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DEVELOPMENT AND VALIDATION OF PROBABILISTIC

FATIGUE MODELS CONTAINING OUT-LIFE SUSPENSIONS

by
NOEL MURRAY

(Under the Direction of Brian L Vicek)

ABSTRACT

In the area of reliability engineering it is ne@ysto be confident that a component or
system of components will not fail under use fdegsaand cost reasons. One major mechanism
of failure to a mechanical component is fatigueisTf the repetitious motion of loading and
unloading of the material, typically below the oitite tensile strength of the material, which
ultimately leads to a catastrophic failure. To eaghis does not happen, engineers design
components based on tests to determine the liteese components. These tests are typically
conducted on a bench type tester in which a saihglibjected to tension and compression, or
supported in a rotational machine in which a Icadpplied to one end to simulate constant
bending. The results from these tests tell how ibrs predicted that the part will last.

This data however is not always complete. It somet happens that not every specimen
tested actually makes it to failure; the un-faipedcimens are known as suspensions. This can
occur for numerous reasons. Methods currently ésrdtandling suspensions; however these
methods require tedious hand calculations andgatations from multiple graphs which are
limited in availability.

Presented here are five methods utilizing the &@drlo technique in a computer
simulation based on Weibull-Johnson confidence rarsithat take into account suspensions.
This simulation allows for data from an existingpekiment to be used as inputs and either
validate the findings or bring attention for moesting. The model allows for two different data
sets containing suspensions to be analyzed anchdetewith statistical confidence whether or
not there is a difference between the two poputatio

INDEX WORDS: Fatigue, Monte Carlo, Weibull, confid#e number, suspensions
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Chapter 1

I ntroduction

Background

An engineering design as defined by Norton is finecess of applying the various
techniques and scientific principles for the pugotdefining a device, a process, or a system in
sufficient detail to permit its realization” (Nort®006). It is a mechanical engineer’s
responsibility to design safe and reliable machinesociety. In engineering school students
are taught deterministic equations to determinghett point a particular component of a given
material will fail. In the real world, however, this not the case. Real machines are subject to
environments that cannot be incorporated into demastical model. The life of these machines
therefore is probabilistic and not deterministibisSTmeans there is a range of data with inherent
scatter as opposed to determining a single absedtie. Engineers must rely on statistical life
eqguations to estimate the life of the product belegigned (Zaretsky, Design for life, plan for
death 1994).

In designing a component or a system, it is necgssaonsider how long the system
will last, as well as the safety of the people thiditbe involved with the components. These
considerations include warranty information, (nez&now how long it will last to keep
customers satisfied with their purchase, and nbaice it too long to avoid repeat repairs);
preventive maintenance schedules, (to keep thedaadl technicians informed when they need
to replace or check on specific components); safetgachinery operators, or passengers in

some form of transportation.



After an idea for a new mechanical system has betablished, it goes through a design
process that includes the preliminary design stimgedetailed design stage, and finally the
documentation stage. While a system is in the l@etaiesign stage a series of mathematical
models may be made to analyze the system, suabmastiong a particular component or
material is, or how long that component may lagten, experimental analysis may be

conducted to back up or verify the mathematical e®@orton 2006).

Fatigue

When a material or component is loaded and unloadeadreds or thousands of times
below its ultimate yield stress, small cracks magib to develop and accumulate. As these
cracks grow and form a small network, a spall,lamk of material breaks out leading to
ultimate failure of the component. This is knowrfatggue failure. In designing load-bearing
components, the possibility of fatigue must be aoted for (Askeland and Phule 2006).
“Fatigue failure is responsible for the majorityfaflures in mechanical components”
(Kalpakjian and Schmid 2006).

Some examples of cyclic loads are repetitive cdrdbgear teeth, hot and cold heat
cycles, pressurizing and depressurizing of pressgessels, rotating shafts with an eccentric load,
a spring repeatedly compressing and expandinggpatitive loading and unloading of a beam.
Most failures in mechanical systems are due toicya@hds rather than to static loads (Norton

2006). This is the reason components cannot bgmasisolely on their static limits.



Fatigue Testing

One of the tests performed to determine the peiicy of mechanical components is the
fatigue test. In many applications, components rhasiesigned such that the load on the
material is not great enough to cause permaneantrdation. Fatigue testing involves taking
samples of the same material and same shape aadiegphem to cyclic loads until failure at
controlled conditions—Iload frequency, test sameitagerature, maximum stress or strain, etc.
These loads can be rotational, where the sampdgslaced horizontally in a machine, with a
force applied perpendicular to one end and theatedtrapidly, thereby causing a constant
bending cycle in the middle of the sample. Theyalan be linear in a push-pull type tester
where the sample is subjected to tension and casiprerepeatedly. Most of these bench type
tests are accelerated tests. The samples are exjposgher speeds, higher temperatures, and
higher loads then they would experience in sergrcguring use. The number of cycles
completed until failure can be read off the dispdhyhe testing apparatus.

This method for determining component lives alldarsinformation such as safety
concerns, preventive maintenance, and warrantynrdbon. One drawback of fatigue testing is

that it can quickly become time consuming and egpen

Statistical Analysis

Fatigue is probabilistic in nature. That is, ihist possible to determine the specific life
when a component will fail. All that can be detered is a range or distribution for useful life.
Fatigue data analysis includes numerous approatiobsas: Weibull (Weibull 1951),

Johnson (Johnson, The Statistical Treatment of&atExperiments 1964), (Johnson, Theory



and Technique of Variation Research 1964), Vicete#zky and Hendricks (Vicek, Hendricks
and Zaretsky, Probabilistic Analysis for Compariagigue Data Based on Johnson-Weibull
Parameters 2007), (Vlcek, Hendricks and Zaretskyati¥e Ranking of Fatigue Lives of
Rotating Aluminum Shafts Using L10 Weibull-Johngoonfidence Numbers 2008). With these
models, engineers have been able to provide gdodatss of the fatigue lives of different
materials.

Weibull (Weibull 1951) developed an equation tegct the likelihood a sample would
fail. The Weibull equation will be discussed in gier detail in Chapter 2. From Weibull's
work, Johnson (Johnson, The Statistical TreatmkhRatigue Experiments 1964), (Johnson,
Theory and Technique of Variation Research 196¥¢id@ed a method to determine whether or
not one population was longer lived than the otfiee bin model, used by Vicek et al., was to
construct a Monte Carlo simulation in which Weilslbpe and characteristic life were used as
inputs in a program and using a random number gévreto create virtual samples, the samples
were ranked from 0 to 1 and then using the suriitialand inputs in the Weibull equation,
virtual lives were constructed. These lives weredu® simulate a fatigue experiment with many

data points; many more than possible with just erpentation.

Suspensions/Purpose

An unavoidable circumstance of fatigue testindhegt sometimes not all of the test
samples fail. When a test sample does not fasldhilled a suspension. This can happen for a
number of reasons. Some may happen randomly syehpasver outage, or the breaker to the

machine could trip. Some may be outliers as detexchby the experimenter. If it is known that



a specific component will never reach more thaa fiillion cycles in its life, then the engineer
may choose to shut down the fatigue test as sodneaches the five million mark to save time.
The samples that did not fail and were stoppedtslterconsidered out-lives; the name for
reasons that they are outside of the range ofr&slto be analyzed. There are two types of
suspensions, out-life suspensions and suspensitma the data. Suspensions within the data
are caused by random acts of nature (e.qg., thempgoueg out). For this work only out-life
suspensions were considered. These out-lives neustiisidered in the analysis of the data
because even though they did not fail, they biagitta.

Suspensions are a useful part of the data sethemdidsnot simply be discarded. They
must be accounted for, but cannot be treated the s a failed sample (Johnson, The Statistical
Treatment of Fatigue Experiments 1964). This dalishe need for a method of incorporating
suspensions into a fatigue model. Methods currentist for handling suspensions (Johnson,
The Statistical Treatment of Fatigue Experimen®&4)9but they are not incorporated into any of
the proven Monte Carlo simulations. This work exagsifive models for handling suspensions
within Monte Carlo simulations.

This model was developed after known methods ssdeibull statistics (Weibull
1951), the methods of Johnson (Johnson, The $tatiSreatment of Fatigue Experiments
1964), (Johnson, Theory and Technique of Variaesearch 1964), and the methods of Vicek,
Zaretsky, and Hendricks (Vicek, Hendricks and Zdogt Probabilistic Analysis for Comparing
Fatigue Data Based on Johnson-Weibull Parameté&) 2(VIcek, Hendricks and Zaretsky,
Relative Ranking of Fatigue Lives of Rotating Alunam Shafts Using L10 Weibull-Johnson
Confidence Numbers 2008). Johnson developed a mhédthcompare two sets of data with a

confidence number. This number describes whetleetvib sets of data are significantly



different or not. The model presented here usegitfeeof a confidence number in a Monte
Carlo simulation to determine whether one poputaisobetter than the other. This model uses
five different methods of the Monte Carlo simulatto arrive at a confidence number. When
these five numbers are analyzed together a coonduwsin be drawn.
Purpose

When an engineer is in the design process of acoewponent, it may be necessary to
determine which material may be best for a parmiicapplication. This leads to using statistics to
compare two or more materials and to determine lwbire is superior for the application. These
fundamentals were the basis for this researchormesexperimental fatigue data, suspension
points exist and must be accounted for. Five modele developed to take these out-life
suspension points into account, and give the upeolaabilistic analysis of the comparison of

two or more materials to determine with confidemtgch is better for its application.

Hypothesis

It is hypothesized that the five methods propasadlexamined can be incorporated into

a Monte Carlo simulation of fatigue life and comficte numbers, and that it will be possible to

compare or relatively rank two sets of fatigue datataining out-life suspensions.

Summary

In designing a component or system of componéntsdesired to know how long that

component or system can function before failures Titfluences engineers to perform



accelerated fatigue tests to determine the livgmdicular components. Fatigue is probabilistic
by nature and therefore has scatter in the daia.l@hds to trying to determine whether or not
one population is statistically different from anet. There exist methods for analyzing this data;
however, the methods are limited when suspensiemtoduced. It is the purpose of this work
to develop a new method of comparing data setsaagong out-life suspensions with a Monte

Carlo simulation.



Chapter 2

Background

Fatigue

Fatigue is a mode of failure in which cyclic loagliand unloading of a part or material
below its ultimate tensile strength results in deeelopment of tiny cracks which propagate
through the material, ultimately leading to thduee of that part (Norton 2006). Areas of interest
to engineers include automobiles, airplanes, spricgmshafts, crankshafts, bearings, gears or
any other components subjected to rotation or fine@des of cyclic motion. These components
constantly undergo stresses of tension, compredseémding, vibration, thermal expansion and
contraction, and other stresses.

History of Fatigue Analysis

Fatigue was first noticed in the 1800s when radroar axles began failing. The axles
were designed with static tests and were not siggptusfail. Rankine (Rankine 1843), in 1843
postulated that the axles were “crystallizing” do¢he cycle bending of the axles where the
wheel and axle were joined. In 1839 an engineeregaRoncelet coined the term “fatigue”
stating that the material was becoming brittlenatpoint of failure and somehow becoming
“tired” from the many oscillations. In 1870 AugWohler published his 20 years of work on his
investigation of axle failures. Wohler is credit@dh developing the rotating bending test, the

S-N curve, and defining the endurance limit (Nor2@@6).



Mechanism of Fatigue Failure

Most fatigue events occur in a series of stagassually begins with a tiny crack on the
surface due to scratching of the material which wagur if lubricant is missing for an extended
period of time, or it could occur due to poor desoy manufacturing such as tooling marks left
over from the machining process or inclusions mniaterial. This crack then propagates from
the scratch through the material due to the strktdse cyclic load. Once the crack propagates to
a level where the material can no longer sustarfdices, catastrophic failure occurs. This type
of fatigue failure is common in rotating shafts ehhsible evidence of failure due to fatigue is
typically shown by beach marks at the point ofuiel The failure area resembles a beach with
ripples extending from the point of failure towah@ inside of the part. Not all points of failure,
however, originate from surface cracks. Some pahtailure originate inside the sample. There
could be an inclusion of some kind, such as a pi¢ceaterial that accidentally got mixed in the
manufacturing process or an air pocket. Eithehe§é can lead to internal cracking whereby the
cracks will again propagate due to the cyclic logdiltimately leading to failure.

Figures 1 and 2 are images taken with a high résalmicroscope showing beach

marks. The point of failure is shown in the tog &ffigure 1 and the top right of figure 2.



0258 2009/04/28 16:58 x30 2mm
022107 HJ 24,600

Figure 1. Unpublished image taken by Murray andce¥lasing high resolution microscope.
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0292 2009/04/28  19:50 x30 2mm
052207 HC 39650

Figure 2. Unpublished image taken by Murray andce¥lasing high resolution microscope.

The fatigue life of a material is probabilisti@trdeterministic (Vicek, Zaretsky and
Hendricks, Test Population Selection From Weibwds&d, Monte Carlo Simulations of Fatigue
Life 2008). This causes an issue when engineets tnge methods and equations to determine
when a component might fail. These methods are acamimindustry (Vicek, Zaretsky and

Hendricks, Test Population Selection From Weibwds&d, Monte Carlo Simulations of Fatigue

11



Life 2008). One way around the deterministic apphoa to use factors of safety in the
calculations, but then there is the risk of ovesigieing and using too much material.

When designing a new component, it is necessargnsider factors such as secondary
damage to the system, or human harm. To deterinenditferent levels of acceptance, a
statistical distribution is used to arrive at adatermined probability of survival (Vicek,
Zaretsky and Hendricks, Test Population SelectimmPWeibull-Based, Monte Carlo
Simulations of Fatigue Life 2008). From this distiion, the strengths or lives can be
determined for values such as 90%, 95%, or 99%\alrvepending on the application. As the
importance of safety of the newly designed compbmameases, so does the necessary
probability of survival (Vicek, Zaretsky and Hentks, Test Population Selection From Weibull-
Based, Monte Carlo Simulations of Fatigue Life 2008

One reason a system will fail due to fatigue ikgessive wear. When components
come in contact with each other, they graduallyrneseay. To prevent this wear, it is necessary
to have proper lubrication between the two surfathe lubrication is meant to separate the two
surfaces by means of a material (liquid, gas, enesolid) that has a low resistance to shear
(Oswald, et al. 2008). It is possible however thhticant can also accelerate the means of
failure. If the lubricant was to enter the crackl @apply pressure, it can separate the material and
cause a spall to break off.

Failure of a component due to fatigue is probaili®m nature. There is no method to
perfectly determine the fatigue life of a compon&uamponents need to be designed not to
never fail, but instead to survive a “safe” lifeafBtsky, Design for life, plan for death 1994).

Fatigue is measured by stating how many cycleswwlutions a sample of a given

population, subjected to the same loads, will sirvThis is typically stated as thepllife which

12



is the life at which 90 percent of samples will\gue for the amount of time they were intended.
Conversely, it can be said thellife is the life at which 10 percent of the pogida will fail.
Fatigue life can also be stated as thglifte at which 50 percent of the population willrgive,

or even the g1 life which is the life at which 99.9 percent o&thopulation will survive, for

more critical components.

Failure

When a material undergoes cyclic stresses and<taain to form and grow, the
material ultimately fractures. This is known asdae failure. “A failure is said to have occurred
when one or more intended functions of a produetnarlonger fulfilled to the customer’s
satisfaction” (Wasserman 2003). Minimizing failusehe primary reason for fatigue testing.
“Everything is known through failure” (TevaarwerR@). Without failure it would not be
possible or necessary to study fatigue. If partenéiled, there would be no need for fatigue
study, warranties, preventive maintenance schedotespare parts. If the component is in a state
that can have catastrophic effects on the systeen, it has failed.

Failure is what engineers try to avoid. Ideallyluie should never occur in its designated
application. With proper design and maintenanceypmnents should never fail while
performing their duties. This is ideal though, sethods must be devised in case of failure
during operation, such as system shut down commands

Compromises sometimes have to be made in the dpsigess. For example, if
sufficient factors of safety were built into evexymponent of an aircraft, the resulting weight
increase would be such that the aircraft cannaeaelflight. An acceptable level of risk of
failure has to be defined in view of overall systeanameters to ensure effective system

functionality.
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Fatigue Testing

To arrive at a probability of a component or matfiailing it is necessary to conduct
bench-top tests. These tests subject materialiéfénaht types of stresses including tension and
compression, and bending. Tests are conductecteifispstress amplitudes (S) where number of
cycles (N) is determined after failure. This datéhien plotted on an S-N curve. From these
curves it is possible to determine the enduramog bf a material.

Fatigue testing is a time consuming process. Satigue tests involve having a part that
has failed and examining it to determine why itdfdiand then to redesign it so it does not
happen again. Other tests involve testing the Actamaponent before it is used in production.
This allows for engineers to determine warrantias reventive maintenance schedules. The
last type of fatigue testing involves using onlyngdes of material to predict the failure of a
component made from that material, as well as coentbés material to similar materials to
determine which is better for a specific applicatio

Fatigue tests are known for being lengthy, and $iomes expensive, depending on the
material. Bearings and gears are designed todastiflions of cycles. It takes a very long time
to test them and see how long it takes till failtre speed up the process, a load is typically
applied to the component being tested, but it catilbtake hours, if not days, to fail. To
perform thousands of these tests would give atbelida of the failure rate of their components,
but it would be too costly for the company. Becaokextensive testing and costly materials,
companies and engineers resort to doing the minifrehy, amount of testing. With the data
from these tests, engineers use statistical artshpiiistic formulas and models to further

validate their findings.
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Since fatigue life is probabilistic, it is not uuad to find data sets in which the longest
life to the shortest life have a ratio of 20 torlewen higher (Zaretsky, STLE Life Factors for
Rolling Bearings 1992). This extreme ratio leadthtoessential knowledge of a materials
fatigue life and strength.

There are equations and analysis techniques ¢éordigte certain aspects of wear, such as
crack propagations, crack thickness, lubricatiacktiiess and properties; however, there is no
definitive analysis for predicting when an applioatwill fail (Oswald, et al. 2008). Experiments
need to be conducted to determine quantitativdteegumake predictions using statistical
methods (Oswald, et al. 2008). Reliability calcaias such as bearing life are typically based on
rolling element fatigue tests of the moving sura(@swald, et al. 2008).

When testing a material, there are standard goekethat should be followed. One of
these guidelines is found in the ASTM Standard tRia¢ASTM 1998) which discusses the
correct number of specimens to test to determirgcaarate S-N curve (Sutherland and Veers
2000). This standard assumes there are no rumostspended items in the material; the test

should be based on random samples. A summary iofrdt®mmendations are in table 1.

Table 1. ASTM Standard Practice Recommended SaBipée
Type of Test Minimum Number of Specimens
Preliminary and Exploratory 6—-12
Research and Development 6—-12
Design Allowables 12-24
Reliability 12 -24
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Rotating Fatigue Tester

One version of the fatigue experiment is the rotatatigue machine (figure 3).

Figure 3. Bench top rotational fatigue tester (wpsiHpcmcia-express.com n.d.).

The specimen is a metal rod four inches long aredhadf inch in diameter. To accelerate
the test, a stress concentration is introducedeaténter of the specimen by removing a portion
of the sample. There are different shapes thaised. Some specimens have a “V” notch
machined out of them. This shape is typically usbén it is desired that specimens fail quickly.
Another variation is an hourglass shape. Theréveosalifferent hourglass shapes used. One is a
constant radius and the other has a constant ceammeichined into the center of it. These take
longer to fail and are more accurate. The specis\@aded into the machine and tightened
down by the use of collets. One end sits in a figesition. The other end has the load applied to
it. It is loaded by a hanging weight. This weightidjustable to whatever is trying to be

simulated. Once the load has been applied, thernstben turned on and the specimen rotates.
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The load and rotation simulate what would happehafspecimen was bent backwards and
forwards repeatedly.
Servohydraulic Axial Fatigue Tester

Another popular method of performing a fatigud te$o use a servohydraulic fatigue
tester (figure 4), wherein the sample is loadedicedly and subjected to tension and
compression. These machines are highly programnaaloleapable of performing fully loaded
and unloaded tests. For example, the sample canlijected to tension and then allowed back to
its rest state, or it can be compressed to the sanoeint of load as it was in tension. This differs

from the rotational test in that the entire crosstion of the material is subjected to the load.

il | a g
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I

Figure 4. Servohydraulic axial fatigue tester (wawectindustry.com n.d.).
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Weibull Equation

In 1939, Waloddi Weibull developed a distributiamétion to aid in the statistical
analysis of the fracture strength of a materidfedively, he took a small set of fracture data
and kept fitting equations to the data set untihaé a linear fit. From the line, he could
determine the number of cycles to failure at aroppbility of survival.

Weibull found that plotting the natural logarithrhtbe life on the abscissa and the Inin of
the inverse of the probability of survivability ¢dime ordinate resulted in a reasonably linear fit of
his data. One of the most common forms of thisdirfit is the 2-parameter Weibull equation
which is given by equation (1)

Equation (1)

Inl 1_ | Ls
nnS—anﬂ

where S is the survivability, m is the Weibull stohs is the life at survivability S, andglis the

characteristic life (the life at which 63.2 percefhthe samples have failed). The Weibull slope

m is determined from the experimental data. lefgesentative of the scatter of the data points

on a graph of failure probability versus life. T¢raaller the slope, the more scatter there is.
The Weibull equation can also be rewritten intoftiren:

Equation (2)

= |- (22

0o
This form of the equation is used to determinepttadability of failure of a component or

material.
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Weibull's method has been under scrutiny by siai#sts because of its lack of
mathematical proof. However, Weibull himself wasaagvof this. He stated “the objection has
been stated that this distribution function hashsmretical basis” (Weibull 1951). This lack of
proof lies in the fact that it is hopeless to exgede able to make predictions about random
variables such as the strength properties of stéédtbull arrived at his conclusion by choosing
a function and testing it empirically until the pey results were attained. Weibull applied his
method to many different circumstances where itlpoed satisfactory results (Weibull 1951).
His examples included the yield strength of Bofstesel, size distribution of fly ash, fiber
strength of Indian cotton, length of Cytroideagigiae life of St-37 steel, statures for adult males
born in the British Isles, as well as the breadtheans of Phaseolus Vulgaris (Weibull 1951).
Weibull, however, stated that he “has never bedhebpinion that this function is always
valid” (Weibull 1951).

Probability paper was developed by Weibull. Itiagh paper in which the abscissa is a
logarithmic scale and the ordinate is a log lodescehis allows for a straight line to be fitted to
plot fatigue data. Typically the fraction of thepgudation is plotted on the ordinate and the
number of cycles is plotted on the abscissa. Tlosva for determining the life of a component
for any probability of survival (or failure).

The Weibull equation has been used by engineemsiéoe than 80 years, particularly in
the bearing industry. It will continue to be usedtedict failure and lives of components. There
is, however, a need for other methods of compatatg sets to justify the results of a fatigue

experiment.
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Comparison of Different Materials

Engineers compare two or more different componenisaterials to determine which is
better for a specific application. Take, for ingt@anthe main journal bearings in an automotive
engine. A car manufacturer is likely to buy its tegs from a subcontractor or supplier. Before
the car company makes a decision on which beaoibgy, they will test a certain amount of
bearings from each company. Because of the timeasiko analyze and test the bearings, they
will only test a small amount. After acquiring tlives of each bearing failed, they will perform a
statistical analysis on the data set of failed ipgdives. This might include calculating the
average lives of the bearings and determining ¢héer in the data from the standard deviation.
Next, a t-distribution test or chi-squared testimige performed to evaluate statistical
differences in the data. These and other statistieshods, however, rely heavily on calculating
the average first and then drawing conclusionsdapen a normal distribution. In fatigue data,
these methods do not take into account the largriathof scatter in the data. The data points of
each bearing will typically be skewed one way asther and some data points may have a
considerable amount of scatter. Likewise, somguatidata plots have overlap, making it more
difficult to determine which population is super{@igure 5). To simply take the average life

does not tell the whole story.
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Figure 5. Graph showing overlapping fatigue data.se

Typical statistical analysis is not enough in theeeof fatigue analysis. The data acquired
from fatigue tests is typically either number otlegs completed till failure, or number of hours
run until failure. It could be assumed that it wibbk acceptable to take these numbers and
average them and that this would give a good itidicaf the life of the material. This,
however, is not the case. There exist calculationkibrication properties and material
properties, but there is a lack of mathematicahwoes for determining how long a component
will last deterministically. It is not difficult tonake new materials and understand how they
work, but it is difficult to predict what they wilo under stresses in a machine. This
demonstrates why statistics is so important. Wtistics it is possible to analyze data points

with varying amounts of scatter and arrive at pblestic conclusions.
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Standard Practices

When designing a component, it is necessary taohédent whether or not it is likely to
fail within a certain time period. A large numbérdesigns use the “95/95” design values that
assume there is a 95% confidence level that 958eofomponents will meet or exceed the
manufactures design value (Sutherland and Veer8)200ese numbers are typically determined
by performing experiments and plotting the datanrs-N curve (stress-life). It is easily
mistaken to get data and simply take the averagjeeafiata to determine a components limit.
This statistical method cannot be used becausbkéeogdfinition of average, there is
approximately half the material that cannot meetdtandard (Sutherland and Veers 2000). This
leads to the necessity of determining a “confiddimo#@” at which the designer has confidence
that the material will meet the standard (Suthetland Veers 2000). Since material failure is
probabilistic, the design engineer is dealing wethdom variables. The lives at which the parts
fail is the random variable, thus the designer nugsta value for the strength or life that is
guaranteed (Sutherland and Veers 2000).

Due to the high cost and extreme time lengthsitijdie tests, there are typically only ten
or less data points to analyze. Therefore, it$gmlsgal that the maximum amount of information
gained from that data is analyzed properly (Vidé&ndricks and Zaretsky, Probabilistic
Analysis for Comparing Fatigue Data Based on JomWeibull Parameters 2007). One method
that is used far too often is to determine a mewhnaedian of that data and use this as the basis
of the results. This is inaccurate because it failsike into account the scatter in the data (¥/Ice
Hendricks and Zaretsky, Probabilistic Analysis @mparing Fatigue Data Based on Johnson-
Weibull Parameters 2007). One may also chooseotdip data on an S-N curve and try to draw

conclusions this way. This is a better step forwhalever, it is still not the whole story. The
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ASTM standard (ASTM 1998) describes the use ofdlwesves; however, it does not present a
method to determine with confidence the differelbewveen two curves (Vicek, Hendricks and
Zaretsky, Probabilistic Analysis for Comparing gag Data Based on Johnson-Weibull
Parameters 2007). The inadequacy to fully undedstia® data from this standard is stated by the
writers of the report (Vicek, Hendricks and ZargtdRrobabilistic Analysis for Comparing
Fatigue Data Based on Johnson-Weibull Paramet€rg) 28s alternate fatigue models and
statistical analysis are continually being devethpater revisions of this practice may
subsequently present analyses that permit more letenpterpretation of S-N arw@N data.”
Johnson’s Method

In the 1950’s, Leonard Johnson, an engineer fore@Ge Motors, developed a technique
to rank materials in a fatigue test to determinéctvivas better by the use of confidence
numbers. His goal was to provide methods outsid#asfdard statistical practices. Johnson
explains that we cannot solely rely on the averddatigue data because the average is only one
number. It does not take into account the scaftdreodata. Johnson even uses the quip, “a
fellow who fell in love with a dimple and then maithe mistake of marrying the whole girl”
(Johnson, Theory and Technique of Variation Re$eh964).

Johnson stressed the importance of statistidseifield of fatigue testing. Since fatigue is
probabilistic in nature, then statistics is theyamleans of predicting when a particular
component fails. He mentions how the Weibull equratieveloped in the 1930’s is the only
method to date to provide any kind of statisticalgisis of fatigue data.

Johnson begins his discussion by describing htigufa data is usually very scattered.
Even with identical test conditions such as temjpeeaload, and samples size, there is still a

large spread in the data. He uses the lives freangle fatigue experiment to order them in
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integers from 1 to n, then uses these integerarh each life from 0 to 1. The rank number is
the fraction of the population of the data set trest been accounted for up to a particular value.
The rank comes from the figures in his book or fittv rank equation (equation 3).

Equation (3)

random number 0.3

Median Rank = bin size+ 0.4

The rank, as defined by Johnson, is the median Emdt is, the mid value with equal
fluctuation above and below the value (Johnsonpmhand Technique of Variation Research
1964). Subsequently he is able to draw a line oibWieprobability paper to determine how the
whole population would act. When plotting fatiguetaon Weibull probability paper, the rank is
plotted against the fatigue life. An example okadf fatigue data that is ordered and ranked,
and then graphed (not a Weibull plot) is showralsié 2 and figure 6. The graph allows for

viewing the data set as a whole rather than relgimgust an average.

Table 2. Sample fatigue data demonstrating meaiak r
Order Number Revolutions Median Rank
1 102,300 0.109
2 110,563 0.266
3 120,910 0.422
4 129,740 0.578
5 130,400 0.734
6 135,200 0.891
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Sample Graph of Fatigue Data Set
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Figure 6. Graph showing least square fit of sarfgiigue data

He then explains further how to determine how eattieuone would expect this
probability line to be with the confidence bandsdlegeloped.
Confidence Bands

With the median rank, and the knowledge of inhefieictuations, a confidence band can
be constructed. This band shows the amount ofingrtidnere is in the true location of a point on
the graph that lies within that range. Since théimerank is the average of the fluctuation at
that point, it is safe to say that at that valuk dlethe population will either be above or below
that value. So to construct a 90 percent confidéacel (confident that 90 percent of the
population will fall within it), as in figure 7, is necessary to know the limit of the lower 5
percent and the upper 95 percent. When these laretknown for each median rank, a
confidence band can be drawn on probability papeen with these bands though, there is still a
need to determine whether or not one materiahbisssically different from another when two

data sets are compared.
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Figure 7. Graph of confidence bands (Johnson, Bhead Technique of Variation Research

1964)

Confidence Numbers

Confidence numbers are another useful tool deeeldyy Johnson (Johnson, The
Statistical Treatment of Fatigue Experiments 196¥ghnson, Theory and Technique of
Variation Research 1964). A confidence number @arhived at to determine whether or not
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one population of fatigue data is significantlyfeient from another population. A confidence
number is the number of times a specific varialble fatigue test will be better in one population
than the other if the experiment and comparisorewepeated 100 times. For example, if the L
life of material A was higher than theglife of material B, 92 out of 100 times, then the
confidence number would be 92. It is accepteddhainfidence value of 90 or higher is
statistically significant (Johnson, The StatistiCe¢atment of Fatigue Experiments 1964). His
argument was that, given two sets of fatigue dathpdotting them on Weibull paper yields an
estimate of the lives of that population. If theotplots have equal slopes and lie relatively close
to one another on the graph paper, then how igakeow whether or not they are really
different. Another case could be where the twoptaterlap. Say material A has a longes L
life, but material B has a longegdlife, again how to determine whether or not stiatidly
different.

Johnson addresses comparing or ranking the falifguef two materials with his method
of determining a confidence index (Johnson, Theoiy Technique of Variation Research 1964).
Johnson developed confidence curves from whichhéidence number, as a function of life
ratio, Weibull slope (scatter in the data) andltdemgrees of freedom (populations sample size),
could be graphically read. To arrive at this cdefice index, both data sets must first be plotted
on Weibull probability paper with the percent oppitation failed on the ordinate and the lives
on the abscissa. From these lines the Weibull sbbpach set can be determined by taking the
tangent of the angle the line makes with the hotizloand either the sk life or mean life can be

read.
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Parameters to Determine Confidence Number

The total degrees of freedom of the set are theegsgf freedom of the first set (n-1)
multiplied by the degrees of freedom of the secsetdn-1).

Equation (4)
DOF = (n-1) x (n-1)

The degrees of freedom is how many choices arev@tlavhen choosing something. For
example, if there is a box with 5 gears, the fitsbice could be any of the 5; the next choice
could be any of the remaining 4, and so on unéitehs one left. When one is left there is no
choice to be made, the final one has to be chddes.is why the degrees of freedom is one
minus the size of the population.

The life ratio is calculated by dividing the lardiée of the two sets by the smaller life.
This can be the mean life or thglife. With the life ratio, Weibull slope, and tbi@egrees of
freedom, a confidence number can be determinedtuysdn’s figures. An example of one of

Johnson’s figures is illustrated in figure 8.
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Total degrees of freedom = (nq — 1) (nz — 1)
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Figure 8. One of Johnson'’s figures for determirgngfidence number (Johnson, The Statistical
Treatment of Fatigue Experiments 1964).

If the Weibull slopes are not equal, then the i@rfce number must be determined by
calculating the average of the two confidence nusifind from the respective graphs
associated with each slope.

Suspensions

Failure testing, like many things in research, doasalways go as planned. There are
situations called suspensions in which, for whategason, the test was stopped and the sample
was not allowed to fail. Reasons for suspensiodsid®, a power outage, someone trips over the
power cord and causes the machine to shut offieotest is stopped at a predetermined time.

When a sample is stopped at a predetermined timéstknown as an out-life suspension. It is
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considered an out-life because it is outside ofémge of the samples that failed. Obviously,
unforeseen things can happen and turn a machin&lwte, however, are not lost data. They are
taken into account in the analysis by their ownhuodt
Also, sometimes tests are stopped when the compamesnfor hours and hours. It is
possible that sometimes the tester does not wamditdfor a part to fail when it has already far
exceeded what it was suppose to. If a part is dedi¢o last 10 million cycles and there is a
batch of 20, if 15 fail within the 10 million ante other 5 begin to reach 20 million, the test may
be cut short to save time because these are olywioutliers. Suspensions are common in
fatigue testing and they should not be discounsecbafounding data. Everything is considered
in fatigue analysis.
Johnson gives three examples of causes of suspérded (Johnson, Theory and Technique
of Variation Research 1964)
1) A special need to terminate a test before all tiggral N specimens have failed, such as
shortage of time or testing equipment.
2) A failure of a different nature from the one betegted, e.g., a large bore in a bearing
would make it impossible to continue running thattigular bearing until it exhibits
pitting fatigue as originally intended.
3) A desire to make an analysis before the test hais bempleted.
Johnson’s Analysis Method of Suspensions
Johnson (Johnson, The Statistical Treatment of&atExperiments 1964), (Johnson, Theory
and Technique of Variation Research 1964) derivetetnod for ranking fatigue data sets that
included suspensions. This allowed for a more ateuNeibull plot. These suspended items are

referred to as suspensions.
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Johnson defined a test in which all samples faalked complete test and one where not
all samples failed as an incomplete test. The nurobgamples failed out of tested in an
incomplete test is known as the failure index. Adaagy to Johnson, it is not correct to treat an
incomplete test the same as a complete test bettaisaspended samples contain information
which could affect the predicted positions of tioeual failures of the complete population.
Recall that his method involves assigning integdues to each life so that they can then be
ranked. To account for suspended samples, thisiogdand ranking needs to change. These
integer values become fractional values. The imtegkies no longer hold because, if a
suspended sample has a value between two faileplesnt is uncertain whether that sample
was going to fail or not before the sample withlthneger life, or after it. Thereby its order
number could be before or after the failed samjsénson developed a new method to order
suspended samples. Rather than ordering the saogifgsthe median rank equation (equation
4), Johnson defines changing the increment usingtean 5 when suspensions are present in the
data set.

Equation (5)

(n+1)-(previous mean order number)

new increment =
1+ (number of items beyond present suspended set)

Once the new order numbers are assigned to the tiven the ranks can be found in the tables.
Since the tables are for order numbers of integieisnecessary to interpolate the correct value
for the new fractional order numbers. These raakstben be used the same as for a complete
test to determine a confidence number of the twaufations.

As an example of this method consider the fatpta set in table 3.
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Table 3. Sample fatigue data set o
illustrate Johnson’s suspension
incremental method
Life
Number| (hours)
1 12 Failed
2 25 Failed
3 26 Suspended
4 33 Failed
5 a7 Suspended
6 52 Failed
7 71 Failed
8 79 Suspended
9 83 Failed
10 95 Failed

This data set contains ten samples, three suspsrainm seven failures. Using equation 5 the
new mean order number can be calculated followeithdyew median rank. The new mean

order numbers and median ranks are shown in table 4

Table 4. New mean order numbers and median ramlsafople fatigue data
Life Mean order
Number | (hours) number Median Rank
1 12 Failed 1.00000 0.0670
2 25 Failed 2.00000 0.1632
3 26 Suspended
4 33 Failed 3.12500 0.2715
5 a7 Suspended
6 52 Failed 4.43750 0.3978
7 71 Failed 5.75000 0.5241
8 79 Suspended
9 83 Failed 7.50000 0.6924
10 95 Failed 9.25000 0.8608

“Neglecting suspensions and assuming a complstetenagnitude equal to failure
index amounts to assigning too high a populatiok ta each failed item. This causes the

Weibull plot to be shifted upward, making the lgstimate more conservative than necessary”
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(Johnson, The Statistical Treatment of Fatigue Expents 1964). This would lead to over
designing components and again wasting materiahaoey.
Limitations of Johnson’s Method

The use of Johnson’s method for determining thiedihce of two populations has fallen
out of wide spread use due to the difficulty of imi®rpolating between his figures and the lost
literature on how he arrived at his method (Vlddkndricks and Zaretsky, Probabilistic
Analysis for Comparing Fatigue Data Based on JamWeibull Parameters 2007).

The problem with Johnson’s method is that he Hasited number of Weibull slopes
and degrees of freedom of which his charts allowd&iermining confidence numbers. His
methods and equations for coming up with thesetglmas been lost. His method is not easily

used for many points of data and it can be quite ttonsuming.

Monte Carlo Methods

The incorporation of Weibull-Johnson Monte Carlmslations to the statistical analysis
field gave another dimension: another means oluatiog and predicting the outcomes of
components. The application of a Monte Carlo sitnfeto fatigue data to determine statistical
reliability and confidence numbers has been dematest in the simulation of fatigue lives of
bearings (Vicek, Zaretsky and Hendricks, Test Papan Selection From Weibull-Based, Monte
Carlo Simulations of Fatigue Life 2008), (Vicek, itkeicks and Zaretsky, Determination of

Rolling-Element Fatigue Life From Computer GenetteBearing Tests 2003), (McBride 2011).
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Generic Monte Carlo Simulation

A Monte Carlo simulation is a mathematical prodiss combines user inputs and
random variable input(s) to a mathematical equabasimulate possible outcomes. This random
process is repeated many times to establish trénust, absolute magnitude (Rubinstein 1981).
A flowchart showing the basic steps of a Monte €arnulation is shown in figure 9.

The term Monte Carlo was first introduced by voeulhann and Ulam during World
War Il as a secret code word at Los Alamos. It inagference to the gambling casinos in
Monte Carlo, Monaco (Rubinstein 1981). Accordingdmdar (Haldar and Mahadevan 2000),
the Monte Carlo simulation is comprised of six edens: “1) defining the problem in terms of all
the random variables; 2) quantifying the probatdisharacteristics of all the random variables
in terms of their PDFs or PMFs and the correspangarameters; 3) generating the values of
these random variables; 4) evaluating the probletarchinistically for each set of realizations of
all the random variables, that is, numerical expentation; 5) extracting probabilistic
information from N such realizations; and 6) detieing the accuracy and efficiency of the

simulation.”
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Figure 9. Flow chart of a basic Monte Carlo simolat

Computer simulations are sometimes consideredsarésort” method. With the current
rise in technology and advances in computer systeavgever, computer simulations have
become one of the most widely used and acceptésl ftmoanalysis (Rubinstein 1981).

The life of mechanical components is not deterstici Data, design curves, and
formulas exist for calculating parameters with deliaistic variables, however, this is not
necessarily the case when the lives of the compsraga probabilistic. In the case of studying
the robustness of planetary gears, a Monte Carlalation was used to account for this
probabilistic nature (Enguo, Lei and Yanyum 2010)e deterministic methods of determining
the robustness of the planetary gears was empkygdhen compared to the Monte Carlo
method. The deterministic approach gave valueséisalted in poor analysis of the robustness
of the materials which lead to premature valueselthe Monte Carlo method was applied, the
results gave a better prediction of the life of glears, which resulted in less cost as well agbett

components (Enguo, Lei and Yanyum 2010).
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Monte Carlo Method used for Pattern Recognition

“The design, analysis, and verification and vdlmaof a spacecraft rely heavily on
Monte Carlo simulations” (Restrepo and Hurtado)n$pace travel is a very expensive
endeavor and requires many engineering man hownsstare the safety and reliability of a
spacecraft. With the incredibly high expenses ot possible to test every system and
determine all the possible outcomes. Testing, thezeis limited. Monte Carlo simulations
allow engineers to input different variables andie program run to generate different random
outcomes (Restrepo and Hurtado n.d.). This sinariatun long enough, could potentially
display most of the possible outcomes of disastedsallow the engineers to design accordingly.
There is, however, one problem with this method Wes addressed in (Restrepo and Hurtado
n.d.). With the enormity of possibilities of outcemit can become very difficult to go through
all the data. Restrepo and Hurtado have develogdahato attack large amounts of data from a
Monte Carlo simulation using pattern recognitio@iven enough time the Monte Carlo
approach allows analysts to identify most of thdividual design variables that influence certain
system failures” (Restrepo and Hurtado n.d.).pidslly, however, is not an individual
parameter that causes a failure; it is a serieswiplex anomalies that lead to system failure
(Restrepo and Hurtado n.d.). It is this seriesveh#s that an engineer must try to predict to aid
in the design process of the system. “The goalMbate Carlo simulation is to understand all
critical design sensitivities that may prevent design from meeting requirements” (Restrepo
and Hurtado n.d.).

Monte Carlo simulations can give an extreme amotidata. This leaves the engineer to
sift through great quantities of data. One drawladkis is that the engineer needs some kind of

already known intuition about the system to makkgient calls. Also, it is required to have a
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sound knowledge in the area of the research. Restred Hurtado (Restrepo and Hurtado n.d.)
have devised a method to escape this problem.

To evaluate the accuracy of more sophisticatedsstat techniques, or to verify a new
technique, simulation is routinely used to indeprily evaluate the underlying probability of
failure (Haldar and Mahadevan 2000). “In the simpferm of the basic simulation, each
random variable in a problem is sampled severadgito represent its real distribution according
to its probabilistic characteristics. Using manysiation cycles gives the overall probabilistic
characteristics of the problem, particularly whiea humber of cycles N tends to infinity. The
simulation technique using a computer is an inegpernway (compared to laboratory testing) to
study the uncertainty in the problem” (Haldar andhddevan 2000). The most commonly used
simulation for this purpose is the Monte Carlo daion. Engineers have been using this tool
because of its ease of use and its accuracy dtsesustrong background in statistics and
probability is not needed to develop a Monte Cantoulation. These are the reasons why
engineers use Monte Carlo simulations for evalgedtwe risk and reliability of complicated

systems (Haldar and Mahadevan 2000).

Preventive Maintenance

Preventive maintenance schedules are crucial tari@gsmachines and systems operate
properly and that no harm is done. Preventive reasrice can be defined as “a fundamental,
planned maintenance activity designed to improwepegent life and avoid any unplanned
maintenance activity” (Wireman 2008). With the a3& of fatigue data it is possible to

determine these preventive maintenance schedulegslbas warranty information.
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The Space Shuttle is one example of the criticalortance to ensure human safety and
machine reliability. The space shuttle was desigoddnction for 100 flights per shuttle without
maintenance or inspection (Oswald, et al. 2008k &ystem, in particular, is the body flap
actuators on the space shuttle. There are fouatmetion each shuttle (two per wing). After
several flights of the shuttle, the bearings os&hactuators were inspected for wear. Due to the
varying degrees of wear, analysis had to be peddrta determine proper timing of removal and
replacement of these bearings (Oswald, et al. 2008)

This analysis was performed and the objectivab®fesearch were: “a) experimentally
duplicate the operating conditions of the spacdtkhibody flat actuator input shaft ball bearings;
b) generate, under these simulated conditionsteststal data base codifying bearing wear; c)
determine the usable life of the actuator bearbaged on a two-parameter Weibull distribution
function for the bearings using strict-series systeliability; and d) compare these results to
field data from the space shuttle fleet (Oswaldle2008).” The statistical methods to analyze
this data was both Weibull (Weibull 1951) and Ja@mglohnson, The Statistical Treatment of
Fatigue Experiments 1964), (Johnson, Theory antifigae of Variation Research 1964).
These methods have been in use by NASA for overeads in the area of failure analysis of
bearings and gears in which a large database nsts ¢©©swald, et al. 2008).

Using the probabilistic method on the actuatdra/as predicted that the bearing would
fail after 20 missions. This was in close agreenemhe actual failure at 22 missions (Oswald,
et al. 2008). Of 116 missions between 1981 and 20Was reported that only one actuator
bearing had to be replaced due to excessive weavdl0, et al. 2008).

During the experiment, one of the tests condutdatketermine the life of a bearing

included six bearings in which sudden death testiag used that resulted in three of the six
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bearings failing (Oswald, et al. 2008). The analysed to incorporate the suspended items was
that of Johnson (Johnson, The Statistical TreatroeRatigue Experiments 1964).

Along with testing for failure comes the knowledgfehow to prevent failure in the first
place. During failure testing, engineers learn rmd#ito prevent failure. Different tolerances and
lubrication methods lead to longer failure livebeTonly way to prevent or postpone failure is to
maintain the machine. Proper maintenance schedakx$to be written and enforced. Failure

tests, proper lubrication, and maintenance schedukone way to prevent failure.

Summary

Fatigue has been studied since the mid 1800’s wiaénaxles started breaking
unexpectedly. It turned out that this phenomenos prababilistic and could not be precisely
predicted. In the 1930’s Weibull developed a mettwdnalyze this probabilistic occurrence.
Although this method has been criticized by mathesaas it has worked for years and
engineers still use it. Leonard Johnson developsdyaof ranking two populations of fatigue
data. From his method it is possible to statidijodétermine whether or not one population is
better than the other.

Recently, with the advent of computers, Monte €annulations have been developed to
analyze fatigue data. A Monte Carlo simulation wsémited number of predetermined inputs
and random numbers to simulate possible outconfes.rmieans of comparing fatigue data has

been demonstrated to work.
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Chapter 3

Method

Introduction

The purpose of this research is to compare fatiigi@ sets containing out-life
suspensions via a Monte Carlo simulation. Existireghods for handling such suspensions can
be tedious, relying heavily upon graphical intetatien and interpolation of design curves
(Johnson, The Statistical Treatment of Fatigue ErpEnts 1964). This current project takes
advantage of technological computing power to haaditatistically significant number of
simulations.

A model was developed to simulate experimentafjegtidata that contains suspensions.
A Monte Carlo simulation was written in Visual Bagio interface with Microsoft Excel, to
simulate fatigue lives using a “bin” model develdfry Vicek, Hendricks and Zaretsky (Vicek,
Hendricks and Zaretsky, Determination of Rollingkent Fatigue Life From Computer
Generated Bearing Tests 2003). Different suspemnsimels were evaluated. The models
differed in how the failure index (number of failsdmples or total number samples tested) was
modeled prior to determining thedlife for the data set. A relative ranking cougtimethod
similar to that demonstrated by McBride, Vicek, atehdricks (McBride 2011) was used to
determine the relative confidence numbers assatiaitéh each suspension method. The
simulation was repeated a statistically significamtnber of times (10,000). For validation of
the model, the simulated confidence numbers wemgaoed to those graphically determined for

two experimental data sets that were availablaeniterature (Townsend, Zaretsky and
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Anderson, Comparison of Modified Vasco X-2 with AB310 - Preliminary Report 1977),
(Townsend and Zaretsky, Comparisons of Modifiedddas-2 and AISI 9310 Gear Steels

1980).

Monte Carlo Simulation - Weibull Equation, ConfidenNumbers, and “Bin” Model

The model was generated by combining three stalstiethods already in existence.
The first was the use of the Weibull equation (¢igual) to determine a life. Using a random
number generator, a number between 1 and 1000 evesaged. This number represented the
order in which the sample failed (this is knowrtlas “bin” model and will be discussed in more
detail in the next section). From this the ordember was converted to a rank using equation 3.
This number subtracted from 1 gave the survivab{i) of the sample. Then, using the Weibull
slope and characteristic life as determined fropeexnental data, a virtual life can be solved for
algebraically.

The second method incorporated into the model wasldped by Johnson (Johnson,
The Statistical Treatment of Fatigue Experimen4)9 Johnson developed a way to
statistically predict whether or not one materialvibetter than another. He did this through
confidence numbers. If two materials were analyaed, a confidence number of 90 or higher
was determined, then it implies that there is aistieal difference between the two materials.
Although his graphical method of calculating coefide numbers was not incorporated into this
model, the idea behind a confidence number was—hany times out of one hundred, one

probabilistic value was greater than another. Jomiagso developed a method for incorporating
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suspensions into the determination of a confidentgeber, and demonstrated the importance of
taking suspensions into consideration insteadsifgismissing them.

The third method incorporated into this model was bf Vicek et al. (Vicek, Hendricks
and Zaretsky, Probabilistic Analysis for Compariagigue Data Based on Johnson-Weibull
Parameters 2007), (Vilcek, Hendricks and ZaretskjatRre Ranking of Fatigue Lives of
Rotating Aluminum Shafts Using L10 Weibull-Johngoonfidence Numbers 2008), (Vicek,
Hendricks and Zaretsky, Determination of Rollingeiaent Fatigue Life From Computer
Generated Bearing Tests 2003), (McBride 2011). K&teal. developed what is referred to as a
virtual bin model. The bin model is a virtual bihl®d00 specimens that are assumed to have
been tested to failure. The lives of these samgulesiot known at this time, however, the order
in which they failed is known, and each sampledrasrder number from 1 to 1000 associated
with the order in which it failed. With this ordeumber, it is possible to determine the
survivability of the sample using the median ragkaion (equation 3). If the Weibull slope (m)
and characteristic life @. are known, then the simulated life is the onlknmwn in the Weibull
equation (equation 1), and can be algebraicallyesbfor.

Another method used that was developed by Vicek etas that of numerically
counting simulated lives to arrive at a confidenaenber. Since a confidence number is defined
as the number of times out of 100 one material balbetter than another, with a Monte Carlo
simulation generating 100 virtual lives it is pdsito count how many times the life of one
material is greater than the other.

The last method used by Vicek et al. in this simafawas the development of curve fit
equations, which were derived from Johnson’s figute calculate a confidence number. These

equations were incorporated into the simulatiomsise the variables generated, to calculate a
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confidence number. This added one more dimensiocdimparison of confidence numbers.
Ultimately three confidence numbers were able tadrapared to determine whether or not one

material was better than the other.

Bin Model Monte Carlo Simulation

The objective of the Monte Carlo technique in #@pglication is to acquire virtual lives
from random numbers between 1 and 1000 which reptesmples in a bin ordered in which
they failed. These numbers were converted to lbyesse of the rank equation (equation 3) and
the Weibull equation (equation 1).

These random numbers represent the order in wheclgyears would have failed had all
1,000 been tested. For example, if the random nugdrgerator used by the simulation
generates the number 784, this would represeﬁt&ﬁ%sample to fail in the bin of 1,000. Since
the true life of the 782 sample that failed is not known, it will be seqti@lty ordered against
the other samples in its bin. Sample 1 will haveeghortest life, and sample 1,000 will have the
longest life.

The random number generator itself does not hamethod for determining how many
of a certain number it picks. For example, it isgble that the number 256 gets generated twice.
This is not desired because it is not possibleat@hwo samples with the order number 256.
This issue was addressed to ensure unique randorbans. No two samples can have the same
rank. A Visual Basic Module in Excel was writtendnsure that all random numbers or parts

pulled from the bin were unique in a test set. Thalule can be seen in Figure 10.
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‘Bin A
‘generating random number
alpha = Cells(9, 2)
r=17
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = “=randbetween(1,1000)”

‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl=numl +1
Next loopl

Figure 10. Subroutine to generate random numbensaie: sure all numbers are unique
It should be stated now that in Visual Basic, taxt following a (*) is a comment and not
used in the program. They are for organizationgbgses only.
The virtual test samples were ranked on a scate @@o 1. Zero being the lowest life
and one being the longest life. To rank the samgdesition 3 was used
Equation (3)

random number 0.3
bin size+ 0.4

Median Rank =

Where random number is the number the program esamsd bin size is 1000. After ranking
the samples from 0 to 1, the rank is subtractewoh ftdo get the survivability S of the sample
(equation 7).

Equation (7)

S=Rank-1
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Lives are assigned to the virtual samples basé¢t@axperimental data using the Weibull
equation.
Equation (1)

Inl 1_ | Ls
nnS—anﬂ

The rank from the simulation results in survivapis. The Weibull slope m and characteristic
life Lgcome from previously available experimental dakae virtual life at a survivability
probability S can be calculated after plugging ¢hiégsee variables into equation 1. The lives,
still in order from shortest lived to longest livedere then ranked again. This time they were
ranked according to the test population size. Is2Mples were used in the experiment, then in
the ranking equation, 20 was used for the populaipe n, and instead of a random number, 1
to the sample size was used; in this case, fromm2D t(equation 8).

Equation (8)

number— 0.3

Rank = — 3102

The survivability S, or percent of samples thavad, is again solved for by using equation 7.
The Inin (1/S) is plotted as a function of thell). (nin (1/S) is plotted on the ordinate and Ir) (L
is plotted on the abscissa. As a result, fatigua dibts as a relatively straight line on Weibull
paper, and a fitted curve is determined using st lisguares fit. The Weibull slope, characteristic
life, Lo life, Lso life, and mean life are results of this plot. Fgdl is a flowchart of the

simulation based on a bin model.
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User input:
Weibull slope,
characteristic life,
number of samples

™ Convert random rankg Plot fatigue lives on a
to fatigue life with > Weibull plot to
Pull number of samples > Weibull equation determine Lo and slope

randomly from bin.
Generate random number
between 1-1000 equal to v

number of samples Repeat 100 times for each
population to determine

4 confidence number

Repeat process 10,000 times
to establish trends

Y
( Averaged outputs >

Figure 11. Flowchart of Monte Carlo simulation hea bin model

Numerically Counting Confidence Numbers

A confidence number determined by the simulatianr{arical counting method) was
accomplished by generating 10g, lives for two different simulated materials andicting the
number of times thek life associated with one population was greatan ttme other out of 100
comparisons. Since the program generates virtipdives these lives were counted to see how
many times population A has a longer life than paon B. The number of times out of 100

that A is better than B and the number of timesadutOO0 that B is better than A was outputted
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to the summary table. The greater of the two numisethe confidence number. If this number is
greater than 90 then it states that there is afsignt difference between the two populations. A
flowchart of the simulation determining a confidemaumber by the numerical counting method

is shown in figure 12.
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Input known variables
for bin A and bin B

A

Generate random numbers from 1 to 10Q0

A

\ 4
Rank random numbers from O to |1

\ 4

Survivability = 1 - rank Repeat 100

times

Solve Weibull equation for L

\ 4

Plot In(L) vs. InIn(1/S) to solve
for Weibull slope and 1o

A 4

Output Weibull slope andjbfor
both bins

A 4
Count how many timesib

Repeat 10,000 times

A

A

of A is bigger than L, of B

A 4
<Average output9

Figure 12. Flowchart of Monte Carlo simulation ctng method.
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It was determineavhich was greater by dividing the4life of bin A by the Ly life of
bin B and then counting the number of times thaltiwas greater than or less than one. If

result is greater than one then bf A was greater, and vice versa forTBis counting method |

shown in figure 13.

lumn)

Figure 13.Subroutine for numerically counting a confidencenbe!

A screen shot of the output of the numerical coyghthethod is shown in figuil4.

153 L10A>L1068 7 B=>A
154 L10B>=L10A 93

Figure 14 .Screen shot of output of counting confidence nus

This confidence number rdel works well for experimental data in which atigue

specimens in the original experiment failed. Howewe the purpse of this research a ne
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model was developed to use this Monte Carlo sinardb generate fatigue data that has

suspensions in it and then determine confidencebewn There are five new models presented.

Five Suspension Models

In this study, five different out-life suspensiomdels were created and compared, to
determine which best simulated fatigue data sath,aut-life suspensions, was better. There are
five versions of the program; each simulates aeckffit suspension model. The five different
methods were designed to represent possible ouscofribe actual experimental since the
details of why the suspensions occurred are novkno
Simulation Method 1: No out-life suspensions

Method 1 is a simulation of what confidence numbeuld have been determined had all
the specimens failed—i.e. there were no suspendimnsexample, if 20 samples of material A
were to be tested against 20 samples of matergadBonly 6 samples of material B failed for
whatever the reason, the following would be coneldic0 lives of A and 20 lives of B would be
generated. All of these lives would then be usedetermine a confidence number and a base
line. This is theoretically what could have happgkhad all the specimens in the experiment
failed. This serves as a baseline for comparisthile the method for determining the
individual fatigue lives and thejb lives was demonstrated by Vicek, Hendricks and&ky
(Vicek, Hendricks and Zaretsky, Determination oflRg-Element Fatigue Life From Computer
Generated Bearing Tests 2003) and McBride (McB2i@El), the Visual Basic programming
solution to this simulation was unique to this studlhe full Visual Basic program for

simulating Method 1 can be found in Appendix A.
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A screen shot of the inputs for method one careka & figurel5.

BF n
1! A ] n
1! M~ L: |
1 ]
| S n
BE -l n
B 4 n
BE n
i n
T ]
= ]
BF n
i = - = 1N
T d% Fu FARF ||
| I rNia L | |
i - ]
L1 n
B {3 [— 4 a 18
i = () 1= 1n
L1 S = - Im
BE n
|| S— n
B = n
i = n
18 n
L1 n
i - 1 ATTC SO L IR
| Le A L R |
H ~ -3 f 7 i
i [
[ [ SR o e 18
[ imm= Do woas iFFs im
] = - ]
[ [
[ [
[ [
= =
[ [
[ L N | |
[ A0F im
[ ~  im
[ __ im
[ s s
[ L IR
[ [
= =
[ [
[ [
[ [
! —_— E FL A o Nt !
[ I Fi=i iima im
K 53 5is - iR
[ [
[ -_ = [
[ iri Simmy im
] - - = ]
[ [
[ [
[ [
EL [
= n

Figure 15 Sample of the inputsr method 1

In this figure, A mis the slope of the experimer data set for material A and Bg is the slope
of the experimental data set for material I A is the characteristic life for the experimentala
for material A and kg is the charactettic life for the experimental data for material &ze A
and size B are the sizes of the populations foernas A and B. Trials is the number of times
run the loop to calculate a confidence number. Reloee the simulation runs 100 times to cc
how many times (out of 100) one material is better tenother. Trials* is the number of tim

to run the entire program to establish trendsfiddl methods were run a total of 10,000 tirr
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In this figure, and in most of the simulations, gregram was broken up into five blocks of
2,000 because of the lack of RAM on the computeesiu

The part of the simulation that changes from metisomethod is how the slopes are
calculated. After the virtual lives have been gatent and a new survivability has been
calculated then virtually plotting the Inin(1/S)aagst the In(L) will give the Weibull slope of the

simulated fatigue data. The code to calculate lity@ess in figure 16.

'slope A
MA = Application.WorksheetFunction.LinEst(Range(Cel Is(7, 10),
Cells(alpha + 6, 10)), Range(Cells(7, 11), Cells(al pha + 6,

11)), True, True)
Cells(16, 2) = MA
MAa = Cells(16, 2)
SlopelA = MAa

'slope B
MB = Application.WorksheetFunction.LinEst(Range(Cel Is(7, 18),
Cells(alpha2 + 6, 18)), Range(Cells(7, 19), Cells(a Ipha2 + 6,

19)), True, True)
Cells(24, 2) = MB
MBb = Cells(24, 2)
SlopelB = MBb

Figure 16. Visual Basic code for calculating theib\i# slope of bins A and B
Figure 17 is a screen shot of the outputs. Theeshadmbers are the numbers used to calculate

the slope of the virtual data.
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i BinA Rank A Sa La Mew Hank & S, new ininiiiSia iniLia BinB HRankD Se ie jiew Ranki Sg new inini{ifSie iniLie

1 5 000 0.03 0.87 =335 1855 27 0.03 0.97 -3.35 779
2 i 53,413,972 0.05 0.3z B T 35 0.08 0.9z -2.44

3 63,965,962 0,13 0.87 -135 18.05 o7 0.13 087 -135

4 84,332,013 0.13 0.82 -161 013 052 161

5 023 077 134 0.3 077

[ 028 072 112 028 072

7 0E7

3 303 . 057

0 0.48 052 313 0.48 052

1 130,746,731 052 0.48 325 358.113.969 52 0.48

i3 55,888,873 0.62 0.38 ~0.03 i5.05 354 0.38 ~0.03

14 LT 210,543,538 067 0.33 om 463 0.33 0m

15 8l 7 544 028 024

17 87 018 0.53

i 0.55 .7 i 0,13 0.70 13.32 [t 0.63 0.8 0,13 0.70

19 0.89 011 250,812,846 08 0.91 19.3¢ 760 0.78 533,432,732 0.32 0.08 0.91
20 951 095 005 288800815 o.o3 122 13.48 870 0.87 013 1.150.,533,004 097 0.03 122

Figure 17. Screen shot of method 1 out
Using this new Weibull slop@nd the virtual da, a characteristic life for this data set car
calculated. Using the new Weibull slope and chergtic life in the Weibull equatn, with S
set as 0.9, ask life for this virtual data set can be calculatetisTis done for both bins. The
Liolives are then counted to see how many times oli@0fthe I, life of one population i:
better than the other population.
Simulation Method 2: Failurendex Forced t Match a Known Failure Index

Method 2 simulates the;g lives that would be obtained if all the speciméret failed in
the original experiment were equal to the total bantested. For example, if there were
samples of marial A and 20 samples of material B to be testad, 20 f material A failed, ye
only 6 of material B failed, the20 lives for material A anc lives for material B wer:
generated. This method again does not directlyrparate suspensions becau: assumes all
samples failed. Whiléhe reduced population size is used, it is stélfirst 6 failures that wer:
randomly generated. The fMisual Basic program for simulating Mhod 2 can be found |
Appendix B.

A screen shot of the inputs for mod 2 can be seen in figure 18.
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Figure 18.Sample of the inputs for metho
The slopes and characteristics lives and trial rersi\do not change. The only change is
amount of lives generated determined by the sizeeopopulations entered. In fie 18 it can

be seen that the population of B is lower than @thud 1.
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Figure 19. Screen shot of method 2 out
In figure 19are the outputs for method 2 and the shaded aredseanumbers used to calcul
the new Weibull slope. Using this Weik slope an ko life can be calculated for ea
population.
Simulation Method 3: Specified Failure Index fort-Off Out-Life

The third method generates random live<all specimens yet it only uses the numbe
actual failed specimens to calculate tonfidence number. For example, if there were
specimens of material A and 20 cimens of material B, yet onlyd B failed, the prograr
would generate 20 lives for A and 20 lives for Rldnen use all 20 lives for the calculation:
A and only the shortest livedl&es for B. This represents what would hen if it was assume
that the 14ongest lived samples in population B were suspéndke way this wa
accomplished in the actual program is all 20 lifgeshins A and B were generated as norto
get a full distribution. When the values were cidted for the Weibulllope of bin B, only the
first 6 lives were picked for the calculation. The follogioalculations for 14, Lso, Characteristic
life, and mean were then based on only those6 samples. The fuWisual Basic program fc
simulating Mehod 3 can be found in Appendix (

A screen shot for method 3 can be seen in fi20.
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Figure 20.Sample of the inputs for metho

The slopes, characteristic lives, and trials agaimot chage. This time the sizes of tl
populations are set to the total number of samplesui-off is specified to tell the simulation
only use the first 6 generated lives in the cakioihe of the Weibull slopes angy lives.

In figure 21 is a screen shoft the outputs of method
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Figure21. Screen shot of method 3 outy
In figure 21it shows that 20 lives were generated for both paipns, but only the shortest livi
6 lives of bin B are used in the calculation of aildll slope and 1 life. Thelongest lived 1«
are the out-life suspensions.
Simulation Method 4: Specified -Off Out-Life

In method 4 the total number of specimens attemigtgdnerated but then only the ol
that reach a specified caff life are use for calculated the g life. For example, bin A has -
samples and bin B has 20 samples. The experimaetermines that there is no need ft
specimen to run more than 380llion cycles. lithe longest life of bin A was 2,900,000 then
all of bin A would get used in the calctions for a confidence number. In bin B, howeviee,
seventHongest life out of the 20 was 3,000,000 then only the shortest six lives would getd
in calculating the L life.

As in the original program the user inputs the sizbin A and bin BThe program goe
through and generates 20 lives for bin A. Whenuatig the lives of bin B, the progre

begins by generating 20 random numbers as usuakvey, when it begins to convert t
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random numbers into lives, when the program congpaiiéegreater than the designated life
ends the loop and jumps to the next command. $imecprogram has to go over the design.
life before it can terminate, it then needs toddd to only use the lives previous to the last
generated. The programpies the usable data (that is the lives generatedsthe last one) t
open cells to the right of the original numbershea spreadsheet and then performs calcula
using this copied data to ensure the correct nusrder usecThe full Visual Basicprogram for
simulating Method 4an be found in Appenc D.

In figure 22is a screen shot of the inputs for methc
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Figure 22 Sample of the inputs for metho
The Weibull slopes, characterislives and trials are enterélde same as before. Ttizes of the

populations are set as the total number attemptad.time the ct-off that is entered is
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specific life. In this particular case the cut-lifié for bin B is 380 million. In figure 23 is a

screen shot of the outputs of method 4.

BinA RankA Sa L lew Rank. Synew Inin(1/S), In{L), Bin B Rank B Sy Ly Mew Rank B Sy new  Inin{1/S)y  InfLjy
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Figure 23. Screen shot of method 4 outputs
From figure 23 it can be seen that 20 lives areegend for bin A. For bin B however all 20
random numbers are generated, but when the randorbars started getting calculated into
lives the program stops when it generates a litx tive specified life. The program then knows
to use one minus the generated lives in the cdloalaf the Weibull slopes anddlife. This is
shown by the shaded numbers in figure 23.
Simulation Method 5: Specified Cut-Off Out-Life d&adlure Index

Method 5 is a hybrid of methods 3 and 4. Methoghérates the same way except that it
forces the bin to use the specified predetermingdber of samples failed or failure indemd a
specified life. To relate to the previous exampiiewould force bin B to have 6 failed samples
between 1 and 380 million cycles. The user inpugsnumber of lives to be generated; in this
case the numbers are 20 for bin A and 6 for bifitig program will only generate 20 lives for
bin A and 6 lives for bin B. The program generdheslives for bin A as usual; however, when
the lives are being calculated for bin B the samoegdure as method 4 was used. This time,
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however, if the lives get cut below the specifienier (i.e 6) then the loop starts over.r
example, if only 4ives are generated becausefourthlife has reached the limit then the Ic
will start over until there are I67es within the specified life rangThe full Visual Basic
program for simulating Metho8l can be found in Appendix E.

In figure 24is a screen shot of the inputs for methc
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Figure 24 Sample of the inputs for metho
The Weibull slopes, characteristic lives, and tniambers are again still the same. The fol
failure index is designated by the size of the and the cubff life is also specified, in this ca

the cuteff life is 380 million. In figure25is a screen shot of the outputs for methc
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Figure 25.Screen shot of method 5 outf

From figure 25t can be seen that the program generates 20for bin A and forces bin B t
have 6 lives that fall between 1 and 380 milliogaf the shaded numbers are use
calculating the Weibull slope angg lives.

All of these simulations were run using real datat past experiments in the literat
(Townsend, Zaretsky and Anderson, Comparison ofifmblVVasco >-2 with AISI 9310-
Preliminary Report 1977fTownsend and Zaretsky, Comparisons of Modifiedcdax-2 and
AISI 9310 Gear Steels 1980) iaputs to the Monte Carlo simulation and to valkdtite model
The data came from an experiment where a compaoisbealicopter gear materials w
conducted. The helicopter gears were of partidnlarest because in the original experinr
there were sspensions and a graphically determined confidenogber using Johnsor
(Johnson, The Statistical Treatment of Fatigue ErpEnts 1964 method.

The data from the original experiments was runugloeach of the five metds for

10,000 cycles for statistical accure The inputs of the simulation can be see tables 5 and 6.
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Table 5. Input parameters used for rolling contiadt set simulation

Weibull Slope Characteristic Life Failure Index
Modified Vasco X-2 2.2 175,220,000 20 out of 20
AISI 9310 1.4 698,580,000 6 out of 20

Table 6. Input parameters used for gear fatigua skett simulation

Weibull Slope Chaﬁ?etenstlc Failure Index
AISI 9310 2.3 61,190,000 30 out of 30
Modified Vasco Boeing Vertol 1.0 364,460,000 12 out of 26
X2 NASA 0.53 55,859,000 18 out of 21
Curtis-Wright 2.1 9,636,000 19 out of 19

Algebraic Approximation of Johnson’s Confidence Naars

There was another method of calculating confidenoebers that was incorporated into

the simulation. This method was developed by Viegdl. (Vicek, Hendricks and Zaretsky,

Probabilistic Analysis for Comparing Fatigue Dat@sBd on Johnson-Weibull Parameters 2007).

In the method a number of equations were develtpathebraically solve for a confidence

number. This method eliminated the need for graghinterpretation of the results, and was

incorporated into the simulation to give anothenf@ence number to compare the Monte Carlo

counting method to.

Equations 9 through 15 are calculated to determic@nfidence number using the mean

lives. To begin, the degrees of freedom (DOF) rhesiound. The degrees of freedom represents
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the number of times a part can be randomly chdgémere are 20 objects, you can randomly
choose 19 because thé™eem is fixed and not randonDegrees of freedom is defined as
Equation (9)
DOF=n-1
In the case of two bins the degrees of freedombeill
Equation (10)
DOF=(n-1)x(n-1)
The mean life ratio (MLR) at 99%, is determined by
Equation (11)
MLR @oge= (Adn(DOF) + B)* + 1
Where
Equation (12)

—0.0844
Ao = T — 0.05584

And
Equation (13)

1.2796
Bo = ——— +0.6729

Once the mean life ratio at a confidence numb&9gpercent has been established it can then be
used to find D.
Equation (14)

3912
~ MLR@ooo; — 1
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Next the mean life ratio was determined for theegipental values, the bigger mean life divided
by the smaller mean life. Once these variables baea calculated, a confidence number can be
determined using equation 15:
Equation (15)
C = 1 — 0.5¢(-P(MLRep=1))
Another method to determining a confidence nunibé&r use the g life dependent

equations. These begin with:
Equation (16)
A=exp & +b)
Equation (17)
B=aln(m)+h
Where a = 0.29574, a= 4.5286, b=-0.45228, andl= 0.3152
Once A and B have been calculated the fittedife ratio must be determined:
Equation (18)
Fitted Ly life ratio = (A) DOP®
Followed by:

Equation (19)

4= In(LyoLife Ratio)

where
Equation (20)
a = (B2 Ln(1-0.99) — B)°°

where E = 2896.3 and E=-3595.9
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The confidence number based op lives can now be calculated.
Equation (21)
Cuio = 1 — exp {[(a In(¥))* + EiJ/E2}
These two methods make it possible to calculaéidence number of an experiment without
the need to use Johnson'’s figures (Johnson, Thisti@ Treatment of Fatigue Experiments
1964). They were incorporated into the simulatiod ased the lives of the generated random
numbers to calculate confidence numbers.

The program code was then modified to determiméidence numbers utilizing the
equations proposed by Vicek, Zaretsky, and Hendritkese values were then compared to the
confidence numbers generated by the Monte Carlotoapumethod. There are two methods of
curve fit equations. The first uses the mean hf&rto calculate a confidence number and the
second uses thedlife ratio to calculate a confidence number at tkeapective probability of
failure. The degrees of freedom for the bins west Gialculated. The first confidence number
calculated is the mean life ratio confidence numbble confidence number based on the
Weibull slope for bin A was calculated and thenc¢bafidence number based on the Weibull
slope for bin B was calculated. The average ofehe® is then the mean life ratio confidence
number. The code for determining a confidence nurbbsed on mean life ratio is shown in

figure 26.
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'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584

'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729

'InDOF

INDOF =
Application.WorksheetFunction.Ln(Cells(40, 2))

'MLR at 99

MLR99 = (Anot * InDOF + Bnot) "2 + 1

Cells(41, 2) = MLR99

'D

Dvegas = 3.912/ (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexp = Cells(21, 2) / Cells(29, 2)

Else

MLRexp = Cells(29, 2) / Cells(21, 2)

End If

'C

Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp -
1))

Cells(42, 2) = Cvegas

Figure 26. Subroutine for calculating confidencenber based on mean life ratio

The Lyg ratio confidence numbers were calculated nextiitiee confidence number

based on the Weibull slope for bin A was calculdtddwed by the confidence number based

on the Weibull slope for bin B, then the averagéoke two values was calculated do determine

a final confidence number. The code for determir@rapnfidence number based o lives is

shown in figure 27.
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'L10 dependent confidence numbers

‘A
AAA = Exp((4.5286 / Cells(16, 2)) + 0.3152)
'In(m)
InmA = Application.WorksheetFunction.Ln(Cells(16,
2))
'B
BBB = 0.29574 * InmA + (-0.45228)
'L10LR
L10LRA = AAA * Cells(40, 2) ~ BBB
‘ao
litanot = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)
INL10LRA = Application.WorksheetFunction.Ln(L10LRA)
‘a
lita = litanot / INL10OLRA
'‘L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnot = Cells(18, 2) / Cells(26, 2)

Else

xnot = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
'CL10
CL10 =1 - Exp(((lita * Inxo) 2 + 2896.3) / -
3595.9)
Cells(46, 2) = CL10

Figure 27. Subroutine for calculating confidencenber based onik life ratio

After the calculations were performed the Weibldpss, L lives, Lso lives,
characteristic lives, mean lives, degrees of fregdaean life ratio confidence numbers ang L
life ratio confidence numbers were outputted ag@itihe first worksheet on the spreadsheet
(figure 28) where they were then copied from slo@etto the “Summary” sheet. The summary
sheet is used to store all the numbers until tbgnam is done running the desired number of

trials. The final confidence numbers came from agerg the numbers on the summary page.

67



Code Controls

ol
Cl
m

36 |CL10avg

48

49
M 4 b M| Sheetl | Summary . Sheet3 " SummaryB .~ ¥J

Ready ﬂ

Figure 28. Screeshot of output cel.
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In addition to holding all the values from the edétions, the summary page is where the
numerical counting takes place for the Monte Carkihod of determining a confidence number.

All the Ly lives are counted and determined how many of bwmefe greater than bin B.

The Visual Basic Macro of the Simulation before [Brsions Incorporated

The model was developed using Visual Basic for Aggplons in Microsoft Excel. Excel
was the program of choice because of its abilityandle and organize large amounts of data. It
was also possible to interface with the Visual Baside through the spreadsheet.

Visual Basic in Excel was developed to make hagdéimall tasks easier. One method of
doing this is by using a macro in Excel. A macreswanstructed, for simplicity, by clicking the
“Record Macro” button and following a sequenceteps for whatever task needs to be
completed. The macro is assigned a shortcut kdy(atetter). For example, if “Record Macro”
was pressed, then the user clicked on an emptyacellentered the command to take the
average of a series of numbers, and then highdigieries of numbers and pressed enter, then
clicked stop recording, the user would be ableefmeat this process by simply hitting the macro
short key.

Once a quick “record” macro has been construdtesdihen possible to access the macro
and edit it using Visual Basic code. This is hovg tinodel was constructed.

The program was constructed over a number of week®all modules. Each module
would be run, and then compared to hand calculatiofe sure the code was correct and then
the next module would be added on until the eqtiiogram ran as one unit. The initial set up

was on the first page of the spread sheet as shofigure 29.
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Figure 29. Screeshot of simulation inpu.

There were cells assigned to values that woulshpetied by the user. These inp
included the Weibull slope for €h bin, the characteristic life for each bin, theesdf each bin
and the number of trials to be ru

First the set of random numbers that representeduimber in which thsample failed
was generated. The number generator in Visual Bgsierated random number between 1 &
1000. To ensure that no two same random numbeesaeggin either of the sets generate
subfoutine was written that compared each randomlieduiumber to those already selec
for the data set (figure 10)f found toequal one of the previously pulled numbers, the lmen

in question was discarded, another pulled, andugmegss again establish:
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The random numbers were then ordered from smadidatgest to be ranked. To rank

them equation 3 was used. This rank was then tumtda survivability value by subtracting it

from 1. This survivability was then incorporatedoithe Weibull equation (equation 1), along

with the Weibull slope and characteristic life aparted in the literature to determine a life. The

code for determining a rank, then survivabilityertha life is shown in figure 30.

For loop5 =1 To alpha
'Rank A
Cells(rl, c1) = (Cells(r1, c2) - 0.3) / (1000 +
'S of A
Cells(rl, c4) =1 - Cells(rl, c1)
SA = Cells(rl, c4)
'Life of A
Al = Application.WorksheetFunction.Ln(1 / S
B1 = Application.WorksheetFunction.Ln(Al)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
Cells(r1, c6) = CA
rn=r1+1
Next loop5

0.4)

A)

Figure 30. Subroutine for determining a life froamdom number.

Once the lives were established, a new rank wasllead based upon the size of the

pulled population rather than 1000, this time frbrto population size. Once the rank was

established again, the survivability associateth wéch life was calculated. The InIn(1/S) and

the In(L) were calculated to determine a Weibwp# for the generated data. The code for

determining the new rank, new survivability, Inlf§}), and In(L) is shown in figure 31.
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For loop7a =1 To alpha

'rank for 1 to sample size
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11,8) =271

'S for sample size
Z2 =1 - Cells(rll, 8)
Cells(r11,9) =22

'Inin(1/S) for sample size
Z5=11/2722
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
ri1=r11+1
Next loop7a

'InA
ri2z=7
For loop8 =1 To alpha
Cells(r12, 11) =
Application.WorksheetFunction.Ln(Cells(r12, 7))
riz=rl2+1
Next loop8

Figure 31. Subroutine for calculating rank, surbitgy, InIin(1/S), and In(L).

All calculations were performed for both bin A anid B. The complete code can be
found in the appendix. After all the previous cétions have been made, the spreadsheet is set
up to begin finding the Weibull slope;d-Lso, and mean lives of the current data. These

numbers were outputted to cells B16 to B29 (Sagad@2).
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Figure 32. Screeshot of inputs and outpt.
The slope was found by virtually plotting the Irl/§) by the In(L) using th
Application.Worksheet.LinEst command in Visual Radihe full code can be viewedfigure

33.
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'slope A

MA = Application.WorksheetFunction.LinEst(Range(Cel Is(7, 10),
Cells(alpha + 6, 10)), Range(Cells(7, 11), Cells(al pha + 6,
11)), True, True)

Cells(16, 2) = MA

MAa = Cells(16, 2)

SlopelA = MAa

Figure 33. Code for determining Weibull slope oivngrtual data

The Lyp and Lo lives were calculated using the Weibull equatiotihv® values of 0.9 and
0.5 respectively. The mean was found using the Gafamction method using the code in

figure 34.

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.GammalLn(musb)
LmeanA = LBa * Exp(ala)

Cells(21, 2) = LmeanA

cheeseAl = LmeanA

Figure 34. Code for determining mean by Gamma fananethod.
The curve fit equations were then calculated.califidence numbers and the averages of
the Weibull slopes, 14 and Lso lives were then displayed on the “SummaryB” slasethown in

figure 35.
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Figure 35. Screeshot of SummaryB she.

Time and Memory Used in RL

Each simulation was set up in two main loops. @@ would run 00 times in order ti
count how many times out of 100 th;o of one material was greater than the af the other
material. The other loop was how many times theauktion would do this. Over all, it we
performed 10,000 times. Due to limitations of RAM of the computers used, it was 1

possible to set up the simulation to just run 10,es. For methods-4 the simulation wa
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broken down into 5 segments each of which ran 2t088. Depending on the capabilities of the
computer these runs took on average one hour.drgewere split up between my home PC, my
laptop, and the computers in the Engineering Bogdit Georgia Southern University.

Method 5, however, took significantly longer. laswritten into the program to restart a
run if the lives generated did not fall into thesdmated cutoffs. Because of the randomness of
the simulation, it took many trials to get to téat 10,000 runs. The method 5 simulations were
broken down into runs of 50, 100, 500, 1000, an@D20he runs comparing AISI 9310 gears to
NASA Modified Vasco X-2 gears were able to finishithin 5 to 10 hours running 2000 at a
time. The Boeing Vertol runs were split into 25tgmts, each one running 400 runs. Each one of
these was also able to finish in 5 to 10 hours. Al& 9310 vs. Modified Vasco X-2 rolling
contact simulations were broken down into runs@abd 100. Depending on the computers
these could take between 12 and 24 hours to run.

All data totaled to over 6GB of memory. The 2,000s were on the 80MB range while

the 50 runs were in the 2MB range.

Summary of the Methodology

The general methodology is as follows.

1) A macro was constructed using Microsoft Visual Basnploying the Monte Carlo “bin”
technique of generating random values to be cakdliato lives by the use of the
Weibull equation (equation 1).

2) Hand calculations were performed to ensure each puamtiule was making the correct

calculations.
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3) These lives were counted to determine how manystitine life of one population was
larger than the other, this gave the confidencebmirbased upon the counting method.

4) This was done with five different methods. Thereeveve methods to incorporate
suspensions that were present in the original @&steh method has a different way of
determining a confidence number from the way timeloan numbers are generated.

5) In each method confidence numbers due to the ditrequations by Vicek, Zaretsky,
and Hendricks were also computed for comparison.

6) This process was simulated 10,000 times for eadhadefor statistical certainty.

7) After all the confidence numbers from the simulasiovere computed they were
compared to existing fatigue data, which contaicaafidence numbers determined from

Johnson curves, to validate them.
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Chapter 4

Results and Discussion

Introduction

A computer simulation was written in Microsoft Y Basic using Excel to statistically
determine the difference between two materialoanmonents involved in a fatigue experiment,
including suspensions, with confidence. The prognaaa modified from previous Monte Carlo
models as well as derived from previous statisticatiels in which all specimens have failed.
The simulation modeled fatigue data with out-liflsgensions. There are five methods presented
to determine which material or component is beftee following are results of the simulation
that were compared to published results (Townsgacktsky and Anderson, Comparison of
Modified Vasco X-2 with AISI 9310 - Preliminary Reyp 1977), (Townsend and Zaretsky,
Comparisons of Modified Vasco X-2 and AISI 9310 G8teels 1980), to validate the findings.

Each method represents what could have happeribd original experiment. As
mentioned earlier, some fatigue tests may be aut 8ly the experimenter due to their lengthy
lives. This is taken into account in methods 34 5. These methods force the program to use

only the specified number of lives in the calcuatof the confidence number.

Suspensions

The method of calculating confidence numbers engapers is not known. It is also not

known whether or not the suspensions are out-tivese contained within the data. It is
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assumed, however, that the lives are out-livestdlee trends shown in the graphs in the

literature (figure 36). The Monte Carlo simulatioinout-life suspensions methods presented

were designed with this assumption.
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ment,

Figure 36. Surface pitting fatigue life of CVM médd Vasco X-2 spur gears heat treated to
different specifications. Pitch Diameter 8.39 cedlers; speed, 10,000 rpm; lubricant, synthetic

paraffinic oil; gear temperature, 350 K; maximunrtdestress, 1.71xE0N/m?

The differing reasons for a test having susperssara also taken into account in the five
methods. If a piece of previous work is revisitethwhis program, it is not always clear why the
suspensions occurred. This is another reason édivé different methods presented here.

The only assumption necessary is that thereiguatdata present and within that data
are suspensions. It is not necessary to know homhgrthere are suspensions in the data.

In all 5 methods, the program records how manygiog of 100 the i life of Modified

Vasco X-2 is greater than AISI 9310 as well as mpany times out of 100 the dlife of AISI
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9310 is greater than Modified Vasco X-2. The coafice number that is reported is always the

bigger of the two numbers.

The Five Methods

Method 1

In method 1, it is assumed that the experiment uele the ideal case in which all
samples tested actually failed—i.e. no suspensiethod 1 is the original program written to
determine which material is better if all sampleai$ed. It does have its place in the analysis of
data containing suspensions though. It hypothesieegiew of what could have happened had
all the specimens failed.

From this method, trends can be observed as tb aolid have potentially happened had
all samples failed. This could show that, perh#per,e would have been no difference in the data
or on the other hand could show that there woulek leeen a significant difference. If a large
difference is observed in the two samples from itieshod, and not in the other methods, this
could cause concern and possibly mean the expershenld be performed again with no
suspensions to ensure accurate results.

In this case, it means that all 20 of Modified @3¢2 failed, and all 20 of AISI1 9310
failed. The result of this test gave a Monte Cadafidence number of 92. This number,
however, is on the wrong side of the statisticdlfferent boundary. It states that, if there were
no suspensions in the original experiment, theretheay be a statistical difference between the

two materials. The curve fit equations, howevemnfithe simulation reported confidence
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numbers of 83 for the;b equation. These numbers fall in accordance welotiginal data.

These results are summarized in table 7.

Table 7. Results of method 1 model rolling confatigue test

Confidence numbers generated Method 1
by simulation
L0 Curve fit equation 83
Monte Carlo 92

Method 1 which assumes all samples tested haveeddailure offers a confidence
number of 77 for AISI 9310 vs. Boeing Vertol Moéii Vasco X-2. In the original experiment,
the confidence number was 80. These agree with@éaeh in stating that there is no statistical
difference between the two materials. The simutagjenerates a confidence number of 100 for
AISI 9310 vs. NASA Modified Vasco X-2 which relatesthe confidence number of 99 which
was reported in the original paper. This statesttiexe is a statistical difference between AISI
9310 and NASA'’s heat treated Modified Vasco X-2e Bimulation also generated a confidence
number of 100 for AISI 9310 vs. Curtis-Wright Maei Vasco X-2 which also relates to the
confidence number of 99 as reported in the origiagler. The results of method 1 are

summarized in table 8.

Table 8. Results of method 1 model gear fatigue tes
Monte Monte Experimental/Graphical
Confidence Numbers Carlo Carlo
Method 1| Curve Fit | (Townsend and Zaretsky
AlSI vs. Boeing Vasco 77 76 80
AISI vs. NASA 100 96 99
AISI vs. Curtis-Wright 100 100 99
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Method 2

The failure index as reported in the literaturassed as the inputs for sample size in
method 2. Instead of inputting the number of specisntested, the number of failed specimens is
entered. This represents the actual number of s@ed failed. This is a description of the actual
number of failures in the original experiment. Asmethod 1, trends can be observed as to what
could have happened had there been no suspensitnesdata. Another conclusion that can be
drawn from this method is what could potentiallppan if outliers are left out of the analysis of
data.

In this method only 6 samples of AISI 9310 weradeéss opposed to 20. The inputs
were 20 samples of Modified Vasco X-2 and 6 samplesiSI 9310. This method presupposes
the correct number of failed samples in relatioth®original experiment. The Monte Carlo
confidence number was 78. This falls in accordamitie the original experiment; there is no
statistical difference between the two materiate Lplife curve fit confidence number was 79.
This also follows the experiment, no statisticdlestence between the two materials. These

results are summarized in table 9.

Table 9. Results of method 2 rolling contact fagigest

Confidence numbers generated Method 2
by simulation
L0 Curve fit equation 79
Monte Carlo 78

Method 2 again assumes that the number of samgled £qualed the number of

samples tested. In the original experiment all Bthe 30 samples tested of AISI 9310 failed.
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Only 12 of the 26 samples of Boeing Vertol Modifiddsco X-2 failed and only 18 of the 21
samples of NASA Modified Vasco X-2 failed. Thereres@o suspensions in the Curtis-Wright
data so it was not used in any of the remaininghou.

The inputs of method 2 were 30 samples of AISI 981tA, 12 samples of Boeing Vertol
Modified Vasco X-2 and 18 samples of NASA Modifi¢dsco X-2. The Monte Carlo
confidence number comparing AISI 9310 and Boeingd/éModified Vasco X-2 was 68. This
was low compared to the original value of 80 frdrma paper but is still in agreement that they
are not statistically different. The Monte Carlommidence number comparing AIS1 9310 and
NASA Modified Vasco X-2 was 100. This again agred$ the confidence number from the
paper which was 99. This shows there is a staidtiifference between the AISI 9310 gear and

then NASA heat treated Modified Vasco X-2 gear.Seheesults are summarized in table 10.

Table 10. Results of method 2 gear fatigue test
Monte Experimental/Graphical
Confidence Numbers Carlo MSSESGCS?O
Method 2 (Townsend and Zaretsky)
AISI vs. Boeing Vasco 68 76 80
AISI vs. NASA 100 95 99

It is assumed that the confidence number genelstélde Lo curve fit equation for
method 2 should most closely agree with the grapltienfidence number because the curve fit
equations were developed (Vicek, Hendricks andtZkye Probabilistic Analysis for Comparing
Fatigue Data Based on Johnson-Weibull Paramet&8) 2(VIcek, Hendricks and Zaretsky,
Relative Ranking of Fatigue Lives of Rotating Alunam Shafts Using L10 Weibull-Johnson

Confidence Numbers 2008) based off the graphic#haaepresented by Johnson (Johnson,
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Theory and Technique of Variation Research 19@hiison, The Statistical Treatment of
Fatigue Experiments 1964). Method 2 representstheveonfidence number would be

calculated graphically. The only lives given aresh reported and the degrees of freedom is also
the same.

Method 3

In method 3, suspension out-lives were intentigrggnerated. It is designed to closely

represent what happened in the original experinmetiiat the total attempted lives were
generated but only uses the number of actual fad@alculate the confidence number.

To begin this method the amount of specimensddsteeach material, and the amount
of specimens that actually failed were inputtede Tput of actual failures is used as the cutoff
point when calculating confidence numbers fromgbéeerated random lives. As mentioned in
the method, the program generated random numberede 1 and 1000 to represent the number
in which failure occurred in the particular “binf components. These numbers were then
ranked, survivability was determined, and the Wiislope and characteristic life were put into
the Weibull equation (equation 1) to calculateréual life. These lives are then used in the fitted
equations and in the Monte Carlo counting simuratedetermine confidence numbers. The
number of random numbers chosen was determinelaebpput of the number of specimens
tested. To incorporate the suspensions into thigs$ necessary to generate lives for all
specimens tested and then select a certain few tsdd in the calculation of the confidence
number. The number of samples failed as inputeedragrammed into the simulation as the
cutoff point. The program will generate lives faetnumber of specimens tested and then only

use the lowest lived lives, as specified by the,usecalculate the confidence numbers.
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For comparison of Modified Vasco X-2 and AISI 9320 random lives for Modified
Vasco X-2 and 20 lives for AISI 9310 were generaWwtien lives are used for calculating
confidence numbers, however, it only uses the lowasied 6 lives for AISI 9310. All 20 lives
of Modified Vasco X-2 were used. This allows thegmam to generate 20 lives for AlSI 9310 in
which they are spread out from minimum to maximurd then only the lowest 6 are used,
leaving the other 14 as out-lives.

The six life cutoff point was used because in thpgy (Townsend, Zaretsky and
Anderson, Comparison of Modified Vasco X-2 with AB310 - Preliminary Report 1977) there
were only 6 failures and the assumption was maaleatty specimens over those 6 were out-
lives due to the graph in the original paper. Bssumed from this graph (figure 37) that both the
Modified Vasco X-2 and AlSI 9310 samples stoppetharange of 380,000,000 cycles.

There was a discrepancy in the original paper (ls®md, Zaretsky and Anderson,
Comparison of Modified Vasco X-2 with AISI 9310 reiiminary Report 1977), according to
the table the Iy lives of the materials were 63 million cycles a4 million cycles, however,
according to the graph of this data (figure 373hibws Lo lives of 6.3 and 14 million cycles.
There was a decimal error somewhere but this dicffect the results. For this work, it was

assumed that theglives were 63 and 140 million cycles.
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Figure 37. Comparison of rolling-element fatiguaes of AIS1 9310 and Vasco X-2 in rolling
contact tester (Townsend, Zaretsky and Andersomp@oison of Modified Vasco X-2 with
AIS1 9310 - Preliminary Report 1977)

Method 3 is more indicative of what actually hapgetm the original experiment if the
suspensions were out-lives. Based on the datppéaas that the experiment was cut short once a
certain maximum life was reached. Method 3 simslatbat would happen if every time the
experiment was run, that only the 6 lowest liveat81 9310 were used to calculate the
confidence number. For method 3, the Monte Cartdidence number was 92. The confidence
number for the curve fit equations was 79 for thglite curve fit. These results are summarized

in table 11.
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Table 11. Results of method 3 model rolling contattiue test

Confidence numbers generated Method 3
by simulation
L10 Curve fit equation 79
Monte Carlo 92

For the first simulation of the second paper (Teemd and Zaretsky, Comparisons of
Modified Vasco X-2 and AISI 9310 Gear Steels 1980)]ives for AIS1 9310 were generated
and all 30 lives were used in the calculations 2tlves for Boeing Vertol Modified Vasco X-2
were generated but only the lowest 12 lives weegl figr the confidence number calculations.
Similarly, for the second simulation, 30 lives fiSI 9310 were generated and used and 21
lives for NASA Modified Vasco X-2 were generated bualy the lowest 18 were used for the
confidence number calculations. The confidence raerrgbnerated by the simulation for AlSI
9310 vs. Boeing Vertol Modified Vasco X-2 was 77igthclosely agrees with the original
confidence number of 80 from the paper (TownsertZaretsky, Comparisons of Modified
Vasco X-2 and AISI 9310 Gear Steels 1980). Thikestthat there is no statistical difference
between the two materials. The confidence numbeemgded by the simulation for AlISI 9310
vs. NASA Modified Vasco X-2 was 100 which agreeimthe confidence number of 99 from
the original paper (Townsend and Zaretsky, Compas®f Modified Vasco X-2 and AISI 9310
Gear Steels 1980). This states that there is igtgtat difference between the two materials.

These results are summarized in table 12.
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Table 12. Results of method 3 gear fatigue test

Monte Carlo Monte Experimental/Graphical
Confidence Numbers Method 3 Carlo
Curve Fit| (Townsend and Zaretsky)
AISI vs. Boeing Vasco 77 74 80
AISI vs. NASA 100 95 99

Method 4

Method 4 works under the same principle as megdtdagain uses an input as a cutoff
point to determine how many lives to use in thewaltion of the confidence numbers. This
method differs from Method 3 in that instead oingsa number of samples as the cutoff point, it
uses a specified life as the cutoff. The prograserally does what an experimenter would do,
i.e. stop a run once it reaches a certain numbeyaés. This method allows for a closer
representation of the original experiment. If taspensions in the original experiment were
caused due to the experimenter stopping the tesiie they reach a maximum life this
simulation should closely resemble the resultsirAmethod 3, the user inputs the total number
of specimens tested and then inputs the life atkvhishould use as the cutoff. The program will
then generate the total number of lives and ongythe lives within the cutoff window for the
calculation of the confidence numbers.

In the original paper, it was not stated why onlyf@he specimens failed. It was deduced
from one of the original graphs that the specimeere probably stopped at a certain life
because it was not necessary to carry on (ouslipensions).

For the comparison of Modified Vasco X-2 and A8SIL0, 20 random lives were
generated for Modified Vasco X-2 and 20 lives fd6RA9310. Once these lives were generated,

a set cutoff life was used to determine the comiegenumber. This represents what would
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happen if the experiment was cut short due to dingpge reaching a maximum life. The cutoff
point used was 380 million lives. This life was sho because it was the maximum life as shown
in the original paper.

The only lives used to compute the confidencelmemwere between 1 and 380 million.
This could be anywhere between 2 samples and aa@ples, as long as it falls within that
window. There had to be at least 2 lives to usetbtting function in Visual Basic to determine
a Weibull slope. The Monte Carlo confidence nundearerated by method 4 was 92; the L
curve fit equation confidence number was 79. Theectit confidence number agrees with the
original paper, however the Monte Carlo confidenamber does not. These results are

summarized in table 13.

Table 13. Results of method 4 rolling contact fag¢igest

Confidence numbers generated Method 4
by simulation
L0 Curve fit equation 79
Monte Carlo 92

Again for method 4, a specified life was usednasdut off criteria for the simulation.
Lives were generated for the amount of attemptetpsess and then the defined life was used as
the cut off to perform the calculations to deterenihe confidence number. The cut off life was
400 million.

For this simulation, 30 lives were generated asetufor the AISI 9310 gears. This was
compared to the 26 lives of Boeing Vertol Modifiédsco X-2, and the 21 lives of NASA

Modified Vasco X-2.
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The Monte Carlo confidence number calculated comgaklSI 9310 to Boeing Vertol
Modified Vasco X-2 was 76, which compares closelyhie original confidence number of 80.
The Monte Carlo confidence number calculated comgakIS1 9310 with NASA Modified
Vasco X-2 was 100, compared to the original comtgenumber of 99. Both of these confidence
numbers agree with the original experiment in thate is no statistical difference between AISI
9310 gears and the Boeing Vertol heat treated Matiifasco X-2 gears, and there is a
statistical difference between AlSI 9310 gears #@wed\NASA heat treated Modified Vasco X-2

gears. These results are summarized in table 14.

Table 14. Results of method 4 gear fatigue test
Monte Experimental/Graphical
Confidence Numbers Carlo MSSESGCS?O
Method 4 (Townsend and Zaretsky)
AISI vs. Boeing Vasco 76 75 80
AISI vs. NASA 100 95 99

Method 5

Method 5 was designed to be a hybrid of methodsd34a As in methods 3 and 4, the
number of lives generated was the number of spedrested. In method 5, the cutoff points
from both methods 3 and 4 were used together. Afes specified were how many suspended
lives to generate as well as what range of livealton.

In the comparison of Modified Vasco X-2 and AISI®, 20 lives for Modified Vasco
X-2 were generated and 6 lives for AISI 9310 weraagated but would force a cutoff life of 380
million cycles. It would force 6 lives that fall treeen 1 and 380 million cycles for AISI 9310.

This method was thought to be the one that wouldtrmlosely resemble the original
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experiment; however, the results proved that tdyeahe case. The Monte Carlo confidence

number generated was 52. Thgdurve fit confidence number was 74.

Table 15. Results of method 5 rolling contact test

Confidence numbers generated Method 5
by simulation
L10 Curve fit equation 74
Monte Carlo 52

The curve fit confidence number was in close agerg with the experimental value of
80 but the Monte Carlo confidence number was sicamtly off. This is believed to have
happened because the sample size of 6 is so stnghlazed to the life range of 1 to 380 million
cycles. The scatter in the data was extreme arstnadble outcomes were rare.

In comparing AISI 9310 with Boeing Vertol and NASAodified Vasco X-2, the cutoff
sample numbers were 12 and 18 respectively ancutioé life was 400 million cycles for both
cases. The Monte Carlo confidence number genefatedSI| 9310 against Boeing Vertol
Modified Vasco X-2 was 52 and thegolcurve fit confidence number was 75. Again, thismpo
Monte Carlo confidence number is due to the low benof samples and wide range of lives
generated. The Monte Carlo confidence number geatefar AIS1 9310 against NASA
Modified Vasco X-2 was 100 and theplcurve fit confidence number was 96. These numbers

were in excellent agreement with the original coafice number of 99.
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Table 16. Results of method 5 gear fatigue test
Monte Experimental/Graphical
Confidence Numbers Carlo MSSESGCS?O
Method 5 (Townsend and Zaretsky)
AISI vs. Boeing Vasco 52 75 80
AISI vs. NASA 100 96 99

Summary of Simulation Results

The numbers generated were in close agreementhvatbriginal data. In table 17 is a
summary of the results of the simulation for thenparison of Modified Vasco X-2 with AISI
9310 rolling contact fatigue test.

Summary of Rolling Contact Fatigue Test

Table 17. Summary of results of methods 1-5 fdinglcontact fatigue test vs. experimental
confidence number

Material Method Experimenta
1 2 3 4 5
Modified Vasco X-2 vs. | Curve fit 83 79 79 79 74 84
AISI 9310 MC 92 78 92 92 52

Table 17 includes the confidence number using tladife curve fit equations, the
generated Monte Carlo (counting) confidence numdnadl,the confidence number determined
graphically. The curve fit confidence numbers weakeulated using the equations developed by
Vicek, Zaretsky, and Hendricks (Vicek, Hendricksl afaretsky, Probabilistic Analysis for
Comparing Fatigue Data Based on Johnson-WeibusirRaters 2007), (Vilcek, Hendricks and

Zaretsky, Relative Ranking of Fatigue Lives of Riog Aluminum Shafts Using L10 Weibull-
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Johnson Confidence Numbers 2008). The Monte Carfidence numbers are the numbers
generated by using the random life generator agul tounting from run to run whichdlife is
greater.
Summary of Gear Fatigue Test

In table 18 is a summary of the Monte Carlg, turve fit, and graphical confidence
numbers for comparing AISI 9310 to the three (Bgeftertol, NASA, Curtis-Wright) heat

treatments of Modified Vasco X-2 gear steels.

Table 18. Summary of results of methods 1-5 for gm#ggue test vs. experimental confidence
number

Material Heat Method Experimental
Treatment 1 2 3 4 5

AISI 9310
Boeing | Curvefit] 76 76 74 75 75 80
Vertol MC 77 68 77 76 52

Modified Curve fit| 96 95 95 95 96

Vasco X-2| ASA Iy 100 | 100| 100 | 100, 100 99
Curtis- | Curve fit] 100 o - -—-- 99
Wright MC 100

The only materials to have suspensions in thetst@ere the NASA Modified Vasco X-2
and the Boeing Vertol Modified Vasco X-2. The twiber materials had all of their samples fail.
Even though all of the Curtis-Wright Modified Vas¥e? samples failed the data was still run
through the simulation to validate it because thmukation was original written to run data with
no suspensions. This means the Curtis-Wright dataamly used in method 1 where all samples

of each material failed. This is why the boxesldemk for methods 2, 3, 4 and 5.
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Comparison of Weibull Slopes;d, and Lso Lives

In calculating the confidence numbers, Weibulpsk® and Lo lives were generated in the

simulation. These values were recorded for eactanghthen averaged to compare to the

original values published in the literature. Tabesummarizes the Weibull slopesg,land Lso

lives generated by all five methods as well agyiaghically determined values from the original

experiment comparing Modified Vasco X-2 to AISI 93blling contact fatigue samples.

Table 19. Summary of Weibull slopeycland lsg numbers generated by simulation vs. experimentalbers

Material Method Experimental
1 2 3 4 5

- Weibull
Modified | sjope 2.11 2.11 2.11 2.11 2.11 2.2
VQ_SZCO L10 60,027,376/ 60,016,270 60,026,020 77,706,402 0260752| 63,000,000
L50 148,353,772 148,345,74Q 148,358,839 148,378,744 | 148,364,794148,000,000

Weibull
Alsl | Slope 1.35 1.42 1.52 1.58 1.95 1.4
9310 |L10 133,989,948 144,470,418 140,761,639 140,230,434| 70,829,29p  140,000,0
L50 541,389,859 549,152,686 748,699,326 1,120,168,002 195,337,594 570,000,000

In table 20 are the values comparing AISI 9310 gézels to the three (Boeing Vertol, NASA,

Curtis-Wright) heat treatments of Modified VascdX-
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Table 20. Summary of Weibull slopeyland lsp numbers generated by simulation vs. experimentalers

) Heat Method .
Material Experimental
Treatment 1 2 3 4 5
Weibull 2.22 2.22 2.22 2.22 2.22 2.30
AISI 9310 Slope
L10 22,096,686 22,096,554 22,093,58b6 22,101,670 0952324 23,000,000
L50 52,179,303 52,179,988 52,176,856 52,180,906 1832944 52,000,000
. Weibull 0.96 0.96 0.99 0.98 1.15 1.00
Boeing | Slope
Vertol L10 37,461,804 39,423,526 38,739,860 38,320,327 271689 38,400,000
L50 256,415,183 260,420,04 309,002,024 276,309|7994,956,578 253,000,00
. Weibull 0.51 0.51 0.51 0.51 0.54 0.53
Modified NASA Slope
Vasco X-2 L10 982,878 1,031,184 1,022,719 1,016,736 977,846 800,0
L50 30,456,126 30,863,060 31,958,843 30,845,819 0374944 27,600,000
_ Weibull 2.02 2.10
Curtis- Slope
Wright L10 3,141,356 -— -— -—- -— 3,300,000
L50 8,097,877 -— -— -—- -— 8,000,000

Summary of Comparison of Modified Vasco X-2 withSAR310 — Preliminary Report

The first experiment the program was compared t® peaformed in 1977 by Dennis

Townsend, Erwin Zaretsky, and Neil Anderson (Tows&aretsky and Anderson, Comparison

of Modified Vasco X-2 with AISI 9310 - PreliminaReport 1977). In this experiment

Townsend, Zaretsky, and Anderson were concernechwhaterial would be more suitable for

gears in helicopter transmissions.

With advances being made in the helicopter indusiey gears in the transmissions were

reaching extreme temperatures (above 250° F).Wassexceeding the limits of the gear

material currently available. This material was A9310 steel. The new gear material they

decided to test was Modified Vasco X-2. This maitlesias originally used as a tool steel. In
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order to make the Vasco X-2 suitable for helicopt@nsmission gears, the carbon content was
lowered and then the material was case hardenethéea softer core. The objectives of their
research were to a) determine the performanceuwfggars made from the new material
modified Vasco X-2, b) compare the fatigue livesha old material AISI 9310 against the new
material modified Vasco X-2, and c) to compareltbehardness retention of the two materials.
This was going to be accomplished by testing the gpars with different heat treatments,
rolling contact fatigue tests, and hardness tests.

The specific test this current research was corcewith was the rolling element test. In
this test a 3 inch long rod with 0.375 inch diametas inserted into the rolling contact test
apparatus (figure 38). This tester consisted ofrmling discs of 7.5 inch diameter made of
AISI M-50 steel which were heat treated to the sharelness as the samples. The samples were
placed in between the two discs and a load waseapphtil the sample was able to turn both
discs. Once the discs and sample were in thermailagum the maximum load (700,000 psi)
was applied. The specimen would be rotated at D2%® until failure occurs. The tester would
shut down automatically by means of a vibratioredtetr. The lives of the specimens, denoted
by number of rotations until failure, were usedatculate a confidence number to determine
which material was more suitable for the applicatio the experiment 20 samples of Modified
Vasco X-2 were tested and all 20 of them failed51/310 also had 20 samples reported as

tested, but only 6 reached failure.
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Figure 38 Rotational fatigue tesi (Townsend, Zaretsky and Anderson, Comparison ofifiéat]
Vasco X-2 with AISI1 9310 Preliminary Reporl977)

The experiment determined that there was an 84%demte between the two materie
This says that 84 times out of 100 AISI 9310 vahtllonger than Modified Vascc-2.
According to Johnso@dohnson, The StatisticTreatment of Fatigue Experiments 1€ this
number states that there is no statistical diffeedmetween the two materials. There must
confidence of 90 or greater to be determined sizdiy different. A summary of these results

in table 21.
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Table 21. Fatigue life results from Comparison afdvied Vasco X-2 with AISI 9310

[Speed, 25 000 stress cycles per min.; maximum hertz stress,
4823x10% N/m? (700 000 psi); lubricant, MIL-L-7808, temp.
ambient. |

Material Life, millions of Weibull Failure Confidence
stress cyeles slope index number at

lO-percent
10=-Percent | 50-Percent
life level
life life (a) {b)
Modified 63 148 2.2 20 out of 20 84
Vasco X-2
AISI 9310 140 570 1.4 G oul of 20 ———

ENllmber of fatigue failures out of number of specimens tested,
Percentage of time that 10-percent life obtained with AISI 9310 will

have the same relation to the 10-percent life obtained with modified
Vasco X=-2,

The results of the gear tests of Townsend andtgieréTownsend, Zaretsky and
Anderson, Comparison of Modified Vasco X-2 with AB310 - Preliminary Report 1977) were
that the gears made from AISI 9310 survived omtlagnitude of hours with millions of cycles.
Failure occurred due to surface pitting or spallifige modified Vasco X-2 gears, however, only
survived in the 600,000 range for less than an hadrfailure was due to tooth fracture.

A summary of the results is as follows:

1) Crack formation at the tips of the gear teeth dudarburizing process of the modified
Vasco X-2 resulted in fracture of the gear teetarad period of less than one hour
(600,000 revolutions) of operations under test dontk.

2) The lives of the AISI 9310 gears at a 90% probgbdf survival were 39.3, 19, and 7.1
hours at 222,000 psi, 248,000 psi, and 272,008eppectively.

3) Failure of the AISI 9310 gears was by surfacemmttvith no tooth fracture occurring.
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4) The rolling element fatigue life of the AISI 931@svapproximately twice that of the
modified Vasco X-2.
5) At temperatures of approximately 300 F there wasignificant difference in hot

hardness between the modified Vasco X-2 and Al2D98aterials.

Summary of Comparisons of Modified Vasco X-2 an&l310 Gear Steels

The second paper used for comparison was Comparifdviodified Vasco X-2 and
AISI 9310 Gear Steels by Dennis P. Townsend andrEvivZaretsky, 1980 (Townsend and
Zaretsky, Comparisons of Modified Vasco X-2 and |18S810 Gear Steels 1980). In this
experiment, again, two different gear materialsentested to see which was superior. The AISI
9310 was compared to three different heat treasnanVlodified Vasco X-2. The three different
heat treatments came from three different vend®@osing Vertol, NASA, and Curtis-Wright. In
this experiment, gears were tested as opposedtarialaods as in the first experiment. The

apparatus used is shown in figure 39. The restiltsecexperiment are shown in table 22.
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Figure 39 Gear tester used in original experin (Townsend and Zaretsky, Comparison:

Modified Vasco X-2and AISI 9310 Gear Steels 19
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Table 22. Summary of gear fatigue life results fréomparison of Modified Vasco X-2 and
AIS1 9310 Gear Steels (Townsend and Zaretsky, Cosges of Modified Vasco X-2 and AlSI
9310 Gear Steels 1980)
Material Heat treat Gear system life, Revolutions  Weibull Slope FaillmdeX | Confidence
procedure numbef
10-Percent 50-Percent
life life
AISI 9310 |  ------ 23x16 52 x10 2.3 30 of 30
Modified Boeing Vertol 38.4x10 253 x16 1.0 12 of 26 80
Vasco X-2 NASA 0.8 x16 27.6 x16 0.53 18 of 21 99
Curtis-Wright 3.3x1b 8 x10 2.1 19 of 19 99

®Number of fatigue failures out of number of geasteéd
PPercentage of time that 10-percent life obtainett WiS| 9310 gears will havthe same
relations to the 10-percent life obtained with nfiedi Vasco X-2 gears.

There was no statistical difference between AISIMand the Boeing Vertol heat
treatment of Modified Vasco X-2 with a confidenagmwber of 80, however there was a
statistical difference between AISI 9310 and the®and Curtis-Wright heat treated Modified
Vasco X-2, both with confidence numbers of 99. disweported that all 30 of the AIS1 9310
gears failed, and all 19 of the Curtis-Wright gefaiked, however, only 12 of the 26 of the
Boeing Vertol gears failed, and only 18 of the 2the NASA gears failed. Graphs of the results

are shown in figure 36.

Summary of Original Experimental Results

In the comparison of Modified Vasco X-2 with AI$310 rolling contact fatigue test the
original experiment stated that the fatigue lifedd$1 9310 was approximately twice that of
Modified Vasco X-2, however, the two materials weog statistically different due to a
confidence number of 84.

This was in agreement with the numbers calculbjechethods 1-5. Seven of the ten

confidence numbers were on the correct side ob3how no statistical difference, while the
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other three were 92, which is very close to theffutf 90. This leads to a conclusion by the
methods presented that there is no statisticardifice between the fatigue lives of AISI 9310
and Modified Vasco X-2.

In comparing AISI 9310 gears to the three diffefegat treatments of Modified Vasco
X-2 gears, it was shown in the original experinthat Modified Vasco X-2 gears can be
reasonably reliable if extreme quality control ne theat treating process is observed. The results
did show that there was no statistical differenegveen the AISI 9310 gears and the Modified
Vasco X-2 gears subjected to the heat treatmeBioeyng Vertol with a confidence number of
80. The results generated by the Monte Carlo medimoicthe Lo curve fit equations were in
agreement with this number for all five methodssdthe original results showed there was a
statistical difference between the AISI 9310 geend the Modified Vasco X-2 gears subjected
to the heat treatments by NASA, and Curtis-Wrigpoth with a confidence number of 99. This
was also in agreement with the results generatédebilonte Carlo andik curve fit equations

methods. All five methods gave a confidence nunab@00.

Preventive Maintenance

Another reason for the need of fatigue studiesnsMarranty or preventive maintenance
information. If a company studies the fatigue oé @f their components, they will know how
long to warranty that component. A company canrdates a warranty based on the failure
analysis of their part, this means that on avetiagi part fails within that frame time. If

someone happens to buy a part that falls belownisen, then they are covered and can get a
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new part. Likewise, if their part outlasts the veartty then they know they got their money’s
worth because the part is above average and maygero work for a long time.

Similar to determining warranties, fatigue testisgised to determine preventive
maintenance schedules. If you do not know how EBpegmponent lasts, then how do you know
when to change it out? Fatigue testing allows &iednining theses schedules with very good
accuracy, depending on the application and whatemeage of failure is allowed.

When fatigue tests are performed, typically onlinesen ten and twenty samples are
tested due to high cost and testing time. It wasalestrated in (Vicek, Zaretsky and Hendricks,
Test Population Selection From Weibull-Based, Mdb&elo Simulations of Fatigue Life 2008)
that for a 30 percent variability in fatigue lifatd at least 30 to 35 samples must be tested. Any
more samples will give better results, howeverpewvegh 200 samples, there is still a 15 percent
variation from maximum life to minimum life (Vicelgaretsky and Hendricks, Test Population
Selection From Weibull-Based, Monte Carlo Simulasiof Fatigue Life 2008). People have
fallen victim to simple sample tests to predict wagopulation will do. It has been standard
practice to perform these tests and acquire treeatad then simply take an average of the data
and then that will be the resultant number. Thishoeé of testing has been proven to not be
sufficient. When only the average of a sampleksiian to account, certain aspects of the data
are missed. Another misconception in reading data graph it and make assumptions visually.
Graphs are made to be read and to put data intalierspective. It is very easy to over look
the fact that if you were to enlarge the graph,dai points may be lying directly on top of each
other, which would indicate no statistical diffecenThese aspects of data collection are taken
into account with Johnson’s methodology. A testeof bearings in a bin of 1,000 could

potentially give unsatisfactory data. The strongestin a box could be picked and then it could
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be assumed that the rest are just as strong, wheality, if they are put into production

components, they could have disastrous effects.

Summary of Results

There were five models developed to analyze deitslispensions in fatigue data. It was
shown that methods 1 through 4 were in relativédge agreement with the experimental results
from the literature that were determined graphycdlethod 5 was not in agreement. This is
believed to be because the number of samples ndbd calculations was very small compared
to the range of lives given, and there was too nuaclability in the randomness to notice any

trends.
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Chapter 5

Conclusion

Fatigue

The goal of a mechanical engineer is to designpomants that last and are safe to use.
To determine whether or not a specific componematerial will last, it must be tested. One
such test is a fatigue test. This will give theiaegr an idea of how long a component will last
under certain circumstances. The problem with tettidata is that it is probabilistic and not
deterministic. There is no way to determine exaethgn something will fail, however, there
exist methods for predicting when a component faill

The first was developed by Waloddi Weibull in ##50’s. He developed a method for
statistically predicting failure. Following Weibidlmethod, Leonard Johnson in the 1960’s
developed a method to determine whether or nonmaterial was statistically different from
another. This method was widely used by engindensever, it was difficult to calculate due to
the limited graphs he published. This method wherta step further by Zaretsky, Hendricks,
and Vicek. They took Johnsons charts and graphslemeloped equations to fit them. This
allowed for ease of use to calculate a confidenreber. From there, a Monte Carlo simulation
was written using the equations to expand on tipemxental data.

Vicek, Zaretsky, and Hendricks demonstrated theepnof a “bin” model which was
the basis of the Monte Carlo simulations. In tHig"" model it is assumed that there is a

population of failed samples, the exact lives elstihsamples is not known, however, it is known
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in what order they failed. This order can be ranketh O to 1 and, using the parameters of the
Weibull equation, it is possible to calculate & fibr each sample.

The experimental data (Weibull slope, and charesttetife) would be used as inputs
into the program and the program would run thousardimulations of the original experiment.
This data would then either agree or disagree ththoriginal experiment. This allows engineers
to have valuable data yet not spend a lot of m@melytime on experimental testing.

These simulations, however, were limited. Nofalgue tests are run to failure. Some
tests get stopped for numerous reasons. They niagapped because the engineer has a
specific cut off point that the specimen does remchto exceed, or the power in the building
could go out. Regardless of the reason for thetdestiop, it is still valuable data.

This new simulation takes these suspensions irdouwent and gives a statistically

determined confidence number.

Method

The purpose of this research was to develop a htleatewould allow the statistical
validation of a confidence number for fatigue tesimparing two materials in which out-life
suspensions are present. The method used was & Karib simulation in which random
numbers are generated, ranked, and then convertee$ using the Weibull equation
(equation 1). This method of analyzing fatigue hssiias been used in the past, but not to
incorporate suspensions. The goal of the simulati®no cut down on cost and time of fatigue

tests while still having statistically accuratealat
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Five methods were developed and then comparedawrk data sets for validation. The
first method was designed to treat the data deifdilure index was that all samples of both
populations failed. This did not directly take irdocount suspensions but was used for
comparison purposes. This provided some insigbtwitat possibly could have happened had
all samples failed.

The second method was designed to incorporatefaitdyl samples in the calculations.
The failure index of method two was the same addihere index in the original experiment.
This again did not directly take suspensions imant in the simulation, but did represent
what should be calculated as if done graphicalliieWcalculating a confidence number
graphically, all that is available is the failedrgaes, and this is what method 2 represented.

In method 3, suspensions were actually generd@tezglnumber of attempted samples was
the number of generated lives; however, the nurabsamples failed was the number of
generated lives used in the calculations. Thereaxagoff sample size incorporated into the
simulation. In generating all the lives it was amsed that there were out-lives not being used in
the calculations. According to the graphs of thginal data, it appeared that none of the
samples passed a certain life and this lead taghemption of out-lives.

Method 4 also made use of generating suspendesl dind then used a cutoff to calculate
confidence numbers. This time, however, insteaghaiple size being the cutoff, a particular life
was the cutoff. Again, the number of lives genatat@s equal to the number of samples
attempted, yet this time the number of samples usedlculating confidence numbers varied
because the number of samples was determined byrtamwy fell within the range of the cutoff

life.
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Method 5 was designed to be a hybrid of both nagi®and 4. The samples generated to

be used in the calculations were forced to a aertamber of samples as well as fall within a

certain range of lives.

Results

The results of this model of comparing two fatiglata sets containing suspensions are

repeated in tables 23 and 24.

Table 23. Results of comparing Modified Vasco Xr#l &IS1 9310 rolling contact fatigue daf

Curve fit confidence numbers vs. Monte Carlo codmenfidence numbers based on L10 liy
Material Method Experimental
1 2 3 4 5
Modified Vasco X-2 vs. | Curve fit 83| 79| 79 79 74 84
AISI 9310 MC 92| 78| 92| 92| 52

Table 24. Results of comparing Modified Vasco X2l &IS1 9310 gear fatigue data

Monte Carlo Counted Confidence Numbers

Material Heat Treatment Method Experimental
1 2 3 4 5
AISI 9310
. Boeing Vertol 77 | 68| 77| 76| 52 80
MOd'f;f_dzvasco NASA 100] 100 100 100] 100 99
Curtis-Wright 100| ---- | —=== | === | ---- 99
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The confidence numbers generated by the simuldtiatth the Monte Carlo numbers and
the curve fit numbers were in agreement with thgimal graphical confidence numbers showing

whether two materials were statistically differeniot.

Recommendations for Further Study

The next step for incorporating suspensions intoate Carlo simulation would be to
reproduce suspensions that are contained withiddltee That is suspensions that are not out-
lives. A simulation could be written to use the sanm model and counting method to determine
a confidence number. The user could input how nsaispensions there are and then let the
program randomly pick which samples to suspends €buld be repeated to show trends.

This current model could also be adjusted to cthumispo and mean lives. The standard
is to use the g life but this could still show trends. If a poptitas Lso or mean life is
significantly greater this could lead to a conabusio repeat the experiment if possible to see if
trends repeat.

Another possible future study would be to perf@mexperiment with fatigue samples
and specify the life at which to use as a cut-attide. This way it would be known exactly why

the suspensions occurred and it would be a morgraecway of validating the simulation.
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Appendix A: Computer Simulation for Method 1
Sub Macrol()
' Macrol Macro

' Keyboard Shortcut: Ctrl+e

Worksheets(1).Select

Application.ScreenUpdating = False 'to keep scfe@n constanly updating and slowing down
simulation

trialsB = Cells(13, 2) 'number of times to run siation, can be from 1 up

taz = 87 'this is for the index to copy the summaage and index the whole thing down 87 cells
shuttleb = 3

For loop37 = 1 To trialsB 'loop that runs entiregnam
Worksheets(1).Select

Column = 2 'indexs the summary page for all valussyes to right after every loop

countL10 = O 'these counts are used to count whibigger for comparison on summary page
countL10B =0

countmean =0

countmeanB =0

‘This is used in the code for archiving the data
shuttle = 5

trials = Cells(12, 2) 'number of times one runepeated, this value is typically 100 to get a
confidence number out of 100

For loopl10 =1 To trials 'within this loop all thembers for one run get calculated and copied
to the summary page to be compared after 100 runs

alpha = Cells(9, 2) 'size of bin A
alpha2 = Cells(10, 2) 'size of bin B

If alpha > alpha2 Then 'this is just to numberghmples from 1 to which ever bin is bigger

XxX=7
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For loop3 =1 To alpha
Cells(x,3)=x-6
X=Xx+1
Next loop3
beta = alpha 'beta is used in the tbap archives the numbers, and for clearing caaten
on sheetl
Else
X=7
For loop3 =1 To alpha2
Cells(x,3)=x-6
X=x+1
Next loop3

beta = alpha2
End If

'‘Bin A
‘generating random number
alpha = Cells(9, 2)
r=7
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = "=randbetween(1,1000)"

'‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl=numl +1
Next loopl

'sorting column
ActiveWorkbook.Worksheets("Sheetl").SorttBelds.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Satés. Add Key:=Cells(7, 4), _
SortOn:=xISortOnValues, Order:=xIAscendiDgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheet1").Sort
.SetRange Range(Cells(7, 4), Cells(alpba4))
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.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply

End With

'‘Bin B
‘random number
alpha2 = Cells(10, 2)
r=7
numl2 =1
For loop2 = 1 To alpha2
Cells(r, 12).Select
here4:
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)"

'‘Checking for duplicate
S=6
For randcheck2 =1 To num12
If Cells(r, 12) = Cells(s, 12) Then GoTo here4
s=s+1
Next randcheck2
r=r+1
numl2 = numl2 + 1
Next loop2

' Sorting column
ActiveWorkbook.Worksheets("Sheetl1").Sort. Salts.Clear
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Add Key:=Cells(7, 12), _
SortOn:=xISortOnValues, Order:=xlAscendibgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort
.SetRange Range(Cells(7, 12), Cells(alph6212))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With
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For loop5 =1 To alpha
'Rank A
Cells(r1, 5) = (Cells(rl, 4) - 0.3) / (1000 #4P'ok to keep 1000 because bin is from 1 to 1000
'S of A
Cells(rl, 6) =1 - Cells(r1, 5)
SA = Cells(r1, 6)
'Life of A
Al = Application.WorksheetFunction.Ln(1AS
B1 = Application.WorksheetFunction.Ln(A1)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
Cells(r1, 7) = CA
rt=rl+1
Next loop5

r1=7

For loop6 = 1 To alpha2
'‘Rank B
Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (100@4)
'S of B
Cells(r1, 14) =1 - Cells(r1, 13)
SB = Cells(r1, 14)
'Life of B
a2 = Application.WorksheetFunction.Ln(1B)S
B2 = Application.WorksheetFunction.Ln(a2)
CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2)
Cells(r1, 15) =CB
rn=r1+1
Next loop6

ri1=7

For loop7a =1 To alpha

'rank for 1 to sample size for bin A
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11, 8) = Z1

'S for sample size for bin A

Z2 =1 - Cells(r11, 8)
Cells(r11, 9) = z22
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'Inin(1/S) for sample size for bin A
Z5=1/22
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
rti=ri1+1
Next loop7a

ri1l1=7v

For looplla =1 To alpha2

'rank for 1 to sample size for bin B
Z1b = (Cells(r111, 3) - 0.3) / (alpha2 4)0.
Cells(r111, 16) = Z1b

'S for sample size for bin B
Z2b =1 - Cells(r111, 16)
Cells(r111, 17) = Z2b

'Inin(1/S) for sample size for bin B
Z5b=1/22b
Z3b = Application.WorksheetFunction.Ln(Z5b)
Z4b = Application.WorksheetFunction.Ln(Z3b)
Cells(r111, 18) = Z4b
r1i11 =r111+1
Next looplla

'InA

ri2=17

For loop8 = 1 To alpha

Cells(r12, 11) = Application.WorksheetFunction.Le(5(r12, 7))
r12=r12+1

Next loop8

'InB

r13=7

For loop9 = 1 To alpha2

Cells(r13, 19) = Application.WorksheetFunction.Le(S(r13, 15))
r1I3=r13+1

Next loop9
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'‘Organized answers on left of sheet 1, cells B1848

'slope A

MA = Application.WorksheetFunction.LinEst(Range(ISél, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)), Truei€)r

Cells(16, 2) = MA

MAa = Cells(16, 2)

SlopelA = MAa

'slope B

MB = Application.WorksheetFunction.LinEst(Range (8@, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), Truge)

Cells(24, 2) = MB

MBb = Cells(24, 2)

SlopelB = MBb

'intercepts A and B

Ba = Application.WorksheetFunction.Intercept(Ramgs(7, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)))

Bb = Application.WorksheetFunction.Intercept(Rarim(s(7, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)))

'Lbeta A calculations
V2 = (Ba/ MAa)

VV =-1*V2

LBa = Exp(VV)

'‘Lbeta B calculations
V3 = (Bb/ MBb)

MO =-1*V3

LBb = Exp(MO)

‘plotting Lbetas
Cells(17, 2) = LBa
Cells(25, 2) = LBb

sassyAl = LBa
sassyB1 = LBb

'L10 A

L10a = Exp(-2.25037 / MAa) * LBa
Cells(18, 2) = L10a

L10Al1 =L10a

'L10B
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L10b = Exp(-2.25037 / MBb) * LBb
Cells(26, 2) = L10b
L10B1 = L10b

'L50 A

L50a = Exp(-0.36651 / MAa) * LBa
Cells(19, 2) = L50a

L50A1 = L50a

'L50 B

L50b = Exp(-0.36651 / MBb) * LBb
Cells(27, 2) = L50b

L50B1 = L50b

'‘Mean@ A

meanata = 62.1 * (MAa ~ -0.172)
Cells(20, 2) = meanata

chevyAl = meanata

'Mean@ B

meanatb = 62.1 * (MBb ~ -0.172)
Cells(28, 2) = meanatb

chevyB1 = meanatb

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.Gamn{atumsb)

LmeanA = LBa * Exp(ala)
Cells(21, 2) = LmeanA
cheeseAl = LmeanA

‘Mean A

'Dla=1/(1- (meanata/ 100))

'D2a = Application.WorksheetFunction.Ln(1a
'D3a = Application.WorksheetFunction.Ln(p2a
'meanA = (Exp(D3a / MAa)) * LBa

'Cells(21, 2) = meanA

‘cheeseAl = meanA

'Mean B Gamma function method

musbB = (MBb + 1) / MBb

alaB = Application.WorksheetFunction.Gamm@husbB)
LMeanAb = LBb * Exp(alaB)

Cells(29, 2) = LMeanAb

cheeseB1 = LMeanAb
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‘Mean B

'Dlb=1/(1- (meanatb / 100))

'D2b = Application.WorksheetFunction.Ln(D1b
'D3b = Application.WorksheetFunction.Ln(D2b
'meanB = (Exp(D3b / MBb)) * LBb

'Cells(29, 2) = meanB

‘cheeseB1 = meanB

'DOF A-B
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2))
dofab = Cells(40, 2)

'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584

'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99 = (Anot * InDOF + Bnot) * 2 + 1
Cells(41, 2) = MLR99

'D

Dvegas = 3.912 / (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexp = Cells(21, 2) / Cells(29, 2)

Else

MLRexp = Cells(29, 2) / Cells(21, 2)

End If

'C

Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp - 1))
Cells(42, 2) = Cvegas

'CONFIDENCE INTERVAL FOR B
'‘AoB

AnotB = (-0.0844 / Cells(24, 2)) - 0.05584
'BoB
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BnotB = (1.2796 / Cells(24, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99B = (AnotB * InDOF + BnotB) "2 + 1
Cells(43, 2) = MLR99B

‘D

DvegasB = 3.912 / (MLR99B - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexpB = Cells(21, 2) / Cells(29, 2)

Else

MLRexpB = Cells(29, 2) / Cells(21, 2)

End If

'C

CvegasB =1 - 0.5 * Exp(-DvegasB * (MLRexpB)j 1
Cells(44, 2) = CvegasB

'C average
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2
Cells(45, 2) = Cvegasavg

'L10 dependent confidence numbers

‘A
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152)
'In(m)
InmA = Application.WorksheetFunction.Ln(Cells(16) 2
‘B
BBB = 0.29574 * InmA + (-0.45228)
'L10LR
L10LRA = aaa * Cells(40, 2) ~ BBB
‘ao
litanot = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)
INL10LRA = Application.WorksheetFunction.Ln(L10LRA)
‘a
lita = litanot / INLLOLRA
'L10exp
If Cells(18, 2) > Cells(26, 2) Then
xnot = Cells(18, 2) / Cells(26, 2)
Else
xnot = Cells(26, 2) / Cells(18, 2)
End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
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'CL10
CL10 =1 - Exp(((lita * Inxo) * 2 + 2896.3) / -353H
Cells(46, 2) = CL10

‘A

AAADb = Exp((4.5286 / Cells(24, 2)) + 0.3152)

'In(m)

InmAb = Application.WorksheetFunction.Ln(Cells(2))
'B

BBBb = 0.29574 * InmAb + (-0.45228)

'L10LR

L10LRAb = AAAD * Cells(40, 2) ~ BBBb

‘ao

litanotb = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)

INL1OLRAb = Application.WorksheetFunction.Ln(L10LRA
‘a

litab = litanotb / INLLOLRADb

'‘L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnotb = Cells(18, 2) / Cells(26, 2)

Else

xnotb = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxob = Application.WorksheetFunction.Ln(xnotb)
'‘CL10
CL10b =1 - Exp(((litab * Inxob) ™ 2 + 2896.3) /535.9)
Cells(47, 2) = CL10b

'‘C L10 average

CL10avg = (CL10 + CL10b) /2
Cells(48, 2) = CL10avg

Range("Al1").Select
Worksheets("Summary").Select

Cells(2, 1) = loop37 'this was put in to count hmany trials got ran incase the program quit
suddenly
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'Slopes
Cells(4, Column) = SlopelA
Cells(12, Column) = SlopelB

'L10
Cells(6, Column) = L10A1
Cells(14, Column) = L10B1

'L50
Cells(7, Column) = L50A1
Cells(15, Column) = L50B1

'‘Mean
Cells(9, Column) = cheeseAl
Cells(17, Column) = cheeseB1

'‘Mean@
Cells(8, Column) = chevyAl
Cells(16, Column) = chevyB1

'Lb
Cells(5, Column) = sassyAl
Cells(13, Column) = sassyB1

'DOF
Cells(28, Column) = dofab

'MLR99
Cells(29, Column) = MLR99
Cells(31, Column) = MLR99B

'‘Cvegas
Cells(30, Column) = Cvegas
Cells(32, Column) = CvegasB

'C average
Cells(33, Column) = Cvegasavg

'CL10

Cells(34, Column) = CL10
Cells(35, Column) = CL10b
Cells(36, Column) = CL10avg

'L10A/L10B
Cells(60, Column) = Cells(6, Column) / Cells(14,@uon)
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'MeanA / MeanB
Cells(64, Column) = Cells(9, Column) / Cells(17,I@uan)

'‘Counting which is bigger, L10A or L10B
If Cells(60, Column) > 1 Then

countL10 = countL10 + 1

Else

countL10B = countL10B + 1

End If

Cells(68, 2) = countL10

Cells(69, 2) = countL10B

'‘Counting which is bigger meanA or meanB
If Cells(64, Column) > 1 Then

countmean = countmean + 1

Else

countmeanB = countmeanB + 1

End If

Cells(75, 2) = countmean

Cells(76, 2) = countmeanB

Cells(2, Column) = Column - 1 ‘just for numbering
Worksheets(1).Select
Cells(5, 3) = loop10 'again just to keep track @ivimany get run to ensure all get run

‘This is for archiving all data onto sheet3
Range(Cells(5, 3), Cells(beta + 6, 27)).Select
Selection.Copy
Worksheets(3).Select
Cells(shuttle, shuttleb).Select
ActiveSheet.Paste
Range("Al1").Select
Worksheets(1).Select
Range("Al1").Select

‘Just used this to clear contents before new rdratso keep last loop data on sheet 1
If loop10 < trials Then
Worksheets(1).Select
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Range(Cells(7, 3), Cells(beta + 6, 27)).Select
Selection.ClearContents

Range(Cells(16, 2), Cells(48, 2)).Select
Selection.ClearContents

Else
End If

Cells(1, 1).Select

Column = Column + 1
shuttle = shuttle + beta + 3

Next loop10

Worksheets("Summary").Select

If Cells(68, 2) > Cells(69, 2) Then 'This was jtstisplay which was greater
Cells(68, 3) = "A>B"

Else

Cells(68, 3) = "B>A"

End If

If Cells(75, 2) > Cells(76, 2) Then
Cells(75, 3) = "A>B"

Else

Cells(75, 3) = "B>A"

End If

Cells(83, 3) = "=average(B36:CW36)" 'averages Ldlficence numbers
Cells(83, 6) = "=average(B33:CW33)" ‘averages nwarfidence numbers

Range(Cells(2, 1), Cells(85, 101)).Select ‘esmlata just generated on summary page down
85 cells to make room for next trials numbers

Selection.Copy

Cells(taz, 1).Select

ActiveSheet.Paste
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Range("B2:CW85").Select
Selection.ClearContents

taz =taz + 85

shuttleb = shuttleb + 18
Next loop37

Worksheets("Sheetl").Select

trials = Cells(13, 2)

Worksheets("Summary").Select

a=168
ab =169
ac =170
d=6
b=3

Cells(2, 3) = Cells(168, 3) 'this starts the cuiveonfidence number averaging for the whole
summary sheet

Cells(2, 6) = Cells(168, 6)

For cl10avgavgavgloop = 1 To trials 'averagingdbere fit equations on the summary page
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3)

Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6)

a=-a+85

Next cl10avgavgavgloop
Cells(2, 3) = Cells(2, 3) / trials

Cells(2, 6) = Cells(2, 6) / trials

az = Cells(2, 3)
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ax = Cells(2, 6)

Cells(1, 1).Select

Worksheets("SummaryB").Select
Cells(1, 2) = az 'average CL10 on final summaryepag

Cells(5, 2) = ax 'average mean confidence numbdinahsummary page

Worksheets("Summary").Select

amcavg = 153
cmcavg = 154

dmcavg = 155
emcavg = 156
fmcavg = 157
gmcavg = 158

For loopmcavg = 1 To trials 'averaging the Montel@€aumbers
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10)
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11)

amcavg = amcavg + 85
cmcavg = cmcavg + 85

Next loopmcavg

bmcavg = Cells(1, 10) / trials
hmcavg = Cells(1, 11) / trials
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Worksheets("SummaryB").Select
Cells(10, 2) = bmcavg 'average of L10a>L10b
Cells(11, 2) = hmcavg 'average of L10b>L10a

Cells(1, 1).Select
'this is where it takes the averages of slope, LB0O,

Worksheets(1).Select
t1 = Cells(12, 2)
trials = Cells(13, 2)

Worksheets(2).Select

aa =89
cc=91
dd =92
ee =97
ff =99

gg =100

For loop2 = 1 To trials

a = Cells(aa, 2)

b=3

¢ = Cells(cc, 2)

d = Cells(dd, 2)

e = Cells(ee, 2)

f = Cells(ff, 2)

g = Cells(gg, 2)
Forloopl=1Totl
a=a + Cells(aa, b)
c =c + Cells(cc, b)
d =d + Cells(dd, b)
e = e + Cells(ee, b)
f =1+ Cells(ff, b)

g =g + Cells(gg, b)
b=b+1
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Next loopl

Cells(aa, 104) =a/tl
Cells(cc, 104) =c/t1
Cells(dd, 104) =d /1
Cells(ee, 104) =e /11
Cells(ff, 104) = f /11
Cells(gg, 104) =g /t1

aa=aa+85
cc=cc+85
dd=dd + 85
ee=ee+85
ff = ff + 85

gg =gg + 85

Next loop2

aaa=174
ccc =176
ddd =177
eee =182
fff = 184

ggg = 185

a2 = Cells(89, 104)
c2 = Cells(91, 104)
d2 = Cells(92, 104)
e2 = Cells(97, 104)
f2 = Cells(99, 104)
g2 = Cells(100, 104)

For loop3 =1 To trials

a2 = a2 + Cells(aaa, 104)
c2 = c2 + Cells(ccc, 104)
d2 = d2 + Cells(ddd, 104)
e2 =e2 + Cells(eee, 104)
f2 = f2 + Cells(fff, 104)

g2 = g2 + Cells(ggg, 104)
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aaa =aaa+ 85
ccc =ccc + 85
ddd = ddd + 85
eee = eee + 85
fff = fff + 85

ggg = ggg + 85

Next loop3

Worksheets(4).Select 'puts the averages of sldde,and L50 on final summary page

Cells(16, 2) = a2/ trials
Cells(16, 3) = e2 / trials
Cells(17, 2) = c2 / trials
Cells(17, 3) =2/ trials
Cells(18, 2) = d2 / trials
Cells(18, 3) = g2/ trials

Cells(1, 1).Select

End Sub
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Appendix B: Computer Simulation for Method 2
Sub Macrol()
' Macrol Macro

' Keyboard Shortcut: Ctrl+e

Worksheets(1).Select

Application.ScreenUpdating = False 'to keep scfe@n constanly updating and slowing down
simulation

trialsB = Cells(13, 2) 'number of times to run siation, can be from 1 up

taz = 87 'this is for the index to copy the summaage and index the whole thing down 87 cells
shuttleb = 3

For loop37 = 1 To trialsB 'loop that runs entiregnam
Worksheets(1).Select

Column = 2 'indexs the summary page for all valussyes to right after every loop

countL10 = O 'these counts are used to count whibigger for comparison on summary page
countL10B =0

countmean =0

countmeanB =0

‘This is used in the code for archiving the data
shuttle = 5

trials = Cells(12, 2) 'number of times one runapeated, this value is typically 100 to get a
confidence number out of 100

For loopl10 =1 To trials 'within this loop all thembers for one run get calculated and copied
to the summary page to be compared after 100 runs

alpha = Cells(9, 2) 'size of bin A
alpha2 = Cells(10, 2) 'size of bin B

If alpha > alpha2 Then 'this is just to numberghmples from 1 to which ever bin is bigger

XxX=7
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For loop3 =1 To alpha
Cells(x,3)=x-6
X=Xx+1
Next loop3
beta = alpha 'beta is used in the tbap archives the numbers, and for clearing caaten
on sheetl
Else
X=7
For loop3 =1 To alpha2
Cells(x,3)=x-6
X=x+1
Next loop3

beta = alpha2
End If

'‘Bin A
‘generating random number
alpha = Cells(9, 2)
r=7
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = "=randbetween(1,1000)"

'‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl=numl +1
Next loopl

'sorting column
ActiveWorkbook.Worksheets("Sheetl").SorttBelds.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Satés. Add Key:=Cells(7, 4), _
SortOn:=xISortOnValues, Order:=xIAscendiDgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheet1").Sort
.SetRange Range(Cells(7, 4), Cells(alpba4))
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.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply

End With

'‘Bin B
‘random number
alpha2 = Cells(10, 2)
r=7
numl2 =1
For loop2 = 1 To alpha2
Cells(r, 12).Select
here4:
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)"

'‘Checking for duplicate
S=6
For randcheck2 =1 To num12
If Cells(r, 12) = Cells(s, 12) Then GoTo here4
s=s+1
Next randcheck2
r=r+1
numl2 = numl2 + 1
Next loop2

' Sorting column
ActiveWorkbook.Worksheets("Sheetl1").Sort. Salts.Clear
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Add Key:=Cells(7, 12), _
SortOn:=xISortOnValues, Order:=xlAscendibgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort
.SetRange Range(Cells(7, 12), Cells(alph6212))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With
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For loop5 =1 To alpha
'Rank A
Cells(r1, 5) = (Cells(rl, 4) - 0.3) / (1000 #4P'ok to keep 1000 because bin is from 1 to 1000
'S of A
Cells(rl, 6) =1 - Cells(r1, 5)
SA = Cells(r1, 6)
'Life of A
Al = Application.WorksheetFunction.Ln(1AS
B1 = Application.WorksheetFunction.Ln(A1)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
Cells(r1, 7) = CA
rt=rl+1
Next loop5

r1=7

For loop6 = 1 To alpha2
'‘Rank B
Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (100@4)
'S of B
Cells(r1, 14) =1 - Cells(r1, 13)
SB = Cells(r1, 14)
'Life of B
a2 = Application.WorksheetFunction.Ln(1B)S
B2 = Application.WorksheetFunction.Ln(a2)
CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2)
Cells(r1, 15) =CB
rn=r1+1
Next loop6

ri1=7

For loop7a =1 To alpha

'rank for 1 to sample size for bin A
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11, 8) = Z1

'S for sample size for bin A

Z2 =1 - Cells(r11, 8)
Cells(r11, 9) = z22
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'Inin(1/S) for sample size for bin A
Z5=1/22
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
rti=ri1+1
Next loop7a

ri1l1=7v

For looplla =1 To alpha2

'rank for 1 to sample size for bin B
Z1b = (Cells(r111, 3) - 0.3) / (alpha2 4)0.
Cells(r111, 16) = Z1b

'S for sample size for bin B
Z2b =1 - Cells(r111, 16)
Cells(r111, 17) = Z2b

'Inin(1/S) for sample size for bin B
Z5b=1/22b
Z3b = Application.WorksheetFunction.Ln(Z5b)
Z4b = Application.WorksheetFunction.Ln(Z3b)
Cells(r111, 18) = Z4b
r1i11 =r111+1
Next looplla

'InA

ri2=17

For loop8 = 1 To alpha

Cells(r12, 11) = Application.WorksheetFunction.Le(5(r12, 7))
r12=r12+1

Next loop8

'InB

r13=7

For loop9 = 1 To alpha2

Cells(r13, 19) = Application.WorksheetFunction.Le(S(r13, 15))
r1I3=r13+1

Next loop9
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'‘Organized answers on left of sheet 1, cells B1848

'slope A

MA = Application.WorksheetFunction.LinEst(Range(ISél, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)), Truei€)r

Cells(16, 2) = MA

MAa = Cells(16, 2)

SlopelA = MAa

'slope B

MB = Application.WorksheetFunction.LinEst(Range (8@, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), Truge)

Cells(24, 2) = MB

MBb = Cells(24, 2)

SlopelB = MBb

'intercepts A and B

Ba = Application.WorksheetFunction.Intercept(Ramgs(7, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)))

Bb = Application.WorksheetFunction.Intercept(Rarim(s(7, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)))

'Lbeta A calculations
V2 = (Ba/ MAa)

VV =-1*V2

LBa = Exp(VV)

'‘Lbeta B calculations
V3 = (Bb/ MBb)

MO =-1*V3

LBb = Exp(MO)

‘plotting Lbetas
Cells(17, 2) = LBa
Cells(25, 2) = LBb

sassyAl = LBa
sassyB1 = LBb

'L10 A

L10a = Exp(-2.25037 / MAa) * LBa
Cells(18, 2) = L10a

L10Al1 =L10a

'L10B
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L10b = Exp(-2.25037 / MBb) * LBb
Cells(26, 2) = L10b
L10B1 = L10b

'L50 A

L50a = Exp(-0.36651 / MAa) * LBa
Cells(19, 2) = L50a

L50A1 = L50a

'L50 B

L50b = Exp(-0.36651 / MBb) * LBb
Cells(27, 2) = L50b

L50B1 = L50b

'‘Mean@ A

meanata = 62.1 * (MAa ~ -0.172)
Cells(20, 2) = meanata

chevyAl = meanata

'Mean@ B

meanatb = 62.1 * (MBb ~ -0.172)
Cells(28, 2) = meanatb

chevyB1 = meanatb

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.Gamn{atumsb)

LmeanA = LBa * Exp(ala)
Cells(21, 2) = LmeanA
cheeseAl = LmeanA

‘Mean A

'Dla=1/(1- (meanata/ 100))

'D2a = Application.WorksheetFunction.Ln(1a
'D3a = Application.WorksheetFunction.Ln(p2a
'meanA = (Exp(D3a / MAa)) * LBa

'Cells(21, 2) = meanA

‘cheeseAl = meanA

'Mean B Gamma function method

musbB = (MBb + 1) / MBb

alaB = Application.WorksheetFunction.Gamm@husbB)
LMeanAb = LBb * Exp(alaB)

Cells(29, 2) = LMeanAb

cheeseB1 = LMeanAb
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‘Mean B

'Dlb=1/(1- (meanatb / 100))

'D2b = Application.WorksheetFunction.Ln(D1b
'D3b = Application.WorksheetFunction.Ln(D2b
'meanB = (Exp(D3b / MBb)) * LBb

'Cells(29, 2) = meanB

‘cheeseB1 = meanB

'DOF A-B
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2))
dofab = Cells(40, 2)

'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584

'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99 = (Anot * InDOF + Bnot) * 2 + 1
Cells(41, 2) = MLR99

'D

Dvegas = 3.912 / (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexp = Cells(21, 2) / Cells(29, 2)

Else

MLRexp = Cells(29, 2) / Cells(21, 2)

End If

'C

Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp - 1))
Cells(42, 2) = Cvegas

'CONFIDENCE INTERVAL FOR B
'‘AoB

AnotB = (-0.0844 / Cells(24, 2)) - 0.05584
'BoB
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BnotB = (1.2796 / Cells(24, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99B = (AnotB * InDOF + BnotB) "2 + 1
Cells(43, 2) = MLR99B

‘D

DvegasB = 3.912 / (MLR99B - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexpB = Cells(21, 2) / Cells(29, 2)

Else

MLRexpB = Cells(29, 2) / Cells(21, 2)

End If

'C

CvegasB =1 - 0.5 * Exp(-DvegasB * (MLRexpB)j 1
Cells(44, 2) = CvegasB

'C average
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2
Cells(45, 2) = Cvegasavg

'L10 dependent confidence numbers

‘A
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152)
'In(m)
InmA = Application.WorksheetFunction.Ln(Cells(16) 2
‘B
BBB = 0.29574 * InmA + (-0.45228)
'L10LR
L10LRA = aaa * Cells(40, 2) ~ BBB
‘ao
litanot = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)
INL10LRA = Application.WorksheetFunction.Ln(L10LRA)
‘a
lita = litanot / INLLOLRA
'L10exp
If Cells(18, 2) > Cells(26, 2) Then
xnot = Cells(18, 2) / Cells(26, 2)
Else
xnot = Cells(26, 2) / Cells(18, 2)
End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
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'CL10
CL10 =1 - Exp(((lita * Inxo) * 2 + 2896.3) / -353H
Cells(46, 2) = CL10

‘A

AAADb = Exp((4.5286 / Cells(24, 2)) + 0.3152)

'In(m)

InmAb = Application.WorksheetFunction.Ln(Cells(2))
'B

BBBb = 0.29574 * InmAb + (-0.45228)

'L10LR

L10LRAb = AAAD * Cells(40, 2) ~ BBBb

‘ao

litanotb = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)

INL1OLRAb = Application.WorksheetFunction.Ln(L10LRA
‘a

litab = litanotb / INLLOLRADb

'‘L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnotb = Cells(18, 2) / Cells(26, 2)

Else

xnotb = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxob = Application.WorksheetFunction.Ln(xnotb)
'‘CL10
CL10b =1 - Exp(((litab * Inxob) ™ 2 + 2896.3) /535.9)
Cells(47, 2) = CL10b

'‘C L10 average

CL10avg = (CL10 + CL10b) /2
Cells(48, 2) = CL10avg

Range("Al1").Select
Worksheets("Summary").Select

Cells(2, 1) = loop37 'this was put in to count hmany trials got ran incase the program quit
suddenly
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'Slopes
Cells(4, Column) = SlopelA
Cells(12, Column) = SlopelB

'L10
Cells(6, Column) = L10A1
Cells(14, Column) = L10B1

'L50
Cells(7, Column) = L50A1
Cells(15, Column) = L50B1

'‘Mean
Cells(9, Column) = cheeseAl
Cells(17, Column) = cheeseB1

'‘Mean@
Cells(8, Column) = chevyAl
Cells(16, Column) = chevyB1

'Lb
Cells(5, Column) = sassyAl
Cells(13, Column) = sassyB1

'DOF
Cells(28, Column) = dofab

'MLR99
Cells(29, Column) = MLR99
Cells(31, Column) = MLR99B

'‘Cvegas
Cells(30, Column) = Cvegas
Cells(32, Column) = CvegasB

'C average
Cells(33, Column) = Cvegasavg

'CL10

Cells(34, Column) = CL10
Cells(35, Column) = CL10b
Cells(36, Column) = CL10avg

'L10A/L10B
Cells(60, Column) = Cells(6, Column) / Cells(14,@uon)
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'MeanA / MeanB
Cells(64, Column) = Cells(9, Column) / Cells(17,I@uan)

'‘Counting which is bigger, L10A or L10B
If Cells(60, Column) > 1 Then

countL10 = countL10 + 1

Else

countL10B = countL10B + 1

End If

Cells(68, 2) = countL10

Cells(69, 2) = countL10B

'‘Counting which is bigger meanA or meanB
If Cells(64, Column) > 1 Then

countmean = countmean + 1

Else

countmeanB = countmeanB + 1

End If

Cells(75, 2) = countmean

Cells(76, 2) = countmeanB

Cells(2, Column) = Column - 1 ‘just for numbering
Worksheets(1).Select
Cells(5, 3) = loop10 'again just to keep track @ivimany get run to ensure all get run

‘This is for archiving all data onto sheet3
Range(Cells(5, 3), Cells(beta + 6, 27)).Select
Selection.Copy
Worksheets(3).Select
Cells(shuttle, shuttleb).Select
ActiveSheet.Paste
Range("Al1").Select
Worksheets(1).Select
Range("Al1").Select

‘Just used this to clear contents before new rdratso keep last loop data on sheet 1
If loop10 < trials Then
Worksheets(1).Select
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Range(Cells(7, 3), Cells(beta + 6, 27)).Select
Selection.ClearContents

Range(Cells(16, 2), Cells(48, 2)).Select
Selection.ClearContents

Else
End If

Cells(1, 1).Select

Column = Column + 1
shuttle = shuttle + beta + 3

Next loop10

Worksheets("Summary").Select

If Cells(68, 2) > Cells(69, 2) Then 'This was jtstisplay which was greater
Cells(68, 3) = "A>B"

Else

Cells(68, 3) = "B>A"

End If

If Cells(75, 2) > Cells(76, 2) Then
Cells(75, 3) = "A>B"

Else

Cells(75, 3) = "B>A"

End If

Cells(83, 3) = "=average(B36:CW36)" 'averages Ldlficence numbers
Cells(83, 6) = "=average(B33:CW33)" ‘averages nwarfidence numbers

Range(Cells(2, 1), Cells(85, 101)).Select ‘esmlata just generated on summary page down
85 cells to make room for next trials numbers

Selection.Copy

Cells(taz, 1).Select

ActiveSheet.Paste
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Range("B2:CW85").Select
Selection.ClearContents

taz =taz + 85

shuttleb = shuttleb + 18
Next loop37

Worksheets("Sheetl").Select

trials = Cells(13, 2)

Worksheets("Summary").Select

a=168
ab =169
ac =170
d=6
b=3

Cells(2, 3) = Cells(168, 3) 'this starts the cuiveonfidence number averaging for the whole
summary sheet

Cells(2, 6) = Cells(168, 6)

For cl10avgavgavgloop = 1 To trials 'averagingdbere fit equations on the summary page
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3)

Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6)

a=-a+85

Next cl10avgavgavgloop
Cells(2, 3) = Cells(2, 3) / trials

Cells(2, 6) = Cells(2, 6) / trials

az = Cells(2, 3)
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ax = Cells(2, 6)

Cells(1, 1).Select

Worksheets("SummaryB").Select
Cells(1, 2) = az 'average CL10 on final summaryepag

Cells(5, 2) = ax 'average mean confidence numbdinahsummary page

Worksheets("Summary").Select

amcavg = 153
cmcavg = 154

dmcavg = 155
emcavg = 156
fmcavg = 157
gmcavg = 158

For loopmcavg = 1 To trials 'averaging the Montel@€aumbers
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10)
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11)

amcavg = amcavg + 85
cmcavg = cmcavg + 85

Next loopmcavg

bmcavg = Cells(1, 10) / trials
hmcavg = Cells(1, 11) / trials
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Worksheets("SummaryB").Select
Cells(10, 2) = bmcavg 'average of L10a>L10b
Cells(11, 2) = hmcavg 'average of L10b>L10a

Cells(1, 1).Select
'this is where it takes the averages of slope, LB0O,

Worksheets(1).Select
t1 = Cells(12, 2)
trials = Cells(13, 2)

Worksheets(2).Select

aa =89
cc=91
dd =92
ee =97
ff =99

gg =100

For loop2 = 1 To trials

a = Cells(aa, 2)

b=3

¢ = Cells(cc, 2)

d = Cells(dd, 2)

e = Cells(ee, 2)

f = Cells(ff, 2)

g = Cells(gg, 2)
Forloopl=1Totl
a=a + Cells(aa, b)
c =c + Cells(cc, b)
d =d + Cells(dd, b)
e = e + Cells(ee, b)
f =1+ Cells(ff, b)

g =g + Cells(gg, b)
b=b+1
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Next loopl

Cells(aa, 104) =a/tl
Cells(cc, 104) =c/t1
Cells(dd, 104) =d /1
Cells(ee, 104) =e /11
Cells(ff, 104) = f /11
Cells(gg, 104) =g /t1

aa=aa+85
cc=cc+85
dd=dd + 85
ee=ee+85
ff = ff + 85

gg =gg + 85

Next loop2

aaa=174
ccc =176
ddd =177
eee =182
fff = 184

ggg = 185

a2 = Cells(89, 104)
c2 = Cells(91, 104)
d2 = Cells(92, 104)
e2 = Cells(97, 104)
f2 = Cells(99, 104)
g2 = Cells(100, 104)

For loop3 =1 To trials

a2 = a2 + Cells(aaa, 104)
c2 = c2 + Cells(ccc, 104)
d2 = d2 + Cells(ddd, 104)
e2 = e2 + Cells(eee, 104)
f2 = f2 + Cells(fff, 104)

g2 = g2 + Cells(ggg, 104)
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aaa =aaa+ 85
ccc =ccc + 85
ddd = ddd + 85
eee = eee + 85
fff = fff + 85

ggg = ggg + 85

Next loop3

Worksheets(4).Select 'puts the averages of sldde,and L50 on final summary page

Cells(16, 2) = a2/ trials
Cells(16, 3) = e2 / trials
Cells(17, 2) = c2 / trials
Cells(17, 3) =2/ trials
Cells(18, 2) = d2 / trials
Cells(18, 3) = g2/ trials

Cells(1, 1).Select

End Sub
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Appendix C: Computer Simulation for Method 3
Sub Macrol()
' Macrol Macro

' Keyboard Shortcut: Ctrl+e

Worksheets(1).Select

Application.ScreenUpdating = False 'to keep scfemn constantly updating and slowing down
simulation

trialsB = Cells(13, 2) ‘amount of times 100 triate run

taz = 87 'index to copy the summary page and itlkdexvhole thing down 87 cells
shuttleb = 3

For loop37 = 1 To trialsB 'runs trials for howeweany times its specified in trialsB cell
Worksheets(1).Select

Column = 2 'indexs the summary page for all valussyes to right after every loop
countL10 = 0 'used to count which is bigger for panison on summary page
countL10B =0

countmean =0
countmeanB =0

'this was used in the code for arching the dataf asw not used
shuttle =5
trials = Cells(12, 2) 'usually 100 to represent hmany times out of 100 something will occur
For loop10 =1 To trials 'main loop
alpha = Cells(9, 2) 'this is how many samples aign A
alpha2 = Cells(10, 2) 'this is how many samplesraten B
If alpha > alpha2 Then 'this just puts the bold bhams in column C for organizational purposes
X=7
For loop3 =1 To alpha

Cells(x,3)=x-6
XxX=x+1
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Next loop3
beta = alpha 'beta is used in top khat archives the numbers, and clears sheetl
Else
X=7
For loop3 =1 To alpha2
Cells(x,3)=x-6
X=x+1
Next loop3

beta = alpha2
End If

'‘Bin A
‘generating random number
alpha = Cells(9, 2)
r=7
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = "=randbetween(1,1000)"

'‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl=numl +1
Next loopl

'sorting column
ActiveWorkbook.Worksheets("Sheetl").SorttBelds.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Satés.Add Key:=Cells(7, 4), _
SortOn:=xISortOnValues, Order:=xIAscendibDgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort
.SetRange Range(Cells(7, 4), Cells(alpba4))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With
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'‘Bin B
‘random number
alpha2 = Cells(10, 2)
r=7
numl2 =1
For loop2 = 1 To alpha2
Cells(r, 12).Select
here4:
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)"

'‘Checking for duplicate
S=6
For randcheck2 =1 To hum12
If Cells(r, 12) = Cells(s, 12) Then GoTo here4
s=s+1
Next randcheck2
r=r+1
numl2 = numl2 + 1
Next loop2

' Sorting column
ActiveWorkbook.Worksheets("Sheetl1").Sort. Salts.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Sat#s.Add Key:=Cells(7, 12), _

SortOn:=xISortOnValues, Order:=xlAscendibgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort

.SetRange Range(Cells(7, 12), Cells(alph6212))

.Header = xINo

.MatchCase = False

.Orientation = xITopToBottom

.SortMethod = xIPinYin

Apply
End With

rn=7
For loop5 =1 To alpha
'‘Rank A
Cells(rl, 5) = (Cells(r1, 4) - 0.3) / (1000 #4p
'S of A
Cells(rl, 6) =1 - Cells(r1, 5)
SA = Cells(r1, 6)
'Life of A
Al = Application.WorksheetFunction.Ln(1A)S
B1 = Application.WorksheetFunction.Ln(A1)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
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Cells(r1, 7) = CA
rit=rl+1
Next loop5

rr=7
For loop6 = 1 To alpha2
'‘Rank B
Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (100@4)
'S of B
Cells(rl, 14) =1 - Cells(r1, 13)
SB = Cells(r1, 14)
'Life of B
a2 = Application.WorksheetFunction.Ln(1B)S
B2 = Application.WorksheetFunction.Ln(a2)
CB = Exp(B2/ Cells(4, 2)) * Cells(7, 2)
Cells(r1, 15) =CB
rt=rl1+1
Next loop6

ril=7v

For loop7a =1 To alpha

'rank for 1 to sample size
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11, 8) = 71

'S for sample size
Z2 =1 - Cells(r11, 8)
Cells(r11, 9) = 22

'Inin(1/S) for sample size
Z5=1/22
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
ri1=r11+1
Next loop7a

ri11=7

For looplla =1 To alpha2

'rank for 1 to sample size
Z1b = (Cells(r111, 3) - 0.3) / (alpha2 4)0.
Cells(r111, 16) = Z1b

'S for sample size
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Z2b =1 - Cells(r111, 16)
Cells(r111, 17) = Z2b

'Inin(1/S) for sample size
Z5b=1/22b
Z3b = Application.WorksheetFunction.Ln(Z5b)
Z4b = Application.WorksheetFunction.Ln(Z3b)
Cells(r111, 18) = Z4b
ri11=r111+1
Next looplla

'InA

ri2=7

For loop8 = 1 To alpha

Cells(r12, 11) = Application.WorksheetFunction.Le(5(r12, 7))
ri2=r12+1

Next loop8

'nB

ri3=7

For loop9 = 1 To alpha2

Cells(r13, 19) = Application.WorksheetFunction.Le(S(r13, 15))
r13=r13+1

Next loop9

'FROM HERE UP NOTHING CHANGES

'ATTENTION, as it sits the code assumes no suspassir cut offs in bin A, only in B

cutoffnum = Cells(11, 2) 'the number of sampleKkEP
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'‘Organized answers on left of sheetl, cells B1848

'slope A

MA = Application.WorksheetFunction.LinEst(Range(ISél, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)), Truei€)roriginal code

'MA = Application.WorksheetFunction.LinEst(Rangel(8¢, 10), Cells(cutoffnum + 6, 10)),
Range(Cells(7, 11), Cells(cutoffnum + 6, 11)), Trlieue) 'cut off code

Cells(16, 2) = MA

MAa = Cells(16, 2)

SlopelA = MAa

'slope B

'MB = Application.WorksheetFunction.LinEst(Rangell€§g, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), Trug) original code

MB = Application.WorksheetFunction.LinEst(Range (8@, 18), Cells(cutoffnum + 6, 18)),
Range(Cells(7, 19), Cells(cutoffnum + 6, 19)), Trlieue) 'cut off code

Cells(24, 2) = MB

MBb = Cells(24, 2)

SlopelB = MBb

'intercepts A and B

Ba = Application.WorksheetFunction.Intercept(Ramgs(7, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11))) 'origjicde

'‘Ba = Application.WorksheetFunction.Intercept(Rai@gdls(7, 10), Cells(cutoffnum + 6, 10)),
Range(Cells(7, 11), Cells(cutoffnum + 6, 11))) ‘offtcode

'‘Bb = Application.WorksheetFunction.Intercept(Raf@mis(7, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) origowle

Bb = Application.WorksheetFunction.Intercept(Rargm(s(7, 18), Cells(cutoffnum + 6, 18)),
Range(Cells(7, 19), Cells(cutoffnum + 6, 19))) ‘offtcode

'Lbeta A calculations
V2 = (Ba/ MAa)

VV =-1*V2

LBa = Exp(VV)

'‘Lbeta B calculations
V3 = (Bb/ MBb)

MO =-1*V3

LBb = Exp(MO)

‘plotting Lbetas
Cells(17, 2) = LBa
Cells(25, 2) = LBb

sassyAl = LBa
sassyB1 = LBb
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'‘L10 A

L10a = Exp(-2.25037 / MAa) * LBa
Cells(18, 2) = L10a

L10A1 =L10a

'L10B

L10b = Exp(-2.25037 / MBb) * LBb
Cells(26, 2) = L10b

L10B1 =L10b

'L50 A

L50a = Exp(-0.36651 / MAa) * LBa
Cells(19, 2) = L50a

L50A1 = L50a

'L50 B

L50b = Exp(-0.36651 / MBb) * LBb
Cells(27, 2) = L50b

L50B1 = L50b

'‘Mean@ A

meanata = 62.1 * (MAa ~ -0.172)
Cells(20, 2) = meanata

chevyAl = meanata

'Mean@ B

meanatb = 62.1 * (MBb ~ -0.172)
Cells(28, 2) = meanatb

chevyB1 = meanatb

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.Gamn{atumsb)
LmeanA = LBa * Exp(ala)

Cells(21, 2) = LmeanA

cheeseAl = LmeanA

‘Mean A

'Dla=1/(1- (meanata/ 100))

'D2a = Application.WorksheetFunction.Ln(1a
'D3a = Application.WorksheetFunction.Ln(p2a
'meanA = (Exp(D3a/ MAa)) * LBa

'Cells(21, 2) = meanA

‘cheeseAl = meanA

'Mean B Gamma function method

musbB = (MBb + 1) / MBb

alaB = Application.WorksheetFunction.Gamm@husbB)
LMeanAb = LBb * Exp(alaB)
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Cells(29, 2) = LMeanAb

cheeseB1 = LMeanAb

‘Mean B

'Dlb=1/(1- (meanatb / 100))

'D2b = Application.WorksheetFunction.Ln(D1b
'D3b = Application.WorksheetFunction.Ln(D2b
'meanB = (Exp(D3b / MBb)) * LBb

'Cells(29, 2) = meanB

‘cheeseB1 = meanB

"This is where curve fit equations begin to comptite equations use generated Weibull slopes,
not inputed slopes.
"This incorperates suspension method into cunegfilations.

'DOF A-B
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(11, 2} )
dofab = Cells(40, 2)

'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584
'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729
'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99 = (Anot * INDOF + Bnot) * 2 + 1
Cells(41, 2) = MLR99

‘D

Dvegas = 3.912 / (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then
MLRexp = Cells(21, 2) / Cells(29, 2)
Else

MLRexp = Cells(29, 2) / Cells(21, 2)
End If
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'C
Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp - 1))
Cells(42, 2) = Cvegas

'CONFIDENCE INTERVAL FOR B

'‘AoB

AnotB = (-0.0844 / Cells(24, 2)) - 0.05584

'‘BoB

BnotB = (1.2796 / Cells(24, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99B = (AnotB * INDOF + BnotB) * 2 + 1
Cells(43, 2) = MLR99B

'D

DvegasB = 3.912 / (MLR99B - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexpB = Cells(21, 2) / Cells(29, 2)

Else

MLRexpB = Cells(29, 2) / Cells(21, 2)

End If

'C

CvegasB =1 - 0.5 * Exp(-DvegasB * (MLRexpB)) 1
Cells(44, 2) = CvegasB

'C average
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2
Cells(45, 2) = Cvegasavg

'L10 dependent confidence numbers

‘A

aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152)

'In(m)

InmA = Application.WorksheetFunction.Ln(Cells(16) 2
'B

BBB = 0.29574 * InmA + (-0.45228)

'L10LR

L10LRA = aaa * Cells(40, 2) ~ BBB

‘ao

litanot = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)

INL10LRA = Application.WorksheetFunction.Ln(L10LRA)
‘a

158



lita = litanot / INLLOLRA

'L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnot = Cells(18, 2) / Cells(26, 2)

Else

xnot = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
'‘CL10
CL10 =1 - Exp(((lita * Inxo) * 2 + 2896.3) / -35395
Cells(46, 2) = CL10

‘A

AAADb = Exp((4.5286 / Cells(24, 2)) + 0.3152)

'In(m)

InmAb = Application.WorksheetFunction.Ln(Cells(2))
‘B

BBBb = 0.29574 * InmAb + (-0.45228)

'L10LR
L10LRADb = AAAD * Cells(40, 2) * BBBb

'‘ao

litanotb = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)

INL1OLRAb = Application.WorksheetFunction.Ln(L10LRA
‘a
litab = litanotb / INLIOLRADb

'L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnotb = Cells(18, 2) / Cells(26, 2)

Else

xnotb = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxob = Application.WorksheetFunction.Ln(xnotb)
'‘CL10
CL10b =1 - Exp(((litab * Inxob) ~ 2 + 2896.3) /535.9)
Cells(47, 2) = CL10b

'‘C L10 average
CL10avg = (CL10 + CL10b) / 2
Cells(48, 2) = CL10avg

Range("Al1").Select
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Worksheets("Summary").Select

Cells(2, 1) = loop37 'this tells me how many trigailsere run, its used to make sure all
simulations were run

'Slopes
Cells(4, Column) = SlopelA
Cells(12, Column) = SlopelB

'L10
Cells(6, Column) = L10A1
Cells(14, Column) = L10B1

'L50
Cells(7, Column) = L50A1
Cells(15, Column) = L50B1

'‘Mean
Cells(9, Column) = cheeseAl
Cells(17, Column) = cheeseB1

'‘Mean@
Cells(8, Column) = chevyAl
Cells(16, Column) = chevyB1

'Lb
Cells(5, Column) = sassyAl
Cells(13, Column) = sassyB1

'DOF
Cells(28, Column) = dofab

'MLR99

Cells(29, Column) = MLR99
Cells(31, Column) = MLR99B
'‘Cvegas

Cells(30, Column) = Cvegas
Cells(32, Column) = CvegasB

'C average
Cells(33, Column) = Cvegasavg

'CL10
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Cells(34, Column) = CL10
Cells(35, Column) = CL10b
Cells(36, Column) = CL10avg

'L10A/L10B
Cells(60, Column) = Cells(6, Column) / Cells(14,@un)

'MeanA / MeanB
Cells(64, Column) = Cells(9, Column) / Cells(17,I@un)

'‘Counting which is bigger, L10A or L10B
If Cells(60, Column) > 1 Then

countL10 = countL10 + 1

Else

countL10B = countL10B + 1

End If

Cells(68, 2) = countL10

Cells(69, 2) = countL10B

'‘Counting which is bigger meanA or meanB
If Cells(64, Column) > 1 Then

countmean = countmean + 1

Else

countmeanB = countmeanB + 1

End If

Cells(75, 2) = countmean

Cells(76, 2) = countmeanB

Cells(2, Column) = Column - 1

Worksheets(1).Select

Cells(5, 3) =loop10

‘This is used for archiving the data
'Range(Cells(5, 3), Cells(beta + 6, 27)).Select
'Selection.Copy

'‘Worksheets(3).Select
‘Cells(shuttle, shuttleb).Select
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'‘ActiveSheet.Paste
'Range("Al").Select
'Worksheets(1).Select
'Range("Al").Select

‘Just used this to keep last loop data on sheet 1
If loop10 < trials Then
Worksheets(1).Select
Range(Cells(7, 3), Cells(beta + 6, 27)).Select
Selection.ClearContents
Range(Cells(16, 2), Cells(70, 2)).Select
Selection.ClearContents

Else
End If
Cells(1, 1).Select

Column = Column + 1
shuttle = shuttle + beta + 3

Next loop10

Worksheets("Summary").Select

If Cells(68, 2) > Cells(69, 2) Then 'This was jtstlisplay which was greater
Cells(68, 3) = "A>B"

Else

Cells(68, 3) = "B>A"

End If

If Cells(75, 2) > Cells(76, 2) Then
Cells(75, 3) = "A>B"

Else

Cells(75, 3) = "B>A"

End If

Cells(83, 3) = "=average(B36:CW36)" 'averages tdffidence numbers

Cells(83, 6) = "=average(B33:CW33)" 'averages nwarfidence numbers
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Range(Cells(2, 1), Cells(85, 101)).Selectpies data just generated on summary page down
85 cells to make room for next trials numbers

Selection.Copy

Cells(taz, 1).Select

ActiveSheet.Paste

Range("B2:CW85").Select

Selection.ClearContents

taz =taz + 85
shuttleb = shuttleb + 18

Next loop37

Worksheets("Sheetl").Select
trials = Cells(13, 2)
Worksheets("Summary").Select

a=168
ab =169
ac =170
d=6
b=3

Cells(2, 3) = Cells(168, 3) 'this starts the cuiveonfidence number averaging for the whole
summary sheet

Cells(2, 6) = Cells(168, 6)

For cl10avgavgavgloop = 1 To trials ‘averagingdhere fit equations on the summary page
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3)

Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6)

a=-a+85

Next cl10avgavgavgloop
Cells(2, 3) = Cells(2, 3) / trials

Cells(2, 6) = Cells(2, 6) / trials
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az = Cells(2, 3)

ax = Cells(2, 6)

Cells(1, 1).Select
Worksheets("SummaryB").Select

Cells(1, 2) = az 'average CL10 on final summarnyepa

Cells(5, 2) = ax 'average mean confidence numbdinal summary page

Worksheets("Summary").Select

amcavg = 153
cmcavg = 154

dmcavg = 155
emcavg = 156
fmcavg = 157
gmcavg = 158

For loopmcavg = 1 To trials 'averaging the Mongl@ counting numbers
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10)
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11)

amcavg = amcavg + 85
cmcavg = cmcavg + 85

Next loopmcavg

bmcavg = Cells(1, 10) / trials
hmcavg = Cells(1, 11) / trials

Worksheets("SummaryB").Select
Cells(10, 2) = bmcavg 'average of L10a>L10b
Cells(11, 2) = hmcavg 'average of L10b>L10a

Cells(1, 1).Select
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'this is where it takes the averages of slope, LB0O,

Worksheets(1).Select
t1 = Cells(12, 2)
trials = Cells(13, 2)

Worksheets(2).Select

aa =89
cc=91
dd =92
ee =97
ff =99

gg =100

For loop2 = 1 To trials

a = Cells(aa, 2)

b=3

¢ = Cells(cc, 2)

d = Cells(dd, 2)

e = Cells(ee, 2)

f = Cells(ff, 2)

g = Cells(gg, 2)
Forloopl=1Totl
a=a + Cells(aa, b)

c =c + Cells(cc, b)

d =d + Cells(dd, b)

e = e + Cells(ee, b)

f =1+ Cells(ff, b)

g =g + Cells(gg, b)
b=b+1

Next loopl

Cells(aa, 104) =a/tl
Cells(cc, 104) =c/t1
Cells(dd, 104) =d /1
Cells(ee, 104) =e /11
Cells(ff, 104) = f /11
Cells(gg, 104) =g/ t1
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aa=aa+85
cc=cc+85
dd=dd + 85
ee=ee+85
ff = ff + 85

gg =gg + 85

Next loop2

aaa=174
ccc =176
ddd =177
eee =182
fff = 184

ggg = 185

a2 = Cells(89, 104)
c2 = Cells(91, 104)
d2 = Cells(92, 104)
e2 = Cells(97, 104)
f2 = Cells(99, 104)
g2 = Cells(100, 104)

For loop3 =1 To trials

a2 = a2 + Cells(aaa, 104)
c2 = c2 + Cells(ccc, 104)
d2 = d2 + Cells(ddd, 104)
e2 = e2 + Cells(eee, 104)
f2 = f2 + Cells(fff, 104)

g2 = g2 + Cells(ggg, 104)

aaa =aaa+ 85
ccc =ccc + 85
ddd = ddd + 85
eee = eee + 85
fff = fff + 85

ggg = ggg + 85

Next loop3
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Worksheets(4).Select 'puts the averages of sldde,and L50 on final summary page

Cells(16, 2) = a2/ trials
Cells(16, 3) = e2 / trials
Cells(17, 2) = c2 / trials
Cells(17, 3) =2/ trials
Cells(18, 2) = d2 / trials
Cells(18, 3) = g2/ trials

Cells(1, 1).Select

End Sub
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Appendix D: Computer Simulation for Method 4
Sub Macrol()

"Macrol Macro

' Keyboard Shortcut: Ctrl+r

Worksheets(1).Select
Application.ScreenUpdating = False 'to keep scfemn constantly updating an slowing down
the simulation

trialsB = Cells(13, 2) 'number of times to run glation, can be from 1 up

taz = 87 'this is for the index to copy the summaage and index all the data down 87 cells
rowspace =5 'used to index the copied data frometdhto sheet3 down for next run

For loop37 = 1 To trialsB 'loop that runs entiregnam

Worksheets(1).Select

Column = 2 'indexes the summary page for all valoesses to right after every loop
countL10 = 0 'these counts are used to count whkibigger for comparison on summary page
countL10B =0

countmean =0
countmeanB =0

trials = Cells(12, 2) 'number of times one runapeaated, typically 100 to get a confidence
number out of 100

columnspace = 3 'used to index the copied data §toeetl to sheet3 to the right everytime
For loopl0 = 1 To trials 'loop for generating numsbi@r confidence numbers

alpha = Cells(9, 2) 'size of bin A
alpha2 = Cells(10, 2) 'size of bin B

If alpha > alpha2 Then 'to number the samples ftamwhich ever bin is bigger

X=7

For loop3 =1 To alpha

Cells(x,3)=x-6

X=x+1

Next loop3

beta = alpha 'beta used for archinving
Else
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X=7

For loop3 =1 To alpha2
Cells(x,3)=x-6
XxX=x+1

Next loop3

beta = alpha2
End If

'Bin A
‘generating random number
alpha = Cells(9, 2)
r=17
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = "=randbetween(1,1000)"

'‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl =numl+ 1
Next loopl

'sorting column
ActiveWorkbook.Worksheets("Sheet1").SorttBields.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Satés. Add Key:=Cells(7, 4), _
SortOn:=xISortOnValues, Order:=xlAscendibgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort
.SetRange Range(Cells(7, 4), Cells(alpba4))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With
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herel199:

'‘Bin B
‘random number
alpha2 = Cells(10, 2)
r=7
numl2 =1
For loop2 = 1 To alpha2
Cells(r, 12).Select
here4:
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)"

'‘Checking for duplicate
S=6
For randcheck2 =1 To num12
If Cells(r, 12) = Cells(s, 12) Then GoTo here4d
s=s+1
Next randcheck?2
r=r+1
numl2 =numl2 +1
Next loop2

' Sorting column
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Clear
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Add Key:=Cells(7, 12), _
SortOn:=xISortOnValues, Order:=xIAscendibDgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl1").Sort
.SetRange Range(Cells(7, 12), Cells(alph6212))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With

r1=7

For loop5 =1 To alpha
'Rank A
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Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 4P
'S of A
Cells(rl, 6) = 1 - Cells(r1, 5)
SA = Cells(r1, 6)
'Life of A
Al = Application.WorksheetFunction.Ln(1A)S
B1 = Application.WorksheetFunction.Ln(A1)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
Cells(r1, 7) = CA
rn=r1+1
Next loop5

r1=7

For loop6 = 1 To alpha2
'‘Rank B
Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (100@4)
'S of B
Cells(rl, 14) =1 - Cells(r1, 13)
SB = Cells(r1, 14)
'Life of B
a2 = Application.WorksheetFunction.Ln(1B)S
B2 = Application.WorksheetFunction.Ln(a2)
CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2)
Cells(r1, 15) =CB

If CB > Cells(5, 2) Then GoTo here5 'thisvisere the program terminates when the desired
life is reached

rit=rl1+1
Next loop6

here5:
If Cells(7, 15) > Cells(5, 2) - 1 Then GoTo herel®® makes sure more then one life is
generated so the program doesnt crash when corgmltipes and intercepts

soccer = loop6
If loop6 = Cells(10, 2) + 1 Then soccer = Cells(2D,'incase there are more lives generated than
needed,

'needed because goto here5 causes loop6up gwe more
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ri1=7

For loop7a =1 To alpha

'rank for 1 to sample size
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11, 8) = Z1

'S for sample size
Z2 =1 - Cells(rl1, 8)
Cells(r11, 9) = 22

'Inin(1/S) for sample size
z5=1/22
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
rti=ri1+1
Next loop7a

ri11=7v

For looplla =1 To soccer 'this indexing is negdezlit off loop at right time otherwise could
add 1
'rank for 1 to sample size

Z1b = (Cells(r111, 3) - 0.3) / (alpha2 4)ddoes this go to alpha2 or what the program
stoped at?

Cells(r111, 16) = Z1b

'S for sample size
Z2b =1 - Cells(r111, 16)
Cells(r111, 17) = Z2b

'Inin(1/S) for sample size
Z5b=1/272b
Z3b = Application.WorksheetFunction.Ln(Z5b)
Z4b = Application.WorksheetFunction.Ln(Z3b)
Cells(r111, 18) = Z4b
r1i11 =r111+1
Next looplla

nA
r1i2=7
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For loop8 =1 To alpha

Cells(r12, 11) = Application.WorksheetFunction.Le(5(r12, 7))
ri2=r12+1

Next loop8

'InB

r13=7

For loop9 = 1 To soccer

Cells(r13, 19) = Application.WorksheetFunction.Le(S(r13, 15))
r1I3=r13+1

Next loop9

Cells(2, 4) = soccer - 1 'to chop off the last that is over the limit
soccer2 = Cells(2, 4) + 6 'this selects the rigigtd in the sheet

If soccer2 = 7 Then GoTo herel99 'this again toersake more that one gets generated to be
able to compute slopes and intercepts

Range(Cells(7, 12), Cells(soccer2, 19)).Setagies the data to be used to the right in same
sheet

Selection.Copy

Cells(7, 22).Select

ActiveSheet.Paste

Range("Al").Select

'Cells(5, 3) = loopl0 ‘copies data from sheetdhteet3
'Range(Cells(5, 3), Cells(beta + 6, 29)).Select
‘Selection.Copy

'Worksheets("Sheet3").Select

'Cells(rowspace, columnspace).Select
'‘ActiveSheet.Paste

Worksheets("Sheetl").Select

'here down should change

'‘Organized answers on left of spreadsheet

'slope A

MA = Application.WorksheetFunction.LinEst(Range(S€él, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)), Truei€)r

Cells(16, 2) = MA
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MAa = Cells(16, 2)

SlopelA = MAa

'slope B

'MB = Application.WorksheetFunction.LinEst(Rangell€§, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), Truge) 'original code

MB = Application.WorksheetFunction.LinEst(Range(6él, 28), Cells(soccer2, 28)),
Range(Cells(7, 29), Cells(soccer2, 29)), True, Jugoff code

Cells(24, 2) = MB

MBb = Cells(24, 2)

SlopelB = MBb

'intercepts A and B
Ba = Application.WorksheetFunction.Intercept(Ra@gls(7, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)))

'‘Bb = Application.WorksheetFunction.Intercept(Raf@mis(7, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) 'orgicode

Bb = Application.WorksheetFunction.Intercept(Rarim(s(7, 28), Cells(soccerz2, 28)),
Range(Cells(7, 29), Cells(soccer2, 29))) 'cutofieo

'Lbeta A calculations
V2 = (Ba/ MAa)

VV =-1*V2

LBa = Exp(VV)

'‘Lbeta B calculations
V3 = (Bb/ MBb)

MO =-1*V3

LBb = Exp(MO)

‘plotting Lbetas
Cells(17, 2) = LBa
Cells(25, 2) = LBb

sassyAl = LBa
sassyB1 = LBb

'L10 A

L10a = Exp(-2.25037 / MAa) * LBa
Cells(18, 2) = L10a

L10A1 =L10a

'L10B

L10b = Exp(-2.25037 / MBb) * LBb
Cells(26, 2) = L10b
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L10B1 = L10b

'L50 A

L50a = Exp(-0.36651 / MAa) * LBa
Cells(19, 2) = L50a

L50A1 = L50a

'L50 B

L50b = Exp(-0.36651 / MBb) * LBb
Cells(27, 2) = L50b

L50B1 = L50b

'‘Mean@ A

meanata = 62.1 * (MAa ~ -0.172)
Cells(20, 2) = meanata

chevyAl = meanata

'Mean@ B

meanatb = 62.1 * (MBb ~ -0.172)
Cells(28, 2) = meanatb

chevyB1 = meanatb

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.Gamn{atumsb)

LmeanA = LBa * Exp(ala)
Cells(21, 2) = LmeanA
cheeseAl = LmeanA

‘Mean A

'Dla=1/(1- (meanata/ 100))

'D2a = Application.WorksheetFunction.Ln(1a
'D3a = Application.WorksheetFunction.Ln(p2a
'meanA = (Exp(D3a/ MAa)) * LBa

'Cells(21, 2) = meanA

‘cheeseAl = meanA

'Mean B Gamma function method

musbB = (MBb + 1) / MBb

alaB = Application.WorksheetFunction.Gamm@husbB)
LMeanAb = LBb * Exp(alaB)

Cells(29, 2) = LMeanAb

cheeseB1 = LMeanAb

‘Mean B

'Dlb=1/(1- (meanatb / 100))
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'D2b = Application.WorksheetFunction.Ln(D1b
'D3b = Application.WorksheetFunction.Ln(D2b
'meanB = (Exp(D3b / MBb)) * LBb

'Cells(29, 2) = meanB

‘cheeseB1 = meanB

'DOF A-B

Cells(40, 2) = (Cells(9, 2) - 1) * (soccer2 - 6)-'degrees of freedom for bin A times cutoff
number

dofab = Cells(40, 2)

'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584

'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99 = (Anot * INDOF + Bnot) * 2 + 1
Cells(41, 2) = MLR99

‘D

Dvegas = 3.912 / (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexp = Cells(21, 2) / Cells(29, 2)

Else

MLRexp = Cells(29, 2) / Cells(21, 2)

End If

'C

Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp - 1))
Cells(42, 2) = Cvegas

'CONFIDENCE INTERVAL FOR B
'AOB
AnotB = (-0.0844 / Cells(24, 2)) - 0.05584

'BoB
BnotB = (1.2796 / Cells(24, 2)) + 0.6729
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'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99B = (AnotB * INDOF + BnotB) * 2 + 1
Cells(43, 2) = MLR99B

'D

DvegasB = 3.912 / (MLR99B - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexpB = Cells(21, 2) / Cells(29, 2)

Else

MLRexpB = Cells(29, 2) / Cells(21, 2)

End If

'C

CvegasB =1 - 0.5 * Exp(-DvegasB * (MLRexpB)) 1
Cells(44, 2) = CvegasB

'C average
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2
Cells(45, 2) = Cvegasavg

'L10 dependent confidence numbers

‘A
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152)
'In(m)
InmA = Application.WorksheetFunction.Ln(Cells(16) 2
'B
bbb = 0.29574 * InmA + (-0.45228)
'L10LR
L10LRA = aaa * Cells(40, 2) ~ bbb
‘ao
litanot = (-3595.9 * -4.60517 - 2896.3) ~ 0.5
'In(L10LR)
INL10LRA = Application.WorksheetFunction.Ln(L10LRA)
‘a
lita = litanot / INLLOLRA
'‘L10exp
If Cells(18, 2) > Cells(26, 2) Then
xnot = Cells(18, 2) / Cells(26, 2)
Else
xnot = Cells(26, 2) / Cells(18, 2)
End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
'‘CL10
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CL10 = 1 - Exp(((lita * Inx0) » 2 + 2896.3) / -35%
Cells(46, 2) = CL10

‘A
AAADb = Exp((4.5286 / Cells(24, 2)) + 0.3152)
'In(m)
InmAb = Application.WorksheetFunction.Ln(Cells(2))
‘B
BBBb = 0.29574 * InmAb + (-0.45228)
'L10LR
L10LRADb = AAAD * Cells(40, 2) ~ BBBb
‘ao
litanotb = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)
INL1OLRAb = Application.WorksheetFunction.Ln(L10LRA
‘a
litab = litanotb / INLLOLRAD
'L10exp
If Cells(18, 2) > Cells(26, 2) Then
xnotb = Cells(18, 2) / Cells(26, 2)
Else
xnotb = Cells(26, 2) / Cells(18, 2)
End If
'In(x0)
Inxob = Application.WorksheetFunction.Ln(xnotb)
'‘CL10
CL10b =1 - Exp(((litab * Inxob) ~ 2 + 2896.3) /585.9)
Cells(47, 2) = CL10b

'‘C L10 average

CL10avg = (CL10 + CL10b) /2
Cells(48, 2) = CL10avg

Cells(38, 2) = soccer2 - 6

Range(Cells(7, 3), Cells(beta + 6, 29)).Select
Selection.ClearContents

Range("Al1").Select
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Worksheets("Summary").Select

Cells(2, 1) = loop37

'Slopes
Cells(4, Column) = SlopelA
Cells(12, Column) = SlopelB

'L10
Cells(6, Column) = L10A1
Cells(14, Column) = L10B1

'L50
Cells(7, Column) = L50A1
Cells(15, Column) = L50B1

‘Mean
Cells(9, Column) = cheeseAl
Cells(17, Column) = cheeseB1

'‘Mean@
Cells(8, Column) = chevyAl
Cells(16, Column) = chevyB1

'Lb
Cells(5, Column) = sassyAl
Cells(13, Column) = sassyB1

'DOF
Cells(28, Column) = dofab

Cells(26, Column) = soccer2 - 6
'MLR99

Cells(29, Column) = MLR99
Cells(31, Column) = MLR99B

'‘Cvegas
Cells(30, Column) = Cvegas
Cells(32, Column) = CvegasB

'C average
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Cells(33, Column) = Cvegasavg

'CL10

Cells(34, Column) = CL10
Cells(35, Column) = CL10b
Cells(36, Column) = CL10avg

'L10A/L10B
Cells(60, Column) = Cells(6, Column) / Cells(14,@uon)

'MeanA / MeanB
Cells(64, Column) = Cells(9, Column) / Cells(17,I@un)

'‘Counting which is bigger, L10A or L10B
If Cells(60, Column) > 1 Then

countL10 = countL10 + 1

Else

countL10B = countL10B + 1

End If

Cells(68, 2) = countL10

Cells(69, 2) = countL10B

'‘Counting which is bigger meanA or meanB
If Cells(64, Column) > 1 Then

countmean = countmean + 1

Else

countmeanB = countmeanB + 1

End If

Cells(75, 2) = countmean

Cells(76, 2) = countmeanB

Cells(2, Column) = Column - 1
Worksheets(1).Select
Cells(1, 1).Select

Column = Column + 1
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columnspace = columnspace + 28

Next loopl0

Worksheets("Summary").Select

If Cells(68, 2) > Cells(69, 2) Then 'This was jtstlisplay which was greater
Cells(68, 3) = "A>B"

Else

Cells(68, 3) = "B>A"

End If

If Cells(75, 2) > Cells(76, 2) Then
Cells(75, 3) ="A>B"

Else

Cells(75, 3) = "B>A"

End If

Cells(83, 3) = "=average(B36:CW36)" ‘'averages tdffidence numbers
Cells(83, 6) = "=average(B33:CW33)" 'averagesmumfidence numbers

Range(Cells(2, 1), Cells(85, 101)).Select ‘esplata just generated on summary page down
85 cells to make room for next trials numbers

Selection.Copy

Cells(taz, 1).Select

ActiveSheet.Paste

Range("B2:CW85").Select

Selection.ClearContents

taz =taz + 85
rowspace = rowspace + beta + 3
Next loop37

Worksheets("Sheetl").Select
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trials = Cells(13, 2)

Worksheets("Summary").Select

a=168

ab =169

ac =170

d=6

b=3

Cells(2, 3) = Cells(168, 3) 'this starts the cuiveonfidence number averaging for the whole
summary sheet

Cells(2, 6) = Cells(168, 6)

For cl10avgavgavgloop = 1 To trials laggng the curve fit equations on the summary
page

Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3)

Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6)

a=a+85

Next cl10avgavgavgloop
Cells(2, 3) = Cells(2, 3) / trials

Cells(2, 6) = Cells(2, 6) / trials

az = Cells(2, 3)

ax = Cells(2, 6)

Cells(1, 1).Select

Worksheets("SummaryB").Select

182



Cells(1, 2) =az ‘average CL10 on final sumnpage

Cells(5, 2) = ax ‘average mean confidence numbédinal summary page

Worksheets("Summary").Select

amcavg = 153
cmcavg = 154

dmcavg = 155
emcavg = 156
fmcavg = 157
gmcavg = 158

For loopmcavg = 1 To trials 'averaging the MoGgglo numbers

Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10)
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11)

amcavg = amcavg + 85
cmcavg = cmcavg + 85

Next loopmcavg

bmcavg = Cells(1, 10) / trials
hmcavg = Cells(1, 11) / trials

Worksheets("SummaryB").Select
Cells(10, 2) = bmcavg 'average of 110a>L10b
Cells(11, 2) = hmcavg 'average of L10b>L10a
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Cells(1, 1).Select

'this is where it takes the averages of slope, LB0O,

Worksheets(1).Select
t1 = Cells(12, 2)
trials = Cells(13, 2)

Worksheets(2).Select

aa =89
cc=91
dd =92
ee =97
ff =99

gg =100

For loop2 = 1 To trials

a = Cells(aa, 2)

b=3

¢ = Cells(cc, 2)

d = Cells(dd, 2)

e = Cells(ee, 2)

f = Cells(ff, 2)

g = Cells(gg, 2)
Forloopl=1Totl
a=a + Cells(aa, b)

c =c + Cells(cc, b)

d =d + Cells(dd, b)

e = e + Cells(ee, b)

f =1+ Cells(ff, b)

g =g + Cells(gg, b)
b=b+1

Next loopl

Cells(aa, 104) =a/tl
Cells(cc, 104) =c/t1
Cells(dd, 104) =d /1
Cells(ee, 104) =e /11
Cells(ff, 104) = f /11
Cells(gg, 104) =g /t1
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aa=aa+85
cc=cc+85
dd=dd + 85
ee=ee+85
ff = ff + 85

gg =gg + 85

Next loop2

aaa=174
ccc =176
ddd =177
eee =182
fff = 184

ggg = 185

a2 = Cells(89, 104)
c2 = Cells(91, 104)
d2 = Cells(92, 104)
e2 = Cells(97, 104)
f2 = Cells(99, 104)
g2 = Cells(100, 104)

For loop3 =1 To trials

a2 = a2 + Cells(aaa, 104)
c2 = c2 + Cells(ccc, 104)
d2 = d2 + Cells(ddd, 104)
e2 = e2 + Cells(eee, 104)
f2 = f2 + Cells(fff, 104)

g2 = g2 + Cells(ggg, 104)

aaa = aaa+ 85
ccc =ccc + 85
ddd = ddd + 85
eee = eee + 85
fff = fff + 85

ggg = ggg + 85

Next loop3
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Worksheets(4).Select ‘puts the averages of sld@e and L50 on final summary page

Cells(16, 2) = a2/ trials
Cells(16, 3) = e2 / trials
Cells(17, 2) = c2 / trials
Cells(17, 3) =2/ trials
Cells(18, 2) = d2 / trials
Cells(18, 3) = g2/ trials

Cells(1, 1).Select

End Sub
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Appendix E: Computer Simulation for Method 5
Sub Macrol()

"Macrol Macro

' Keyboard Shortcut: Ctrl+e

Worksheets(1).Select
Application.ScreenUpdating = False

trialsB = Cells(13, 2)

taz = 87

‘rowspace = 5

For loop37 =1 To trialsB
Worksheets(1).Select

Column =2
countL10=0
countL10B =0
countmean =0
countmeanB =0

trials = Cells(12, 2)
‘columnspace = 3
For loopl0 =1 To trials

alpha = Cells(9, 2)
alpha2 = Cells(10, 2)

If alpha > alpha2 Then

X=7
For loop3 =1 To alpha
Cells(x,3)=x-6
X=x+1
Next loop3
beta = alpha

Else

X=17

For loop3 =1 To alpha2
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Cells(x,3)=x-6
X=x+1
Next loop3

beta = alpha2
End If

'Bin A
‘generating random number
alpha = Cells(9, 2)
r=17
numl=1
For loopl =1 To alpha
Cells(r, 4).Select
here2:
ActiveCell.FormulaR1C1 = "=randbetween(1,1000)"

'‘Checking for duplicate
S=6
For randcheck =1 To numl
If Cells(r, 4) = Cells(s, 4) Then GoTo here2
s=s+1
Next randcheck
r=r+1
numl =numl+ 1
Next loopl

'sorting column
ActiveWorkbook.Worksheets("Sheet1").SorttBields.Clear
ActiveWorkbook.Worksheets("Sheetl1").Sort.Sat#s. Add Key:=Cells(7, 4), _
SortOn:=xISortOnValues, Order:=xlAscendibgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheetl").Sort
.SetRange Range(Cells(7, 4), Cells(alpba4))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With

188



ri=7

For loop5 =1 To alpha
'Rank A
Cells(r1, 5) = (Cells(rl, 4) - 0.3) / (1000 4P
'S of A
Cells(rl, 6) =1 - Cells(rl, 5)
SA = Cells(r1, 6)
'Life of A
Al = Application.WorksheetFunction.Ln(1AS
B1 = Application.WorksheetFunction.Ln(A1)
CA = Exp(B1/ Cells(3, 2)) * Cells(6, 2)
Cells(r1, 7) = CA
rt=rl+1
Next loop5

ri1=7

For loop7a =1 To alpha

'rank for 1 to sample size
Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4)
Cells(r11, 8) = 71

'S for sample size
Z2 =1 - Cells(r11, 8)
Cells(r11, 9) = 22

'Inin(1/S) for sample size
Z5=1/22
Z3 = Application.WorksheetFunction.Ln(Z5)
Z4 = Application.WorksheetFunction.Ln(Z3)
Cells(r11, 10) = z4
ri1=r11+1
Next loop7a

'InA

ri2=7

For loop8 = 1 To alpha

Cells(r12, 11) = Application.WorksheetFunction.Le(5(r12, 7))
r12=r12+1

Next loop8
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here99:

'‘Bin B
‘random number
alpha2 = Cells(10, 2)
r=7
numl2 =1
For loop2 = 1 To alpha2
Cells(r, 12).Select
here4:
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)"

'‘Checking for duplicate
S=6
For randcheck2 =1 To num12
If Cells(r, 12) = Cells(s, 12) Then GoTo here4d
s=s+1
Next randcheck?2
r=r+1
numl2 =numl2 +1
Next loop2

' Sorting column
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Clear
ActiveWorkbook.Worksheets("Sheetl").Sort.Sat#s.Add Key:=Cells(7, 12), _
SortOn:=xISortOnValues, Order:=xIAscendibDgtaOption:=xISortNormal
With ActiveWorkbook.Worksheets("Sheet1").Sort
.SetRange Range(Cells(7, 12), Cells(alph6212))
.Header = xINo
.MatchCase = False
.Orientation = xITopToBottom
.SortMethod = xIPinYin
Apply
End With

ri=7

For loop6 = 1 To alpha2
'‘Rank B

Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (100@4)
'S of B

Cells(rl, 14) =1 - Cells(r1, 13)

SB = Cells(r1, 14)
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'Life of B
a2 = Application.WorksheetFunction.Ln(1B)S
B2 = Application.WorksheetFunction.Ln(a2)
CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2)
Cells(r1, 15) =CB

If CB > Cells(5, 2) Then GoTo here5

rt=rl+1
Next loop6

here5:

soccer = loop6

If soccer < Cells(10, 2) + 1 Then GoTo here99is ththe part making sure the failure index is
fixed

If loop6 = Cells(10, 2) + 1 Then soccer = Cells(2D,

ri11=7v

For looplla =1 To soccer

'rank for 1 to sample size
Z1b = (Cells(r111, 3) - 0.3) / (alpha2 4)0.
Cells(r111, 16) = Z1b

'S for sample size
Z2b =1 - Cells(r111, 16)
Cells(r111, 17) = Z2b

'Inin(1/S) for sample size
Z5b=1/272b
Z3b = Application.WorksheetFunction.Ln(Z5b)
Z4b = Application.WorksheetFunction.Ln(Z3b)
Cells(r111, 18) = Z4b
r1i11 =r111+1
Next looplla
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'nB

ri3=7

For loop9 = 1 To soccer

Cells(r13, 19) = Application.WorksheetFunction.Le(S(r13, 15))
r13=r13+1

Next loop9

Cells(2, 4) = soccer
soccer2 = Cells(2, 4) + 6

Cells(5, 3) =loopl0
‘copying data from sheetl to sheet3

'Range(Cells(5, 3), Cells(beta + 6, 19)).Select
'Selection.Copy
'‘Worksheets("Sheet3").Select
'‘Cells(rowspace, columnspace).Select
'‘ActiveSheet.Paste
'‘Worksheets("Sheetl").Select

'here down should change

'‘Organized answers on left of spreadsheet

'slope A

MA = Application.WorksheetFunction.LinEst(Range(S€él, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)), Truei€)r

Cells(16, 2) = MA

MAa = Cells(16, 2)

SlopelA = MAa

'slope B

'MB = Application.WorksheetFunction.LinEst(Rangell€§, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), Trugge)

MB = Application.WorksheetFunction.LinEst(Range(6¢l, 18), Cells(soccer2, 18)),
Range(Cells(7, 19), Cells(soccer2, 19)), True, Yrue

Cells(24, 2) = MB

MBb = Cells(24, 2)

SlopelB = MBb
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'intercepts A and B

Ba = Application.WorksheetFunction.Intercept(Ra@gls(7, 10), Cells(alpha + 6, 10)),
Range(Cells(7, 11), Cells(alpha + 6, 11)))

'Bb = Application.WorksheetFunction.Intercept(Rai@mIs(7, 18), Cells(alpha2 + 6, 18)),
Range(Cells(7, 19), Cells(alpha2 + 6, 19)))

Bb = Application.WorksheetFunction.Intercept(Rar@g(s(7, 18), Cells(soccer2, 18)),
Range(Cells(7, 19), Cells(soccer2, 19)))

'‘Lbeta A calculations
V2 = (Ba/ MAa)
VV=-1*V2

LBa = Exp(VV)

'Lbeta B calculations
V3 = (Bb/ MBb)

MO =-1*V3

LBb = Exp(MO)

‘plotting Lbetas
Cells(17, 2) = LBa
Cells(25, 2) = LBb

sassyAl = LBa
sassyBl = LBb

'L10 A

L10a = Exp(-2.25037 / MAa) * LBa
Cells(18, 2) = L10a

L10A1 =L10a

'L10 B

L10b = Exp(-2.25037 / MBb) * LBb
Cells(26, 2) = L10b

L10B1 =L10b

'L50 A

L50a = Exp(-0.36651 / MAa) * LBa
Cells(19, 2) = L50a

L50A1 = L50a

'L50 B

L50b = Exp(-0.36651 / MBb) * LBb
Cells(27, 2) = L50b

L50B1 = L50b
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'Mean@ A

meanata = 62.1 * (MAa ~ -0.172)
Cells(20, 2) = meanata

chevyAl = meanata

'Mean@ B

meanatb = 62.1 * (MBb ~ -0.172)
Cells(28, 2) = meanatb

chevyB1 = meanatb

'Mean A Gamma function method

musb = (MAa + 1) / MAa

ala = Application.WorksheetFunction.Gamn{atumsb)
LmeanA = LBa * Exp(ala)

Cells(21, 2) = LmeanA

cheeseAl = LmeanA

‘Mean A

'Dla=1/(1- (meanata/ 100))

'D2a = Application.WorksheetFunction.Ln(D1a
'D3a = Application.WorksheetFunction.Ln(p2a
'meanA = (Exp(D3a / MAa)) * LBa

'Cells(21, 2) = meanA

‘cheeseAl = meanA

'‘Mean B Gamma function method

musbB = (MBb + 1) / MBb

alaB = Application.WorksheetFunction.Gamm@husbB)
LMeanAb = LBb * Exp(alaB)

Cells(29, 2) = LMeanAb

cheeseB1 = LMeanAb

‘Mean B

'Dlb=1/(1- (meanatb / 100))

'D2b = Application.WorksheetFunction.Ln(D1b
'D3b = Application.WorksheetFunction.Ln(D2b
'meanB = (Exp(D3b / MBb)) * LBb

'Cells(29, 2) = meanB

‘cheeseB1 = meanB
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'DOF A-B
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2)}
dofab = Cells(40, 2)

'CONFIDENCE INTERAL FOR A

‘Ao

Anot = (-0.0844 / Cells(16, 2)) - 0.05584

'‘Bo

Bnot = (1.2796 / Cells(16, 2)) + 0.6729

'InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99 = (Anot * INDOF + Bnot) * 2 + 1
Cells(41, 2) = MLR99

‘D

Dvegas = 3.912 / (MLR99 - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then

MLRexp = Cells(21, 2) / Cells(29, 2)

Else

MLRexp = Cells(29, 2) / Cells(21, 2)

End If

'C

Cvegas =1 - 0.5 * Exp(-Dvegas * (MLRexp - 1))
Cells(42, 2) = Cvegas

'CONFIDENCE INTERVAL FOR B

'‘AoB

AnotB = (-0.0844 / Cells(24, 2)) - 0.05584
'‘BoB

BnotB = (1.2796 / Cells(24, 2)) + 0.6729
InDOF

INDOF = Application.WorksheetFunction.Ln(Cefl§( 2))
'MLR at 99

MLR99B = (AnotB * INDOF + BnotB) * 2 + 1
Cells(43, 2) = MLR99B

'D

DvegasB = 3.912 / (MLR99B - 1)

'MLRexp

If Cells(21, 2) > Cells(29, 2) Then
MLRexpB = Cells(21, 2) / Cells(29, 2)

Else

MLRexpB = Cells(29, 2) / Cells(21, 2)
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End If

'C

CvegasB =1 - 0.5 * Exp(-DvegasB * (MLRexpB)) 1
Cells(44, 2) = CvegasB

'C average
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2
Cells(45, 2) = Cvegasavg

'L10 dependent confidence numbers

‘A
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152)
'In(m)
InmA = Application.WorksheetFunction.Ln(Cells(16) 2
'B
bbb = 0.29574 * InmA + (-0.45228)
'L10LR
L10LRA = aaa * Cells(40, 2) ~ bbb
‘ao
litanot = (-3595.9 * -4.60517 - 2896.3) ~ 0.5
'In(L10LR)
INL10OLRA = Application.WorksheetFunction.Ln(L10LRA)
‘a
lita = litanot / INLLOLRA

'‘L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnot = Cells(18, 2) / Cells(26, 2)

Else

xnot = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxo = Application.WorksheetFunction.Ln(xnot)
'‘CL10
CL10 =1 - Exp(((lita * Inxo) * 2 + 2896.3) / -3535
Cells(46, 2) = CL10

‘A

AAADb = Exp((4.5286 / Cells(24, 2)) + 0.3152)

'In(m)

InmAb = Application.WorksheetFunction.Ln(Cells(2))
‘B

BBBb = 0.29574 * InmAb + (-0.45228)

'L10LR

L10LRADb = AAAD * Cells(40, 2) ~ BBBb
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‘ao
litanotb = (-3595.9 * -4.60517 - 2896.3) * 0.5
'In(L10LR)
INL1OLRAb = Application.WorksheetFunction.Ln(L10LRA
‘a
litab = litanotb / INLLOLRAD

'L10exp

If Cells(18, 2) > Cells(26, 2) Then

xnotb = Cells(18, 2) / Cells(26, 2)

Else

xnotb = Cells(26, 2) / Cells(18, 2)

End If
'In(x0)
Inxob = Application.WorksheetFunction.Ln(xnotb)
'‘CL10
CL10b =1 - Exp(((litab * Inxob) ~ 2 + 2896.3) /535.9)
Cells(47, 2) = CL10b

'‘C L10 average
CL10avg = (CL10 + CL10b) / 2
Cells(48, 2) = CL10avg

Cells(38, 2) = soccer2 - 6

Range(Cells(7, 3), Cells(beta + 6, 19)).Select
Selection.ClearContents

Range("Al1").Select

Worksheets("Summary").Select
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Cells(2, 1) = loop37

'Slopes
Cells(4, Column) = SlopelA
Cells(12, Column) = SlopelB

'L10
Cells(6, Column) = L10A1
Cells(14, Column) = L10B1

'L50
Cells(7, Column) = L50A1
Cells(15, Column) = L50B1

‘Mean
Cells(9, Column) = cheeseAl
Cells(17, Column) = cheeseB1

'‘Mean@
Cells(8, Column) = chevyAl
Cells(16, Column) = chevyB1

'Lb
Cells(5, Column) = sassyAl
Cells(13, Column) = sassyB1

'DOF
Cells(28, Column) = dofab

Cells(26, Column) = soccer2 - 6

'MLR99
Cells(29, Column) = MLR99
Cells(31, Column) = MLR99B

‘Cvegas
Cells(30, Column) = Cvegas
Cells(32, Column) = CvegasB
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'C average
Cells(33, Column) = Cvegasavg

'‘CL10

Cells(34, Column) = CL10
Cells(35, Column) = CL10b
Cells(36, Column) = CL10avg

'‘L10A/L10B
Cells(60, Column) = Cells(6, Column) / Cells(14,I@uan)

'‘MeanA / MeanB
Cells(64, Column) = Cells(9, Column) / Cells(17,I@uan)

‘Counting which is bigger, L10A or L10B
If Cells(60, Column) > 1 Then

countL10 = countL10 + 1

Else

countL10B = countL10B + 1

End If

Cells(68, 2) = countL10

Cells(69, 2) = countL10B

'‘Counting which is bigger meanA or meanB
If Cells(64, Column) > 1 Then

countmean = countmean + 1

Else

countmeanB = countmeanB + 1

End If

Cells(75, 2) = countmean

Cells(76, 2) = countmeanB
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Cells(2, Column) = Column - 1

Worksheets(1).Select

Cells(1, 1).Select

Column = Column + 1
‘columnspace = columnspace + 19

Next loop10

Worksheets("Summary").Select

If Cells(68, 2) > Cells(69, 2) Then
Cells(68, 3) = "A>B"

Else

Cells(68, 3) = "B>A"

End If

If Cells(75, 2) > Cells(76, 2) Then
Cells(75, 3) ="A>B"

Else

Cells(75, 3) = "B>A"

End If

Cells(83, 3) = "=average(B36:CW36)"
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Cells(83, 6) = "=average(B33:CW33)"

Range(Cells(2, 1), Cells(85, 101)).Select
Selection.Copy

Cells(taz, 1).Select

ActiveSheet.Paste
Range("B2:CW85").Select
Selection.ClearContents

taz =taz + 85

‘rowspace = rowspace + beta + 3
Next loop37

Worksheets("Sheetl").Select

trials = Cells(13, 2)

Worksheets("Summary").Select

a=168
ab =169
ac =170
d=6
b=3

Cells(2, 3) = Cells(168, 3)

Cells(2, 6) = Cells(168, 6)

For cl10avgavgavgloop = 1 To trials
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3)
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6)
a=a+85
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Next cl10avgavgavgloop
Cells(2, 3) = Cells(2, 3) / trials

Cells(2, 6) = Cells(2, 6) / trials

az = Cells(2, 3)

ax = Cells(2, 6)

Cells(1, 1).Select

Worksheets("SummaryB").Select

Cells(1, 2) = az

Cells(5, 2) = ax

Worksheets("Summary").Select

amcavg = 153
cmcavg = 154

dmcavg = 155
emcavg = 156
fmcavg = 157
gmcavg = 158

For loopmcavg = 1 To trials

Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10)
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11)

amcavg = amcavg + 85
cmcavg = cmcavg + 85

202



Next loopmcavg

bmcavg = Cells(1, 10) / trials
hmcavg = Cells(1, 11) / trials

Worksheets("SummaryB").Select
Cells(10, 2) = bmcavg
Cells(11, 2) = hmcavg

Cells(1, 1).Select

'this is where it takes the averages of slope, LBO,

Worksheets(1).Select
t1 = Cells(12, 2)
trials = Cells(13, 2)

Worksheets(2).Select

aa =89
cc=91
dd =92
ee =97
ff =99

gg =100

For loop2 = 1 To trials
a = Cells(aa, 2)

b=3
¢ = Cells(cc, 2)
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d = Cells(dd, 2)

e = Cells(ee, 2)

f = Cells(ff, 2)

g = Cells(gg, 2)
Forloopl=1Totl
a=a + Cells(aa, b)

c =c + Cells(cc, b)

d =d + Cells(dd, b)

e =e + Cells(ee, b)

f =1 + Cells(ff, b)

g =g + Cells(gg, b)
b=b+1

Next loopl

Cells(aa, 104) =a/tl
Cells(cc, 104) =c/t1
Cells(dd, 104) =d /1
Cells(ee, 104) =e /11
Cells(ff, 104) = f /11
Cells(gg, 104) =g/ t1

aa=aa+85
cc=cc+85
dd=dd + 85
ee=ee+85
ff = ff + 85

gg =gg + 85

Next loop2

aaa=174
ccc =176
ddd =177
eee =182
fff = 184

ggg = 185

a2 = Cells(89, 104)
c2 = Cells(91, 104)
d2 = Cells(92, 104)
e2 = Cells(97, 104)
f2 = Cells(99, 104)
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g2 = Cells(100, 104)

For loop3 =1 To trials

a2 = a2 + Cells(aaa, 104)
c2 = c2 + Cells(ccc, 104)
d2 = d2 + Cells(ddd, 104)
e2 = e2 + Cells(eee, 104)
f2 = f2 + Cells(fff, 104)

g2 = g2 + Cells(ggg, 104)

aaa = aaa+ 85
ccc =ccc + 85
ddd = ddd + 85
eee = eee + 85
fff = fff + 85

ggg = ggg + 85

Next loop3

Worksheets(4).Select

Cells(16, 2) = a2/ trials
Cells(16, 3) = e2 / trials
Cells(17, 2) = c2 / trials
Cells(17, 3) =2/ trials
Cells(18, 2) = d2 / trials
Cells(18, 3) = g2/ trials

Cells(1, 1).Select

End Sub
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Appendix F: Abstract and Poster for 2009 STLE Ahieeting

PRESENTATION TYPE: Student Poster

TOPIC: Student Poster Competition

TITLE: Confidence Ranking of Monte Carlo Simulated Fatigue Data based on a Weibull-
Johnson Methodology

AUTHORS (LAST NAME, FIRST NAME): Murray, Noel S.?

INSTITUTIONS (ALL): 1. Mechanical Engineering Technology, Georgia Southern University,
Statesboro, GA, USA.

ABSTRACT BODY:

Body: Statistical and probabilistic models of fatigue lives were used to determine whether
data sets were significantly different. Monte Carlo simulations based on Weibull-Johnson
parameters were used to simulate fatigue lives. These lives can be for bearings, shafts, gears,
or any component that fails as a result of fatigue. The Monte Carlo simulation is repeated one
hundred times to determine a confidence number. Linear approximations of Leonard Johnson’s
Confidence Number curves were used to calculate separate confidence numbers, and were
compared to those generated by the Monte Carlo simulations. This work contributes to the
validation of the linear approximations used, which expand greatly on the limited cases
published by Johnson. A known experimental data set was also used to validate the Monte
Carlo simulations, validating the relative ranking of fatigue data sets with variations due to
test conditions, material variations, differences between batches and heat treatments, and
vendors.

Biography: I went to high school at Mount de Sales Academy in Macon Georgia and
graduated in 2003. I then went straight to Georgia Southern University and graduated in May
2008 with a BS in Mechanical Engineering Technology. I started graduate school at Georgia
Southern in August 2008 where I am currently getting a masters in Applied Engineering with a
concentration in Engineering Management. While a student at Georgia Southern I have been
involved with Formula SAE, SAE Mini Baja, Senior design project where we built a solar
powered car, and competed in the History Channel's "City of the Future" competition.
KEYWORDS: Computer Use in Maintenance, Statistical Analysis, Maintenance.
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INTRODUCTION

Over three decades ago, Vasco X-2 was consideradsaperior alternative for AISI 9310 as a
gear material for aircraft and helicopter transimisssystems. The Vasco X-2 material was
effectively a through hardened steel (H-12 tooéBtevith a reduced carbon content (0.11 to 0.16
percent). Since the finished product could be damelened while maintaining a soft core,
fracture toughness of gears manufactured from taeemal was expected to improve [1]. The
hardness and fatigue life (rolling contact andrgeats) of Vasco X-2 for three different heat

treatment methods, were determined experimentgllydwnsend, Zaretsky, and Anderson [1-
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2], and compared to results for AISI 9310. Singfident information existed in the literature
[1-2] to determine inputs for a Monte Carlo simidatof fatigue life based upon the method of

Vicek, et. al [3], this spur gear material studyswavisited.

Monte Carlo Simulation of Fatique Lives

For the Monte Carlo model, it is assumed that M0al gears exist in a virtual bin. While the

actual magnitude of the fatigue life of each of 10 virtual gears is not known, the relative
ranking (from 1 to 1000) of the gears lives is assd to be known, and is ordered from 1 to
1000. A subset of desired number of test specirtess specimen population size) is randomly
drawn from the bin by randomly determining ordemters. If the Weibull parameters (Weibull

slope and the characteristic life at which 63.2%est specimens having failed) for the material
are known from some limited amount of previous expentation or modeling, the above order

numbers can be converted into gear lives usingbeParameter Weibull Equation [4], where

Inln[ij =min 5 where0<L <o:0<S<1
S L,

(1)

From this subset of simulated lives, Weibull parterse (Lo, Lso, and slope) are determined
using a least squares linear curve fit methodologye process is then repeated a sufficient
number of times (10,000) to establish statisticalficlence in the observed trends. Vicek et. al.
[3] demonstrated that a Weibull-based Monte Canoutation could be used to predict the

fatigue life of simple multi-component rolling elemt bearings, and reasonable agreement with
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experimental data was shown. Similarly, Weibulséd Monte Carlo simulations were used to
model the fatigue life of single-component rotat@gminum shafts [5], and complex multi-

component helicopter transmissions [6].

The fatigue lives of three different Vasco X-2 geaaterial lots, each with a different heat
treatment, were reported in the literature [2].e Tieat treatment lots were identified as Boeing-
Vertol, NASA, and Curtis Wright. Corresponding hdeeatment processes and resulting
material properties can be found in references 1-The experimental fatigue lives were

determined by Townsend et. al [1-2] using bothrting-contact bench top test and the NASA
gear test apparatus. Weibull slopese, land lsp from the experimental gear tests [2] are
summarized in Table 1. The failure index (numbérfadlures out of the number of tests

attempted) is also reported.

Unlike the previous Monte Carlo fatigue simulatioreported by Vicek et. al. (3), this
experimental data set included suspensions/censtaéal A suspension is a test that is
terminated before failure. The suspension mayabdam, due to factors such as mechanical or
electrical breakdown of the tester. More likelisgensions are intentional, such as stopping a
test for economical reasons after a predefinedhimie is exceeded. While a suspension cannot
be treated as a failure, it nevertheless represesgful information that should not be ignored.
Leonard Johnson [7] discusses a methodology foowadog for suspensions in a Weibull

analysis.
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Suspensions within the Monte Carlo Simulation

In the case of the Townsend [2] study, gear fatifpikire lives exceeding a predetermined
threshold were encountered, and testing was susgdeedulting in a failure index of 12 out of
26 for the Modified Vasco X-2 gears heat treatecbeting to the procedure of Boeing Vertol
[2]. In the case of gears heat treated accordirtge NASA procedure, the failure index was 18
out of 21.  To account for suspended tests, fhifierent suspension models were developed

and integrated into the Monte Carlo model of Vletkal. [3]. The suspension models were:

(i) Use Weibull parameters (Characteristic latewhich 63.2 percent of the specimens
will have failed and Weibull slope) determined fine experimental fatigue lives
(accounting for suspensions according to Johnsonn[Zhe preliminary Weibull
analysis) as model inputs, and draw simulatedydatilife subpopulations equal in

size to the total number of experimental testswgited/started,

(i) Use Weibull parameters (Characteristic LitfedaWeibull slope) determined for the
experimental fatigue lives as model inputs, andwdrasimulated fatigue life

subpopulations equal in size to the failure indethe suspended experiments,

(iif) Use Weibull parameters (Characteristic L#ad Weibull slope) determined for the

experimental fatigue lives as model inputs, assemabtandom set of fatigue lives

equal to the number of tests attempted, orderahdam set from smallest to largest,
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and eliminated a sufficient number of large livagoiking backwards from the

largest) to match the failure index, and

(iv) Use Weibull parameters (Characteristic Laied Weibull slope) determined for the
experimental fatigue lives as model inputs, assemablfandom set of fatigue lives
equal to the number of tests attempted, orderahdam set from smallest to largest,

and eliminated all lives above a predefined thriesho

Confidence Numbers

Statistical significance between compared lives of two materials was established by using
Johnson Confidence Numbers [7]. A Confidence Nunba statement of how often the same
probabilistic variable, such as thgolfatigue life, of material A will be observed asitg
greater than that of Material B if the test and sueament were repeated one hundred times.
Confidence Numbers greater than 90 percent (i.eol@®f 100 times measurement (A) will be

greater than measurement (B) are considered gtaligtsignificant, different or independent.

Confidence Numbers were determined by (a) gradigidaterpolating the values from the
published Figures of Leonard Johns@h pnd (b) by a method of comparing groups of 169 L

lives determined for Monte Carlo simulated fatidives.

For technique (a) Confidence Numbers were graplicitermined using curves and figures

developed by Leonard Johnson [7]. Knowing the Wkislope to select the correct figure, the
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correct curve on the figure is selected based uptal degrees of freedom. The Confidence
number is read at the intersection between ttie oh two Lo lives being compared and the
curve associated to the total degrees of freedbenCobnfidence Number can be read. Values

that fall between curves (and figures) require regd interpolation.

For Confidence Number technique (b), one hundrgdites are determined using Monte Carlo
simulated fatigue lives (as presented above) foh @ two gear materials to be compared. The
first Lo life of material A is compared to the first of reaal B to determine which is greater.
The process is repeated for the second thru thdvomdredth. In this manner the number @f L
lives of material A that were greater than the nambf Lo lives of material B (out of one
hundred) is established. The process is repeasefdfiaient number of times (5,000-10,000) to

establish significance in the trends in the results

Experimental Basis For Monte Carlo Simulation

Townsend et al [2] also performed Rolling-Contaatigue tests for rolling elements made from
AISI 9310 and Modified Vasco X-2 (NASA Heat Treatme Their results are summarized in
Table 2. Monte Carlo simulated fatigue lives otho@&ISI 9310 and Modified Vasco X-2
(NASA Heat Treatment) were determined as partisfstudy. Confidence Numbers were again
used to establish with statistical significance thiee or not the g lives of the two materials

were different.
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RESULTSAND DISCUSSION

Monte Carlo simulated fatigue lives for AISI 931AdaModified Vasco X-2 (3 different heat
treatments) were determined using a Johnson-Weildalhte Carlo model developed and
validated by Vicek et. al. [3]. Experimentally dehined Weibull slope and characteristic life

served as model inputs.

Two of the test series reported in Townsend ef2&lhad suspensions/censored data within the
data sets—Ilong lived test runs were terminatedpaédetermined threshold. Modified Vasco X-
2 spur gears with heat treatment procedure acaptdiBoeing Vertol had a Failure Index of 12
of 26; in other words, 26 tests were attemptedail@d, and 14 long-lived tests were terminated
at a threshold. Twenty-one modified Vasco X-2 sgears (with a heat treatment procedure
according to NASA) tests were attempted and eightaiged with three suspended. The Monte
Carlo fatigue failure model developed by Vicek a&t. [3] had to be modified to account for

suspensions (censored data sets).

The average simulated and experimental (from rpf4@ur gear fatigue 1 life for both AlSI
9310 and Vasco X-2 (three heat treatment procefluaee summarized in Table 3a.
Additionally, the Ls life is reported in Table 3b, and the Weibull &#s@re summarized in Table
3c. The Weibull slopes are a reflection of thattes within the data; increasing slope indicates

a decrease in scatter.
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The simulated results, as reported in Table 3aetewenerally in very good agreement with the
experimental results reported in Townsend et. |l [Zhe spur gears manufactured from Vasco
X-2 according to the Boeing Vertol heat treatmenoicedure had a significantly longer average
L, fatigue life than those obtained for the other tweat treatment procedures of Vasco X-2.
There is an order of magnitude difference betweglifie obtained with the Boeing Vertol heat
treatment and the other two techniques. This veassistent with the trend observed in the
experimental work of Townsend et. al. [2]. Therage simulated g life of the spur gears
manufactured from Vasco X-2 according to the Boafiegtol heat treatment procedure for each
of the three suspension models were within 3.5gverof the experimentally determined [2],L
life (Table 3a). There is also excellent agreenbetiveen simulated and experimentad, lives

(Table 3b) and simulated and experimental Weislolbes (Table 3c).

The average simulated;d_life of spur gears manufactured from AISI 9310 weathin 3.9
percent of the experimentally determined [2} life (Table 3a). The average simulategh L
fatigue life was within one percent of the expenmad value (Table 3b) and the percent

difference in Weibull slopes was 3.5 percent (T&de

While the simulated 1o life of spur gears manufactured from Vasco X-2€iBg Vertol heat
treatment) was greater than the simulatgdife of spur gears manufactured from AISI 9310 by
a factor of 1.68, the statistical significance listdifference needs to be determined. To this
end, Confidence Numbers were determined two differways—(a) using the graphical

techniques of Johnson [7], and (b) and establistiiagzomparative ranking between two sets of
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one hundred 1 fatigue lives. The results of both techniquessaammarized in Table 4. The
AISI 9310 served as the baseline to which the threat treatments of Vasco X-2 were
compared. In the case of the spur gears manuéattirom Vasco X-2 and heat treated
according to the Boeing Vertol method and thoseufatured from AISI 9310, there was no
statistical difference betweendlives. The Confidence Numbers ranged from 67-&itent

for each of the four Suspension Models consider&ince the Confidence Number did not
exceed ninety-percent, the differences iy life are not considered statistically significant.
Additionally, the simulated Confidence Numbers aregood agreement with that determined

graphically using the experimental results of Toanset al [2].

With a simulated Confidence Number of 100 (Tableit4dan be stated that there is a significant
difference between thei4 life of spur gears manufactured from Vasco X-2 @A heat
treatment) and AISI 9310 (Table 4). Thep life of the Modified Vasco X-2 (NASA heat
treatment) is significantly less than that of th&RO310 (Table 3a). Similarly, with a simulated
Confidence Number also of 100 (Table 4), thglife of the Modified Vasco X-2 (Curtis-Wright
heat treatment) is significantly less than thathef AIS1 9310 (Table 3a). These observations are
consistent with those of Townsend et al. who gregdhyi determined Confidence numbers of 99

percent for both of the above comparisons.
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CONCLUSIONS

1. Monte Carlo simulations of spur gear fatiguee lffredicted the {g life of spur gears
manufactured from both AISI 9310 and Modified M@3¢2 with very good agreement with

values experimentally determined by Townsend ef2&l

2. Three of the four Suspension Models (i iii amdresulted in simulated Confidence Numbers
that were reasonably close to those obtained gralhiwvith experimental results from

Townsend et.al. [2].

3. The simulated g fatigue life of spur gears manufactured from MmdifVasco X-2 was
dependent upon heat treatment technique. Thig\aigm is consistent with that

experimentally determined by Townsend et. al. {2].

4. While the simulated 4 life of spur gears manufactured from Modified V@as¢2 (Boeing
Vertol heat treatment) was 1.68 times greater thah of spur gears manufactured from
AISI 9310, there was no statistical difference emwthe two Ly lives based upon simulated
Confidence Numbers. This conclusion is consistétit that experimentally determined by

Townsend et. al. [2].
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Table 1 Summary of Experimental Gear Fatigue Riésults from Townsend et al [2]
Material Heat Treatment Lo Gear Lso Gear Weibull Tests Failures of
Procedure (Ref 2)| System Life| System Life | Slope | Attempted Tests
(revolutions)| (revolutions) (subset Attempted
size)

AISI9310 | @ - 23x16 52x10 2.3 30 30
Modified Vasco X-2 Boeing Vertol 38.4x10 | 253x10 1.0 26 12
Modified Vasco X-2 NASA 0.8x10 27.6x10 0.53 21 18
Modified Vasco X-2 Curtis-Wright 3.3xf0 8x10¢ 2.1 19 19

Gear Test Parameters: Pitch diameter, 8.89 cetaimé3.5 inch); spur gears; maximum Hertz stregs x10 N/nv* (248 ksi);

speed, 10,000 rpm; lubricant, synthetic paraffaiicgear temperature, 86 (170F).

Table 2 Summary of Experimental Rolling Contadidgtee Life Results from Townsend et al [2]

Material Heat Ly Life Lso Life Weibull Tests Failures of
Treatment | (stress cycles) (stress cycles) Slope Attempted Tests
Procedure (subset | Attempted
(Ref 2) size)
AISI9310 | = - 4.18x10 9.43x10 2.31 10 10
Modified Vasco X-2 NASA 6.3x10 14.8x10 2.2 20 20

Rolling Contact Test Parameters: Speed, 25,0@8sstrycles per minute; maximum Hertz stre

4823x16 N/m? (700 000 psi); lubricant, MIL-L-7808; temperatuaenbient.
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Table 3a: Average 1k Life (cycles) Determined with Experimental [2]altbnte Carlo

Simulated Data (4 different methods of modelingpgasions) for AlISI 9310 and Modified

Vasco X-2 (three different heat treatments) Geatekika

Heat
Suspension | Suspension | Suspension | Suspension | Experimental
Material Treatment
Model (i) Model (ii) Model (iii) Model (iv) [2]
Procedure
AlS| 9310 22.12x16 n/a* n/a* n/a* 23x10
Modified
Boeing Vertol| 37.06x16 39.39x16 | 38.41x16 | 38.63x16 38.4x16
Vasco X-2
Modified
NASA 0.97x16 1.02x16 1.01x16 1.02x16 0.8x10
Vasco X-2
Modified
Curtis-Wright | 3.15x10 n/a* n/a* n/a* 3.3x10
Vasco X-2

n/a* -- Model not applicable because there wersuspensions in the test

Method (i) — test population size equals attempigahber of runs

Method (ii)—test population size equals numberadifes

Method (iii)—test population size equals attemptedhber of runs, top of test populaton subset trgact match

number of failures

Method (iv) )—test population size equals attemptechber of runs, top of test population subsetdated at a

predetermined threshold (300X10
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Table 3b: Average 4 Life (cycles) Determined with Experimental [2]aklibnte Carlo

Simulated Data (4 different methods of modelingpensions) for AISI 9310 and Modified

Vasco X-2 (three different heat treatments) Geatekia

Suspension | Suspension | Suspension | Suspension | Experimental
Model (i) Model (ii) Model (iii) Model (iv) [2]
AISI 9310 52.34x16 n/a* n/a* n/a* 52x10
Modified
Boeing Vertol| 255.66x10 | 261.84x16 | 307.97x16 | 296.20x16 253x16
Vasco X-2
Modified
NASA 30.43x16 | 30.69x16 | 31.79x16 | 31.15x16 27.6x10
Vasco X-2
Modified
Curtis-Wright 8.1x10 n/a* n/a* n/a* 8x1¢
Vasco X-2

n/a* -- Model not applicable because there wersuspensions in the test

Method (i) — test population size equals attempi@thber of runs

Method (ii)—test population size equals numberailiifes

Method (iii)—test population size equals attemptedhber of runs, top of test populaton subset trgact match

number of failures

Method (iv) )—test population size equals attemptechber of runs, top of test population subsetdated at a

predetermined threshold (30010
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Table 3c: Average Weibull Slope Determined wittp&imental [2Jand Monte Carlo

Simulated Data (4 different methods of modelingpgusions) for AlSI 9310 and Modified

Vasco X-2 (three different heat treatments) Geatekia

Suspension | Suspension | Suspension | Suspension | Experimental
Model (i) Model (ii) Model (iii) Model (iv) [2]
AlS| 9310 2.22 n/a* n/a* n/a* 23
Modified
Boeing Vertol 0.96 0.96 0.99 0.99 1.0
Vasco X-2
Modified
NASA 0.51 0.51 0.51 0.51 0.53
Vasco X-2
Modified
Curtis-Wright 2.02 n/a* n/a* n/a* n/a*
Vasco X-2

n/a* -- Model not applicable because there wersuspensions in the test

Method (i) — test population size equals attempi@athber of runs

Method (ii)—test population size equals numberadifes

Method (iii)—test population size equals attemptedhber of runs, top of test populaton subset tri@actd match

number of failures

Method (iv) )—test population size equals attemptechber of runs, top of test population subsetdated at a

predetermined threshold (30010
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Table 4: Establishing Statistical Significancevitn L10 Lives Using Confidence Number

Determined By Two Different Techniques

)

Graphical
Simulated Confidence Numbers+ Confidence
Numbers++
Material Heat Suspension Suspension Suspension Suspension | Experimental
Treatment Model (i) Model (ii) Model (iii) Model (iv) [2]
AISI 9310
Modified Boeing
77 67 76 76 80
Vasco X-2 Vertol
Modified
NASA 100 100 100 100 99
Vasco X-2
Modified Curtis-
100 100 100 100 99
Vasco X-2 Wright

Simulated Confidence Numbers+ -- Determining theber (out of 100) of 1y lives (determined for simulated
fatigue lives) in group A that are greater thavsthin group B
Graphical Confidence Numbers++ --Graphical Intesioh of Leonard Johnson’s Figures [7] using experital

results from Townsend et al [2].

Method (i) — test population size equals attempi@thber of runs

Method (ii)—test population size equals numberailiifes

Method (iii)—test population size equals attemptediber of runs, top of test populaton subset tri@actd match
number of failures

Method (iv) )—test population size equals attemptechber of runs, top of test population subsetdated at a

predetermined threshold (300X10
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Ranking of Fatigue Data Sets Containing Suspensions Using Modified Weibull-Based Monte Carlo Simulation
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