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NETWORKED HETEROGENEOUS SYSTEMS IN A ROS-ENABLED CLOUD 

ENVIRONMENT 

by 

CHRISTOPHER REID 

(Under the Direction of Biswanath Samanta) 

ABSTRACT 

It is important in the development of cloud robotics that the challenges presented by 

transferring computational loads to networked resources are properly addressed. The challenges 

include network latency, data integrity, security, and privacy. The objective of the present work is 

to investigate the issues of latency and data integrity in a representative cloud robotics 

environment. The present work involves setting up a cloud robotics network in an open-source 

Robot Operating System (ROS) framework and carrying out investigations on the levels of latency 

and reduction in data integrity as utilization of the network increases. In this study, a virtual 

datacenter has been set up to provide the foundation on which to build software systems to provide 

cloud services. Robot Operating System (ROS) framework has been used to facilitate 

communication among heterogeneous systems in the network. Three types of robots, including the 

Parrot AR.Drone2.0, the Kobuki Turtlebot 2, and the LEGO EV3 have been implemented in the 

system. The system has been tested for baseline connectivity and under low- and high-bandwidth 

conditions to determine the latency and data integrity of the network connections. Additionally, a 

heterogeneous system consisting of sensor feedback from the AR.Drone2.0 and motor control of 

the Turtlebot 2 has been built to examine the connection between the devices themselves. Through 

this study, it has been demonstrated that under low-bandwidth conditions, the network performs 

reasonably well in the areas of latency and data integrity. However, for high-bandwidth conditions 

involving image transmission, the network performance deteriorates considerably, both in terms of 

latency and data integrity. One possible reason is the wireless router used in the current setup.  It is 

also recommended that, especially under high-bandwidth loads, it is necessary for networked 

systems to perform some portion of their computations on-board and high-bandwidth wireless 

connectivity to the cloud is facilitated. Ongoing research and future directions are also outlined. 
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CHAPTER 1: INTRODUCTION 

1.1 NETWORKED SYSTEMS AND INTERNET OF THINGS 

A network is a collection of devices linked together through cabling or wireless 

transmissions to share resources and information (Whitson 2015). These networks are an integral 

part of work in collaborative environments and are indeed necessary to make the internet 

possible. Computers are the primary devices featured on such networks, but other network 

devices such as wireless routers, Ethernet switches, and more are used as well. When other 

systems are connected to the network, such as a controller for a robot, the concept of networked 

systems is applied. These systems when networked have a much higher functionality than their 

isolated counterparts. For example, a small robot with limited computing power cannot perform 

complex calculations in a timely manner while exercising control over its sensors and actuators, 

but such a robot could provide inputs to a networked computer running a code that may involve 

even a neural network simulator, and receive its instructions from that machine. 

There are two significant obstacles in implementing networked systems. First, many of these 

systems feature embedded software or firmware that are not easy to modify or replace. For these 

items, the implementation is limited to the capabilities of the devices as it was produced, and it 

cannot be tailored to fit the need of the system. Second, there is no standard for the formatting of 

the data these devices transmit to the network. The datasheet for each device must be checked to 

determine the format in which the device transmits its data to the network, which includes the 

sequence and size of the data packets, the encoding applied to the data, and the rate at which the 

data is sent, as well as the expected size and sequence of data received.  
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Additional obstacles to the use of networked systems include latency, data integrity, privacy, 

and security. Weir describes latency, performance, and reliability as “critical considerations in 

the design and deployment of cloud computing platforms” (Weir 2013). Willcocks et al. 

identified privacy and security as the largest risks for transitioning to using cloud computing, and 

explored potential legal issues created by the transfer of data across political borders. 

Additionally, they describe the risk of using cloud service providers that are potential targets of 

hacking through hosting controversial web sites (Willcocks, Venters and Whitley 2013).  

When the set of networked devices expand beyond robots and control systems to include a 

plethora of things such as clothing, vehicles, lighting, appliances, and many more, the concept of 

the Internet of Things (IoT) is achieved. Challenges faced with IoT are similar to the challenges 

previously mentioned for networked systems, applied to a much larger scale. In near future there 

will be many more dissimilar (heterogeneous) devices in the environment competing for network 

connectivity, transmitting sensitive data, and providing their capabilities as services to be used 

by other connected devices. There is a need to get ready for this computing environment in the 

age of IoT (Pye 2014).  

The Robot Operating System (ROS), developed by Quigley et al. (Quidley, et al. 2009), is an 

open-source software framework that provides the ability to develop code and applications 

across multiple types of (heterogeneous) robots and platforms (Doriya, Chakraborty and Nandi 

2012). This work aims to evaluate the current state of wireless connectivity between 

heterogeneous devices and a network and anticipate problems that will arise as the number of 

devices present within an environment increases. 
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1.2 SCOPE OF PRESENT WORK 

With the concept of the Internet of Things fast approaching implementation, a study was 

needed to examine the effect of numerous active heterogeneous networked devices and cloud 

services on the performance and integrity of a local network. The term heterogeneous is used in 

the sense that, while multiples of the same type of device may be used, there will be different 

types of devices in use and communicating with the cloud. The main hypothesis of this work is 

that a network infrastructure can be built to support the communication of numerous 

heterogeneous robots and their utilization of cloud resources for remote processing without a 

significant decrease in network performance and integrity.  

To test the hypothesis, the following objectives of this work were set: 

 To build a datacenter capable of providing cloud resources to the robots, 

 To design a network infrastructure to support heterogeneous system communication and 

the use of the cloud services. 

 To implement various multi-robot systems using ROS, and 

 To examine the effects of using multiple, heterogeneous systems on the ROS-enabled 

network simultaneously. 

  

To achieve the stated objectives, a virtual datacenter was built to support the development of 

the software needed to interact with and control the networked robot agents. A network was 

designed and implemented to enable robot-to-robot and robot-to-cloud communication without 

the additional overhead of network traffic not related to the function of the robots or their 

utilization of the cloud. Several software systems were developed in machines in the datacenter 

to utilize the Robot Operating System (ROS) in establishing communication with the robot 
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agents and interacting with them. Finally, the impact of using these systems on the network (e.g. 

network latency, packets dropped) was examined and analyzed.  

 

1.3 ORGANIZATION OF THESIS 

The rest of the thesis is organized in the following order: 

Chapter 2 is the literature review covering eight topics. First the background of and need for 

heterogeneous robot communication is covered. Next, the concept of cloud robotics is reviewed, 

followed by the challenges presented by cloud robotics. The fourth section examines the topic of 

virtualization and the benefits of virtual datacenters. Next, the Robot Operating System and its 

ability to facilitate heterogeneous robot communication is examined. Sections six, seven, and 

eight review the capabilities of the three types of robots used in this study: the Parrot 

AR.Drone2.0, the Kobuki Turtlebot 2, and the LEGO EV3. 

Chapter 3 covers the research methodologies used in this study. First the overall system 

configuration is presented. Next, the design and implementation of the bio-Inspired Robotics and 

Intelligent Systems (bIRIS) virtual data center is detailed, followed by the components of the 

testbed network. The implementation of ROS within the cloud is presented next, followed by the 

configuration of each of the three types of robots to make them compatible with the cloud. 

Finally, section eight details the design of the experiments to test the robots’ effect on latency 

and data integrity. 

Chapter 4 presents the experimental results and related discussions, starting with establishing 

a baseline network bandwidth capacity for the system. The AR.Drone2.0 is the first robot 

examined, and baseline, low-bandwidth, and high-bandwidth tests are conducted for the UAV 

and the results presented. Likewise, the same experiments were conducted on the Turtlebot, 
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which is presented in section three. Section four details the LEGO EV3 experiments, which 

include baseline performance, low-bandwidth performance, and cloud-in-the-loop processing, 

which examines the performance of a system that uses the cloud to implement a controller in a 

time-sensitive control loop. Finally, a cloud-processed tilt-control experiment is performed 

which queries the pose of an AR.Drone2.0 to process and determine the desired state of a 

Turtlebot. 

Chapter 5 presents a summary of the present work along with recommendations for future 

work.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 HETEROGENEOUS SYSTEMS 

As the tasks which are delegated to machines grow more complex and more numerous, so 

too must the machines grow more complex and powerful to execute them. These machines, 

functioning alone in an environment and expected to perform all tasks to satisfaction, present 

numerous disadvantages. First, data travelling through the system must be processed by the 

machine, and thus exists a data chokepoint at the machine, reducing the reliability and response 

time of the system. Second, the system's sum of resources, both hardware and software, would 

exist at a single location, making any downtime the machine experiences catastrophic to the 

system. Finally, even with enormous complexity, a system of multiple, cooperative robots 

performing tasks simultaneously would outperform a single machine as the task complexity 

increases (Cao, Fukunaga and Kahng 1997). 

Thus, it is easy to see why heterogeneous systems are preferable; heterogeneous systems vary 

in shape, size, and capabilities, complementing each other and increasing the capabilities of the 

system as a whole. Heterogeneous systems are more capable, efficient, fault tolerant, and 

expendable than their monolithic counterpart (Parker and Tang 2006). While these systems have 

been tested in isolated, experimental environments, there has yet to be a study on a fully-

functioning, always-on environment to support heterogeneous system operation.  

2.2 CLOUD ROBOTICS 

First, to consider the concept of cloud robotics, the definition of a cloud and the components 

that constitute the cloud should be provided. NIST defines cloud computing as “a model for 

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable 

computing resources […] that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” (The NIST definition of cloud computing 
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2011) The systems that provide these capabilities, including the physical servers and network 

hardware along with the software systems that enable interaction with these resources, make up 

the cloud. While heterogeneous multi-agent systems offer tremendous advantages over 

homogeneous systems, when combined with the concept of cloud robotics, there are even more 

advantages to be had. Kehoe, Patil, Abbeel, and Goldberg define cloud robotics as "Any robot or 

automation system that relies on either data or code from a network to support its operation, i.e., 

where not all sensing, computation, and memory is integrated into a single standalone system." 

(Kehoe, et al. 2015). Unlike traditional systems that are generally self-contained, the cloud offers 

the ability to have a remote system perform computations and store data. This provides several 

abilities, from downsizing local resources, achieving dependability and robustness through 

backups and redundancies, and the ability to scale systems without having to similarly scale the 

local resources (Enabling a new future for cloud computing 2014). Through cloud robotics, 

remote agents can utilize the processing, storage, and connectivity capabilities of non-mobile 

computing systems. In particular, cloud robotics, and cloud computing in general, offers the 

concept of utility computing; instead of buying computational resources to own, these resources 

can be provided for use on a short-term, as-needed basis (Armbrust, et al. 2010). 

2.3 CHALLENGES IN CLOUD ROBOTICS 

2.3.1 Network Latency 

Generally, the reaction time of some local-processed system’s output to an input is very 

small, in the order of nanoseconds or less. When utilizing cloud services, however, the data 

spends much time in transportation through the network, resulting in noticeable latency. This 

latency can be very expensive to cloud service providers (Kelmendi 2013). Latency is 

unavoidable when data is being transferred over a network, though the acceptable amount of 

latency will differ based on the service being used (Sharp 2012). 
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2.3.2 Data Integrity 

When transmitting data through a network, there is some risk of the packets of data becoming 

corrupted or lost. This is especially true for wireless connections, which compete with each other 

to transmit their data in the same frequencies. The quality of wireless connections is subject to 

the environment, which includes physical obstructions as well as electromagnetic noise (Gungor 

and Hancke 2009). Similar to latency, excessive packet loss leads to unreliable systems, where 

the level of acceptable packet loss depends on the services being provided by the cloud. To 

reduce packet loss in networked systems, some research conducted in this area examines the data 

packets themselves and reduces the size of the packets or number of packets to be sent as a 

method of reducing packet loss (An, et al. 2012). Other research proposes adding compensators 

to controllers or plants to generate replacement data for lost packets (Nguyen and Yoo 2015). 

Strategies for scheduling multisensory data retrieval are proposed to improve the performance of 

networked systems (Wang, Liu and Meng 2015). Regardless of the compensation method, data 

integrity must be accounted for when building networked systems, especially those that feature 

wireless connections. 

2.4 VIRTUALIZATION 

In this study, many of the cloud resources were provided using the resources and capabilities 

of a virtual datacenter. Virtualization is the concept of abstracting hardware resources such that 

multiple paths to hardware can be provided, allowing numerous users’ access to the same 

hardware. A virtualized server, for example, provides its resources for multiple virtual machines, 

each running its own operating system, to operate with. Each virtual machine has access to some 

portion of the server's resources, which can be statically or dynamically allocated depending on 

the capabilities of the management software. The use of virtualization minimizes the number of 

server machines needed for the operation of the datacenter and allows the remaining servers to 
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run much more efficiently, which significantly reduces the energy consumption of the datacenter 

(Deka 2014). 

2.5 ROBOT OPERATING SYSTEM 

The Robot Operating System (ROS) is an open-source framework that enables heterogeneous 

robot communication through defining standards in data packet construction and communication 

protocols (Quidley, et al. 2009). ROS is designed to be implemented in a modular fashion and 

spread out over many systems and devices. ROS terminology (ROS/Concepts 2014)is explained 

below, as it is used frequently throughout this thesis. 

 Master or Core- The ROS master or core is a node that handles the routing of ROS 

traffic through the network. It is not a centralized hub; that is, data streams do not 

typically flow through the ROS master node. Instead, the ROS master node 

coordinates the overall flow of information and instructs individual nodes in where 

they are sending their data streams. 

 Nodes –A ROS Node is an executable script or program that runs within the ROS 

framework. Nodes are designed to be modularized as much as possible, and a single 

robot or system may have many nodes running to fully interface the hardware and 

non-ROS software with ROS. 

 Messages – A ROS message is a data structure made some number of primitive data 

types and arrays of primitive data types. ROS messages are strongly typed and can be 

custom built to meet the needs of the system.  

 Topics – A ROS topic describes a particular data stream in which a single type of 

message is transferred from node to node. A node is said to subscribe to a topic when 

it is receiving the data stream from the topic. A node is said to publish to a topic when 
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the node is sending data to the topic. A topic can have arbitrarily many subscribers 

and publishers. 

 Services – A ROS service functions much like a remote procedural call; a node may 

send data via a service to be processed in some fashion, and will expect a response in 

return, whether it is a return value from some computation or merely an affirmation 

that a procedure was performed. 

 Packages – ROS packages are the base level bundles of code that are designed to be 

uploaded for sharing and downloaded for use. ROS packages can contain zero or 

more of nodes, messages, libraries, configuration files, build instructions, 

documentation, and more. Because of ROS’s open source nature, packages are often 

free to download and use, and are developed by programmers across the world for a 

multitude of purposes that, due to the modular, standard-focused nature of ROS, can 

be applied to many different types of robots. 

2.6 PARROT AR.DRONE2.0 

The Parrot AR.Drone2.0 is a hobby unmanned aerial vehicle (UAV) with a quadrotor design. 

The AR.Drone2.0 features front- and down-facing cameras for visual navigation, stability, and 

ground velocity measurements, as well as a three-axis accelerometer, magnetometer, and 

gyroscope. Also included are a pressure sensor and ping sensor for altitude measurements (Parrot 

AR.Drone2.0 2015). The AR.Drone2.0 runs on Linux BusyBox, a stripped down operating 

system designed for embedded systems. The BusyBox system interfaces with the motors and 

actuators of the AR.Drone2.0 and provides the ability to make a wireless connection, but is 

unable to run ROS directly.  
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2.7 KOBUKI TURTLEBOT 2 

The Kobuki Turtlebot is a two wheel drive robot base packaged with a Microsoft XBOX 

Kinect sensor and an Asus netbook. The netbook runs Linux Ubuntu and has ROS installed, 

allowing the robot to make use of ROS directly. The robot base has several sensors, including a 

bump sensor to detect frontal collisions, a battery sensor to detect the current battery level, 

infrared sensors for detecting and docking with the recharging base, and gyroscope to detect 

rotational movement, while the Kinect sensor provides laser scanning depth information along 

with camera images (Turtlebot 2 n.d.). 

 

2.8 LEGO EV3 

The LEGO EV3 is a newer version of the NXT with a major new feature: the ability to run a 

Linux based operating system hosted on an SD card. ROS can be run natively on this OS and 

applications developed directly on the controller. Furthermore, the EV3 has a USB port for a 

wireless USB adapter, making communication with the cloud much faster than the NXT’s 

Bluetooth connection (LEGO Education EV3 2015). 

  



25  

 

CHAPTER 3: RESEARCH METHODOLOGY 

3.1 SYSTEM CONFIGURATION 

To conduct experiments on the topics examined in this study, namely latency and data 

integrity, a complex, powerful cloud environment was designed to imitate the real-world 

implementation of networked systems utilizing a cloud for communication and remote 

processing. First, a virtual datacenter was designed to provide the foundation on which the cloud 

services, e.g., remote operation, image viewing, data acquisition, were supported. Next, multiple 

networks were designed to segregate the traffic generated by the networked systems away from 

the traffic generated through management of the datacenter and storage of the virtual machines. 

Then, ROS was implemented in the cloud to be used as the framework on which to provide cloud 

services to the networked systems.  

Three types of robots were acquired to be used in the experiments conducted for this work: 

the Parrot AR.Drone2.0, the Kobuki Turtlebot 2, and the LEGO EV3. The network settings of 

each robot to be used in the experiments were configured to connect to the cloud network 

through their wireless adapters, using a passcode. To interface the robots with ROS, ROS drivers 

were either downloaded or built based on availability for each particular robot. Additional 

software was developed through the ROS framework for other tasks such as directing robot 

movement, acquiring and storing robot sensor data, and integrating multiple robots into a single 

control system.  

For each of these tests, the latency and data integrity of the connection between the robot and 

the cloud was tested by streaming data packets to the target robot and measuring the time taken 

for the packet to return, or whether the packet returned at all. This data was plotted to visualize 
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the stability of the network connection over time. The tests were conducted each time an 

additional robot was connected to the network to observe the impact on the network connectivity 

of each robot. 

3.2 BIRIS VIRTUAL DATACENTER 

To provide the computational and storage resources necessary for the implementation of a 

cloud computing environment, a datacenter was designed that would host these resources as well 

as provide the ability to build software systems that would, when connected to the remote robot 

agents, perform calculations and communications as necessitated by the remote agents. A virtual 

datacenter was chosen to make efficient use of server hardware while providing a dynamic, 

reconfigurable environment in which services and control systems could be built, altered, and 

shut down as needed by the client robots or users. These services and control systems were 

implemented on virtual machines - software-defined computers that utilize some portion of its 

host server's resources to operate. Because these computers are software-defined, resources can 

be quickly allocated or deallocated as demand fluctuates, maximizing efficiency of the 

datacenter. Furthermore, the virtualized datacenter provides a high degree of fault tolerance for 

the virtual machines that isn't found in physical datacenters; virtual machines can be immediately 

rebooted upon crashing, or migrated to another host machine without an interruption in service 

should the host machine fail. 

3.2.1 bIRIS Datacenter Design 

Six physical servers were built in total to provide ample resources for the virtual datacenter 

and future expansion. Five of the machines functioned as host servers for virtual machines, while 

the sixth provided network-attached storage (NAS) for the storage of the virtual machine files. 

NAS was chosen as the virtual machine storage method to provide both a failsafe by separating 
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storage from computational resources to prevent the loss of both in the event of a failure of 

either, and to provide the ability for virtual machines to migrate from host to host to balance the 

load on each host machine, reducing thermal output and increasing efficiency. 

3.2.2 Network Design 

Due to the virtual nature of the datacenter, software-defined networking (SDN) was available 

to be used to define a number of networks, as opposed to a single network, to be used in the 

design of the cloud environment. Through SDN, the virtual machines and host machines did not 

have to use the same network interfaces for communicating with other devices, allowing for the 

segregation of network traffic based on the nature or purpose of the data being transferred. Three 

networks were defined to segment network traffic into three categories: management, storage, 

and testbed. Management traffic is data related to the operation of the host machines, including 

host performance data and communications between the hosts and the datacenter management 

software (Section 3.2.4 ). Management traffic was placed on its own network to prevent the 

disruption of the virtual datacenter operation by high network usage by client or storage devices. 

Likewise, storage network traffic was placed on its own network such that the link between a 

virtual machine and its storage would not be disrupted. Separating the management and storage 

networks from the testbed network also provided a layer of security against removing the 

channel for client devices or users to access or manipulate sensitive data, whether accidentally or 

purposefully. Finally, this leaves the testbed network, which contains all robots, virtual machines 

hosting control software, cloud resources outside of the virtual datacenter, and client PCs 

through which users interact with the cloud. 
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Physically, the devices were connected to a Dell PowerConnect 6248 Ethernet switch via 

category 6 twisted pair cables. The PowerConnect switch was segmented into three virtual local 

access networks (VLANs) to create the three aforementioned networks (shown in Figure 3.1 

through Figure 3.3) and prevent traffic from crossing over the networks. For wireless 

connectivity on the Testbed network, a Linksys E2700 wireless router was used to provide a Wi-

Fi access point for remote systems.   

 

Figure 3.1 Management Network Physical Topology 
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IPv4 was used exclusively in addressing all devices on the network due to its universal 

compatibility among networkable devices. Each network was assigned its own unique network 

 

Figure 3.2 Storage Network Physical Topology 

 

 

Figure 3.3 Testbed Network Physical Topology 
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prefix (the first 24 bits of the 32 bit IPv4 address) and, in the case of the testbed network, an IP 

scheme was established to organize devices on the network by their function. Because each 

device requires a unique IPv4 address to be identified, the last 8 bits of the 32 bit IPv4 address is 

referred to as the host identifier and each device that uses the same network prefix has a unique 

host identifier. Due to the minimal number of devices on the management and storage networks, 

no IP scheme was used on those networks. The scheme for assigning IPv4 addresses to devices 

on the Testbed Network is shown in Table 3.1 below. 

 

3.2.3 Host Server Installation 

Six computers were built to function as the host servers of the datacenter, though one was 

later designated to provide NAS for the datacenter. The six machines were built nearly 

identically, with the sole difference being the NAS machine contained larger hard drives for 

increased storage capacity. Each machine was built with a Supermicro X9SCL/X9SCM 

motherboard with four Intel Xeon E3-1245 V2 processors with a clock speed of 3.4GHz each, as 

well as 32GB of RAM each. Each machine also featured 1TB of hard drive storage, though this 

storage was not used for virtual machine files. In addition, each machine included a network 

interface card (NIC) which, in addition to the two integrated with the motherboard, allowed for a 

total of three physical network connections. These network interfaces were utilized in the 

Table 3.1 Testbed Network IP Address Morphology  

 

Host Identifier Designation

1-15 Network Services

16-45 Physical PCs

46-125 Virtual Machines

126-200 Robots

201-254 DHCP

IP Address Morphology
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segmentation of the networks, described in section 3.2.2 . The sixth machine hosted five 1TB 

Western Digital hard drives for VM storage. 

Five machines were provided with USB flash drives imaged with VMware's ESXi 5.5 

Hypervisor operating system. The ESXi configuration screen is shown in Figure 3.4. USB flash 

drives were used as opposed to the local hard drives so that there would be no need to create a 

small partition on a hard drive in each machine for operating system storage; this way, the hard 

drives remain fully free for cloud storage use. Each machine was connected to an Avocent 

Autoview Digital KVM Switch, to which a console was attached that would provide a direct 

console user interface (DCUI) to each machine. Through the DCUI, each machine's operating 

system was configured to be used in the datacenter. The five ESXi machines were configured 

with static IPv4 addresses of the management network prefix, with host identifiers of 11 through 

15. Each of these machines was also assigned a hostname, or computer name, of server01 to 

server05. Once the ESXi machines were configured, the FreeNAS machine was configured in a 

similar fashion, except for being placed on the storage network instead of the management 

network. 



32  

 

3.2.4 Datacenter Management Software 

Next, VMware's vSphere Client was installed on a computer temporarily located on the 

management network. Through the vSphere client, a local datastore was configured on which to 

store the datacenter management VM. Server01’s networking was further configured to 

designate the network interface connected to the management network to be used for 

management traffic. A network interface to the Testbed network was added for VMs to use to 

connect to robot agents. 

 

Figure 3.4 ESXi Host Configuration 
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Through the vSphere Client interface shown in Figure 3.5, a virtual appliance (vApp) was 

deployed on server01. vApps are simply VMs with a preconfigured operating system and 

settings. This particular Linux-based vApp was loaded with the vCenter Server management 

software, which provides a management interface at the datacenter level, as opposed to the host 

level the ESXi operating system provides. The vCenter Server VM was provided a network 

interface and IP address for the testbed network, so that administrators of the datacenter could 

access and modify various components of the datacenter. Shown in Figure 3.6 is the web client 

for vCenter Server, with all five host servers configured and added to the datacenter. The 

 

Figure 3.5 vSphere Web Client Interface to ESXi Machine 
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vCenter Server vApp is shown to be currently hosted by server01, though the management 

software allows VMs to be migrated to other hosts or datastores at will. 

 

 An additional VM with hostname localdns was built to offer DHCP and DNS services to 

the testbed network. Through the DHCP server, the IP address of every Testbed network 

interface (whether a robot, PC, or virtual machine) was defined in a single location, as opposed 

to each robot, PC, and virtual machine deciding its own IP address. This method of reserving IP 

addresses for particular devices is called address reservation, and this ensured the IP address of 

each device would remain constant unless changed by the administrator. The DHCP server also 

provided dynamically generated IP addresses for those devices which were not recorded in the 

reserved address list, so that new devices could be added to the network without altering the 

DHCP server files.  

Additionally, a DNS server, running on the same machine, translated the static IP addresses 

to names, and vice versa. By using DNS, devices could be referred to by name as opposed to IP, 

which is much harder to remember. Furthermore, when referring to a device by DNS name, the 

IP address of a device could be changed, and as long as the DNS entry was updated, there would 

be no lack of connectivity due to the address change. The Testbed network was defined to have a 

domain name of biris. The addition of a domain name allowed for the easy logical segregation of 

 

Figure 3.6 vSphere Web Client Interface to vCenter Server 
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outgoing connections, searching for addresses ending in biris back at the local networks Testbed, 

Storage, and Management hosts from those on the internet. Thus, the fully qualified domain 

name (FQDN) of a bIRIS networked host would look like server01.biris. 

3.3  BIRIS TESTBED NETWORK 

The Testbed network consisted of many different systems and devices, including robots, 

cloud resources not managed by the datacenter, control systems and the VMs they were hosted 

on, and the client computers through which users could access the Testbed network. The physical 

resources for the datacenter, as well as a sample of the robots used for this study, are shown in 

Figure 3.7. 

3.3.1 Non-Virtualized Resources 

For intense calculations, specifically for neural network control systems, two physical 

computers were provided with Compute Unified Device Architecture (CUDA)-Enabled graphics 

processing units (GPU). These NVIDIA Tesla K20c GPUs provided the computational resources 

for running neural network simulations, which run far more efficiently on GPUs than CPUs. 

These two machines were assigned hostnames of cuda1 and cuda2 (FQDN cuda1.biris and 

cuda2.biris) and were loaded with the Ubuntu operating system along with the ROS software, 

like the VMs. CUDA software was also installed on cuda.biris and cuda2.biris to provide local 

access to the GPUs’ computational ability. 

3.3.2 Robots 

Three types of robots were used in the experiments conducted as part of this work: the Parrot 

AR.Drone2.0 UAV, the Kobuki Turtlebot 2, and the LEGO EV3. These robots were used to 

acquire data and interact with the environment using the mobility that mounted sensors and 
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actuators would not offer. The configuration of each type of robot is detailed in Sections 2.6 

through 2.8 . 
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Figure 3.7 The bIRIS Datacenter and Target Robots 
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3.3.3 Virtual Machines 

Many VMs were built in the datacenter to host software dedicated to interfacing the robots 

with the ROS framework or providing cloud services to the robots. These VMs had a network 

interface on the Testbed Network and were statically assigned IPs through the DHCP server, as 

well as domain names through the DNS server. Furthermore, a remote desktop protocol (RDP) 

application was installed on these VMs to provide users – through the physical computers on the 

Testbed Network – access to the VMs to develop and test software. 

3.3.4 Client Computers 

Several physical computers were placed on the Testbed Network to allow users’ access into 

the network to configure robots and run software located on VMs. RDP software was installed 

on these computers to be used to access the VMs. These client computers were outfitted with a 

NIC such that the computers would maintain their connection to the campus network while also 

maintaining a connection to the bIRIS Testbed Network. 

3.4 ROBOT OPERATING SYSTEM (ROS) 

ROS was implemented in the cloud to provide the framework on which robot communication 

was built. To implement ROS in the cloud, first a Linux Ubuntu VM was built to run the core 

ROS functionality. This VM was named roscorevm.biris and was installed with a minimal 

version of ROS that did not include any GUI tools but did include the base communication 

libraries. This VM would not be used for developing software, but only for directing ROS traffic 

throughout the network. 

Next, a VM was built for the purpose of becoming the template from which figure ROS VMs 

would be cloned. This VM was installed with Linux Ubuntu and the full desktop version of ROS, 

which included many ROS packages such as simulators, navigation, and visualization tools. The 

ROS development workspace was set up to fast-track development of ROS software. Source 
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control software was installed to enable easily distributable code and tracking of code changed. 

RDP software was installed to provide access to the VM from client computers on the network. 

Finally, the VM was converted to a template. 

The vCenter Server software allows us to make use of VM templates. These templates are 

VMs that cannot be turned on, but can quickly be cloned into operational VMs. VM Templates 

can have additional software installed and files stored on the computer, as well has have a 

custom hardware configuration. The previously created template was used as the foundation of 

all VMs that provided cloud robotics services through ROS. 

3.5 AR.DRONE2.0 SETUP 

3.5.1 AR.Drone2.0 Wireless Configuration 

The networking configuration of the AR.Drone2.0s (shown in Figure 3.8) required 

considerable modification. First, the default state of the UAV after booting is to create a wireless 

ad-hoc network, such that a single device can connect to the drone to control it. For this study, 

the UAVs had to be reconfigured to connect to the bIRIS Testbed Network. Furthermore, 

software had to be pushed to the UAV to enable it to connect to secure wireless networks via the 

Wi-Fi Protected Access II (WPA2) protocol (Araos 2013). Once this was complete, the UAV 

was ready to connect to the secure bIRIS Testbed Network. 
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To connect each UAV to the bIRIS Testbed Network, a virtual machine with a wireless 

adapter connected to the ad-hoc network each AR.Drone2.0 creates at boot up. A script is then 

executed in the virtual machine that interfaces with the connected UAV via the telnet protocol. 

The script shuts down the AR.Drone2.0’s DHCP server, turns off the ad-hoc networking mode, 

and provides the SSID and passphrase to connect the UAV to the network. Once connected to 

the network, the DHCP server on localdns.biris recognizes the UAVs hardware address and 

assigns the preallocated IPv4 address to it, completing the process of connecting the 

AR.Drone2.0 to the network. 

 

Figure 3.8 AR.Drone2.0 
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3.5.2 AR.Drone2.0 ROS Driver 

As the case is with many robots, a ROS driver for the AR.Drone2.0 has been developed and 

is available for general use under the Berkeley Software Distribution (BSD) license. The 

ardrone_autonomy (Monajjemi 2015) package provides an extensive ROS driver for the 

AR.Drone2.0 that publishes both raw and estimated sensor data and allows for remote 

configuration of the UAV, including motor speed, camera selection, LED animation, and other 

settings. This package was used to interface the AR.Drone2.0s with the ROS framework in this 

study. 

3.6 TURTLEBOT SETUP 

3.6.1 Turtlebot Netbook Installation 

The Turtlebot’s netbook was loaded with Ubuntu Linux and each turtlebot was provided with 

the turtlebot hostname, numbered sequentially, i.e., turtlebot01, turtlebot02, turtlebot03 and 

turtlebot04. A Turtlebot is shown in Figure 3.9. 
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Figure 3.9 Turtlebot 
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3.6.2 Turtlebot Wireless Configuration 

Because the Turtlebot shipped with a netbook, integrating the Turtlebot with the network was 

a much simpler matter than the AR.Drone2.0. The Turtlebot’s native wireless interface was 

connected to the bIRIS Testbed Network’s using the network’s SSID and each Turtlebot was 

provided the password. 

3.6.3 Turtlebot ROS Driver 

The full ROS software package was installed on the Turtlebot, along with the Turtlebot-

specific ROS packages necessary for interfacing with the robotic base. Additionally, ROS-

OpenNI software was installed for interfacing with the Turtlebot’s Kinect camera. 

3.7 LEGO EV3 SETUP 

3.7.1 LEGO EV3 Installation 

The EV3 (shown in Figure 3.10) has its own firmware but with the addition of a MicroSD 

card could support a Linux Debian operating system called ev3dev. A virtual machine was built 

to modify the ev3dev operating system from within the Linux Ubuntu environment. This was 

done so that software could be installed on the EV3 brick, which runs on an ARM 9 processor 

and requires software to be built from source to run on that processor. Through virtualizing the 

ev3dev OS before implementing it on the brick, the source code for the desired software could be 

stored outside of the MicroSD card, which had limited space. Once the software was built, the 

source code was no longer necessary to keep on the local storage. 
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A minimal version of ROS was built from source and installed on the ev3dev system, which 

included the standard ROS communication packages as well as the geometry_msgs package 

necessary for describing the velocity of the EV3. Once the software was built, the virtual 

operating system was converted to an image and flashed to the MicroSD card, which was 

inserted into the EV3 brick. 

 

Figure 3.10 LEGO EV3 
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3.7.2 LEGO EV3 Wireless Configuration 

A wireless USB adapter was connected to the EV3 brick to provide the capability to connect 

to wireless networks. Like the Turtlebot, the software for connected to wireless networks was 

already provided through the ev3dev operating system, and so the SSID and password was 

simply entered through the brick’s interface, and the brick was connected to the bIRIS Testbed 

Network. 

3.7.3 LEGO EV3 ROS Driver 

No existing ROS driver for the EV3 could be found, despite instructions existing for 

installing ROS on the EV3. Thus, a simple ROS driver was built using the python-ev3 project on 

GitHub. This project provided Python libraries for interfacing with the EV3 brick, which in turn 

interfaced with the various sensors and motors LEGO provides. As one of ROS’s compatible 

languages is Python, integrating the two was a simple matter. A simple ROS driver was built that 

would acquire data from the LEGO Color Sensor and publish it to the ROS topic of ev3/light, 

while the driver listened for messages published to the ev3/cmd_vel messages and converted 

them into motor commands to move the EV3. 

3.8 EXPERIMENTAL DESIGN 

Multiple control and data acquisition systems utilizing multiple types of robots were 

designed and implemented within the test environment. Experiments were conducted for each 

type of robot under three conditions: 

 Baseline: A connection was established between the target robot and the Testbed 

Network. The only network communication occurring between the robot and network 

was due to the network services offered (i.e. DHCP and DNS information). 
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 Low Bandwidth: A ROS geometry_msgs/Twist message was published to the target 

robot at a rate of 10Hz to control the robot’s velocity, while low-bandwidth feedback 

(e.g. light or ultrasonic sensor readings) was transmitted back to the cloud. 

 High Bandwidth: Again, the geometry_msgs/Twist control message was published to the 

target at 10Hz, while high-bandwidth feedback (e.g. color and depth images) was 

transmitted back to the cloud. 

For each of these experiments, latency and packet loss tests were conducted as additional 

robots were added to the system to measure the network integrity and the viability of robot 

operation utilizing cloud resources. Tests were run on weekdays during business hours to 

measure performance when the ambient wireless interference levels were high due to the high 

number of wireless devices in use. Tests were also conducted on weekends to measure 

performance during low wireless usage periods. 

Experiments were conducted as field tests; that is, the testing environment conformed to the 

manner in which an actual heterogeneous networked system would be implemented in a real 

world environment. To measure the performance of the network as various systems were added, 

a network performance baseline had to be established, featuring the minimal amount of devices 

necessary to define the environment. Network performance was evaluated based on three 

measures: 

 Network throughput, the speed at which data is transferred between devices, 

 Network latency, the amount of time a data packet is in transition, and 

 Dropped packets, the percentage of data packets that do not arrive at their destination and 

must be retransmitted.  
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Network throughput was tested by transferring a large file between a Linux Ubuntu VM  

built for the network tests, and the target device. Size of the file divided by the time required to 

complete the transfer provided the throughput value for that connection. The network latency and 

dropped packets were tested utilizing the ping program on the same VM. A total of 600 pings 

were sent to the indicated target at one second intervals, which made for a ten minute test of the 

target device’s network performance. The average latency experienced by a sample robot is 

plotted for each test case and the statistical parameters of the experiment are reported in a 

following table. For the calculation of the statistical parameters, periods of abnormally high 

latency were ignored as they represented environmental interference and were not representative 

of the robot's effect on the network. These periods of interference were not removed from the 

presented graphs, however. 
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 BASELINE NETWORK TESTS 

A test of the wired bandwidth of the network was conducted to determine the maximum 

bandwidth the network was capable of supporting on a single interface. The wired network 

bandwidth far exceeds the wireless network bandwidth, but it is useful to know the theoretical 

limitations of the wired components of the system. The maximum bandwidth data is shown 

below in Figure 4.1.  

 

Maximum wired throughput of the wired network was found to be 941.4 Mbits/second. 

Given the 1Gbit/s specification of the hardware used (including the Ethernet switch and Ethernet 

ports of the devices used), this maximum throughput was expected and deviates from the 

theoretical capacity of 1Gbit/s by 5.86%. This is the maximum speed the wired network will 

 

Figure 4.1 Maximum Wired Throughput of Network 
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achieve under unloaded conditions. Baseline wireless tests were conducted for individual robots 

instead of the whole system as wireless connectivity is more dependent on the quality of the 

wireless interface and would vary from robot to robot even under ideal experimental conditions. 

4.2 AR.DRONE2.0 

First, a baseline test (shown below in Figure 4.2) was conducted by testing the latency 

between the network and an AR.Drone2.0 connected to the network, but without any system 

sending to or receiving data from it. 

 

Baseline wireless latency tests produced an average of 1.40ms latency with a standard 

deviation (s) of 1.32ms and zero lost packets for the duration of the ten minute test. Thin spikes 

in latency are evident in the graph, which result from the wireless interference of the many 

campus wireless access points and their client devices present in the building. 

 

Figure 4.2 Baseline AR.Drone2.0-to-Cloud Latency 
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4.2.1 AR.Drone2.0 ROS Driver 

 

Next, the driver was launched in the console with command line arguments to specify the IP 

address of the target AR.Drone2.0 and to push all the ROS computations into a specified 

namespace. The latter step is necessary to properly segregate the data transfers of this ROS node 

from the data transfers of other ROS nodes of the same name, i.e. when multiple ardrone_driver 

nodes are running other AR.Drone2.0s simultaneously. The ROS computational graph for the 

ardrone_driver node is shown in Figure 4.3, though many of the 43 topics published or 

subscribed to by the ardrone_driver node have been hidden for clarity. The ellipses are ROS 

nodes, the executables that perform computations. The quadrilaterals are topics, and the lines 

between the nodes and topics indicate the flow of data between the two. 

Five ardrone_driver nodes in total were launched to interface five AR.Drone2.0s with ROS. 

Though for this test, there was no data being sent through the ROS side of the interface, due to 

the AR.Drone2.0s firmware a constant stream of data was moving between each drone and its 

respective ardrone_driver node. This network traffic significantly impacted the network 

performance and led to image decoding failures as the fourth and fifth AR.Drone2.0s were added 

to the system. 

 

Figure 4.3 AR.Drone2.0 Driver ROS Computational Graph 
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Shown in Figure 4.4 is the cumulative throughput used by the AR.Drone2.0s as more are 

added to the system. Throughput rises linearly as expected as up to three AR.Drone2.0s were 

added to the system but saturates immediately afterwards as the fourth and fifth AR.Drone2.0s 

were added. As mentioned previously, a disruption in connection became apparent as 

AR.Drone2.0 four and five were added, resulting in occasional failures to decode the image 

streams being received from the UAVs. 

 

Figure 4.4 Cumulative Throughput of ardrone_driver ROS Nodes 
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Figure 4.5 Latency of ardrone01.biris With One ardrone_driver ROS Node 

 

 

Figure 4.6 Latency of ardrone02.biris With Two ardrone_driver ROS Nodes 
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Figure 4.7 Latency of ardrone03.biris With Three ardrone_driver ROS Nodes 

 

 

Figure 4.8 Latency of ardrone04.biris With Four ardrone_driver ROS Nodes 
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A sample of the results of the latency and packet loss tests for connecting a number of 

AR.Drone2.0s to the cloud and running the ardrone_driver ROS node for each is shown in 

Figure 4.5 through Figure 4.9, with the results and statistical data also recorded in Table 4.1. 

Each subsequent test, which features an additional AR.Drone2.0 added to the system, indicated 

that both the average value and scatter (standard deviation) of the latency increased between the 

UAVs and the cloud as more UAVs streamed data to the cloud. Latency data for each 

AR.Drone2.0 in each test was recorded and is presented in the table below. 

 

Figure 4.9 Latency of ardrone05.biris with Five ardrone_driver ROS Nodes 
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 A graph of the average latency of the group of robots as more AR.Drone2.0s were added 

to the system is shown below in . 

 

 

 

Table 4.1 ROS Node ardrone_driver Latency Results 

 

Number of 

ardrone_driver Nodes

Average 

Latency

Maximum 

Latency

Minimum 

Latency

Standard 

Deviation

Packets 

Dropped

(ms) (ms) (ms) (ms) (%)

1 1.23 10.6 0.575 1.24 0.00%

2 2.29 20.0 0.565 2.27 0.00%

3 18.2 50.5 0.635 6.61 0.00%

4 41.7 83 8.85 9.95 0.00%

5 123 387 45.9 39.3 0.03%

 

Figure 4.10 Correlation of Number of ardrone_driver Nodes and Network Latency 
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4.2.2 AR.Drone2.0 Low-Bandwidth Data Acquisition and Control 

Next, sensor data was acquired from each AR.Drone2.0 to verify the connectivity of the 

UAVs with the cloud and determine how the integrity of ROS data streams was affected by 

network load. For each test, an ardrone_driver node was initialized to interface each 

AR.Drone2.0 with ROS. A ros_parse node which used ROS’s command-line topic-reading 

functionality recorded the data stream and stored it in a file for later use. A ros_plot node which 

used ROS’s graphical plotting tool rqt_plot plotted the data on screen as it was acquired. The 

simplified ROS computational graph of the setup is shown in Figure 4.11. 

 

The node ardrone_driver publishes data to the topic ardrone/navdata, which includes 

accelerometer, magnetometer, rotation, and gyroscope readings, as well as battery level, 

estimated wind speed, pressure, altitude, and estimated ground velocity, among other things. The 

ros_parse node read the x-axis accelerometer data published to the navdata topic, and parsed the 

output into a comma-separated-value (csv) file for later plotting. The ROS plotting tool rqt_plot 

 

Figure 4.11 ROS Computation Graph for AR.Drone2.0 Sensor Data Acquisition and Control 
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graphed the data onscreen in real time, which is shown in Figure 4.12. It is worth noting the 

absence of axis labels in Figure 4.12, as that functionality is not supported by the rqt_plot tool. 

 

The data stored in the csv file was imported and plotted using MATLAB; the results are 

shown in Figure 4.13. 

 

Figure 4.12 ROS rqt_plot plotting accelerometer data in real-time 
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The results of the latency tests for adding subsequent AR.Drone2.0s to the system and 

acquiring accelerometer data are shown in Figure 4.14 through Figure 4.18. 

 

Figure 4.13 MATLAB plot of parsed accelerometer data 

 

 

Figure 4.14 Latency of ardrone01.biris While Acquiring Data from One AR.Drone2.0 
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Figure 4.15 Latency of ardrone02.biris While Acquiring Accelerometer Data from Two AR.Drone2.0s 

 

 

Figure 4.16 Latency of ardrone03.biris While Acquiring Accelerometer Data from Three AR.Drone2.0s 
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Figure 4.17 Latency of ardrone04.biris While Acquiring Accelerometer Data from Four AR.Drone2.0s 

 

 

Figure 4.18 Latency of ardrone05.biris While Acquiring Accelerometer Data from Five AR.Drone2.0s 
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The data acquisition statistics shown in Table 4.2 indicate an exponential increase in network 

degradation as more acquisition nodes were run, similar to what occurred as more 

ardrone_driver nodes were started up.  

 

 

4.2.3 AR.Drone2.0 High-Bandwidth Data Acquisition and Control 

Table 4.2 Network Connectivity Statistics for Low-Bandwidth AR.Drone2.0 Data Acquisition and Control 

 

Number of 

Acquisition Nodes

Average 

Latency

Maximum 

Latency

Minimum 

Latency

Standard 

Deviation

Packets 

Dropped

(ms) (ms) (ms) (ms) (%)

1 1.24 8.50 0.570 1.11 0.00%

2 2.82 25.9 0.555 2.86 0.00%

3 18.5 56.5 0.670 6.5 0.00%

4 43.6 90 18.5 9.91 0.00%

5 92.1 365 40.000 29.1 0.03%

 

Figure 4.19 Correlation of Number of Sensor Acquisition Nodes and Network Latency 
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For this test, image data from the front-facing camera on the AR.Drone2.0 was acquired and 

displayed onscreen through a virtual machine. For each AR.Drone2.0 that was added to the 

system, a new ardrone_driver and image_view node was initiated to acquire and display the 

images received from the UAV.  

The vel_control node of the system in Figure 4.11 was reinitiated for these experiments. 

Instead of reading accelerometer data from the ardrone_driver node though, image data was 

acquired through the /ardrone01/ardrone/front/image_raw topic and visualized with the 

/ardrone01/image_view ROS node, all of which is displayed in Figure 4.20. Latency tests were 

run on the system as additional AR.Drone2.0s were added, the results of which are displayed in 

Figure 4.21 through Figure 4.25 below. 

 

Figure 4.20 ROS Computation Graph of AR.Drone2.0 Image Acquisition 
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Figure 4.21 Latency of ardrone01.biris While Acquiring Images from One AR.Drone2.0 

 

 

Figure 4.22 Latency of ardrone02.biris While Acquiting Images from Two AR.Drone2.0s 
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Figure 4.23 Latency of ardrone03.biris While Acquiring Images from Three AR.Drone2.0s 

 

 

Figure 4.24 Latency of ardrone04.biris While Acquiring Images from Four AR.Drone2.0s 
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The average and scatter of robot-to-cloud latency increased as the additional network load of 

image acquisition was applied to the system. The first instance of packet loss occurred as the 

fifth AR.Drone2.0 was added to the system and the image acquisition nodes initialized and is 

shown in Figure 4.25. The thin red bars indicate the time of transmission of data packets that did 

not reach their destination. A total of 7 out of 600 data packets were lost, resulting in a 1.17% 

packet loss for this experiment. The remainder of the connectivity statistics is shown in Table 

4.3, while the correlation between the number of image acquisition nodes and the network 

latency is shown in Figure 4.26. 

 

Figure 4.25 Latency of ardrone05.biris While Acquiring Images from Five AR.Drone2.0s 
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Figure 4.10, Figure 4.19, and Figure 4.26 were combined in Figure 4.27 below to compare 

the average latencies of each test and analyze the performance of the network connections as 

data from the robots was used to a higher capacity. Because the AR.Drone2.0 cannot host a local 

ROS installation, however, data fully describing the robot’s state is continually transmitted to the 

cloud, regardless of if it is needed. Therefore, little difference is seen in the network performance 

Table 4.3 Network Connectivity Statistics for High-Bandwidth AR.Drone2.0 Image Acquisition and Control 

 

Number of 

Acquisition Nodes

Average 

Latency

Maximum 

Latency

Minimum 

Latency

Standard 

Deviation

Packets 

Dropped

(ms) (ms) (ms) (ms) (%)

1 1.16 10.6 0.570 1.04 0.00%

2 2.04 20.1 0.535 1.92 0.00%

3 18.7 39.6 0.630 6.26 0.00%

4 42.5 117 12.0 10.2 0.00%

5 139 478 48.8 58.3 0.23%

 

Figure 4.26 Correlation of Number of Image Acquisition Nodes and Network Latency 
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of the connection as the size of the data being processed increases, as this has little effect on the 

data being transmitted from the robot over the network. 

 

4.3 TURTLEBOT 

The Kobuki Turtlebot 2 was supplied from the factory with its own netbook capable of 

running Linux Ubuntu, and thus was able to support a full ROS installation natively, reducing 

the network bandwidth necessary for running the robot to zero. Baseline latency tests were run 

by connecting the netbook to the wireless access point and observing the latency between the 

Turtlebot and the VMs on the network. The baseline latency data is plotted in Figure 4.28. 

 

Figure 4.27 Comparison of Average Latency in the AR.Drone2.0 Experiments 
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 The Turtlebot’s baseline latency is much improved over the AR.Drone2.0s baseline 

latency due to the much reduced baseline network bandwidth necessitated by the Turtlebot as 

compared to the AR.Drone2.0. The Turtlebot’s average baseline latency of 1.18 (s = 0.666) was 

a 19% improvement over the AR.Drone2.0’s average baseline latency of 1.43 (s = 7.41). 

4.3.1 Turtlebot Low-Bandwidth Data Acquisition 

The Turtlebot’s ROS drivers (minimal.launch for the Kobuki base and netbook, and 

openni.launch for the Microsoft Kinect sensor) were initialized to interface the Turtlebot and 

Kinect with ROS. Unlike the AR.Drone2.0, both of these launch files (which are used to 

initialize a collection of nodes from one file) launched ROS nodes on the Turtlebot platform, and 

a cloud-hosted ROS driver was not needed. Once the ROS drivers were initialized, velocity 

 

Figure 4.28 Baseline Turtlebot-to-Cloud Latency 
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commands were sent from the cloud to the Turtlebot while low-bandwidth sensor data was 

acquired. For the Turtlebot, readings from the local odometry calculations were taken to estimate 

pose and velocity values. The ROS computational graph for this setup is shown in Figure 4.29. 

The latency results for the low-bandwidth tests are shown in Figure 4.30 through Figure 4.33. 

 

Figure 4.29 ROS Computational Graph for Turtlebot Sensor Data Acquisition and Control 
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Figure 4.30 Latency of turtlebot01.biris While Acquiring Odometry Data from One Turtlebot 

 

 

Figure 4.31 Latency of turtlebot02.biris While Acquiring Odometry Data from Two Turtlebots 
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Figure 4.32 Latency of turtlebot03.biris While Acquiring Odometry Data from Three Turtlebots 

 

 

Figure 4.33 Latency of turtlebot04.biris While Acquiring Odometry Data from Four Turtlebots 
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The statistical parameters of the results of the Turtlebot low-bandwidth test were calculated 

and are reported in the table below. 

 

The average latency and standard deviation of latency of the system as more Turtlebots were 

added was graphed and is reported in Figure 4.34. 

 

Table 4.4 Turtlebot Low-Bandwidth Acquisition Results 

 

Number of 

Acquisition Nodes

Average 

Latency

Maximum 

Latency

Minimum 

Latency

Standard 

Deviation

Packets 

Dropped

(ms) (ms) (ms) (ms) (%)

1 0.846 4.1 0.460 0.301 0.00%

2 0.948 8.5 0.416 0.556 0.08%

3 2.96 16.5 0.437 2.31 0.33%

4 24.8 46.4 0.73 5.89 0.21%

 

Figure 4.34 Correlation of Number of Sensor Acquisition Nodes and Network Latency 
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4.3.2 Turtlebot High-Bandwidth Data Acquisition and Control 

 

The ROS computational graph for the high-bandwidth data acquisition test for the Turtlebots 

is shown in Figure 4.35. For the high-bandwidth experiments for the Turtlebots, the color and 

depth images from the onboard Microsoft Kinect were acquired and displayed in a ROS 3D 

visualization node called RViz shown in Figure 4.36. The latency data for these experiments 

follows in Figure 4.37 through Figure 4.39. 

 

Figure 4.35 ROS Computational Graph of Turtlebot Depth Image Acquisition and Display 
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Figure 4.36 Turtlebot Depth and Color Image in RViz, the ROS 3d Visualization Tool 
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Figure 4.37 Latency of turtlebot01.biris While Acquiring Depth and Color Images from One Turtlebot 

 

 

Figure 4.38 Latency of turtlebot02.biris While Acquiring Depth and Color Images from Two Turtlebots 
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 Turtlebot latency and packet loss increased drastically as more Turtlebots were added to 

the system to stream their depth and color camera data. Network integrity suffered tremendously 

under this load, and in fact while the third Turtlebot did maintain a connection to the cloud, the 

bandwidth was already so saturated with the use of turtlebot01.biris and turtlebot02.biris that 

turtlebot03.biris could not send enough useful data to interpret the images it was attempting to 

transmit. Even through image data from turtlebot03.biris could not be deciphered and displayed, 

images from the other two Turtlebots was still decipherable and usable, though at a much lower 

quality. The lack of latency data for a fourth Turtlebot is an extension of this; the addition of 

turtlebot04.biris’s data stream completely disrupted the wireless network, and no images from 

any of the Turtlebots were usable. The statistical results of the Turtlebot high-bandwidth test are 

reported in the table below. 

 

Figure 4.39 Latency of turtlebot03.biris While Acquiring Depth and Color Images from Three Turtlebots 
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The average latency and standard deviation of the latency was graphed and is reported in 

Figure 4.40 below. 

 

The bandwidth data gathered during the experiment actually indicated the available 

bandwidth was used when only the first Turtlebot was being tested, though at the addition of the 

second Turtlebot, both robots shared the bandwidth almost equally. The third Turtlebot, 

however, was able to use only minimal bandwidth and thus the data received from 

turtlebot03.biris was not usable in any way. The bandwidth data is shown in Figure 4.41. 

Table 4.5 Turtlebot High-Bandwidth Test Results 

 

Number of 

Acquisition Nodes

Average 

Latency

Maximum 

Latency

Minimum 

Latency

Standard 

Deviation

Packets 

Dropped

(ms) (ms) (ms) (ms) (%)

1 7.41 26.3 2.370 3.41 0.00%

2 325 1410 5.40 275 2.50%

3 579 944 7.200 219 10.83%

4 Loss of Network Integrity

 

Figure 4.40 Correlation of Number of Depth Acquisition Nodes and Network Latency 
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The average latencies of each Turtlebot test are plotted together in Figure 4.42 below for 

comparison. Compared to the AR.Drone2.0 comparison graph in Figure 4.27, the Turtlebot 

average latencies significantly increased from the Low-Bandwidth test to the High-Bandwidth 

test, and adding additional Turtlebots to the Low-Bandwidth test did not drastically degrade the 

network performance as it did with the AR.Drone2.0s. Again, the advantages of local processing 

and packet scheduling are clearly evident, and will be necessary to implement in order to 

maintain network performance as the number of devices increases. 

 

Figure 4.41 Turtlebot Bandwidth Usage by Task 
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4.4 LEGO EV3 

The LEGO EV3 robot was loaded with a Linux installation called ev3dev (Hempel and 

Lechner n.d.) and a minimal ROS installation due to limited space. The EV3 was outfitted with a 

wireless adapter and connected to the Testbed Network. Baseline network connectivity tests 

resulted in an average latency of 1.73ms (s = 2.21ms), 4% higher than the AR.Drone2.0’s 

baseline latency. The baseline latency results are shown in Figure 4.43. 

 

Figure 4.42 Comparison of Average Latency in the Turtlebot Experiments 
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4.4.1 EV3 Low-Bandwidth Data Acquisition and Control 

 

 

Figure 4.43 Baseline EV3-to-Cloud Latency 

 

 

Figure 4.44 ROS Computational Graph of EV3 Low-Bandwidth Test 
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 The ROS computational graph in Figure 4.44 indicates the data connections between the 

velocity controller, the EV3 ROS driver, and the sensor data parser. Latency data for the low-

bandwidth test was collected and graphed in Figure 4.45 below. 

 

 While very little bandwidth was used in this test, the latency data indicates that there 

were six lost packets during the experiment, along with a maximum spike up to 457ms despite an 

average latency of 3.86ms (s = 26.4). The results of this experiment indicate that even under 

ideal conditions (i.e. low bandwidth and a single wireless device), it cannot be assumed wireless 

connectivity will be consistent or without loss. It is important that any system using the cloud, 

especially through a wireless connection, be capable of falling back to a fail-safe mode in the 

event communication with the cloud becomes disrupted. 

 

 

 

Figure 4.45. Latency of ev3-1.biris while Acquiring Light Sensor Data 

 



82  

4.4.2 EV3 Cloud-in-the-Loop Control 

A control system utilizing the cloud in the loop was attempted on the EV3. Armed with a 

light sensor, the EV3 would attempt to follow a black line 0.75” thick on the white floor. The 

EV3 brick would read the reflected light value using the EV3 color sensor, and transmit that 

value to the cloud using ROS. A cloud-implemented controller would read the light value and 

determine if the EV3 needed to turn right or left to continue following the line. The cloud 

controller would then transmit the necessary motor values back to the EV3 brick. The block 

diagram for the control system is shown in Figure 4.46. 

 

 

While the average latency between the EV3 and the cloud did not increase while running this 

experiment, the standard deviation increased from the baseline value of 2.21ms to 4.18ms. The 

latency graph is provided in Figure 4.47. The controller was unable to properly account for the 

erratic transmission and reception periods of the data and thus the EV3 was unable to maintain 

its course on the line. Wireless communication must be much more consistent than that achieved 

by the EV3 in these experiments to properly utilize the cloud in latency-sensitive control 

systems.  

 

Figure 4.46 EV3 Cloud-in-the-Loop Control 
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4.5 CLOUD-PROCESSED TILT CONTROL 

A less latency-sensitive experiment was designed to test the responsiveness of a robot to the 

manipulation of another. For this experiment, an AR.Drone2.0 was connected to the network and 

an ardrone_driver node initialized for it. Likewise, a Turtlebot was also connected to the Testbed 

Network and its own driver nodes started. A ROS node was designed to read the angular pose of 

the AR.Drone2.0 from the navata message sent over the /ardrone01/ardrone/navdata topic. The 

node processed the rotational data and converted the degrees of rotation to a forward velocity 

percentage. That percentage was then transmitted to the Turtlebot over the 

/turtlebot01/mobile_base/commands/velocity topic to instruct the robot to move forward at that 

power level.  The ROS computational graph for the process is shown in Figure 4.48 below. 

 

Figure 4.47 Latency of ev3-1.biris Running the "Follow the Line" Cloud-in-the-Loop Control System 
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The conversion done by the node pose_control is shown in Equations 1 and 2, and feature a 

‘dead zone’, a tolerance of ±5° around 0° that would result in a zero forward velocity being 

transmitted to the Turtlebot. This was done to ensure the Turtlebot would not be commanded to 

move while the AR.Drone2.0 was sitting on a flat surface. 

 

 

Figure 4.48 ROS Computational Graph for Cloud-Processed Tilt Control 

 

 

 𝑥𝑇̇ = {

0 𝑖𝑓 |𝜃𝐴𝑅| <  5°
𝜃𝐴𝑅

45°
 𝑖𝑓 |𝜃𝐴𝑅| ≥  5°

 (1) 

 

𝜑�̇� = {

0 𝑖𝑓 |∅𝐴𝑅| <  5°
∅𝐴𝑅

45°
 𝑖𝑓 |∅𝐴𝑅| ≥  5°

 (2) 
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 A parsing script was set up to simultaneously acquire data from both the 

/ardrone01/ardrone/navdata topic and the /turtlebot01/odom topic and print it to a file for 

processing. The data was then processed in MATLAB to determine the time shift of the data, 

indicating the overall latency between the robots, perceived by humans as a sluggish response. 

 

 In Figure 4.49, the graph of AR.Drone2.0 rotation and Turtlebot forward velocity is 

plotted with respect to time. The shapes of the two plots are very similar with the exception of 

the ‘dead zone’ near 0° implemented by the pose_control node, as expected. There is an evident 

 

Figure 4.49 Overall Latency of Cloud-Processed Tilt Control 
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time shift of the plot caused by the latency of the network connections between the AR.Drone2.0 

and the Turtlebot. This time shift calculates to be approximately 80ms for the duration of the 

experiment. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 SUMMARY OF THE PRESENT WORK 

This work investigated the integrity and performance of a network as multiple heterogeneous 

systems, including robots and control software, were added to it. To perform this investigation, a 

virtual datacenter was built to support the creation and operation of software systems on virtual 

machines. The datacenter provided the computational resources necessary for the operation of 

any cloud-based software systems utilized by the robots. Furthermore, the datacenter provided 

the ability to build virtual machines as necessary to be the foundation of the software systems 

that were to be run. 

The Robot Operating System was used as the backbone of the network communication that 

occurred from robot-to-cloud and inside the cloud. Through ROS, data streams were easily 

initialized, transmitted, and received throughout the network, passing along information to those 

agents that requested it. ROS nodes implemented on the virtual machines within the cloud 

provided cloud services to the robots, such as control systems to follow a black line or utilize the 

pose of one robot to control the velocity of another. 

Varying amounts of data were passed from the robot to cloud and back, creating the load that 

the network performance and integrity was measured against. For each type of robot, baseline 

performance data was gathered, and then performance data for an increasing number of robots 

and an increasing amount of bandwidth usage. This data was processed to determine the latency 

of robot-to-cloud communications, as well as dropped data packets.  

A cloud-in-the-loop control system was developed to determine the viability of implementing 

the controller of a time-sensitive system within the cloud. Though the functionality of the control 

system was preserved, the latency between the controller and the robot made the system unstable 

and unviable. Finally, a tilt control system was implemented to read from the pose of one robot 
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and interpret the data as velocity commands for another. The state of each robot was observed to 

determine the latency between maneuvering the control robot and receiving the velocity 

commands on the other. 

The results confirm that it is possible to build a network that provides cloud services to 

heterogeneous client devices while maintaining integrity under some amount of load, though the 

integrity diminishes significantly as the wireless bandwidth capacity is saturated. The network 

supported many robots under low bandwidth applications, but few robots under high bandwidth 

applications. 

5.2 FUTURE SCOPE OF WORK 

Minimizing latency due to interference for research purposes would be useful for conducting 

very controlled experiments on robot performance in an isolated setting. To this end, two 

improvements could be made to the study: first, the use of a 5GHz wireless access point would 

result in much less interference, as the campus access points causing  much of the interference 

are on the 2.4GHz band, as was the wireless access point used for this study. Second, the 

construction of a Faraday cage would provide the means to examine the performance of these 

devices in an environment completely isolated from outside interferences. 

Additional networked systems could be integrated into the environment to provide 

supplementary sensor feedback, such as mounted 2D and 3D cameras. These cameras would 

provide additional network load, though the load could be through wired connections instead of 

wireless, increasing the capacity of the connection.  

With IPv6 fast approaching implementation out of necessity due to a growing number of 

networked devices, the existing network could be switched to the IPv6 protocol to examine the 

challenges the protocol present and determine solutions to meet those challenges. 



89  

The performance of networked devices should be evaluated based on the ratio of local 

processing to remote processing, and the advantages and disadvantages of such a design 

evaluated. For those devices unable to be programmed, an intermediary device, such as a Field 

Programmable Gate Array (FPGA) could be added to handle some local processing to increase 

stability of the system. 
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