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ABSTRACT 

In the area of reliability engineering it is necessary to be confident that a component or 
system of components will not fail under use for safety and cost reasons. One major mechanism 
of failure to a mechanical component is fatigue. This is the repetitious motion of loading and 
unloading of the material, typically below the ultimate tensile strength of the material, which 
ultimately leads to a catastrophic failure. To ensure this does not happen, engineers design 
components based on tests to determine the life of these components. These tests are typically 
conducted on a bench type tester in which a sample it subjected to tension and compression, or 
supported in a rotational machine in which a load is applied to one end to simulate constant 
bending.  The results from these tests tell how long it is predicted that the part will last.  
 This data however is not always complete. It sometimes happens that not every specimen 
tested actually makes it to failure; the un-failed specimens are known as suspensions. This can 
occur for numerous reasons. Methods currently exist for handling suspensions; however these 
methods require tedious hand calculations and interpolations from multiple graphs which are 
limited in availability. 
 Presented here are five methods utilizing the Monte Carlo technique in a computer 
simulation based on Weibull-Johnson confidence numbers that take into account suspensions. 
This simulation allows for data from an existing experiment to be used as inputs and either 
validate the findings or bring attention for more testing. The model allows for two different data 
sets containing suspensions to be analyzed and determine with statistical confidence whether or 
not there is a difference between the two populations.  
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Chapter 1 

Introduction 

 

Background 

 

An engineering design as defined by Norton is “the process of applying the various 

techniques and scientific principles for the purpose of defining a device, a process, or a system in 

sufficient detail to permit its realization” (Norton 2006). It is a mechanical engineer’s 

responsibility to design safe and reliable machines for society.  In engineering school students 

are taught deterministic equations to determine at what point a particular component of a given 

material will fail. In the real world, however, this is not the case. Real machines are subject to 

environments that cannot be incorporated into a mathematical model. The life of these machines 

therefore is probabilistic and not deterministic. This means there is a range of data with inherent 

scatter as opposed to determining a single absolute value. Engineers must rely on statistical life 

equations to estimate the life of the product being designed (Zaretsky, Design for life, plan for 

death 1994).  

In designing a component or a system, it is necessary to consider how long the system 

will last, as well as the safety of the people that will be involved with the components. These 

considerations include warranty information, (need to know how long it will last to keep 

customers satisfied with their purchase, and not to have it too long to avoid repeat repairs); 

preventive maintenance schedules, (to keep the dealer and technicians informed when they need 

to replace or check on specific components); safety of machinery operators, or passengers in 

some form of transportation.  
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After an idea for a new mechanical system has been established, it goes through a design 

process that includes the preliminary design stage, the detailed design stage, and finally the 

documentation stage. While a system is in the detailed design stage a series of mathematical 

models may be made to analyze the system, such as how strong a particular component or 

material is, or how long that component may last.  Then, experimental analysis may be 

conducted to back up or verify the mathematical models (Norton 2006). 

 

Fatigue 

 

When a material or component is loaded and unloaded hundreds or thousands of times 

below its ultimate yield stress, small cracks may begin to develop and accumulate. As these 

cracks grow and form a small network, a spall, or chunk of material breaks out leading to 

ultimate failure of the component. This is known as fatigue failure. In designing load-bearing 

components, the possibility of fatigue must be accounted for (Askeland and Phule 2006). 

“Fatigue failure is responsible for the majority of failures in mechanical components” 

(Kalpakjian and Schmid 2006).  

Some examples of cyclic loads are repetitive contact of gear teeth, hot and cold heat 

cycles, pressurizing and depressurizing of pressure vessels, rotating shafts with an eccentric load, 

a spring repeatedly compressing and expanding, or repetitive loading and unloading of a beam. 

Most failures in mechanical systems are due to cyclic loads rather than to static loads (Norton 

2006). This is the reason components cannot be designed solely on their static limits. 
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Fatigue Testing 

One of the tests performed to determine the proficiency of mechanical components is the 

fatigue test. In many applications, components must be designed such that the load on the 

material is not great enough to cause permanent deformation.  Fatigue testing involves taking 

samples of the same material and same shape and exposing them to cyclic loads until failure at 

controlled conditions—load frequency, test sample temperature, maximum stress or strain, etc. 

These loads can be rotational, where the samples are placed horizontally in a machine, with a 

force applied perpendicular to one end and then rotated rapidly, thereby causing a constant 

bending cycle in the middle of the sample. They can also be linear in a push-pull type tester 

where the sample is subjected to tension and compression repeatedly. Most of these bench type 

tests are accelerated tests. The samples are exposed to higher speeds, higher temperatures, and 

higher loads then they would experience in service or during use. The number of cycles 

completed until failure can be read off the display of the testing apparatus. 

This method for determining component lives allows for information such as safety 

concerns, preventive maintenance, and warranty information. One drawback of fatigue testing is 

that it can quickly become time consuming and expensive. 

 

Statistical Analysis 

 

Fatigue is probabilistic in nature. That is, it is not possible to determine the specific life 

when a component will fail.  All that can be determined is a range or distribution for useful life. 

Fatigue data analysis includes numerous approaches such as: Weibull (Weibull 1951), 

Johnson (Johnson, The Statistical Treatment of Fatigue Experiments 1964), (Johnson, Theory 
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and Technique of Variation Research 1964), Vlcek Zaretsky and Hendricks (Vlcek, Hendricks 

and Zaretsky, Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull 

Parameters 2007), (Vlcek, Hendricks and Zaretsky, Relative Ranking of Fatigue Lives of 

Rotating Aluminum Shafts Using L10 Weibull-Johnson Confidence Numbers 2008). With these 

models, engineers have been able to provide good estimates of the fatigue lives of different 

materials. 

 Weibull (Weibull 1951) developed an equation to predict the likelihood a sample would 

fail. The Weibull equation will be discussed in greater detail in Chapter 2.  From Weibull’s 

work, Johnson (Johnson, The Statistical Treatment of Fatigue Experiments 1964), (Johnson, 

Theory and Technique of Variation Research 1964) developed a method to determine whether or 

not one population was longer lived than the other. The bin model, used by Vlcek et al., was to 

construct a Monte Carlo simulation in which Weibull slope and characteristic life were used as 

inputs in a program and using a random number generator to create virtual samples, the samples 

were ranked from 0 to 1 and then using the survivability and inputs in the Weibull equation, 

virtual lives were constructed. These lives were used to simulate a fatigue experiment with many 

data points; many more than possible with just experimentation. 

 

Suspensions/Purpose 

 

An unavoidable circumstance of fatigue testing is that sometimes not all of the test 

samples fail. When a test sample does not fail it is called a suspension. This can happen for a 

number of reasons. Some may happen randomly such as, a power outage, or the breaker to the 

machine could trip. Some may be outliers as determined by the experimenter. If it is known that 
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a specific component will never reach more than five million cycles in its life, then the engineer 

may choose to shut down the fatigue test as soon as it reaches the five million mark to save time. 

The samples that did not fail and were stopped short are considered out-lives; the name for 

reasons that they are outside of the range of failures to be analyzed. There are two types of 

suspensions, out-life suspensions and suspensions within the data. Suspensions within the data 

are caused by random acts of nature (e.g., the power going out). For this work only out-life 

suspensions were considered. These out-lives must be considered in the analysis of the data 

because even though they did not fail, they bias the data. 

Suspensions are a useful part of the data set and should not simply be discarded. They 

must be accounted for, but cannot be treated the same as a failed sample (Johnson, The Statistical 

Treatment of Fatigue Experiments 1964). This calls for the need for a method of incorporating 

suspensions into a fatigue model. Methods currently exist for handling suspensions (Johnson, 

The Statistical Treatment of Fatigue Experiments 1964), but they are not incorporated into any of 

the proven Monte Carlo simulations. This work examines five models for handling suspensions 

within Monte Carlo simulations. 

This model was developed after known methods such as Weibull statistics (Weibull 

1951), the methods of Johnson (Johnson, The Statistical Treatment of Fatigue Experiments 

1964), (Johnson, Theory and Technique of Variation Research 1964), and the methods of Vlcek, 

Zaretsky, and Hendricks (Vlcek, Hendricks and Zaretsky, Probabilistic Analysis for Comparing 

Fatigue Data Based on Johnson-Weibull Parameters 2007), (Vlcek, Hendricks and Zaretsky, 

Relative Ranking of Fatigue Lives of Rotating Aluminum Shafts Using L10 Weibull-Johnson 

Confidence Numbers 2008). Johnson developed a method to compare two sets of data with a 

confidence number. This number describes whether the two sets of data are significantly 



6 
 

different or not. The model presented here uses the idea of a confidence number in a Monte 

Carlo simulation to determine whether one population is better than the other. This model uses 

five different methods of the Monte Carlo simulation to arrive at a confidence number. When 

these five numbers are analyzed together a conclusion can be drawn. 

Purpose 

When an engineer is in the design process of a new component, it may be necessary to 

determine which material may be best for a particular application. This leads to using statistics to 

compare two or more materials and to determine which one is superior for the application. These 

fundamentals were the basis for this research. In some experimental fatigue data, suspension 

points exist and must be accounted for. Five models were developed to take these out-life 

suspension points into account, and give the user a probabilistic analysis of the comparison of 

two or more materials to determine with confidence which is better for its application. 

 

Hypothesis 

 

 It is hypothesized that the five methods proposed and examined can be incorporated into 

a Monte Carlo simulation of fatigue life and confidence numbers, and that it will be possible to 

compare or relatively rank two sets of fatigue data containing out-life suspensions. 

 

Summary 

 

 In designing a component or system of components, it is desired to know how long that 

component or system can function before failure. This influences engineers to perform 
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accelerated fatigue tests to determine the lives of particular components. Fatigue is probabilistic 

by nature and therefore has scatter in the data. This leads to trying to determine whether or not 

one population is statistically different from another. There exist methods for analyzing this data; 

however, the methods are limited when suspensions are introduced. It is the purpose of this work 

to develop a new method of comparing data sets containing out-life suspensions with a Monte 

Carlo simulation. 
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Chapter 2 

Background 

 

Fatigue 

 

Fatigue is a mode of failure in which cyclic loading and unloading of a part or material 

below its ultimate tensile strength results in the development of tiny cracks which propagate 

through the material, ultimately leading to the failure of that part (Norton 2006). Areas of interest 

to engineers include automobiles, airplanes, springs, camshafts, crankshafts, bearings, gears or 

any other components subjected to rotation or linear modes of cyclic motion. These components 

constantly undergo stresses of tension, compression, bending, vibration, thermal expansion and 

contraction, and other stresses.  

History of Fatigue Analysis 

Fatigue was first noticed in the 1800s when railroad-car axles began failing. The axles 

were designed with static tests and were not supposed to fail. Rankine (Rankine 1843), in 1843 

postulated that the axles were “crystallizing” due to the cycle bending of the axles where the 

wheel and axle were joined. In 1839 an engineer named Poncelet coined the term “fatigue” 

stating that the material was becoming brittle at the point of failure and somehow becoming 

“tired” from the many oscillations. In 1870 August Wohler published his 20 years of work on his 

investigation of axle failures. Wohler is credited with developing the rotating bending test, the  

S-N curve, and defining the endurance limit (Norton 2006). 
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Mechanism of Fatigue Failure 

Most fatigue events occur in a series of stages. It usually begins with a tiny crack on the 

surface due to scratching of the material which may occur if lubricant is missing for an extended 

period of time, or it could occur due to poor design or manufacturing such as tooling marks left 

over from the machining process or inclusions in the material. This crack then propagates from 

the scratch through the material due to the stress of the cyclic load. Once the crack propagates to 

a level where the material can no longer sustain the forces, catastrophic failure occurs. This type 

of fatigue failure is common in rotating shafts. The visible evidence of failure due to fatigue is 

typically shown by beach marks at the point of failure. The failure area resembles a beach with 

ripples extending from the point of failure toward the inside of the part. Not all points of failure, 

however, originate from surface cracks. Some points of failure originate inside the sample. There 

could be an inclusion of some kind, such as a piece of material that accidentally got mixed in the 

manufacturing process or an air pocket. Either of these can lead to internal cracking whereby the 

cracks will again propagate due to the cyclic loading ultimately leading to failure. 

Figures 1 and 2 are images taken with a high resolution microscope showing beach 

marks. The point of failure is shown in the top left of figure 1 and the top right of figure 2. 
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Figure 1. Unpublished image taken by Murray and Vlcek using high resolution microscope. 
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Figure 2. Unpublished image taken by Murray and Vlcek using high resolution microscope. 

 

 The fatigue life of a material is probabilistic, not deterministic (Vlcek, Zaretsky and 

Hendricks, Test Population Selection From Weibull-Based, Monte Carlo Simulations of Fatigue 

Life 2008). This causes an issue when engineers try to use methods and equations to determine 

when a component might fail. These methods are common in industry (Vlcek, Zaretsky and 

Hendricks, Test Population Selection From Weibull-Based, Monte Carlo Simulations of Fatigue 
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Life 2008). One way around the deterministic approach is to use factors of safety in the 

calculations, but then there is the risk of over designing and using too much material.  

 When designing a new component, it is necessary to consider factors such as secondary 

damage to the system, or human harm. To determine the different levels of acceptance, a 

statistical distribution is used to arrive at a predetermined probability of survival (Vlcek, 

Zaretsky and Hendricks, Test Population Selection From Weibull-Based, Monte Carlo 

Simulations of Fatigue Life 2008). From this distribution, the strengths or lives can be 

determined for values such as 90%, 95%, or 99% survival, depending on the application.  As the 

importance of safety of the newly designed component increases, so does the necessary 

probability of survival (Vlcek, Zaretsky and Hendricks, Test Population Selection From Weibull-

Based, Monte Carlo Simulations of Fatigue Life 2008).  

 One reason a system will fail due to fatigue is by excessive wear. When components 

come in contact with each other, they gradually wear away. To prevent this wear, it is necessary 

to have proper lubrication between the two surfaces. The lubrication is meant to separate the two 

surfaces by means of a material (liquid, gas, or even solid) that has a low resistance to shear 

(Oswald, et al. 2008). It is possible however that lubricant can also accelerate the means of 

failure. If the lubricant was to enter the crack and apply pressure, it can separate the material and 

cause a spall to break off. 

Failure of a component due to fatigue is probabilistic in nature. There is no method to 

perfectly determine the fatigue life of a component. Components need to be designed not to 

never fail, but instead to survive a “safe” life (Zaretsky, Design for life, plan for death 1994).  

Fatigue is measured by stating how many cycles or revolutions a sample of a given 

population, subjected to the same loads, will survive. This is typically stated as the L10 life which 
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is the life at which 90 percent of samples will survive for the amount of time they were intended. 

Conversely, it can be said the L10 life is the life at which 10 percent of the population will fail. 

Fatigue life can also be stated as the L50 life at which 50 percent of the population will survive, 

or even the L0.1 life which is the life at which 99.9 percent of the population will survive, for 

more critical components. 

Failure 

When a material undergoes cyclic stresses and cracks begin to form and grow, the 

material ultimately fractures. This is known as fatigue failure. “A failure is said to have occurred 

when one or more intended functions of a product are no longer fulfilled to the customer’s 

satisfaction” (Wasserman 2003). Minimizing failure is the primary reason for fatigue testing. 

“Everything is known through failure” (Tevaarwerk 2002). Without failure it would not be 

possible or necessary to study fatigue. If parts never failed, there would be no need for fatigue 

study, warranties, preventive maintenance schedules, or spare parts. If the component is in a state 

that can have catastrophic effects on the system, then it has failed. 

Failure is what engineers try to avoid. Ideally, failure should never occur in its designated 

application. With proper design and maintenance, components should never fail while 

performing their duties. This is ideal though, so methods must be devised in case of failure 

during operation, such as system shut down commands.   

Compromises sometimes have to be made in the design process.  For example, if 

sufficient factors of safety were built into every component of an aircraft, the resulting weight 

increase would be such that the aircraft cannot achieve flight.  An acceptable level of risk of 

failure has to be defined in view of overall system parameters to ensure effective system 

functionality. 
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Fatigue Testing 

To arrive at a probability of a component or material failing it is necessary to conduct 

bench-top tests. These tests subject materials to different types of stresses including tension and 

compression, and bending. Tests are conducted at specific stress amplitudes (S) where number of 

cycles (N) is determined after failure. This data is then plotted on an S-N curve. From these 

curves it is possible to determine the endurance limit of a material. 

Fatigue testing is a time consuming process. Some fatigue tests involve having a part that 

has failed and examining it to determine why it failed and then to redesign it so it does not 

happen again. Other tests involve testing the actual component before it is used in production. 

This allows for engineers to determine warranties and preventive maintenance schedules. The 

last type of fatigue testing involves using only samples of material to predict the failure of a 

component made from that material, as well as compare this material to similar materials to 

determine which is better for a specific application.  

Fatigue tests are known for being lengthy, and sometimes expensive, depending on the 

material. Bearings and gears are designed to last for millions of cycles. It takes a very long time 

to test them and see how long it takes till failure. To speed up the process, a load is typically 

applied to the component being tested, but it could still take hours, if not days, to fail. To 

perform thousands of these tests would give a better idea of the failure rate of their components, 

but it would be too costly for the company. Because of extensive testing and costly materials, 

companies and engineers resort to doing the minimal, if any, amount of testing. With the data 

from these tests, engineers use statistical and probabilistic formulas and models to further 

validate their findings. 



15 
 

Since fatigue life is probabilistic, it is not unusual to find data sets in which the longest 

life to the shortest life have a ratio of 20 to 1 or even higher (Zaretsky, STLE Life Factors for 

Rolling Bearings 1992). This extreme ratio leads to the essential knowledge of a materials 

fatigue life and strength. 

 There are equations and analysis techniques to determine certain aspects of wear, such as 

crack propagations, crack thickness, lubrication thickness and properties; however, there is no 

definitive analysis for predicting when an application will fail (Oswald, et al. 2008). Experiments 

need to be conducted to determine quantitative results to make predictions using statistical 

methods (Oswald, et al. 2008). Reliability calculations such as bearing life are typically based on 

rolling element fatigue tests of the moving surfaces (Oswald, et al. 2008).  

 When testing a material, there are standard guidelines that should be followed. One of 

these guidelines is found in the ASTM Standard Practice (ASTM 1998) which discusses the 

correct number of specimens to test to determine an accurate S-N curve (Sutherland and Veers 

2000). This standard assumes there are no run-outs or suspended items in the material; the test 

should be based on random samples. A summary of their recommendations are in table 1. 

 

 

 

 

 

 

 

 

Table 1. ASTM Standard Practice Recommended Sample Size 

Type of Test Minimum Number of Specimens 

Preliminary and Exploratory 6 – 12 

Research and Development 6 – 12 

Design Allowables 12 – 24 

Reliability 12 - 24 
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Rotating Fatigue Tester 

One version of the fatigue experiment is the rotating fatigue machine (figure 3).  

 

Figure 3. Bench top rotational fatigue tester (www.pci-pcmcia-express.com n.d.). 

The specimen is a metal rod four inches long and one half inch in diameter. To accelerate 

the test, a stress concentration is introduced at the center of the specimen by removing a portion 

of the sample. There are different shapes that are used. Some specimens have a “V” notch 

machined out of them. This shape is typically used when it is desired that specimens fail quickly. 

Another variation is an hourglass shape. There are two different hourglass shapes used. One is a 

constant radius and the other has a constant diameter machined into the center of it. These take 

longer to fail and are more accurate. The specimen is loaded into the machine and tightened 

down by the use of collets. One end sits in a fixed position. The other end has the load applied to 

it. It is loaded by a hanging weight. This weight is adjustable to whatever is trying to be 

simulated. Once the load has been applied, the motor is then turned on and the specimen rotates. 
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The load and rotation simulate what would happen if the specimen was bent backwards and 

forwards repeatedly. 

Servohydraulic Axial Fatigue Tester 

 Another popular method of performing a fatigue test is to use a servohydraulic fatigue 

tester (figure 4), wherein the sample is loaded vertically and subjected to tension and 

compression. These machines are highly programmable and capable of performing fully loaded 

and unloaded tests. For example, the sample can be subjected to tension and then allowed back to 

its rest state, or it can be compressed to the same amount of load as it was in tension. This differs 

from the rotational test in that the entire cross section of the material is subjected to the load. 

 

Figure 4. Servohydraulic axial fatigue tester (www.directindustry.com n.d.). 
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Weibull Equation 

 

In 1939, Waloddi Weibull developed a distribution function to aid in the statistical 

analysis of the fracture strength of a material.  Effectively, he took a small set of fracture data 

and kept fitting equations to the data set until he had a linear fit.  From the line, he could 

determine the number of cycles to failure at any probability of survival.  

Weibull found that plotting the natural logarithm of the life on the abscissa and the lnln of 

the inverse of the probability of survivability on the ordinate resulted in a reasonably linear fit of 

his data.  One of the most common forms of this linear fit is the 2-parameter Weibull equation 

which is given by equation (1) 

Equation (1) 

ln ln
1

� = � ln
��
�� 

where S is the survivability, m is the Weibull slope, LS is the life at survivability S, and Lβ is the 

characteristic life (the life at which 63.2 percent of the samples have failed). The Weibull slope 

m is determined from the experimental data. It is representative of the scatter of the data points 

on a graph of failure probability versus life. The smaller the slope, the more scatter there is. 

The Weibull equation can also be rewritten into the form: 

Equation (2) 

����� = �	
 �− �
 − 
���

� �

�
� 

This form of the equation is used to determine the probability of failure of a component or 

material. 
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Weibull’s method has been under scrutiny by statisticians because of its lack of 

mathematical proof. However, Weibull himself was aware of this.  He stated “the objection has 

been stated that this distribution function has no theoretical basis” (Weibull 1951). This lack of 

proof lies in the fact that it is hopeless to expect to be able to make predictions about random 

variables such as the strength properties of steels. Weibull arrived at his conclusion by choosing 

a function and testing it empirically until the proper results were attained. Weibull applied his 

method to many different circumstances where it produced satisfactory results (Weibull 1951). 

His examples included the yield strength of Bofors steel, size distribution of fly ash, fiber 

strength of Indian cotton, length of Cytroideae, fatigue life of St-37 steel, statures for adult males 

born in the British Isles, as well as the breadth of beans of Phaseolus Vulgaris (Weibull 1951). 

Weibull, however, stated that he “has never been of the opinion that this function is always 

valid” (Weibull 1951).  

Probability paper was developed by Weibull. It is graph paper in which the abscissa is a 

logarithmic scale and the ordinate is a log log scale. This allows for a straight line to be fitted to 

plot fatigue data. Typically the fraction of the population is plotted on the ordinate and the 

number of cycles is plotted on the abscissa. This allows for determining the life of a component 

for any probability of survival (or failure). 

The Weibull equation has been used by engineers for more than 80 years, particularly in 

the bearing industry. It will continue to be used to predict failure and lives of components. There 

is, however, a need for other methods of comparing data sets to justify the results of a fatigue 

experiment. 
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Comparison of Different Materials 

 

 Engineers compare two or more different components or materials to determine which is 

better for a specific application. Take, for instance, the main journal bearings in an automotive 

engine. A car manufacturer is likely to buy its bearings from a subcontractor or supplier. Before 

the car company makes a decision on which bearing to buy, they will test a certain amount of 

bearings from each company. Because of the time and cost to analyze and test the bearings, they 

will only test a small amount. After acquiring the lives of each bearing failed, they will perform a 

statistical analysis on the data set of failed bearing lives.  This might include calculating the 

average lives of the bearings and determining the scatter in the data from the standard deviation. 

Next, a t-distribution test or chi-squared test might be performed to evaluate statistical 

differences in the data. These and other statistical methods, however, rely heavily on calculating 

the average first and then drawing conclusions based upon a normal distribution. In fatigue data, 

these methods do not take into account the large amount of scatter in the data. The data points of 

each bearing will typically be skewed one way or another and some data points may have a 

considerable amount of scatter. Likewise, some fatigue data plots have overlap, making it more 

difficult to determine which population is superior (figure 5). To simply take the average life 

does not tell the whole story.  
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Figure 5. Graph showing overlapping fatigue data sets. 

Typical statistical analysis is not enough in the area of fatigue analysis. The data acquired 

from fatigue tests is typically either number of cycles completed till failure, or number of hours 

run until failure. It could be assumed that it would be acceptable to take these numbers and 

average them and that this would give a good indication of the life of the material. This, 

however, is not the case. There exist calculations for lubrication properties and material 

properties, but there is a lack of mathematical methods for determining how long a component 

will last deterministically. It is not difficult to make new materials and understand how they 

work, but it is difficult to predict what they will do under stresses in a machine. This 

demonstrates why statistics is so important. With statistics it is possible to analyze data points 

with varying amounts of scatter and arrive at probabilistic conclusions.  
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Standard Practices 

When designing a component, it is necessary to be confident whether or not it is likely to 

fail within a certain time period. A large number of designs use the “95/95” design values that 

assume there is a 95% confidence level that 95% of the components will meet or exceed the 

manufactures design value (Sutherland and Veers 2000). These numbers are typically determined 

by performing experiments and plotting the data on an S-N curve (stress-life). It is easily 

mistaken to get data and simply take the average of the data to determine a components limit. 

This statistical method cannot be used because by the definition of average, there is 

approximately half the material that cannot meet the standard (Sutherland and Veers 2000). This 

leads to the necessity of determining a “confidence limit” at which the designer has confidence 

that the material will meet the standard (Sutherland and Veers 2000). Since material failure is 

probabilistic, the design engineer is dealing with random variables. The lives at which the parts 

fail is the random variable, thus the designer must use a value for the strength or life that is 

guaranteed (Sutherland and Veers 2000).  

 Due to the high cost and extreme time lengths of fatigue tests, there are typically only ten 

or less data points to analyze. Therefore, it is essential that the maximum amount of information 

gained from that data is analyzed properly (Vlcek, Hendricks and Zaretsky, Probabilistic 

Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters 2007). One method 

that is used far too often is to determine a mean and median of that data and use this as the basis 

of the results. This is inaccurate because it fails to take into account the scatter in the data (Vlcek, 

Hendricks and Zaretsky, Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-

Weibull Parameters 2007). One may also choose to plot the data on an S-N curve and try to draw 

conclusions this way. This is a better step forward; however, it is still not the whole story. The 
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ASTM standard (ASTM 1998) describes the use of these curves; however, it does not present a 

method to determine with confidence the difference between two curves (Vlcek, Hendricks and 

Zaretsky, Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull 

Parameters 2007). The inadequacy to fully understand the data from this standard is stated by the 

writers of the report (Vlcek, Hendricks and Zaretsky, Probabilistic Analysis for Comparing 

Fatigue Data Based on Johnson-Weibull Parameters 2007) “As alternate fatigue models and 

statistical analysis are continually being developed, later revisions of this practice may 

subsequently present analyses that permit more complete interpretation of S-N and ε-N data.” 

Johnson’s Method 

 In the 1950’s, Leonard Johnson, an engineer for General Motors, developed a technique 

to rank materials in a fatigue test to determine which was better by the use of confidence 

numbers. His goal was to provide methods outside of standard statistical practices. Johnson 

explains that we cannot solely rely on the average of fatigue data because the average is only one 

number. It does not take into account the scatter of the data. Johnson even uses the quip, “a 

fellow who fell in love with a dimple and then made the mistake of marrying the whole girl” 

(Johnson, Theory and Technique of Variation Research 1964). 

 Johnson stressed the importance of statistics in the field of fatigue testing. Since fatigue is 

probabilistic in nature, then statistics is the only means of predicting when a particular 

component fails. He mentions how the Weibull equation developed in the 1930’s is the only 

method to date to provide any kind of statistical analysis of fatigue data.  

 Johnson begins his discussion by describing how fatigue data is usually very scattered. 

Even with identical test conditions such as temperature, load, and samples size, there is still a 

large spread in the data. He uses the lives from a sample fatigue experiment to order them in 
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integers from 1 to n, then uses these integers to rank each life from 0 to 1. The rank number is 

the fraction of the population of the data set that has been accounted for up to a particular value. 

The rank comes from the figures in his book or from the rank equation (equation 3).  

Equation (3) 

Median		Rank = 	 random number− 0.3

bin size+ 0.4
 

 

The rank, as defined by Johnson, is the median rank. That is, the mid value with equal 

fluctuation above and below the value (Johnson, Theory and Technique of Variation Research 

1964). Subsequently he is able to draw a line on Weibull probability paper to determine how the 

whole population would act. When plotting fatigue data on Weibull probability paper, the rank is 

plotted against the fatigue life. An example of a set of fatigue data that is ordered and ranked, 

and then graphed (not a Weibull plot) is shown in table 2 and figure 6. The graph allows for 

viewing the data set as a whole rather than relying on just an average. 

Table 2. Sample fatigue data demonstrating median rank 

Order Number Revolutions Median Rank 

1 102,300 0.109 
2 110,563 0.266 
3 120,910 0.422 
4 129,740 0.578 
5 130,400 0.734 
6 135,200 0.891 
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Figure 6. Graph showing least square fit of sample fatigue data  

 He then explains further how to determine how accurate one would expect this 

probability line to be with the confidence bands he developed.  

Confidence Bands 

With the median rank, and the knowledge of inherent fluctuations, a confidence band can 

be constructed. This band shows the amount of certainty there is in the true location of a point on 

the graph that lies within that range. Since the median rank is the average of the fluctuation at 

that point, it is safe to say that at that value half of the population will either be above or below 

that value. So to construct a 90 percent confidence band (confident that 90 percent of the 

population will fall within it), as in figure 7, it is necessary to know the limit of the lower 5 

percent and the upper 95 percent. When these limits are known for each median rank, a 

confidence band can be drawn on probability paper. Even with these bands though, there is still a 

need to determine whether or not one material is statistically different from another when two 

data sets are compared. 
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Figure 7. Graph of confidence bands (Johnson, Theory and Technique of Variation Research 

1964) 

 

Confidence Numbers 

 Confidence numbers are another useful tool developed by Johnson (Johnson, The 

Statistical Treatment of Fatigue Experiments 1964), (Johnson, Theory and Technique of 

Variation Research 1964). A confidence number can be arrived at to determine whether or not 
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one population of fatigue data is significantly different from another population. A confidence 

number is the number of times a specific variable of a fatigue test will be better in one population 

than the other if the experiment and comparison were repeated 100 times. For example, if the L10 

life of material A was higher than the L10 life of material B, 92 out of 100 times, then the 

confidence number would be 92. It is accepted that a confidence value of 90 or higher is 

statistically significant (Johnson, The Statistical Treatment of Fatigue Experiments 1964). His 

argument was that, given two sets of fatigue data and plotting them on Weibull paper yields an 

estimate of the lives of that population. If the two plots have equal slopes and lie relatively close 

to one another on the graph paper, then how is one to know whether or not they are really 

different. Another case could be where the two plots overlap. Say material A has a longer L10 

life, but material B has a longer L50 life, again how to determine whether or not statistically 

different.  

Johnson addresses comparing or ranking the fatigue life of two materials with his method 

of determining a confidence index (Johnson, Theory and Technique of Variation Research 1964). 

Johnson developed confidence curves from which a confidence number, as a function of life 

ratio, Weibull slope (scatter in the data) and total degrees of freedom (populations sample size), 

could be graphically read.  To arrive at this confidence index, both data sets must first be plotted 

on Weibull probability paper with the percent of population failed on the ordinate and the lives 

on the abscissa. From these lines the Weibull slope of each set can be determined by taking the 

tangent of the angle the line makes with the horizontal and either the L10 life or mean life can be 

read.  

 

 



28 
 

Parameters to Determine Confidence Number 

The total degrees of freedom of the set are the degrees of freedom of the first set (n-1) 

multiplied by the degrees of freedom of the second set (n-1). 

Equation (4) 

DOF = (n1-1) x (n2-1) 

The degrees of freedom is how many choices are allowed when choosing something. For 

example, if there is a box with 5 gears, the first choice could be any of the 5; the next choice 

could be any of the remaining 4, and so on until there is one left. When one is left there is no 

choice to be made, the final one has to be chosen. This is why the degrees of freedom is one 

minus the size of the population. 

The life ratio is calculated by dividing the larger life of the two sets by the smaller life. 

This can be the mean life or the L10 life. With the life ratio, Weibull slope, and total degrees of 

freedom, a confidence number can be determined by Johnson’s figures. An example of one of 

Johnson’s figures is illustrated in figure 8. 
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Figure 8. One of Johnson’s figures for determining confidence number (Johnson, The Statistical 

Treatment of Fatigue Experiments 1964). 

 If the Weibull slopes are not equal, then the confidence number must be determined by 

calculating the average of the two confidence numbers found from the respective graphs 

associated with each slope. 

Suspensions 

Failure testing, like many things in research, does not always go as planned. There are 

situations called suspensions in which, for whatever reason, the test was stopped and the sample 

was not allowed to fail. Reasons for suspensions include, a power outage, someone trips over the 

power cord and causes the machine to shut off, or the test is stopped at a predetermined time. 

When a sample is stopped at a predetermined time this is known as an out-life suspension. It is 
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considered an out-life because it is outside of the range of the samples that failed. Obviously, 

unforeseen things can happen and turn a machine off. These, however, are not lost data. They are 

taken into account in the analysis by their own method.  

Also, sometimes tests are stopped when the component runs for hours and hours. It is 

possible that sometimes the tester does not want to wait for a part to fail when it has already far 

exceeded what it was suppose to. If a part is designed to last 10 million cycles and there is a 

batch of 20, if 15 fail within the 10 million and the other 5 begin to reach 20 million, the test may 

be cut short to save time because these are obviously outliers. Suspensions are common in 

fatigue testing and they should not be discounted as confounding data. Everything is considered 

in fatigue analysis. 

Johnson gives three examples of causes of suspended items: (Johnson, Theory and Technique 

of Variation Research 1964) 

1) A special need to terminate a test before all the original N specimens have failed, such as 

shortage of time or testing equipment. 

2) A failure of a different nature from the one being tested, e.g., a large bore in a bearing 

would make it impossible to continue running that particular bearing until it exhibits 

pitting fatigue as originally intended. 

3) A desire to make an analysis before the test has been completed. 

Johnson’s Analysis Method of Suspensions 

Johnson (Johnson, The Statistical Treatment of Fatigue Experiments 1964), (Johnson, Theory 

and Technique of Variation Research 1964) derived a method for ranking fatigue data sets that 

included suspensions. This allowed for a more accurate Weibull plot. These suspended items are 

referred to as suspensions.  
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Johnson defined a test in which all samples failed as a complete test and one where not 

all samples failed as an incomplete test. The number of samples failed out of tested in an 

incomplete test is known as the failure index. According to Johnson, it is not correct to treat an 

incomplete test the same as a complete test because the suspended samples contain information 

which could affect the predicted positions of the actual failures of the complete population. 

Recall that his method involves assigning integer values to each life so that they can then be 

ranked. To account for suspended samples, this ordering and ranking needs to change. These 

integer values become fractional values. The integer values no longer hold because, if a 

suspended sample has a value between two failed samples, it is uncertain whether that sample 

was going to fail or not before the sample with the longer life, or after it. Thereby its order 

number could be before or after the failed sample. Johnson developed a new method to order 

suspended samples. Rather than ordering the samples using the median rank equation (equation 

4), Johnson defines changing the increment using equation 5 when suspensions are present in the 

data set. 

Equation (5) 

new	increment =
(n+1)-(previous	mean	order	number)

1+(number	of	items	beyond	present	suspended	set) 

 

 

Once the new order numbers are assigned to the lives, then the ranks can be found in the tables. 

Since the tables are for order numbers of integers, it is necessary to interpolate the correct value 

for the new fractional order numbers. These ranks can then be used the same as for a complete 

test to determine a confidence number of the two populations.  

 As an example of this method consider the fatigue data set in table 3. 
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Table 3. Sample fatigue data set to 
illustrate Johnson’s suspension 
incremental method 

Number 
Life 

(hours)   

1 12 Failed 
2 25 Failed 
3 26 Suspended 
4 33 Failed 
5 47 Suspended 
6 52 Failed 
7 71 Failed 
8 79 Suspended 
9 83 Failed 
10 95 Failed 

This data set contains ten samples, three suspensions and seven failures. Using equation 5 the 

new mean order number can be calculated followed by the new median rank. The new mean 

order numbers and median ranks are shown in table 4.  

Table 4. New mean order numbers and median ranks for sample fatigue data 

Number 
Life 

(hours)   
Mean order 

number Median Rank 

1 12 Failed 1.00000 0.0670 
2 25 Failed 2.00000 0.1632 
3 26 Suspended --- --- 
4 33 Failed 3.12500 0.2715 
5 47 Suspended --- --- 
6 52 Failed 4.43750 0.3978 
7 71 Failed 5.75000 0.5241 
8 79 Suspended --- --- 
9 83 Failed 7.50000 0.6924 
10 95 Failed 9.25000 0.8608 

 

 “Neglecting suspensions and assuming a complete test of magnitude equal to failure 

index amounts to assigning too high a population rank to each failed item. This causes the 

Weibull plot to be shifted upward, making the life estimate more conservative than necessary” 
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(Johnson, The Statistical Treatment of Fatigue Experiments 1964). This would lead to over 

designing components and again wasting material and money.  

Limitations of Johnson’s Method 

The use of Johnson’s method for determining the difference of two populations has fallen 

out of wide spread use due to the difficulty of his interpolating between his figures  and the lost 

literature on how he arrived at his method (Vlcek, Hendricks and Zaretsky, Probabilistic 

Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters 2007).  

The problem with Johnson’s method is that he has a limited number of Weibull slopes 

and degrees of freedom of which his charts allow for determining confidence numbers. His 

methods and equations for coming up with these charts has been lost. His method is not easily 

used for many points of data and it can be quite time consuming. 

 

Monte Carlo Methods 

 

The incorporation of Weibull-Johnson Monte Carlo simulations to the statistical analysis 

field gave another dimension: another means of calculating and predicting the outcomes of 

components. The application of a Monte Carlo simulation to fatigue data to determine statistical 

reliability and confidence numbers has been demonstrated in the simulation of fatigue lives of 

bearings (Vlcek, Zaretsky and Hendricks, Test Population Selection From Weibull-Based, Monte 

Carlo Simulations of Fatigue Life 2008), (Vlcek, Hendricks and Zaretsky, Determination of 

Rolling-Element Fatigue Life From Computer Generated Bearing Tests 2003), (McBride 2011). 
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Generic Monte Carlo Simulation 

 A Monte Carlo simulation is a mathematical process that combines user inputs and 

random variable input(s) to a mathematical equation to simulate possible outcomes. This random 

process is repeated many times to establish trends, if not absolute magnitude (Rubinstein 1981). 

A flowchart showing the basic steps of a Monte Carlo simulation is shown in figure 9. 

 The term Monte Carlo was first introduced by von Neumann and Ulam during World 

War II as a secret code word at Los Alamos. It was in reference to the gambling casinos in 

Monte Carlo, Monaco (Rubinstein 1981). According to Haldar (Haldar and Mahadevan 2000), 

the Monte Carlo simulation is comprised of six elements: “1) defining the problem in terms of all 

the random variables; 2) quantifying the probabilistic characteristics of all the random variables 

in terms of their PDFs or PMFs and the corresponding parameters; 3) generating the values of 

these random variables; 4) evaluating the problem deterministically for each set of realizations of 

all the random variables, that is, numerical experimentation; 5) extracting probabilistic 

information from N such realizations; and 6) determining the accuracy and efficiency of the 

simulation.”  
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Figure 9. Flow chart of a basic Monte Carlo simulation. 

Computer simulations are sometimes considered a “last resort” method. With the current 

rise in technology and advances in computer systems, however, computer simulations have 

become one of the most widely used and accepted tools for analysis (Rubinstein 1981). 

 The life of mechanical components is not deterministic. Data, design curves, and 

formulas exist for calculating parameters with deterministic variables, however, this is not 

necessarily the case when the lives of the components are probabilistic. In the case of studying 

the robustness of planetary gears, a Monte Carlo simulation was used to account for this 

probabilistic nature (Enguo, Lei and Yanyum 2010). The deterministic methods of determining 

the robustness of the planetary gears was employed and then compared to the Monte Carlo 

method. The deterministic approach gave values that resulted in poor analysis of the robustness 

of the materials which lead to premature values. When the Monte Carlo method was applied, the 

results gave a better prediction of the life of the gears, which resulted in less cost as well as better 

components (Enguo, Lei and Yanyum 2010). 
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Monte Carlo Method used for Pattern Recognition 

 “The design, analysis, and verification and validation of a spacecraft rely heavily on 

Monte Carlo simulations” (Restrepo and Hurtado n.d.). Space travel is a very expensive 

endeavor and requires many engineering man hours to ensure the safety and reliability of a 

spacecraft. With the incredibly high expenses, it is not possible to test every system and 

determine all the possible outcomes. Testing, therefore, is limited. Monte Carlo simulations 

allow engineers to input different variables and let the program run to generate different random 

outcomes (Restrepo and Hurtado n.d.). This simulation, run long enough, could potentially 

display most of the possible outcomes of disasters and allow the engineers to design accordingly. 

There is, however, one problem with this method that was addressed in (Restrepo and Hurtado 

n.d.). With the enormity of possibilities of outcomes it can become very difficult to go through 

all the data. Restrepo and Hurtado have developed a plan to attack large amounts of data from a 

Monte Carlo simulation using pattern recognition. “Given enough time the Monte Carlo 

approach allows analysts to identify most of the individual design variables that influence certain 

system failures” (Restrepo and Hurtado n.d.). It typically, however, is not an individual 

parameter that causes a failure; it is a series of complex anomalies that lead to system failure 

(Restrepo and Hurtado n.d.). It is this series of events that an engineer must try to predict to aid 

in the design process of the system. “The goal of a Monte Carlo simulation is to understand all 

critical design sensitivities that may prevent the design from meeting requirements” (Restrepo 

and Hurtado n.d.).  

 Monte Carlo simulations can give an extreme amount of data. This leaves the engineer to 

sift through great quantities of data. One drawback to this is that the engineer needs some kind of 

already known intuition about the system to make judgment calls. Also, it is required to have a 
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sound knowledge in the area of the research. Restrepo and Hurtado (Restrepo and Hurtado n.d.) 

have devised a method to escape this problem. 

To evaluate the accuracy of more sophisticated statistical techniques, or to verify a new 

technique, simulation is routinely used to independently evaluate the underlying probability of 

failure (Haldar and Mahadevan 2000). “In the simplest form of the basic simulation, each 

random variable in a problem is sampled several times to represent its real distribution according 

to its probabilistic characteristics. Using many simulation cycles gives the overall probabilistic 

characteristics of the problem, particularly when the number of cycles N tends to infinity. The 

simulation technique using a computer is an inexpensive way (compared to laboratory testing) to 

study the uncertainty in the problem” (Haldar and Mahadevan 2000). The most commonly used 

simulation for this purpose is the Monte Carlo simulation. Engineers have been using this tool 

because of its ease of use and its accuracy of results. A strong background in statistics and 

probability is not needed to develop a Monte Carlo simulation. These are the reasons why 

engineers use Monte Carlo simulations for evaluating the risk and reliability of complicated 

systems (Haldar and Mahadevan 2000).  

 

Preventive Maintenance 

 

Preventive maintenance schedules are crucial to ensuring machines and systems operate 

properly and that no harm is done. Preventive maintenance can be defined as “a fundamental, 

planned maintenance activity designed to improve equipment life and avoid any unplanned 

maintenance activity” (Wireman 2008). With the analysis of fatigue data it is possible to 

determine these preventive maintenance schedules as well as warranty information.  
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The Space Shuttle is one example of the critical importance to ensure human safety and 

machine reliability. The space shuttle was designed to function for 100 flights per shuttle without 

maintenance or inspection (Oswald, et al. 2008). One system, in particular, is the body flap 

actuators on the space shuttle. There are four actuators on each shuttle (two per wing). After 

several flights of the shuttle, the bearings of these actuators were inspected for wear. Due to the 

varying degrees of wear, analysis had to be performed to determine proper timing of removal and 

replacement of these bearings (Oswald, et al. 2008).  

 This analysis was performed and the objectives of the research were: “a) experimentally 

duplicate the operating conditions of the space shuttle body flat actuator input shaft ball bearings; 

b) generate, under these simulated conditions, a statistical data base codifying bearing wear; c) 

determine the usable life of the actuator bearings based on a two-parameter Weibull distribution 

function for the bearings using strict-series system reliability; and d) compare these results to 

field data from the space shuttle fleet (Oswald, et al. 2008).” The statistical methods to analyze 

this data was both Weibull (Weibull 1951) and Johnson (Johnson, The Statistical Treatment of 

Fatigue Experiments 1964), (Johnson, Theory and Technique of Variation Research 1964). 

These methods have been in use by NASA for over 50 years in the area of failure analysis of 

bearings and gears in which a large database now exists (Oswald, et al. 2008).  

 Using the probabilistic method on the actuators, it was predicted that the bearing would 

fail after 20 missions. This was in close agreement to the actual failure at 22 missions (Oswald, 

et al. 2008).  Of 116 missions between 1981 and 2006, it was reported that only one actuator 

bearing had to be replaced due to excessive wear (Oswald, et al. 2008).  

 During the experiment, one of the tests conducted to determine the life of a bearing 

included six bearings in which sudden death testing was used that resulted in three of the six 
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bearings failing (Oswald, et al. 2008). The analysis used to incorporate the suspended items was 

that of Johnson (Johnson, The Statistical Treatment of Fatigue Experiments 1964).  

Along with testing for failure comes the knowledge of how to prevent failure in the first 

place. During failure testing, engineers learn methods to prevent failure. Different tolerances and 

lubrication methods lead to longer failure lives. The only way to prevent or postpone failure is to 

maintain the machine. Proper maintenance schedules need to be written and enforced. Failure 

tests, proper lubrication, and maintenance schedules are one way to prevent failure. 

 

 

Summary 

 

 Fatigue has been studied since the mid 1800’s when train axles started breaking 

unexpectedly. It turned out that this phenomenon was probabilistic and could not be precisely 

predicted. In the 1930’s Weibull developed a method to analyze this probabilistic occurrence. 

Although this method has been criticized by mathematicians it has worked for years and 

engineers still use it. Leonard Johnson developed a way of ranking two populations of fatigue 

data. From his method it is possible to statistically determine whether or not one population is 

better than the other.  

 Recently, with the advent of computers, Monte Carlo simulations have been developed to 

analyze fatigue data. A Monte Carlo simulation uses a limited number of predetermined inputs 

and random numbers to simulate possible outcomes. This means of comparing fatigue data has 

been demonstrated to work. 
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Chapter 3 

Method 

 

Introduction 

 

The purpose of this research is to compare fatigue data sets containing out-life 

suspensions via a Monte Carlo simulation. Existing methods for handling such suspensions can 

be tedious, relying heavily upon graphical interpretation and interpolation of design curves 

(Johnson, The Statistical Treatment of Fatigue Experiments 1964). This current project takes 

advantage of technological computing power to handle a statistically significant number of 

simulations. 

A model was developed to simulate experimental fatigue data that contains suspensions. 

A Monte Carlo simulation was written in Visual Basic, to interface with Microsoft Excel, to 

simulate fatigue lives using a “bin” model developed by Vlcek, Hendricks and Zaretsky (Vlcek, 

Hendricks and Zaretsky, Determination of Rolling-Element Fatigue Life From Computer 

Generated Bearing Tests 2003). Different suspension models were evaluated.  The models 

differed in how the failure index (number of failed samples or total number samples tested) was 

modeled prior to determining the L10 life for the data set.  A relative ranking counting method 

similar to that demonstrated by McBride, Vlcek, and Hendricks (McBride 2011) was used to 

determine the relative confidence numbers associated with each suspension method.  The 

simulation was repeated a statistically significant number of times (10,000).  For validation of 

the model, the simulated confidence numbers were compared to those graphically determined for 

two experimental data sets that were available in the literature (Townsend, Zaretsky and 
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Anderson, Comparison of Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977), 

(Townsend and Zaretsky, Comparisons of Modified Vasco X-2 and AISI 9310 Gear Steels 

1980).   

 

Monte Carlo Simulation - Weibull Equation, Confidence Numbers, and “Bin” Model 

 

The model was generated by combining three statistical methods already in existence. 

The first was the use of the Weibull equation (equation 1) to determine a life. Using a random 

number generator, a number between 1 and 1000 was generated. This number represented the 

order in which the sample failed (this is known as the “bin” model and will be discussed in more 

detail in the next section). From this the order number was converted to a rank using equation 3. 

This number subtracted from 1 gave the survivability (S) of the sample. Then, using the Weibull 

slope and characteristic life as determined from experimental data, a virtual life can be solved for 

algebraically.  

The second method incorporated into the model was developed by Johnson (Johnson, 

The Statistical Treatment of Fatigue Experiments 1964).  Johnson developed a way to 

statistically predict whether or not one material was better than another. He did this through 

confidence numbers. If two materials were analyzed, and a confidence number of 90 or higher 

was determined, then it implies that there is a statistical difference between the two materials. 

Although his graphical method of calculating confidence numbers was not incorporated into this 

model, the idea behind a confidence number was—how many times out of one hundred, one 

probabilistic value was greater than another. Johnson also developed a method for incorporating 
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suspensions into the determination of a confidence number, and demonstrated the importance of 

taking suspensions into consideration instead of just dismissing them. 

The third method incorporated into this model was that of Vlcek et al. (Vlcek, Hendricks 

and Zaretsky, Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull 

Parameters 2007), (Vlcek, Hendricks and Zaretsky, Relative Ranking of Fatigue Lives of 

Rotating Aluminum Shafts Using L10 Weibull-Johnson Confidence Numbers 2008), (Vlcek, 

Hendricks and Zaretsky, Determination of Rolling-Element Fatigue Life From Computer 

Generated Bearing Tests 2003), (McBride 2011). Vlcek et al. developed what is referred to as a 

virtual bin model. The bin model is a virtual bin of 1000 specimens that are assumed to have 

been tested to failure. The lives of these samples are not known at this time, however, the order 

in which they failed is known, and each sample has an order number from 1 to 1000 associated 

with the order in which it failed.  With this order number, it is possible to determine the 

survivability of the sample using the median rank equation (equation 3). If the Weibull slope (m) 

and characteristic life (Lβ) are known, then the simulated life is the only unknown in the Weibull 

equation (equation 1), and can be algebraically solved for.  

Another method used that was developed by Vlcek et al. was that of numerically 

counting simulated lives to arrive at a confidence number. Since a confidence number is defined 

as the number of times out of 100 one material will be better than another, with a Monte Carlo 

simulation generating 100 virtual lives it is possible to count how many times the life of one 

material is greater than the other.  

The last method used by Vlcek et al. in this simulation was the development of curve fit 

equations, which were derived from Johnson’s figures, to calculate a confidence number. These 

equations were incorporated into the simulations, to use the variables generated, to calculate a 
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confidence number. This added one more dimension for comparison of confidence numbers. 

Ultimately three confidence numbers were able to be compared to determine whether or not one 

material was better than the other.  

 

Bin Model Monte Carlo Simulation  

 

The objective of the Monte Carlo technique in this application is to acquire virtual lives 

from random numbers between 1 and 1000 which represent samples in a bin ordered in which 

they failed. These numbers were converted to lives by use of the rank equation (equation 3) and 

the Weibull equation (equation 1).  

These random numbers represent the order in which the gears would have failed had all 

1,000 been tested. For example, if the random number generator used by the simulation 

generates the number 784, this would represent the 784th sample to fail in the bin of 1,000. Since 

the true life of the 784th sample that failed is not known, it will be sequentially ordered against 

the other samples in its bin. Sample 1 will have the shortest life, and sample 1,000 will have the 

longest life.  

The random number generator itself does not have a method for determining how many 

of a certain number it picks. For example, it is possible that the number 256 gets generated twice. 

This is not desired because it is not possible to have two samples with the order number 256. 

This issue was addressed to ensure unique random numbers. No two samples can have the same 

rank. A Visual Basic Module in Excel was written to ensure that all random numbers or parts 

pulled from the bin were unique in a test set. This module can be seen in Figure 10. 
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Figure 10. Subroutine to generate random number and make sure all numbers are unique 

 It should be stated now that in Visual Basic, any text following a (‘) is a comment and not 

used in the program. They are for organizational purposes only. 

The virtual test samples were ranked on a scale from 0 to 1. Zero being the lowest life 

and one being the longest life. To rank the samples equation 3 was used 

Equation (3) 

Median		Rank = 	 random number− 0.3

bin size+ 0.4
 

Where random number is the number the program chooses and bin size is 1000. After ranking 

the samples from 0 to 1, the rank is subtracted from 1 to get the survivability S of the sample 

(equation 7). 

Equation (7) 

S = Rank – 1 

‘Bin A 
‘generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = “=randbetween(1,1000)”  
 
‘Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1  
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 Lives are assigned to the virtual samples based on the experimental data using the Weibull 

equation. 

Equation (1) 

ln ln
1

� = � ln
��
�� 

The rank from the simulation results in survivability S. The Weibull slope m and characteristic 

life Lβ come from previously available experimental data.  The virtual life at a survivability 

probability S can be calculated after plugging these three variables into equation 1. The lives, 

still in order from shortest lived to longest lived, were then ranked again. This time they were 

ranked according to the test population size. If 20 samples were used in the experiment, then in 

the ranking equation, 20 was used for the population size n, and instead of a random number, 1 

to the sample size was used; in this case, from 1 to 20 (equation 8). 

Equation (8) 

Rank = 	number− 0.3

20+ 0.4
 

The survivability S, or percent of samples that survived, is again solved for by using equation 7. 

The lnln (1/S) is plotted as a function of the ln (L). lnln (1/S) is plotted on the ordinate and ln (L) 

is plotted on the abscissa. As a result, fatigue data plots as a relatively straight line on Weibull 

paper, and a fitted curve is determined using a least squares fit. The Weibull slope, characteristic 

life, L10 life, L50 life, and mean life are results of this plot. Figure 11 is a flowchart of the 

simulation based on a bin model.  
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Figure 11. Flowchart of Monte Carlo simulation based on bin model 

 

Numerically Counting Confidence Numbers 

 

A confidence number determined by the simulation (numerical counting method) was 

accomplished by generating 100 L10 lives for two different simulated materials and counting the 

number of times the L10 life associated with one population was greater than the other out of 100 

comparisons. Since the program generates virtual L10 lives these lives were counted to see how 

many times population A has a longer life than population B. The number of times out of 100 

that A is better than B and the number of times out of 100 that B is better than A was outputted 

User input:  
Weibull slope, 

characteristic life, 
number of samples 

Convert random ranks 
to fatigue life with 
Weibull equation 

Plot fatigue lives on a 
Weibull plot to 

determine L10 and slope Pull number of samples 
randomly from bin. 

Generate random number 
between 1-1000 equal to 

number of samples Repeat 100 times for each 
population to determine 

confidence number 

Repeat process 10,000 times 
to establish trends 

Averaged outputs 



47 
 

to the summary table. The greater of the two numbers is the confidence number. If this number is 

greater than 90 then it states that there is a significant difference between the two populations. A 

flowchart of the simulation determining a confidence number by the numerical counting method 

is shown in figure 12. 
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Figure 12. Flowchart of Monte Carlo simulation counting method. 

Input known variables 
for bin A and bin B 

Generate random numbers from 1 to 1000 

Rank random numbers from 0 to 1 

Survivability = 1 - rank 

Solve Weibull equation for L 

Plot ln(L) vs. lnln(1/S) to solve 
for Weibull slope and L10 

Output Weibull slope and L10 for 
both bins 

Count how many times L10 

of A is bigger than L10 of B 

Repeat 100 
times 

Repeat 10,000 times 

Average outputs 



 

It was determined which 

bin B and then counting the number of times the result 

result is greater than one then L10

shown in figure 13. 

 

  

 

 

 

 

 

 

Figure 13. Subroutine for numerically counting a confidence number

A screen shot of the output of the numerical counting method is shown in figure 

Figure 14. Screen shot of output of counting confidence numbers

 This confidence number mo

specimens in the original experiment failed. However for the purpo

'L10A / L10B 

Cells(60, Column) = Cells(6, Column) / Cells(14, Co lumn)
 
'Counting which is bigger, L10A or L10B
  If Cells(60, Column) > 1 Then
    countL10 = countL10 + 1
  Else 
    countL10B = countL10
  End If 
Cells(68, 2) = countL10
Cells(69, 2) = countL10B
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which was greater by dividing the L10 life of bin A by the L

bin B and then counting the number of times the result was greater than or less than one. If the 

10 of A was greater, and vice versa for B. This counting method is 

Subroutine for numerically counting a confidence number 

A screen shot of the output of the numerical counting method is shown in figure 

Screen shot of output of counting confidence numbers 

This confidence number model works well for experimental data in which all fatigue 

specimens in the original experiment failed. However for the purpose of this research a new 

Cells(60, Column) = Cells(6, Column) / Cells(14, Co lumn)

'Counting which is bigger, L10A or L10B  
If Cells(60, Column) > 1 Then  

countL10 = countL10 + 1  

countL10B = countL10 B + 1 

Cells(68, 2) = countL10  
Cells(69, 2) = countL10B  

life of bin A by the L10 life of 

s greater than or less than one. If the 

This counting method is 

A screen shot of the output of the numerical counting method is shown in figure 14. 

 

del works well for experimental data in which all fatigue 

se of this research a new 

Cells(60, Column) = Cells(6, Column) / Cells(14, Co lumn)  
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model was developed to use this Monte Carlo simulation to generate fatigue data that has 

suspensions in it and then determine confidence numbers. There are five new models presented.  

 

Five Suspension Models 

 

In this study, five different out-life suspension models were created and compared, to 

determine which best simulated fatigue data sets, with out-life suspensions, was better. There are 

five versions of the program; each simulates a different suspension model. The five different 

methods were designed to represent possible outcomes of the actual experimental since the 

details of why the suspensions occurred are not known. 

Simulation Method 1: No out-life suspensions 

Method 1 is a simulation of what confidence number would have been determined had all 

the specimens failed—i.e. there were no suspensions. For example, if 20 samples of material A 

were to be tested against 20 samples of material B and only 6 samples of material B failed for 

whatever the reason, the following would be conducted. 20 lives of A and 20 lives of B would be 

generated. All of these lives would then be used to determine a confidence number and a base 

line. This is theoretically what could have happened had all the specimens in the experiment 

failed.  This serves as a baseline for comparison.  While the method for determining the 

individual fatigue lives and the L10 lives was demonstrated by Vlcek, Hendricks and Zaretsky 

(Vlcek, Hendricks and Zaretsky, Determination of Rolling-Element Fatigue Life From Computer 

Generated Bearing Tests 2003) and McBride (McBride 2011), the Visual Basic programming 

solution to this simulation was unique to this study.   The full Visual Basic program for 

simulating Method 1 can be found in Appendix A.  



 

A screen shot of the inputs for method one can be seen in figure 

Figure 15. Sample of the inputs fo

In this figure, A mA is the slope of the experimental

of the experimental data set for material B. L

for material A and LB,B is the characteris

and size B are the sizes of the populations for materials A and B. Trials is the number of times to 

run the loop to calculate a confidence number. Remember the simulation runs 100 times to count 

how many times (out of 100) one material is better than the other. Trials* is the number of times 

to run the entire program to establish trends. All five methods were run a total of 10,000 times. 
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A screen shot of the inputs for method one can be seen in figure 15. 

. Sample of the inputs for method 1 

is the slope of the experimental data set for material A and B m

of the experimental data set for material B. LB,A is the characteristic life for the experimental data 

is the characteristic life for the experimental data for material B. Size A 

and size B are the sizes of the populations for materials A and B. Trials is the number of times to 

run the loop to calculate a confidence number. Remember the simulation runs 100 times to count 

many times (out of 100) one material is better than the other. Trials* is the number of times 

to run the entire program to establish trends. All five methods were run a total of 10,000 times. 

 

data set for material A and B mB is the slope 

is the characteristic life for the experimental data 

tic life for the experimental data for material B. Size A 

and size B are the sizes of the populations for materials A and B. Trials is the number of times to 

run the loop to calculate a confidence number. Remember the simulation runs 100 times to count 

many times (out of 100) one material is better than the other. Trials* is the number of times 

to run the entire program to establish trends. All five methods were run a total of 10,000 times. 
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In this figure, and in most of the simulations, the program was broken up into five blocks of 

2,000 because of the lack of RAM on the computers used. 

 The part of the simulation that changes from method to method is how the slopes are 

calculated. After the virtual lives have been generated and a new survivability has been 

calculated then virtually plotting the lnln(1/S) against the ln(L) will give the Weibull slope of the 

simulated fatigue data. The code to calculate the slope is in figure 16. 

'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cel ls(7, 10), 
Cells(alpha + 6, 10)), Range(Cells(7, 11), Cells(al pha + 6, 
11)), True, True) 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa 
 
'slope B 
MB = Application.WorksheetFunction.LinEst(Range(Cel ls(7, 18), 
Cells(alpha2 + 6, 18)), Range(Cells(7, 19), Cells(a lpha2 + 6, 
19)), True, True) 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb  
 

Figure 16. Visual Basic code for calculating the Weibull slope of bins A and B 

Figure 17 is a screen shot of the outputs. The shaded numbers are the numbers used to calculate 

the slope of the virtual data. 



 

Figure 17. Screen shot of method 1 outputs

Using this new Weibull slope, and the virtual data

calculated. Using the new Weibull slope and characteristic life in the Weibull equatio

set as 0.9, a L10 life for this virtual data set can be calculated. This is done for both bins. These 

L10 lives are then counted to see how many times out of 100 the L

better than the other population. 

Simulation Method 2: Failure Index Forced to

Method 2 simulates the L

the original experiment were equal to the total number tested. For example, if there were 20 

samples of material A and 20 samples of material B to be tested, and 20 o

only 6 of material B failed, then 20 lives for material A and 6

generated. This method again does not directly incorporate suspensions because it

samples failed. While the reduced population size is used, it is still the first 

randomly generated.  The full Visual Basic program for simulating Met

Appendix B.   

A screen shot of the inputs for meth
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Figure 17. Screen shot of method 1 outputs 

and the virtual data, a characteristic life for this data set can be 

calculated. Using the new Weibull slope and characteristic life in the Weibull equatio

life for this virtual data set can be calculated. This is done for both bins. These 

lives are then counted to see how many times out of 100 the L10 life of one population is 

 

ndex Forced to Match a Known Failure Index  

Method 2 simulates the L10 lives that would be obtained if all the specimens that failed in 

the original experiment were equal to the total number tested. For example, if there were 20 

terial A and 20 samples of material B to be tested, and 20 of material A failed, yet 

n 20 lives for material A and 6 lives for material B were 

generated. This method again does not directly incorporate suspensions because it

the reduced population size is used, it is still the first 6 failures that were 

Visual Basic program for simulating Method 2 can be found in 

A screen shot of the inputs for method 2 can be seen in figure 18. 

 

a characteristic life for this data set can be 

calculated. Using the new Weibull slope and characteristic life in the Weibull equation, with S 

life for this virtual data set can be calculated. This is done for both bins. These 

life of one population is 

lives that would be obtained if all the specimens that failed in 

the original experiment were equal to the total number tested. For example, if there were 20 

f material A failed, yet 

lives for material B were 

generated. This method again does not directly incorporate suspensions because it assumes all 

failures that were 

hod 2 can be found in 



 

Figure 18. Sample of the inputs for method 2

The slopes and characteristics lives and trial numbers do not change. The only change is the 

amount of lives generated determined by the size of the populations entered. In figur

be seen that the population of B is lower than in method 1. 
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Sample of the inputs for method 2 

The slopes and characteristics lives and trial numbers do not change. The only change is the 

amount of lives generated determined by the size of the populations entered. In figur

be seen that the population of B is lower than in method 1.  

The slopes and characteristics lives and trial numbers do not change. The only change is the 

amount of lives generated determined by the size of the populations entered. In figure 18 it can 



 

Figure 19. Screen shot of method 2 outputs

In figure 19 are the outputs for method 2 and the shaded areas are the numbers used to calculate 

the new Weibull slope. Using this Weibull

population.  

Simulation Method 3: Specified Failure Index for Cut

The third method generates random lives for 

actual failed specimens to calculate the c

specimens of material A and 20 spe

would generate 20 lives for A and 20 lives for B and then use all 20 lives for the calculations of 

A and only the shortest lived 6 lives for B. This represents what would happ

that the 14 longest lived samples in population B were suspended. The way this was 

accomplished in the actual program is all 20 lives for bins A and B were generated as normal 

get a full distribution. When the values were calculated for the Weibull s

first 6 lives were picked for the calculation. The following calculations for L

life, and mean were then based on only those first 

simulating Method 3 can be found in Appendix C.  

A screen shot for method 3 can be seen in figure 
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Figure 19. Screen shot of method 2 outputs 

are the outputs for method 2 and the shaded areas are the numbers used to calculate 

the new Weibull slope. Using this Weibull slope an L10 life can be calculated for each 

Simulation Method 3: Specified Failure Index for Cut-Off Out-Life 

The third method generates random lives for all specimens yet it only uses the number of 

actual failed specimens to calculate the confidence number. For example, if there were 20 

specimens of material A and 20 specimens of material B, yet only 6 of B failed, the program 

would generate 20 lives for A and 20 lives for B and then use all 20 lives for the calculations of 

lives for B. This represents what would happen if it was assumed 

longest lived samples in population B were suspended. The way this was 

accomplished in the actual program is all 20 lives for bins A and B were generated as normal 

get a full distribution. When the values were calculated for the Weibull slope of bin B, only the 

lives were picked for the calculation. The following calculations for L10, L

life, and mean were then based on only those first 6 samples. The full Visual Basic program for 

hod 3 can be found in Appendix C.   

A screen shot for method 3 can be seen in figure 20. 

 

are the outputs for method 2 and the shaded areas are the numbers used to calculate 

life can be calculated for each 

specimens yet it only uses the number of 

onfidence number. For example, if there were 20 

of B failed, the program 

would generate 20 lives for A and 20 lives for B and then use all 20 lives for the calculations of 

en if it was assumed 

longest lived samples in population B were suspended. The way this was 

accomplished in the actual program is all 20 lives for bins A and B were generated as normal to 

lope of bin B, only the 

, L50, characteristic 

Visual Basic program for 



 

Figure 20. Sample of the inputs for method 3

The slopes, characteristic lives, and trials again do not chan

populations are set to the total number of samples. A cut

only use the first 6 generated lives in the calculations of the Weibull slopes and L

In figure 21 is a screen shot of the outputs of method 3.
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Sample of the inputs for method 3 

The slopes, characteristic lives, and trials again do not change. This time the sizes of the 

populations are set to the total number of samples. A cut-off is specified to tell the simulation to 

only use the first 6 generated lives in the calculations of the Weibull slopes and L

of the outputs of method 3. 

ge. This time the sizes of the 

off is specified to tell the simulation to 

only use the first 6 generated lives in the calculations of the Weibull slopes and L10 lives. 



 

Figure 21. Screen shot of method 3 outputs

In figure 21 it shows that 20 lives were generated for both populations, but only the shortest lived 

6 lives of bin B are used in the calculation of a Weibull slope and L

are the out-life suspensions. 

Simulation Method 4: Specified Cut

In method 4 the total number of specimens attempted is generated but then only the ones 

that reach a specified cut-off life are used

samples and bin B has 20 samples. The experimenter determines that there is no need for a 

specimen to run more than 380 million cycles. If

all of bin A would get used in the calculat

seventh longest life out of the 20 was 390

in calculating the L10 life.  

 As in the original program the user inputs the size of bin A and bin B. 

through and generates 20 lives for bin A. When calculating the lives of bin B, the program 

begins by generating 20 random numbers as usual, however, when it begins to convert the 
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21. Screen shot of method 3 outputs 

it shows that 20 lives were generated for both populations, but only the shortest lived 

6 lives of bin B are used in the calculation of a Weibull slope and L10 life. The longest lived 14 

Simulation Method 4: Specified Cut-Off Out-Life 

In method 4 the total number of specimens attempted is generated but then only the ones 

off life are used for calculated the L10 life. For example, bin A has 20 

samples and bin B has 20 samples. The experimenter determines that there is no need for a 

million cycles. If the longest life of bin A was 255

all of bin A would get used in the calculations for a confidence number.  In bin B, however, the 

longest life out of the 20 was 390,000,000 then only the shortest six lives would get used 

As in the original program the user inputs the size of bin A and bin B. The program goes 

through and generates 20 lives for bin A. When calculating the lives of bin B, the program 

begins by generating 20 random numbers as usual, however, when it begins to convert the 

 

it shows that 20 lives were generated for both populations, but only the shortest lived 

longest lived 14 

In method 4 the total number of specimens attempted is generated but then only the ones 

For example, bin A has 20 

samples and bin B has 20 samples. The experimenter determines that there is no need for a 

the longest life of bin A was 255,900,000 then 

ions for a confidence number.  In bin B, however, the 

00,000 then only the shortest six lives would get used 

The program goes 

through and generates 20 lives for bin A. When calculating the lives of bin B, the program 

begins by generating 20 random numbers as usual, however, when it begins to convert the 



 

random numbers into lives, when the program computes a life 

ends the loop and jumps to the next command. Since the program has to go over the designated 

life before it can terminate, it then needs to be told to only use the lives previous to the last one 

generated. The program copies the usable data (that is the lives generated minus the last one) to 

open cells to the right of the original numbers in the spreadsheet and then performs calculations 

using this copied data to ensure the correct numbers are used. 

simulating Method 4 can be found in Appendix

In figure 22 is a screen shot of the inputs for method 4.

Figure 22. Sample of the inputs for method 4

The Weibull slopes, characteristic 

populations are set as the total number attempted. This time the cut
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random numbers into lives, when the program computes a life greater than the designated life it 

ends the loop and jumps to the next command. Since the program has to go over the designated 

life before it can terminate, it then needs to be told to only use the lives previous to the last one 

pies the usable data (that is the lives generated minus the last one) to 

open cells to the right of the original numbers in the spreadsheet and then performs calculations 

using this copied data to ensure the correct numbers are used. The full Visual Basic 

can be found in Appendix D.   

is a screen shot of the inputs for method 4. 

 

Sample of the inputs for method 4 

The Weibull slopes, characteristic lives and trials are entered the same as before. The s

populations are set as the total number attempted. This time the cut-off that is entered is a 

greater than the designated life it 

ends the loop and jumps to the next command. Since the program has to go over the designated 

life before it can terminate, it then needs to be told to only use the lives previous to the last one 

pies the usable data (that is the lives generated minus the last one) to 

open cells to the right of the original numbers in the spreadsheet and then performs calculations 

Visual Basic program for 

the same as before. The sizes of the 

off that is entered is a 
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specific life. In this particular case the cut-off life for bin B is 380 million. In figure 23 is a 

screen shot of the outputs of method 4. 

 

Figure 23. Screen shot of method 4 outputs 

From figure 23 it can be seen that 20 lives are generated for bin A. For bin B however all 20 

random numbers are generated, but when the random numbers started getting calculated into 

lives the program stops when it generates a life over the specified life. The program then knows 

to use one minus the generated lives in the calculation of the Weibull slopes and L10 life. This is 

shown by the shaded numbers in figure 23. 

Simulation Method 5: Specified Cut-Off Out-Life and Failure Index 

Method 5 is a hybrid of methods 3 and 4. Method 5 operates the same way except that it 

forces the bin to use the specified predetermined number of samples failed or failure index and a 

specified life. To relate to the previous examples, it would force bin B to have 6 failed samples 

between 1 and 380 million cycles. The user inputs the number of lives to be generated; in this 

case the numbers are 20 for bin A and 6 for bin B. The program will only generate 20 lives for 

bin A and 6 lives for bin B. The program generates the lives for bin A as usual; however, when 

the lives are being calculated for bin B the same procedure as method 4 was used. This time, 



 

however, if the lives get cut below the specified number (i.e. 

example, if only 4 lives are generated because the 

will start over until there are 6 lives within the specified life range. 

program for simulating Method 5

In figure 24 is a screen shot of the inputs for method 5.

Figure 24. Sample of the inputs for method 5

The Weibull slopes, characteristic lives, and trial numbers are again still the same. The forced 

failure index is designated by the size of the bins

the cut-off life is 380 million. In figure 
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however, if the lives get cut below the specified number (i.e. 6) then the loop starts over. Fo

lives are generated because the fourth life has reached the limit then the loop 

lives within the specified life range. The full Visual Basic 

5 can be found in Appendix E.   

is a screen shot of the inputs for method 5. 

 

Sample of the inputs for method 5 

The Weibull slopes, characteristic lives, and trial numbers are again still the same. The forced 

failure index is designated by the size of the bins and the cut-off life is also specified, in this case 

off life is 380 million. In figure 25 is a screen shot of the outputs for method 5.

) then the loop starts over. For 

life has reached the limit then the loop 

Visual Basic 

The Weibull slopes, characteristic lives, and trial numbers are again still the same. The forced 

off life is also specified, in this case 

is a screen shot of the outputs for method 5. 



 

Figure 25. Screen shot of method 5 outputs

From figure 25 it can be seen that the program generates 20 lives 

have 6 lives that fall between 1 and 380 million. Again the shaded numbers are used in 

calculating the Weibull slope and L

 All of these simulations were run using real data from past experiments in the literature 

(Townsend, Zaretsky and Anderson, Comparison of Modified Vasco X

Preliminary Report 1977), (Townsend and Zaretsky, Comparisons of Modified Vasco X

AISI 9310 Gear Steels 1980) as inputs to the Monte Carlo simulation and to validate the model. 

The data came from an experiment where a comparison of helicopter gear materials was 

conducted. The helicopter gears were of particular interest because in the original experiment 

there were suspensions and a graphically determined confidence number using Johnson’s 

(Johnson, The Statistical Treatment of Fatigue Experiments 1964)

 The data from the original experiments was run through each of the five metho

10,000 cycles for statistical accuracy.
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Screen shot of method 5 outputs 

it can be seen that the program generates 20 lives for bin A and forces bin B to 

have 6 lives that fall between 1 and 380 million. Again the shaded numbers are used in 

calculating the Weibull slope and L10 lives. 

All of these simulations were run using real data from past experiments in the literature 

(Townsend, Zaretsky and Anderson, Comparison of Modified Vasco X-2 with AISI 9310 

(Townsend and Zaretsky, Comparisons of Modified Vasco X

inputs to the Monte Carlo simulation and to validate the model. 

The data came from an experiment where a comparison of helicopter gear materials was 

conducted. The helicopter gears were of particular interest because in the original experiment 

uspensions and a graphically determined confidence number using Johnson’s 

(Johnson, The Statistical Treatment of Fatigue Experiments 1964) method.  

The data from the original experiments was run through each of the five metho

10,000 cycles for statistical accuracy. The inputs of the simulation can be seen in

 

for bin A and forces bin B to 

have 6 lives that fall between 1 and 380 million. Again the shaded numbers are used in 

All of these simulations were run using real data from past experiments in the literature 

2 with AISI 9310 - 

(Townsend and Zaretsky, Comparisons of Modified Vasco X-2 and 

inputs to the Monte Carlo simulation and to validate the model. 

The data came from an experiment where a comparison of helicopter gear materials was 

conducted. The helicopter gears were of particular interest because in the original experiment 

uspensions and a graphically determined confidence number using Johnson’s 

The data from the original experiments was run through each of the five methods for 

The inputs of the simulation can be seen in tables 5 and 6. 
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Table 5. Input parameters used for rolling contact data set simulation 

 Weibull Slope Characteristic Life Failure Index 

Modified Vasco X-2 2.2 175,220,000 20 out of 20 

AISI 9310 1.4 698,580,000 6 out of 20 
 

 

Table 6. Input parameters used for gear fatigue data set simulation 

  Weibull Slope 
Characteristic 

Life 
Failure Index 

AISI 9310 ---- 2.3 61,190,000 30 out of 30 

Modified Vasco 
X-2 

Boeing Vertol 1.0 364,460,000 12 out of 26 
NASA 0.53 55,859,000 18 out of 21 

Curtis-Wright 2.1 9,636,000 19 out of 19 
 

  

Algebraic Approximation of Johnson’s Confidence Numbers 

 

 There was another method of calculating confidence numbers that was incorporated into 

the simulation. This method was developed by Vlcek et al. (Vlcek, Hendricks and Zaretsky, 

Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters 2007). 

In the method a number of equations were developed to algebraically solve for a confidence 

number. This method eliminated the need for graphical interpretation of the results, and was 

incorporated into the simulation to give another confidence number to compare the Monte Carlo 

counting method to. 

Equations 9 through 15 are calculated to determine a confidence number using the mean 

lives. To begin, the degrees of freedom (DOF) must be found. The degrees of freedom represents 
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the number of times a part can be randomly chosen. If there are 20 objects, you can randomly 

choose 19 because the 20th item is fixed and not random.  Degrees of freedom is defined as 

Equation (9) 

DOF = n – 1 

In the case of two bins the degrees of freedom will be 

Equation (10) 

DOF = (n1 – 1) x (n2 – 1) 

The mean life ratio (MLR) at 99%, is determined by 

Equation (11) 

MLR@99% = (Aoln(DOF) + Bo)
2 + 1 

Where 

Equation (12) 

Ao =
−0.0844

m
− 0.05584 

And 

Equation (13) 

Bo =
1.2796

m
+ 0.6729 

Once the mean life ratio at a confidence number of 99-percent has been established it can then be 

used to find D. 

Equation (14) 

D =
3.912

MLR@��% − 1
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Next the mean life ratio was determined for the experimental values, the bigger mean life divided 

by the smaller mean life. Once these variables have been calculated, a confidence number can be 

determined using equation 15: 

Equation (15) 

C = 1 − 0.5��	D
MLRexp	��
 

 Another method to determining a confidence number is to use the L10 life dependent 

equations. These begin with: 

Equation (16) 

A = exp (
a�

m

 + b2) 

Equation (17) 

B = a1 ln (m) + b1 

Where a1 = 0.29574, a2 = 4.5286, b1 = -0.45228, and b2 = 0.3152 

Once A and B have been calculated the fitted L10 life ratio must be determined: 

Equation (18) 

Fitted L10 life ratio = (A) DOFB 

Followed by: 

Equation (19) 

a	&	 a�
ln(L��Life	Ratio) 

where 

Equation (20) 

ao = (E2 Ln(1-0.99) – E1)
0.5 

where E1 = 2896.3 and E2 = -3595.9 
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The confidence number based on L10 lives can now be calculated. 

Equation (21) 

CL10 = 1 – exp {[(a ln(xo))
2 + E1]/E2} 

These two methods make it possible to calculate a confidence number of an experiment without 

the need to use Johnson’s figures (Johnson, The Statistical Treatment of Fatigue Experiments 

1964). They were incorporated into the simulation and used the lives of the generated random 

numbers to calculate confidence numbers.  

 The program code was then modified to determine confidence numbers utilizing the 

equations proposed by Vlcek, Zaretsky, and Hendricks. These values were then compared to the 

confidence numbers generated by the Monte Carlo counting method. There are two methods of 

curve fit equations. The first uses the mean life ratio to calculate a confidence number and the 

second uses the L10 life ratio to calculate a confidence number at that respective probability of 

failure. The degrees of freedom for the bins was first calculated. The first confidence number 

calculated is the mean life ratio confidence number. The confidence number based on the 

Weibull slope for bin A was calculated and then the confidence number based on the Weibull 

slope for bin B was calculated. The average of these two is then the mean life ratio confidence 

number. The code for determining a confidence number based on mean life ratio is shown in 

figure 26. 
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Figure 26. Subroutine for calculating confidence number based on mean life ratio 

The L10 ratio confidence numbers were calculated next. Again the confidence number 

based on the Weibull slope for bin A was calculated followed by the confidence number based 

on the Weibull slope for bin B, then the average of those two values was calculated do determine 

a final confidence number. The code for determining a confidence number based on L10 lives is 

shown in figure 27. 

 

 

 

 

 

'CONFIDENCE INTERAL FOR A 

    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = 
Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 
1)) 
    Cells(42, 2) = Cvegas 
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Figure 27. Subroutine for calculating confidence number based on L10 life ratio 

After the calculations were performed the Weibull slopes, L10 lives, L50 lives, 

characteristic lives, mean lives, degrees of freedom, mean life ratio confidence numbers and L10 

life ratio confidence numbers were outputted again to the first worksheet on the spreadsheet 

(figure 28) where they  were then copied from sheet one to the “Summary” sheet. The summary 

sheet is used to store all the numbers until the program is done running the desired number of 

trials. The final confidence numbers came from averaging the numbers on the summary page.  

'L10 dependent confidence numbers 

'A 
AAA = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 
2)) 
'B 
BBB = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = AAA * Cells(40, 2) ^ BBB 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA)  
'a 
lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
'CL10 
CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -
3595.9) 
Cells(46, 2) = CL10 



 

Figure 28. Screen shot of output cells
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shot of output cells. 
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In addition to holding all the values from the calculations, the summary page is where the 

numerical counting takes place for the Monte Carlo method of determining a confidence number. 

All the L10 lives are counted and determined how many of bin A were greater than bin B. 

 

The Visual Basic Macro of the Simulation before Suspensions Incorporated 

 

The model was developed using Visual Basic for Applications in Microsoft Excel. Excel 

was the program of choice because of its ability to handle and organize large amounts of data.  It 

was also possible to interface with the Visual Basic code through the spreadsheet.  

 Visual Basic in Excel was developed to make handling small tasks easier. One method of 

doing this is by using a macro in Excel. A macro was constructed, for simplicity, by clicking the 

“Record Macro” button and following a sequence of steps for whatever task needs to be 

completed. The macro is assigned a shortcut key, ctrl+(a letter). For example, if “Record Macro” 

was pressed, then the user clicked on an empty cell, and entered the command to take the 

average of a series of numbers, and then highlight a series of numbers and pressed enter, then 

clicked stop recording, the user would be able to repeat this process by simply hitting the macro 

short key.  

 Once a quick “record” macro has been constructed it is then possible to access the macro 

and edit it using Visual Basic code. This is how this model was constructed. 

The program was constructed over a number of weeks in small modules. Each module 

would be run, and then compared to hand calculations to be sure the code was correct and then 

the next module would be added on until the entire program ran as one unit.  The initial set up 

was on the first page of the spread sheet as shown in figure 29. 



 

Figure 29. Screen shot of simulation inputs

 There were cells assigned to values that would be inputted by the user. These inputs 

included the Weibull slope for eac

and the number of trials to be run.  

 First the set of random numbers that represented the number in which the 

was generated. The number generator in Visual Basic generated a

1000. To ensure that no two same random numbers appeared in either of the sets generated, a 

sub-routine was written that compared each randomly pulled number to those already selected 

for the data set (figure 10).  If found to 

in question was discarded, another pulled, and uniqueness again established. 
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shot of simulation inputs. 

There were cells assigned to values that would be inputted by the user. These inputs 

included the Weibull slope for each bin, the characteristic life for each bin, the size of each bin, 

and the number of trials to be run.   

First the set of random numbers that represented the number in which the 

was generated. The number generator in Visual Basic generated a random number between 1 and 

1000. To ensure that no two same random numbers appeared in either of the sets generated, a 

routine was written that compared each randomly pulled number to those already selected 

.  If found to equal one of the previously pulled numbers, the number 

in question was discarded, another pulled, and uniqueness again established.  

There were cells assigned to values that would be inputted by the user. These inputs 

h bin, the characteristic life for each bin, the size of each bin, 

First the set of random numbers that represented the number in which the sample failed 

random number between 1 and 

1000. To ensure that no two same random numbers appeared in either of the sets generated, a 

routine was written that compared each randomly pulled number to those already selected 

equal one of the previously pulled numbers, the number 
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The random numbers were then ordered from smallest to largest to be ranked. To rank 

them equation 3 was used. This rank was then turned in to a survivability value by subtracting it 

from 1. This survivability was then incorporated into the Weibull equation (equation 1), along 

with the Weibull slope and characteristic life as reported in the literature to determine a life. The 

code for determining a rank, then survivability, then a life is shown in figure 30. 

 

\ 

 

 

 

 

 

 

Figure 30. Subroutine for determining a life from random number. 

 

Once the lives were established, a new rank was calculated based upon the size of the 

pulled population rather than 1000, this time from 1 to population size. Once the rank was 

established again, the survivability associated with each life was calculated. The lnln(1/S) and 

the ln(L) were calculated to determine a Weibull slope for the generated data. The code for 

determining the new rank, new survivability, lnln(1/S), and ln(L) is shown in figure 31. 

 

 

 

For loop5 = 1 To alpha 
'Rank A 
    Cells(r1, c1) = (Cells(r1, c2) - 0.3) / (1000 +  0.4) 
'S of A 
    Cells(r1, c4) = 1 - Cells(r1, c1) 
    SA = Cells(r1, c4) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / S A) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
        Cells(r1, c6) = CA 
    r1 = r1 + 1 
Next loop5 
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Figure 31. Subroutine for calculating rank, survivability, lnln(1/S), and ln(L). 

All calculations were performed for both bin A and bin B. The complete code can be 

found in the appendix. After all the previous calculations have been made, the spreadsheet is set 

up to begin finding the Weibull slope, L10, L50, and mean lives of the current data. These 

numbers were outputted to cells B16 to B29 (See figure 32). 

For loop7a = 1 To alpha 
'rank for 1 to sample size 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
 
'lnln(1/S) for sample size 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
'lnA 
r12 = 7 
For loop8 = 1 To alpha 

Cells(r12, 11) = 
Application.WorksheetFunction.Ln(Cells(r12, 7)) 

r12 = r12 + 1 
Next loop8 



 

Figure 32. Screen shot of inputs and outputs

 The slope was found by virtually plotting the lnln(1/S) by the ln(L) using the 

Application.Worksheet.LinEst command in Visual Basic. The full code can be viewed in 

33. 
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shot of inputs and outputs. 

The slope was found by virtually plotting the lnln(1/S) by the ln(L) using the 

Application.Worksheet.LinEst command in Visual Basic. The full code can be viewed in 

The slope was found by virtually plotting the lnln(1/S) by the ln(L) using the 

Application.Worksheet.LinEst command in Visual Basic. The full code can be viewed in figure 
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Figure 33. Code for determining Weibull slope of new virtual data 

 

The L10 and L50 lives were calculated using the Weibull equation with S values of 0.9 and 

0.5 respectively. The mean was found using the Gamma function method using the code in 

figure 34. 

 

'Mean A Gamma function method 
musb = (MAa + 1) / MAa 
a1a = Application.WorksheetFunction.GammaLn(musb) 
LmeanA = LBa * Exp(a1a) 
Cells(21, 2) = LmeanA 
cheeseA1 = LmeanA  

 

Figure 34. Code for determining mean by Gamma function method.  

 The curve fit equations were then calculated. All confidence numbers and the averages of 

the Weibull slopes, L10 and L50 lives were then displayed on the “SummaryB” sheet as shown in 

figure 35.  

'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cel ls(7, 10), 
Cells(alpha + 6, 10)), Range(Cells(7, 11), Cells(al pha + 6, 
11)), True, True) 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa  



 

Figure 35. Screen shot of SummaryB sheet

 

Time and Memory Used in Runs

Each simulation was set up in two main loops. One loop would run 1

count how many times out of 100 the L

material. The other loop was how many times the simulation would do this. Over all, it was 

performed 10,000 times. Due to limitations of the 

possible to set up the simulation to just run 10,000 times. For methods 1
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shot of SummaryB sheet. 

Time and Memory Used in Runs 

 

Each simulation was set up in two main loops. One loop would run 100 times in order to 

count how many times out of 100 the L10 of one material was greater than the L10

material. The other loop was how many times the simulation would do this. Over all, it was 

performed 10,000 times. Due to limitations of the RAM of the computers used, it was not 

possible to set up the simulation to just run 10,000 times. For methods 1-4 the simulation was 

 

00 times in order to 

10 of the other 

material. The other loop was how many times the simulation would do this. Over all, it was 

RAM of the computers used, it was not 

4 the simulation was 
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broken down into 5 segments each of which ran 2,000 runs. Depending on the capabilities of the 

computer these runs took on average one hour. The runs were split up between my home PC, my 

laptop, and the computers in the Engineering Building at Georgia Southern University.  

 Method 5, however, took significantly longer. It was written into the program to restart a 

run if the lives generated did not fall into the designated cutoffs. Because of the randomness of 

the simulation, it took many trials to get to the total 10,000 runs. The method 5 simulations were 

broken down into runs of 50, 100, 500, 1000, and 2000. The runs comparing AISI 9310 gears to 

NASA Modified Vasco X-2 gears were able to finish within 5 to 10 hours running 2000 at a 

time. The Boeing Vertol runs were split into 25 sections, each one running 400 runs. Each one of 

these was also able to finish in 5 to 10 hours. The AISI 9310 vs. Modified Vasco X-2 rolling 

contact simulations were broken down into runs of 50 and 100. Depending on the computers 

these could take between 12 and 24 hours to run.   

 All data totaled to over 6GB of memory. The 2,000 runs were on the 80MB range while 

the 50 runs were in the 2MB range. 

 

Summary of the Methodology 

 

The general methodology is as follows.  

1) A macro was constructed using Microsoft Visual Basic employing the Monte Carlo “bin” 

technique of generating random values to be calculated into lives by the use of the 

Weibull equation (equation 1).  

2) Hand calculations were performed to ensure each code module was making the correct 

calculations. 
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3) These lives were counted to determine how many times the life of one population was 

larger than the other, this gave the confidence number based upon the counting method.  

4) This was done with five different methods. There were five methods to incorporate 

suspensions that were present in the original data. Each method has a different way of 

determining a confidence number from the way the random numbers are generated. 

5) In each method confidence numbers due to the curve fit equations by Vlcek, Zaretsky, 

and Hendricks were also computed for comparison. 

6) This process was simulated 10,000 times for each method, for statistical certainty. 

7) After all the confidence numbers from the simulations were computed they were 

compared to existing fatigue data, which contained confidence numbers determined from 

Johnson curves, to validate them. 
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Chapter 4 

Results and Discussion 

 

Introduction 

 

 A computer simulation was written in Microsoft Visual Basic using Excel to statistically 

determine the difference between two materials or components involved in a fatigue experiment, 

including suspensions, with confidence. The program was modified from previous Monte Carlo 

models as well as derived from previous statistical models in which all specimens have failed. 

The simulation modeled fatigue data with out-life suspensions. There are five methods presented 

to determine which material or component is better. The following are results of the simulation 

that were compared to published results (Townsend, Zaretsky and Anderson, Comparison of 

Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977), (Townsend and Zaretsky, 

Comparisons of Modified Vasco X-2 and AISI 9310 Gear Steels 1980), to validate the findings. 

Each method represents what could have happened in the original experiment. As 

mentioned earlier, some fatigue tests may be cut short by the experimenter due to their lengthy 

lives. This is taken into account in methods 3, 4, and 5. These methods force the program to use 

only the specified number of lives in the calculation of the confidence number.  

 

Suspensions 

 

 The method of calculating confidence numbers in the papers is not known. It is also not 

known whether or not the suspensions are out-lives or are contained within the data. It is 
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assumed, however, that the lives are out-lives due to the trends shown in the graphs in the 

literature (figure 36). The Monte Carlo simulation of out-life suspensions methods presented 

were designed with this assumption. 

 

Figure 36. Surface pitting fatigue life of CVM modified Vasco X-2 spur gears heat treated to 

different specifications. Pitch Diameter 8.39 centimeters; speed, 10,000 rpm; lubricant, synthetic 

paraffinic oil; gear temperature, 350 K; maximum Hertz stress, 1.71x109 N/m2. 

 

 The differing reasons for a test having suspensions are also taken into account in the five 

methods. If a piece of previous work is revisited with this program, it is not always clear why the 

suspensions occurred. This is another reason for the five different methods presented here. 

 The only assumption necessary is that there is fatigue data present and within that data 

are suspensions. It is not necessary to know how or why there are suspensions in the data.  

In all 5 methods, the program records how many times out of 100 the L10 life of Modified 

Vasco X-2 is greater than AISI 9310 as well as how many times out of 100 the L10 life of AISI 
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9310 is greater than Modified Vasco X-2. The confidence number that is reported is always the 

bigger of the two numbers. 

 

The Five Methods 

 

Method 1 

In method 1, it is assumed that the experiment underwent the ideal case in which all 

samples tested actually failed—i.e. no suspensions. Method 1 is the original program written to 

determine which material is better if all samples failed. It does have its place in the analysis of 

data containing suspensions though. It hypothesizes the view of what could have happened had 

all the specimens failed.  

 From this method, trends can be observed as to what could have potentially happened had 

all samples failed. This could show that, perhaps, there would have been no difference in the data 

or on the other hand could show that there would have been a significant difference. If a large 

difference is observed in the two samples from this method, and not in the other methods, this 

could cause concern and possibly mean the experiment should be performed again with no 

suspensions to ensure accurate results. 

In this case, it means that all 20 of Modified Vasco X-2 failed, and all 20 of AISI 9310 

failed. The result of this test gave a Monte Carlo confidence number of 92. This number, 

however, is on the wrong side of the statistically different boundary. It states that, if there were 

no suspensions in the original experiment, then there may be a statistical difference between the 

two materials. The curve fit equations, however, from the simulation reported confidence 
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numbers of 83 for the L10 equation. These numbers fall in accordance with the original data. 

These results are summarized in table 7. 

Table 7. Results of method 1 model rolling contact fatigue test 

Confidence numbers generated 
by simulation 

Method 1 

L10 Curve fit equation 83 

Monte Carlo 92 

 

Method 1 which assumes all samples tested have reached failure offers a confidence 

number of 77 for AISI 9310 vs. Boeing Vertol Modified Vasco X-2. In the original experiment, 

the confidence number was 80. These agree with each other in stating that there is no statistical 

difference between the two materials. The simulation generates a confidence number of 100 for 

AISI 9310 vs. NASA Modified Vasco X-2 which relates to the confidence number of 99 which 

was reported in the original paper. This states that there is a statistical difference between AISI 

9310 and NASA’s heat treated Modified Vasco X-2. The simulation also generated a confidence 

number of 100 for AISI 9310 vs. Curtis-Wright Modified Vasco X-2 which also relates to the 

confidence number of 99 as reported in the original paper. The results of method 1 are 

summarized in table 8. 

Table 8. Results of method 1 model gear fatigue test 

Confidence Numbers 
Monte 
Carlo 

Method 1 

Monte 
Carlo 

Curve Fit 

Experimental/Graphical 
 

(Townsend and Zaretsky) 

AISI vs. Boeing Vasco   77 76 80 

AISI vs. NASA   100 96 99 

AISI vs. Curtis-Wright   100 100 99 
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Method 2 

The failure index as reported in the literature is used as the inputs for sample size in 

method 2. Instead of inputting the number of specimens tested, the number of failed specimens is 

entered. This represents the actual number of specimens failed. This is a description of the actual 

number of failures in the original experiment. As in method 1, trends can be observed as to what 

could have happened had there been no suspensions in the data. Another conclusion that can be 

drawn from this method is what could potentially happen if outliers are left out of the analysis of 

data. 

In this method only 6 samples of AISI 9310 were tested as opposed to 20. The inputs 

were 20 samples of Modified Vasco X-2 and 6 samples of AISI 9310. This method presupposes 

the correct number of failed samples in relation to the original experiment. The Monte Carlo 

confidence number was 78. This falls in accordance with the original experiment; there is no 

statistical difference between the two materials. The L10 life curve fit confidence number was 79. 

This also follows the experiment, no statistical difference between the two materials. These 

results are summarized in table 9. 

 

Table 9. Results of method 2 rolling contact fatigue test 

Confidence numbers generated 
by simulation 

Method 2 

L10 Curve fit equation 79 

Monte Carlo 78 

 

Method 2 again assumes that the number of samples failed equaled the number of 

samples tested. In the original experiment all 30 of the 30 samples tested of AISI 9310 failed. 
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Only 12 of the 26 samples of Boeing Vertol Modified Vasco X-2 failed and only 18 of the 21 

samples of NASA Modified Vasco X-2 failed. There were no suspensions in the Curtis-Wright 

data so it was not used in any of the remaining methods.  

The inputs of method 2 were 30 samples of AISI 9310 with, 12 samples of Boeing Vertol 

Modified Vasco X-2 and 18 samples of NASA Modified Vasco X-2. The Monte Carlo 

confidence number comparing AISI 9310 and Boeing Vertol Modified Vasco X-2 was 68. This 

was low compared to the original value of 80 from the paper but is still in agreement that they 

are not statistically different. The Monte Carlo confidence number comparing AISI 9310 and 

NASA Modified Vasco X-2 was 100. This again agrees with the confidence number from the 

paper which was 99. This shows there is a statistical difference between the AISI 9310 gear and 

then NASA heat treated Modified Vasco X-2 gear. These results are summarized in table 10. 

Table 10. Results of method 2 gear fatigue test 

Confidence Numbers 
Monte 
Carlo 

Method 2 

Monte Carlo 
Curve Fit 

Experimental/Graphical 
 

(Townsend and Zaretsky) 

AISI vs. Boeing Vasco 68 76 80 

AISI vs. NASA 100 95 99 

 

It is assumed that the confidence number generated by the L10 curve fit equation for 

method 2 should most closely agree with the graphical confidence number because the curve fit 

equations were developed (Vlcek, Hendricks and Zaretsky, Probabilistic Analysis for Comparing 

Fatigue Data Based on Johnson-Weibull Parameters 2007), (Vlcek, Hendricks and Zaretsky, 

Relative Ranking of Fatigue Lives of Rotating Aluminum Shafts Using L10 Weibull-Johnson 

Confidence Numbers 2008) based off the graphical method presented by Johnson (Johnson, 
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Theory and Technique of Variation Research 1964), (Johnson, The Statistical Treatment of 

Fatigue Experiments 1964). Method 2 represents how the confidence number would be 

calculated graphically. The only lives given are those reported and the degrees of freedom is also 

the same. 

Method 3 

 In method 3, suspension out-lives were intentionally generated. It is designed to closely 

represent what happened in the original experiment in that the total attempted lives were 

generated but only uses the number of actual failed to calculate the confidence number.  

 To begin this method the amount of specimens tested for each material, and the amount 

of specimens that actually failed were inputted. The input of actual failures is used as the cutoff 

point when calculating confidence numbers from the generated random lives. As mentioned in 

the method, the program generated random numbers between 1 and 1000 to represent the number 

in which failure occurred in the particular “bin” of components. These numbers were then 

ranked, survivability was determined, and the Weibull slope and characteristic life were put into 

the Weibull equation (equation 1) to calculate a virtual life. These lives are then used in the fitted 

equations and in the Monte Carlo counting simulation to determine confidence numbers. The 

number of random numbers chosen was determined by the input of the number of specimens 

tested. To incorporate the suspensions into this, it was necessary to generate lives for all 

specimens tested and then select a certain few to be used in the calculation of the confidence 

number. The number of samples failed as inputted, is programmed into the simulation as the 

cutoff point. The program will generate lives for the number of specimens tested and then only 

use the lowest lived lives, as specified by the user, to calculate the confidence numbers. 
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 For comparison of Modified Vasco X-2 and AISI 9310, 20 random lives for Modified 

Vasco X-2 and 20 lives for AISI 9310 were generated. When lives are used for calculating 

confidence numbers, however, it only uses the lowest valued 6 lives for AISI 9310. All 20 lives 

of Modified Vasco X-2 were used. This allows the program to generate 20 lives for AISI 9310 in 

which they are spread out from minimum to maximum and then only the lowest 6 are used, 

leaving the other 14 as out-lives.  

The six life cutoff point was used because in the paper (Townsend, Zaretsky and 

Anderson, Comparison of Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977) there 

were only 6 failures and the assumption was made that any specimens over those 6 were out-

lives due to the graph in the original paper. It is assumed from this graph (figure 37) that both the 

Modified Vasco X-2 and AISI 9310 samples stopped in the range of 380,000,000 cycles.  

There was a discrepancy in the original paper (Townsend, Zaretsky and Anderson, 

Comparison of Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977), according to 

the table the L10 lives of the materials were 63 million cycles and 140 million cycles, however, 

according to the graph of this data (figure 37), it shows L10 lives of 6.3 and 14 million cycles. 

There was a decimal error somewhere but this did not affect the results. For this work, it was 

assumed that the L10 lives were 63 and 140 million cycles. 
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Figure 37. Comparison of rolling-element fatigue lives of AISI 9310 and Vasco X-2 in rolling 

contact tester (Townsend, Zaretsky and Anderson, Comparison of Modified Vasco X-2 with 

AISI 9310 - Preliminary Report 1977) 

Method 3 is more indicative of what actually happened in the original experiment if the 

suspensions were out-lives. Based on the data, it appears that the experiment was cut short once a 

certain maximum life was reached. Method 3 simulates what would happen if every time the 

experiment was run, that only the 6 lowest lives of AISI 9310 were used to calculate the 

confidence number. For method 3, the Monte Carlo confidence number was 92. The confidence 

number for the curve fit equations was 79 for the L10 life curve fit. These results are summarized 

in table 11. 

 

 



87 
 

Table 11. Results of method 3 model rolling contact fatigue test 

Confidence numbers generated 
by simulation 

Method 3 

L10 Curve fit equation 79 

Monte Carlo 92 

 

 For the first simulation of the second paper (Townsend and Zaretsky, Comparisons of 

Modified Vasco X-2 and AISI 9310 Gear Steels 1980), 30 lives for AISI 9310 were generated 

and all 30 lives were used in the calculations and 26 lives for Boeing Vertol Modified Vasco X-2 

were generated but only the lowest 12 lives were used for the confidence number calculations. 

Similarly, for the second simulation, 30 lives for AISI 9310 were generated and used and 21 

lives for NASA Modified Vasco X-2 were generated but only the lowest 18 were used for the 

confidence number calculations. The confidence number generated by the simulation for AISI 

9310 vs. Boeing Vertol Modified Vasco X-2 was 77 which closely agrees with the original 

confidence number of 80 from the paper (Townsend and Zaretsky, Comparisons of Modified 

Vasco X-2 and AISI 9310 Gear Steels 1980). This states that there is no statistical difference 

between the two materials. The confidence number generated by the simulation for AISI 9310 

vs. NASA Modified Vasco X-2 was 100 which agrees with the confidence number of 99 from 

the original paper (Townsend and Zaretsky, Comparisons of Modified Vasco X-2 and AISI 9310 

Gear Steels 1980). This states that there is a statistical difference between the two materials. 

These results are summarized in table 12. 
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Table 12. Results of method 3 gear fatigue test 

Confidence Numbers 
Monte Carlo 

Method 3 

Monte 
Carlo 

Curve Fit 

Experimental/Graphical 
 

(Townsend and Zaretsky) 

AISI vs. Boeing Vasco 77 74 80 

AISI vs. NASA 100 95 99 

 

Method 4 

 Method 4 works under the same principle as method 3. It again uses an input as a cutoff 

point to determine how many lives to use in the calculation of the confidence numbers. This 

method differs from Method 3 in that instead of using a number of samples as the cutoff point, it 

uses a specified life as the cutoff. The program essentially does what an experimenter would do, 

i.e. stop a run once it reaches a certain number of cycles. This method allows for a closer 

representation of the original experiment. If the suspensions in the original experiment were 

caused due to the experimenter stopping the test because they reach a maximum life this 

simulation should closely resemble the results. As in method 3, the user inputs the total number 

of specimens tested and then inputs the life at which it should use as the cutoff. The program will 

then generate the total number of lives and only use the lives within the cutoff window for the 

calculation of the confidence numbers. 

In the original paper, it was not stated why only 6 of the specimens failed. It was deduced 

from one of the original graphs that the specimens were probably stopped at a certain life 

because it was not necessary to carry on (out-life suspensions).  

 For the comparison of Modified Vasco X-2 and AISI 9310, 20 random lives were 

generated for Modified Vasco X-2 and 20 lives for AISI 9310. Once these lives were generated, 

a set cutoff life was used to determine the confidence number. This represents what would 
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happen if the experiment was cut short due to the sample reaching a maximum life. The cutoff 

point used was 380 million lives. This life was chosen because it was the maximum life as shown 

in the original paper. 

  The only lives used to compute the confidence numbers were between 1 and 380 million. 

This could be anywhere between 2 samples and all 20 samples, as long as it falls within that 

window. There had to be at least 2 lives to use the plotting function in Visual Basic to determine 

a Weibull slope. The Monte Carlo confidence number generated by method 4 was 92; the L10 

curve fit equation confidence number was 79. The curve fit confidence number agrees with the 

original paper, however the Monte Carlo confidence number does not. These results are 

summarized in table 13. 

Table 13. Results of method 4 rolling contact fatigue test 

Confidence numbers generated 
by simulation 

Method 4 

L10 Curve fit equation 79 

Monte Carlo 92 

 

 Again for method 4, a specified life was used as the cut off criteria for the simulation. 

Lives were generated for the amount of attempted samples and then the defined life was used as 

the cut off to perform the calculations to determine the confidence number. The cut off life was 

400 million.  

 For this simulation, 30 lives were generated and used for the AISI 9310 gears. This was 

compared to the 26 lives of Boeing Vertol Modified Vasco X-2, and the 21 lives of NASA 

Modified Vasco X-2.  
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The Monte Carlo confidence number calculated comparing AISI 9310 to Boeing Vertol 

Modified Vasco X-2 was 76, which compares closely to the original confidence number of 80. 

The Monte Carlo confidence number calculated comparing AISI 9310 with NASA Modified 

Vasco X-2 was 100, compared to the original confidence number of 99. Both of these confidence 

numbers agree with the original experiment in that there is no statistical difference between AISI 

9310 gears and the Boeing Vertol heat treated Modified Vasco X-2 gears, and there is a 

statistical difference between AISI 9310 gears and the NASA heat treated Modified Vasco X-2 

gears. These results are summarized in table 14. 

Table 14. Results of method 4 gear fatigue test 

Confidence Numbers 
Monte 
Carlo 

Method 4 

Monte Carlo 
Curve Fit 

Experimental/Graphical 
 

(Townsend and Zaretsky) 

AISI vs. Boeing Vasco 76 75 80 

AISI vs. NASA 100 95 99 

 

Method 5 

Method 5 was designed to be a hybrid of methods 3 and 4. As in methods 3 and 4, the 

number of lives generated was the number of specimens tested. In method 5, the cutoff points 

from both methods 3 and 4 were used together. The inputs specified were how many suspended 

lives to generate as well as what range of lives to fall in. 

 In the comparison of Modified Vasco X-2 and AISI 9310, 20 lives for Modified Vasco 

X-2 were generated and 6 lives for AISI 9310 were generated but would force a cutoff life of 380 

million cycles. It would force 6 lives that fall between 1 and 380 million cycles for AISI 9310. 

This method was thought to be the one that would most closely resemble the original 
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experiment; however, the results proved that to not be the case. The Monte Carlo confidence 

number generated was 52. The L10 curve fit confidence number was 74.  

Table 15. Results of method 5 rolling contact test 

Confidence numbers generated 
by simulation 

Method 5 

L10 Curve fit equation 74 

Monte Carlo 52 

 

 The curve fit confidence number was in close agreement with the experimental value of 

80 but the Monte Carlo confidence number was significantly off. This is believed to have 

happened because the sample size of 6 is so small compared to the life range of 1 to 380 million 

cycles. The scatter in the data was extreme and reasonable outcomes were rare.  

 In comparing AISI 9310 with Boeing Vertol and NASA Modified Vasco X-2, the cutoff 

sample numbers were 12 and 18 respectively and the cutoff life was 400 million cycles for both 

cases. The Monte Carlo confidence number generated for AISI 9310 against Boeing Vertol 

Modified Vasco X-2 was 52 and the L10 curve fit confidence number was 75. Again, this poor 

Monte Carlo confidence number is due to the low number of samples and wide range of lives 

generated. The Monte Carlo confidence number generated for AISI 9310 against NASA 

Modified Vasco X-2 was 100 and the L10 curve fit confidence number was 96. These numbers 

were in excellent agreement with the original confidence number of 99.   
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Table 16. Results of method 5 gear fatigue test 

Confidence Numbers 
Monte 
Carlo 

Method 5 

Monte Carlo 
Curve Fit 

Experimental/Graphical 
 

(Townsend and Zaretsky) 

AISI vs. Boeing Vasco 52 75 80 

AISI vs. NASA 100 96 99 

 

 

Summary of Simulation Results 

 

The numbers generated were in close agreement with the original data. In table 17 is a 

summary of the results of the simulation for the comparison of Modified Vasco X-2 with AISI 

9310 rolling contact fatigue test. 

Summary of Rolling Contact Fatigue Test 

Table 17. Summary of results of methods 1-5 for rolling contact fatigue test vs. experimental 
confidence number 

Material 
  

Method 
Experimental 

1 2 3 4 5 

Modified Vasco X-2 vs. 
AISI 9310 

Curve fit 83 79 79 79 74 
84 

MC 92 78 92 92 52 
 

Table 17 includes the confidence number using the L10 life curve fit equations, the 

generated Monte Carlo (counting) confidence number, and the confidence number determined 

graphically. The curve fit confidence numbers were calculated using the equations developed by 

Vlcek, Zaretsky, and Hendricks (Vlcek, Hendricks and Zaretsky, Probabilistic Analysis for 

Comparing Fatigue Data Based on Johnson-Weibull Parameters 2007), (Vlcek, Hendricks and 

Zaretsky, Relative Ranking of Fatigue Lives of Rotating Aluminum Shafts Using L10 Weibull-
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Johnson Confidence Numbers 2008). The Monte Carlo confidence numbers are the numbers 

generated by using the random life generator and then counting from run to run which L10 life is 

greater. 

Summary of Gear Fatigue Test 

In table 18 is a summary of the Monte Carlo, L10 curve fit, and graphical confidence 

numbers for comparing AISI 9310 to the three (Boeing Vertol, NASA, Curtis-Wright) heat 

treatments of Modified Vasco X-2 gear steels. 

 

Table 18. Summary of results of methods 1-5 for gear fatigue test vs. experimental confidence 
number 

Material 
Heat 

Treatment   
Method 

Experimental 
1 2 3 4 5 

AISI 9310 ---- ---- ---- ---- ---- ---- ---- ---- 

Modified 
Vasco X-2 

Boeing 
Vertol 

Curve fit 76 76 74 75 75 
80 

MC 77 68 77 76 52 

NASA 
Curve fit 96 95 95 95 96 

99 
MC 100 100 100 100 100 

Curtis-
Wright 

Curve fit 100 ---- ---- ---- ---- 
99 

MC 100 ---- ---- ---- ---- 
 

 The only materials to have suspensions in their tests were the NASA Modified Vasco X-2 

and the Boeing Vertol Modified Vasco X-2. The two other materials had all of their samples fail. 

Even though all of the Curtis-Wright Modified Vasco X-2 samples failed the data was still run 

through the simulation to validate it because the simulation was original written to run data with 

no suspensions. This means the Curtis-Wright data was only used in method 1 where all samples 

of each material failed. This is why the boxes are blank for methods 2, 3, 4 and 5. 
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Comparison of Weibull Slopes, L10, and L50 Lives 

 

 In calculating the confidence numbers, Weibull slopes and L10 lives were generated in the 

simulation. These values were recorded for each run and then averaged to compare to the 

original values published in the literature. Table 19 summarizes the Weibull slopes, L10, and L50 

lives generated by all five methods as well as the graphically determined values from the original 

experiment comparing Modified Vasco X-2 to AISI 9310 rolling contact fatigue samples. 

 

In table 20 are the values comparing AISI 9310 gear steels to the three (Boeing Vertol, NASA, 

Curtis-Wright) heat treatments of Modified Vasco X-2. 

 

  

 

 

 

 

Table 19. Summary of Weibull slope, L10, and L50 numbers generated by simulation vs. experimental numbers 

Material 
  

Method 
Experimental 

1 2 3 4 5 

Modified 
Vasco 
X-2 

Weibull 
Slope 2.11 2.11 2.11 2.11 2.11 2.2 

L10 60,027,376 60,016,270 60,026,020 77,706,402 60,020,752 63,000,000 

L50 148,353,772 148,345,740 148,358,838 148,378,744 148,364,754 148,000,000 

AISI 
9310 

Weibull 
Slope 1.35 1.42 1.52 1.58 1.95 1.4 

L10 133,989,948 144,470,418 140,761,638 140,230,434 70,829,292 140,000,000 

L50 541,389,859 549,152,686 748,699,326 1,120,168,002 195,337,596 570,000,000 
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Summary of Comparison of Modified Vasco X-2 with AISI 9310 – Preliminary Report 

 

The first experiment the program was compared to was performed in 1977 by Dennis 

Townsend, Erwin Zaretsky, and Neil Anderson (Townsend, Zaretsky and Anderson, Comparison 

of Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977). In this experiment 

Townsend, Zaretsky, and Anderson were concerned which material would be more suitable for 

gears in helicopter transmissions.  

With advances being made in the helicopter industry, the gears in the transmissions were 

reaching extreme temperatures (above 250° F). This was exceeding the limits of the gear 

material currently available. This material was AISI 9310 steel. The new gear material they 

decided to test was Modified Vasco X-2. This material was originally used as a tool steel. In 

Table 20. Summary of Weibull slope, L10, and L50 numbers generated by simulation vs. experimental numbers 

Material 
Heat 

Treatment   

Method 
Experimental 

1 2 3 4 5 

AISI 9310 ---- 

Weibull 
Slope 

2.22 2.22 2.22 2.22 2.22 2.30 

L10 22,096,686 22,096,554 22,093,585 22,101,670 22,096,324 23,000,000 
L50 52,179,303 52,179,988 52,176,856 52,180,906 52,181,944 52,000,000 

Modified 
Vasco X-2 

Boeing 
Vertol 

Weibull 
Slope 

0.96 0.96 0.99 0.98 1.15 1.00 

L10 37,461,804 39,423,526 38,739,860 38,320,327 27,559,164 38,400,000 
L50 256,415,183 260,420,049 309,002,024 276,309,799 134,956,578 253,000,000 

NASA 

Weibull 
Slope 

0.51 0.51 0.51 0.51 0.54 0.53 

L10 982,878 1,031,184 1,022,719 1,016,736 977,826 800,000 
L50 30,456,126 30,863,060 31,958,843 30,845,819 24,037,944 27,600,000 

Curtis-
Wright 

Weibull 
Slope 

2.02 ---- ---- ---- ---- 2.10 

L10 3,141,356 ---- ---- ---- ---- 3,300,000 
L50 8,097,877 ---- ---- ---- ---- 8,000,000 
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order to make the Vasco X-2 suitable for helicopter transmission gears, the carbon content was 

lowered and then the material was case hardened leaving a softer core. The objectives of their 

research were to a) determine the performance of spur gears made from the new material 

modified Vasco X-2, b) compare the fatigue lives of the old material AISI 9310 against the new 

material modified Vasco X-2, and c) to compare the hot hardness retention of the two materials. 

This was going to be accomplished by testing the spur gears with different heat treatments, 

rolling contact fatigue tests, and hardness tests. 

The specific test this current research was concerned with was the rolling element test. In 

this test a 3 inch long rod with 0.375 inch diameter was inserted into the rolling contact test 

apparatus (figure 38). This tester consisted of two rolling discs of 7.5 inch diameter made of 

AISI M-50 steel which were heat treated to the same hardness as the samples. The samples were 

placed in between the two discs and a load was applied until the sample was able to turn both 

discs. Once the discs and sample were in thermal equilibrium the maximum load (700,000 psi) 

was applied. The specimen would be rotated at 12,500 rpm until failure occurs. The tester would 

shut down automatically by means of a vibration detector. The lives of the specimens, denoted 

by number of rotations until failure, were used to calculate a confidence number to determine 

which material was more suitable for the application. In the experiment 20 samples of Modified 

Vasco X-2 were tested and all 20 of them failed. AISI 9310 also had 20 samples reported as 

tested, but only 6 reached failure. 

 



 

Figure 38. Rotational fatigue tester

Vasco X-2 with AISI 9310 - Preliminary Report 

The experiment determined that there was an 84% confidence between the two materials. 

This says that 84 times out of 100 AISI 9310 will last longer than Modified Vasco X

According to Johnson (Johnson, The Statistical 

number states that there is no statistical difference between the two materials. There must be a 

confidence of 90 or greater to be determined statistically different. A summary of these results is 

in table 21. 
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. Rotational fatigue tester (Townsend, Zaretsky and Anderson, Comparison of Modified 

Preliminary Report 1977) 

The experiment determined that there was an 84% confidence between the two materials. 

This says that 84 times out of 100 AISI 9310 will last longer than Modified Vasco X

(Johnson, The Statistical Treatment of Fatigue Experiments 1964)

number states that there is no statistical difference between the two materials. There must be a 

confidence of 90 or greater to be determined statistically different. A summary of these results is 

(Townsend, Zaretsky and Anderson, Comparison of Modified 

The experiment determined that there was an 84% confidence between the two materials. 

This says that 84 times out of 100 AISI 9310 will last longer than Modified Vasco X-2. 

Treatment of Fatigue Experiments 1964) this 

number states that there is no statistical difference between the two materials. There must be a 

confidence of 90 or greater to be determined statistically different. A summary of these results is 



98 
 

Table 21. Fatigue life results from Comparison of Modified Vasco X-2 with AISI 9310 

 

 

 The results of the gear tests of Townsend and Zaretsky (Townsend, Zaretsky and 

Anderson, Comparison of Modified Vasco X-2 with AISI 9310 - Preliminary Report 1977)  were 

that the gears made from AISI 9310 survived on the magnitude of hours with millions of cycles. 

Failure occurred due to surface pitting or spalling. The modified Vasco X-2 gears, however, only 

survived in the 600,000 range for less than an hour and failure was due to tooth fracture.  

 A summary of the results is as follows: 

1) Crack formation at the tips of the gear teeth during carburizing process of the modified 

Vasco X-2 resulted in fracture of the gear teeth after a period of less than one hour 

(600,000 revolutions) of operations under test conditions. 

2) The lives of the AISI 9310 gears at a 90% probability of survival were 39.3, 19, and 7.1 

hours at 222,000 psi, 248,000 psi, and 272,000 psi respectively.  

3) Failure of the AISI 9310 gears was by surface pitting with no tooth fracture occurring. 
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4) The rolling element fatigue life of the AISI 9310 was approximately twice that of the 

modified Vasco X-2. 

5) At temperatures of approximately 300 F there was no significant difference in hot 

hardness between the modified Vasco X-2 and AISI 9310 materials. 

 

 Summary of Comparisons of Modified Vasco X-2 and AISI 9310 Gear Steels 

 

 The second paper used for comparison was Comparisons of Modified Vasco X-2 and 

AISI 9310 Gear Steels by Dennis P. Townsend and Erwin V. Zaretsky, 1980 (Townsend and 

Zaretsky, Comparisons of Modified Vasco X-2 and AISI 9310 Gear Steels 1980). In this 

experiment, again, two different gear materials were tested to see which was superior. The AISI 

9310 was compared to three different heat treatments of Modified Vasco X-2. The three different 

heat treatments came from three different vendors, Boeing Vertol, NASA, and Curtis-Wright. In 

this experiment, gears were tested as opposed to material rods as in the first experiment. The 

apparatus used is shown in figure 39. The results of the experiment are shown in table 22. 



 

Figure 39. Gear tester used in original experiment

Modified Vasco X-2 and AISI 9310 Gear Steels 1980)
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. Gear tester used in original experiment (Townsend and Zaretsky, Comparisons of 

and AISI 9310 Gear Steels 1980) 

(Townsend and Zaretsky, Comparisons of 
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Table 22. Summary of gear fatigue life results from Comparison of Modified Vasco X-2 and 
AISI 9310 Gear Steels (Townsend and Zaretsky, Comparisons of Modified Vasco X-2 and AISI 
9310 Gear Steels 1980) 

 
Material Heat treat 

procedure 
Gear system life, Revolutions Weibull Slope Failure Indexa Confidence 

numberb 

10-Percent 
life 

50-Percent 
life 

AISI 9310 --------- 23x106 52 x106 2.3 30 of 30 --- 
Modified 

Vasco X-2 
Boeing Vertol 38.4x106 253 x106 1.0 12 of 26 80 

NASA 0.8 x106 27.6 x106 0.53 18 of 21 99 
Curtis-Wright 3.3 x106 8 x106 2.1 19 of 19 99 

aNumber of fatigue failures out of number of gears tested 
bPercentage of time that 10-percent life obtained with AISI 9310 gears will have the same                                                                                                        
relations to the 10-percent life obtained with modified Vasco X-2 gears. 

There was no statistical difference between AISI 9310 and the Boeing Vertol heat 

treatment of Modified Vasco X-2 with a confidence number of 80, however there was a 

statistical difference between AISI 9310 and the NASA and Curtis-Wright heat treated Modified 

Vasco X-2, both with confidence numbers of 99. It was reported that all 30 of the AISI 9310 

gears failed, and all 19 of the Curtis-Wright gears failed, however, only 12 of the 26 of the 

Boeing Vertol gears failed, and only 18 of the 21 of the NASA gears failed. Graphs of the results 

are shown in figure 36. 

  

Summary of Original Experimental Results 

 

 In the comparison of Modified Vasco X-2 with AISI 9310 rolling contact fatigue test the 

original experiment stated that the fatigue life of AISI 9310 was approximately twice that of 

Modified Vasco X-2, however, the two materials were not statistically different due to a 

confidence number of 84.  

 This was in agreement with the numbers calculated by methods 1-5. Seven of the ten 

confidence numbers were on the correct side of 90 to show no statistical difference, while the 
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other three were 92, which is very close to the cutoff of 90. This leads to a conclusion by the 

methods presented that there is no statistical difference between the fatigue lives of AISI 9310 

and Modified Vasco X-2. 

 In comparing AISI 9310 gears to the three different heat treatments of Modified Vasco 

X-2 gears, it was shown in the original experiment that Modified Vasco X-2 gears can be 

reasonably reliable if extreme quality control in the heat treating process is observed. The results 

did show that there was no statistical difference between the AISI 9310 gears and the Modified 

Vasco X-2 gears subjected to the heat treatment by Boeing Vertol with a confidence number of 

80. The results generated by the Monte Carlo method and the L10 curve fit equations were in 

agreement with this number for all five methods. Also the original results showed there was a 

statistical difference between the AISI 9310 gears and the Modified Vasco X-2 gears subjected 

to the heat treatments by NASA, and Curtis-Wright, both with a confidence number of 99. This 

was also in agreement with the results generated by the Monte Carlo and L10 curve fit equations 

methods. All five methods gave a confidence number of 100. 

 

 

Preventive Maintenance 

 

Another reason for the need of fatigue studies is for warranty or preventive maintenance 

information. If a company studies the fatigue of one of their components, they will know how 

long to warranty that component. A company can determine a warranty based on the failure 

analysis of their part, this means that on average their part fails within that frame time. If 

someone happens to buy a part that falls below the mean, then they are covered and can get a 
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new part. Likewise, if their part outlasts the warranty then they know they got their money’s 

worth because the part is above average and may continue to work for a long time. 

Similar to determining warranties, fatigue testing is used to determine preventive 

maintenance schedules. If you do not know how long a component lasts, then how do you know 

when to change it out? Fatigue testing allows for determining theses schedules with very good 

accuracy, depending on the application and what percentage of failure is allowed. 

When fatigue tests are performed, typically only between ten and twenty samples are 

tested due to high cost and testing time. It was demonstrated in (Vlcek, Zaretsky and Hendricks, 

Test Population Selection From Weibull-Based, Monte Carlo Simulations of Fatigue Life 2008) 

that for a 30 percent variability in fatigue life data at least 30 to 35 samples must be tested. Any 

more samples will give better results, however, even with 200 samples, there is still a 15 percent 

variation from maximum life to minimum life (Vlcek, Zaretsky and Hendricks, Test Population 

Selection From Weibull-Based, Monte Carlo Simulations of Fatigue Life 2008). People have 

fallen victim to simple sample tests to predict what a population will do. It has been standard 

practice to perform these tests and acquire the data and then simply take an average of the data 

and then that will be the resultant number. This method of testing has been proven to not be 

sufficient. When only the average of a sample is taken in to account, certain aspects of the data 

are missed. Another misconception in reading data is to graph it and make assumptions visually. 

Graphs are made to be read and to put data into visual perspective. It is very easy to over look 

the fact that if you were to enlarge the graph, the data points may be lying directly on top of each 

other, which would indicate no statistical difference. These aspects of data collection are taken 

into account with Johnson’s methodology.  A test of ten bearings in a bin of 1,000 could 

potentially give unsatisfactory data. The strongest ten in a box could be picked and then it could 
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be assumed that the rest are just as strong, when in reality, if they are put into production 

components, they could have disastrous effects. 

 

Summary of Results 

 

 There were five models developed to analyze out-life suspensions in fatigue data. It was 

shown that methods 1 through 4 were in relatively close agreement with the experimental results 

from the literature that were determined graphically. Method 5 was not in agreement. This is 

believed to be because the number of samples used in the calculations was very small compared 

to the range of lives given, and there was too much variability in the randomness to notice any 

trends. 
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Chapter 5 

Conclusion 

 

Fatigue 

 

 The goal of a mechanical engineer is to design components that last and are safe to use. 

To determine whether or not a specific component or material will last, it must be tested. One 

such test is a fatigue test. This will give the engineer an idea of how long a component will last 

under certain circumstances. The problem with fatigue data is that it is probabilistic and not 

deterministic. There is no way to determine exactly when something will fail, however, there 

exist methods for predicting when a component will fail.  

 The first was developed by Waloddi Weibull in the 1950’s. He developed a method for 

statistically predicting failure. Following Weibull’s method, Leonard Johnson in the 1960’s 

developed a method to determine whether or not one material was statistically different from 

another. This method was widely used by engineers; however, it was difficult to calculate due to 

the limited graphs he published. This method was taken a step further by Zaretsky, Hendricks, 

and Vlcek. They took Johnsons charts and graphs and developed equations to fit them. This 

allowed for ease of use to calculate a confidence number. From there, a Monte Carlo simulation 

was written using the equations to expand on the experimental data.  

Vlcek, Zaretsky, and Hendricks demonstrated the concept of a “bin” model which was 

the basis of the Monte Carlo simulations. In this “bin” model it is assumed that there is a 

population of failed samples, the exact lives of these samples is not known, however, it is known 
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in what order they failed. This order can be ranked from 0 to 1 and, using the parameters of the 

Weibull equation, it is possible to calculate a life for each sample. 

The experimental data (Weibull slope, and characteristic life) would be used as inputs 

into the program and the program would run thousands of simulations of the original experiment. 

This data would then either agree or disagree with the original experiment. This allows engineers 

to have valuable data yet not spend a lot of money and time on experimental testing.  

 These simulations, however, were limited. Not all fatigue tests are run to failure. Some 

tests get stopped for numerous reasons. They may get stopped because the engineer has a 

specific cut off point that the specimen does not need to exceed, or the power in the building 

could go out. Regardless of the reason for the test to stop, it is still valuable data.  

This new simulation takes these suspensions into account and gives a statistically 

determined confidence number. 

 

Method 

 

 The purpose of this research was to develop a model that would allow the statistical 

validation of a confidence number for fatigue tests comparing two materials in which out-life 

suspensions are present. The method used was a Monte Carlo simulation in which random 

numbers are generated, ranked, and then converted to lives using the Weibull equation   

(equation 1). This method of analyzing fatigue results has been used in the past, but not to 

incorporate suspensions. The goal of the simulations is to cut down on cost and time of fatigue 

tests while still having statistically accurate data.  
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 Five methods were developed and then compared to known data sets for validation. The 

first method was designed to treat the data as if the failure index was that all samples of both 

populations failed. This did not directly take into account suspensions but was used for 

comparison purposes. This provided some insight into what possibly could have happened had 

all samples failed. 

 The second method was designed to incorporate only failed samples in the calculations. 

The failure index of method two was the same as the failure index in the original experiment. 

This again did not directly take suspensions into account in the simulation, but did represent 

what should be calculated as if done graphically. When calculating a confidence number 

graphically, all that is available is the failed samples, and this is what method 2 represented. 

 In method 3, suspensions were actually generated. The number of attempted samples was 

the number of generated lives; however, the number of samples failed was the number of 

generated lives used in the calculations. There was a cutoff sample size incorporated into the 

simulation. In generating all the lives it was assumed that there were out-lives not being used in 

the calculations. According to the graphs of the original data, it appeared that none of the 

samples passed a certain life and this lead to the assumption of out-lives. 

 Method 4 also made use of generating suspended lives and then used a cutoff to calculate 

confidence numbers. This time, however, instead of sample size being the cutoff, a particular life 

was the cutoff. Again, the number of lives generated was equal to the number of samples 

attempted, yet this time the number of samples used in calculating confidence numbers varied 

because the number of samples was determined by how many fell within the range of the cutoff 

life. 
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 Method 5 was designed to be a hybrid of both methods 3 and 4. The samples generated to 

be used in the calculations were forced to a certain number of samples as well as fall within a 

certain range of lives. 

 

Results 

 

The results of this model of comparing two fatigue data sets containing suspensions are 

repeated in tables 23 and 24. 

 

 

Table 23. Results of comparing Modified Vasco X-2 and AISI 9310 rolling contact fatigue data 

Curve fit confidence numbers vs. Monte Carlo counted confidence numbers based on L10 lives 

Material 
  

Method 
Experimental 

1 2 3 4 5 

Modified Vasco X-2 vs. 
AISI 9310 

Curve fit 83 79 79 79 74 
84 

MC 92 78 92 92 52 
 

Table 24. Results of comparing Modified Vasco X-2 and AISI 9310 gear fatigue data 

Monte Carlo Counted Confidence Numbers 

Material Heat Treatment 
Method 

Experimental 
1 2 3 4 5 

AISI 9310 ---- ---- ---- ---- ---- ---- ---- 

Modified Vasco 
X-2 

Boeing Vertol 77 68 77 76 52 80 

NASA 100 100 100 100 100 99 

Curtis-Wright 100 ---- ---- ---- ---- 99 
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 The confidence numbers generated by the simulation, both the Monte Carlo numbers and 

the curve fit numbers were in agreement with the original graphical confidence numbers showing 

whether two materials were statistically different or not. 

 

Recommendations for Further Study 

 

 The next step for incorporating suspensions into a Monte Carlo simulation would be to 

reproduce suspensions that are contained within the data. That is suspensions that are not out-

lives. A simulation could be written to use the same bin model and counting method to determine 

a confidence number. The user could input how many suspensions there are and then let the 

program randomly pick which samples to suspend. This could be repeated to show trends. 

 This current model could also be adjusted to count the L50 and mean lives. The standard 

is to use the L10 life but this could still show trends. If a populations L50 or mean life is 

significantly greater this could lead to a conclusion to repeat the experiment if possible to see if 

trends repeat. 

 Another possible future study would be to perform an experiment with fatigue samples 

and specify the life at which to use as a cut-off out-life. This way it would be known exactly why 

the suspensions occurred and it would be a more accurate way of validating the simulation. 
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Appendix A: Computer Simulation for Method 1 

Sub Macro1() 
' 
' Macro1 Macro 
' 
' Keyboard Shortcut: Ctrl+e 
' 
 
Worksheets(1).Select 
Application.ScreenUpdating = False 'to keep screen from constanly updating and slowing down 
simulation 
 
trialsB = Cells(13, 2) 'number of times to run simulation, can be from 1 up 
 
taz = 87 'this is for the index to copy the summary page and index the whole thing down 87 cells 
shuttleb = 3 
 
For loop37 = 1 To trialsB 'loop that runs entire program 
Worksheets(1).Select 
 
Column = 2 'indexs the summary page for all values, moves to right after every loop 
countL10 = 0 'these counts are used to count which is bigger for comparison on summary page 
countL10B = 0 
 
countmean = 0 
countmeanB = 0 
 
 
'This is used in the code for archiving the data 
    shuttle = 5 
 
 
trials = Cells(12, 2) 'number of times one run is repeated, this value is typically 100 to get a 
confidence number out of 100 
 
For loop10 = 1 To trials  'within this loop all the numbers for one run get calculated and copied 
to the summary page to be compared after 100 runs 
 
alpha = Cells(9, 2) 'size of bin A 
alpha2 = Cells(10, 2)  'size of bin B 
 
 
If alpha > alpha2 Then  'this is just to number the samples from 1 to which ever bin is bigger 
     
    x = 7 
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    For loop3 = 1 To alpha 
    Cells(x, 3) = x - 6 
    x = x + 1 
    Next loop3 
    beta = alpha          'beta is used in the loop that archives the numbers, and for clearing contents 
on sheet1 
        Else 
        x = 7 
        For loop3 = 1 To alpha2 
        Cells(x, 3) = x - 6 
        x = x + 1 
        Next loop3 
     
    beta = alpha2 
    End If 
 
         
 
 
 
'Bin A 
'generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = "=randbetween(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1 
 
'sorting column 
        ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 4), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 4), Cells(alpha + 6, 4)) 
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        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
'Bin B 
'random number 
alpha2 = Cells(10, 2) 
r = 7 
num12 = 1 
For loop2 = 1 To alpha2 
    Cells(r, 12).Select 
here4: 
    ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck2 = 1 To num12 
    If Cells(r, 12) = Cells(s, 12) Then GoTo here4 
    s = s + 1 
Next randcheck2 
    r = r + 1 
    num12 = num12 + 1 
Next loop2 
 
' Sorting column 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 12), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 12), Cells(alpha2 + 6, 12)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
 
 
 
 
    r1 = 7 
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For loop5 = 1 To alpha 
'Rank A 
    Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 + 0.4) 'ok to keep 1000 because bin is from 1 to 1000 
'S of A 
    Cells(r1, 6) = 1 - Cells(r1, 5) 
    SA = Cells(r1, 6) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / SA) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
        Cells(r1, 7) = CA 
    r1 = r1 + 1 
Next loop5 
 
    r1 = 7 
  
     
For loop6 = 1 To alpha2 
'Rank B 
    Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (1000 + 0.4) 
'S of B 
    Cells(r1, 14) = 1 - Cells(r1, 13) 
    SB = Cells(r1, 14) 
'Life of B 
        a2 = Application.WorksheetFunction.Ln(1 / SB) 
        B2 = Application.WorksheetFunction.Ln(a2) 
        CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2) 
        Cells(r1, 15) = CB 
    r1 = r1 + 1 
Next loop6 
 
   
     
 
 
r11 = 7 
 
For loop7a = 1 To alpha 
'rank for 1 to sample size for bin A 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size for bin A 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
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'lnln(1/S) for sample size for bin A 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
r111 = 7 
 
For loop11a = 1 To alpha2 
'rank for 1 to sample size for bin B 
        Z1b = (Cells(r111, 3) - 0.3) / (alpha2 + 0.4) 
        Cells(r111, 16) = Z1b 
 
'S for sample size for bin B 
        Z2b = 1 - Cells(r111, 16) 
        Cells(r111, 17) = Z2b 
 
'lnln(1/S) for sample size for bin B 
        Z5b = 1 / Z2b 
        Z3b = Application.WorksheetFunction.Ln(Z5b) 
        Z4b = Application.WorksheetFunction.Ln(Z3b) 
        Cells(r111, 18) = Z4b 
    r111 = r111 + 1 
Next loop11a 
 
 
 
 
 
'lnA 
r12 = 7 
For loop8 = 1 To alpha 
Cells(r12, 11) = Application.WorksheetFunction.Ln(Cells(r12, 7)) 
r12 = r12 + 1 
Next loop8 
 
'lnB 
r13 = 7 
For loop9 = 1 To alpha2 
Cells(r13, 19) = Application.WorksheetFunction.Ln(Cells(r13, 15)) 
r13 = r13 + 1 
Next loop9 
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'Organized answers on left of sheet 1, cells B16 to B48 
'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11)), True, True) 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa 
'slope B 
MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), True, True) 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb 
 
 
'intercepts A and B 
Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11))) 
Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) 
 
'Lbeta A calculations 
V2 = (Ba / MAa) 
VV = -1 * V2 
LBa = Exp(VV) 
 
'Lbeta B calculations 
V3 = (Bb / MBb) 
MO = -1 * V3 
LBb = Exp(MO) 
 
 
'plotting Lbetas 
Cells(17, 2) = LBa 
Cells(25, 2) = LBb 
 
sassyA1 = LBa 
sassyB1 = LBb 
 
'L10 A 
L10a = Exp(-2.25037 / MAa) * LBa 
Cells(18, 2) = L10a 
L10A1 = L10a 
'L10 B 
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L10b = Exp(-2.25037 / MBb) * LBb 
Cells(26, 2) = L10b 
L10B1 = L10b 
 
'L50 A 
L50a = Exp(-0.36651 / MAa) * LBa 
Cells(19, 2) = L50a 
L50A1 = L50a 
'L50 B 
L50b = Exp(-0.36651 / MBb) * LBb 
Cells(27, 2) = L50b 
L50B1 = L50b 
 
'Mean@ A 
meanata = 62.1 * (MAa ^ -0.172) 
Cells(20, 2) = meanata 
chevyA1 = meanata 
'Mean@ B 
meanatb = 62.1 * (MBb ^ -0.172) 
Cells(28, 2) = meanatb 
chevyB1 = meanatb 
 
 
 
 
         
        'Mean A Gamma function method 
        musb = (MAa + 1) / MAa 
        a1a = Application.WorksheetFunction.GammaLn(musb) 
        LmeanA = LBa * Exp(a1a) 
        Cells(21, 2) = LmeanA 
        cheeseA1 = LmeanA 
        'Mean A 
        'D1a = 1 / (1 - (meanata / 100)) 
        'D2a = Application.WorksheetFunction.Ln(D1a) 
        'D3a = Application.WorksheetFunction.Ln(D2a) 
        'meanA = (Exp(D3a / MAa)) * LBa 
        'Cells(21, 2) = meanA 
        'cheeseA1 = meanA 
         
        'Mean B Gamma function method 
        musbB = (MBb + 1) / MBb 
        a1aB = Application.WorksheetFunction.GammaLn(musbB) 
        LMeanAb = LBb * Exp(a1aB) 
        Cells(29, 2) = LMeanAb 
        cheeseB1 = LMeanAb 



121 
 

        'Mean B 
        'D1b = 1 / (1 - (meanatb / 100)) 
        'D2b = Application.WorksheetFunction.Ln(D1b) 
        'D3b = Application.WorksheetFunction.Ln(D2b) 
        'meanB = (Exp(D3b / MBb)) * LBb 
        'Cells(29, 2) = meanB 
        'cheeseB1 = meanB 
         
     
         
         
         
 
'DOF A-B 
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2) - 1) 
dofab = Cells(40, 2) 
 
'CONFIDENCE INTERAL FOR A 
 
 
    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 1)) 
    Cells(42, 2) = Cvegas 
     
'CONFIDENCE INTERVAL FOR B 
 
    'AoB 
    AnotB = (-0.0844 / Cells(24, 2)) - 0.05584 
    'BoB 
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    BnotB = (1.2796 / Cells(24, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99B = (AnotB * lnDOF + BnotB) ^ 2 + 1 
    Cells(43, 2) = MLR99B 
    'D 
    DvegasB = 3.912 / (MLR99B - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexpB = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexpB = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    CvegasB = 1 - 0.5 * Exp(-DvegasB * (MLRexpB - 1)) 
    Cells(44, 2) = CvegasB 
 
'C average 
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2 
Cells(45, 2) = Cvegasavg 
 
'L10 dependent confidence numbers 
 
'A 
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 2)) 
'B 
BBB = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = aaa * Cells(40, 2) ^ BBB 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA) 
'a 
lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
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'CL10 
CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -3595.9) 
Cells(46, 2) = CL10 
 
 
'A 
AAAb = Exp((4.5286 / Cells(24, 2)) + 0.3152) 
'ln(m) 
lnmAb = Application.WorksheetFunction.Ln(Cells(24, 2)) 
'B 
BBBb = 0.29574 * lnmAb + (-0.45228) 
'L10LR 
L10LRAb = AAAb * Cells(40, 2) ^ BBBb 
'ao 
litanotb = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRAb = Application.WorksheetFunction.Ln(L10LRAb) 
'a 
litab = litanotb / lnL10LRAb 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnotb = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnotb = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxob = Application.WorksheetFunction.Ln(xnotb) 
'CL10 
CL10b = 1 - Exp(((litab * lnxob) ^ 2 + 2896.3) / -3595.9) 
Cells(47, 2) = CL10b 
 
'C L10 average 
CL10avg = (CL10 + CL10b) / 2 
Cells(48, 2) = CL10avg 
 
 
 
 
Range("A1").Select 
 
 
Worksheets("Summary").Select 
 
Cells(2, 1) = loop37 'this was put in to count how many trials got ran incase the program quit 
suddenly 
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'Slopes 
Cells(4, Column) = Slope1A 
Cells(12, Column) = Slope1B 
 
'L10 
Cells(6, Column) = L10A1 
Cells(14, Column) = L10B1 
 
'L50 
Cells(7, Column) = L50A1 
Cells(15, Column) = L50B1 
 
'Mean 
Cells(9, Column) = cheeseA1 
Cells(17, Column) = cheeseB1 
 
'Mean@ 
Cells(8, Column) = chevyA1 
Cells(16, Column) = chevyB1 
 
'Lb 
Cells(5, Column) = sassyA1 
Cells(13, Column) = sassyB1 
 
'DOF 
Cells(28, Column) = dofab 
    
'MLR99 
Cells(29, Column) = MLR99 
Cells(31, Column) = MLR99B 
 
'Cvegas 
Cells(30, Column) = Cvegas 
Cells(32, Column) = CvegasB 
 
'C average 
Cells(33, Column) = Cvegasavg 
 
'CL10 
Cells(34, Column) = CL10 
Cells(35, Column) = CL10b 
Cells(36, Column) = CL10avg 
 
'L10A / L10B 
Cells(60, Column) = Cells(6, Column) / Cells(14, Column) 
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'MeanA / MeanB 
Cells(64, Column) = Cells(9, Column) / Cells(17, Column) 
 
'Counting which is bigger, L10A or L10B 
If Cells(60, Column) > 1 Then 
countL10 = countL10 + 1 
Else 
countL10B = countL10B + 1 
End If 
Cells(68, 2) = countL10 
Cells(69, 2) = countL10B 
 
'Counting which is bigger meanA or meanB 
If Cells(64, Column) > 1 Then 
countmean = countmean + 1 
Else 
countmeanB = countmeanB + 1 
End If 
Cells(75, 2) = countmean 
Cells(76, 2) = countmeanB 
         
    
         
         
             
Cells(2, Column) = Column - 1 'just for numbering 
 
Worksheets(1).Select 
 
Cells(5, 3) = loop10 'again just to keep track of how many get run to ensure all get run 
 
'This is for archiving all data onto sheet3 
    Range(Cells(5, 3), Cells(beta + 6, 27)).Select 
    Selection.Copy 
    Worksheets(3).Select 
    Cells(shuttle, shuttleb).Select 
    ActiveSheet.Paste 
    Range("A1").Select 
    Worksheets(1).Select 
    Range("A1").Select 
     
 
'Just used this to clear contents before new run and also keep last loop data on sheet 1 
If loop10 < trials Then 
  Worksheets(1).Select 
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    Range(Cells(7, 3), Cells(beta + 6, 27)).Select 
    Selection.ClearContents 
    Range(Cells(16, 2), Cells(48, 2)).Select 
    Selection.ClearContents 
     
Else 
End If 
 
Cells(1, 1).Select 
     
Column = Column + 1 
shuttle = shuttle + beta + 3 
 
Next loop10 
 
 
Worksheets("Summary").Select 
 
If Cells(68, 2) > Cells(69, 2) Then 'This was just to display which was greater 
Cells(68, 3) = "A>B" 
Else 
Cells(68, 3) = "B>A" 
End If 
 
 
 
If Cells(75, 2) > Cells(76, 2) Then 
Cells(75, 3) = "A>B" 
Else 
Cells(75, 3) = "B>A" 
End If 
 
 
 
Cells(83, 3) = "=average(B36:CW36)" 'averages L10 confidence numbers 
Cells(83, 6) = "=average(B33:CW33)" 'averages mean confidence numbers 
 
 
 
 
 
    Range(Cells(2, 1), Cells(85, 101)).Select 'copies data just generated on summary page down 
85 cells to make room for next trials numbers 
    Selection.Copy 
    Cells(taz, 1).Select 
    ActiveSheet.Paste 
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    Range("B2:CW85").Select 
    Selection.ClearContents 
     
    taz = taz + 85 
    shuttleb = shuttleb + 18 
Next loop37 
 
 
Worksheets("Sheet1").Select 
 
 
 
trials = Cells(13, 2) 
 
 
Worksheets("Summary").Select 
 
a = 168 
ab = 169 
ac = 170 
d = 6 
b = 3 
 
Cells(2, 3) = Cells(168, 3) 'this starts the curve fit confidence number averaging for the whole 
summary sheet 
 
 
Cells(2, 6) = Cells(168, 6) 
 
 
For cl10avgavgavgloop = 1 To trials 'averaging the curve fit equations on the summary page 
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3) 
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6) 
a = a + 85 
 
 
 
Next cl10avgavgavgloop 
Cells(2, 3) = Cells(2, 3) / trials 
 
 
Cells(2, 6) = Cells(2, 6) / trials 
 
 
 
az = Cells(2, 3) 



128 
 

 
 
ax = Cells(2, 6) 
 
 
Cells(1, 1).Select 
 
 
 
Worksheets("SummaryB").Select 
 
Cells(1, 2) = az 'average CL10 on final summary page 
 
Cells(5, 2) = ax 'average mean confidence number on final summary page 
 
 
 
Worksheets("Summary").Select 
 
amcavg = 153 
cmcavg = 154 
dmcavg = 155 
emcavg = 156 
fmcavg = 157 
gmcavg = 158 
 
 
For loopmcavg = 1 To trials 'averaging the Monte Carlo numbers 
 
 
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10) 
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11) 
 
amcavg = amcavg + 85 
cmcavg = cmcavg + 85 
 
Next loopmcavg 
 
 
 
bmcavg = Cells(1, 10) / trials 
hmcavg = Cells(1, 11) / trials 
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Worksheets("SummaryB").Select 
Cells(10, 2) = bmcavg 'average of L10a>L10b 
Cells(11, 2) = hmcavg 'average of L10b>L10a 
 
 
 
 
 
Cells(1, 1).Select 
 
'this is where it takes the averages of slope, L10, L50 
 
Worksheets(1).Select 
t1 = Cells(12, 2) 
trials = Cells(13, 2) 
 
 
Worksheets(2).Select 
 
 
aa = 89 
cc = 91 
dd = 92 
ee = 97 
ff = 99 
gg = 100 
 
 
For loop2 = 1 To trials 
 
a = Cells(aa, 2) 
b = 3 
c = Cells(cc, 2) 
d = Cells(dd, 2) 
e = Cells(ee, 2) 
f = Cells(ff, 2) 
g = Cells(gg, 2) 
    For loop1 = 1 To t1 
    a = a + Cells(aa, b) 
    c = c + Cells(cc, b) 
    d = d + Cells(dd, b) 
    e = e + Cells(ee, b) 
    f = f + Cells(ff, b) 
    g = g + Cells(gg, b) 
    b = b + 1 
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     Next loop1 
    Cells(aa, 104) = a / t1 
    Cells(cc, 104) = c / t1 
    Cells(dd, 104) = d / t1 
    Cells(ee, 104) = e / t1 
    Cells(ff, 104) = f / t1 
    Cells(gg, 104) = g / t1 
  
  
  
aa = aa + 85 
cc = cc + 85 
dd = dd + 85 
ee = ee + 85 
ff = ff + 85 
gg = gg + 85 
 
Next loop2 
 
  
aaa = 174 
ccc = 176 
ddd = 177 
eee = 182 
fff = 184 
ggg = 185 
 
 
  
a2 = Cells(89, 104) 
c2 = Cells(91, 104) 
d2 = Cells(92, 104) 
e2 = Cells(97, 104) 
f2 = Cells(99, 104) 
g2 = Cells(100, 104) 
 
 
For loop3 = 1 To trials 
 
a2 = a2 + Cells(aaa, 104) 
c2 = c2 + Cells(ccc, 104) 
d2 = d2 + Cells(ddd, 104) 
e2 = e2 + Cells(eee, 104) 
f2 = f2 + Cells(fff, 104) 
g2 = g2 + Cells(ggg, 104) 
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aaa = aaa + 85 
ccc = ccc + 85 
ddd = ddd + 85 
eee = eee + 85 
fff = fff + 85 
ggg = ggg + 85 
 
Next loop3 
 
 
  
 Worksheets(4).Select 'puts the averages of slope, L10, and L50 on final summary page 
  
 Cells(16, 2) = a2 / trials 
 Cells(16, 3) = e2 / trials 
 Cells(17, 2) = c2 / trials 
 Cells(17, 3) = f2 / trials 
 Cells(18, 2) = d2 / trials 
 Cells(18, 3) = g2 / trials 
  
  
 Cells(1, 1).Select 
 
 
End Sub 
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Appendix B: Computer Simulation for Method 2 

Sub Macro1() 
' 
' Macro1 Macro 
' 
' Keyboard Shortcut: Ctrl+e 
' 
 
Worksheets(1).Select 
Application.ScreenUpdating = False 'to keep screen from constanly updating and slowing down 
simulation 
 
trialsB = Cells(13, 2) 'number of times to run simulation, can be from 1 up 
 
taz = 87 'this is for the index to copy the summary page and index the whole thing down 87 cells 
shuttleb = 3 
 
For loop37 = 1 To trialsB 'loop that runs entire program 
Worksheets(1).Select 
 
Column = 2 'indexs the summary page for all values, moves to right after every loop 
countL10 = 0 'these counts are used to count which is bigger for comparison on summary page 
countL10B = 0 
 
countmean = 0 
countmeanB = 0 
 
 
'This is used in the code for archiving the data 
    shuttle = 5 
 
 
trials = Cells(12, 2) 'number of times one run is repeated, this value is typically 100 to get a 
confidence number out of 100 
 
For loop10 = 1 To trials  'within this loop all the numbers for one run get calculated and copied 
to the summary page to be compared after 100 runs 
 
alpha = Cells(9, 2) 'size of bin A 
alpha2 = Cells(10, 2)  'size of bin B 
 
 
If alpha > alpha2 Then  'this is just to number the samples from 1 to which ever bin is bigger 
     
    x = 7 
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    For loop3 = 1 To alpha 
    Cells(x, 3) = x - 6 
    x = x + 1 
    Next loop3 
    beta = alpha          'beta is used in the loop that archives the numbers, and for clearing contents 
on sheet1 
        Else 
        x = 7 
        For loop3 = 1 To alpha2 
        Cells(x, 3) = x - 6 
        x = x + 1 
        Next loop3 
     
    beta = alpha2 
    End If 
 
         
 
 
 
'Bin A 
'generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = "=randbetween(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1 
 
'sorting column 
        ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 4), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 4), Cells(alpha + 6, 4)) 
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        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
'Bin B 
'random number 
alpha2 = Cells(10, 2) 
r = 7 
num12 = 1 
For loop2 = 1 To alpha2 
    Cells(r, 12).Select 
here4: 
    ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck2 = 1 To num12 
    If Cells(r, 12) = Cells(s, 12) Then GoTo here4 
    s = s + 1 
Next randcheck2 
    r = r + 1 
    num12 = num12 + 1 
Next loop2 
 
' Sorting column 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 12), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 12), Cells(alpha2 + 6, 12)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
 
 
 
 
    r1 = 7 
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For loop5 = 1 To alpha 
'Rank A 
    Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 + 0.4) 'ok to keep 1000 because bin is from 1 to 1000 
'S of A 
    Cells(r1, 6) = 1 - Cells(r1, 5) 
    SA = Cells(r1, 6) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / SA) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
        Cells(r1, 7) = CA 
    r1 = r1 + 1 
Next loop5 
 
    r1 = 7 
  
     
For loop6 = 1 To alpha2 
'Rank B 
    Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (1000 + 0.4) 
'S of B 
    Cells(r1, 14) = 1 - Cells(r1, 13) 
    SB = Cells(r1, 14) 
'Life of B 
        a2 = Application.WorksheetFunction.Ln(1 / SB) 
        B2 = Application.WorksheetFunction.Ln(a2) 
        CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2) 
        Cells(r1, 15) = CB 
    r1 = r1 + 1 
Next loop6 
 
   
     
 
 
r11 = 7 
 
For loop7a = 1 To alpha 
'rank for 1 to sample size for bin A 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size for bin A 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
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'lnln(1/S) for sample size for bin A 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
r111 = 7 
 
For loop11a = 1 To alpha2 
'rank for 1 to sample size for bin B 
        Z1b = (Cells(r111, 3) - 0.3) / (alpha2 + 0.4) 
        Cells(r111, 16) = Z1b 
 
'S for sample size for bin B 
        Z2b = 1 - Cells(r111, 16) 
        Cells(r111, 17) = Z2b 
 
'lnln(1/S) for sample size for bin B 
        Z5b = 1 / Z2b 
        Z3b = Application.WorksheetFunction.Ln(Z5b) 
        Z4b = Application.WorksheetFunction.Ln(Z3b) 
        Cells(r111, 18) = Z4b 
    r111 = r111 + 1 
Next loop11a 
 
 
 
 
 
'lnA 
r12 = 7 
For loop8 = 1 To alpha 
Cells(r12, 11) = Application.WorksheetFunction.Ln(Cells(r12, 7)) 
r12 = r12 + 1 
Next loop8 
 
'lnB 
r13 = 7 
For loop9 = 1 To alpha2 
Cells(r13, 19) = Application.WorksheetFunction.Ln(Cells(r13, 15)) 
r13 = r13 + 1 
Next loop9 
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'Organized answers on left of sheet 1, cells B16 to B48 
'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11)), True, True) 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa 
'slope B 
MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), True, True) 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb 
 
 
'intercepts A and B 
Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11))) 
Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) 
 
'Lbeta A calculations 
V2 = (Ba / MAa) 
VV = -1 * V2 
LBa = Exp(VV) 
 
'Lbeta B calculations 
V3 = (Bb / MBb) 
MO = -1 * V3 
LBb = Exp(MO) 
 
 
'plotting Lbetas 
Cells(17, 2) = LBa 
Cells(25, 2) = LBb 
 
sassyA1 = LBa 
sassyB1 = LBb 
 
'L10 A 
L10a = Exp(-2.25037 / MAa) * LBa 
Cells(18, 2) = L10a 
L10A1 = L10a 
'L10 B 
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L10b = Exp(-2.25037 / MBb) * LBb 
Cells(26, 2) = L10b 
L10B1 = L10b 
 
'L50 A 
L50a = Exp(-0.36651 / MAa) * LBa 
Cells(19, 2) = L50a 
L50A1 = L50a 
'L50 B 
L50b = Exp(-0.36651 / MBb) * LBb 
Cells(27, 2) = L50b 
L50B1 = L50b 
 
'Mean@ A 
meanata = 62.1 * (MAa ^ -0.172) 
Cells(20, 2) = meanata 
chevyA1 = meanata 
'Mean@ B 
meanatb = 62.1 * (MBb ^ -0.172) 
Cells(28, 2) = meanatb 
chevyB1 = meanatb 
 
 
 
 
         
        'Mean A Gamma function method 
        musb = (MAa + 1) / MAa 
        a1a = Application.WorksheetFunction.GammaLn(musb) 
        LmeanA = LBa * Exp(a1a) 
        Cells(21, 2) = LmeanA 
        cheeseA1 = LmeanA 
        'Mean A 
        'D1a = 1 / (1 - (meanata / 100)) 
        'D2a = Application.WorksheetFunction.Ln(D1a) 
        'D3a = Application.WorksheetFunction.Ln(D2a) 
        'meanA = (Exp(D3a / MAa)) * LBa 
        'Cells(21, 2) = meanA 
        'cheeseA1 = meanA 
         
        'Mean B Gamma function method 
        musbB = (MBb + 1) / MBb 
        a1aB = Application.WorksheetFunction.GammaLn(musbB) 
        LMeanAb = LBb * Exp(a1aB) 
        Cells(29, 2) = LMeanAb 
        cheeseB1 = LMeanAb 
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        'Mean B 
        'D1b = 1 / (1 - (meanatb / 100)) 
        'D2b = Application.WorksheetFunction.Ln(D1b) 
        'D3b = Application.WorksheetFunction.Ln(D2b) 
        'meanB = (Exp(D3b / MBb)) * LBb 
        'Cells(29, 2) = meanB 
        'cheeseB1 = meanB 
         
     
         
         
         
 
'DOF A-B 
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2) - 1) 
dofab = Cells(40, 2) 
 
'CONFIDENCE INTERAL FOR A 
 
 
    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 1)) 
    Cells(42, 2) = Cvegas 
     
'CONFIDENCE INTERVAL FOR B 
 
    'AoB 
    AnotB = (-0.0844 / Cells(24, 2)) - 0.05584 
    'BoB 
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    BnotB = (1.2796 / Cells(24, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99B = (AnotB * lnDOF + BnotB) ^ 2 + 1 
    Cells(43, 2) = MLR99B 
    'D 
    DvegasB = 3.912 / (MLR99B - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexpB = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexpB = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    CvegasB = 1 - 0.5 * Exp(-DvegasB * (MLRexpB - 1)) 
    Cells(44, 2) = CvegasB 
 
'C average 
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2 
Cells(45, 2) = Cvegasavg 
 
'L10 dependent confidence numbers 
 
'A 
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 2)) 
'B 
BBB = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = aaa * Cells(40, 2) ^ BBB 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA) 
'a 
lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
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'CL10 
CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -3595.9) 
Cells(46, 2) = CL10 
 
 
'A 
AAAb = Exp((4.5286 / Cells(24, 2)) + 0.3152) 
'ln(m) 
lnmAb = Application.WorksheetFunction.Ln(Cells(24, 2)) 
'B 
BBBb = 0.29574 * lnmAb + (-0.45228) 
'L10LR 
L10LRAb = AAAb * Cells(40, 2) ^ BBBb 
'ao 
litanotb = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRAb = Application.WorksheetFunction.Ln(L10LRAb) 
'a 
litab = litanotb / lnL10LRAb 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnotb = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnotb = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxob = Application.WorksheetFunction.Ln(xnotb) 
'CL10 
CL10b = 1 - Exp(((litab * lnxob) ^ 2 + 2896.3) / -3595.9) 
Cells(47, 2) = CL10b 
 
'C L10 average 
CL10avg = (CL10 + CL10b) / 2 
Cells(48, 2) = CL10avg 
 
 
 
 
Range("A1").Select 
 
 
Worksheets("Summary").Select 
 
Cells(2, 1) = loop37 'this was put in to count how many trials got ran incase the program quit 
suddenly 
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'Slopes 
Cells(4, Column) = Slope1A 
Cells(12, Column) = Slope1B 
 
'L10 
Cells(6, Column) = L10A1 
Cells(14, Column) = L10B1 
 
'L50 
Cells(7, Column) = L50A1 
Cells(15, Column) = L50B1 
 
'Mean 
Cells(9, Column) = cheeseA1 
Cells(17, Column) = cheeseB1 
 
'Mean@ 
Cells(8, Column) = chevyA1 
Cells(16, Column) = chevyB1 
 
'Lb 
Cells(5, Column) = sassyA1 
Cells(13, Column) = sassyB1 
 
'DOF 
Cells(28, Column) = dofab 
    
'MLR99 
Cells(29, Column) = MLR99 
Cells(31, Column) = MLR99B 
 
'Cvegas 
Cells(30, Column) = Cvegas 
Cells(32, Column) = CvegasB 
 
'C average 
Cells(33, Column) = Cvegasavg 
 
'CL10 
Cells(34, Column) = CL10 
Cells(35, Column) = CL10b 
Cells(36, Column) = CL10avg 
 
'L10A / L10B 
Cells(60, Column) = Cells(6, Column) / Cells(14, Column) 
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'MeanA / MeanB 
Cells(64, Column) = Cells(9, Column) / Cells(17, Column) 
 
'Counting which is bigger, L10A or L10B 
If Cells(60, Column) > 1 Then 
countL10 = countL10 + 1 
Else 
countL10B = countL10B + 1 
End If 
Cells(68, 2) = countL10 
Cells(69, 2) = countL10B 
 
'Counting which is bigger meanA or meanB 
If Cells(64, Column) > 1 Then 
countmean = countmean + 1 
Else 
countmeanB = countmeanB + 1 
End If 
Cells(75, 2) = countmean 
Cells(76, 2) = countmeanB 
         
    
         
         
             
Cells(2, Column) = Column - 1 'just for numbering 
 
Worksheets(1).Select 
 
Cells(5, 3) = loop10 'again just to keep track of how many get run to ensure all get run 
 
'This is for archiving all data onto sheet3 
    Range(Cells(5, 3), Cells(beta + 6, 27)).Select 
    Selection.Copy 
    Worksheets(3).Select 
    Cells(shuttle, shuttleb).Select 
    ActiveSheet.Paste 
    Range("A1").Select 
    Worksheets(1).Select 
    Range("A1").Select 
     
 
'Just used this to clear contents before new run and also keep last loop data on sheet 1 
If loop10 < trials Then 
  Worksheets(1).Select 
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    Range(Cells(7, 3), Cells(beta + 6, 27)).Select 
    Selection.ClearContents 
    Range(Cells(16, 2), Cells(48, 2)).Select 
    Selection.ClearContents 
     
Else 
End If 
 
Cells(1, 1).Select 
     
Column = Column + 1 
shuttle = shuttle + beta + 3 
 
Next loop10 
 
 
Worksheets("Summary").Select 
 
If Cells(68, 2) > Cells(69, 2) Then 'This was just to display which was greater 
Cells(68, 3) = "A>B" 
Else 
Cells(68, 3) = "B>A" 
End If 
 
 
 
If Cells(75, 2) > Cells(76, 2) Then 
Cells(75, 3) = "A>B" 
Else 
Cells(75, 3) = "B>A" 
End If 
 
 
 
Cells(83, 3) = "=average(B36:CW36)" 'averages L10 confidence numbers 
Cells(83, 6) = "=average(B33:CW33)" 'averages mean confidence numbers 
 
 
 
 
 
    Range(Cells(2, 1), Cells(85, 101)).Select 'copies data just generated on summary page down 
85 cells to make room for next trials numbers 
    Selection.Copy 
    Cells(taz, 1).Select 
    ActiveSheet.Paste 
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    Range("B2:CW85").Select 
    Selection.ClearContents 
     
    taz = taz + 85 
    shuttleb = shuttleb + 18 
Next loop37 
 
 
Worksheets("Sheet1").Select 
 
 
 
trials = Cells(13, 2) 
 
 
Worksheets("Summary").Select 
 
a = 168 
ab = 169 
ac = 170 
d = 6 
b = 3 
 
Cells(2, 3) = Cells(168, 3) 'this starts the curve fit confidence number averaging for the whole 
summary sheet 
 
 
Cells(2, 6) = Cells(168, 6) 
 
 
For cl10avgavgavgloop = 1 To trials 'averaging the curve fit equations on the summary page 
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3) 
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6) 
a = a + 85 
 
 
 
Next cl10avgavgavgloop 
Cells(2, 3) = Cells(2, 3) / trials 
 
 
Cells(2, 6) = Cells(2, 6) / trials 
 
 
 
az = Cells(2, 3) 
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ax = Cells(2, 6) 
 
 
Cells(1, 1).Select 
 
 
 
Worksheets("SummaryB").Select 
 
Cells(1, 2) = az 'average CL10 on final summary page 
 
Cells(5, 2) = ax 'average mean confidence number on final summary page 
 
 
 
Worksheets("Summary").Select 
 
amcavg = 153 
cmcavg = 154 
dmcavg = 155 
emcavg = 156 
fmcavg = 157 
gmcavg = 158 
 
 
For loopmcavg = 1 To trials 'averaging the Monte Carlo numbers 
 
 
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10) 
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11) 
 
amcavg = amcavg + 85 
cmcavg = cmcavg + 85 
 
Next loopmcavg 
 
 
 
bmcavg = Cells(1, 10) / trials 
hmcavg = Cells(1, 11) / trials 
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Worksheets("SummaryB").Select 
Cells(10, 2) = bmcavg 'average of L10a>L10b 
Cells(11, 2) = hmcavg 'average of L10b>L10a 
 
 
 
 
 
Cells(1, 1).Select 
 
'this is where it takes the averages of slope, L10, L50 
 
Worksheets(1).Select 
t1 = Cells(12, 2) 
trials = Cells(13, 2) 
 
 
Worksheets(2).Select 
 
 
aa = 89 
cc = 91 
dd = 92 
ee = 97 
ff = 99 
gg = 100 
 
 
For loop2 = 1 To trials 
 
a = Cells(aa, 2) 
b = 3 
c = Cells(cc, 2) 
d = Cells(dd, 2) 
e = Cells(ee, 2) 
f = Cells(ff, 2) 
g = Cells(gg, 2) 
    For loop1 = 1 To t1 
    a = a + Cells(aa, b) 
    c = c + Cells(cc, b) 
    d = d + Cells(dd, b) 
    e = e + Cells(ee, b) 
    f = f + Cells(ff, b) 
    g = g + Cells(gg, b) 
    b = b + 1 



148 
 

     Next loop1 
    Cells(aa, 104) = a / t1 
    Cells(cc, 104) = c / t1 
    Cells(dd, 104) = d / t1 
    Cells(ee, 104) = e / t1 
    Cells(ff, 104) = f / t1 
    Cells(gg, 104) = g / t1 
  
  
  
aa = aa + 85 
cc = cc + 85 
dd = dd + 85 
ee = ee + 85 
ff = ff + 85 
gg = gg + 85 
 
Next loop2 
 
  
aaa = 174 
ccc = 176 
ddd = 177 
eee = 182 
fff = 184 
ggg = 185 
 
 
  
a2 = Cells(89, 104) 
c2 = Cells(91, 104) 
d2 = Cells(92, 104) 
e2 = Cells(97, 104) 
f2 = Cells(99, 104) 
g2 = Cells(100, 104) 
 
 
For loop3 = 1 To trials 
 
a2 = a2 + Cells(aaa, 104) 
c2 = c2 + Cells(ccc, 104) 
d2 = d2 + Cells(ddd, 104) 
e2 = e2 + Cells(eee, 104) 
f2 = f2 + Cells(fff, 104) 
g2 = g2 + Cells(ggg, 104) 
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aaa = aaa + 85 
ccc = ccc + 85 
ddd = ddd + 85 
eee = eee + 85 
fff = fff + 85 
ggg = ggg + 85 
 
Next loop3 
 
 
  
 Worksheets(4).Select 'puts the averages of slope, L10, and L50 on final summary page 
  
 Cells(16, 2) = a2 / trials 
 Cells(16, 3) = e2 / trials 
 Cells(17, 2) = c2 / trials 
 Cells(17, 3) = f2 / trials 
 Cells(18, 2) = d2 / trials 
 Cells(18, 3) = g2 / trials 
  
  
 Cells(1, 1).Select 
 
 
End Sub 
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Appendix C: Computer Simulation for Method 3 

Sub Macro1() 
' 
' Macro1 Macro 
' 
' Keyboard Shortcut: Ctrl+e 
' 
 
Worksheets(1).Select 
Application.ScreenUpdating = False 'to keep screen from constantly updating and slowing down 
simulation 
 
trialsB = Cells(13, 2) 'amount of times 100 trials are run 
 
taz = 87 'index to copy the summary page and index the whole thing down 87 cells 
shuttleb = 3 
 
For loop37 = 1 To trialsB 'runs trials for however many times its specified in trialsB cell 
Worksheets(1).Select 
 
Column = 2 'indexs the summary page for all values, moves to right after every loop 
countL10 = 0 'used to count which is bigger for comparison on summary page 
countL10B = 0 
 
countmean = 0 
countmeanB = 0 
 
'this was used in the code for arching the data, as of now not used 
    shuttle = 5 
 
 
trials = Cells(12, 2) 'usually 100 to represent how many times out of 100 something will occur 
 
For loop10 = 1 To trials 'main loop 
 
alpha = Cells(9, 2) 'this is how many samples are in bin A 
alpha2 = Cells(10, 2) 'this is how many samples are in bin B 
 
 
If alpha > alpha2 Then 'this just puts the bold numbers in column C for organizational purposes 
     
    x = 7 
    For loop3 = 1 To alpha 
    Cells(x, 3) = x - 6 
    x = x + 1 
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    Next loop3 
    beta = alpha            'beta is used in the loop that archives the numbers, and clears sheet1 
        Else 
        x = 7 
        For loop3 = 1 To alpha2 
        Cells(x, 3) = x - 6 
        x = x + 1 
        Next loop3 
     
    beta = alpha2 
    End If 
 
 
 
'Bin A 
'generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = "=randbetween(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1 
 
'sorting column 
        ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 4), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 4), Cells(alpha + 6, 4)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
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'Bin B 
'random number 
alpha2 = Cells(10, 2) 
r = 7 
num12 = 1 
For loop2 = 1 To alpha2 
    Cells(r, 12).Select 
here4: 
    ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck2 = 1 To num12 
    If Cells(r, 12) = Cells(s, 12) Then GoTo here4 
    s = s + 1 
Next randcheck2 
    r = r + 1 
    num12 = num12 + 1 
Next loop2 
 
' Sorting column 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 12), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 12), Cells(alpha2 + 6, 12)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
 
r1 = 7 
For loop5 = 1 To alpha 
'Rank A 
    Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 + 0.4) 
'S of A 
    Cells(r1, 6) = 1 - Cells(r1, 5) 
    SA = Cells(r1, 6) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / SA) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
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        Cells(r1, 7) = CA 
    r1 = r1 + 1 
Next loop5 
 
r1 = 7 
For loop6 = 1 To alpha2 
'Rank B 
    Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (1000 + 0.4) 
'S of B 
    Cells(r1, 14) = 1 - Cells(r1, 13) 
    SB = Cells(r1, 14) 
'Life of B 
        a2 = Application.WorksheetFunction.Ln(1 / SB) 
        B2 = Application.WorksheetFunction.Ln(a2) 
        CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2) 
        Cells(r1, 15) = CB 
    r1 = r1 + 1 
Next loop6 
 
 
r11 = 7 
For loop7a = 1 To alpha 
'rank for 1 to sample size 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
 
'lnln(1/S) for sample size 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
r111 = 7 
 
For loop11a = 1 To alpha2 
'rank for 1 to sample size 
        Z1b = (Cells(r111, 3) - 0.3) / (alpha2 + 0.4) 
        Cells(r111, 16) = Z1b 
 
'S for sample size 
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        Z2b = 1 - Cells(r111, 16) 
        Cells(r111, 17) = Z2b 
 
'lnln(1/S) for sample size 
        Z5b = 1 / Z2b 
        Z3b = Application.WorksheetFunction.Ln(Z5b) 
        Z4b = Application.WorksheetFunction.Ln(Z3b) 
        Cells(r111, 18) = Z4b 
    r111 = r111 + 1 
Next loop11a 
 
'lnA 
r12 = 7 
For loop8 = 1 To alpha 
Cells(r12, 11) = Application.WorksheetFunction.Ln(Cells(r12, 7)) 
r12 = r12 + 1 
Next loop8 
 
'lnB 
r13 = 7 
For loop9 = 1 To alpha2 
Cells(r13, 19) = Application.WorksheetFunction.Ln(Cells(r13, 15)) 
r13 = r13 + 1 
Next loop9 
 
'FROM HERE UP NOTHING CHANGES 
 
 
 
 
 
 
 
 
 
'ATTENTION, as it sits the code assumes no suspensions or cut offs in bin A, only in B 
 
 
 
 
 
 
 
cutoffnum = Cells(11, 2) 'the number of samples to KEEP 
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'Organized answers on left of sheet1, cells B16 to B48 
'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11)), True, True) 'original code 
'MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(cutoffnum + 6, 10)), 
Range(Cells(7, 11), Cells(cutoffnum + 6, 11)), True, True) 'cut off code 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa 
'slope B 
'MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), True, True) original code 
MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(cutoffnum + 6, 18)), 
Range(Cells(7, 19), Cells(cutoffnum + 6, 19)), True, True) 'cut off code 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb 
 
 
'intercepts A and B 
Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11))) 'original code 
'Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(cutoffnum + 6, 10)), 
Range(Cells(7, 11), Cells(cutoffnum + 6, 11))) 'cut off code 
'Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) original code 
Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(cutoffnum + 6, 18)), 
Range(Cells(7, 19), Cells(cutoffnum + 6, 19))) 'cut off code 
 
'Lbeta A calculations 
V2 = (Ba / MAa) 
VV = -1 * V2 
LBa = Exp(VV) 
 
'Lbeta B calculations 
V3 = (Bb / MBb) 
MO = -1 * V3 
LBb = Exp(MO) 
 
 
'plotting Lbetas 
Cells(17, 2) = LBa 
Cells(25, 2) = LBb 
 
sassyA1 = LBa 
sassyB1 = LBb 
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'L10 A 
L10a = Exp(-2.25037 / MAa) * LBa 
Cells(18, 2) = L10a 
L10A1 = L10a 
'L10 B 
L10b = Exp(-2.25037 / MBb) * LBb 
Cells(26, 2) = L10b 
L10B1 = L10b 
 
'L50 A 
L50a = Exp(-0.36651 / MAa) * LBa 
Cells(19, 2) = L50a 
L50A1 = L50a 
'L50 B 
L50b = Exp(-0.36651 / MBb) * LBb 
Cells(27, 2) = L50b 
L50B1 = L50b 
 
'Mean@ A 
meanata = 62.1 * (MAa ^ -0.172) 
Cells(20, 2) = meanata 
chevyA1 = meanata 
'Mean@ B 
meanatb = 62.1 * (MBb ^ -0.172) 
Cells(28, 2) = meanatb 
chevyB1 = meanatb 
      
        'Mean A Gamma function method 
        musb = (MAa + 1) / MAa 
        a1a = Application.WorksheetFunction.GammaLn(musb) 
        LmeanA = LBa * Exp(a1a) 
        Cells(21, 2) = LmeanA 
        cheeseA1 = LmeanA 
        'Mean A 
        'D1a = 1 / (1 - (meanata / 100)) 
        'D2a = Application.WorksheetFunction.Ln(D1a) 
        'D3a = Application.WorksheetFunction.Ln(D2a) 
        'meanA = (Exp(D3a / MAa)) * LBa 
        'Cells(21, 2) = meanA 
        'cheeseA1 = meanA 
         
        'Mean B Gamma function method 
        musbB = (MBb + 1) / MBb 
        a1aB = Application.WorksheetFunction.GammaLn(musbB) 
        LMeanAb = LBb * Exp(a1aB) 
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        Cells(29, 2) = LMeanAb 
        cheeseB1 = LMeanAb 
        'Mean B 
        'D1b = 1 / (1 - (meanatb / 100)) 
        'D2b = Application.WorksheetFunction.Ln(D1b) 
        'D3b = Application.WorksheetFunction.Ln(D2b) 
        'meanB = (Exp(D3b / MBb)) * LBb 
        'Cells(29, 2) = meanB 
        'cheeseB1 = meanB 
         
         
 
 
         
 
         
'This is where curve fit equations begin to compute. the equations use generated Weibull slopes, 
not inputed slopes. 
'This incorperates suspension method into curve fit equations. 
 
         
 
'DOF A-B 
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(11, 2) - 1) 
dofab = Cells(40, 2) 
 
'CONFIDENCE INTERAL FOR A 
 
 
    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
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    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 1)) 
    Cells(42, 2) = Cvegas 
     
'CONFIDENCE INTERVAL FOR B 
 
    'AoB 
    AnotB = (-0.0844 / Cells(24, 2)) - 0.05584 
    'BoB 
    BnotB = (1.2796 / Cells(24, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99B = (AnotB * lnDOF + BnotB) ^ 2 + 1 
    Cells(43, 2) = MLR99B 
    'D 
    DvegasB = 3.912 / (MLR99B - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexpB = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexpB = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    CvegasB = 1 - 0.5 * Exp(-DvegasB * (MLRexpB - 1)) 
    Cells(44, 2) = CvegasB 
 
'C average 
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2 
Cells(45, 2) = Cvegasavg 
 
'L10 dependent confidence numbers 
 
'A 
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 2)) 
'B 
BBB = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = aaa * Cells(40, 2) ^ BBB 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA) 
'a 
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lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
'CL10 
CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -3595.9) 
Cells(46, 2) = CL10 
 
 
'A 
AAAb = Exp((4.5286 / Cells(24, 2)) + 0.3152) 
'ln(m) 
lnmAb = Application.WorksheetFunction.Ln(Cells(24, 2)) 
'B 
BBBb = 0.29574 * lnmAb + (-0.45228) 
'L10LR 
L10LRAb = AAAb * Cells(40, 2) ^ BBBb 
'ao 
litanotb = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRAb = Application.WorksheetFunction.Ln(L10LRAb) 
'a 
litab = litanotb / lnL10LRAb 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnotb = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnotb = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxob = Application.WorksheetFunction.Ln(xnotb) 
'CL10 
CL10b = 1 - Exp(((litab * lnxob) ^ 2 + 2896.3) / -3595.9) 
Cells(47, 2) = CL10b 
 
'C L10 average 
CL10avg = (CL10 + CL10b) / 2 
Cells(48, 2) = CL10avg 
 
Range("A1").Select 
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Worksheets("Summary").Select 
 
Cells(2, 1) = loop37 'this tells me how many trialsB were run, its used to make sure all 
simulations were run 
 
 
'Slopes 
Cells(4, Column) = Slope1A 
Cells(12, Column) = Slope1B 
 
'L10 
Cells(6, Column) = L10A1 
Cells(14, Column) = L10B1 
 
'L50 
Cells(7, Column) = L50A1 
Cells(15, Column) = L50B1 
 
'Mean 
Cells(9, Column) = cheeseA1 
Cells(17, Column) = cheeseB1 
 
'Mean@ 
Cells(8, Column) = chevyA1 
Cells(16, Column) = chevyB1 
 
'Lb 
Cells(5, Column) = sassyA1 
Cells(13, Column) = sassyB1 
 
'DOF 
Cells(28, Column) = dofab 
 
'MLR99 
Cells(29, Column) = MLR99 
Cells(31, Column) = MLR99B 
     
'Cvegas 
Cells(30, Column) = Cvegas 
Cells(32, Column) = CvegasB 
     
'C average 
Cells(33, Column) = Cvegasavg 
 
'CL10 



161 
 

Cells(34, Column) = CL10 
Cells(35, Column) = CL10b 
Cells(36, Column) = CL10avg 
    
         
         
'L10A / L10B 
Cells(60, Column) = Cells(6, Column) / Cells(14, Column) 
 
 
'MeanA / MeanB 
Cells(64, Column) = Cells(9, Column) / Cells(17, Column) 
 
 
'Counting which is bigger, L10A or L10B 
If Cells(60, Column) > 1 Then 
countL10 = countL10 + 1 
Else 
countL10B = countL10B + 1 
End If 
Cells(68, 2) = countL10 
Cells(69, 2) = countL10B 
 
 
'Counting which is bigger meanA or meanB 
If Cells(64, Column) > 1 Then 
countmean = countmean + 1 
Else 
countmeanB = countmeanB + 1 
End If 
Cells(75, 2) = countmean 
Cells(76, 2) = countmeanB 
         
              
Cells(2, Column) = Column - 1 
 
Worksheets(1).Select 
 
Cells(5, 3) = loop10 
 
 
'This is used for archiving the data 
    'Range(Cells(5, 3), Cells(beta + 6, 27)).Select 
    'Selection.Copy 
    'Worksheets(3).Select 
    'Cells(shuttle, shuttleb).Select 
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    'ActiveSheet.Paste 
    'Range("A1").Select 
    'Worksheets(1).Select 
    'Range("A1").Select 
     
 
'Just used this to keep last loop data on sheet 1 
If loop10 < trials Then 
  Worksheets(1).Select 
    Range(Cells(7, 3), Cells(beta + 6, 27)).Select 
    Selection.ClearContents 
    Range(Cells(16, 2), Cells(70, 2)).Select 
    Selection.ClearContents 
     
Else 
End If 
Cells(1, 1).Select 
     
Column = Column + 1 
shuttle = shuttle + beta + 3 
 
Next loop10 
 
 
Worksheets("Summary").Select 
 
If Cells(68, 2) > Cells(69, 2) Then  'This was just to display which was greater 
Cells(68, 3) = "A>B" 
Else 
Cells(68, 3) = "B>A" 
End If 
 
 
 
If Cells(75, 2) > Cells(76, 2) Then 
Cells(75, 3) = "A>B" 
Else 
Cells(75, 3) = "B>A" 
End If 
 
 
 
Cells(83, 3) = "=average(B36:CW36)"  'averages L10 confidence numbers 
 
 
Cells(83, 6) = "=average(B33:CW33)"  'averages mean confidence numbers 
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    Range(Cells(2, 1), Cells(85, 101)).Select   'copies data just generated on summary page down 
85 cells to make room for next trials numbers 
    Selection.Copy 
    Cells(taz, 1).Select 
    ActiveSheet.Paste 
    Range("B2:CW85").Select 
    Selection.ClearContents 
     
    taz = taz + 85 
    shuttleb = shuttleb + 18 
     
Next loop37 
 
 
Worksheets("Sheet1").Select 
 
trials = Cells(13, 2) 
 
Worksheets("Summary").Select 
 
a = 168 
ab = 169 
ac = 170 
d = 6 
b = 3 
 
Cells(2, 3) = Cells(168, 3)  'this starts the curve fit confidence number averaging for the whole 
summary sheet 
 
Cells(2, 6) = Cells(168, 6) 
 
 
For cl10avgavgavgloop = 1 To trials 'averaging the curve fit equations on the summary page 
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3) 
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6) 
a = a + 85 
 
 
 
Next cl10avgavgavgloop 
Cells(2, 3) = Cells(2, 3) / trials 
 
 
Cells(2, 6) = Cells(2, 6) / trials 
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az = Cells(2, 3) 
ax = Cells(2, 6) 
Cells(1, 1).Select 
 
 
Worksheets("SummaryB").Select 
 
Cells(1, 2) = az  'average CL10 on final summary page 
 
Cells(5, 2) = ax  'average mean confidence number on final summary page 
 
 
 
Worksheets("Summary").Select 
 
amcavg = 153 
cmcavg = 154 
dmcavg = 155 
emcavg = 156 
fmcavg = 157 
gmcavg = 158 
 
 
For loopmcavg = 1 To trials  'averaging the Monte Carlo counting numbers 
 
 
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10) 
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11) 
 
amcavg = amcavg + 85 
cmcavg = cmcavg + 85 
 
Next loopmcavg 
 
 
bmcavg = Cells(1, 10) / trials 
hmcavg = Cells(1, 11) / trials 
 
 
Worksheets("SummaryB").Select 
Cells(10, 2) = bmcavg  'average of L10a>L10b 
Cells(11, 2) = hmcavg  'average of L10b>L10a 
 
 
Cells(1, 1).Select 
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'this is where it takes the averages of slope, L10, L50 
 
Worksheets(1).Select 
t1 = Cells(12, 2) 
trials = Cells(13, 2) 
 
 
Worksheets(2).Select 
 
 
aa = 89 
cc = 91 
dd = 92 
ee = 97 
ff = 99 
gg = 100 
 
 
For loop2 = 1 To trials 
 
a = Cells(aa, 2) 
b = 3 
c = Cells(cc, 2) 
d = Cells(dd, 2) 
e = Cells(ee, 2) 
f = Cells(ff, 2) 
g = Cells(gg, 2) 
    For loop1 = 1 To t1 
    a = a + Cells(aa, b) 
    c = c + Cells(cc, b) 
    d = d + Cells(dd, b) 
    e = e + Cells(ee, b) 
    f = f + Cells(ff, b) 
    g = g + Cells(gg, b) 
    b = b + 1 
     Next loop1 
    Cells(aa, 104) = a / t1 
    Cells(cc, 104) = c / t1 
    Cells(dd, 104) = d / t1 
    Cells(ee, 104) = e / t1 
    Cells(ff, 104) = f / t1 
    Cells(gg, 104) = g / t1 
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aa = aa + 85 
cc = cc + 85 
dd = dd + 85 
ee = ee + 85 
ff = ff + 85 
gg = gg + 85 
 
Next loop2 
 
  
aaa = 174 
ccc = 176 
ddd = 177 
eee = 182 
fff = 184 
ggg = 185 
 
 
  
a2 = Cells(89, 104) 
c2 = Cells(91, 104) 
d2 = Cells(92, 104) 
e2 = Cells(97, 104) 
f2 = Cells(99, 104) 
g2 = Cells(100, 104) 
 
 
For loop3 = 1 To trials 
 
a2 = a2 + Cells(aaa, 104) 
c2 = c2 + Cells(ccc, 104) 
d2 = d2 + Cells(ddd, 104) 
e2 = e2 + Cells(eee, 104) 
f2 = f2 + Cells(fff, 104) 
g2 = g2 + Cells(ggg, 104) 
 
aaa = aaa + 85 
ccc = ccc + 85 
ddd = ddd + 85 
eee = eee + 85 
fff = fff + 85 
ggg = ggg + 85 
 
Next loop3 
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 Worksheets(4).Select  'puts the averages of slope, L10, and L50 on final summary page 
  
 Cells(16, 2) = a2 / trials 
 Cells(16, 3) = e2 / trials 
 Cells(17, 2) = c2 / trials 
 Cells(17, 3) = f2 / trials 
 Cells(18, 2) = d2 / trials 
 Cells(18, 3) = g2 / trials 
  
  
 Cells(1, 1).Select 
 
 
End Sub 
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Appendix D: Computer Simulation for Method 4 

Sub Macro1() 
' 
' Macro1 Macro 
' 
' Keyboard Shortcut: Ctrl+r 
' 
 
Worksheets(1).Select 
Application.ScreenUpdating = False  'to keep screen from constantly updating an slowing down 
the simulation 
 
trialsB = Cells(13, 2)  'number of times to run simulation, can be from 1 up 
 
taz = 87 'this is for the index to copy the summary page and index all the data down 87 cells 
rowspace = 5 'used to index the copied data from sheet1 to sheet3 down for next run 
For loop37 = 1 To trialsB 'loop that runs entire program 
Worksheets(1).Select 
 
Column = 2 'indexes the summary page for all values, moves to right after every loop 
countL10 = 0 'these counts are used to count which is bigger for comparison on summary page 
countL10B = 0 
 
countmean = 0 
countmeanB = 0 
 
 
trials = Cells(12, 2) 'number of times one run is repeated, typically 100 to get a confidence 
number out of 100 
columnspace = 3 'used to index the copied data from sheet1 to sheet3 to the right everytime 
For loop10 = 1 To trials 'loop for generating numbers for confidence numbers 
 
alpha = Cells(9, 2) 'size of bin A 
alpha2 = Cells(10, 2) 'size of bin B 
 
 
If alpha > alpha2 Then 'to number the samples from 1 to which ever bin is bigger 
     
    x = 7 
    For loop3 = 1 To alpha 
    Cells(x, 3) = x - 6 
    x = x + 1 
    Next loop3 
    beta = alpha 'beta used for archinving 
        Else 
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        x = 7 
        For loop3 = 1 To alpha2 
        Cells(x, 3) = x - 6 
        x = x + 1 
        Next loop3 
     
    beta = alpha2 
    End If 
 
 
 
 
 
'Bin A 
'generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = "=randbetween(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1 
 
'sorting column 
        ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 4), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 4), Cells(alpha + 6, 4)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
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here199: 
 
 
 
'Bin B 
'random number 
alpha2 = Cells(10, 2) 
r = 7 
num12 = 1 
For loop2 = 1 To alpha2 
    Cells(r, 12).Select 
here4: 
    ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck2 = 1 To num12 
    If Cells(r, 12) = Cells(s, 12) Then GoTo here4 
    s = s + 1 
Next randcheck2 
    r = r + 1 
    num12 = num12 + 1 
Next loop2 
 
' Sorting column 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 12), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 12), Cells(alpha2 + 6, 12)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
 
 
 
    r1 = 7 
     
For loop5 = 1 To alpha 
'Rank A 
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    Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 + 0.4) 
'S of A 
    Cells(r1, 6) = 1 - Cells(r1, 5) 
    SA = Cells(r1, 6) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / SA) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
        Cells(r1, 7) = CA 
    r1 = r1 + 1 
Next loop5 
 
 
 
    r1 = 7 
     
For loop6 = 1 To alpha2 
'Rank B 
    Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (1000 + 0.4) 
'S of B 
    Cells(r1, 14) = 1 - Cells(r1, 13) 
    SB = Cells(r1, 14) 
'Life of B 
        a2 = Application.WorksheetFunction.Ln(1 / SB) 
        B2 = Application.WorksheetFunction.Ln(a2) 
        CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2) 
        Cells(r1, 15) = CB 
         
       If CB > Cells(5, 2) Then GoTo here5 'this is where the program terminates when the desired 
life is reached 
     
    r1 = r1 + 1 
Next loop6 
 
 
 
here5: 
If Cells(7, 15) > Cells(5, 2) - 1 Then GoTo here199 'this makes sure more then one life is 
generated so the program doesnt crash when computing slopes and intercepts 
 
soccer = loop6 
If loop6 = Cells(10, 2) + 1 Then soccer = Cells(10, 2)  'incase there are more lives generated than 
needed, 
                                                        'needed because goto here5 causes loop6 to go up one more 
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r11 = 7 
 
For loop7a = 1 To alpha 
'rank for 1 to sample size 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
 
'lnln(1/S) for sample size 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
r111 = 7 
 
For loop11a = 1 To soccer 'this indexing is needed to cut off loop at right time otherwise could 
add 1 
'rank for 1 to sample size 
        Z1b = (Cells(r111, 3) - 0.3) / (alpha2 + 0.4) 'does this go to alpha2 or what the program 
stoped at? 
        Cells(r111, 16) = Z1b 
 
'S for sample size 
        Z2b = 1 - Cells(r111, 16) 
        Cells(r111, 17) = Z2b 
 
'lnln(1/S) for sample size 
        Z5b = 1 / Z2b 
        Z3b = Application.WorksheetFunction.Ln(Z5b) 
        Z4b = Application.WorksheetFunction.Ln(Z3b) 
        Cells(r111, 18) = Z4b 
    r111 = r111 + 1 
Next loop11a 
 
 
 
 
 
'lnA 
r12 = 7 
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For loop8 = 1 To alpha 
Cells(r12, 11) = Application.WorksheetFunction.Ln(Cells(r12, 7)) 
r12 = r12 + 1 
Next loop8 
 
'lnB 
r13 = 7 
For loop9 = 1 To soccer 
Cells(r13, 19) = Application.WorksheetFunction.Ln(Cells(r13, 15)) 
r13 = r13 + 1 
Next loop9 
 
Cells(2, 4) = soccer - 1 'to chop off the last life that is over the limit 
soccer2 = Cells(2, 4) + 6 'this selects the right lives in the sheet 
 
If soccer2 = 7 Then GoTo here199 'this again to make sure more that one gets generated to be 
able to compute slopes and intercepts 
 
    Range(Cells(7, 12), Cells(soccer2, 19)).Select 'copies the data to be used to the right in same 
sheet 
    Selection.Copy 
    Cells(7, 22).Select 
    ActiveSheet.Paste 
    Range("A1").Select 
     
'Cells(5, 3) = loop10   'copies data from sheet1 to sheet3 
'Range(Cells(5, 3), Cells(beta + 6, 29)).Select 
'Selection.Copy 
'Worksheets("Sheet3").Select 
'Cells(rowspace, columnspace).Select 
'ActiveSheet.Paste 
 
 
Worksheets("Sheet1").Select 
 
 
'here down should change 
 
 
 
 
'Organized answers on left of spreadsheet 
'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11)), True, True) 
Cells(16, 2) = MA 
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MAa = Cells(16, 2) 
Slope1A = MAa 
'slope B 
'MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), True, True) 'original code 
MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 28), Cells(soccer2, 28)), 
Range(Cells(7, 29), Cells(soccer2, 29)), True, True) 'cutoff code 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb 
 
 
'intercepts A and B 
Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11))) 
 
'Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) 'original code 
Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 28), Cells(soccer2, 28)), 
Range(Cells(7, 29), Cells(soccer2, 29))) 'cutoff code 
 
'Lbeta A calculations 
V2 = (Ba / MAa) 
VV = -1 * V2 
LBa = Exp(VV) 
 
'Lbeta B calculations 
V3 = (Bb / MBb) 
MO = -1 * V3 
LBb = Exp(MO) 
 
 
'plotting Lbetas 
Cells(17, 2) = LBa 
Cells(25, 2) = LBb 
 
sassyA1 = LBa 
sassyB1 = LBb 
 
'L10 A 
L10a = Exp(-2.25037 / MAa) * LBa 
Cells(18, 2) = L10a 
L10A1 = L10a 
'L10 B 
L10b = Exp(-2.25037 / MBb) * LBb 
Cells(26, 2) = L10b 
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L10B1 = L10b 
 
'L50 A 
L50a = Exp(-0.36651 / MAa) * LBa 
Cells(19, 2) = L50a 
L50A1 = L50a 
'L50 B 
L50b = Exp(-0.36651 / MBb) * LBb 
Cells(27, 2) = L50b 
L50B1 = L50b 
 
'Mean@ A 
meanata = 62.1 * (MAa ^ -0.172) 
Cells(20, 2) = meanata 
chevyA1 = meanata 
'Mean@ B 
meanatb = 62.1 * (MBb ^ -0.172) 
Cells(28, 2) = meanatb 
chevyB1 = meanatb 
 
 
 
 
         
        'Mean A Gamma function method 
        musb = (MAa + 1) / MAa 
        a1a = Application.WorksheetFunction.GammaLn(musb) 
        LmeanA = LBa * Exp(a1a) 
        Cells(21, 2) = LmeanA 
        cheeseA1 = LmeanA 
        'Mean A 
        'D1a = 1 / (1 - (meanata / 100)) 
        'D2a = Application.WorksheetFunction.Ln(D1a) 
        'D3a = Application.WorksheetFunction.Ln(D2a) 
        'meanA = (Exp(D3a / MAa)) * LBa 
        'Cells(21, 2) = meanA 
        'cheeseA1 = meanA 
         
        'Mean B Gamma function method 
        musbB = (MBb + 1) / MBb 
        a1aB = Application.WorksheetFunction.GammaLn(musbB) 
        LMeanAb = LBb * Exp(a1aB) 
        Cells(29, 2) = LMeanAb 
        cheeseB1 = LMeanAb 
        'Mean B 
        'D1b = 1 / (1 - (meanatb / 100)) 
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        'D2b = Application.WorksheetFunction.Ln(D1b) 
        'D3b = Application.WorksheetFunction.Ln(D2b) 
        'meanB = (Exp(D3b / MBb)) * LBb 
        'Cells(29, 2) = meanB 
        'cheeseB1 = meanB 
         
 
         
         
         
 
'DOF A-B 
Cells(40, 2) = (Cells(9, 2) - 1) * (soccer2 - 6 - 1) 'degrees of freedom for bin A times cutoff 
number 
dofab = Cells(40, 2) 
 
'CONFIDENCE INTERAL FOR A 
 
 
    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 1)) 
    Cells(42, 2) = Cvegas 
     
'CONFIDENCE INTERVAL FOR B 
 
    'AoB 
    AnotB = (-0.0844 / Cells(24, 2)) - 0.05584 
    'BoB 
    BnotB = (1.2796 / Cells(24, 2)) + 0.6729 
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    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99B = (AnotB * lnDOF + BnotB) ^ 2 + 1 
    Cells(43, 2) = MLR99B 
    'D 
    DvegasB = 3.912 / (MLR99B - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexpB = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexpB = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    CvegasB = 1 - 0.5 * Exp(-DvegasB * (MLRexpB - 1)) 
    Cells(44, 2) = CvegasB 
 
'C average 
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2 
Cells(45, 2) = Cvegasavg 
 
'L10 dependent confidence numbers 
 
'A 
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 2)) 
'B 
bbb = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = aaa * Cells(40, 2) ^ bbb 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA) 
'a 
lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
'CL10 
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CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -3595.9) 
Cells(46, 2) = CL10 
 
 
'A 
AAAb = Exp((4.5286 / Cells(24, 2)) + 0.3152) 
'ln(m) 
lnmAb = Application.WorksheetFunction.Ln(Cells(24, 2)) 
'B 
BBBb = 0.29574 * lnmAb + (-0.45228) 
'L10LR 
L10LRAb = AAAb * Cells(40, 2) ^ BBBb 
'ao 
litanotb = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRAb = Application.WorksheetFunction.Ln(L10LRAb) 
'a 
litab = litanotb / lnL10LRAb 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnotb = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnotb = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxob = Application.WorksheetFunction.Ln(xnotb) 
'CL10 
CL10b = 1 - Exp(((litab * lnxob) ^ 2 + 2896.3) / -3595.9) 
Cells(47, 2) = CL10b 
 
'C L10 average 
CL10avg = (CL10 + CL10b) / 2 
Cells(48, 2) = CL10avg 
 
 
Cells(38, 2) = soccer2 - 6 
 
Range(Cells(7, 3), Cells(beta + 6, 29)).Select 
Selection.ClearContents 
 
 
 
Range("A1").Select 
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Worksheets("Summary").Select 
 
Cells(2, 1) = loop37 
 
 
'Slopes 
Cells(4, Column) = Slope1A 
Cells(12, Column) = Slope1B 
 
'L10 
Cells(6, Column) = L10A1 
Cells(14, Column) = L10B1 
 
'L50 
Cells(7, Column) = L50A1 
Cells(15, Column) = L50B1 
 
'Mean 
Cells(9, Column) = cheeseA1 
Cells(17, Column) = cheeseB1 
 
'Mean@ 
Cells(8, Column) = chevyA1 
Cells(16, Column) = chevyB1 
 
'Lb 
Cells(5, Column) = sassyA1 
Cells(13, Column) = sassyB1 
 
'DOF 
Cells(28, Column) = dofab 
     
Cells(26, Column) = soccer2 - 6 
         
 
'MLR99 
Cells(29, Column) = MLR99 
Cells(31, Column) = MLR99B 
    
     
'Cvegas 
Cells(30, Column) = Cvegas 
Cells(32, Column) = CvegasB 
    
   
'C average 
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Cells(33, Column) = Cvegasavg 
    
 
'CL10 
Cells(34, Column) = CL10 
Cells(35, Column) = CL10b 
Cells(36, Column) = CL10avg 
     
  
         
'L10A / L10B 
Cells(60, Column) = Cells(6, Column) / Cells(14, Column) 
 
 
'MeanA / MeanB 
Cells(64, Column) = Cells(9, Column) / Cells(17, Column) 
 
 
'Counting which is bigger, L10A or L10B 
If Cells(60, Column) > 1 Then 
countL10 = countL10 + 1 
Else 
countL10B = countL10B + 1 
End If 
Cells(68, 2) = countL10 
Cells(69, 2) = countL10B 
 
 
 
'Counting which is bigger meanA or meanB 
If Cells(64, Column) > 1 Then 
countmean = countmean + 1 
Else 
countmeanB = countmeanB + 1 
End If 
Cells(75, 2) = countmean 
Cells(76, 2) = countmeanB 
         
              
Cells(2, Column) = Column - 1 
 
Worksheets(1).Select 
 
Cells(1, 1).Select 
     
Column = Column + 1 
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columnspace = columnspace + 28 
 
Next loop10 
 
 
Worksheets("Summary").Select 
 
If Cells(68, 2) > Cells(69, 2) Then  'This was just to display which was greater 
Cells(68, 3) = "A>B" 
Else 
Cells(68, 3) = "B>A" 
End If 
 
 
 
If Cells(75, 2) > Cells(76, 2) Then 
Cells(75, 3) = "A>B" 
Else 
Cells(75, 3) = "B>A" 
End If 
 
 
 
Cells(83, 3) = "=average(B36:CW36)"   'averages L10 confidence numbers 
Cells(83, 6) = "=average(B33:CW33)"   'averages mean confidence numbers 
 
 
 
 
 
    Range(Cells(2, 1), Cells(85, 101)).Select 'copies data just generated on summary page down 
85 cells to make room for next trials numbers 
    Selection.Copy 
    Cells(taz, 1).Select 
    ActiveSheet.Paste 
    Range("B2:CW85").Select 
    Selection.ClearContents 
     
    taz = taz + 85 
    rowspace = rowspace + beta + 3 
Next loop37 
 
 
Worksheets("Sheet1").Select 
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trials = Cells(13, 2) 
 
 
Worksheets("Summary").Select 
 
a = 168 
ab = 169 
ac = 170 
d = 6 
b = 3 
 
Cells(2, 3) = Cells(168, 3)  'this starts the curve fit confidence number averaging for the whole 
summary sheet 
 
 
Cells(2, 6) = Cells(168, 6) 
 
 
For cl10avgavgavgloop = 1 To trials            'averaging the curve fit equations on the summary 
page 
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3) 
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6) 
a = a + 85 
 
 
 
Next cl10avgavgavgloop 
Cells(2, 3) = Cells(2, 3) / trials 
 
 
Cells(2, 6) = Cells(2, 6) / trials 
 
 
 
az = Cells(2, 3) 
 
 
ax = Cells(2, 6) 
 
 
Cells(1, 1).Select 
 
 
 
Worksheets("SummaryB").Select 
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Cells(1, 2) = az    'average CL10 on final summary page 
 
Cells(5, 2) = ax    'average mean confidence number on final summary page 
 
 
 
Worksheets("Summary").Select 
 
amcavg = 153 
cmcavg = 154 
dmcavg = 155 
emcavg = 156 
fmcavg = 157 
gmcavg = 158 
 
 
For loopmcavg = 1 To trials    'averaging the Monte Carlo numbers 
 
 
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10) 
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11) 
 
 
amcavg = amcavg + 85 
cmcavg = cmcavg + 85 
 
Next loopmcavg 
 
 
 
bmcavg = Cells(1, 10) / trials 
hmcavg = Cells(1, 11) / trials 
 
 
 
 
 
Worksheets("SummaryB").Select 
Cells(10, 2) = bmcavg 'average of l10a>L10b 
Cells(11, 2) = hmcavg 'average of L10b>L10a 
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Cells(1, 1).Select 
 
 
'this is where it takes the averages of slope, L10, L50 
 
Worksheets(1).Select 
t1 = Cells(12, 2) 
trials = Cells(13, 2) 
 
 
Worksheets(2).Select 
 
 
aa = 89 
cc = 91 
dd = 92 
ee = 97 
ff = 99 
gg = 100 
 
 
For loop2 = 1 To trials 
 
a = Cells(aa, 2) 
b = 3 
c = Cells(cc, 2) 
d = Cells(dd, 2) 
e = Cells(ee, 2) 
f = Cells(ff, 2) 
g = Cells(gg, 2) 
    For loop1 = 1 To t1 
    a = a + Cells(aa, b) 
    c = c + Cells(cc, b) 
    d = d + Cells(dd, b) 
    e = e + Cells(ee, b) 
    f = f + Cells(ff, b) 
    g = g + Cells(gg, b) 
    b = b + 1 
     Next loop1 
    Cells(aa, 104) = a / t1 
    Cells(cc, 104) = c / t1 
    Cells(dd, 104) = d / t1 
    Cells(ee, 104) = e / t1 
    Cells(ff, 104) = f / t1 
    Cells(gg, 104) = g / t1 
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aa = aa + 85 
cc = cc + 85 
dd = dd + 85 
ee = ee + 85 
ff = ff + 85 
gg = gg + 85 
 
Next loop2 
 
  
aaa = 174 
ccc = 176 
ddd = 177 
eee = 182 
fff = 184 
ggg = 185 
 
 
  
a2 = Cells(89, 104) 
c2 = Cells(91, 104) 
d2 = Cells(92, 104) 
e2 = Cells(97, 104) 
f2 = Cells(99, 104) 
g2 = Cells(100, 104) 
 
 
For loop3 = 1 To trials 
 
a2 = a2 + Cells(aaa, 104) 
c2 = c2 + Cells(ccc, 104) 
d2 = d2 + Cells(ddd, 104) 
e2 = e2 + Cells(eee, 104) 
f2 = f2 + Cells(fff, 104) 
g2 = g2 + Cells(ggg, 104) 
 
aaa = aaa + 85 
ccc = ccc + 85 
ddd = ddd + 85 
eee = eee + 85 
fff = fff + 85 
ggg = ggg + 85 
 
Next loop3 
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 Worksheets(4).Select   'puts the averages of slope, L10, and L50 on final summary page 
  
 Cells(16, 2) = a2 / trials 
 Cells(16, 3) = e2 / trials 
 Cells(17, 2) = c2 / trials 
 Cells(17, 3) = f2 / trials 
 Cells(18, 2) = d2 / trials 
 Cells(18, 3) = g2 / trials 
  
  
 Cells(1, 1).Select 
  
  
End Sub 
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Appendix E: Computer Simulation for Method 5 

Sub Macro1() 
' 
' Macro1 Macro 
' 
' Keyboard Shortcut: Ctrl+e 
' 
 
Worksheets(1).Select 
Application.ScreenUpdating = False 
 
trialsB = Cells(13, 2) 
 
taz = 87 
'rowspace = 5 
For loop37 = 1 To trialsB 
Worksheets(1).Select 
 
Column = 2 
countL10 = 0 
countL10B = 0 
countmean = 0 
countmeanB = 0 
 
 
 
trials = Cells(12, 2) 
'columnspace = 3 
For loop10 = 1 To trials 
 
alpha = Cells(9, 2) 
alpha2 = Cells(10, 2) 
 
 
If alpha > alpha2 Then 
     
    x = 7 
    For loop3 = 1 To alpha 
    Cells(x, 3) = x - 6 
    x = x + 1 
    Next loop3 
    beta = alpha 
        Else 
        x = 7 
        For loop3 = 1 To alpha2 
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        Cells(x, 3) = x - 6 
        x = x + 1 
        Next loop3 
     
    beta = alpha2 
    End If 
 
 
 
 
 
'Bin A 
'generating random number 
alpha = Cells(9, 2) 
r = 7 
num1 = 1 
For loop1 = 1 To alpha 
    Cells(r, 4).Select 
here2: 
    ActiveCell.FormulaR1C1 = "=randbetween(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck = 1 To num1 
    If Cells(r, 4) = Cells(s, 4) Then GoTo here2 
    s = s + 1 
Next randcheck 
    r = r + 1 
    num1 = num1 + 1 
Next loop1 
 
'sorting column 
        ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 4), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 4), Cells(alpha + 6, 4)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
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r1 = 7 
     
For loop5 = 1 To alpha 
'Rank A 
    Cells(r1, 5) = (Cells(r1, 4) - 0.3) / (1000 + 0.4) 
'S of A 
    Cells(r1, 6) = 1 - Cells(r1, 5) 
    SA = Cells(r1, 6) 
'Life of A 
        A1 = Application.WorksheetFunction.Ln(1 / SA) 
        B1 = Application.WorksheetFunction.Ln(A1) 
        CA = Exp(B1 / Cells(3, 2)) * Cells(6, 2) 
        Cells(r1, 7) = CA 
    r1 = r1 + 1 
Next loop5 
 
r11 = 7 
 
For loop7a = 1 To alpha 
'rank for 1 to sample size 
        Z1 = (Cells(r11, 3) - 0.3) / (alpha + 0.4) 
        Cells(r11, 8) = Z1 
 
'S for sample size 
        Z2 = 1 - Cells(r11, 8) 
        Cells(r11, 9) = Z2 
 
'lnln(1/S) for sample size 
        Z5 = 1 / Z2 
        Z3 = Application.WorksheetFunction.Ln(Z5) 
        Z4 = Application.WorksheetFunction.Ln(Z3) 
        Cells(r11, 10) = Z4 
    r11 = r11 + 1 
Next loop7a 
 
'lnA 
r12 = 7 
For loop8 = 1 To alpha 
Cells(r12, 11) = Application.WorksheetFunction.Ln(Cells(r12, 7)) 
r12 = r12 + 1 
Next loop8 
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here99: 
 
 
 
'Bin B 
'random number 
alpha2 = Cells(10, 2) 
r = 7 
num12 = 1 
For loop2 = 1 To alpha2 
    Cells(r, 12).Select 
here4: 
    ActiveCell.FormulaR1C1 = "=RANDBETWEEN(1,1000)" 
 
'Checking for duplicate 
s = 6 
For randcheck2 = 1 To num12 
    If Cells(r, 12) = Cells(s, 12) Then GoTo here4 
    s = s + 1 
Next randcheck2 
    r = r + 1 
    num12 = num12 + 1 
Next loop2 
 
' Sorting column 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clear 
    ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add Key:=Cells(7, 12), _ 
        SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal 
    With ActiveWorkbook.Worksheets("Sheet1").Sort 
        .SetRange Range(Cells(7, 12), Cells(alpha2 + 6, 12)) 
        .Header = xlNo 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
 
 
r1 = 7 
    
For loop6 = 1 To alpha2 
'Rank B 
    Cells(r1, 13) = (Cells(r1, 12) - 0.3) / (1000 + 0.4) 
'S of B 
    Cells(r1, 14) = 1 - Cells(r1, 13) 
    SB = Cells(r1, 14) 
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'Life of B 
        a2 = Application.WorksheetFunction.Ln(1 / SB) 
        B2 = Application.WorksheetFunction.Ln(a2) 
        CB = Exp(B2 / Cells(4, 2)) * Cells(7, 2) 
        Cells(r1, 15) = CB 
         
       If CB > Cells(5, 2) Then GoTo here5 
        
    r1 = r1 + 1 
Next loop6 
 
 
here5: 
soccer = loop6 
If soccer < Cells(10, 2) + 1 Then GoTo here99   'this is the part making sure the failure index is 
fixed 
 
If loop6 = Cells(10, 2) + 1 Then soccer = Cells(10, 2) 
 
 
 
 
 
r111 = 7 
 
For loop11a = 1 To soccer 
'rank for 1 to sample size 
        Z1b = (Cells(r111, 3) - 0.3) / (alpha2 + 0.4) 
        Cells(r111, 16) = Z1b 
 
'S for sample size 
        Z2b = 1 - Cells(r111, 16) 
        Cells(r111, 17) = Z2b 
 
'lnln(1/S) for sample size 
        Z5b = 1 / Z2b 
        Z3b = Application.WorksheetFunction.Ln(Z5b) 
        Z4b = Application.WorksheetFunction.Ln(Z3b) 
        Cells(r111, 18) = Z4b 
    r111 = r111 + 1 
Next loop11a 
 
 
 
 
 



192 
 

'lnB 
r13 = 7 
For loop9 = 1 To soccer 
Cells(r13, 19) = Application.WorksheetFunction.Ln(Cells(r13, 15)) 
r13 = r13 + 1 
Next loop9 
 
 
Cells(2, 4) = soccer 
soccer2 = Cells(2, 4) + 6 
 
 
     
Cells(5, 3) = loop10 
 
'copying data from sheet1 to sheet3 
 
    'Range(Cells(5, 3), Cells(beta + 6, 19)).Select 
    'Selection.Copy 
    'Worksheets("Sheet3").Select 
    'Cells(rowspace, columnspace).Select 
    'ActiveSheet.Paste 
    'Worksheets("Sheet1").Select 
 
 
 
'here down should change 
 
 
 
 
'Organized answers on left of spreadsheet 
'slope A 
MA = Application.WorksheetFunction.LinEst(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11)), True, True) 
Cells(16, 2) = MA 
MAa = Cells(16, 2) 
Slope1A = MAa 
'slope B 
'MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19)), True, True) 
MB = Application.WorksheetFunction.LinEst(Range(Cells(7, 18), Cells(soccer2, 18)), 
Range(Cells(7, 19), Cells(soccer2, 19)), True, True) 
Cells(24, 2) = MB 
MBb = Cells(24, 2) 
Slope1B = MBb 
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'intercepts A and B 
Ba = Application.WorksheetFunction.Intercept(Range(Cells(7, 10), Cells(alpha + 6, 10)), 
Range(Cells(7, 11), Cells(alpha + 6, 11))) 
'Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(alpha2 + 6, 18)), 
Range(Cells(7, 19), Cells(alpha2 + 6, 19))) 
Bb = Application.WorksheetFunction.Intercept(Range(Cells(7, 18), Cells(soccer2, 18)), 
Range(Cells(7, 19), Cells(soccer2, 19))) 
 
'Lbeta A calculations 
V2 = (Ba / MAa) 
VV = -1 * V2 
LBa = Exp(VV) 
 
'Lbeta B calculations 
V3 = (Bb / MBb) 
MO = -1 * V3 
LBb = Exp(MO) 
 
 
'plotting Lbetas 
Cells(17, 2) = LBa 
Cells(25, 2) = LBb 
 
sassyA1 = LBa 
sassyB1 = LBb 
 
'L10 A 
L10a = Exp(-2.25037 / MAa) * LBa 
Cells(18, 2) = L10a 
L10A1 = L10a 
'L10 B 
L10b = Exp(-2.25037 / MBb) * LBb 
Cells(26, 2) = L10b 
L10B1 = L10b 
 
'L50 A 
L50a = Exp(-0.36651 / MAa) * LBa 
Cells(19, 2) = L50a 
L50A1 = L50a 
'L50 B 
L50b = Exp(-0.36651 / MBb) * LBb 
Cells(27, 2) = L50b 
L50B1 = L50b 
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'Mean@ A 
meanata = 62.1 * (MAa ^ -0.172) 
Cells(20, 2) = meanata 
chevyA1 = meanata 
'Mean@ B 
meanatb = 62.1 * (MBb ^ -0.172) 
Cells(28, 2) = meanatb 
chevyB1 = meanatb 
 
 
 
 
         
        'Mean A Gamma function method 
        musb = (MAa + 1) / MAa 
        a1a = Application.WorksheetFunction.GammaLn(musb) 
        LmeanA = LBa * Exp(a1a) 
        Cells(21, 2) = LmeanA 
        cheeseA1 = LmeanA 
        'Mean A 
        'D1a = 1 / (1 - (meanata / 100)) 
        'D2a = Application.WorksheetFunction.Ln(D1a) 
        'D3a = Application.WorksheetFunction.Ln(D2a) 
        'meanA = (Exp(D3a / MAa)) * LBa 
        'Cells(21, 2) = meanA 
        'cheeseA1 = meanA 
         
        'Mean B Gamma function method 
        musbB = (MBb + 1) / MBb 
        a1aB = Application.WorksheetFunction.GammaLn(musbB) 
        LMeanAb = LBb * Exp(a1aB) 
        Cells(29, 2) = LMeanAb 
        cheeseB1 = LMeanAb 
        'Mean B 
        'D1b = 1 / (1 - (meanatb / 100)) 
        'D2b = Application.WorksheetFunction.Ln(D1b) 
        'D3b = Application.WorksheetFunction.Ln(D2b) 
        'meanB = (Exp(D3b / MBb)) * LBb 
        'Cells(29, 2) = meanB 
        'cheeseB1 = meanB 
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'DOF A-B 
Cells(40, 2) = (Cells(9, 2) - 1) * (Cells(10, 2) - 1) 
dofab = Cells(40, 2) 
 
'CONFIDENCE INTERAL FOR A 
 
 
    'Ao 
    Anot = (-0.0844 / Cells(16, 2)) - 0.05584 
    'Bo 
    Bnot = (1.2796 / Cells(16, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99 = (Anot * lnDOF + Bnot) ^ 2 + 1 
    Cells(41, 2) = MLR99 
    'D 
    Dvegas = 3.912 / (MLR99 - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexp = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexp = Cells(29, 2) / Cells(21, 2) 
    End If 
    'C 
    Cvegas = 1 - 0.5 * Exp(-Dvegas * (MLRexp - 1)) 
    Cells(42, 2) = Cvegas 
     
'CONFIDENCE INTERVAL FOR B 
 
    'AoB 
    AnotB = (-0.0844 / Cells(24, 2)) - 0.05584 
    'BoB 
    BnotB = (1.2796 / Cells(24, 2)) + 0.6729 
    'lnDOF 
    lnDOF = Application.WorksheetFunction.Ln(Cells(40, 2)) 
    'MLR at 99 
    MLR99B = (AnotB * lnDOF + BnotB) ^ 2 + 1 
    Cells(43, 2) = MLR99B 
    'D 
    DvegasB = 3.912 / (MLR99B - 1) 
    'MLRexp 
    If Cells(21, 2) > Cells(29, 2) Then 
    MLRexpB = Cells(21, 2) / Cells(29, 2) 
    Else 
    MLRexpB = Cells(29, 2) / Cells(21, 2) 
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    End If 
    'C 
    CvegasB = 1 - 0.5 * Exp(-DvegasB * (MLRexpB - 1)) 
    Cells(44, 2) = CvegasB 
 
'C average 
Cvegasavg = (Cells(42, 2) + Cells(44, 2)) / 2 
Cells(45, 2) = Cvegasavg 
 
'L10 dependent confidence numbers 
 
'A 
aaa = Exp((4.5286 / Cells(16, 2)) + 0.3152) 
'ln(m) 
lnmA = Application.WorksheetFunction.Ln(Cells(16, 2)) 
'B 
bbb = 0.29574 * lnmA + (-0.45228) 
'L10LR 
L10LRA = aaa * Cells(40, 2) ^ bbb 
'ao 
litanot = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRA = Application.WorksheetFunction.Ln(L10LRA) 
'a 
lita = litanot / lnL10LRA 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnot = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnot = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxo = Application.WorksheetFunction.Ln(xnot) 
'CL10 
CL10 = 1 - Exp(((lita * lnxo) ^ 2 + 2896.3) / -3595.9) 
Cells(46, 2) = CL10 
 
 
'A 
AAAb = Exp((4.5286 / Cells(24, 2)) + 0.3152) 
'ln(m) 
lnmAb = Application.WorksheetFunction.Ln(Cells(24, 2)) 
'B 
BBBb = 0.29574 * lnmAb + (-0.45228) 
'L10LR 
L10LRAb = AAAb * Cells(40, 2) ^ BBBb 
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'ao 
litanotb = (-3595.9 * -4.60517 - 2896.3) ^ 0.5 
'ln(L10LR) 
lnL10LRAb = Application.WorksheetFunction.Ln(L10LRAb) 
'a 
litab = litanotb / lnL10LRAb 
    'L10exp 
    If Cells(18, 2) > Cells(26, 2) Then 
    xnotb = Cells(18, 2) / Cells(26, 2) 
    Else 
    xnotb = Cells(26, 2) / Cells(18, 2) 
    End If 
'ln(xo) 
lnxob = Application.WorksheetFunction.Ln(xnotb) 
'CL10 
CL10b = 1 - Exp(((litab * lnxob) ^ 2 + 2896.3) / -3595.9) 
Cells(47, 2) = CL10b 
 
'C L10 average 
CL10avg = (CL10 + CL10b) / 2 
Cells(48, 2) = CL10avg 
 
 
Cells(38, 2) = soccer2 - 6 
 
Range(Cells(7, 3), Cells(beta + 6, 19)).Select 
Selection.ClearContents 
 
 
 
 
 
     
 
 
 
 
 
 
 
Range("A1").Select 
 
 
 
Worksheets("Summary").Select 
 



198 
 

Cells(2, 1) = loop37 
 
 
'Slopes 
Cells(4, Column) = Slope1A 
Cells(12, Column) = Slope1B 
 
'L10 
Cells(6, Column) = L10A1 
Cells(14, Column) = L10B1 
 
'L50 
Cells(7, Column) = L50A1 
Cells(15, Column) = L50B1 
 
'Mean 
Cells(9, Column) = cheeseA1 
Cells(17, Column) = cheeseB1 
 
'Mean@ 
Cells(8, Column) = chevyA1 
Cells(16, Column) = chevyB1 
 
'Lb 
Cells(5, Column) = sassyA1 
Cells(13, Column) = sassyB1 
 
'DOF 
Cells(28, Column) = dofab 
 
     
Cells(26, Column) = soccer2 - 6 
         
         
 
 
'MLR99 
Cells(29, Column) = MLR99 
Cells(31, Column) = MLR99B 
     
    
         
     
'Cvegas 
Cells(30, Column) = Cvegas 
Cells(32, Column) = CvegasB 
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'C average 
Cells(33, Column) = Cvegasavg 
     
    
         
     
 
'CL10 
Cells(34, Column) = CL10 
Cells(35, Column) = CL10b 
Cells(36, Column) = CL10avg 
     
  
         
'L10A / L10B 
Cells(60, Column) = Cells(6, Column) / Cells(14, Column) 
 
 
'MeanA / MeanB 
Cells(64, Column) = Cells(9, Column) / Cells(17, Column) 
 
 
'Counting which is bigger, L10A or L10B 
If Cells(60, Column) > 1 Then 
countL10 = countL10 + 1 
Else 
countL10B = countL10B + 1 
End If 
Cells(68, 2) = countL10 
Cells(69, 2) = countL10B 
 
 
 
'Counting which is bigger meanA or meanB 
If Cells(64, Column) > 1 Then 
countmean = countmean + 1 
Else 
countmeanB = countmeanB + 1 
End If 
Cells(75, 2) = countmean 
Cells(76, 2) = countmeanB 
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Cells(2, Column) = Column - 1 
 
Worksheets(1).Select 
 
 
 
Cells(1, 1).Select 
     
Column = Column + 1 
'columnspace = columnspace + 19 
 
Next loop10 
 
 
Worksheets("Summary").Select 
 
If Cells(68, 2) > Cells(69, 2) Then 
Cells(68, 3) = "A>B" 
Else 
Cells(68, 3) = "B>A" 
End If 
 
 
 
If Cells(75, 2) > Cells(76, 2) Then 
Cells(75, 3) = "A>B" 
Else 
Cells(75, 3) = "B>A" 
End If 
 
 
 
Cells(83, 3) = "=average(B36:CW36)" 
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Cells(83, 6) = "=average(B33:CW33)" 
 
 
 
 
 
    Range(Cells(2, 1), Cells(85, 101)).Select 
    Selection.Copy 
    Cells(taz, 1).Select 
    ActiveSheet.Paste 
    Range("B2:CW85").Select 
    Selection.ClearContents 
     
    taz = taz + 85 
    'rowspace = rowspace + beta + 3 
Next loop37 
 
 
Worksheets("Sheet1").Select 
 
 
 
trials = Cells(13, 2) 
 
 
Worksheets("Summary").Select 
 
a = 168 
ab = 169 
ac = 170 
d = 6 
b = 3 
 
Cells(2, 3) = Cells(168, 3) 
 
 
Cells(2, 6) = Cells(168, 6) 
 
 
For cl10avgavgavgloop = 1 To trials 
Cells(2, 3) = Cells(2, 3) + Cells(a + 85, 3) 
Cells(2, 6) = Cells(2, 6) + Cells(a + 85, 6) 
a = a + 85 
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Next cl10avgavgavgloop 
Cells(2, 3) = Cells(2, 3) / trials 
 
 
Cells(2, 6) = Cells(2, 6) / trials 
 
 
 
az = Cells(2, 3) 
 
 
ax = Cells(2, 6) 
 
 
Cells(1, 1).Select 
 
 
 
Worksheets("SummaryB").Select 
 
Cells(1, 2) = az 
 
Cells(5, 2) = ax 
 
 
 
Worksheets("Summary").Select 
 
amcavg = 153 
cmcavg = 154 
dmcavg = 155 
emcavg = 156 
fmcavg = 157 
gmcavg = 158 
 
 
For loopmcavg = 1 To trials 
 
 
Cells(1, 10) = Cells(amcavg, 2) + Cells(1, 10) 
Cells(1, 11) = Cells(cmcavg, 2) + Cells(1, 11) 
 
 
amcavg = amcavg + 85 
cmcavg = cmcavg + 85 
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Next loopmcavg 
 
 
 
bmcavg = Cells(1, 10) / trials 
hmcavg = Cells(1, 11) / trials 
 
 
 
 
 
Worksheets("SummaryB").Select 
Cells(10, 2) = bmcavg 
Cells(11, 2) = hmcavg 
 
 
 
 
 
Cells(1, 1).Select 
 
 
'this is where it takes the averages of slope, L10, L50 
 
Worksheets(1).Select 
t1 = Cells(12, 2) 
trials = Cells(13, 2) 
 
 
Worksheets(2).Select 
 
 
aa = 89 
cc = 91 
dd = 92 
ee = 97 
ff = 99 
gg = 100 
 
 
For loop2 = 1 To trials 
 
a = Cells(aa, 2) 
b = 3 
c = Cells(cc, 2) 
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d = Cells(dd, 2) 
e = Cells(ee, 2) 
f = Cells(ff, 2) 
g = Cells(gg, 2) 
    For loop1 = 1 To t1 
    a = a + Cells(aa, b) 
    c = c + Cells(cc, b) 
    d = d + Cells(dd, b) 
    e = e + Cells(ee, b) 
    f = f + Cells(ff, b) 
    g = g + Cells(gg, b) 
    b = b + 1 
     Next loop1 
    Cells(aa, 104) = a / t1 
    Cells(cc, 104) = c / t1 
    Cells(dd, 104) = d / t1 
    Cells(ee, 104) = e / t1 
    Cells(ff, 104) = f / t1 
    Cells(gg, 104) = g / t1 
  
  
  
aa = aa + 85 
cc = cc + 85 
dd = dd + 85 
ee = ee + 85 
ff = ff + 85 
gg = gg + 85 
 
Next loop2 
 
  
aaa = 174 
ccc = 176 
ddd = 177 
eee = 182 
fff = 184 
ggg = 185 
 
 
  
a2 = Cells(89, 104) 
c2 = Cells(91, 104) 
d2 = Cells(92, 104) 
e2 = Cells(97, 104) 
f2 = Cells(99, 104) 
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g2 = Cells(100, 104) 
 
 
For loop3 = 1 To trials 
 
a2 = a2 + Cells(aaa, 104) 
c2 = c2 + Cells(ccc, 104) 
d2 = d2 + Cells(ddd, 104) 
e2 = e2 + Cells(eee, 104) 
f2 = f2 + Cells(fff, 104) 
g2 = g2 + Cells(ggg, 104) 
 
aaa = aaa + 85 
ccc = ccc + 85 
ddd = ddd + 85 
eee = eee + 85 
fff = fff + 85 
ggg = ggg + 85 
 
Next loop3 
 
 
  
 Worksheets(4).Select 
  
 Cells(16, 2) = a2 / trials 
 Cells(16, 3) = e2 / trials 
 Cells(17, 2) = c2 / trials 
 Cells(17, 3) = f2 / trials 
 Cells(18, 2) = d2 / trials 
 Cells(18, 3) = g2 / trials 
  
  
 Cells(1, 1).Select 
 
 
End Sub 
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PRESENTATION TYPE: Student Poster 
TOPIC: Student Poster Competition 
TITLE: Confidence Ranking of Monte Carlo Simulated Fatigue Data based on a Weibull-

Johnson Methodology 
AUTHORS (LAST NAME, FIRST NAME): Murray, Noel S.1 
INSTITUTIONS (ALL): 1. Mechanical Engineering Technology, Georgia Southern University, 

Statesboro, GA, USA.  
ABSTRACT BODY:  

Body: Statistical and probabilistic models of fatigue lives were used to determine whether 

data sets were significantly different. Monte Carlo simulations based on Weibull-Johnson 

parameters were used to simulate fatigue lives. These lives can be for bearings, shafts, gears, 

or any component that fails as a result of fatigue. The Monte Carlo simulation is repeated one 

hundred times to determine a confidence number. Linear approximations of Leonard Johnson’s 

Confidence Number curves were used to calculate separate confidence numbers, and were 

compared to those generated by the Monte Carlo simulations. This work contributes to the 

validation of the linear approximations used, which expand greatly on the limited cases 

published by Johnson. A known experimental data set was also used to validate the Monte 

Carlo simulations, validating the relative ranking of fatigue data sets with variations due to 

test conditions, material variations, differences between batches and heat treatments, and 

vendors.  

Biography: I went to high school at Mount de Sales Academy in Macon Georgia and 

graduated in 2003. I then went straight to Georgia Southern University and graduated in May 

2008 with a BS in Mechanical Engineering Technology. I started graduate school at Georgia 

Southern in August 2008 where I am currently getting a masters in Applied Engineering with a 

concentration in Engineering Management. While a student at Georgia Southern I have been 

involved with Formula SAE, SAE Mini Baja, Senior design project where we built a solar 

powered car, and competed in the History Channel's "City of the Future" competition.  
KEYWORDS: Computer Use in Maintenance, Statistical Analysis, Maintenance.  
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Appendix G: Long Abstract Submitted for Presentation at 2010 STLE Annual Meeting 

2010 STLE Annual Meeting & Exhibition 
May 16-20, 2010 
Bally’s Las Vegas Hotel and Casino 
Las Vegas, Nevada, USA 
 

GEARS I:  Session 

Modified Vasco X-2 and AISI 9310 Spur Gear Fatigue Failure Revisited with Weibull-Johnson 

Monte Carlo Simulations 

 

 

Noel Murray 

Brian L Vlcek, PhD 

Georgia Southern University 

Statesboro, GA  30460 

BLVLCEK@GeorgiaSouthern.edu 

912-478-5721 

INTRODUCTION 

 

Over three decades ago, Vasco X-2 was considered as a superior alternative for AISI 9310 as a 

gear material for aircraft and helicopter transmission systems.  The Vasco X-2 material was 

effectively a through hardened steel (H-12 tool steel) with a reduced carbon content (0.11 to 0.16 

percent).  Since the finished product could be case hardened while maintaining a soft core, 

fracture toughness of gears manufactured from the material was expected to improve [1].   The 

hardness and fatigue life  (rolling contact and gear tests) of Vasco X-2 for three different heat 

treatment methods, were determined experimentally by Townsend, Zaretsky, and Anderson [1-
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2], and compared to results for AISI 9310.  Since sufficient information existed in the literature 

[1-2] to determine inputs for a Monte Carlo simulation of fatigue life based upon the method of 

Vlcek, et. al [3], this spur gear material study was revisited. 

 

Monte Carlo Simulation of  Fatigue Lives 

 

For the Monte Carlo model, it is assumed that 1000 virtual gears exist in a virtual bin.  While the 

actual magnitude of the fatigue life of each of the 1000 virtual gears is not known, the relative 

ranking (from 1 to 1000) of the gears lives is assumed to be known, and  is ordered from 1 to 

1000.  A subset of desired number of test specimens (test specimen population size) is randomly 

drawn from the bin by randomly determining order numbers.  If the Weibull parameters (Weibull 

slope and the characteristic life at which 63.2% of test specimens having failed) for the material 

are known from some limited amount of previous experimentation or modeling, the above order 

numbers can be converted into gear lives using the two-Parameter Weibull Equation [4], where 

   

 

            (1) 

 

From this subset of simulated lives, Weibull parameters (L10, L50, and slope) are determined 

using a least squares linear curve fit methodology.  The process is then repeated a sufficient 

number of times (10,000) to establish statistical confidence in the observed trends.  Vlcek et. al. 

[3] demonstrated that a Weibull-based Monte Carlo simulation could be used to predict the 

fatigue life of simple multi-component rolling element bearings, and reasonable agreement with 
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experimental data was shown.  Similarly, Weibull-based Monte Carlo simulations were used to 

model the fatigue life of single-component rotating aluminum shafts [5], and complex multi-

component helicopter transmissions [6]. 

 

The fatigue lives of three different Vasco X-2 gear material lots, each with a different heat 

treatment, were reported in the literature [2].  The heat treatment lots were identified as Boeing-

Vertol, NASA, and Curtis Wright.  Corresponding heat treatment processes and resulting 

material properties can be found in references 1-2.  The experimental fatigue lives were 

determined by Townsend et. al [1-2]  using both the rolling-contact bench top test and the NASA 

gear test apparatus.  Weibull slopes, L10, and L50 from the experimental gear tests [2] are 

summarized in Table 1.  The failure index (number of failures out of the number of tests 

attempted) is also reported.   

 

Unlike the previous Monte Carlo fatigue simulations reported by Vlcek et. al. (3), this 

experimental data set included suspensions/censored data.  A suspension is a test that is 

terminated before failure.  The suspension may be random, due to factors such as mechanical or 

electrical breakdown of the tester.   More likely suspensions are intentional, such as stopping a 

test for economical reasons after a predefined threshold is exceeded.  While a suspension cannot 

be treated as a failure, it nevertheless represents useful information that should not be ignored.  

Leonard Johnson [7] discusses a methodology for accounting for suspensions in a Weibull 

analysis.   
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Suspensions within the Monte Carlo Simulation 

 

In the case of the Townsend [2] study, gear fatigue failure lives exceeding a predetermined 

threshold were encountered, and testing was suspended resulting in a failure index of 12 out of 

26 for the Modified Vasco X-2 gears heat treated according to the procedure of Boeing Vertol 

[2].  In the case of gears heat treated according to the NASA procedure, the failure index was 18 

out of 21.    To account for suspended tests, four different suspension models were developed 

and integrated into the Monte Carlo model of Vlcek et. al. [3].  The suspension models were: 

 

(i)   Use Weibull parameters  (Characteristic Life at which 63.2 percent of the specimens 

will have failed and Weibull slope) determined for the experimental fatigue lives 

(accounting for suspensions according to Johnson [7] in the preliminary Weibull 

analysis) as model inputs, and draw  simulated fatigue life subpopulations equal in 

size to the total number of experimental tests attempted/started, 

 

(ii) Use Weibull parameters  (Characteristic Life and Weibull slope) determined for the 

experimental fatigue lives as model inputs, and draw  simulated fatigue life 

subpopulations equal in size to the failure index of the suspended experiments, 

 

(iii) Use Weibull parameters  (Characteristic Life and Weibull slope) determined for the 

experimental fatigue lives as model inputs, assemble a random set of fatigue lives 

equal to the number of tests attempted, order the random set from smallest to largest, 
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and eliminated a sufficient number of large lives (working backwards from the 

largest) to match the failure index, and 

 

(iv)  Use Weibull parameters  (Characteristic Life and Weibull slope) determined for the 

experimental fatigue lives as model inputs, assemble a random set of fatigue lives 

equal to the number of tests attempted, order the random set from smallest to largest, 

and eliminated all lives above a predefined threshold. 

 

Confidence Numbers 

 

Statistical significance between compared L10 lives of two materials was established by using 

Johnson Confidence Numbers [7].  A Confidence Number is a statement of how often the same 

probabilistic variable, such as the L10 fatigue life, of material A  will be observed as being 

greater than that of Material B if the test and measurement were repeated one hundred times.  

Confidence Numbers greater than 90 percent (i.e. 90 out of 100 times measurement (A) will be 

greater than measurement (B) are considered statistically significant,  different or independent.   

 

Confidence Numbers were determined by (a) graphically interpolating the values from the 

published Figures of Leonard Johnson [7], and (b) by a method of comparing groups of 100 L10 

lives determined for Monte Carlo simulated fatigue lives.    

 

For technique (a) Confidence Numbers were graphically determined using curves and figures 

developed by Leonard Johnson [7].  Knowing the Weibull slope to select the correct figure, the 
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correct curve on the figure is selected based upon total degrees of freedom.  The Confidence 

number is read at  the  intersection between the ratio of two L10 lives being compared and the 

curve associated to the total degrees of freedom, the Confidence Number can be read.   Values 

that fall between curves (and figures) require graphical interpolation. 

 

For Confidence Number technique (b), one hundred L10 lives are determined using Monte Carlo 

simulated fatigue lives (as presented above) for each of two gear materials to be compared.  The 

first L10 life of material A is compared to the first of material B to determine which is greater.  

The process is repeated for the second thru the one hundredth.  In this manner the number of L10 

lives of material A that were greater than the number of L10 lives of material B (out of one 

hundred) is established.  The process is repeated a sufficient number of times (5,000-10,000) to 

establish significance in the trends in the results. 

 

 

Experimental Basis For Monte Carlo Simulation 

 

Townsend et al [2] also performed Rolling-Contact Fatigue tests for rolling elements made from 

AISI 9310 and Modified Vasco X-2 (NASA Heat Treatment).  Their results are summarized in 

Table 2.  Monte Carlo simulated fatigue lives of both AISI 9310 and Modified Vasco X-2 

(NASA Heat Treatment) were determined as part of this study.  Confidence Numbers were again 

used to establish with statistical significance whether or not the L10 lives of the two materials 

were different. 
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RESULTS AND DISCUSSION 

 

Monte Carlo simulated fatigue lives for AISI 9310 and Modified Vasco X-2 (3 different heat 

treatments) were determined using a Johnson-Weibull Monte Carlo model developed and 

validated by Vlcek et. al. [3].  Experimentally determined Weibull slope and characteristic life 

served as model inputs.    

 

Two of the test series reported in Townsend et. al. [2] had suspensions/censored data within the 

data sets—long lived test runs were terminated at a predetermined threshold.  Modified Vasco X-

2 spur gears with heat treatment procedure according to Boeing Vertol had a Failure Index of 12 

of 26;  in other words, 26 tests were attempted, 12 failed, and 14 long-lived tests were terminated 

at a threshold.  Twenty-one modified Vasco X-2 spur gears (with a heat treatment procedure 

according to NASA) tests were attempted and eighteen failed with three suspended.  The Monte 

Carlo fatigue failure model developed by Vlcek et. al. [3] had to be modified to account for 

suspensions (censored data sets). 

 

The average simulated and experimental (from ref [2]) spur gear fatigue L10 life for both AISI 

9310 and Vasco X-2 (three heat treatment procedures) are summarized in Table 3a.   

Additionally, the L50 life is reported in Table 3b, and the Weibull slopes are summarized in Table 

3c.   The Weibull slopes are a reflection of the scatter within the data; increasing slope indicates 

a decrease in scatter.    
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The simulated results, as reported in Table 3a-c, were generally in very good agreement with the 

experimental results reported in Townsend et. al [2].   The spur gears manufactured from Vasco 

X-2 according to the Boeing Vertol heat treatment procedure had a significantly longer average 

L10 fatigue life than those obtained for the other two heat treatment procedures of Vasco X-2.  

There is an order of magnitude difference between L10 life obtained with the Boeing Vertol heat 

treatment and the other two techniques.  This was consistent with the trend observed in the 

experimental work of Townsend et. al. [2].  The average simulated L10 life of the spur gears 

manufactured from Vasco X-2 according to the Boeing Vertol heat treatment procedure for each 

of the three suspension models were within 3.5 percent of the experimentally determined [2] L10 

life (Table 3a).  There is also excellent agreement between simulated and experimental   L50 lives 

(Table 3b) and simulated and experimental  Weibull slopes (Table 3c).   

 

The average simulated L10 life of spur gears manufactured from AISI 9310 was within 3.9 

percent of the experimentally determined [2] L10 life (Table 3a).  The average simulated L50 

fatigue life was within one percent of the experimental value (Table 3b) and the percent 

difference in Weibull slopes was 3.5 percent (Table 3c). 

 

 

While the simulated L10 life of spur gears manufactured from Vasco X-2 (Boeing Vertol heat 

treatment) was greater than the simulated L10 life of spur gears manufactured from AISI 9310 by 

a factor of 1.68, the statistical significance of this difference needs to be determined.  To this 

end, Confidence Numbers  were determined two different ways—(a) using the graphical 

techniques of Johnson [7], and (b) and establishing the comparative ranking between  two sets of 
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one hundred L10 fatigue lives.  The results of both techniques are summarized in Table 4.  The 

AISI 9310 served as the baseline to which the three heat treatments of Vasco X-2 were 

compared.  In the case of the spur gears manufactured from Vasco X-2 and heat treated 

according to the Boeing Vertol method and those manufactured from AISI 9310, there was no 

statistical difference between L10 lives.  The Confidence Numbers ranged from 67-77 percent  

for each of the four Suspension Models considered.  Since the Confidence Number did not 

exceed ninety-percent, the differences in L10 life are not considered statistically significant.  

Additionally, the simulated Confidence Numbers are in good agreement with that determined 

graphically using the experimental results of Townsend et al [2].   

 

With a simulated Confidence Number of 100 (Table 4), it can be stated that there is a significant 

difference between the L10 life of spur gears manufactured from Vasco X-2 (NASA heat 

treatment) and AISI 9310 (Table 4).  The L10 life of the Modified Vasco X-2 (NASA heat 

treatment) is significantly less than that of the AISI 9310 (Table 3a).  Similarly, with a simulated 

Confidence Number also of 100 (Table 4), the L10 life of the Modified Vasco X-2 (Curtis-Wright 

heat treatment) is significantly less than that of the AISI 9310 (Table 3a).  These observations are 

consistent with those of Townsend et al. who graphically determined Confidence numbers of 99 

percent for both of the above comparisons. 
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CONCLUSIONS 

 

1. Monte Carlo simulations of spur gear fatigue life predicted the L10 life of spur gears 

manufactured from  both AISI 9310 and Modified Vasco X-2 with very good agreement with 

values experimentally determined by Townsend et. al. [2]. 

 

2. Three of the four Suspension Models (i iii and iv) resulted in simulated Confidence Numbers 

that were reasonably close to those obtained graphically with experimental results from 

Townsend et.al. [2]. 

 

3. The simulated L10 fatigue life of spur gears manufactured from Modified Vasco X-2 was 

dependent upon heat treatment technique.  This observation is consistent with that 

experimentally determined by Townsend et. al.  {2]. 

 

4. While the simulated L10 life of spur gears manufactured from Modified Vasco X-2 (Boeing 

Vertol heat treatment)  was 1.68 times greater than that of  spur gears manufactured from 

AISI 9310, there was no statistical difference between the two L10 lives based upon simulated 

Confidence Numbers.  This conclusion is consistent with that experimentally determined by 

Townsend et. al.  [2]. 
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Table 1  Summary of Experimental Gear Fatigue Life Results from Townsend et al [2]  

Material Heat Treatment 

Procedure (Ref 2) 

L10 Gear 

System Life 

(revolutions) 

L50 Gear 

System Life 

(revolutions) 

Weibull 

Slope 

Tests 

Attempted 

(subset 

size) 

Failures of 

Tests 

Attempted 

AISI 9310 ----- 23x106 52x106 2.3 30 30 

Modified Vasco X-2 Boeing Vertol 38.4x106 253x106 1.0 26 12 

Modified Vasco X-2 NASA 0.8x106 27.6x106 0.53 21 18 

Modified Vasco X-2 Curtis-Wright 3.3x106 8x106 2.1 19 19 

Gear Test Parameters:  Pitch diameter, 8.89 centimeters (3.5 inch); spur gears; maximum Hertz stress, 1.71x109 N/m2 (248 ksi); 

speed, 10,000 rpm; lubricant, synthetic paraffinic oil; gear temperature, 86oC (170oF). 

 

 

 

 

 

Table 2  Summary of Experimental Rolling Contact Fatigue Life Results from Townsend et al [2] 

Material Heat 

Treatment 

Procedure 

(Ref 2) 

L10 Life 

 (stress cycles) 

L50 Life 

 (stress cycles) 

Weibull 

Slope 

Tests 

Attempted 

(subset 

size) 

Failures of 

Tests 

Attempted 

AISI 9310 ----- 4.18x106 9.43x106 2.31 10 10 

Modified Vasco X-2 NASA 6.3x106 14.8x106 2.2 20 20 

Rolling Contact Test Parameters:  Speed, 25,000 stress cycles per minute; maximum Hertz stress, 

4823x106 N/m2 (700 000 psi); lubricant, MIL-L-7808; temperature, ambient. 
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Table 3a: Average  L10 Life (cycles) Determined  with Experimental [2]and Monte Carlo 

Simulated Data (4 different methods of modeling suspensions) for AISI 9310 and Modified 

Vasco X-2 (three different heat treatments) Gear Material 

Material 

Heat 

Treatment 

Procedure 

Suspension 

Model (i) 

Suspension 

Model (ii) 

Suspension 

Model (iii) 

Suspension 

Model (iv) 

Experimental 

[2] 

 

AISI 9310 

 

---- 22.12x106 n/a* n/a* n/a* 23x106 

Modified 

Vasco X-2 
Boeing Vertol 37.06x106 39.39x106 38.41x106 38.63x106 38.4x106 

Modified 

Vasco X-2 
NASA 0.97x106 1.02x106 1.01x106 1.02x106 0.8x106 

Modified 

Vasco X-2 
Curtis-Wright 3.15x106 n/a* n/a* n/a* 3.3x106 

n/a*  -- Model not applicable because there were no suspensions in the test 

Method (i) – test population size equals attempted number of runs 

Method (ii)—test population size equals number of failures 

Method (iii)—test population size equals attempted number of runs, top of test populaton subset truncated to match 

number of failures 

Method (iv) )—test population size equals attempted number of runs, top of test population subset truncated at a 

predetermined threshold (300x106) 
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Table 3b: Average  L50 Life (cycles) Determined  with Experimental [2]and Monte Carlo 

Simulated Data (4 different methods of modeling suspensions) for AISI 9310 and Modified 

Vasco X-2 (three different heat treatments) Gear Material 

  Suspension 

Model (i) 

Suspension 

Model (ii) 

Suspension 

Model (iii) 

Suspension 

Model (iv) 

Experimental 

[2] 

 

AISI 9310 

 

---- 52.34x106 n/a* n/a* n/a* 52x106 

Modified 

Vasco X-2 
Boeing Vertol 255.66x106 261.84x106 307.97x106 296.20x106 253x106 

Modified 

Vasco X-2 
NASA 30.43x106 30.69x106 31.79x106 31.15x106 27.6x106 

Modified 

Vasco X-2 
Curtis-Wright 8.1x106 n/a* n/a* n/a* 8x106 

n/a*  -- Model not applicable because there were no suspensions in the test 

Method (i) – test population size equals attempted number of runs 

Method (ii)—test population size equals number of failures 

Method (iii)—test population size equals attempted number of runs, top of test populaton subset truncated to match 

number of failures 

Method (iv) )—test population size equals attempted number of runs, top of test population subset truncated at a 

predetermined threshold (300x106) 
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Table 3c: Average  Weibull Slope Determined  with Experimental [2]and Monte Carlo 

Simulated Data (4 different methods of modeling suspensions) for AISI 9310 and Modified 

Vasco X-2 (three different heat treatments) Gear Material 

  Suspension 

Model (i) 

Suspension 

Model (ii) 

Suspension 

Model (iii) 

Suspension 

Model (iv) 

Experimental 

[2] 

AISI 9310 ---- 2.22 n/a* n/a* n/a* 2.3 

Modified 

Vasco X-2 
Boeing Vertol 0.96 0.96 0.99 0.99 1.0 

Modified 

Vasco X-2 
NASA 0.51 0.51 0.51 0.51 0.53 

Modified 

Vasco X-2 
Curtis-Wright 2.02 n/a* n/a* n/a* n/a* 

       

n/a*  -- Model not applicable because there were no suspensions in the test 

Method (i) – test population size equals attempted number of runs 

Method (ii)—test population size equals number of failures 

Method (iii)—test population size equals attempted number of runs, top of test populaton subset truncated to match 

number of failures 

Method (iv) )—test population size equals attempted number of runs, top of test population subset truncated at a 

predetermined threshold (300x106) 
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Table 4:  Establishing Statistical Significance between L10 Lives Using Confidence Numbers 

Determined By Two Different Techniques 

  

Simulated Confidence Numbers+ 

Graphical 

Confidence 

Numbers++ 

Material Heat 

Treatment 

Suspension 

Model (i) 

Suspension 

Model (ii) 

Suspension 

Model (iii) 

Suspension 

Model (iv) 

Experimental 

 [2] 

 

AISI 9310 ---- ---- ---- ---- ---- 

 

---- 

 

Modified 

Vasco X-2 

Boeing 

Vertol 
77 67 76 76 80 

Modified 

Vasco X-2 
NASA 100 100 100 100 99 

Modified 

Vasco X-2 

Curtis-

Wright 
100 100 100 100 99 

Simulated Confidence Numbers+ -- Determining the number (out of 100) of  L10  lives (determined for simulated 

fatigue lives)  in group A that are greater than those in group B 

Graphical Confidence Numbers++ --Graphical Interpolation of Leonard Johnson’s Figures [7] using experimental 

results from Townsend et al [2].  

 

Method (i) – test population size equals attempted number of runs 

Method (ii)—test population size equals number of failures 

Method (iii)—test population size equals attempted number of runs, top of test populaton subset truncated to match 

number of failures 

Method (iv) )—test population size equals attempted number of runs, top of test population subset truncated at a 

predetermined threshold (300x106) 
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