _Wu—lllo-u(ik ’k)_WuTgu (xk"%k ’k)+$k +8u (xk )k)

=—W)o,(%,,k) —%L¢R‘1 g (x Vo, (X, k+DW,
LR GOV Gk + D,
(36)

1 B R R ~
—S LR (g (%) —g" (x))WVoy (X k+ DWW,

+ %L(])R_l g (x)Vo, (%, k+DW, +&,(x,,k)
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where Wuk =W, - 4

uk >

L, is the positive Lipschitz constant for the saturation function
~ . . ~ | . -
P(e) , Cus (XX, k) =0,(x,,k)—0,(x,k) , ¢, = ¢(ER lgT(xk)VO';(ka,N—k—l)WV,kJ—
| . _ 1 B
(”[ER lgT(xk)(VU;(ka’k-l-l)WV+V8V(xk+]’k+1))j and gu(xk’k):_gu(xkak)+EL¢R '

~ . 1 _ . . 1 -
g (X )IVE) (X, Xy, k+ DI, +EL¢R (&' (X)) -g (x))Voy (%,.k+DW, _EL¢R 'x

g (x,)Vey (X, k+1)-W,5,(x,,%,,k) . Note that &,,(x,,%,,k) and &,(x,.k) are all
bounded due to the boundedness of NN activation function and reconstruction error.
Then the error dynamics for the actor NN weights are revealed to be

Woo-W +a o, ("%k sk)eZk
ol T ol (%, kK)o, (X, k)

(37)

u

Remark 2: The update law for tuning the actor NN weights is based on gradient
descent approach and it is similar to [14] with the difference being the estimated state

vector x, is utilized as the input to the actor NN activation function instead of actual
system state vector x, . In addition, total error comprising of Bellman error and terminal

constraint error are utilized to tune the weights whereas in [14], the terminal constraint is
ignored. Further, the optimal control scheme in this work utilizes the identified control
coefficient matrix g(x,), whereas in [14], the control coefficient matrix g(x,) is

assumed to be known. Due to these differences, the stability analysis differs significantly

from [14].
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3.3 DYNAMIC QUANTIZER DESIGN

To handle the saturation caused by limited quantization range for a realistic
quantizer, a new parameter u, is introduced. The proposed dynamic quantizers for the
control input is defined as

U =q, ()= p.q(u, /1) (38)
where y, is a time-varying scaling parameter to be defined later for the control input
quantizers, respectively. Normally, the dynamics of the quantization error cannot be
established since it is mainly a round-off error. Instead, we will consider the quantization
error bound as presented next, which will aid in the stability analysis. Given the dynamic

quantizer in the form (38), the quantization error for the control inputs is bounded, as

long as no saturation occurs and the bound is given by

Cucll = H”qk - ”k” = %:ukAk = Cn (39)

where ey, , is the upper bound for the control input quantization error.

Next, define the scaling parameter z, as

#y = /(M) (40)
where 0 < A <1. Recall from representation (38) that the signals to be quantized can be
“scaled” back into the quantization range with the decaying rate of A*, and thus
eliminating the saturation effect.

Remark 3: The scaling parameter z, have the following properties: First, s, are
adjusted to eliminate saturation, which are more applicable in the realistic situations.

Second, p, are time-varying parameters and updated at each time interval. Finally,



194

updating s, only requires the signals to be quantized, which differs from [10] in which u

is a constant and can only obtained by using the system dynamics.
To complete this subsection, the flowchart of our proposed finite-horizon near

optimal regulation scheme is shown in Figure 3.

Start Proposed
Algorithm
Initialize the System

(observer states, NN weights)
[
5
System Dynamics
X =S (x) +g(x; )uy
yi =Cx;

!

Input Quantization
g = gy [ 14
v

Update the Observer
A A 2T A N— A
Xy =Ax + W, o(x ), + L(y, —Cx;)
Vi =G,

i

Update the NN-based Identifier
Wi == apW, + fio(x)u Fial
¥

Update the Value Function and the Critic Network Weights
V(%K) = Wieoy (%, k)
Aoy (X, k)+ oy ' (Xp .k + 1)+ 20 B))eg

Wi =Wy +ay N T >
1+||Acy (X4, k) + 0 (%4, k+ 1) + 20, B

oy (X, Ney
v - -
1+ oy (X, N)oy (X5, N)
Update the Control Input and the Action Network Weights
A ~ ol T ~
u(xk’k) = Wuko_u(xk’k)
I T
O-u(xk’k)euk
u T, ~ A
1+ Oy (xkvk)o-u(xk’k)

Yes

s Update the time interval

End

+a

w W —a

uk+1 =

Figure 3. Flowchart of the proposed finite-horizon near optimal regulator

We initialize the system with an admissible control as well as proper parameter
selection and NN weights initialization. The control input is then quantized using

proposed dynamic quantizer. The NNs for observer, critic and actor are updated based on
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our proposed weights tuning laws at each sampling interval beginning with an initial time

and until the final fixed time instant in an online and forward-in-time fashion.

3.4 STABILITY ANALYSIS

In this subsection, the system stability will be investigated. It will be shown that
the overall closed-loop system remain bounded under the proposed near optimal regulator
design. Before proceeding, the following lemma is needed.

Lemma: (Bounds on the optimal closed-loop dynamics) Consider the discrete-

time nonlinear system (1), then there exists an optimal control policy u; such that

closed-loop system dynamics f(x, )+ g(x, )u, can be written as

[feeo+eeeom] <plx]” @
where 0 < p <1 is a constant.

Theorem 3 (Boundedness of the closed-loop system) Let the nonlinear system (1)
be controllable and observable while the system output, y, € Qy, be measurable. Let the
initial NN weights for the observer, critic network and actor network Wk , WW and Wuk
be selected within compact set €2,,, Q, and Q ,,, which contains the ideal weights W',
W, and W,. Let u(0)€Q), be an initial admissible control input for the system (1). Let

the observer be given by (13) and the NN weights update law for the observer, critic

network and action network be provided by (15), (25) and (33), respectively. Then, there

. i 2
exists positive constant <a;<1,0<a, <1/6 and 0<ea, <1, such that the

system state x,, observer error X,, NN observer weight estimation errors W, , critic and
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action network weights estimation errors WVk and Wuk are all UUB, with the ultimate
bounds given by (A.20) ~ (A.24). Moreover, the estimated control input is bounded

closed to the optimal value such that

u(x,,k)— it(fck,k)u <g,, for a small positive
constant &, .

Proof: See appendix.

4.SIMULATION RESULTS

In this section, a practical example is considered to illustrate our proposed near

optimal regulation design scheme. Consider the two-link planar robot arm [15]:

x=f(x)+g(x)u

(42)
y=Cx
_ . )
Xy
—(2x,x, +X; —x —X; cos x, )sin x, - 0
+20cos x; —10cos(x, +x,)cosx, 0 0
where £(x)= cos’ x, -2 and g(y) = 1 ~1-cosx,

2-cos’x, 2-cos’x,

—l-cosx, 3+2cosx,
2

+2x; cosx, +20(cos(x, +x,)—cos x,)x 2-cos’x, 2-cos’x,

2 2 2
(2233, +xy +2x,x, COS X, +X; COS X, +3X;

(1+cosx,)—10cos x, cos(x, +x,)

cos’ x, -2

The system is discretized with sampling time of 2=5ms and the control
constraint is set to be U=1.5, ie., —1.5<u, <1.5 and —1.5<u, <1.5. Define the

performance index

V(x,, k) =p(xy)+ f(Q(xi Ji)+2 L Utanh™" (5}&#) (43)
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where Q(x,,k), for simplicity, is selected as standard quadratic form of the system states
as O(x,.k)= x,fok with Q =0.11 , and weighting matrix R is selected as
R=0.0017,, where I denotes the identity matrix with appropriate dimension. The

Hurwitz matrix A is selected as a 4x4 block diagonal matrix whose blocks A, are
09 0.1 . o
chosen to be 4, = o ool The terminal constraint is chosen as ¢(x, ) =3. For the

NN setup, the inputs for the NN observer are selected as z, =[x, ,u, ]. The time-varying
activation functions for the critic and actor network are chosen as sigmoid function with
input to be [X,,++X,, T, XXy, X3 Xy T, %, T, X, T, X7, . X5 | and [X, %, %,7, . X,7] ,
which result in 24 and 8 neurons, respectively, and 7 =(N —k)/N is the normalized time-
to-go.

The design parameters are chosen asa;, =0.7, 3, =0.01, «, =0.1, «, =0.03
and 4=0.9 . The initial system states and the observer states are selected as
x, =[7/3,7/6,0,0]" and X, =[0,0,0,0]", respectively. The initial admissible control input
is chosen as u(0)=[0.2; —1]. The observer gain is chosen as L=[-0.3, 0.1,0.7,1]" and
the matching matrices B, and [ are selected as column vectors with all ones. All the NN

weights are initialized at random.
First, the system response and control input are shown in Figure 4 and Figure 5,
respectively. Both system states and control clearly converge close enough to the origin

within finite time period, which illustrates the stability of the proposed design scheme.
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Next, the quantization errors for the control inputs with proposed dynamic
quantizer and traditional uniform quantizer are shown in Figure 6 and Figrue 7,
respectively. Comparing with Figure 6 and 7, it is clear that the quantization errors are
decreasing overtime instead of keep bounded as for traditional uniform quantizer, which

illustrates the effectiveness of the proposed dynamic quantizer design.



199

0.2

0.1

Quantization Error
S
N
LTI

1 2 3 4 5
Time (sec)

Figure 6. Quantization error with dynamic quantizer

0.4

1
03] .

Quantization Error

2 3 4 5
Time (sec)

Figure 7. Quantization error with static quantizer
Next, the error history in the design procedure is given in Figure 8 and Figure 9,
respectively. From the figure, it can be seen that Bellman equation error eventually
converges close to zero, which illustrates the fact that the optimality is indeed achieved.
More importantly, the convergence of the terminal constraint error demonstrates that the

terminal constraint is also satisfied by our proposed design scheme.
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Finally, the convergence of critic and actor NN weights is shown in Figure 10. It
can be observed from the results that the novel NN structure with our proposed tuning
law guarantees that the NN weights converge to constants and remain bounded, as

desired. This illustrates the feasibility of NN approximation for time-varying functions.
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Figure 10. Convergence of critic/actor NN weights

5. CONCLUSIONS

In this paper, the NN-based fixed final time near optimal regulator design by
using output feedback for quantized nonlinear discrete-time system in affine form with
completely unknown system dynamics is addressed. Compared to the traditional finite-
horizon optimal regulation design, the proposed scheme not only relaxes the requirement
on availability of the system states and control coefficient matrix, but also takes input-
constraint and quantization effect into account as well as functions in an online and
forward-in-time manner instead of offline training and using value/policy iterations. An
initial admissible control input is needed.

The input-constraint is handled by using a non-quadratic cost functional so that
the optimality can be achieved. The dynamic quantizer effectively mitigates the
quantization error for the control inputs while the NN-based Luenberger observer relaxes
the need for an additional identifier. Time-dependency nature of the finite-horizon is

handled by a NN structure with constant weights and time-varying activation function.
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The terminal constraint is properly satisfied by minimizing an additional error term along

the system trajectory. All NN weights are tuned online by using proposed update laws

and Lyapunov stability theory demonstrated that the approximated control inputs

converges close to its optimal value as time evolves. The performance of the proposed

finite time near optimal regulator is demonstrated via simulation.
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APPENDIX

Proof of Theorem I: Consider the following Lyapunov candidate

LIO (k) = Lx,k + Lym (A.1)

2
where Ly, =%I%, . Ly, =t AW, and A=>CFm)pwith 1em the

I
. . . A e |2 :
identity matrix and 0< y2, <2, <[o(x)| < Ho-(xk)u qu is ensured to exist by the
PE conditions, and tr{e} denotes the trace operator.

The first difference of L, (k) is given by
AL (k) =AL;, +ALy, (A.2)

Next, we consider each term in (A.2) individually. First, recall from the observer error
dynamics (14), we have
ALz = Xy Xy — X X,
~ il A N— — ~ =T A N— — ~T~
= (A%, + W o(x, ), + o) X (A%, + W/ o(X, g, +Ep) = X, X,
~ ~ AN 1T17r iy T 2N =T =
=X A AX +[o(x)u, ' WW/ o(X ), +E,Ey (A.3)
+ 2%, AW, o (X, + 2%} A&, + 28, W/ o(%)u, — XX,
~ 2 ~ |12 A v— |2 — 12
<—(=pIE ]+ 3| Joom,] +3leo

2

where y = 3| A,

Next, recall the NN weight estimation error dynamics (16), we have
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ALg, = WL AW} — W AW,

2

<21~ o W AW, + 62 AT + 657 Ao (&, ), [ |4, oc %)

AL‘

40~ ) By, UOW (&)t [ W, + 252 Mo R | o |

+ 652 N|oGe )i, | C [Eor | — W T AW,

2

<—(1=2(1—a)WW AW, } + 6> AW +6 ﬂf/\”a(&k)ﬁqkuz icl|l%”  (A4)

AC

24,1~ @) A, (10) ~ oGO Ao (R |

+68! Ao (&), e Jeu

2

<—(1-20-a) AW, | +6p2 Aoz, | |4 il %

AC

A v— |12 A n— Pl 11
24,1~ @), (1C) ~ B0 (&)t [ Yo G, [ | + e

where A = || and &y, =667 AW +653 Ao ), [1C] [Eo |-

Therefore, the first difference of the total Lyapunov candidate, by combining (A.3) and
(A.4), is given as
ALIO (k)= ALE,k + ALW,k

< (- + 3| Joom,| +3fenl - 0 -20-a))AF,|

2B,A
1+ ;(zA

min

<=+ 4l a+ 2R -] Joom,|

7. [loGom,| + 28] AR + e (AS)

~ 12
—(=201=a) AW + oy

where &4y = 3||EO,€||2 + &wy - By standard Lyapunov stability theory [22], AL, is less

than zero outside a compact set as long as the following conditions hold:

B €om
" — b, (A.6)
R e,

Or
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(A.7)

~ £

w. > oM =b_

i Jzéw(l—z(l—alfm g
Note that in (A.6) the denominator 1is guaranteed to be positive, 1i.e.,

1

y < 5 , by properly selecting the designed parameters 4, L and /.
1+4c| A+ ymw)

Proof of Theorem 2: First, for simplicity, denote AJ,, =Ao,(x,,k) ,
Cpn'=0," (X, k+1) . Agyy =Ag,(x,,k) and &, =0, (xy,N) . Consider the

following Lyapunov candidate

Ly (k) = LW,,) +TIL(%,) + TIL(W, ) (A.8)
where LW, )=W W, , L&)=(&'%)> , LW)=(t{W AW})> and

a, (1+3a, )Ly + WL, )?
(A3

. Next, take each term in (A.8) individually. The first

difference of L(W,, ), by recalling (29), is given by

AL(WN/Vk) = WV’IFH—IWVkH - WV};WN/Vk

T
. , .
_w (AGy, + 0y, ton B ey, Oynenk
=\~ % ~ . 2_0‘V1+ATA X
1+[|AG,, + 0., +ouB| SO
~ (AGy,, +0,,.,,+vo,B))e o€ o
e ¥ Opent 7O )Cpu NEN K T
WVk &y R , 2 V1 AT A _WVkWVk (A-9)
1+||A0Vk +05. +0'VMBZ|| + OO
_ Wy (AGy, +0y.,'+oB) ey, WO e
=-2a, T -2a, =
1+Ao, Aoy, I+ 0,0
2 A ] T A ] 2 AT ~
g €k (Ao, toy,., "touB) (Acy, +0y,.,,'+0,,B)) 2 eNiOmNON
14 AT A 2 4 AT & 2
(I+Ac,Acy,) (I+on0on)

Recall from (27) and (28), the first difference of L(W,,k) can be further derived as
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~ 12
WWIA&WC[N (Lo + WL T + ]

Wy (AGy +0y. 40 B)) + Ay,

ALW )< 20
W) ' 1+|AG, + 0+ Bl

~ ~ ~ 2

A A T A AT A
WViGVN(WV;GVN +8VN)+a2 (WVkO'VN +6‘VN) GO
vV

-2a

g (1+606m)°

2
{ (Lo + WL, & |+ ]
|

AT A~
1+ 0, 0n

o
v ol W, (Ao, +0,,,toB)+As,,
V

|A6Vk + 0y, to,nB, ||2
1+|AG, + 0y, +0 B

W, |AG, + 0. '+0,,MB,||2 W,

. . 2 v . , 2
[A6y; + 0 +ornB)| 1+[AGy, + 0. +onB)|
WEAG, + 0. +onBl| Asyy W6, G W,
—2ay " — 2, 5

1+”A6Wc TOpn '+GVMBI|| 1+||A0-Wc T Oy +GVMB1||
WSt +3a? (Lo +WinLs, )2||’~‘k||4

1+ 6,30 T1+ |AG,, + 0 +o B

2

~r . AT

2 A&y » WAoo Ao, W,

V AT A
I1+Ac, Acy,

1+|AS,, + 0y '+o-,,MBl||2

2 Wi ”AO-Vk + Oy +O—VMBI|| Wy 2

gVN
+3a, > b
1+|AGy, + 0y +o B 1+ |AGy, + 0y OB,
_a,(1-6a,) W|AG,, +0,., '+0'VMB,||2WW Cw(1-2a) W6 6mW,
A Vv 14 AT A
2 1+|AGy, + 0y +o B 1+ 665
L, +W,. L )%
+a,(1+3a,) ( QA+ ™ ay? %] e
1+ ||A0'WC +0, ., +O'VMBI||
a,(1-6a,) o,
% _ v 1+w HWWH —a, (- 2aV) HWWH
(A.10)
a,(1+ 305,,)

(Lo + WLy V%] + &1my
1+ a) g

A 2
where 0< @, < ||A0Vk +0,.,,+ouB,| ,and
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2
gVN

1+AGLAG,

2
A&

Em =, (1+3a,) +2W o + o, (14 2a,)

1+|AGy, + 0y, '+0VMB,||2
Next, consider L(%,) . Recall (A.3) and apply Cauchy-Schwartz inequality, the first
difference of L(X,) is given by

AL(%,) = (X.,%.,)" = (XX,

< [— A-p|% ] + 3\\Wk\\2\\a(&k)ﬁqk\\2 + 3||§Ok||2} x

(R 3 Joom, | 3ol |
\ o ) N2 (A.11)
<—(1- )| +(3HWkH lo(a,, | +3g0] )

<2 (37 ot + 3
< (-2 )& + 36| o), +36[En
Next, take L(Wk). Recall (A.4) and write the difference L(Wk) as
ALW,) = (W, L AW, 1} = (W AW, )’
< {-(1-20-a) AT - 28mAloom ||
+ 6 Ao, [ A TR, + i} =
~ 12 211~ 112
(a=20-a))AW,| - 28 Aoz, [,
+ 6 oG, [ |4 %) + 2}
~ |12 A~ |12
< =-20-a))A |~ 280M|o &), | 7
+ 6 N|o e, [ A [T R, ] + i}
~ 12 Al 12
a=20-a))AW,| -2 Ao,

+64 Mo e[| T 7] + e
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~ 12 4.~ 112
<{=1-20-a))AW,| -28nA|o)m,| |,
+ 687 Ao ), | A %[ + 2o} >
~ |2 4~ 112
(=20-a)) AW, | -28A]o ()] |7,

6 Mo e AP UCT I, + 200
~ 4 o~ (12
<~(1-80-a)" W[ ~80-a) Bnho(x)a,| |
+2108 N o), | 4] el %]
112620 Ko G, [ [ + 563
~ 14 4~ 114
<—(1-801-a) )|, - 420 -)’ =3 Bnn|o(x )| | A1)
+210A° A, il |7 [ +5eq
where 7= 2(1- )2, (1)~ B0 (% )i, |-
Therefore, combining (A.11) and (A.12) yields
AL(X,)+AL(W,)
<~ (-2 )& + 36| o), +36[En
~(1-8(-a) W[ - 420 - e (A.13)
3 BN o, W + 525874 ic %] + Sed,

<=3 %[ ~ Ao, 7 —a-8a-a) W+,

where &, =36[E,, " +562,.

Finally, combining (A.10) and (A.13) yields the first difference of total Lyapunov

candidate as
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AL; (k)= AL(W,,)+TIAL(Z,) + TIAL(W,,)

oy (1-6a,) o
2 1+a)

PP - 120 7o |

~ oy (14+3ay) (A.19)

Trar Lo+ Wl VIR —4Hua<xk>uqku A

~(1-8(1- o) A + ¢,

where ¢, = g, +11¢,. By using standard Lyapunov stability analysis [22], AL is less

than zero outside a compact set as long as the following conditions hold:

~ &
x,||> =b, (A.15)
|| k|| 4 aV(1+3aV)(L WVMLO_ )2
1+, '
Or
~ &
w,|> 1 =b. A.16
“ Vk” aV(1_6aV) wriin +a (1—2(1 ) Gélin " ( )
2 l+a2 "+l
Or
~ &
W, ||>4 1 =b_ A17
] \/4H;(;;ﬁn+(1—8(1—a1)4)m2 4 (1D
Proof of Theorem 3: Consider the following Lyapunov candidate as
z 2’y
Lk)=L,(k)+ Ly (k)+L; (k)+ 5 L; (k)+—L, (k) (A.18)
Vv u o

uM

where L, (k) and LWV (k) are defined in (A.1) and (A.8), respectively, L, (k) =‘ V.,

and L, (k)= ef,m’ . 1s the upper bound for the quantization error defined later. Moreover,
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2

umin

2
umin

a o
4 . Denote

the first term is defined as L (k)=Z|x,| with E=
20, 1+0

Ou =0,(x,k) , 6,=0,%.k) , V&, =V, (X,,k+]) , &, =¢£,(x.k) .
gl =g"'(x,), g =g"(x,) and g/ =g"(x,) for simplicity, then the first difference of

LW" (k) recalling from (37) and (36), is given by

ALy, (k) =W |~ [

2 2p-2 2 T —T
< (l—a O-umin j‘W ta ||L¢R gMo-uko-ukguk
- u 2 uk u T 2

1+ 0 41+o40,) |

2
Lag

5 ~ u y
+a,| 1+ m]”vo';kﬂWVk H2 + Oz—HWkuz

=

2
{4
guk

2p2 T T 2 =T
LR "0,0,V0,,Vo, Wné.

41+0,0,) H

2p-2_2 _T =T
L¢R gMaukJukguk

T 2
(I+ono,) |

+a

R Pt G e ]
<-a, lfjafzzi;n ‘Wuk + au(l +vaaﬁMHWw{ H2
; a,,L;a;b”g}uk” n ;’;;3))\\@”2 - (A19)
o o MR SR o

0<0ymin <Gl < Tunt-
Next, consider L, (k).
The control input is given as
(%, k) = W0, (R, 6) =W, 0,(%,, k)~ W 0, (%, k)

Then the quantization error bound is given by
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A T T A
e, k)| [P~ Wi
Muk = 2[7 = 2b
< WuMO-uM
<=

Tt s
+ 21])\/[ HWuk H = eIi[u,k
The first difference of L, (k) is given as

2 2
ALeu (k)= CMuk+l — EMuk

R A e 2 T

S A

Recalling from (A.19), we further have

G ~
AL ()= a5 (W, | -

aGMO'
A oo

1 Ao (R ~
ol 5234[4”8 || 4(1+5; )]H [

I R N L )

Combine (A.5), (A.14), (A.19) and (A.21) to obtain the first difference of the total

Lyapunov candidate as

AL(k) = AL (k) + AL, (k) + ALy, (k)+ %ALW" (k) + (2;2 AL, (k)
uM
<Ff(x,) + glx )} — g(xu; + g(x )i | ~Z]x,|
—(1=QA+aid)Ha+ 2o|% ]
DLt -5 a-20-aa[
(1 6, ) 2 (1 2a) :
o) g0 e
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=]+ e
1+
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Pl Tt -5 a-20-ap»apF|
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v Al

o (1+3ey)
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1+0'
where €.y = om &+ T UV T i -
By using standard Lyapunov stability analysis [22], AL is less than zero outside a

compact set as long as the following conditions hold:

2
fam__y, (A.22)

X, ||>——
|| k” (l—p)E X
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(A.23)

(A.24)

(A.25)

(A.26)

Eventually, recall to (A.21), the difference between the ideal optimal control and

proposed near optimal control inputs is represented as
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(3, ) = (%, )|
e A CROETREN R ATNENS
Wi (k) + WG, () 6, (0|

(A.27)
<bg Oy W

o, (xk”’%k’k)”—i_guM

<by Oum HiWm

%[+ £un

by O H Wbz + & =64,
where [, is the Lipschitz constant of o,(e), and b, , b; are given in (A.26) and (A.23),

respectively.
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SECTION

2. CONLUSIONS AND FUTURE WORK

In this dissertation, finite-horizon optimal regulation problem is considered for
linear and a class of nonlinear discrete-time systems. Time-dependency aspect of the
optimal solution and terminal constraint are two major concerns in finite-horizon optimal
control which are handled by using novel parameter update laws with time dependent
basis functions. Linear in the unknown parameter adaptive control and neural network
(NN) based schemes are considered to deal with linear and nonlinear systems,
respectively. A Q-learning methodology is utilized for the case of linear systems and NN
identifier/observer is proposed for nonlinear systems so that the requirements on
dynamics of the system and the system states are relaxed. The five papers included in this

dissertation address (near) optimal regulation of both linear and nonlinear systems.

2.1 CONCLUSIONS

The first paper addresses the finite-horizon optimal control of linear discrete-time
systems with completely unknown system dynamics by using approximate dynamic
programming technique. The requirement on the dynamics of the system is relaxed with
an adaptive estimator generating the Q-function. An online adaptive estimator learns
time-varying optimal control gain provided by the tuned Q-function by using history
information thus relaxing the need for policy and/or value iterations. An additional error
is defined and incorporated in the update law so that the terminal constraint for the finite-
horizon can be properly satisfied. An initial admissible control ensures the stability of the

system. In addition, the proposed control design scheme is extended to output feedback
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case by novel adaptive observer design. All the parameters are tuned in an online and
forward-in-time manner. Stability of the overall closed-loop system is demonstrated by
Lyapunov analysis. The proposed approach yields a forward-in-time and online control
design scheme which offers many practical benefits.

The second paper investigated the adaptive finite-horizon optimal regulation
design for unknown linear discrete-time control systems under the quantization effects
for both system states and control inputs. By introducing a new scaling parameter and
analyzing the quantization error bound, the proposed dynamic quantizer design
effectively eliminated the saturation effect as well as the quantization error. The system
dynamics are not needed with an adaptive estimator generating the action-dependent
value function, and a novel update law different from the first paper was considered to
tune the value function estimator which then was used to calculate the Kalman gain
needed for the optimal control policy. By minimizing the Bellman and terminal constraint
errors simultaneously once a sampling interval, the update law functions in a forward-in-
time fashion without performing iterations while satisfying the terminal constraint.
Lyapunov theory demonstrated the effectiveness of the proposed scheme.

In the third paper, we considered the finite-horizon optimal control problem of
affine nonlinear discrete-time systems. With a novel NN-based identifier, the complete
system dynamics were relaxed in contrast with the literature where the control coefficient
matrix was needed. An initial admissible control policy guarantees that the system is
stable, while actor-critic structure is utilized to approximately find the optimal control
input. The time-dependency nature for finite-horizon optimal control problem is handled

by using novel NN structure with constant weights and time-varying activation functions,
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while an additional error term corresponding to the terminal constraint is minimized to
guarantee that the terminal constraint can be properly satisfied. In addition, the proposed
algorithm is implemented by utilizing a history of cost to go errors instead of traditional
iteration-based scheme. As a consequence, the proposed design scheme performs in an
online and forward-in-time fashion which is highly suitable for real-time implementation.
The convergence of the parameter estimation and closed-loop system are demonstrated
by using Lyapunov stability theory under non-autonomous analysis.

In the fourth paper, the idea from Paper III is extended to the output feedback
case. The novel structure of the proposed observer relaxes the need for a separate
identifier thus simplifies the overall design. Time-dependency nature of the finite-horizon
is handled by a NN structure with constant weights and time-varying activation function.
The terminal constraint is properly satisfied by minimizing an additional error term along
the system trajectory. All NN weights are tuned online by using proposed update laws
and Lyapunov stability theory demonstrated that the approximated control inputs
converges close to its optimal value as time evolves. Compared to the traditional finite-
horizon optimal regulation design, the proposed scheme not only relaxes the requirement
on availability of the system states and control coefficient matrix, but also functions in an
online and forward-in-time manner instead of performing offline training and
value/policy iteration.

Finally, the fifth paper presents the finite-horizon near optimal regulation of
general discrete-time nonlinear systems in affine form in the presence of quantization and
input constraints. A non-quadratic cost functional incorporates the effect of actuator

saturation while still guaranteeing the optimality of the system. The quantization error for



219

the control inputs is effectively mitigated by the design of a dynamic quantizer from the
Paper 11, while an extended NN-based Luenberger observer from Paper IV relaxes the
need for an additional identifier thus simplifying the overall design. The actor-critic
structure ensures that the newly defined time-varying value function and control inputs
by using NN with constant weights and time-dependent activation functions indeed
generate optimal control. Terminal constraint is properly satisfied by minimizing an error
term corresponding to the terminal constraint along the system trajectory. Lyapunov
stability theory demonstrated that the approximated control input converges close to its

optimal value as time evolves.

2.2 FUTURE WORK

As part of the future work, our proposed finite-horizon optimal control scheme
can be possibly improved by more carefully considering about the fundamental concepts
of finite-horizon optimal control and approximation theory. The work presented in this
dissertation is still a starting point for finite-horizon optimal control problem. Further
research such as how the convergence rate is affected by the terminal time can be a
promising direction. In addition, there’s no general rule for picking the most suitable
activation function for NN approximation, especially when the function to be
approximated becomes time-varying. More detailed investigation in properly selecting
the activation function can be more difficult however worth of our effort in the future.
Finally, a more general nonlinear system description, i.e., nonlinear systems in non-affine

form, can also be another potential topic to further extend our work.
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