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ABSTRACT 

Oxidation behavior has restricted the development of ZrB2-based ceramics for 

aerospace and hypersonic flight vehicles applications. The research presented in this 

dissertation focuses on the effect of transition metal (TM) additives on oxidation behavior 

of ZrB2 ceramics. In the first stage of the research, the effect of Nb additions on the 

morphology of the oxide particles and stability of the protective B2O3 glassy layer, which 

formed on the top surface during oxidation, was investigated. Addition of Nb increased 

the thickness of the glassy layer and, as a result, improved the oxidation resistance of 

ZrB2 after oxidation at 1500°C. Next, the oxidation behavior of nominally pure ZrB2 and 

(Zr,W)B2 after oxidation at temperatures ranging from 800 to 1600°C was studied. Two 

oxidation stages before and after significant evaporation of B2O3 at about 1100°C were 

recognized for nominally pure ZrB2. Higher stability for the WO3-B2O3 glassy layer 

compared to pure B2O3 resulted in a shift in the onset of the second oxidation regime 

toward higher temperatures for (Zr,W)B2 specimens and resulted in higher oxidation 

resistance for (Zr,W)B2 compared to nominally pure ZrB2. In the third stage of the 

research, the effects of TM-oxides such as WO3, Nb2O5, or ZrO2 on weight loss and 

structure of B2O3 glasses was studied. Thermogravimetric analysis performed on (TM-

oxide)-B2O3 glasses indicated that TM-oxide additions reduced the evaporation of B2O3. 

Since no change in the structure of the glasses was detected, it was concluded that the 

increased stability of (TM-oxide)-B2O3 glasses compared to pure B2O3 was due to the 

lower activity of B2O3 in (TM-oxide)-B2O3 glasses. Finally, comparison of the effects of 

W, Mo, or Nb on oxidation behavior of ZrB2 at 1600°C showed that Mo and Nb were the 

most effective additives for improving the oxidation resistance of ZrB2.
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SECTION  

1. INTRODUCTION 

Ultra high temperature ceramics (UHTCs) are known as a class of materials with 

the potential to withstand extreme heating environments. Several borides, carbides and 

nitrides of the group IVB and VB transition metals (TM) such as ZrB2, ZrC, HfB2 and 

HfC are considered UHTCs based on melting temperatures in excess of 3000°C and other 

properties. The performance advantages of the diboride-based UHTCs come from their 

high-temperature stability and the capability to transfer and redistribute heat at elevated 

temperatures. These characteristics are attractive for sharp leading edges for hypersonic 

aerospace vehicles, which must not only be capable of operating in oxidizing 

atmospheres at high temperatures and high flow rates, but also transfer heat away from 

the hottest areas and redistribute it to cooler areas.1, 2  

Among UHTCs, HfB2 and ZrB2 have an exceptional combination of metallic, 

covalent and ionic types of bonding. Strong covalent bonding gives them extremely high 

melting temperatures (> 3200°C), high hardnesses and high elastic moduli, while the 

metallic bonding character gives them high thermal and electrical conductivities. 

This combination of properties, along with resistance to erosion/corrosion at high 

temperatures, makes them suitable for the extreme chemical and thermal environments 

associated with hypersonic flight, atmospheric re-entry, and rocket propulsion systems.2-9 

Other applications that take advantage of these properties include refractory linings, 

molten metal crucibles, plasma arc electrodes, and cutting tools.3, 10 Since ZrB2 has a 

lower theoretical density (6.1 g/cm3) compared to HfB2 (11.2 g/cm3) and is also less 
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expensive, it is often preferred over HfB2. However, oxidation behavior is a restriction to 

the development of ZrB2-based ceramics for rocket propulsion and hypersonic flight 

applications.  

Previous studies have shown that additives that are introduced intentionally or 

unintentionally during processing, such as SiC, C, B4C, and WC, improve the 

densification, mechanical properties, and oxidation resistance of ZrB2 ceramics.11-14 The 

most effective additive for improving the oxidation resistance of ZrB2, along with other 

desirable effects at relatively low temperatures (800-1200°C), was SiC and other Si-

containing additives. Formation of a protective liquid/glassy borosilicate layer reduced 

the transport of oxygen toward the unoxidized matrix and improved the oxidation 

resistance of ZrB2-SiC ceramics. Although many studies have investigated the effect of 

Si-containing compounds on the oxidation behavior of ZrB2,11, 15 fundamental 

mechanisms of oxidation of ZrB2 with TM additives have not been studied yet.  

This study is focused on the effects of TM additives such as W, Nb, and Mo on 

the oxidation behavior of ZrB2-based ceramics. Parameters including the type and 

concentration of TM additives and oxidation temperature were examined in the present 

study. This research addresses several questions including: 

1. How do the TM additives affect the oxide scale growth on ZrB2? 

2. What are the effects of W additives on the thickness of the porous oxide scale 

and the protective B2O3 layer in different regimes of oxidation behavior? 

3. How do TM additions affect the evaporation and structural properties of B2O3 

glass? 
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4. What are the differences between the effects of different TM additives such as 

W, Mo, or Nb on oxidation of ZrB2? 

Gaining knowledge on how TM additives affect the oxidation behavior of ZrB2 at 

different oxidation temperatures can enable the design of ZrB2 ceramics with improved 

oxidation resistance at high temperatures for advanced aerospace applications. Improving 

the oxidation resistance of ZrB2 ceramics would allow the aerospace industry to improve 

the efficiency of the thermal protection systems and reduce the need to frequently replace 

parts of the leading edges in hypersonic flight vehicles. 
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2. LITERATURE SURVEY 

2.1.  ZIRCONIUM DIBORIDE 

Metal diborides such as ZrB2, HfB2, TiB2, TaB2, and NbB2 are composed of 

alternating layers of 2D graphite like sheets of boron atoms and closed packed metal 

layers in the hexagonal AlB2 crystal structure (C32, P6/mmm space group),16 as shown in 

Figure 2.1. Each metal atom is surrounded by six metal atoms in plane and 12 nearest 

boron atoms in adjacent planes. Each boron atom has three equidistant boron neighbors in 

plane, and six metal atom neighbors, three in each plane above and below.17, 18 The AlB2 

type crystal structures have an unusual combination of M-M, B-B, and M-B types of 

bonding in the structure that controls bonding and thermal stability. Strong covalent 

bonds in the ZrB2 structure results in high melting temperature, hardness, strength, and 

chemical stability. The M-B bonds determine the cohesive forces in the c-direction, while 

the stronger B-B bonds control the behavior in the a-direction.3 The M-M bonding in the 

zirconium planes results in high electrical and thermal conductivity.19, 20 High thermal 

conductivity reduces thermal stresses under a temperature gradient and increases thermal 

shock resistance.12, 21 Some physical properties of ZrB2 are summarized in Table 2.1.  
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Figure 2.1. Projection of AlB2 crystal structure showing the symmetry of P6/mmm.3 
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Table 2.1. Physical properties of ZrB2. 

Property Unit ZrB2 Reference 

Crystal structure Space group 
P6/mmm AlB2 

(Hexagonal)  
4 

Lattice constant, a Å 3.17 4 

Lattice constant, c Å 3.53 4 

Density g/cm3 6.119 4 

Melting temperature °C 3245 4 

Young’s modulus GPa 489 4 

Bulk modulus GPa 215 4 

Hardness GPa 23 4 

Coefficient of thermal 

expansion 
K-1 5.9 × 10-6  9 

Heat capacity at 25°C J • (mol • K)-1 48.2 2 

Electrical conductivity S/m 1.48 × 107 10 

Thermal conductivity W • (m • K)-1 108 10 

 

 

 

Hot pressing is the most common densification method for ZrB2 due to the strong 

covalent bonding and low self-diffusion coefficient of the elements in the compound. 

However, oxygen impurities present on the surface of individual powders hinder the 

sinterability of ZrB2 ceramics.22, 23 Reactive additives such as C14, 24 and B4C14, 22, 25 can 

be used to react with the oxide impurities and, consequently, increase densification rate, 

decrease grain coarsening, and improve the oxidation resistance.14, 24 Equation 1 shows 

the possible carbothermal reduction reactions for the ZrO2 and B2O3 impurities on ZrB2. 

However, B2O3 can also evaporate at elevated temperatures, followed by reaction of 
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carbon with ZrO2 to form ZrC by Equation 2. Using B4C as the reducing additive can 

provide extra boron and reduce the formation of ZrC by promoting formation of ZrB2. 

 

 ZrO2 + B2O3 + C → ZrB2 + 5CO (g) (1) 

 ZrO2 + 3C → ZrC + 2CO (g) (2) 

 

 

2.2. OXIDATION OF ZrB2 

Assuming stoichiometric oxidation, exposure of ZrB2 to air at temperatures of 

800°C and above results in formation of B2O3 and ZrO2, which leads to measurable mass 

gain according to the following equation26 

 

 ZrB2 (cr) + 5/2 O2 (g)  ZrO2 (cr) + B2O3 (l) (3) 

 

The oxidation reaction is favorable at all temperatures with ΔG°rxn = −1977 + 

0.361T (kJ).3 Two distinct layers covered the surface of the oxidized ZrB2 ceramics: (1) 

an outer glassy layer mainly consisting of B2O3, and (2) an inner layer mainly consisting 

of zirconia.27, 28 The formation of two-layer scales are believed to be due to limited 

mutual solubility of ZrO2 and B2O3 
29 along with the large volume expansion (~300% 

based on density calculations) associated with oxidation of ZrB2 to ZrO2 and B2O3.26 

Thermal gravimetric analysis showed three oxidation regimes.3 The mass gain was 

negligible below 700°C. Between 700 and ~1100°C, B2O3 forms a continuous oxide 

layer that provides passive oxidation protection.3, 30-32 Analysis concluded that the 

transport of oxygen through B2O3 was the rate limiting step for oxidation, which results 
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in parabolic (diffusion-limited growth) kinetics for mass gain and the oxide layer 

thickness.3, 33, 34 The upper limit of the first stage of oxidation is considered to be between 

1100 and 1200°C, depending on several parameters such as external pressure, oxygen 

partial pressure and gas flow rate.28, 35 Between 1000 and 1400°C, paralinear kinetics are 

observed due to the fact that the weight change reflects a combination of mass gain 

resulting from the formation of ZrO2 and B2O3, and mass loss due to the evaporation of 

B2O3.30, 34, 36 Specimens continue to gain mass as the mass of ZrO2 plus B2O3 formed is 

greater than the mass of diboride reacted plus the mass of B2O3 lost. As B2O3 evaporates, 

a porous ZrO2 layer is left behind, although a small amount of B2O3 may be retained. At 

temperatures above 1400°C, mass gain kinetics is linear due to the non-protective nature 

of the ZrO2 layer.3, 33  

At low and intermediate temperatures, the pores in the zirconia are filled with 

boria. In addition, the microstructure of the ZrO2 appears to change from equiaxed grains 

at temperatures below 1000°C, to columnar grains with a glassy B2O3 in between them at 

higher temperatures. Parthasarathy et al.27 summarized the changes in the oxide scale in 

three oxidation regimes as illustrated in Figure 2.2. They proposed a model to describe 

the oxidation behavior and final oxidized microstructure for ZrB2, TiB2, and HfB2 as 

shown in Figure 2.3. It was assumed that the oxygen diffusion through the TM oxide was 

not significant due to a low oxygen vacancy concentration and to a lack of sufficient 

electronic conductivity. The dependence of the parabolic rate constant as a function of 

temperature on the oxygen partial pressure in O2/N2 gas mixture of 1 atm total pressure 

was linear at 1000°C and became negligible at 1600°C.27 This was consistent with the 

previous experimental observations.35, 37  
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Figure 2.2. The oxidation products formed during oxidation of ZrB2 in three temperature 
regimes.27 
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Figure 2.3. (a) Schematic sketch of mechanisms involved in the oxidation of ZrB2 in air, 
in the intermediate temperature regime (1000-1800°C). (b) Schematic of the mechanistic 

steps considered in the model.27 
 

 

2.3.  EFFECT OF ADDITIVES ON OXIDATION BEHAVIOR OF ZrB2 

CERAMICS 

The relatively severe oxidation of nominally pure ZrB2 at temperatures above 

~1200°C, at which the protective B2O3 layer is evaporated, motivated the researchers to 
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improve the oxidation resistance by approaches such as solid solution additions, 

synthesizing ternary diboride compositions, and adding second phases.28 

Addition of SiC as a second phase was found to reduce the thickness of the oxide 

scale compared to nominally pure ZrB2 and this is one of the most promising approaches 

for increasing the oxidation resistance.6, 8, 15, 35, 38-61 It was reported that below ~1100°C, 

ZrB2 oxidized preferentially, leaving SiC unoxidized. Hence, oxidation behavior of ZrB2-

SiC ceramics was not affected by SiC additions at temperatures below ~1100°C.26, 62 The 

evaporation of B2O3 becomes significant above 1100°C and oxidation of SiC begins, 

resulting in formation of a protective borosilicate layer on the surface, which results in 

parabolic mass gain kinetics.63, 64  

Figure 2.4 shows isothermal oxidation curves for ZrB2 and ZrB2-SiC ceramics at 

1200 and 1400°C.65 The weight gain of nominally pure ZrB2 increased significantly when 

the temperature increased from 1200°C to 1400°C due to loss of the protective B2O3 

layer at the higher temperature.  Nominally pure ZrB2 and ZrB2-SiC had similar weight 

gains at 1200°C.  However, the weight gain of ZrB2-SiC at 1400°C was ~13% less than 

ZrB2 and almost similar to its weight gain at 1200°C.65 For ZrB2-SiC, the borosilicate 

glassy layer that formed on the surface had higher stability compared to pure B2O3 

formed on ZrB2.  The stable borosilicate glassy layer acted as a barrier to oxygen 

diffusion and resulted in higher oxidation resistance for ZrB2-SiC ceramics compared to 

nominally pure ZrB2.26  
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Figure 2.4. Thermal gravimetric analysis oxidation curves for ZrB2 and ZrB2-SiC 
ceramics at 1200 and 1400°C.65 

 

 

Figure 2.5 shows the structure of the oxide layers that form on ZrB2 containing 30 

vol% SiC after oxidation at 1500°C for 30 min.26 The oxide scale consisted of three 

layers: (1) a SiO2 rich liquid/glassy layer, (2) a thin layer of ZrO2-SiO2, and (3) a SiC 

depleted ZrO2 and/or ZrB2 layer covering the unoxidized ZrB2-SiC matrix.26 Boron is 

difficult to detect by energy dispersive spectroscopy (EDS), and since the borosilicate 

phase is amorphous, it is not detected by x-ray diffraction (XRD), so the authors were not 

able to quantitatively analyze boron content in the SiO2 glassy phase. However, they 

concluded that some B2O3 probably remained dissolved in the SiO2 glassy phase. The 

rate limiting step for oxidation when the glassy layer is present is believed to be diffusion 

of oxygen molecules through the SiO2 and ZrO2-SiO2 layers. The morphology of the 

ZrO2-ZrB2 layer beneath the ZrO2-SiO2 layer was similar to the original ZrB2-SiC 

structure before oxidation, except that SiC was partially or entirely removed. Formation 

of the ZrO2-ZrB2 layer indicated existence of an oxygen partial pressure gradient across 
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the SiC depleted layer.62 Addition of other Si-containing compounds such as MoSi2
66-71 

and TaSi2
49, 72-74 can also be beneficial due to the formation of borosilicate glass layer.  

 

 

 

Figure 2.5. Scanning electron micrograph of the layered structure of ZrB2–SiC after 
oxidation at 1500°C for 30 min in flowing air.26 

 

 

Karlsdottir et al. observed island-in-lagoon patterns on oxide scales formed by 

oxidation of a ZrB2–SiC composite exposed to air at 1550°C, consisting of a central 

zirconia ‘‘island’’ in a silica-rich ‘‘lagoon’’ surrounding a pattern of B2O3 rich lobes, 

arranged like flower petals (Figure 2.6).29, 75 These features were interpreted as 

convection cells transporting a fluid liquid boria-rich borosilicate oxidation product to the 

surface where B2O3 was lost by evaporation, depositing zirconia in a viscous silica-rich 

liquid, forming the island-in-lagoon pattern. It was proposed that the ZrO2 in the center of 

the cells formed by precipitating from a liquid containing B2O3, SiO2, and ZrO2 (i.e., a 

BSZ liquid) as B2O3 evaporated. The process of convective transport of liquid oxide 

solution, with evaporation of B2O3 and deposition of ZrO2 in viscous silica liquid, was 
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suggested as the mechanism of formation of the external zirconia scales observed on 

ZrB2–SiC composites.76 Formation of a more stable liquid/glassy layer on the top surface, 

along with increased oxidation resistance, supports the idea that the rate limiting step for 

this stage of oxidation is transport of oxygen through the glassy layer.27 

Sciti et al. observed similar characteristics of the oxide scales after oxidizing 

HfB2-15 vol% TaSi2 at 1600°C.77 On the surface of the sample, the dominant phase was a 

complex oxide with platelet morphology that had the stoichiometry Hf6Ta2O17.  The 

complex oxide was embedded in a borosilicate phase, which also contained Ta and Hf, 

under which a porous layer containing Ta-doped hafnia grains was generated. It was 

suggested that by oxidation of HfB2 and TaSi2, the surface borosilicate liquid layer 

underwent Ta enrichment due to oxidation of TaSi2. They believed that large convective 

fluxes were responsible for movement of liquids from the subsurface layer up to the 

surface, where B2O3 evaporation created bubbles and craters. Since the surface liquid was 

rich in Ta, the preferential crystalline phase, which would crystallize either upon cooling 

or when the liquid viscosity reached a solubility limit, was the intermediate oxide 

Hf6Ta2O17. At the same time, when a continuous Ta-borosilicate layer was formed on the 

surface, a porous layer was generated underneath.77 
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Figure 2.6. SEM image of the features on the surface of ZrB2-SiC after oxidation at 
1550°C for 2 hours.75 

 

 

Peng et al. reported that small (3.32 mol%) additions of TaB2 to ZrB2-27.91 mol% 

SiC were beneficial in improving oxidation resistance at 1500°C. This was attributed to 

the oxidation and breakup of TaB2-ZrB2 solid solution grains into fine scale ZrO2 and 

TaC particles, which better retained an encapsulating liquid phase. Increasing TaB2 

content beyond 3.32 mol% improved oxidation resistance at 1200 and 1400°C; however, 

oxidation resistance was degraded at 1500°C. The presence of higher concentrations of 

tantalum in some way facilitated the solution and precipitation of zirconia dendrites. 

After some period of time, these dendrites permitted the acceleration of oxidation by 

providing a fast diffusion path either through the dendrites or along the glass/ crystal 

interfaces of these dendrites.49 



16 

 

Talmy et al. studied the effect of 2-20 mol% Cr-, Ti-, Nb-, V-, and Ta-borides 

addition to ZrB2-25 vol% SiC. They reported that all additions formed solid solutions 

with ZrB2 after sintering and improved the oxidation resistance of the ZrB2-SiC 

composites.65 Figure 2.7 shows the results of isothermal (5 hours) thermal gravimetric 

analysis at 1300°C for ZrB2-SiC ceramics with 10 mol% CrB2, NbB2, TaB2, TiB2, and 

VB2. The lowest weight gain was observed for ZrB2-SiC with TaB2 addition. Addition of 

TaB2 resulted in formation of oxide scale with half the thickness of the scale for the 

baseline material. SEM images obtained from the surface of the ZrB2-SiC specimen with 

TaB2 additions showed the presence of large (>100 µm) droplet-shaped immiscibility 

regions distributed in the matrix of the glassy layer enriched with Zr and Ta.65  

One possible effect of TM additions could be lowering the evaporation rate of the 

borosilicate layer due to reducing the activity of SiO2 and/or B2O3 in the liquid phase. 

However, the effect of TM additives on evaporation rate of the borosilicate layer was not 

studied. Also, the effect of the TM additives on the oxidation behavior at high 

temperatures, at which the borosilicate layer, is removed was not studied. Besides, the 

effect of the TM additives on the oxidation behavior of ZrB2 was shadowed by the 

presence of SiC. Research on the effect of TM additives on the oxidation behavior of 

nominally pure ZrB2 can help provide insight into the mechanisms by which the TM 

additives improve the oxidation resistance of ZrB2. 
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Figure 2.7. Comparison of mass gains for nominally pure ZrB2-SiC and ZrB2-SiC 
ceramics with Cr, Ti, Nb, V, or Ta additions.65 

 

 

Opeka et al. reported that formation of SiO(g) as a result of active oxidation of SiC 

could build up to pressures exceeding ambient, facilitating rupture of the protective glass 

layer, resulting in a cyclic protective/ non-protective scale-forming sequence.6 Besides, 

formation of the SiC-depleted zirconia layer is common for ZrB2-SiC samples, which 

results in more rapid transport of oxygen toward the unoxidized matrix. Also, in a 

flowing environment most of the B2O3 and SiO2 will evaporate at very high temperatures. 

Thus, the primary protective oxidation barrier for the refractory metal borides is the 

refractory metal oxide scale plus any residual B2O3 and SiO2.63, 78 Hence, due to rapid 

evaporation of SiO2 at high temperatures, damage to the texture of the oxide scale by 

rupture, and formation of a porous SiC-depleted layer, SiC does not seem to be a good 

choice for improving the oxidation resistance of ZrB2 ceramics at ultra-high 

temperatures. According to the positive effects of the transition metals on improving the 

oxidation resistance of ZrB2-SiC ceramics,65 addition of transition metals might also 
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improve the oxidation resistance of ZrB2 at high temperatures, without the deleterious 

effects of SiC. 

Zhang et al. reported that WC additions improved the oxidation resistance of ZrB2 

ceramics.36 Figure 2.8 shows cross-section microstructures for nominally pure ZrB2 and 

(Zr,W)B2 ceramics containing 4, 5, or 6 mol% WC after oxidation at 1600°C for 6 hours. 

The addition of WC led to the formation of a two-layer scale structure. The structure 

consisted of a light porous zirconia outer layer and a dense dark inner layer containing 

ZrO2 and WO3, in contrast with the single, highly porous and columnar ZrO2 layer 

formed on nominally pure ZrB2.13, 36 While no significant difference was observed 

between the scale thicknesses of (Zr,W)B2 specimens with different WC contents, the 

thickness of the light layer decreased and the thickness of the dark layer increased by 

increasing the amount of WC additions. The total scale thicknesses for nominally pure 

ZrB2 and ZrB2 with 4, 5, and 6 mol% WC additions after oxidation at 1600°C for 1–6 h 

are compared in Figure 2.9. The scale on nominally pure ZrB2 after oxidation for 6 h was 

much thicker (~3.2 mm) than the scale on (Zr,W)B2 specimens (~0.75 mm).13 The oxide 

scale thickness increased linearly with time for oxidation at 1600°C for nominally pure 

ZrB2, which indicated that the scale was not protective.13  

Figure 2.10 shows the microstructures of the outer oxide scales for nominally 

pure ZrB2 and (Zr,W)B2 with 4, 5, or 6 mol% WC after oxidation at 1600°C for 3 hours. 

The densification and grain size of the oxide scale increased with increasing WC 

content.13 It was suggested that during oxidation, the presence of WO3 in the oxide scale 

resulted in liquid phase sintering of ZrO2, which modified the microstructure of the scale 

and increased its relative density, resulting in improvement of the oxidation resistance of 
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ZrB2.13 Hence, additions of WC offer improved oxidation resistance to ZrB2 ceramics by 

increasing the densification of the oxide scale, without the deleterious effects of silica 

formers. However, the effect of the transition metal oxide on the densification of the 

oxide scale may not be the only reason of higher oxidation resistance of (Zr,TM)B2 

ceramics compared to nominally pure ZrB2. As mentioned above, the liquid/glassy B2O3 

layer acts as a barrier against transport of oxygen from the atmosphere towards the 

unoxidized matrix. The effect of TM additives on the stability of the liquid/glassy layer, 

which might play an important role on improving the oxidation resistance of ZrB2, was 

not investigated in previous studies. Also, the effect of various TM additives on the 

oxidation behavior of ZrB2 might be different in different temperature regimes. 

Comparing the effects of TM additives on the thickness and morphology of the oxide 

layers could enable design of (Zr,TM)B2 ceramics with a more stable liquid/glassy B2O3 

layer, more dense oxide scales, and, consequently, higher oxidation resistance. 

 

Figure 2.8. Comparison of cross-section microstructures for nominally pure ZrB2 and 
(Zr,W)B2 with 4, 5, or 6 mol% WC after oxidation at 1600°C for 6 hours.13 
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Figure 2.9. Measured scale thicknesses vs. oxidation time for nominally pure ZrB2 and 
(Zr,W)B2 with 4, 5, or 6 mol% WC after oxidation at 1600°C.13 

 

 

 

Figure 2.10. Comparison of microstructures of the outer oxide scales for nominally pure 
ZrB2 and (Zr,W)B2 with 4, 5, or 6 mol% WC after oxidation at 1600°C for 3 hours.13 
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Abstract 

Oxidation of ZrB2 ceramics containing Nb additions at 1500 °C resulted in the 

formation of a two-layer oxide scale. The outer surface was partially covered by a glassy 

layer containing B2O3 with smaller amounts of Nb and Zr oxides dissolved into it. With 

increasing exposure time, evaporation of B2O3 from the outer layer resulted in 

precipitation of oxide particles in the receding glassy phase.  Between the outer layer and 

the unoxidized (Zr,Nb)B2 was a porous layer that consisted of particles containing Zr, 

Nb, and O. The formation of Nb2Zr6O17 was observed in the porous oxide layer. Since 

this compound is solid at the oxidation temperature, liquid phase sintering of the ZrO2 

scale was not possible. However, dissolution of Nb into B2O3 increased the stability of 

the liquid/glassy layer, which acted as a barrier to the transport of oxygen at higher 

temperatures compared to the scale formed on nominally pure ZrB2.  

Key Words: ZrB2; Nb; Oxidation; ZrO2; Composites. 

 

1.1. Introduction 

Ultra high temperature ceramics (UHTCs) are a group of materials that includes 

ZrB2, ZrC, HfB2 and HfC.  These materials are candidates for applications that require 
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exposure to extreme thermal and chemical environments. The performance advantages of 

the diboride-based UHTCs come not only from their high-temperature stability but also 

from the capability to transfer and redistribute heat at elevated temperatures. This 

characteristic is attractive for sharp leading edges for hypersonic aerospace vehicles, 

which must transfer heat away from the hottest areas and redistribute it to cooler areas. 1 

Among UHTCs, ZrB2 has the lowest theoretical density combined with reported thermal 

conductivity values as high as ~100 W/m•K at room temperature, which is an advantage 

over other candidates for aerospace applications.2 

Oxidation behavior is a restriction to the development of ZrB2-based ceramics for 

rocket propulsion and hypersonic flight applications. Assuming stoichiometric oxidation 

according to Reaction 1, exposure of ZrB2 to air at temperatures of 800°C and above 

results in formation of B2O3 and ZrO2, which leads to measurable mass gain.3 

 

 ZrB2 (cr) + 5/2 O2 (g)  ZrO2 (cr) + B2O3 (l)  (1) 

 

Evaporation of B2O3 is considerable at temperatures above ~1200 °C.  The loss of 

B2O3 (l) leaves behind a porous ZrO2 layer with a columnar microstructure, which offers 

channels for rapid oxygen transport to the reaction interface and results in significant 

mass gain at temperatures above 1200°C.4 The conventional approach to improving the 

oxidation resistance of diboride ceramics is to add Si-containing compounds such as SiC 

1, 5-13, MoSi2 
14-16, or TaSi2. 17, 18  The formation of a borosilicate layer on the surface of 

the diborides provides improved oxidation resistance in air compared to the borate glass 

on nominally pure ZrB2 due to the increased stability of the borosilicate glass compared 

to the borate material. 3, 19 At elevated temperatures, SiO(g) forms beneath the borosilicate 
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glass as a result of active oxidation of SiC. When the pressure of SiO(g) exceeds ambient, 

the resulting pressure can rupture the protective glassy layer, which can result in a cyclic 

protective/ non-protective scale-forming sequence.20  Further, some authors have noted 

the formation of the SiC-depleted layer in ZrB2-SiC samples, which facilitates the 

transport of oxygen through the oxide scale to the unoxidized matrix.21, 22 Hence, SiC 

may not be the best choice for improving the oxidation resistance of ZrB2 ceramics at 

ultra high temperatures.  

Several studies showed that additions of Cr-, Ti-, Nb-, V-, and Ta-borides 

improved the oxidation resistance of ZrB2-SiC composites. 22-26 Hence, additions of 

transition metals offer improved oxidation resistance to ZrB2 ceramics without the 

deleterious effects of silica formers. Similarly, Zhang et al. reported that WC additions 

improved the oxidation resistance of ZrB2 ceramics. The addition of WC led to the 

formation of a two-layer scale structure, which consisted of a porous zirconia outer layer 

and a dense inner layer containing ZrO2 and WO3, in contrast with the single, highly 

porous and columnar ZrO2 layer formed on nominally pure ZrB2. 27, 28 It was suggested 

that during oxidation, the presence of WO3 in the oxide scale resulted in liquid phase 

sintering of ZrO2, which increased the relative density of the scale, resulting in improved 

oxidation resistance. 28 Other transition metal additives, such as Nb, may offer similar 

beneficial effects on the oxidation behavior of zirconium diboride.  Unlike the presence 

of WO3, the formation of Nb2O5 during oxidation is not expected to result in the 

formation of a liquid phase.  Examination of the Nb2O5-ZrO2 phase diagram shows that at 

1500°C, the presence of small (less than 10 mol%) concentrations of Nb should lead to 

the formation of solid compounds such as Nb-doped ZrO2 or Nb2Zr6O17 rather than a 
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liquid phase, such as the WO3-ZrO2 solution predicted for the presence of small amounts 

of W with ZrO2. 29, 30 The purpose of this paper was to examine the effect of niobium 

additions on the oxidation behavior of ZrB2 at elevated temperatures to gain insight into 

the mechanism by which transition metal additions improve oxidation resistance.  

 

1.2. Experimental procedure 

High purity (>99%) ZrB2 powder (Grade B, H.C. Starck, Newton, MA) with an 

average particle size of ~2 µm was used to prepare the specimens for this study. To 

enhance densification, 2 wt% B4C (~0.8 µm, Grade HS, H.C Starck) was added to all 

batches to react with and remove oxide impurities from the powder particle surfaces. For 

some batches, 6 mol% niobium was added in form of Nb powder (Johnson Matthey, 

MA), which had an average particle size of ~1 μm. To reduce particle size and promote 

intimate mixing, the as-received ZrB2, B4C, and Nb (for Nb containing batches) were 

dispersed in methyl ethyl ketone (MEK) by ball milling with zirconia media for 24 hr.  

An organic dispersant (DISPERBYK-110, BYK-Chemie Co., Wesel, Germany) was 

added at a level of 0.54 mg of dispersant per m2 of ZrB2 surface area. The amount of 

zirconia contamination added to the batches as a result of ball milling was determined to 

be less than 1 wt% based on the mass of ZrB2 powder by measuring the mass of the 

media before and after milling. After mixing, the solvent was removed using rotary 

evaporation, and then the powder was ground and sieved to -80 mesh. 

Powders were densified by hot pressing (Model HP-3060, Thermal Technology, 

Santa Rosa, CA) at 2100°C for 45 min at a pressure of 32 MPa.  Powders were loaded 

into a graphite die lined with graphite foil that was coated with BN spray. Billets with a 

diameter of ~25 mm and a thickness of ~5 mm were produced. Specimens with 
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dimensions of 10 mm by 4 mm by 4 mm were diced from the billets and polished on all 

sides to a 15 μm finish for testing and characterization. Images obtained by scanning 

electron microscopy (SEM; S-4700, Hitachi, Japan) from the polished surfaces of as 

processed (Zr,Nb)B2 and ZrB2 were used to study the microstructure of the specimens. 

The amount of B4C remaining after densification was calculated using image analysis 

software (ImageJ, U. S. National Institutes of Health, Bethesda, MD). The bulk densities 

of the hot pressed billets were measured using the Archimedes technique with water as 

the immersing medium. 

Oxidation studies were performed in a MoSi2 resistance-heated horizontal tube 

furnace (Model 0000543 Rapid Temperature Furnace, CM Inc., Bloomfield, NJ) 

equipped with a high-purity alumina tube with a diameter of 6.35 cm. Specimens were 

cleaned in acetone in an ultrasonic bath and then placed on a zirconia foam setter that was 

on an alumina D-tube.  The specimen assembly was inserted into the center of the furnace 

and leveled. The ends of the tube were sealed using gas-tight end caps. Specimens were 

heated at ~5 °C/min to 1500 °C or 1600 °C and held for up to 3 hours in air with a flow 

rate of 0.2 cm/s (linear flow rate was calculated according to the volumetric flow rate and 

the size of the tube).  To minimize changes such as further oxidation that may occur 

during cooling, specimens were air quenched to room temperature by removing them 

from the furnace after the desired oxidation time. 

The thicknesses of the resulting oxidation layers were measured from fracture 

surfaces that were observed in SEM. In addition, the microstructures of the oxide scales 

were observed using SEM and chemical compositions were analyzed using energy 

dispersive spectroscopy (EDS; EDAX, Mahwah, NJ). X-ray diffraction (XRD; Philips X-
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Pert Pro diffractometer, Westborough, MA) analysis was used to identify major 

crystalline phases present in both the pre-oxidized and the post-oxidized composites and 

the data were analyzed using X'Pert High Score software.  

 

1.3. Results and discussion 

1.3.1. Densification, Microstructure, and Phase Analysis 

A microstructure typical of the (Zr,Nb)B2 specimens used in this investigation is 

presented in Figure 1. The darker phase is B4C and it appears to be uniformly dispersed 

in the lighter (Zr,Nb)B2 matrix. Based on image analysis, the amount of B4C remaining 

after densification was 1.4 wt%. The average bulk density of bars cut from hot-pressed 

(Zr,Nb)B2 billets was 6.03 g/cm3. Using a volumetric rule of mixtures calculation, and 

assuming true densities of 6.09 g/cm3 for ZrB2, 2.52 g/cm3 for B4C, and 8.57 g/cm3 for 

Nb, the theoretical density of ZrB2 containing 6 mol% Nb was calculated to be 6.05 

g/cm3. Using this true density, the hot-pressed bars had relative densities of >99%. The 

calculated relative density is consistent with the minimal amount of porosity revealed by 

SEM analysis. Also, Archimedes’ measurements showed the amount of open porosity to 

be insignificant. Thus, porosity was not considered to have a significant effect on the 

oxidation behavior. Microstructure and phase analysis using SEM and XRD were 

consistent with the dissolution of Nb into the matrix to form a (Zr,Nb)B2 solution, which 

was identified as hexagonal by indexing to ZrB2 (PDF card number 34-0423).  
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Figure 1. SEM image of a polished cross section showing the microstructure of ZrB2 
containing 1.5 vol% B4C and 6 mol% Nb. 

 

 

1.3.2.  Surface Morphology and Composition 

Assuming that the oxidation of (Zr1-xNbx)B2 proceeds stoichiometrically, reaction 

at temperatures of 800 °C and above should produce molten B2O3 (melting temperature 

~450 °C), solid ZrO2, and solid Nb2O5 in the molar ratios shown in Reaction 2.  In this 

case, the addition of 6 mol% Nb to ZrB2 is equivalent to x = 0.06, which produces an 

oxide scale with a molar ratio of Nb2O5 to ZrO2 of 1 to 33 or 93.5 wt% ZrO2 plus 6.5 

wt% Nb2O5. According to the ZrO2-Nb2O5 phase diagram29, 30, the primary crystalline 

phases that should form are a monoclinic solid solution based on ZrO2 that contains 

dissolved Nb and an orthorhombic compound, Nb2Zr6O17. By increasing the temperature, 

the solubility limit of Nb2O5 into ZrO2 increases and the ratio of Nb2Zr6O17 to the ZrO2 

solid solution decreases. The melting temperature of Nb2Zr6O17 is 1670 °C and the 

solubility limit of Nb2O5 in ZrO2 at 1500 °C is about 7 mol% (14 mol% Nb). Due to the 

formation of solid Nb2Zr6O17, no liquid phase is predicted for the composition of the 

oxide scale, which should be ZrO2 containing 6 mol% of dissolved Nb at 1500 °C. Upon 
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cooling to room temperature, the solubility limit of Nb2O5 in ZrO2 decreases and some 

Nb2Zr6O17 should precipitate from the ZrO2 solid solution. At room temperature, 

Nb2Zr6O17 comprises about 18 mol% of the oxide phase along with an amorphous phase 

that is mainly B2O3. 

 

(Zr1-xNbx)B2 (cr) + (5/2+x/4) O2 (g)  (1-x) ZrO2 (cr) + x/2 Nb2O5 (cr) + B2O3 (l)         (2) 

 

The surface of (Zr,Nb)B2 oxidized at 1500 °C for 0 hours (i.e., quenched as soon 

as it reached 1500°C) is shown in Figure 2a. A majority of the surface of the specimen 

was covered by a dark phase that had a glassy appearance (~90% of the surface area) 

with a small fraction of the surface composed of oxide particles (~10% of the surface 

area). After 3 hours at 1500 °C (Figure 2b), the area fraction of the glassy phase had 

decreased to ~60% and the glassy phase was concentrated in several pools that were 

surrounded by oxide particles.   
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Figure 2. Surface of (Zr,Nb)B2 oxidized at 1500°C for (a) 0 hours, (b) 3 hours, showing 
the presence of a glassy oxide (dark phase) and crystalline oxide particles (light phase). 

 

 

Due to low sensitivity of EDS to light elements, quantification of the boron 

content in the glassy phase was not possible. However, EDS results indicated that the 

matrix of the glassy phase contained O and Nb along with a small amount of Zr, 

presumably all dissolved in B2O3. Small particles that contained both Zr and Nb (Figure 

3a) were also observed in the glassy phase. According to the ZrO2-B2O3 
31 and Nb2O5-
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B2O3 
32 phase diagrams, approximately 12 mol% ZrO2 can dissolve into B2O3 at 1500°C 

while both Nb2O5 and B2O3 are liquids at that temperature.  Hence, the particles observed 

at room temperature could be ZrO2, Nb2O5, or an oxide containing Zr and Nb.  The 

particles could have formed either during oxidation or during cooling.  They could form 

during oxidation due to evaporation of B2O3 that would result in supersaturation of the 

remaining B2O3 with ZrO2, which could result in precipitation.  Conversely, the particles 

could precipitate from the glassy phase when the specimen was cooled from the 

processing temperature due to the change in solubility of ZrO2 in B2O3 with temperature. 

According to the ZrO2-Nb2O5 phase diagram29, two different crystalline phases could 

form when ZrO2 and Nb2O5 precipitate from the B2O3 melt.  For Nb2O5 contents less than 

about 5 mol%, a (Zr1-xNbx)O2+0.5x solid solution is the stable phase.  If the Nb2O5 

concentration in the glassy phase is higher, then the crystalline phase Nb2Zr6O17 (also 

designated 6ZrO2•Nb2O5) could form in addition to the ZrO2 solid solution. X-ray 

diffraction was used to characterize the phases present on the surface of oxidized 

(Zr,Nb)B2. The major phases detected were triclinic H3BO3, monoclinic ZrO2 and 

orthorhombic Nb2Zr6O17 (PDF card numbers 30-0199, 83-0944 and 72-1745, 

respectively). Boric acid formed after cooling the specimen to room temperature due to 

the instability of B2O3 in the humid ambient air. 

With increasing exposure time, more B2O3 should evaporate from the surface, 

which would increase precipitation of Zr- and Nb-rich oxide particles from the liquid 

phase. Near the edges of the pools, spherical particles precipitated as the B2O3 liquid 

evaporated. Figure 3a shows that the particles were uniformly distributed in the glassy 

phase and that they had an average diameter of about 0.5 µm. Closer to the centers of the 
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glassy pools, elongated precipitates appeared to grow from the spherical particles (Figure 

3b).  The elongated precipitates were typically about 3 µm long.  

 

 

 

 

Figure 3. SEM images of the surface of a (Zr,Nb)B2 specimen oxidized at 1500°C for 3 
hours that were (a) close to the edge of the liquid pool, and (b) in the middle of the liquid 
pool.  The images show a homogeneous distribution of oxide particles containing Zr and 

Nb and formation of elongated particles. 
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As the glassy phase receded during extended exposure at 1500 °C, the underlying 

oxide particles were revealed (Figure 4a and b). As the liquid receded, the small spherical 

particles that were observed in the glassy phase appeared to attach to the larger particles 

that were exposed. Some smaller particles were visible between the larger ones. In areas 

where the glassy phase remained, particularly in the middle of the glassy pools, the 

precipitated particles became more concentrated. As can be seen in Figure 5, clusters of 

elongated particles formed in the areas where the last of the glassy pools were present. 
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Figure 4. SEM images of a (Zr,Nb)B2 specimen oxidized at 1500 °C for 3 hours (a) at the 
edge of the liquid pool, (b) in the crystalline oxide region close to the liquid pool, 

showing the growth of the oxide particles by joining the small precipitated particles. 
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Figure 5. SEM image of the (Zr,Nb)B2 specimen oxidized at 1500°C for 3 hours showing 
the clustering of the equiaxed and elongated particles on the surface of the crystalline 

oxide particles. 
 

 

1.3.3. Oxide Scale Morphology and Thickness 

Initial attempts to polish cross sections of oxidized samples revealed that the 

oxide scales were damaged by the preparation process.  To produce cross sections that 

were representative of the oxide scales, fracture surfaces were examined. Figure 6 shows 

a low magnification SEM image of the fracture surface of a (Zr,Nb)B2 sample oxidized at 

1500 °C for 3 hours. Significant differences were observed in the thickness of the glassy 

layer between the middle and edge of the glassy pool.  After oxidation at 1500 °C for 3 

hours the thickness of the glassy layer ranged from a maximum of about 0 µm to ~40 µm.  

In addition, the thickness of the porous oxide layer ranged from about 45 µm to 60 µm. 

Areas of thick glassy oxide had thinner porous oxide layers while areas with thinner 

glassy oxide had thicker porous layers. 
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Figure 6. Fracture surface of a (Zr,Nb)B2 specimen oxidized at 1500 °C for 3 hours. 
 

 

Figure 7 shows cross sectional SEM images of the oxide scales from regions with 

maximum glassy layer thickness.  The scales were formed on the surfaces of the 

(Zr,Nb)B2 samples after oxidation at 1500 °C for 0, 1.5 and 3 hours. The oxide scales in 

these regions consisted of two layers: (1) a dense outer glassy layer, and (2) an inner 

layer that appeared to be porous. The two-layer scale is believed to be formed due to 

volume expansion upon conversion of ZrB2 to ZrO2 and B2O3, which is ~300% volume 

expansion based on density calculations.  Oxidation produces two phases because of the 

immiscibility of the two materials while the large volume expansion associated with 

formation of B2O3 causes it to be forced to the surface of the specimen.3  
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Figure 7. Fracture surfaces of (Zr,Nb)B2 oxidized at 1500°C for: (a) 0 hours, (b) 1.5 
hours, and (c) 3 hours. 

 

Several small elongated particles can be observed in the glassy layer in Figure 7a 

and b. The particles were uniformly distributed through the thickness of the glassy layer. 

Also, some residual glassy phase was observed between the oxide particles in the porous 

layer. The oxide particles in the porous layer of oxidized (Zr,Nb)B2 were less than 10 μm 

in diameter and had equiaxed shapes.  For comparison, the scale formed on nominally 

pure ZrB2 was composed of larger ZrO2 particles that had an elongated morphology. 33 
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Figure 8 shows the results of the scale thickness measurements for nominally pure 

ZrB2 compared to (Zr,Nb)B2 after oxidation at 1500 °C for 0, 1.5 and 3 hours. While the 

scales formed on nominally pure ZrB2 were mostly uniform, considerable differences in 

the thickness of the scales between the middle and edge of the glassy pools were 

observed in the (Zr,Nb)B2 specimens. Therefore, the measurements were performed on 

the regions with maximum glassy layer thickness for (Zr,Nb)B2. When nominally pure 

ZrB2 and (Zr,Nb)B2 reached 1500 °C, the glassy layers for both materials were ~4 μm 

thick, while the porous oxide scale was ~26 μm for ZrB2 and ~18 μm for (Zr,Nb)B2. 

After 1.5 hours at 1500 °C, the glassy and porous layers on the nominally pure ZrB2 were 

~2 and ~59 μm thick, respectively. For the same oxidation time, (Zr,Nb)B2 had a 

maximum glassy layer thickness of ~18 μm.  The porous layer beneath the glassy layer 

with the maximum thickness was ~35 μm. No glassy layer was observed on pure ZrB2 

after 3 hours at 1500 °C, while the glassy layer on (Zr,Nb)B2 had a maximum thickness 

of ~37 μm. The thickness of the porous layer on nominally pure ZrB2 was ~73 μm 

compared to ~45 μm for (Zr,Nb)B2 after 3 hours at 1500°C. Although the surface area of 

the glassy pools on (Zr,Nb)B2 decreased with increasing the exposure time at 1500°C, the 

thickness of the glassy layer increased with exposure time.  
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Figure 8. Scale thickness as a function of oxidation time at 1500°C comparing nominally 
pure ZrB2 to areas with the maximum glassy thickness for (Zr,Nb)B2. 

 

 

For nominally pure ZrB2, the thickness of the glassy layer decreased with 

increasing oxidation time at 1500 °C due to evaporation of B2O3.  Previous studies have 

reported that evaporation of B2O3 is substantial above 1100 °C due to its high vapor 

pressure. 3 In contrast, increasing the oxidation time at 1500°C for (Zr,Nb)B2 resulted in 

an increase in the thickness of the glassy layer.  The presence of glassy phase after 

oxidation of (Zr,Nb)B2 at 1500 °C for 3 hours indicated that the addition of Nb increased 

the stability of the liquid phase at high temperatures. Dissolution of Nb2O5 into the liquid 

phase should decrease the activity of B2O3 and, consequently, reduce its vapor pressure 

and evaporation rate.  The presence of a glassy layer should improve the oxidation 

resistance of the ceramic since borate glasses act as a barrier to oxygen transport. 34 

After oxidation at 1500 °C for 3 hours, the thickness of the porous layer was ~75 

µm for nominally pure ZrB2 compared to ~45 µm for (Zr,Nb)B2. Based on this 

observation, the stability of the glassy layer resulted in a decreased oxidation rate for 
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(Zr,Nb)B2. The addition of Nb increased the stability of the liquid phase, providing better 

protection at high temperatures, which decreased the oxidation rate of the (Zr,Nb)B2 

compared with nominally pure ZrB2. Not only was the initial thickness of the porous 

oxide layer thinner for (Zr,Nb)B2 (~18 µm compared to ~26 µm for nominally pure 

ZrB2), the porous oxide layer was thinner after 3 hours at 1500°C (~45 µm compared to 

~75 µm for nominally pure ZrB2).  Based on the calculations performed on the thickness 

of the porous layers, the oxidation exhibited linear kinetic behavior (R2>0.94) at 1500°C.  

Further, the addition of Nb to ZrB2 resulted in a lower oxidation rate (9 µm/h) compared 

to nominally pure ZrB2 (16 µm/h). 

 

1.3.4. Evolution of Structure 

Figure 9 is a schematic description of the evolution of the structure of the oxide 

scale on (Zr,Nb)B2. At the early stages, Zr, Nb, and B oxides form as (Zr,Nb)B2 is 

oxidized. The Zr-Nb oxide particles form on the (Zr,Nb)B2 surface, but are covered by a 

liquid phase composed of mainly B2O3 with smaller amounts of dissolved Nb and Zr 

oxides. During oxidation, Nb and Zr oxides dissolve into the liquid borate phase. At 

higher temperatures, the evaporation rate of B2O3 from the outer surface increases, which 

results in precipitation of particles in the liquid. The particles contain Zr, Nb, and O and 

join together to form either the equiaxed or elongated grains visible in the glassy phase of 

the quenched specimens (e.g., Figure 3).  As exposure time increases, B2O3 evaporation 

continues and the liquid phase concentrates in pools that are separated by regions of 

crystalline oxide.  As the glass recedes, it exposes the underlying porous oxide scale. 

Previous studies have shown that the addition of W to ZrB2 leads to liquid phase sintering 

of the porous ZrO2 scale, which improved the oxidation resistance by decreasing oxygen 
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transport through the scale.  In contrast, Nb2O5 and ZrO2 form a solid Zr-Nb-O 

compound at the oxidation temperature, namely Nb2Zr6O17, so no liquid phase sintering 

of ZrO2 occurred. However, dissolution of Nb2O5 into the B2O3 liquid phase increased 

the stability of the liquid phase compared to the nominally pure B2O3 that forms when 

ZrB2 is oxidized.  The improved stability of the glassy layer leads to improved oxidation 

behavior because the external layer and glassy phase trapped among the particles that 

make up the porous oxide layer acts as a barrier to the transport of oxygen. Therefore, the 

addition of Nb to ZrB2 increased the oxidation resistance, but only as long as the Nb-

containing B2O3 phase was present. 

 

 

Figure 9. Model of the evolution of the oxide structure of (Zr,Nb)B2. 
 

 

 

1.4. Conclusion 

The oxidation behavior of (Zr,Nb)B2 ceramics was studied.  At 1500 °C, exposure 

to air resulted in the formation of a two-layer oxide scale structure on (Zr,Nb)B2.  The 

two layers were: (1) an outer layer of a glassy phase containing B2O3 with Nb and Zr 

dissolved in it; and (2) a porous oxide layer composed of oxide particles containing Zr 

and Nb. Small spherical particles, presumably a ZrO2 containing dissolved Nb, grew in 

the glassy phase with increasing exposure time.  Some of the particles were spherical 
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while others were elongated. As the B2O3 evaporated, the particles became concentrated 

and were eventually incorporated into the newly exposed porous oxide layer, which 

contained both ZrO2 and Nb2Zr6O7. As the glass receded, the small precipitated particles 

joined the porous oxide layer that was present under the glassy layer. Because of high 

melting point of Nb2Zr6O7 that was formed in the porous oxide layer, liquid phase 

sintering was not active as has been reported for W-containing ZrB2. However, 

dissolution of Nb into the B2O3 liquid phase increased the stability of the protective liquid 

layer by reducing the volatility of B2O3 from the liquid phase. Hence, (Zr,Nb)B2 showed 

improved oxidation resistance compared with pure ZrB2. 
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Ceramics 
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Technology, Rolla, MO 65401, United States 

 

Abstract 

The effects of tungsten additions and temperature on the oxidation behavior of 

nominally pure ZrB2 and ZrB2 containing 4, 6 or 8 mol% of W after oxidation at 

temperatures ranging from 800 to 1600°C were investigated. For pure ZrB2, the 

protective liquid/glassy layer covering the surface as a result of oxidation was evaporated 

above 1500°C. For (Zr,W)B2 specimens, the liquid/glassy layer was present after 

exposure up to 1600°C. The higher stability of the liquid/glassy phase in the W-

containing compositions was attributed to the presence of tungsten in the liquid/glassy 

phase, resulting in improved oxidation resistance for ZrB2 samples containing W.  

Key Words: Zirconium Diboride; Tungsten; Oxidation. 
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2.1. Introduction 

Zirconium diboride has advantages over other candidates for hypersonic 

aerospace applications due to its high melting point (~3250 °C) and low theoretical 

density (6.09 g/cm3) combined with a thermal conductivity as high as 100 W/m•K at 

room temperature 1, 2. Ultrahigh-temperature stability and high thermal conductivity 

provide ZrB2 with the ability to transfer heat away from the hottest areas of structures and 

redistribute it to cooler areas, which makes it attractive for sharp leading edges for 

hypersonic aerospace vehicles 3.  

The use of ZrB2-based ceramics for applications requiring elevated temperatures 

in air is restricted by its oxidation behavior. Assuming stoichiometric oxidation, exposure 

of ZrB2 to air results in the formation of B2O3 and ZrO2, which leads to measurable mass 

gain (Eq. 1) 4. 

 

ZrB2 (s) + 5/2 O2 (g)  ZrO2 (s) + B2O3 (l)                                     (1) 

 

The oxidation reaction is favorable at all temperatures with ΔG°rxn = −1977 + 

0.361T (kJ) 5. Previous studies have divided the oxidation behavior of ZrB2 into three 

different temperature regimes, although the transition temperatures depend on parameters 

such as heating rate, gas flow rate, oxygen activity, etc.  The low temperature regime 

occurs below about 1100 °C.  At these temperatures, ZrO2 and B2O3 form a continuous 

oxide layer that provides passive oxidation protection 6-9. Analysis concluded that the 

transport of oxygen through B2O3 was the rate limiting step for oxidation in this regime, 

which results in parabolic (diffusion-limited growth) kinetics for mass gain and changes 
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in the oxide layer thickness 9, 10. Between ~1100 °C and ~1400 °C, paralinear kinetics 

have been observed.  In this intermediate temperature regime, the weight change reflects 

a combination of mass gain from formation of ZrO2 and B2O3, and mass loss due to the 

evaporation of B2O3 6, 10, 11. Specimens continue to gain mass as the mass of ZrO2 plus 

retained B2O3 is greater than the mass of diboride reacted plus the mass of volatilized 

B2O3. As B2O3 evaporates, a porous ZrO2 layer is left behind. In the highest temperature 

regime, ~1500 °C and above, the B2O3 is no longer protective and mass gain kinetics 

become linear due to the non-protective nature of the ZrO2 layer 9. Parthasarathy et al. 12, 

13 presented a physical model to predict the oxidation behavior of refractory diborides in 

these three different temperature regimes. The model assumed that diffusion of dissolved 

oxygen through boria, in capillaries between nearly columnar blocks of the ZrO2 was the 

rate-limiting step when condensed boria was present. After evaporation of boria, the 

oxidation rate was limited by Knudsen diffusion of molecular oxygen through the 

capillaries. The model agreed with experimental results in predicting weight change, 

recession, oxide scale thickness and the temperature dependence of the parabolic rate 

constant for ZrB2.  

Addition of Si-containing compounds such as SiC 3, 4, 14-23, MoSi2 
24-26, or TaSi2 

27, 

28 is the conventional approach to improving the oxidation resistance of diboride 

ceramics.  Improved oxidation resistance is obtained as a result of formation of a 

borosilicate glassy layer on the surface of the diboride with higher stability compared to 

the borate glassy layer which forms on nominally pure ZrB2 4, 23. However, SiC or other 

Si-containing additives may not be the best choice due to problems, such as rupture of the 

protective glassy layer as a result of SiO(g) formation 29, or formation of a SiC-depleted 
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layer.  Either of these issues has been shown to result in loss of protection at temperatures 

above 1600 °C 30, 31.  

Transition metal additives can also improve the oxidation behavior of diborides.  

Led by Talmy et al., several groups have investigated transition metal additions including 

Cr-, Ti-, Nb-, V-, and Ta-borides, to improve the oxidation resistance of ZrB2-based 

composites 31-35. In addition, Zhang et al. 11, 36 reported that WC additions improved the 

oxidation resistance of ZrB2 ceramics due to the formation of WO3 in the oxide scale, 

which resulted in liquid phase sintering of ZrO2 and consequently increased the relative 

density of the scale. The purpose of the present paper was to study the effect of the 

amount of W added on the oxidation behavior of ZrB2 at temperatures from 800 to 1600 

°C. The initial results indicated the effectiveness of W on increasing the stability of the 

protective liquid/glassy B2O3 scale. Hence, B2O3 glasses with 0, 4, 6, or 8 mol% WO3 

were also prepared to investigate the effect of WO3 on weight loss of B2O3 glasses.  This 

study was intended as an initial investigation of oxidation behavior in a controlled 

furnace oxidation environment with the goal of gaining insight into fundamental 

oxidation mechanisms prior to testing in more complex environments that are 

representative of hypersonic flight conditions. 

  

2.2. Experimental procedure 

Specimens for this study were prepared from high purity (>99%) ZrB2 powder 

(~2 µm, Grade B, H.C. Starck, Newton, MA). 2 wt% B4C (~0.8 µm, Grade HS, H.C 

Starck) was added to all batches to remove the oxide impurities from the powder particle 

surfaces and enhance densification. For some batches, 4, 6, or 8 mol% tungsten was 

added in form of W powder (~3 μm, Alfa Aesar, Ward Hill, MA) with a reported purity 
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of 99.9%. Hereafter, ZrB2 ceramics containing only B4C are referred to as “nominally 

pure ZrB2” while ZrB2 with B4C and W additions are referred to as (Zr,W)B2. 

The powders were mixed by ball milling in butan-2-one (methyl ethyl ketone) 

with ZrO2 media for 24 hrs. Measurement of the mass of media before and after milling 

indicated that the amount of zirconia contamination added to the batches was less than 1 

wt% based on the mass of ZrB2 powder. After drying and sieving (-80 mesh), the 

powders were densified by hot pressing (Model HP-3060, Thermal Technology, Santa 

Rosa, CA) at 2100 °C for 45 min at a pressure of 32 MPa.  For oxidation studies and 

initial characterization of the as processed microstructures, bars with dimensions of 10 

mm by 4 mm by 4 mm were diced from the produced billets.  Prior to testing, bars were 

finished by polishing on all sides using successively finer diamond abrasives with a final 

polishing step using a 15 μm diamond slurry. 

The microstructures of the polished surfaces of as processed (Zr,W)B2 and ZrB2 

were studied using images obtained by scanning electron microscopy (SEM; S-4700, 

Hitachi, Japan). Image analysis software (ImageJ, U. S. National Institutes of Health, 

Bethesda, MD) was used to calculate the amount of B4C remaining after densification. 

The Archimedes technique, with water as the immersing medium, was used to measure 

the bulk density of the hot pressed billets. 

Oxidation studies were performed in a MoSi2 resistance-heated horizontal tube 

furnace (Model 0000543 Rapid Temperature Furnace, CM Inc., Bloomfield, NJ) 

equipped with a high-purity alumina tube with a diameter of 6.35 cm. Specimens were 

placed on a ridged zirconia setter that was on an alumina D-tube in the center of an 

alumina tube that was sealed with gas-tight end caps. Specimens were heated at ~5 
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°C/min to temperatures ranging from 800 to 1600 °C in flowing air with a flow rate of 

0.2 cm/s (linear flow rate was calculated from the volumetric flow rate and the diameter 

of the tube). Specimens were air quenched to room temperature by removing them from 

the furnace after the desired oxidation time to minimize changes such as further oxidation 

that may occur during cooling. 

The weight and surface area of the specimens were measured before and after 

oxidation to calculate the weight gain as a result of oxidation. The fracture surfaces 

observed in the SEM were used to study the microstructure and calculate the thicknesses 

of the resulting oxide layers. In addition, chemical compositions of the scales were 

analyzed using energy dispersive spectroscopy (EDS; EDAX, Mahwah, NJ). 

Borate glasses were prepared from high purity (≥99.5%) boric acid powder 

(H3BO3, ACS reagent, Sigma-Aldrich, Saint Louis, MO) and WO3 (99.99%, metal basis, 

Alfa Aesar, Ward Hill, MA). The powders were mixed using dry ball milling followed by 

grinding with a mortar and pestle. The mixtures were calcined at 500 °C in a platinum 

crucible until no bubbling was observed. The glasses were then melted at 900 °C for 1 

hour followed by quenching onto copper plates. After grinding and sieving (-80 mesh), 

thermogravimetric analysis (Netzsch Simultaneous TGA/DTA, Selb, Germany) was 

performed at temperatures up to 1500 °C using a heating rate of 10 °C/min and a flowing 

nitrogen atmosphere. Before initiating the analysis, the samples were held for 1 hour at 

170 °C to eliminate any hydration of the B2O3 that may have occurred during preparation 

or storage. 
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2.3.  Results and discussion 

All of the compositions reached nearly full density during hot pressing.  The 

measured bulk densities of the specimens are shown in Table 1. To determine the 

theoretical densities, the area fraction of B4C remaining in each composition after 

densification was estimated by analyzing SEM images and assumed to be equivalent to 

the B4C volume fraction.  Using true densities of 6.09 g/cm3 for ZrB2, 19.25 g/cm3 for W, 

and 2.52 g/cm3 for B4C, a volumetric rule of mixtures was used to calculate the 

theoretical density of nominally pure ZrB2 and (Zr,W)B2 specimens. Combined with the 

bulk density measurements, all of the specimens had relative densities that were >98%. In 

addition, the Archimedes’ measurements indicated that open porosity was not significant 

in any of the compositions. Therefore, porosity should not have an effect on the oxidation 

behavior.  

 

Table 1. Area fraction of B4C remaining after densification and density data for 

nominally pure ZrB2 and (Zr,W)B2 specimens. 

Designation B4C Area 

Fraction (%) 

Theoretical 

Density (g/cm3) 

Bulk Density 

(g/cm3) 

Relative 

Density (%) 

ZrB2 4.8 5.92 5.87 99.2 

ZrB2+4mol%W 1.6 6.31 6.08 98.7 

ZrB2+6mol%W 1.1 6.47 6.22 98.7 

ZrB2+8mol%W 0.8 6.62 6.41 99.4 
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Oxidation of (Zr,W)B2 should produce ZrO2, B2O3, and WO3, assuming that 

oxidation proceeds stoichiometrically (Eq. 2), although oxidation is minimal below ~800° 

C. Individually, the stable phases of these compounds in this temperature range are solid 

ZrO2 (monoclinic below 1170°C and tetragonal above), liquid B2O3 (melting temperature 

~450°C), and WO3. When combined, the scale formed on the surface of (Zr,W)B2 

specimens after oxidation at elevated temperature and cooling to room temperature 

consists of crystalline oxides containing Zr, and/or W, plus an amorphous phase that is 

mainly B2O3. According to the ZrO2-WO3 phase diagram 37, the presence of small (less 

than 5 mol%) concentrations of W should lead to the formation of W-doped ZrO2. Higher 

amounts of W result in formation of ZrO2 and WO3 (up to 1105 °C) or ZrO2 and ZrW2O8 

(from 1105 to 1257 °C).  

 

(Zr1-xWx)B2 (s) + (x+5) O2 (g)  (1-x) ZrO2 (s) + x WO3 (s) + B2O3 (l)         (2) 

 

Figure 1 and Figure 2 show cross sectional SEM images of the oxide scales of 

nominally pure ZrB2 and ZrB2 containing 4, 6, or 8 mol% W after oxidation at 900 and 

1300 °C, respectively. The oxide scales on these specimens consisted of two distinct 

layers: (1) a dense outer glassy layer, and (2) a porous inner layer. Due to low sensitivity 

of EDS to light elements, quantification of the boron content in the glassy phase was not 

possible. However, EDS results indicated that the matrix of the glassy phase contained O 

and W along with a small amount of Zr, presumably all dissolved in B2O3. According to 

the ZrO2-B2O3 
38 and WO3-B2O3 

39 phase diagrams, approximately 10 mol% WO3 can 

dissolve into B2O3 at 900 °C, while ZrO2 is not soluble in pure B2O3 at that temperature. 
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At 1300°C, the solubility of ZrO2 and WO3 in B2O3 increases to 2 and 45 mol%, 

respectively. Immiscibility of ZrO2 and B2O3 along with the large volume expansion 

(~300% based on density calculations) associated with oxidation of ZrB2 to ZrO2 and 

B2O3 are believed to result in the formation of two-layer scales 4. After oxidation at 1600 

°C (Figure 3), the scales formed on all of the specimens consisted of a porous layer with 

only some residual glassy phase observed between the oxide particles.  

 

 

 

 

Figure 1. SEM images of the fracture surfaces of nominally pure ZrB2 (a) and ZrB2 
containing 4 mol% W (b), 6 mol% W (c) , or 8 mol% W (d) after oxidation at 900°C for 
0 hours. Note that the images in this figure have a different magnification than those in 

Figure 2 and 3. 
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Figure 2. SEM images of the fracture surfaces of nominally pure ZrB2 (a) and ZrB2 
containing 4 mol% W (b), 6 mol% W (c) , or 8 mol% W (d) after oxidation at 1300°C for 

0 hours. 
 

 

 

Figure 3. SEM images of the fracture surfaces of nominally pure ZrB2 (a) and ZrB2 
containing 4 mol% W (b), 6 mol% W (c) , or 8 mol% W (d) after oxidation at 1600 °C 

for 0 hours. 
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The thicknesses of the glassy and porous layers after oxidation of nominally pure 

ZrB2 and (Zr,W)B2 containing 4, 6, an 8 mol% W at temperatures from 800°C to 1600°C 

are summarized in Figure 4. Between 800 and 1000 °C, the thickness of the glassy layers 

increased from ~3 to ~5 µm. The differences in the thickness of the glassy layers for 

nominally pure ZrB2 and (Zr,W)B2 specimens were less than 1 µm in this temperature 

range. Hence, the addition of W did not have a significant effect on the thickness of the 

glassy layer after oxidation at temperatures below 1000 °C. At temperatures ranging from 

1000 to 1200 °C, the increase in the thickness of the glassy layers was less for nominally 

pure ZrB2 than (Zr,W)B2 specimens, presumably due to lower evaporation of B2O3 from 

the (Zr,W)B2 compositions. The highest thickness of the glassy layer for nominally pure 

ZrB2 was 5 µm at 1200 °C, while the glassy layer was 8 µm thick for (Zr,W)B2 

containing 4 mol% W, 11 µm for 6 mol% W, and 7 µm for 8 mol% W at 1300 °C. Even 

if it has no other effects, the dissolution of WO3 into B2O3 at elevated temperatures 

should lower the activity of B2O3 and, consequently, lower the evaporation of B2O3 from 

the liquid/glassy phase. The thickness of the glassy layers decreased after oxidation at 

temperatures above 1200 °C or 1300 °C for nominally pure ZrB2 and (Zr,W)B2 

specimens, respectively. However, the differences between the thicknesses of the glassy 

layers for nominally pure ZrB2 and (Zr,W)B2  specimens were still significant (up to 14 

µm) with W additions promoting the formation of thicker glassy layers compared to 

nominally pure ZrB2. No glassy layer was observed on the surface of nominally pure 

ZrB2 at 1500 °C or (Zr,W)B2 specimens at 1600 °C. 

After oxidation at temperatures up to 1400°C, the thicknesses of the porous layers 

were almost the same for all of the compositions. Oxidation at 1600 °C produced a 
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significantly thicker porous oxide layer on nominally pure ZrB2 (~85 µm) compared to 

the specimens containing W (~30 µm). No considerable differences were observed 

between the porous layer thicknesses for specimens with different amounts of W. Based 

on these measurements, the addition of W shifted the temperature at which the protective 

liquid/glassy layer evaporated and resulted in higher oxidation resistance of ZrB2 

specimens with W additions compared to nominally pure ZrB2. 
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Figure 4. (a) Glassy layer and (b) porous layer scale thicknesses as a function of 
oxidation temperature comparing nominally pure ZrB2 to ZrB2 containing 4, 6, or 8 

mol% W after oxidation for 0 hours. Note the difference in the y-axis scale between the 
two plots. 

 

 

 

 



64 

 

To compare the evaporation of B2O3 from the ZrB2 and (Zr,W)B2 specimens, Eq. 

1 was used to predict the thickness of the glassy scales. For this calculation, oxidation 

was assumed to be stoichiometric so that equal molar amounts of ZrO2 and B2O3 were 

formed.  Building on that assumption, the glassy scale thickness was estimated from the 

thickness of the porous oxide scale assuming a relative density of 98% up to 1200 °C 

(i.e., below the monoclinic to tetragonal phase transition temperature) and 93% at higher 

temperatures. The results of the predictions are shown in Figure 5. Next, the amount of 

the glassy scale that evaporated during oxidation was estimated by subtracting the 

measured thickness from the estimated thickness (Figure 6). Based on this analysis, the 

onset of evaporation increased from ~900 °C for nominally pure ZrB2 to ~1300 °C for 

ZrB2+4mol%W. The evaporation of B2O3 from ZrB2+4mol%W was significantly lower 

than for ZrB2 for temperatures up to ~1500 °C.  Hence, the presence of W in ZrB2 

suppressed evaporation of the glassy scale at temperatures below 1500 °C. 
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Figure 5. Predicted thicknesses of the glassy scales without evaporation estimated from 
the thickness of the porous oxide scales, comparing nominally pure ZrB2 to ZrB2 

containing 4 mol% W after oxidation for 0 hours. 
 

 

 

Figure 6. The percentage of the glassy scale lost to evaporation estimated by subtracting 
the measured thickness values for the glassy scales from the estimated thickness without 

evaporation, comparing nominally pure ZrB2 to ZrB2 containing 4 mol% W after 
oxidation for 0 hours. 
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Figure 7 shows the weight gain for nominally pure ZrB2 and (Zr,W)B2 specimens 

containing 4, 6, or 8 mol% W after oxidation from 800 to 1600 °C in flowing air. The W 

content did not have a significant effect on the weight gain of ZrB2 after oxidation at 

temperatures below 1000 °C. The weight gains were ~1 mg/cm2 for ZrB2 and (Zr,W)B2 

specimens at 1000 °C. The weight gains for (Zr,W)B2 specimens were nearly constant 

between 1000 °C and 1200 °C, while for nominally pure ZrB2 weight gain increased to 

~1.5 mg/cm2 at 1100 °C and then decreased to ~1 mg/cm2 at 1300 °C. At 1500 °C, the 

weight gain of (Zr,W)B2 specimens increased to ~4 mg/cm2, while it was ~3 mg/cm2 for 

nominally pure ZrB2. The weight gain for (Zr,W)B2 decreased significantly from ~4 

mg/cm2 at 1500 °C to ~2 mg/cm2 at 1600 °C, while the weight gain of nominally pure 

ZrB2 increased from ~3 mg/cm2 at 1500 °C to ~5 mg/cm2 at 1600 °C. The measured 

weight gain values are representative of both the weight of oxygen added to the system 

due to formation of ZrO2, B2O3, and WO3 for (Zr,W)B2 and weight loss due to 

evaporation of B2O3 and probably WO3 for (Zr,W)B2 specimens. The increase in weight 

gain from 800 to 1000 °C is the result of an increase in oxidation along with insignificant 

evaporation of B2O3. The constant weight gain for the (Zr,W)B2 specimens from 1000 to 

1200 °C indicates almost equal weights of oxygen added and B2O3 lost from the 

specimens. Between 1300 and 1500 °C, the evaporation of B2O3 from nominally pure 

ZrB2 increases from ~65% to 100% of the glassy layer thickness, while it increases from 

0% to 95% for (Zr,W)B2 specimens (see Figure 6). On the other hand, the thickness 

values for the porous oxide layers (Figure 4) are almost the same over this range of 

temperatures. This results in higher weight gain for (Zr,W)B2 specimens compared to 

nominally pure ZrB2. At 1600 °C, the higher weight gain for nominally pure ZrB2 is due 



67 

 

to its more rapid oxidation due to the nearly complete evaporation of B2O3.  The 

thicknesses of the porous layers are lower for (Zr,W)B2 specimens at 1600 °C, indicating 

less oxidation of W-containing compositions. 

 

 

 

Figure 7. Weight gain as a function of oxidation temperature for nominally pure ZrB2 and 
ZrB2 containing 4, 6, or 8 mol% W after oxidation at 800-1600°C for 0 hours in flowing 

air. 
 

 

According to the WO3-B2O3 phase diagram 39, the presence of small 

concentrations (<10 mol%) of WO3 with B2O3 results in the formation of a liquid phase 

above 800 °C. Dissolution of WO3 into the liquid phase should decrease the activity of 

B2O3 and, consequently, reduce its vapor pressure and evaporation rate.  Further, the 

presence of W in the glass may also affect the B coordination state in the B2O3 network, 

which could further decrease the vapor pressure of B2O3 for W-containing 
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compositions40, 41. To investigate the effect of WO3 additions on evaporation of B2O3, 

thermogravimetric analysis (TGA) was performed on pure B2O3 and borate glasses 

containing 4, 6 and 8 mol% WO3 at temperatures ranging from 25 to 1500 °C. The total 

weight loss curves as function of temperature are shown in Figure 8. To minimize the 

influence of different levels of hydration among the different compositions, all of the 

curves were normalized to the weight at 500 °C, which is above the decomposition 

temperature for boric acid, but below the temperature at which significant evaporation of 

B2O3 begins. The weight loss for pure B2O3 was less than about 0.5% between 500 and 

1000 °C.  Weight loss increased linearly from ~0.5% at 1000 °C to ~5% at 1400 °C, and 

showed a sharp increase above 1400 °C. In comparison, the B2O3-WO3 glasses had 

weight losses of less than 0.6% up to 1300 °C.  Above 1300°C, they showed a sharp 

increase in weight loss. The glasses with higher amounts of WO3 showed higher weight 

losses between 1300 and 1500 °C, probably indicating the volatility of WO3 in this 

temperature range. Interestingly, B2O3 containing 4 mol% WO3 exhibited the lowest 

weight loss of any of the compositions. Based on these observations, the presence of 

WO3 reduces the volatility of the borate glass up to about 1300 °C. 
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Figure 8. Weight loss as a function of temperature for B2O3 and borate glasses containing 
4, 6 and 8 mol% WO3 obtained by thermogravimetric analysis. 

 

 

Combined with the scale thickness and mass change results, the TGA weight loss 

measurements reveal several similarities and differences between the oxidation behavior 

of nominally pure ZrB2 and (Zr,W)B2. In the low temperature regime, below about 1000 

°C, no significant differences were observed.  Both ZrB2 and (Zr,W)B2 have similar scale 

thickness and mass gain values. Above about 1000 °C, B2O3 begins to evaporate. As 

indicated by TGA weight loss, pure B2O3 becomes volatile at these temperatures, which 

leads to the observed decrease in the thickness of the outer glassy layer on ZrB2 as shown 

in Figure 4. In contrast, TGA showed that W-containing B2O3 exhibited lower weight 

losses, with almost no loss of mass below 1300 °C.  The presence of W in the outer 

glassy scale reduced its volatility, which resulted in thicker glassy layers on (Zr,W)B2 up 

to ~1500 °C (Figure 4). The overall mass change (Figure 7) did not show any significant 
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differences between ZrB2 and (Zr,W)B2 up to ~1300 °C, despite the increased stability of 

the outer glassy layer for W-containing compositions. Between 1300 and 1500 °C, 

(Zr,W)B2 compositions showed higher mass gains than ZrB2 (Figure 7), indicating the 

higher stability of the outer glassy layer. Hence, one impact of W additions to ZrB2 is to 

stabilize the outer glassy layer.  Based on these results, as shown in Figure 9, the addition 

of W to ZrB2 appears to extend the low temperature regime of oxidation behavior, where 

a layer of W-containing liquid B2O3 is stable on the surface of the oxidizing (Zr,W)B2.  

The thickness of the porous oxide layers show a sharp increase above 1400 °C 

due to the increased evaporation rate of B2O3 at these temperatures (Figure 8) that results 

in a lower thickness of the protective liquid/glassy layers. However, the difference 

between the porous scales on ZrB2 and (Zr,W)B2 specimens were not significant below 

1500 °C. As shown by TGA weight loss curves, at 1500 °C, the weight loss of pure B2O3 

(~20%) was significantly higher than B2O3-WO3 melts (<15%). The increased stability of 

the protective liquid/glassy layers formed on the surface of (Zr,W)B2 specimens, to 

higher temperatures compared to ZrB2, resulted in significantly lower weight gain and 

scale thickness for (Zr,W)B2 specimens compared to nominally pure ZrB2 after oxidation 

between 1500 and 1600 °C. Above 1500 °C for nominally pure ZrB2 and 1600 °C for 

(Zr,W)B2 specimens, no protective glassy layer was present on the surface of the 

specimens and oxidation was more severe compared to earlier regimes. However, B2O3 

continues to form at these temperatures and the pores in the porous oxide layers are filled 

with borate melt. In the highest temperature regime, where the pores are depleted of 

B2O3, oxidation behavior is controlled by the flow (i.e., Knudsen diffusion as described 

by Parthasarathy [12,13]) of molecular oxygen through the porous ZrO2 scale. 
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Figure 9. TGA results showing lower weight loss for B2O3 + 4 mol% WO3 compared to 
B2O3 that results in lower glassy thicknesses for ZrB2 + 4 mol% W compared to ZrB2 
after oxidation at 800-1600 °C for 0 hours. The onset of the second oxidation regime 

shifts toward higher temperatures for ZrB2 + 4 mol% W. 
 

 

Evaluating the reliability of the weight gain measurements versus the weight loss 

calculated from the TGA results, as a reference for the evaporation of B2O3 during 

oxidation, could be useful for future studies. The thickness of the glassy scales for ZrB2 

and ZrB2+4mol%W were calculated using the porous scale thickness measurements with 

evaporation calculated from weight gain (Figure 7) and the TGA data (Figure 8). The 

results are shown in Figure 10. Again, the porosity of the porous scales were assumed to 

be 98% up to 1200 °C and 93% at higher temperatures. The weight losses obtained by 

TGA were multiplied by 6 to compensate for the differences between the air flow rates in 

the isothermal oxidation and TGA tests. The thickness values calculated from the TGA 
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results showed to be a good fit to the experimental results at most of the oxidation 

temperatures. The thickness values calculated from the weight gain results did not fit the 

experimental data. The calculated results indicate that weight loss obtained by TGA is 

more reliable than weight loss measurements made on bulk specimens that were oxidized 

and then cooled with respect to the evaporation of B2O3 during oxidation. 
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Figure 10. Thicknesses of the glassy scales calculated from weight gains and TG results 
for ZrB2 and ZrB2+4mol%W after oxidation for 0 hours. 

 

2.4. Conclusion 

The oxidation behavior of nominally pure ZrB2 and (Zr,W)B2 ceramics with 4, 6, 

or 8 mol% W was studied at temperatures ranging from 800 to 1600 °C. Oxidation in this 

temperature range resulted in the formation of a two-layer scale: (1) an outer glassy layer 



74 

 

containing B2O3 with dissolved W for (Zr,W)B2 compositions; and (2) a porous layer 

composed of oxide particles containing Zr and W for (Zr,W)B2 compositions. Based on 

scale thickness and weight gain measurements, two regimes of oxidation behavior were 

observed. The first stage was below 1100 °C for nominally pure ZrB2 and 1300 °C for 

(Zr,W)B2 specimens. No significant differences were measured for weight loss or scale 

thickness between nominally pure ZrB2 and (Zr,W)B2 compositions at temperatures 

between 800 and 1000 °C. However, the glassy layer thicknesses and weight gains were 

higher for (Zr,W)B2 specimens after oxidation from 1100 to 1300 °C. It was concluded 

that dissolution of W into the B2O3 liquid phase increased the stability of the protective 

liquid layer by reducing the volatility of B2O3 from the liquid phase, resulting in a shift in 

the onset of the second oxidation regime toward higher temperatures for (Zr,W)B2 

specimens. This assumption was confirmed by TGA analysis of B2O3 and B2O3-WO3 

glasses. Above 1500 °C, the outer glassy layer was removed from the surface of 

nominally pure ZrB2 by evaporation, while a thin (up to ~3µm) glassy layer was still 

covering the (Zr,W)B2 specimens. Further, the (Zr,W)B2 compositions showed lower 

weight gains and had thinner oxidation scales compared to nominally pure ZrB2 at 1600 

°C. The addition of W into B2O3 increased the stability of the protective liquid/glassy 

layer and resulted in higher oxidation resistance for (Zr,W)B2 compared to nominally 

pure ZrB2. 
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Abstract 

The effects of transition metal (TM) oxides such as WO3, Nb2O5, or ZrO2 on 

weight loss and structure of B2O3 glasses was investigated. According to 

thermogravimetric analysis performed on (TM-oxide)-B2O3 glasses, TM-oxide additions 

reduced the evaporation of B2O3. Raman spectroscopy and 11B high resolution nuclear 

magnetic resonance spectroscopy were used to study the effect of the TM-oxides on the 

structure of B2O3 glasses. Since no change in the structure of the glasses was detected, 

the increased stability of (TM-oxide)-B2O3 glasses compared to pure B2O3 is due to the 

lower activity of B2O3 in (TM-oxide)-B2O3 glasses. 

 

Key Words: Borate glasses; tungsten oxide; niobium oxide; zirconium oxide; high-

temperature Raman spectroscopy. 
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3.1. Introduction 

Zirconium diboride is a candidate for hypersonic flight vehicle applications due to 

its high melting point (~3250°C) combined with thermal conductivity as high as ~110 

W/m•K at room temperature.1, 2 However, oxidation behavior has restricted the 

development of ZrB2 for aero-propulsion and hypersonic flight applications.3 Assuming 

stoichiometric oxidation, exposure of ZrB2 to air at elevated temperatures results in the 

formation of liquid B2O3 layer (melting point ~450°C) and crystalline ZrO2 (Reaction 1).4  

The glass forming ability of B2O3 results in retention of a glassy structure in the B2O3 

scale formed by oxidation of ZrB2 even when slowly cooled to room temperature. 

Formation of a liquid/glassy B2O3 layer on the surface provides passive oxidation 

protection and results in parabolic kinetics of oxidation. Evaporation of B2O3 is 

significant at temperatures above ~1100°C and results in loss of protection.5 

 

ZrB2 (s) + 5/2 O2 (g)  ZrO2 (s) + B2O3 (l)    (1) 

 

The most common method for improving the oxidation resistance of diboride-

based ceramics above 1100°C is the addition of silicon-containing compounds such as 

SiC4, 6-16, TaSi2 
17, 18, or MoSi2 

19-21. The borosilicate liquid/glassy layer that forms on Si-

containing ZrB2 is more stable than the borate layer that forms on the surface of the 

nominally pure ZrB2.  As a result, ZrB2 containing SiC, TaSi2, or MoSi2 has improved 

oxidation resistance as demonstrated by parabolic oxidation kinetics due to the presence 

of a protective glassy layer at temperatures up to at least 1600°C.4, 16 However, the 

presence of Si-containing additives causes problems such as formation of a SiC-depleted 
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layer and rupture of the protective glassy layer due to formation of SiO(g),22 which result 

in the loss of protection at temperatures above 1600°C. 23, 24 Several studies have shown 

the effectiveness of transition metal (TM) additives (e.g., borides of Nb, V, Cr, Ti, Ta, 

etc.) on improving the oxidation resistance of ZrB2 ceramics.24-28 Zhang et al.29, 30 

reported that tungsten carbide (WC) additives improved the oxidation resistance of ZrB2 

ceramics by formation of WO3 in the oxide scale, which decreased the oxygen 

permeability of the ZrO2 scale by promoting liquid phase sintering at the oxidation 

temperature.  Previous studies have also indicated that addition of W or Nb to ZrB2 

increased the stability of the protective liquid/glassy B2O3 scale, and, consequently, 

increased the oxidation resistance of ZrB2.5, 31 Thermal gravimetric analysis (TGA) 

studies of the oxidation of nominally pure ZrB2 and ZrB2 with 4 at% W additions 

indicated that addition of W resulted in a higher temperature for the onset of evaporation 

of B2O3 during oxidation at ~1300°C, compared to ~900°C for nominally pure ZrB2.5 

Boron oxide is a glass network former, which compared to SiO2 (the most 

common glass network forming oxide), has more intermediate-range order structure in 

the range of 0.5-2 nm.32 In pure vitreous B2O3, each boron is bonded to three bridging 

oxygen atoms, forming planar BØ3 groups (Ø=bridging oxygen atom).33 About 70 to 

80% of planar BØ3 units in a vitreous B2O3 network form boroxol rings (each consist of 3 

BØ3 units), which are connected to each other through the remaining 20 to 30% of the 

BØ3 units.32, 34, 35 At ambient pressures, crystallization of pure, anhydrous B2O3 on 

cooling is inhibited by the presence of the boroxol rings.36 The crystalline form of B2O3 

does not contain boroxol groups, meaning that crystallization of vitreous B2O3 requires 

breaking relatively stable boroxol ring bonds.33  
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Alkali additions modify the structure and properties of B2O3. For example, adding 

10 or 20 mol% K2O to B2O3 glass results in transformation of some of the boroxol rings 

into pentaborate groups that consist of BØ4 tetrahedra and BØ3 units.15 The addition of 

more than 30 mol% K2O changes the structure of the borate species from BØ4 tetrahedral 

units to BØ2O- triangular units with one non-bridging oxygen.37 Heating this high alkali 

composition above the glass transition temperature gradually reduces the fraction of four-

coordinated boron atoms, which converged to a constant value above 1120°C. As more 

BØ2O- units were generated at higher temperatures, the structure of the borate melt 

becomes less stable and evaporation increases.37 Doping B2O3 glass with modest amounts 

of transition metal oxides might also transform some of the three-coordinate boron 

structural units to four-coordinated structures.37-44 Existence of four-coordinate boron 

atoms means that more bonds would have to break for evaporation, which translates to 

higher stability of the B2O3 structure.  However, the addition of excess TM oxide could 

lead to formation of non-bridging oxygen atoms, which would decrease stability and 

increase evaporation. 

Whereas previous studies have hypothesized that TM additions improve the 

oxidation resistance of ZrB2 by altering the structure of the porous ZrO2 scale, TM 

additions may also improve the oxidation resistance of ZrB2 by altering the structure and 

properties of the resulting B2O3 scale. The purpose of the present paper was to investigate 

the effect of TM oxides such as WO3 and Nb2O5 on weight loss and structure of B2O3 

glasses similar to those that form as the result of oxidation of ZrB2. 
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3.2. Experimental procedure 

To investigate the effect of W, Nb, and Zr on the structure of B2O3 glasses, 

(WO3)x(B2O3)100-x, (Nb2O5)x(B2O3)100-x, and (ZrO2)x(B2O3)100-x glasses (with 1≤x≤10) 

were prepared. High purity (≥99.5%) boric acid powder (B2O3•3H2O, ACS reagent, 

Sigma-Aldrich, Saint Louis, MO) was used along with WO3 (99.99%, metal basis, Alfa 

Aesar, Ward Hill, MA), Nb2O5 (99.99%, metal basis, Alfa Aesar, Ward Hill, MA) or 

ZrO2 (99%, metal basis, Alfa Aesar, Ward Hill, MA) to prepare 15 g batches of borate 

glasses. Batches were mixed by dry ball milling followed by grinding with a mortar and 

pestle. The mixtures were dehydrated at 500 °C in a platinum crucible until no bubbling 

(water evaporation) was observed. The glasses were then melted at temperatures between 

900 and 1400°C, depending on the composition, for 1 hour followed by quenching using 

a high cooling rate twin-roller quencher.45 Mass losses were monitored during 

dehydration and melting.  In all cases, mass losses were consistent with decomposition of 

boric acid and evaporation of H2O. Excess mass losses, due to evaporation of B2O3 

and/or the TM-oxide during melting, were always less than 2 wt%. After cooling, glasses 

were kept in a desiccator under vacuum to keep them dry due to their hygroscopic nature. 

The composition of the glasses were characterized using inductively coupled 

plasma-optical emission spectrometry (ICP-OES) (2000D, Perkin Elmer, USA) after 

dissolving glasses in 1 vol% nitric acid. Thermal gravimetric analysis (TGA; Netzsch 

Simultaneous TGA/DTA, Selb, Germany) was performed on ~100 mg of glass particles 

that were ground to <177µm.  Powders of the different compositions were examined in a 

flowing nitrogen atmosphere. Each sample was heated to 170˚C with a rate of 10˚C/min 

and held for 1 hour to eliminate the possible water adsorbed on the glass particle surfaces 

during preparation or storage, followed by heating to 1500˚C at 10˚C/min. X-ray 
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diffraction (XRD; Philips X-Pert Pro diffractometer, Westborough, MA) was used to 

examine glasses for possible crystalline phases. A LabRAM HR800 Raman microscope 

(Horiba, Japan) with a 532 nm Verdi V2 DPSS green laser as the probing light source 

was used to perform in situ high temperature light scattering.46 The NMR experiments 

were performed at room temperature using Avance II 600 solids (Bruker, USA). 11B 

single pulse magic angle spinning (MAS) measurements were performed at 192.50 MHz 

using a 14.1 T magnet at spinning frequencies of 12.0 KHz, while the pulse lengths were 

0.5 µs (20° flip angle) and the recycle delays were 5 s. A CDCl3 solution of BF3•OEt2 

was used as a reference for chemical shifts. The MestReNova LITE software was used 

for deconvolution of the NMR spectra. Results obtained by Raman spectroscopy and 

NMR were normalized for ease of comparison.  

 

3.3. Results 

The measured glass compositions were typically ±1 at% of the nominal batch 

compositions (Table 1).  A few compositions were within 2 at% of the nominal batch 

composition (8W, 4 Nb, 8Nb, and 4 Zr), while only the composition of 8Zr was more 

than 2 at% from the nominal batch composition. As shown in Figure 1, no crystalline 

peaks were identified in XRD spectra for additions of up to 8 at% WO3, 4 at% Nb2O5, or 

2 at% ZrO2; however, crystalline peaks were detected for borate glasses containing at 

least 10 at% WO3, 8 at% Nb2O5, or 4 at% ZrO2. 
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Table 1. Nominal batch and measured compositions for the glasses. 

Designation 
B

2
O

3 
(at%) 

WO
3 

(at%) 
Nb2O5 
(at%) 

ZrO
2 

(at%) 
Metal oxide 

concentration 

Pure 100 
    

1W 99 1 
  

1.7±0.2 

2W 98 2 
  

2.7±0.4 

3W 97 3 
  

1.8±0.1 

4W 96 4 
  

3.3±0.4 

5W 95 5 
  

4.3±0.3 

6W 94 6 
  

3.9±0.4 

7W 93 7 
  

6.8±1.1 

8W 92 8 
  

6.1±0.2 

9W 91 9 
  

9.0±1.9 

10W 90 10 
  

9.2±2.0 

2Nb 98 
 

2 
 

1.7±0.2 

4Nb 96 
 

4 
 

2.8±0.2 

8Nb 92 
 

8 
 

6.7±0.2 

2Zr 98 
  

2 2.1±0.1 

4Zr 96 
  

4 2.9±0.6 

8Zr 92 
  

8 3.1±0.5 
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Figure 1. X-ray diffraction analysis of (a): WO3-B2O3, (b): Nb2O5-B2O3, and (c): ZrO2-
B2O3 compositions showing crystalline phases in 10W, 8Nb, and 4Zr, while lower 

amounts of additives resulted in amorphous solids. 
 

 

 

 

The evaporation behavior of B2O3 glasses with WO3, Nb2O5, or ZrO2 additions 

was studied by TGA.  Nominally pure B2O3 and B2O3 glasses containing 2, 4, or 8 at% 

WO3, Nb2O5, or ZrO2 were tested at temperatures ranging from 25 to 1500°C. Figure 2 

shows the total weight loss curves as a function of temperature for pure B2O3 and B2O3 

containing 2 at% of TM-oxides as representative of the (TM-oxide)-B2O3 glasses. Even 

with careful storage and handling, boric acid formation was unavoidable due to the high 

sensitivity of B2O3 to humidity. Decomposition of boric acid initiated at about 170°C and 

was completed by about 430°C.47 Therefore, all of the weight loss curves were 

normalized to the weight at 500°C to minimize the influence of different levels of 

hydration among the different compositions.  The normalization temperature is above the 

decomposition temperature for boric acid, but below the temperature at which significant 

evaporation of B2O3 begins. The weight loss for pure B2O3 was not significant (less than 

about 0.5%) between 500 and 1000 °C, but increased linearly from ~0.5% at 1000°C to 
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~5% at 1400°C.  Weight loss from B2O3 increased sharply above 1400°C. In comparison, 

all of the compositions containing TM-oxides had weight losses of less than 0.6% up to 

1300°C and showed a sharp increase in weight loss at temperatures above 1400°C. 

Hence, the presence of TM-oxides in the borate glasses reduced the volatility of B2O3 at 

temperatures below 1300°C. The evaporation was linear above 1400 °C for all of the 

borate glasses.  

 

 

 

Figure 2. Weight loss as a function of temperature for pure B2O3, 2W, 2Nb, and 2Zr 
glasses at temperatures between 500 and 1500°C. 

 

 

Figure 3 shows the evaporation rates above 1400 °C for pure B2O3 and B2O3 

glasses containing 2, 4, or 8 at% WO3, Nb2O5, or ZrO2 that were calculated from the 

TGA results. Pure B2O3 had the highest evaporation rate (~0.2 wt%/°C) compared with 
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B2O3 glasses containing TM-oxide additives. Among the B2O3 glasses containing 2 at% 

TM-oxides, 2W had the highest evaporation rate (~0.15 wt%/°C), followed by 2Zr (~0.10 

wt%/°C), and 2Nb (~0.08 wt%/°C). The lowest evaporation rate was for 8Nb (~0.06 

wt%/°C), which was about 4 times lower than pure B2O3. 

 

 

 

Figure 3. Evaporation rate for pure B2O3 and B2O3 glasses containing 2, 4, or 8 at% WO3, 
Nb2O5, or ZrO2 at temperatures above 1400°C. 

 

 

For more clarity, Figure 4 shows the weight losses for pure B2O3 and B2O3 

glasses containing 2, 4, or 8 at% WO3, Nb2O5, or ZrO2 glasses at 1500 °C. Again, B2O3 

had the highest weight loss (~20%) compared with B2O3 glasses with TM-oxide 

additions. The same trends were observed for the total weight losses that had been 

observed for evaporation rates; the addition of Nb results in lower weight loss compared 
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to W and Zr, and higher amounts of additives result in lower overall weight losses.  For 

total weight loss, the differences among 2 Nb, 4Zr, 4Nb, and 8Nb were not significant 

and they all had lower weight losses than the other B2O3 glasses (~9%), which was about 

half of the amount measured for pure B2O3.  

 

 

 

 

Figure 4. Total weight loss at 1500°C for pure B2O3 and B2O3 glasses containing 2, 4, or 
8 at% WO3, Nb2O5, or ZrO2. 

 

 

 

Raman spectroscopy and 11B HR-NMR were used to characterize the effects of 

TM oxide additions on the structure of B2O3 glasses. Figure 5 shows the Raman spectra 

at room temperature for B2O3 glasses containing 2, 4, or 8 at% of WO3, Nb2O5, or ZrO2. 

The peak at 808 cm-1 has been assigned to the symmetric breathing vibration of the 

boroxol ring.34, 48 No significant differences in the shape or position of this peak were 
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observed between the borate glasses with different amounts or types of TM-oxide 

additions. If BØ4 units had formed, a peak would be expected to appear at about 770 cm-1 

due to symmetric breathing vibrations of the six-membered rings with one or two BØ3 

units replaced with BØ4 units.42, 49, 50 As can be seen in Figure 5, no peaks were observed 

at 770 cm -1 for any of the compositions at room temperature.  

 

  

 

Figure 5. Room temperature Raman spectra for B2O3 glasses containing 2, 4, or 8 at% 
WO3, Nb2O5, or ZrO2. 

 

 

 

To investigate the effect of temperature on the structure of WO3-B2O3 glasses, 

Raman spectra were obtained from 8W while heating from room temperature to 800°C 

with 50°C intervals.  Measurements were taken after the temperature inside the heating 

stage had stabilized for 5 min (Figure 6). The only change that was observed between the 

spectra obtained at room temperature and 350°C was the disappearance of a small peak at 

877 cm-1 that is assigned to B(OH)3 units.51 A peak was also observed at 980 cm-1 that is 

assigned to the BØ3 units in the B3O3(OH)4
- or B3O3(OH)5

2- structural units.51  The 
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intensity of this peak decreased as temperature increased until it disappeared at about 

500°C when the melt was completely dehydrated. The peak assigned to the symmetric 

breathing of the boroxol rings shifted from 808 cm-1 at room temperature to 798 cm-1 at 

800°C, similar to the observations of Hassan et al.36 and Walrafen et al.34 The full width 

at half maximum (FWHM) of the 808 cm-1 peak increased with increasing temperature as 

a result of thermal excitation.34 Several other broad bands were observed at room 

temperature, including those at ~260, ~330, and ~711 cm-1 that correspond to bending of 

O-W-O and the stretching of W-O bonds.52, 53 The relative intensity of these peaks 

increased with increasing temperature and they appeared as sharp peaks from 500°C to 

600°C. As shown in Figure 7, these peaks are similar to the Raman spectra collected for 

the WO3 powder that was used for preparation of the glasses. Broadening of the WO3 

peaks at 800°C is due to thermal distortion of the WO3 structure. The peak corresponding 

to the asymmetric stretching of W-O-W at 810 cm-1 for WO3 increased the width of the 

right side of the 808 cm-1 peak for W-containing glasses. The crystalline WO3 peaks 

remained after cooling the 8W glass from 800°C to room temperature. Also, XRD 

analysis performed on the 8W specimen after Raman spectroscopy at 800°C showed 

sharp WO3 peaks (not shown). The small peak observed at room temperature at 1260 cm-

1 is assigned to the bridging of the boroxol rings with one or more planar BØ3 triangles.36 

The intensity of this peak decreases with increasing temperature as the boroxol rings 

open and the connectivity of the BØ3 units change.36 Figure 8 shows that after cooling 

back to lower temperatures, the WO3 peaks are similar to the peaks appeared by heating. 

Also, the XRD analysis (not included) performed on the 8W specimen after Raman 

spectroscopy at 800°C showed sharp peaks of WO3. 
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Raman spectroscopy performed on other W and Nb glasses with different 

amounts of WO3 and Nb2O5 (not included) showed the same results as mentioned above, 

while the intensity of the TM-oxide peaks formed at elevated temperatures depended on 

the amount of the TM-oxide in the glass. 

 

 

 

Figure 6. Elevated temperature Raman spectra for 8W at temperatures between room 
temperature and 800°C. 
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Figure 7. Room temperature Raman spectrum for WO3 powder. 
 

 

 

Figure 8. Raman spectra of 8W obtained during cooling at temperatures between 550 and 
50°C. 

 

 

Figure 9 shows 11B NMR for B2O3 glasses containing 1 to 10 at% WO3. No 

differences were observed in the shape or position of the peaks with different amounts of 
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WO3. The complex line shape of the peak between 5 and 20 ppm was characteristic of a 

rigid-lattice second-order quadrupolar line shape due to trigonal boron coordination as 

was observed in previous 11B NMR studies of B2O3 glass.35, 54, 55 The small peak between 

1 and 4 ppm is believed to be due to the contamination on the rotor. Figure 10 shows a 

magnified view of the peaks at 0 and 20 ppm without any offset in the Y axis to allow 

direct comparison of the line positions. The intensity of the shoulder on the left side 

(between 16 and 17 ppm) decreased with increasing WO3 content in the B2O3 glass.  In 

contrast, the intensity of the shoulder on the right side of the peak (between 8 and 10 

ppm) increased with increasing WO3 content. The line shape between 5 and 20 ppm is a 

result of the combination of two saddle-like components attributed to the boron in BØ3 

ring sites on the left and BØ3 in non-ring sites on the right.38 The decrease in the intensity 

of the left shoulder and increase in the intensity of the right shoulder with increasing 

WO3 content in Figure 10 is due to a decrease in the number of boroxol rings and 

increase in the BØ3 non-ring units with increasing WO3 content, although the change is 

not substantial. 
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Figure 9. 11B NMR spectra for B2O3 glasses containing 1 to 10 at% WO3 additions. 
 

 

 

Figure 10. 11B NMR spectra for B2O3 glasses containing 1 to 10 at% WO3. The arrows in 
the inset images show the direction of change with increasing WO3 content. 
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3.4. Discussion 

Weight loss measurements from borate glasses containing TM-oxide additives 

showed that evaporation from nominally pure B2O3 initiated at about 900°C, while 

evaporation from TM-containing compositions was negligible below 1300°C. The 

effectiveness of the TM-oxide additions on reducing evaporation from borate melts was 

in the order of WO3<ZrO2<Nb2O5. The effect of ZrO2 on reducing the evaporation of 

B2O3 results in higher stability of the B2O3 scale that is formed on the surface of pure 

ZrB2 during oxidation, compared to the stability that would be expected from pure B2O3. 

The higher effectiveness of Nb2O5 on reducing the weight loss of B2O3 compared with 

WO3, should result in formation of a more stable protective borate liquid scale on the 

surface and improve the oxidation resistance of (Zr,Nb)B2 compared with (Zr,W)B2.  

XRD analysis did not reveal any peaks for crystalline phases in WO3-B2O3, 

Nb2O5-B2O3, or ZrO2-B2O3 compositions for concentrations of WO3 of less than 8 at%, 

Nb2O5 of less than 4 at%, or ZrO2 of less than 2 at%.  Larger TM-oxide additions resulted 

in formation of crystalline phases that were detected by XRD analysis in the glasses. This 

indicates that the glasses with higher concentrations of TM-oxides contain crystalline 

phases corresponding to the TM-oxide that was added. However, the analysis does not 

preclude the presence of crystalline TM-oxides in the glasses with lower level additions 

as the amount of TM-oxide could be below the detection limit or the TM-oxides could be 

nano-sized, which would produce broad, low intensity peaks that might not be 

distinguished from the background.  In addition, the TM oxides could be present in an 

amorphous phase.  Because XRD analysis of glasses after high temperature Raman 

analysis showed sharp peaks for TM-oxide phases, it seems likely that the TM oxides 

were in an amorphous phase or as nano-sized TM-oxide crystallites inside the glass.  
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Hence, up to the aforementioned limits of TM-oxide additions of 8 at% WO3, 4 at% 

Nb2O5, and 2 at% ZrO2, the TM-oxide was amorphous or nano-sized, while higher TM-

oxide additions resulted in formation of crystalline phases at room temperature, even 

after quenching with the very high cooling rates achieved in the roller quencher. 

Other additives, such as alkalis, change the B2O3 network structure by converting 

some BØ3 units to BØ4 units, which produces a peak at about 770 cm-1 in Raman 

spectra.37-44 However, the Raman spectra obtained at room temperature for B2O3 

containing TM-oxide additions did not have a noticeable peak at 770 cm-1. Hence, no 

BØ4 units were detected in the roller-quenched glasses.  Therefore, the presence of TM-

oxides did not alter the borate glass network structure at room temperature. Broad WO3 

peaks were observed in the room temperature Raman spectra for W-containing 

compositions, which could indicate the presence of amorphous WO3 along with the B2O3 

glass.56-59 Heating the glasses to temperatures up to 800°C resulted in the appearance of 

sharp peaks for WO3 in the 8W glass. Increasing the temperature and/or holding time 

increased the intensities of the WO3 peaks. XRD analysis obtained from the 8W glass 

after high temperature Raman analysis at 800°C showed sharp peaks for WO3. Although 

Nb2O5 peaks were observed in the Raman spectrum for 8Nb at room temperature, the 

intensity of the peaks increased relative to the 808 cm-1 peak of B2O3 during annealing, 

indicating growth of the Nb2O5 crystallites at elevated temperatures. As with the W-

containing glasses, no BØ4 units were observed for Nb-containing compositions at any 

temperature. The formation of crystalline WO3 at elevated temperatures, coupled with the 

lack of peaks associated with BØ4 units at any temperature, indicated that the WO3 must 
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have initially been in an amorphous phase, but crystallized during heating. However, 8Nb 

had some crystalline Nb2O5 in the as-quenched state.  

NMR spectra for B2O3 glasses containing WO3 additions ranging from 1 to 10 

at% showed a complex line shape associated with trigonal boron.  No significant 

differences were observed for different amounts of WO3 added. No peak could be 

observed between -5 and 5 ppm as would be expected if BØ4 units had formed.54, 60 

Hence, NMR results confirm the results from Raman spectroscopy that no BØ4 units exist 

at room temperature in the glasses. With increasing WO3 concentration, decrease in the 

shoulder on the left side of the peak and the corresponding increase in the shoulder on the 

right side of the peak was observed. The changes in the peak might indicate a decrease in 

the number of BØ3 ring units and a corresponding increase in the BØ3 non-ring units with 

increasing WO3 content, which could be due to higher amounts of amorphous WO3 in 

B2O3 glasses with higher WO3 contents.  

The WO3-B2O3 phase diagram61 shows simple eutectic behavior with an S-shaped 

liquidus covering the diagram between the eutectic point (close to the melting points of 

pure B2O3 at ~450°C) and the melting point of pure WO3 (~1435°C). The system shows 

that no compounds form nor does it indicate any solution formation in the solid phases or 

immiscibility in the liquid phase. Since no BØ4 units were detected in the W glasses, 

WO3 is not soluble in B2O3 glass, and according to the characterization results, the WO3-

B2O3 glasses should consist of mixtures of amorphous B2O3 and WO3. 

The Nb2O5-B2O3 system62 is characterized by a binary compound 3Nb2O5-B2O3 

that melts incongruently at 1150°C, about 200°C below a monotectic. A large liquid 

immiscibility region exists at 1352°C between 10 and 65.7 at% Nb2O5. It was reported 
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that the liquids devitrified on quenching and homogeneous glasses were never obtained 

for any composition.62 The solubility of Nb2O5 in B2O3 is lower than WO3, as only 5 at% 

Nb2O5 (10 at% Nb2O5) dissolved in B2O3 above 1300°C to form a homogeneous liquid 

phase. 

The ZrO2-B2O3 phase diagram63 is also a eutectic type and does not show any 

compound or solid solution formation. However, a small region of phase separation was 

observed between 600°C and 1000°C for compositions ranging from 2 at% to 32 at% 

ZrO2. The solubility of ZrO2 in B2O3 is lower than either WO3 or Nb2O5.  For example, at 

10 at% ZrO2 a homogeneous liquid phase only forms above ~1500°C. 

No BØ4 units were observed in the TM-oxide-B2O3 glasses at any temperature. 

Hence, a change in the structure does not appear to be a reason for the increased stability 

of B2O3 with TM-oxide additions. However, dissolution of TM-oxides into the liquid 

phase, even without a change in the B2O3 network structure, should decrease the activity 

of B2O3 in the liquid phase and reduce both the vapor pressure and evaporation rate of 

B2O3. The compositions containing TM-oxide additions were less hydroscopic during 

handling, which could be a sign of lower B2O3 activity with TM-oxide additions. If that 

was the only effect, the amount of TM-oxide should play a more important role than the 

kind of TM-oxide. However, addition of Nb resulted in lower weight loss of B2O3. For 

the systems with binary compounds between the TM-oxide and B2O3, e.g. Nb2O5-B2O3, 

addition of TM-oxide to B2O3 could result in greater decrease in the activity of B2O3.  

  According to the phase diagrams, several oxides form high melting temperature 

compounds with B2O3, such as In2O3, La2O3, and Sc2O3. However, only additives with 

equal or higher valences than Zr should be used as additives to ZrB2 to prevent an 
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increase in oxidation rate due to the formation of oxygen vacancies in stabilized ZrO2. 

Hence, according to the available phase diagrams, Nb2O5 and Ta2O5 may be the best 

additives for improving the stability of the protective B2O3 liquid/glassy layer during 

oxidation of ZrB2 ceramics. 

 

 

3.5. Conclusions 

The evaporation behavior of B2O3 with TM oxide additions was analyzed.  

Additions of tungsten, niobium, and zirconium oxides decreased the evaporation rate and 

increased the onset temperature for evaporation in B2O3-based glasses in the order of 

WO3<ZrO2<Nb2O5. High temperature Raman spectroscopy showed that WO3 in the B2O3 

glass was initially amorphous, but crystallized at elevated temperatures. In addition, the 

intensity of Nb2O5 peaks in the glass increased as a result of crystallization. No signs of 

formation of BØ4 units was observed in the borate glasses by Raman spectroscopy or 

NMR. It was concluded that additions of WO3, Nb2O5, or ZrO2 to B2O3 did not change 

the structure of B2O3. Hence, the higher oxidation resistance of (Zr,TM)B2 ceramics and 

lower evaporation rate of (TM-oxide)-B2O3 glasses may be due to the fact that the 

dissolution of TM-oxide in B2O3 decreases the activity of B2O3 and, consequently, 

decreases the vapor pressure and evaporation rate of B2O3. Also, formation of 3Nb2O5-

B2O3 compound with high melting temperature could be the reason of lower evaporation 

rate of Nb2O5-B2O3 glasses compared to other (TM-oxide)-B2O3 glasses. 
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Abstract 

The effects of transition metal (TM) additives, specifically W, Mo, or Nb, on 

oxidation behavior of ZrB2 ceramics at 1600°C were investigated. Oxide scale 

thicknesses were measured from fractured surfaces after isothermal oxidation. The 

stability of the B2O3 layers on different samples of (Zr,TM)B2 ceramics were compared 

and the consequent effect on the oxide scale thicknesses is discussed. Addition of TM 

additives improved the oxidation resistance of ZrB2 ceramics even after the protective 

B2O3 layer was removed. The oxide layer composed of two sub-layers, an outer layer that 

was porous and appeared light in optical microscopy and an inner layer that was dense 

and appeared dark. The effects of TM additives on the thicknesses and morphology of the 

light and dark zirconia layers were also investigated. Additions of Mo or Nb were found 

to be more effective than W on improving the oxidation resistance of ZrB2 at 1600°C. 
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4.1. Introduction 

Ultra high temperature ceramics (UHTCs) are a class of materials that includes 

diborides (i.e. ZrB2, HfB2), carbides (i.e. ZrC, HfC), and nitrides (i.e. ZrN, HfN).  

UHTCs have melting temperatures in excess of 3000°C and the ability to withstand 

extreme heating environments. Diboride-based UHTCs have performance advantages 

compared to the carbides and nitrides due to their high oxidation resistance and the 

capability to transfer and redistribute heat (thermal conductivity >100 W/m•K) at 

elevated temperatures. These characteristics make them good candidates for sharp 

leading edges for hypersonic aerospace vehicles, which must not only be capable of 

operating in oxidizing atmospheres at high temperatures and high flow rates, but also 

have high thermal conductivity to transfer heat away from the hottest areas and 

redistribute it to cooler areas.1, 2 

Zirconium diboride has advantages over other UHTCs for aerospace applications 

due to its high melting point (~3250°C), low theoretical density (6.09 g/cm3), and a 

thermal conductivity of over 100 W/m•K at room temperature.3, 4 However, oxidation at 

temperatures above 800°C has limited the development of ZrB2 ceramics for aero-

propulsion and hypersonic flight applications.5 Oxidation of ZrB2 is usually assumed to 

be stoichiometric and results in measurable mass gain due to formation of B2O3 and ZrO2 

according to the following reaction.6 

 

ZrB2 (s) + 5/2 O2 (g)  ZrO2 (s) + B2O3 (l)                                                                  (1) 
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 Previous studies have recognized three different temperature stages for oxidation 

of ZrB2.7 The low temperature stage occurs below about 1100°C, at which a continuous 

crystalline ZrO2 layer and a liquid/glassy B2O3 layer form on the surface of unoxidized 

ZrB2 matrix, providing passive oxidation protection. Based on mass gain and increasing 

oxide scale thickness, the kinetics of oxidation is parabolic in the first stage.8-12 The 

second oxidation stage is between ~1100 and ~1400°C.  At these temperatures, the 

weight change represents a combination of mass gain due to formation of ZrO2 and B2O3, 

and mass loss from evaporation of B2O3.9, 12, 13 Kinetics in this stage are para-linear due 

to the combination of the protective nature of the B2O3 layer (parabolic component) and 

the mass loss due to B2O3 evaporation (linear component).  The third oxidation stage is 

above ~1500°C.  At these temperatures, the evaporation rate of B2O3 is more significant. 

As a result, nearly all of the B2O3 is lost by evaporation and a porous ZrO2 scale covers 

the surface.  In this stage,  the mass gain kinetics are linear, indicating that the oxide 

layers do not act as a barrier to oxygen transport.8  

Several studies have shown that addition of transition metals such as Mo-, Nb-, 

V-, Cr-, Ti-, and Ta-borides or silicates can improve the oxidation resistance of ZrB2 and 

ZrB2-SiC ceramics.14-19 However, very few studies have examined the effects of 

transition metal additives on oxidation behavior of silicon-free ZrB2 ceramics. Zhang et 

al.13, 20 reported that the additions of tungsten carbide (WC) improved the oxidation 

resistance of ZrB2 ceramics by formation of WO3 in the oxide scale.  The WO3 reacted 

with ZrO2 to form a liquid phase, which acted as a sintering aid for ZrO2 scale and, 

consequently, increased the relative density of the scale. Subsequent studies have shown 
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that the addition of W and Nb to nominally pure ZrB2 improved its oxidation resistance 

by increasing the stability of the protective liquid/glassy B2O3 scale.7, 21  

The purpose of the present study was to investigate the effects of different 

transition metal additives such as W, Mo, and Nb on the oxidation behavior of ZrB2 

ceramics at 1600°C, to find the most effective TM for improving the oxidation resistance 

of ZrB2 ceramics at elevated temperatures. 

 

4.2. Experimental procedure 

High purity (>99%) ZrB2 powder (~2 µm, Grade B, H.C. Starck, Newton, MA) 

was used to prepare the ZrB2 specimens for this study. Also, 2 wt% B4C (~0.8 µm, Grade 

HS, H.C Starck) was added to all batches to remove the oxide impurities from the surface 

of ZrB2 powder particles and enhance densification.22 For some batches, 4 mol% 

tungsten, molybdenum, or niobium was added in form of W (~3 μm, Alfa Aesar, Ward 

Hill, MA), Mo (~3 μm, Alfa Aesar), and Nb (~1 μm, Alfa Aesar) all with reported 

purities of >99.9%. Hereafter, ZrB2 ceramics with only B4C additions are referred to as 

“nominally pure ZrB2”, while ZrB2 with B4C and W, Mo, or Nb additions are referred to 

as (Zr,W)B2, (Zr,Mo)B2, and (Zr,Nb)B2, respectively. 

Ball milling in methyl ethyl ketone with ZrO2 media for 24 hr was used to mix the 

powders. Measurement of the mass of zirconia media before and after ball milling 

showed that the amount of ZrO2 contamination added to the powder mixtures was less 

than 1 wt% based on the mass of ZrB2 powder. After drying and sieving (-80 mesh), the 

powders were densified by hot pressing (Model HP-3060, Thermal Technology, Santa 

Rosa, CA) at 2100 °C for 45 min at a pressure of 32 MPa.  Bars with dimensions of 10 

mm by 4 mm by 4 mm were cut from the hot pressed billets and finished by polishing on 
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all sides with a final polishing step using a 15 μm diamond slurry. The bulk density of the 

hot pressed billets was measured by using the Archimedes technique, with water as the 

immersing medium. X-ray diffraction (XRD; Philips X-Pert Pro diffractometer, 

Westborough, MA) was used to identify major crystalline phases present in the pre-

oxidized composites. 

A MoSi2 resistance-heated horizontal tube furnace (Model 0000543, CM Inc., 

Bloomfield, NJ) with a high-purity alumina tube with a diameter of 6.35 cm was used for 

oxidation studies. Specimens were heated to desired temperatures with a heating rate of 

~5 °C/min and an air flow rate of 0.2 cm/s (linear flow rate was calculated from the 

volumetric flow rate and the diameter of the tube). Specimens were removed from the 

furnace after the desired oxidation time and air quenched to room temperature to 

minimize changes such as further oxidation or evaporation of B2O3 that may occur during 

cooling. Specimens that were quenched immediately after reaching the desired 

temperature were said to be oxidized for “0 hours” while other specimens were oxidized 

up to 6 hours before quenching. To study the microstructure and calculate the thicknesses 

of the oxide layers, fracture surfaces were observed using secondary electron scanning 

electron microscopy (SEM; S-4700, Hitachi, Japan) and optical microscopy (Hirox KH-

8700, Hackensack, NJ). The thickness of the oxide layers were measured using image 

analysis software (ImageJ, U. S. National Institutes of Health, Bethesda, MD) and 

averaging of 20 measurements. Chemical compositions of the oxide scales were studied 

using energy dispersive spectroscopy (EDS; EDAX, Mahwah, NJ).  
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4.3. Results and Discussion 

4.3.1. Scale thickness and morphology 

All of the ZrB2 specimens reached relative densities of >95%. Archimedes’ 

density measurements indicated that open porosity was not significant in any of the 

specimens. Hence, porosity was not considered to have a significant effect on the 

oxidation behavior.  In addition, XRD analysis indicated that all of the TM additives 

dissolved into the ZrB2, forming (Zr,TM)B2 solid solutions. 

Assuming that oxidation proceeds stoichiometrically, oxidation of (Zr,TM)B2 

should produce a combination of molten B2O3 (melting temperature ~450°C), solid ZrO2 

(monoclinic below 1170°C and tetragonal above), and solid TM-oxide.  As reported in 

previous studies,7, 21 two distinct layers covered the surface of the ZrB2 and (Zr,TM)B2 

ceramics after oxidation at temperatures between 800 and 1600°C: (1) an outer glassy 

layer mainly consisting of B2O3, and (2) an inner layer mainly consisting of porous 

zirconia with the pores filled with B2O3. Due to low sensitivity of EDS to light elements, 

quantification of the boron content in the glassy phase was not possible. However, results 

obtained by EDS indicated that the glassy phase contained O and TM along with a small 

amount of Zr. According to the ZrO2-B2O3 
23, WO3-B2O3 

24, and Nb2O5-B2O3 25 phase 

diagrams, the solubility of ZrO2 and Nb2O5 in pure liquid B2O3 at 800 °C is negligible, 

while approximately 10 mol% WO3 can dissolve into B2O3 at that temperature. No phase 

diagram was found for B2O3-Mo oxide systems. The formation of two-layer scales is due 

to immiscibility of ZrO2 and B2O3 combined with the large volume expansion (~300% 

based on density calculations) associated with oxidation of ZrB2 to ZrO2 and B2O3.6  The 

addition of TM to ZrB2 does not affect the formation of the two layer structure, but 
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varying amounts of the TMs are incorporated into the B2O3, depending on the solubility 

of the particular TM. 

Figure 1 shows the SEM images obtained from the surfaces of nominally pure 

ZrB2 and ZrB2 containing 4 mol% W, Mo, or Nb after oxidation at 1600°C for 0 hours. 

The majority of the areas of the surfaces of the specimens had light contrast, but some 

areas were darker.  The light-colored areas contained Zr and TM oxides, while the darker 

areas had a glassy appearance and was composed of B2O3 containing small amounts of Zr 

and TM. The amount of the dark phase observed on the surfaces of ceramics oxidized at 

1600°C for 0 hours increased from ~5% of the surface covered for nominally pure ZrB2 

to ~10% for (Zr,W)B2, ~20% for (Zr,Mo)B2, and ~15% for (Zr,Nb)B2. At 1600°C, the 

dissolution of ZrO2 into B2O3 increases to 24 mol%,23 while both WO3 and Nb2O5 are 

completely miscible with B2O3 due to the lower melting points of the TM oxides 

(1435°C24 for WO3 and 1485°C25 for Nb2O5) compared to the melting point of ZrO2 

(2715°C). Since MoO3 melts at 795°C, it is also expected to be completely miscible with 

B2O3 at 1600°C.  

The higher coverage of the glassy phase on (Zr,Nb)B2 compared to (Zr,W)B2 is 

consistent with evaporation data obtained by thermogravimetric analysis that showed 

lower weight loss from B2O3 containing Nb2O5 compared to B2O3 containing WO3.26 One 

possible reason for the lower stability of the WO3-B2O3 glass is the evaporation rate of 

WO3, which is high at temperatures above 1300°C.27, 28  

After oxidation at 1600°C for 0 hours, the thickness of the porous scale for 

nominally pure ZrB2 was ~85 µm compared to ~30 µm for (Zr,W)B2, and ~40 µm for 

(Zr,Mo)B2 and (Zr,Nb)B2 (Table 1). The lower thickness of the scales on (Zr,TM)B2 
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ceramics is an indication of the effectiveness of W, Mo and Nb additions on improving 

the oxidation resistance of ZrB2. Since the liquid/glassy B2O3 scale is the diffusion barrier 

that protects unoxidized ZrB2 from oxygen in the external atmosphere, retention of the 

glassy phase on (Zr,TM)B2 specimens should improve the oxidation resistance of these 

ceramics compared to nominally pure ZrB2. Interestingly, (Zr,W)B2 had a lower porous 

scale thickness compared to (Zr,Mo)B2 and (Zr,Nb)B2, despite higher stability of the 

glassy phases on ZrB2 with Mo or Nb additions.  The improved oxidation protection of 

the W-containing ceramic could be due to the effect of WO3, which alters the 

microstructure of the porous ZrO2 layer by liquid phase sintering.13, 20 The higher relative 

density of the ZrO2 scale on (Zr,W)B2 ceramics apparently resulted in lower oxygen 

permeability and, therefore, lower oxide scale thickness at this condition. 
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Figure 1. Surfaces of (a) nominally pure ZrB2, (b) (Zr,W)B2, (c) (Zr,Mo)B2, and (d) 
(Zr,Nb)B2 after oxidation at 1600°C for 0 hours. 

 

 

 

After oxidation at 1600°C for 3 hours, the scales formed on all of the specimens 

consisted of a porous oxide layer.  Some residual glassy phase was observed between the 

oxide particles in the (Zr,TM)B2 ceramics, but the glassy phase was not continuous. 

Although no continuous glassy layer covers the top surface, the glassy phase between the 

oxide particles would reduce permeability of the pore channels and reduce oxidation 

rate.29 The thickness of the porous oxide layer was highest for nominally pure ZrB2 (~570 

µm), while it was about 0.7 as thick for (Zr,W)B2 (~380 µm), (Zr,Mo)B2 (~390 µm), and 
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(Zr,Nb)B2 (~300 µm) (Table 1).  Hence, even after most of the glassy phase has 

evaporated, the transition metals have some beneficial effect on scale thickness. 

 

Table 1. Thickness of porous oxide scales of nominally pure ZrB2 and ZrB2 with 4 mol% 

W, Mo, or Nb after oxidation at 1600°C for 0 or 3 hours.  

 

Material 

Oxide scale thickness (µm) 

0 hours 3 hours 

ZrB2 85 ± 6 570 ± 19 

(Zr,W)B2 30 ± 3 376 ± 16 

(Zr,Mo)B2 40 ± 2 386 ± 17 

(Zr,Nb)B2 41 ± 2 294 ± 13 

 

 

 

Figure 2 shows the surfaces of nominally pure ZrB2 and (Zr,TM)B2 specimens 

after oxidation at 1600°C for 3 hours. The surfaces of nominally pure ZrB2 and (Zr,W)B2 

were rough. As shown in the image insets in Figure 2a and Figure 2b, raised areas about 

10 µm in diameter were observed on the surfaces. Charging around the highest points of 

the raised areas produced the contrast observed in the images. There were some gaps 

between the grain boundaries and more severely on the triple points between the oxide 

grains on the surfaces of ZrB2 and (Zr,W)B2. The similarity of the morphology of the 

oxide scales for nominally pure ZrB2 and (Zr,W)B2 at 1600°C may be due to the 

volatility of the respective liquid oxides.  Both B2O3 and WO3 are volatile at 1600°C. The 
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complete evaporation of these oxides from the surface, along with the accompanying 

precipitation of ZrO2 from the evaporating liquid, may be a contributing factor to the 

morphology of the surface of the scale. 

The surfaces of (Zr,Mo)B2 and (Zr,Nb)B2 were different than nominally pure 

ZrB2 and (Zr,W)B2 after oxidation at 1600°C for 3 hours.  The white dashed lines in 

Figure 2c and Figure 2d correspond to the last areas of the surfaces that were covered by 

pools of liquid oxide. Bubbles and ruptured bubbles were observed in some of the areas 

between the glassy pools as shown by black dashed lines. The effect was more 

pronounced for (Zr,Mo)B2. As shown in the image insets in Figure 2c and Figure 2d, the 

areas between the pools on (Zr,Mo)B2 and (Zr,Nb)B2 were continuous and showed no 

sign of rupture or gaps. The areas between the pools appeared to be nearly fully dense 

with the porosity of the surrounding oxide layer increasing near the pools.  
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Figure 2. Surfaces of (a) nominally pure ZrB2, (b) (Zr,W)B2, (c) (Zr,Mo)B2, and (d) 
(Zr,Nb)B2 after oxidation at 1600°C for 3 hours. The black dashed lines shows the large 
swellings on the surfaces, while the white dashed lines show the last areas of the surfaces 

that were covered by the glassy pools. 
 

 

Figure 3 shows cross sectional SEM images from areas with ruptures or gaps in 

the scale that form on nominally pure ZrB2 and (Zr,Nb)B2 after oxidation at 1600°C for 3 

hours.  The raised area marked with an arrow in Figure 3a is similar to the features that 

appeared to be the high points of raised areas in Figure 2a.  The scale appears to be 

thicker and the gap in the scale indicates poor adhesion between the outer layer with the 

layer beneath it. Again, the raised areas are thought to form due to evaporation of B2O3. 

Figure 3b shows a cross section of an area near what appears to be a void in the oxide 

scale.  This area also seems to be where the scale has delaminated.  Similar voids are seen 

in the oxide scale on both (Zr,Mo)B2 and (Zr,Nb)B2.  Presumably, the voids are channels 

to allow release of B2O3 vapor, which cannot otherwise escape as the surrounding scale 
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appears to be dense.  The voids may be caused by rupture of the top surface of the oxide 

layers on (Zr,Mo)B2 and (Zr,Nb)B2. These ruptures appear to be similar to those observed 

by Karlsdottir et al.23, which occurred as result of evaporation of SiO(g) formed during 

oxidation of ZrB2-SiC ceramics. However, since the scale on nominally pure ZrB2 and 

(Zr,W)B2 are composed of crystalline ZrO2-based grains, rupture appears to occur at 

grain boundaries, resulting in several small ruptures across the surfaces. As a result, the 

outer oxide layers on nominally pure ZrB2 and (Zr,W)B2 are not adhered well to the 

layers beneath and tend to spall. The top layers on (Zr,Mo)B2 and (Zr,Nb)B2 have better 

adhesion and less tendency to spall.  

 

 

 

Figure 3. Fracture surfaces of (a) nominally pure ZrB2, and (b) (Zr,Nb)B2 after oxidation 
at 1600°C for 3 hours, showing the difference between the raised areas on ZrB2 and 

(Zr,Nb)B2. 
 

 

 

4.3.2. Dark and light zirconia scale layers 

Previously published studies and the analysis presented above present oxide scale 

thickness as a quantity that can be measured easily.  However, examination as part of the 

present study has revealed several complications that have likely led to inconsistencies 
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measuring and reporting scale thicknesses.  The next several paragraphs describe the 

presence of two sub-layers within what is described as the “porous ZrO2” layer above.  

Specimen size raises additional complications with measurements that are discussed. 

Figure 4 shows optical micrographs of fracture surfaces of nominally pure ZrB2 

and (Zr,TM)B2 specimens after oxidation at 1600°C for 6 hours. Here, specimens were 

oxidized at 1600°C for 6 hours to thicken both layers and enable better resolution using 

optical microscopy.  The oxide scales consisted of two layers similar to observations of 

Zhang et al.20 The outer layer (outside the white line) was lighter in contrast while the 

inner layer was darker.  The dark layer appeared dense with a metallic shine, like the 

unoxidized matrix.  In contrast, the outer layer had a lighter color, was porous, and did 

not exhibit a metallic appearance. The dark layer appeared to be strongly adhered to the 

unoxidized matrix with no delamination observed between the dark layer and the matrix.  

However, adhesion between the light and dark layers was weaker, which often resulted in 

damage to the interface during polishing. Higher apparent density of the dark layer 

compared to the light layer should result in lower oxygen transport through the dark 

layer, which might make it the rate limiting step of oxidation in absence of the 

liquid/glassy B2O3 layer. 
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Figure 4. Optical micrographs of fracture surfaces of (a) nominally pure ZrB2, (b) 
(Zr,W)B2, (c) (Zr,Mo)B2, and (d) (Zr,Nb)B2 after oxidation at 1600°C for 6 hours. 

 

 

Figure 5 shows SEM images of a fracture surface and polished cross section of 

(Zr,W)B2 after oxidation at 1600°C for 6 hours. The dark layer was nearly impossible to 

distinguish from the unoxidized matrix in SEM images of polished specimens.  Hence, 

the thickness of the dark layer is likely to not be included in scale thickness 

measurements for studies that utilize polished cross sections and SEM images for 

analysis of oxidation behavior. Examination of fracture surfaces allowed for more 

contrast due to topology differences between the dark layer and the unoxidized matrix 

that are removed by polishing; however, the dark and light layers were not 

distinguishable from the fracture surface. As a result, the scale thickness might be 

reported as ~1000 µm from the fracture surface, but ~540 µm from the polished section 

even though these specimens were oxidized under the same conditions.  This discrepancy 

is only an issue for oxidation conditions at which the glassy scale has retreated beneath 

the outer surface. 



122 

 

The best ways to characterize scale thicknesses, to capture both the dark and light 

layers, seems to be optical microscopy combined with SEM of fractured surfaces. 

Regions of the oxide scale from which the glassy phase has evaporated appear lighter in 

color (i.e., white and porous) while regions in which the pores are still filled with B2O3 

appear dark.  Studies using SEM analysis of polished sections may not observe the layer 

that appears darker by optical microscopy and, therefore, underestimate the total oxide 

layer thickness. 

Another complication is that oxide layers can have a curved shape after severe 

oxidation as shown in Figures 4 and 5.  The curvature is an artifact of specimen size.  In 

this case, the oxide-matrix interface curves (i.e., the oxide layer becomes thicker) near the 

corners of the original specimen due to oxygen permeation from orthogonal faces. For the 

present study, all the measurements of oxide scale thicknesses were performed near the 

middle of the faces of specimens, which had lower curvatures and were assumed to be 

more representative of the oxidation of an infinite plate.  

Considering both layers of the scale, the thickness after oxidation at 1600°C for 6 

hours was highest for (Zr,W)B2 at ~910 µm followed by ~860 µm for ZrB2, ~610 µm for 

(Zr,Nb)B2, and ~520 µm for (Zr,Mo)B2. The higher apparent density of the dark scale 

should make it a better barrier to oxidation compared to the lighter scale.  Therefore, the 

vulnerability of specimens to oxidation can be determined from the thickness of the 

lighter layer. Nominally pure ZrB2 had the greatest thickness of the light layer (~700 

µm), followed by (Zr,W)B2 (~460 µm).  The lighter layers were significantly thinner for 

(Zr,Nb)B2 (~180 µm) and (Zr,Mo)B2 (~120 µm). Likewise, the dark layer was thinnest 

for nominally pure ZrB2 (~160 µm) compared to dark layers that were more than twice as 
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thick for (Zr,Mo)B2 (~400 µm), (Zr,Nb)B2 (~430 µm), and (Zr,W)B2 (~450 µm). The 

standard deviations for the mentioned thicknesses were between 10 and 20 µm. While W 

additions may not provide a significant improvement to oxidation resistance at 1600°C, 

Mo and Nb additions resulted in significantly lower thicknesses for the light oxide layers. 

As mentioned above, the light layer forms as B2O3 evaporates. The lower thickness of the 

light layer for (Zr,Mo)B2, (Zr,Nb)B2, and (Zr,W)B2 compared to nominally pure ZrB2 

indicate higher stability of the glassy phases in these materials. 

As discussed in a previous article,21 the outer surface of the porous oxide scale is 

initially composed of equiaxed particles when it is still covered by a layer of liquid/glassy 

B2O3.  The particles form as the result of dissolution of ZrO2 and TM oxides into the 

B2O3 melt followed by reprecipitation. As B2O3 evaporates, the solution-precipitation 

mechanism is no longer possible due to loss of liquid B2O3 at the outer surface, but ZrO2 

will continue to precipitate as the B2O3 scale evaporates.  As the B2O3 surface recedes 

into the porous oxide, ZrO2 takes a columnar morphology. The black dashed lines in 

Figure 4 indicates the border between equiaxed ZrO2 and ZrO2 with the columnar 

morphology for the scale on nominally pure ZrB2 and (Zr,W)B2. Under the same 

oxidation conditions, the light layer on (Zr,Mo)B2 and (Zr,Nb)B2 specimens was 

composed of only equiaxed particles. Liquid phases with higher stability at lower 

oxidation temperatures resulted in thicker primary precipitated oxide layers on (Zr,Mo)B2 

and (Zr,Nb)B2. In turn, the thicker primary oxide layers may lead to improved oxidation 

resistance due to the more uniform morphology.  In addition, the equiaxed oxide may be 

less prone to spallation than the columnar oxide on ZrB2.  
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Figure 5. SEM images of (a) a fracture surface, and (b) a polished cross section of 
(Zr,W)B2 after oxidation at 1600°C for 6 hours. 

 

 

 

 

4.3.3. Model of oxidation of ZrB2 ceramics at 1600°C 

Figure 6 is a schematic that describes the evolution of the structure of the oxide 

layer that forms during oxidation of ZrB2 ceramics at 1600°C. In the early stages of 

oxidation (left panel), a liquid B2O3 layer is present along with ZrO2 particles.  At this 

stage, liquid B2O3 fills all of the pores of the ZrO2 and this oxide scale has an iridescent 

appearance, similar to observations for oxidation of zirconium and zirconium alloys.30-32 

Similar to the oxide scale at this stage, the dark oxide layer on zirconium is dense, 

adherent, and protective against oxidation, resulting in parabolic oxidation kinetics.31  

Parabolic oxidation kinetics indicate that the oxide layer acts as a barrier to inward 

transport (presumably diffusion) of oxygen.  For Zr and its alloys, a process called 

“transition” or “breakaway” converts part of the dark layer (presumably oxygen-deficient 

ZrO2) to a lighter layer that is porous and tends to spall.  Once this transformation occurs, 

linear oxidation kinetics are observed, indicating that the oxide layer is no longer 

protective. The mechanism of breakaway is still controversial.31, 33 The formation of a 
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similar dark scale has been reported for ZrB2 ceramics,20, 34, 35 but has not been discussed 

in detail in any publication. 

In the initial stages of oxidation, equiaxed oxide particles form beneath the liquid 

B2O3 layer. The particles form by solution-precipitation as has been discussed 

elsewhere.21 With increasing oxidation temperature or time, evaporation of B2O3 

increases and some parts of the porous layer are exposed, and, consequently, become the 

layer that appears lighter in optical micrographs. Evaporation of B2O3 is more severe at 

higher temperatures, resulting in recession of the liquid into the porous layer (second 

panel in the schematic), and, eventually, nearly complete loss of B2O3 (final panel in the 

schematic). When the liquid recedes from the outer surface, ZrO2 particles can no longer 

form at the outer surface due to lack of the liquid phase to transport dissolved ZrO2.  

Continued growth of ZrO2 presumably occurs mainly from the receding front, which is 

now beneath the outer surface of the specimen.  Hence, the columnar morphology may 

develop as the originally equiaxed particles act as growth sites for ZrO2 precipitating 

from the receding B2O3.  

At temperatures at which the (TM-oxide)-B2O3 layer formed on (Zr,TM)B2 also 

evaporates (i.e. above about 1400°C) the differences between the TMs were more 

obvious. The higher volatility of WO3 and the resulting WO3-B2O3 mixtures, compared to 

Nb2O5-B2O3, resulted in lower coverage of the surface of (Zr,W)B2 by the glassy phase 

compared to (Zr,Nb)B2 after oxidation at 1600°C for 0 hours. The thicker porous zirconia 

layer for (Zr,Nb)B2 compared to (Zr,W)B2 was presumably due to liquid phase sintering 

of ZrO2 in the presence of WO3. However, increasing the oxidation time to 3 hours at 

1600°C resulted in more WO3 evaporation making the surface of (Zr,W)B2 appear similar 
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to nominally pure ZrB2 rather than (Zr,Nb)B2. Earlier evaporation of the protective glassy 

layer from (Zr,W)B2 resulted in a thicker zirconia layer for (Zr,W)B2 compared to 

(Zr,Nb)B2. Although no phase diagrams were available for the MoO3-B2O3 and ZrO2-

MoO3 systems, the oxidation behavior of (Zr,Mo)B2 was very similar to (Zr,Nb)B2, 

meaning that the MoO3-B2O3 and MoO3-ZrO2 systems likely resemble their Nb 

analogues.  

After oxidation at 1600°C for 6 hours, the porous (light) oxide layer was thicker 

for (Zr,W)B2 compared to (Zr,Mo)B2 or (Zr,Nb)B2, which indicates a resistance to 

oxygen transport from the surface to the dark layer. However, the thicknesses of the dark 

oxide layers were almost the same for all of the (Zr,TM)B2 ceramics and higher than for 

nominally pure ZrB2. It can be speculated that all of the TM additions have about the 

same effect on the transport rate of oxygen from the interface between the light and dark 

layers to the unoxidized matrix.  

 

 

 

Figure 6. Model of the evolution of the oxide structure of ZrB2 ceramics. 
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4.4. Conclusion 

The effects of additions of W, Mo, or Nb on oxidation behavior of ZrB2 were 

investigated. After oxidation at 1600°C for 0 hour, the higher stability of Nb2O5-B2O3 

resulted in lower oxide scale thicknesses for (Zr,Nb)B2 compared to nominally pure ZrB2 

and other (Zr,TM)B2 specimens. Two distinct sub-layers were observed in the porous 

oxide layer after oxidation at 1600°C for 6 hours, an outer layer that was lighter in color 

and an inner layer that was darker. The thickness of the light layer for nominally pure 

ZrB2 was almost 1.5 times greater than for (Zr,W)B2 and 4 times higher than (Zr,Mo)B2 

and (Zr,Nb)B2.  Lower scale thicknesses of the light layer for (Zr,Mo)B2 and (Zr,Nb)B2 

indicated that Mo and Nb were more effective in reducing oxygen transport from the 

external atmosphere toward the interface between the light and dark layers. However, the 

thicknesses of the dark layers were almost the same for all of the (Zr,TM)B2 specimens 

and almost twice as thick as the dark layer for nominally pure ZrB2, showing the same 

effect of TM additions on lowering oxygen diffusion through the dark layer toward the 

unoxidized matrix. Additions of Mo or Nb were most effective in improving the 

oxidation resistance of ZrB2 by increasing the stability of the protective liquid/glassy 

B2O3 layer and reducing oxygen transport through the light layer. 
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SECTION 

3. SUMMARY AND CONCLUSIONS 

The purpose of this dissertation was to investigate the effect of transition metals 

(TMs) on the oxidation behavior of ZrB2 ceramics.  Previous studies had shown that the 

addition of TMs improved the oxidation resistance of ZrB2-SiC and ZrB2 ceramics. 

However, the fundamental mechanisms of the oxidation behavior of nominally pure ZrB2 

with various TM additions were not investigated.  This section provides a summary of the 

research followed by several conclusions that were reached from the overall project. 

 

3.1. SUMMARY 

This section summarizes the research related to the four questions stated in the 

introduction.  Each question served as the focus for one of the main chapters of the 

dissertation. 

1. How do the TM additives affect the oxide scale growth on ZrB2? 

The oxidation behavior of (Zr,Nb)B2 ceramics was studied to determine the effect 

of Nb on the thickness and morphology of the oxide scales on ZrB2.  At 1500 °C, 

exposure to air resulted in the formation of a two-layer oxide scale structure on 

(Zr,Nb)B2. The two layers were: (1) an outer layer of a glassy phase containing B2O3 

with Nb and Zr dissolved in it; and (2) a porous oxide layer composed of oxide particles 

containing Zr and Nb. Small spherical particles, presumably a ZrO2 containing dissolved 

Nb, grew in the glassy phase with increasing exposure time.  Some of the particles were 

spherical while others were elongated. As the B2O3 evaporated, the particles became 
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concentrated and were eventually incorporated into the newly exposed porous oxide 

layer, which contained both ZrO2 and Nb2Zr6O17. As the glass receded, the small 

precipitated particles joined the porous oxide layer that was present under the glassy 

layer. Because of high melting point of Nb2Zr6O17 that was formed in the porous oxide 

layer, liquid phase sintering was not active as has been reported for W-containing ZrB2. 

However, dissolution of Nb into the B2O3 liquid phase increased the stability of the 

protective liquid layer by reducing the volatility of B2O3 from the liquid phase. Hence, 

(Zr,Nb)B2 showed improved oxidation resistance compared to pure ZrB2. 

 

2. What are the effects of W additives on the thickness of the porous oxide scale and the 

protective B2O3 layer in different regimes of oxidation behavior? 

The oxidation behavior of nominally pure ZrB2 and (Zr,W)B2 ceramics with 4, 6, 

or 8 mol% W was studied at temperatures ranging from 800 to 1600°C. Oxidation in this 

temperature range resulted in the formation of a two-layer scale: (1) an outer glassy layer 

containing B2O3 with dissolved W; and (2) a porous layer composed of oxide particles 

containing Zr and W. Based on scale thickness and weight gain measurements, two 

regimes of oxidation behavior were observed. The first stage was below 1100°C for 

nominally pure ZrB2 and 1300°C for (Zr,W)B2 specimens. No significant differences 

were measured for weight loss or scale thickness between nominally pure ZrB2 and 

(Zr,W)B2 compositions at temperatures between 800 and 1000°C. However, the glassy 

layer thicknesses and weight gains were higher for (Zr,W)B2 specimens after oxidation 

from 1100 to 1300°C. It was concluded that dissolution of W into the B2O3 liquid phase 

increased the stability of the protective liquid layer by reducing the volatility of B2O3 
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from the liquid phase, resulting in a shift in the onset of the second oxidation regime 

toward higher temperatures for (Zr,W)B2 specimens. This assumption was confirmed by 

TGA analysis of B2O3 and B2O3-WO3 glasses. Above 1500°C, the outer glassy layer was 

removed from the surface of nominally pure ZrB2 by evaporation, while a thin (up to 

~3µm) glassy layer was still covering the (Zr,W)B2 specimens. Further, the (Zr,W)B2 

compositions showed lower weight gains and had thinner oxidation scales compared to 

nominally pure ZrB2 at 1600°C. The addition of W into B2O3 increased the stability of 

the protective liquid/glassy layer and resulted in higher oxidation resistance for (Zr,W)B2 

compared to nominally pure ZrB2. 

 

3. How do the TM additives affect the evaporation and structural properties of B2O3 

glass? 

The evaporation behavior of B2O3 with TM oxide additions was analyzed.  

Additions of tungsten, niobium, and zirconium oxides decreased the evaporation rate and 

increased the onset temperature for evaporation in B2O3-based glasses in the order of 

WO3<ZrO2<Nb2O5. High temperature Raman spectroscopy showed that WO3 in the B2O3 

glass was initially amorphous, but crystallized at temperatures above 500°C. In addition, 

the intensity of Nb2O5 peaks in the glass increased as a result of crystallization. No signs 

of formation of BØ4 units was observed in the borate glasses by Raman spectroscopy or 

NMR. It was concluded that additions of WO3, Nb2O5, or ZrO2 to B2O3 did not change 

the structure of B2O3. Hence, the higher oxidation resistance of (Zr,TM)B2 ceramics and 

lower evaporation rate of (TM-oxide)-B2O3 glasses should be due to the fact that the 
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dissolution of TM-oxide in B2O3 decreases the activity of B2O3 and, consequently, 

decreases the vapor pressure and evaporation rate of B2O3. 

 

4. What are the differences between the effects of different TM additives such as W, Mo, 

or Nb on oxidation of ZrB2? 

The effects of additions of W, Mo, or Nb on oxidation behavior of ZrB2 were 

investigated. After oxidation at 1600°C for 0 hours, the higher stability of Nb2O5-B2O3 

resulted in lower oxide scale thicknesses for (Zr,Nb)B2 compared to nominally pure ZrB2 

and other (Zr,TM)B2 specimens. Two distinct sub-layers were observed in the porous 

oxide layer after oxidation at 1600°C for 6 hours, an outer layer that was lighter in color 

and an inner layer that was darker. The thickness of the light layer for nominally pure 

ZrB2 was almost 1.5 times greater than for (Zr,W)B2 and 4 times higher than (Zr,Mo)B2 

and (Zr,Nb)B2.  Lower scale thicknesses of the light layer for (Zr,Mo)B2 and (Zr,Nb)B2 

indicated that Mo and Nb were more effective in reducing oxygen transport from the 

external atmosphere toward the interface between the light and dark layers. However, the 

thicknesses of the dark layers were almost the same for all of the (Zr,TM)B2 specimens 

and almost twice as thick as the dark layer for nominally pure ZrB2, showing the same 

effect of TM additions on lowering the oxygen diffusion through the dark layer toward 

the unoxidized matrix. Additions of Mo or Nb were most effective in improving the 

oxidation resistance of ZrB2 by increasing the stability of the protective liquid/glassy 

B2O3 layer and reducing the oxygen transport through the light layer. 
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3.2. CONCLUSIONS 

The addition of transition metals to ZrB2 improved the oxidation resistance of 

ZrB2 as a result of the following effects: 

 

1. Addition of TMs to B2O3 decreased the evaporation rate of the B2O3 glasses in 

the order of WO3<ZrO2<Nb2O5, due to the lower activity of B2O3 in (TM-oxide)-B2O3 

glasses.  The increase in the stability of the liquid/glassy B2O3 resulted in an increase in 

the onset temperature of the transition in oxidation, followed by lower oxide scale 

thickness for the (Zr,TM)B2 specimens compared to nominally pure ZrB2. 

 

2. Higher solubility of the TM-oxides in liquid B2O3 compared to ZrO2, promoted 

the solution and reprecipitation of the oxides in B2O3 and resulted in higher thickness of 

the oxide layer with equiaxed grain. The equiaxed structure of the oxide layer should 

result in lower oxygen transport rate compared to the oxide layer with columnar grains 

formed on nominally pure ZrB2. 

 

3. At 1600°C, the protective B2O3 layer was removed from the outer surface of 

ZrB2 by evaporation, leaving an oxide layer that was composed of two sub-layers, an 

outer layer that was porous and appeared light in optical microscopy and an inner layer 

that was dense and appeared dark.  The addition of TMs resulted in a decrease in the 

thickness of the light oxide layer and an increase in the thickness of the dark oxide layer. 

The thicker dark layer, which had a higher apparent density compared to the light layer, 

resulted in lower oxygen transport from the outer layers toward the unoxidized matrix, 

and, consequently, improved the oxidation resistance of ZrB2. 
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4. SUGGESTIONS FOR FUTURE WORK 

Research presented in this dissertation discussed some effects of transition metals 

on oxidation behavior of ZrB2 ceramics. However, finding the answers to the following 

questions might increase knowledge of the oxidation behavior of (Zr,TM)B2 ceramics, 

and help design ZrB2 ceramic parts with improved oxidation resistance. 

 

1. Which TM additives have the most effect on reducing the evaporation of B2O3? 

Since formation of binary compounds in the (TM-oxide)-B2O3 system is a 

probable reason for the reduction in the evaporation rate of B2O3, TM-oxides forming a 

binary compound with B2O3 should be studied. However, the TM oxide or oxides that are 

chosen should have greater valence(s) than Zr4+ to avoid increasing the oxygen vacancy 

concentration in the zirconia oxide layer, which would increase oxygen diffusivity 

through the oxide scale. 

 

2. What are the basic differences between the light and dark oxide layers? 

Due to the higher apparent density of the dark layer, it is believed to have a lower 

oxygen transport rate compared to the light layer. However, the basic differences between 

the light and dark layers are not well known yet. Gaining knowledge about the dark layer 

could help us find some method to improve its stability and improve the oxidation 

resistance of ZrB2 ceramics. 
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3. Which TM additives promote formation and stability of the dark oxide layer? 

As mentioned above, a thicker dark layer should increase the oxidation resistance 

of ZrB2. The fact that the dark layer can affect the oxidation behavior above the 

temperatures at which the protective B2O3 layer is removed, emphasizes the importance 

of this study for increasing oxidation resistance at ultra-high temperatures.  

 

4. What is the effect of the TM additives on oxidation behavior of ZrB2 in extreme 

environment? 

Since the liquid/glassy B2O3 layer is less stable in extreme environments, e.g. 

high air flow rates, the effect of TM additives on improving the oxidation resistance 

might not be as much as their effect on oxidation in a furnace studies. However, TM 

additives are expected to still improve the oxidation resistance due to their effects on 

densification of the oxide scale and the thickness of the dark layer. 

Testing (Zr,TM)B2 specimens in extreme environments, such as arc heaters or similar 

facilities, would provide useful information about the response of response of 

(Zr,TM)B2 ceramics in environments that simulate hypersonic flight and/or atmospheric 

re-entry.
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