

Vietnam Journal of Science and Technology 56 (3) (2018) 357-369

DOI: 10.15625/2525-2518/56/3/11103

A FLEXIBLE HIGH-BANDWIDTH LOW-LATENCY

MULTI-PORT MEMORY CONTROLLER

Xuan-Thuan NGUYEN
1
, Duc-Hung LE

2, *
, Trong-Tu BUI

2
, Huu-Thuan HUYNH

2
,

 Cong-Kha PHAM
1

1
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, 182-8585 Tokyo, Japan

2
University of Science, Vietnam National University – Ho Chi Minh City,

 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam

*
Email:

ldhung@hcmus.edu.vn

Received: 24 January 2018; Accepted for publication: 9 April 2018

Abstract. Multi-port memory controllers (MPMCs) have become increasingly important in

many modern applications due to the tremendous growth in bandwidth requirement. Many

approaches so far have focused on improving either the memory access latency or the bandwidth

utilization for specific applications. Moreover, the application systems are likely to require

certain adjustments to connect with an MPMC, since the MPMC interface is limited to a single-

clock and single-data-width domain. In this paper, we propose efficient techniques to improve

the flexibility, latency, and bandwidth of an MPMC. Firstly, MPMC interfaces employ a pair of

dual-clock dual-port FIFOs at each port, so any multi-clock multi-data-width application system

can connect to an MPMC without requiring extra resources. Secondly, memory access latency is

significantly reduced because parallel FIFOs temporarily keep the data transfer between the

application system and memory. Lastly, a proposed arbitration scheme, namely window-based

first-come-first-serve, considerably enhances the bandwidth utilization. Depending on the

applications, MPMC can be properly configured by updating several internal configuration

registers. The experimental results in an Altera Cyclone V FPGA prove that MPMC is fully

operational at 150 MHz and supports up to 32 concurrent connections at various clocks and data

widths. More significantly, achieved bandwidth utilization is approximately 93.2 % of the

theoretical bandwidth, and the access latency is minimized as compared to previous designs.

Keywords: multi-port memory controller, high bandwidth, low latency, FPGA, parallel,

pipelining.

Classification numbers: 4.1.1; 4.8.4; 4.9.3.

1. INTRODUCTION

The rapid development of silicon technology in the last decade has allowed FPGAs to

perform computing-intensive applications on account of a vast amount of integrated lookup

tables, dedicated registers, embedded digital signal processing, and memory blocks. This was

exemplified by an FPGA design that calculated the 2K☓2K two-dimensional Discrete Fourier

Transform in just under 26.2 ms [1]. However, system performance is more or less negatively

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229067098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.15625/2525-2518/56/3/11103
http://dx.doi.org/10.15625/2525-2518/56/3/11103

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

358

affected while accessing external memory without efficient controller usage. Taking the example

above, processing time of 26.2 ms could only be achieved if the efficiency of the memory

controller is higher than 80 %. As a result, efficient memory controllers have become

increasingly attractive to researchers.

To date, some simulation approaches to high-performance controllers have been proposed.

E. Ipek et al. [2] introduced a reinforcement-learning-based controller that optimized the

scheduling policy on the fly by observing the current and previous system states, thus improving

the bandwidth utilization by 22 % compared to the original controllers. A prefetch-aware

controller from C. J. Lee et al. [3] minimized the number of redundant prefetches so as to reduce

the extra bandwidth consumption by 10.7 % and 9.4 % on four and eight-core system,

respectively. M. D. Gomony et al. [4] proposed a real-time multi-channel controller that could

be feasibly applied in a high-definition video and graphics processing system.

Additionally, several hardware-based controllers have recently been presented. M. Vanegas

et al. [5] described a multi-port memory controller (MPMC) with multiple abstract access ports

to serve all transactions at the same time. A four-level controller hierarchy with time-division

multiplex based arbiter for the H.264 1080p@30fps video decoder was proposed by Bonatto A.

C. et al. [6]. T. Hussain et al. [7] designed a controller that accessed to memory by several

defined patterns in order to reduce the access time. Two commercial MPMCs for high-

bandwidth applications were also provided by Xilinx [8] and Altera [9]. A controller based on

credit borrow and repay technique, which minimized the latency while preserving minimum

bandwidth guarantees, was introduced by Zefu Dai et al. [10]. Our previous work [11, 12]

focused on a parallel pipelining MPMC for multimedia applications, which achieved write and

read bandwidth of 82 % and 87 %, respectively.

These mentioned works, however, still contain some disadvantages: (1) the hardware

implementation of controllers is costly due to its complex architecture [2 - 4]; (2) the increase in

number of access ports caused a negative effect on the total bandwidth utilization [5]; (3) the

lack of support for general-purpose applications [6, 7]; (4) the reduction in latency is

unconsidered [5 - 9], [11, 12]; (5) bandwidth efficiency seems insufficient for data-intensive

applications [5 - 8, 10]. To address those problems, we propose an FPGA-based MPMC with

advantages of flexibility, low latency, and high bandwidth, as summarized below.

Flexibility: depending on each specific application, the configuration parameters such as

the number of granted ports, the burst count, and the access addresses can be configured in run-

time. Moreover, any application system containing various operating clocks and data widths can

easily connect to MPMC without adding extra interfaces.

Latency: dual-clock dual-port FIFOs (DCDWFFs) temporarily store the transfer data of

application systems and allow users to put data in and get data out instantly if such data are

available, thereby reducing the access latency. Moreover, the parallel and pipelining architecture

are employed to minimize the latency at every processing stage of MPMC.

Bandwidth: the arbitration scheme, so-called window-based first-come-first-serve

(WFCFS), is proposed to reduce the negative impact on the total bandwidth utilization and

guarantee fair bandwidth distribution. Moreover, WFCFS architecture is fairly simple to

implement in hardware.

The proposed MPMC is designed by Verilog HDL, simulated by Modelsim, and validated

in a Terasic SoCKit development board [12], which contains an Altera Cyclone V FPGA and a

1-GB SDRAM DDR3. MPMC operates at 150 MHz and provides the theoretical bandwidth of

19.2 Gbps. It supports up to 32 parallel bidirectional ports that accept connections with different

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

359

clocks and data widths. More significantly, the bandwidth utilization is approximately 93.2 % of

the theoretical bandwidth, whereas the latency of each port is much smaller than that of other

designs. The hardware resource at maximum settings only costs 4 % of lookup tables and 3 % of

registers of a Cyclone V FPGA.

The remainder of this paper, then, is organized as follows. Section 2 describes in detail the

hardware architecture of the proposed MPMC. Section 3 shows the experiment results validated

in an FPGA under different settings. Section 4, finally, gives the conclusion and future works.

2. HARDWARE IMPLEMENTATION

2.1. Overview

The proposed MPMC is responsible for data transfer between an application system

(APPSYS) and an external memory SDRAM, as depicted in Fig. 1. It consists of four main

modules, namely INTERFACE, CONFIG, ARBITER, and PHY. The N-bidirectional-port

INTERFACE keeps the temporary data to speed up the memory transactions. CONFIG stores all

configuration parameters received from APPSYS in its internal registers. The key module

ARBITER manages all data transactions based on the given parameters. The Altera PHY

controls the physical layer of SDRAM interface, i.e. translates all requests from ARBITER into

SDRAM commands and then transfers them reliably to SDRAM. The efficient architecture of

the MPMC front-end, which includes INTERFACE, CONFIG, and ARBITER, is our primary

focus in this paper.

Figure 1. The general block diagram of the proposed MPMC.

2.1.1. INTERFACE Module

INTERFACE contains N PORTs and each one is composed of two DCDWFFs for read and

write requests. Therefore, the access flexibility is improved since any multi-clock multi-port

APPSYS can connect to MPMC. INTERFACE also guarantees robust transfers between MOD

and PHY to minimize the problem of metastability, data loss, and data incoherency.

Additionally, it minimizes the memory access latency, i.e., the time from a request being

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

360

presented at MOD until it is processed completely, by using parallel DCDWFFs to separate the

data path between MOD and PHY.

The architecture of a DCDWFF used in write requests is shown in Fig. 2. It includes two

pairs of gray counters and shift registers, one dual-port memory, and one control unit. The write

requests depend on two status signals, full and almost_full. In fact, if full is zero, write data

wr_data are fed into DCDWFF together with the assertion of write enable wr_en. Otherwise,

MOD waits until full turns into zero. As soon as DCDWFF keeps a certain amount of data,

almost_full becomes one and then rd_en is asserted by ARBITER so that DCDWFF starts to

transfer data rd_q to PHY.

Figure 2. The hardware architecture of DCDWFF for write requests.

2.1.2. CONFIG Module

CONFIG contains a set of registers to store the entire MPMC configuration as depicted in

Fig. 3. Those registers include the number of used ports N, burst counts (BCs), and

start/end/current addresses of transfers (SAs/EAs/CAs). The design supports N up to 32, BCs up

to 64, and SAs/EAs/CAs up to four gigabytes. To improve the access flexibility, BCs, SAs, EAs,

and CAs are separate for read and write requests. At the beginning of each transfer, APPSYS

sequentially dispatches a set of configurations to the corresponding registers. During the

operational process, ARBITER updates CAs by Eq. (1) and uses all given parameters to perform

the scheduling.

Figure 3. The general block diagram of CONFIG.

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

361

(1)

In a multi-processor system where a memory region can be shared among several MODs, a

bank conflict is likely to occur and cause a negative impact on bandwidth utilization. If there are

two consecutive accesses to one bank, MPMC first sends the address to an SDRAM device,

receives the data requested, and then waits for the SDRAM device to precharge and reactivate

before initiating the next data transaction, thus wasted several clock cycles. To reduce the

waiting clocks, bank assignment must be planned on in advance to exploit bank interleaving

such as [13]. A basic example of the MOD-PORT-BANK assignment, in the case of N = 4, is

shown in Fig. 4. In Fig. 4(a), PORT0 and PORT1 access to BANK0 consecutively, which

obviously causes the bank conflict. However, in Fig. 4(b), the order of all accesses is BANK0,

BANK1, BANK0, and BANK2, thereby eliminating the wasting clocks. These assignments are

simply implemented by changing SA in CONFIG. The impact on bandwidth utilization of bank

interleaving experiments is detailed in Section 3.

Figure 4. An example of accesses (a) without bank interleaving and (b) with bank interleaving.

2.1.3. ARBITER Module

First-come-first-serve (FCFS) is an efficient scheduling process regarding performance and

complexity [14]. However, in FCFS, a short-time request can get stuck behind long-time

requests. In addition, FCFS may process a read/write request immediately after a write/read

request, which causes several idle cycles on the SDRAM bus, so-called read/write turnaround.

The first problem is solved by using DCDWFFs, i.e., data of incoming short-time requests are

temporarily stored in DCDWFFs while current long-time requests are being processed. To

overcome the second problem, we propose a window-based FCFS (WFCFS) arbitration scheme

that effectively minimizes the number of read/write turnaround. Moreover, parallel and pipeline

architecture are implemented to reduce processing time.

Figure 5 shows an example of WFCFS at N = 4. Assume that read and write requests of

PORT0, PORT1, PORT2, and PORT3 are labeled as R0, R1, R2, and R3 and W0, W1, W2, and W3,

respectively. Furthermore, BCW0, BCW1, BCW2, and BCW3 are named as the BCs of

correspondent write transactions. To begin with, ARBITER conducts a poll from R0 to W3.

Because only R0, R2, and R3 are ready at that moment, they are put into the read FIFO (RFF),

and the window size becomes three, as shown in Fig. 5(a). Subsequently, the read control

(RCTRL) sends all read requests with related parameters to PHY, as shown in Fig. 5(b).

Simultaneously, since all requests W0 to W3 are ready, ARBITER puts all of them to write FIFO

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

362

(WFF), and the window size becomes four. Afterwards, the write control (WCTRL) dispatches

all write requests and data to PHY. Moreover, at the same time, the read data are returned to the

corresponding ports since both RCTRL and WCTRL operate in parallel. The latency caused by

read/write turnaround is reduced significantly due to the use of the windows. The impact on

bandwidth utilization of WFCFS experiments is also in Section 3.

The hardware architecture of ARBITER is composed of two main modules, PRE and POS,

as shown in Fig. 1. PRE checks whether a certain MOD requires the access to SDRAM and POS

executes this request if the connecting PORT is available.

Figure 5. An example of (a) PRE and (b) POS.

PRE Module: read and write requests independently by using a pair of sub-modules, so-

called write PRE and read PRE, respectively. Each sub-module includes a POLLING circuit, a

32-bit FLAG register, and an RFF/WFF. The simplified architecture of write PRE is shown in

Fig. 6. All components operate in pipelining to maximize the throughput.

Figure 6. The hardware architecture of PRE for write requests.

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

363

Initially, the number of used ports N is loaded to POLLING and all FLAG bits are set to

high. The 32-bit mod_en shows the enabled MODs and the 32-bit port_full indicates the

availability of ports. During the write transfers, POLLING scans each MOD for the request and

then outputs the index of its connecting port i. The index is used to retrieve the port information

stored in CONFIG, including CA, EA, and BC. Simultaneously, DECODER deploys i to obtain

mod_eni and port_fulli. If all three bits Fi, mod_eni, and port_fulli are one, Fi is clear by CLR in

the next clock. Fi = 0 indicates PORTi is in progress.

In the subsequent cycle, EAi, CAi, and BCi arrive to PRE. The combination of i, BCi, and

CAi are put into WFF with the assertion of write enable wr_en. Based on the received

parameters, POS can write BCi data words to address CAi of SDRAM. Additionally, upon

completing, the index i is returned to PRE as j. SET uses j and transaction done signal

trans_done to turn Fj into one, i.e., PORTj is ready for the next set of requests. Both set and clear

process are performed simultaneously. If the transfer is completed, i.e., CAi ≥ EAi, mod_eni

turns into zero so that POLLING will not check MODi. Similarly, the read PRE shares the same

architecture with the write PRE and RFF stores all parameters for the read process. Due to

POLLING, bandwidth is distributed fairly among all requests.

POS Module: read and write requests independently by RCTRL and WCTRL. Each

module includes three parallel and pipeline tasks so as to maximize throughput. Furthermore,

each task is formed by several counters with logic circuits, instead of the finite state machines, to

reduce hardware utilization.

The block diagram of WCTRL, as shown in Fig. 7(a), includes three tasks, namely WA, WB,

and WC. WA is responsible for retrieving the information of requests from PRE and returning the

transaction done signal to PRE. Upon receiving those parameters, WB commands PORT to send

data to PHY directly. WC monitors the indicators from PHY to end the transaction and signal to

WA. Similarly, RCTRL consists of three tasks, namely RA, RB, and RC, as shown in Fig. 7(b). As

soon as RA receives information, RB sends the commands to PHY. RC monitors the returned data

and signal to RA if all data are buffered completely. It should be noted that read requests are

considered as complete upon receipt of the first read data while the write requests are counted as

complete if all write data are sent to PHY successfully.

(a)

(b)

Figure 7. The functionality of (a) WCTRL and (b) RCTRL.

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

364

3. PERFORMANCE ANALYSIS

In this section, we describe the experimental frameworks used to evaluate the performance

of an mpmc concerning bandwidth utilization, access latency, and resource consumption, as

compared to other designs.

Bank interleaving (BKIG) can improve BW efficiency by mapping each port to the

memory bank appropriately. To evaluate such improvements, we conducted three experiments

namely EXPA, EXPB, and EXPC with the bank assignments shown in Table 1. In EXPA, all

MODs only access BANK0. In EXPB, MOD0 and MOD2 access BANK0 while the rest accesses

BANK1. In EXPC, every MOD is assigned to a different bank. Fig. 8 makes the comparison of

EFF among three experiments at BC = {4, 8, 16, 32, 64}. EXPC always provides the highest

EFF because the bus turnaround time is long enough for MPMC to ideally send one data request

to each of the banks in consecutive clock cycles. In fact, one bank undergoes its precharge or

activate cycle while another is being accessed. EXPB attains nearly the same BW as EXPA at

BC = {32, 64}. However, its BW is significantly reduced at lower BCs because of the

insufficient bus turnaround time. EXPA shows the worst BW as a result of bank conflict.

Therefore, depending on the particular applications, the MOD-PORT-BANK assignment must

be planned on in advance.

Table 1. The bank assignment in three experiments.

 PORT0 PORT1 PORT2 PORT3

EXPA BANK0 BANK0 BANK0 BANK0

EXPB BANK0 BANK1 BANK0 BANK1

EXPC BANK0 BANK1 BANK2 BANK3

 Figure 8. The comparison of bandwidth utilization among three experiments.

The proposed arbitration scheme WFCFS allows ARBITER to keep the requests in WFF

and RFF and then process several of them each time, whereas FCFS executes each request

immediately upon receiving it. To assess the performance of WFCFS, we conducted an

experiment EXPD that only deploys FCFS and compared its BW with that from EXPC above.

The window size varies up to four due to the number of used ports, N = 4. According to Fig. 9,

EFF of EXPC is always higher than that of EXPD since WFCFS minimizes the read/write

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

365

turnaround effectively. Moreover, the higher BC can ease the loss of BW, i.e. EFF of EXPD

reduces around 5 % at BC = 64 to 17 % at BC = 4 as compared to EFF of MPMC. In short,

exploiting both BKIG and WFRFS could improve EFF, at least, 12.9 % in case of N = 4.

Figure 9. The comparison of bandwidth utilization between EXPC using WFCFS and EXPD using FCFS.

The peak BW is measured by performing continuous requests from all MODs to MPMC. In

addition, two consecutive PORTs access to two different banks to exploit BKIG. Fig. 10

illustrates the achieved BW at BC = {4, 8, 16, 32, 64} and the number of used ports N = {2, 4, 8,

16, 32}. The horizontal axis represents BC while the vertical axis represents BW. It appears the

total BW counts on both N and BC. Actually, BW increases with N because at larger N, POS can

process more commands stored in RFF and WFF at each time. Furthermore, BW increases with

BC because each column-access command at larger BC can transfer more data per each

transaction. BW reaches the maximum value of 17.9 Gbps, or EFF of 93.2 %, at N = 32 and BC

= 64. Furthermore, BW is distributed equally among ports since each of them uses the same

configuration.

Figure 10. The comparison of bandwidth utilization of MPMC at different N and BC.

The effect of N on BW between our MPMC with a design DESA [5] is shown in Fig. 11. In

DESA, as N increases, BW on each port reduces significantly, which leads to the reduction of

total BW. Assuming an EFF of 100 % occurs at the highest BW, DESA achieved such BW at N

= 2 and BW drastically declined nearly 60 % until N = 10. On the contrary, in our design, the

total BW reaches the maximum at higher N = 10 and slightly reduces by around 2 % at N = 2.

Although DESA supports many kinds of memory chips such as DDR, DDR2, and SSRAM, its

BW reduction is quite difficult for data-intensive applications.

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

366

Figure 11. The comparison of bandwidth loss between two designs as N increases.

The comparison of EFF between the proposed MPMC with three other works DESB,

DESC, and DESD are illustrated in Fig. 12. The information from FPGA and SDRAM of each

design is summarized in Table 2. The EFF of write requests and read requests are analyzed

independently. Figure 12 illustrates EFF at N = {2, 4, 8} and BC = {16, 32, 64}. Generally, EFF

of write requests is lower than EFF of read requests since in writing, MPMC must read the entire

row, and then write back the old data along with the data required to write. Thus, the procedure

for writing data to the array includes both read and write processes. In our MPMC, write request

and read request achieve EFF of 92.2 % and 94.8 %, respectively.

Table 2. The parameters of SDRAM in compared designs.

 SRAM DDR3
Theoretical bandwidth

utilization (Gbps)

DESB [8] 400 MHz, 32 bits 25.6

DESC [8] 400 MHz, 16 bits 12.8

DESD [9] 300 MHz, 32 bits 19.2

MPMC 300 MHz, 32 bits 19.2

Table 3. A comparison of resource utilization among several designs.

 Device N LUTs REGs

DESE [6] Xilinx Virtex-5 3 2,739 2,714

DESF [7] Xilinx Virtex-5 4 3,971 2,883

DESB [8] Xilinx Virtex-6 8 3,600 5,860

DESA [5] Xilinx Virtex-4 10 1,733 -

DESD [9] Altera Stratix IV 16 4,221 2,424

MPMC_2 Altera Cyclone V 2 1,251 (1 %) 1,804 (1 %)

MPMC_4 Altera Cyclone V 4 1,322 (1 %) 2,053 (1 %)

MPMC_8 Altera Cyclone V 8 1,768 (1 %) 2,504 (1 %)

MPMC_16 Altera Cyclone V 16 2,634 (2 %) 3,679 (2 %)

MPMC_32 Altera Cyclone V 32 4,453 (4 %) 6,046 (3%)

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

367

(a)

(d)

(b)

(e)

(c)

(f)

Figure 12. The comparison of bandwidth utilization among four designs at write process (a), (b), (c)

and read process (d), (e), (f).

Table 3 draws the comparison of utilized lookup tables (LUTs) and registers (REGs)

between our MPMC with the others at different N. The memory bits are not mentioned in this

comparison because they depend on the application requirements. Suppose that MPMC_N

indicates the resource of MPMC with N used port. In our design, both ARBITER and CONFIG

cost around 700 of LUTs and 1,400 of REGs, and are independent of N. Furthermore, if more

ports are utilized, LUTs and REGs increase correspondingly. It should be noted the design

DESE, DESF, and DESA utilize unidirectional ports, i.e. read or write port only, while the

others support bidirectional ports. In comparison with DESB and DESD, MPMC_8 and

MPMC_16 cost more REGs to store the configuration parameters. At maximum settings of

MPMC_32, we cost approximately 4 % of LUTs and 3 % of REGs.

4. CONCLUSIONS

In this study, we presented a configurable MPMC for high-bandwidth and low-latency

applications. A pair of DCDWFFs is deployed in every port to minimize the access latency and

X. T. Nguyen, D. H. Le, T. T. Bui, H. T. Huynh, C. K. Pham

368

allow the connection from any multi-clock multi-data-width APPSYS without adding extra

interface resources. A WFCFS arbitration scheme with parallel pipelining architecture was

proposed to improve the bandwidth utilization. The experimental results in an Altera Cyclone V

FPGA prove that MPMC is fully operational with 32 concurrent connections at various clocks

and data widths. The bandwidth efficiency at maximum settings is approximately 93.2 % and the

access latency is significantly reduced as compared to other designs. Finally, the proposed

MPMC has proven its performance in a data analytics system [17 - 19], where flexible access

patterns and high-bandwidth utilization play a major role.

REFERENCES

1. Yu C., Chakrabarti C., Park S., Vijaykrishnan N. – Bandwidth-intensive FPGA

architecture for multi-dimensional DFT, IEEE Int. Conf. Acoustics Speech and Signal

Processing (ICASSP) (2010) 1486-1489.

2. Ipek E., Mutlu O., Martinez J. F., Caruana R. – Self-Optimizing Memory Controllers: A

Reinforcement Learning Approach, ACM/IEEE 35th Int. Symp. Computer Architecture

(ISCA) (2008) 39-50.

3. Lee C. J., Onur M., Veynu N., Patt Y. N. – Prefetch-Aware Memory Controllers, IEEE

Trans. Computers 60 (10) (2011) 1406-1430.

4. Gomony M. D., Akesson B., Goossens K. – Architecture and optimal configuration of a

real-time multi-channel memory controller, Conf. & Exhibition Design, Automation &

Test in Europe (DATE) (2013) 1307-1312.

5. Vanegas M., Tomasi M., Diaz J., Ros E. – Multi-port abstraction layer for FPGA

intensive memory exploitation applications, J. Systems Architecture 56 (9) (2010)

442-451.

6. Bonatto A. C., Soares A. B., Susin A. A. – Multichannel SDRAM controller design for

H.264/AVC video decoder, VII Southern Conf. Programmable Logic (SPL) (2011)

137-142.

7. Hussain T., Palomar O., Unsal O., Cristal A., Ayguade E., Valero M. – Advanced Pattern

based Memory Controller for FPGA based HPC Applications, Int. Conf. High

Performance Computing & Simulation (HPCS) (2014) 287-294.

8. Xilinx – LogiCORE IP Multi-Port Memory Controller (v6.05.a) (2011).

9. Altera – Sharing External Memory Bandwidth Using the MultiPort Front-End Reference

Design (2011).

10. Dai Z., Jarvin M., and Zhu J. – Credit Borrow and Repay: Sharing DRAM with minimum

latency and bandwidth guarantees, 2010 IEEE/ACM Int. Conf. Computer-Aided Design

(ICCAD) (2010) 197-204.

11. Nguyen X. T. and Pham C. K. – An Efficient Multi-port Memory Controller for

Multimedia Applications, The 20th Asia and South Pacific Design Automation

Conference (ASP-DAC) (2015) 12-13.

12. Nguyen X. . and Pham C. K. – Parallel Pipelining Configurable Multi-port Memory

Controller For Multimedia Applications, IEEE Int. Symp. Cirt. Syst. (ISCAS) (2015)

2908-2911.

A Flexible High-Bandwidth Low-Latency Multi-Port Memory Controller

369

13. Terasic – SoCKit - the Development Kit for New SoC Device. Available:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=167&No=816. Accessed

date: 2017/12.

14. Goossens S., Kouters T., Akesson B., Goossens K. – Memory map selection for firm real-

time SDRAM controllers, Conf. & Exhibition Design, Automation & Test in Europe

(DATE) (2012) 828-831.

15. Dhamdhere – Systems Programming and Operating Systems, McGraw-Hill (1999).

16. ISSI, Datasheet IS43/46TR16256A. Available: http://www.issi.com/WW/pdf/43-

46TR16256A-85120AL.pdf. Accessed date: 2017/12.

17. Nguyen X. T., Nguyen H. T., Hoang T. T., Katsumi I., Shimojo O., Murayama T.,

Tominaga K., and Pham C. K. – An Efficient FPGA-Based Database Processor for Fast

Database Analytics, IEEE Int. Symp. Cirt. Syst. (ISCAS) (2016) 1758-1761.

18. Nguyen X. T., Nguyen H. T., and Pham C. K. – An FPGA approach for fast bitmap

indexing, IEICE Electronics Express, 13 (4) (2016) 20160006.

19. Nguyen X. T., Nguyen H. T., Katsumi I., Shimojo O., and Pham C. K. – Highly Parallel

Bitmap-Index-Based Regular Expression Matching For Text Analytics," IEEE Int. Symp.

Cirt. Syst. (ISCAS) (2017) 2667-2670.

http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=167&No=816
http://www.issi.com/WW/pdf/43-46TR16256A-85120AL.pdf
http://www.issi.com/WW/pdf/43-46TR16256A-85120AL.pdf

