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ABSTRACT

In this thesis, we present a new Feasible Interior-Point Method (IPM) for Linear

Complementarity Problem (LPC) over Symmetric Cones. The advantage of this

method lies in that it uses full Newton-steps, thus, avoiding the calculation of the

step size at each iteration. By suitable choice of parameters we prove the global

convergence of iterates which always stay in the the central path neighborhood. A

global convergence of the method is proved and an upper bound for the number of

iterations necessary to find ε-approximate solution of the problem is presented.

INDEX WORDS: Linear complementarity Problem, Interior-Point Method, Jordan
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CHAPTER 1

LINEAR COMPLEMENTARITY PROBLEM (LCP)

In this chapter we will give the basic definitions, state important results and discuss

the motivation of the work.

1.1 Overview

Problems of linear optimization (i.e. when the target function and constraints are

linear) appear in all aspects of life, engineering, science and business. By 1950s Linear

Optimization has developed into a thriving field of mathematics.

Linear Complementarity problem (LCP) was proposed in 1968 by Cottle and

Dantzig (see [3]) and is very closely connected to Linear Optimization problem (LP),

in a way it’s a natural extension of LP. The Karush-Kuhn-Tucker conditions for many

linear and non-linear optimization problem can be reduced to LCP. Some examples

will be shown in section 1.3.

The Euclidean Jordan algebras (EJA) were introduced by P. Jordan in 1933 as

a way of describing some aspects of Quantum Mechanics. Their algebraic structure

was studied quite extensively, however, only in recent decades it has been estab-

lished the connection between EJAs and the most important cases of cones used in

optimization, such as non-negative orthant, second order cone, and cone of positive

semidefinite symmetric matrices. Symmetric cones are cones of squares of EJAs and

serve as a unifying framework for problems of conic optimization and, in a way, classify

them. Faraut and Korny in their classical monograph on Jordan algebras, symmetric

cones and related topics [4] provide a very sophisticated theoretical apparatus. The

first to study conic formulation of convex optimization problems were Nesterov and
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Nemirovski(in [14]).

Interior-point methods (IPM) for convex optimization problems in the frame-

work of self-scaled cones, without the discovery of connection to EJA being yet made,

were studied by Nesterov and Todd in [16] and [17]. The first connection between

the self-scaled cones and symmetric cones, which can be completely classified in the

framework of EJA, was made in [7] by Güler. The first analysis of a short-step path-

following IPM for SCLO and SCLCP was made in [5, 6] by Faybusovich and, of

the first infeasible IPM for SCLCP by Rangarajan in [19], and of primal-dual IPMs

for SCLO by Alizadeh and Schmieta in [1], [2]. Analysis of kernel-based IPMs for

SCLO was made by Vieira in [24], and of full-Newton step IPMs for SCLO by Gu

in [8], in their respective Ph.D. theses. The literature on IPMs for LCPs over the

non-negative orthant is quite extensive, however there are very few results on LCPs

over the semidefinite cone, and even less so dealing with LCP over general symmetric

cones. As a pioneer in analysis of IPMs for Nonlinear Complementarity Problems

(NCP) over symmetric cones can be regarded Yoshise (see [25] and [25]).

Since late 1940s, a standard and most popular method of solving linear program-

ming problems was Simplex Method (SM), proposed by George Dantzig. Because

of linearity of constraints, the surface(boundary) of the feasible region looks like a

connected graph(the whole surface is a polyhidral). The method starts at a vertex

of the feasible region and goes from vertex to vertex along the edges decreasing the

objective function at every step. The method is finite, and it will either find the

solution, or show it’s non existence. Theoretically, for a LP problem in n-dimensional

space, the algorithm may have to visit each and every vertex and therefore will have

to have 2n iterations(see [11]). In practice, the algorithm is remarkably efficient and

usually takes O(n) iterations. Exponential number of iterations are never observed
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in practice, they appear only in artificially designed examples.

In 1976 Nemirovsky and Yudin [15] (in 1977 they were followed by Shor [23])

introduced another great method for solving of convex optimization problems - the

ellipsoid method. It works by encapsulating the minimizer of a convex function in a

sequence of ellipsoids whose volume decreases at each iteration. In 1984 Khachiyan

[10] showed that the ellipsoid method allows to solve the LP in polynomial time. This

was the first polynomial time algorithm for the LP. In practice, the method was far

surpassed by the SM. Nevertheless, the theoretical importance of the ellipsoid method

is hard to neglect.

Another great advancement came in 1984, when Karmarkar [9] introduced his

Interior-Point Method (IPM) for LP. IPM combines the efficiency of SM with the

theoretical advantages of the ellipsoid method and works in polynomial time. Unlike

the SM, which travels from vertex to vertex along the edges of the feasible region, the

IPM follows approximately a central path in the interior of the feasible region and

approaches optimal solution only asymptotically. Therefore the analysis of the IPMs

is substantially more complex than that of the SM. There are many efficient IPMs

for solving LP based on primal, dual, or primal-dual formulations of the LP. It is

established that the primal-dual formulation surpasses both the primal and the dual

formulation of the algorithm in efficiency. In this work we shall focus on the primal-

dual IPM, based on using full Newton step method in a carefully controlled manner.

Full Newton step IPMs for LP were first discussed by by Roos [19]. Calculation of

step size takes away lot of time in Newton based methods, full Newton step algorithms

avoid this by taking a full step at each iteration, which turns it into their advantage.
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Theoretical foundations of IPMs for convex optimization problems were laid by

Nesterov and Nemirovski [14] in 1994. They and others generalized the IPMs to solve

many important optimization problems, such as semidefinite optimization, second

order cone optimization, and general convex optimization problems.

1.2 Linear Complementarity Problem

The standard linear complementarity problem(LCP) is formulated in a following

way. Find x, s ∈ Rn satisfying 
s = Mx+ q,

xT s = 0,

x, s ≥ 0,

(1.1)

As we see (1.1) is not an optimization problem per se. However, some important

optimization problems such as linear and quadratic optimization problems can be

reduced to LCP. The equation xT s = 0 is called a complementarity condition, and

because both s and x belong to the first(non-negative) orthrant, it means that all

sixi = 0, i = 1, . . . , n. Therefore it is more convenient to rewrite the complementarity

condition as follows

xs = 0, (1.2)

where xs denotes H’Adamard product - a vector such that it’s i-th coordinate is xisi.

This way the problem is a bit more revealing, we know that for sixi to be zero, either

xi or si should be equal to zero. This way vectors x and s complement each other,
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where one has a non zero coordinate the other has to have zero.
s = Mx+ q,

xs = 0,

x, s ≥ 0

(1.3)

The solution of (1.3) is unique, if the matrix M is positive semi-definite, (∀x)(xTMx ≥

0)(more formal definition will be given in later chapters). The feasible region of (1.3)

is defined as the following set

F =
{

(x, s) ∈ R2n : s = Mx+ q, x ≥ 0, s ≥ 0
}
, (1.4)

and the strictly feasible region of the (1.3) is

F0 = {(x, s) ∈ F : x > 0, s > 0} .

The solution set of the (1.3) is given by

F ∗ =
{

(x∗, s∗) ∈ F : x∗T s∗ = 0
}
. (1.5)

and, as a subset of the above solution set, a set of strictly complementary solutions,

is given by

F ∗
s = {(x∗, s∗) ∈ F∗ : x∗ + s∗ > 0} . (1.6)

We can now say that the main idea of the LCP is to find vectors x, s (a solution

of the LCP) that are both feasible and complementary(i.e. (x, s) ∈ F ∗). If q � 0, the

LCP is always solvable with the zero vector being a trivial solution.(For both a and

b vectors over R, the notation a � b simply means that the vector v = a− b belongs

to R+).
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1.3 Examples

Importance of LCP in part comes from the fact that Karush Kuhn Tucker optimality

conditions of many problems can be reduced to LCP. In this section we will present

some examples of it. There are also direct applications of LCP in business, trans-

portation and engineering.

Example 1.3.1. Linear and Quadratic optimization problems

Quadratic optimization problem is formulated in following way. Given a

symmetric n × n matrix Q, matrix A ∈ Rn×m, vectors b ∈ Rm and c ∈ Rn find a

vector x ∈ Rn
+ satisfying 

min{cTx+ 1
2
xTQx}

Ax ≥ b

x ≥ 0

(1.7)

A linear optimization problem in a standard form is usually formulated in the

following way. Given a matrix A ∈ Rn×m, vectors b ∈ Rm and c ∈ Rn find a vector

x ∈ Rn
+ satisfying  min{cTx}

Ax ≥ b
(1.8)

Note, that when Q = 0 (1.7) is the same as (1.8). The Karush-Kuhn-Tucker(KKT)

conditions for (1.7) are

u = c+Qx− ATy = 0

v = −b+ Ax ≥ 0.
(1.9)

If we know denote
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s =

 u

v

 , z =

 x

y

 , q =

 c

−b

 , M =

 Q −AT

A 0

 . (1.10)

we can rewrite (1.9) in a more compact way

s = Mz + q, sT z = 0, s, z ∈ R2n
+ . (1.11)

Example 1.3.2. Bimatrix games.

Consider a game with two players, with n and m pure strategical choices respec-

tively.Their losses a reflected in matrix A for the first player and matrix B for the

second one, thus A,B ∈ Rn×m. In Game Theory a game is called zero sum game, if

A+ B = 0 and a bimatrix game if A+ B 6= 0. Each player is assigned a probability

vector, x for the first player and y for the second one. Player I chooses to play strat-

egy i with probability xi and Player II chooses to play strategy j with probability

yj. Therefore in order to comply with requirements of Probability Theory we have

to have
∑
xi = 1 and

∑
yj = 1. Defined this way, the losses of Player I and II, are

random variables with expectations xTAy for player I and xTBy for player II.

A player is changing his own strategy while the other player holds his strategy

fixed to minimize loss. i.e,

∀x ≥ 0 x̄TAȳ ≤ xTAȳ eTmx = 1,

∀y ≥ 0 x̄TBȳ ≤ x̄TBy eTny = 1,
(1.12)

where the e denotes the identity vector. The objective is to find (x̄, ȳ) that is called

Nash equilibrium pair. The problem of finding Nash equilibrium pair, with the help

of following lemma, is reduced to a LCP.
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Lemma 1.3.3. Suppose A,B ∈ Rm×n are positive loss matrices representing a game

Γ(A,B) and suppose that (s, t) ∈ Rm×n solves LCP(M,q), where

M =

 0 A

BT 0

 , q = −em+n ∈ Rm+n.

Then (x̄, ȳ) such that,

x̄ = s
eTms

and ȳ = t
eTmt

,

is the Nash equilibrium pair of Γ(A,B).

Example 1.3.4. The Market Equilibrium Problem

The state of an economy where the supplies of producers and the demands of

consumers are balanced at the resulting price level is called market equilibrium.

The conditions below represent the supply side in mathematical form

Supply conditions: 

min{cTx}

Ax ≥ b

Bx ≥ r∗

x ≥ 0,

(1.13)

where c is the vector of variable cost, x is the vector of production amount. As we see

(1.13) is a linear programming model. Econometric models with commodity prices as

the primary independent variables generates the market demand function. Basically,

we need to find a vector x∗ and subsequent vectors p∗ and r∗ such that technological

constraints on production are represented by the first condition in (1.13) and the
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demand requirement constraints are represented by the second condition in (1.13).

Denote the dual vector of market supply prices corresponding to the second constraint

in (1.13) by π∗.

Demand conditions:

r∗ = Q(p∗) = Dp∗ + d, (1.14)

where Q(·) is the market demand function with p∗ and r∗ representing the vectors of

demand prices and quantities, respectively.

Equilibrium condition:

p∗ = π∗ (1.15)

The Karush-Kuhn-Tucker conditions for LP problem (1.13) lead us to the fol-

lowing system 
y = c− ATv −BTπ ≥ 0, x ≥ 0, yTx = 0,

u = −b+ Ax ≥ 0, v ≥ 0, uTv = 0,

δ = −r +Bx ≥ 0, π ≥ 0, δTπ = 0.

(1.16)

The problem (1.13) has an optimal solution vector x∗ if and only if there exist vectors

v∗ and π∗ satisfying the conditions of the system (1.16).

If for r∗, we substitute the demand function (1.14) and we use condition (1.15),

then we can see that the conditions in (1.16) gives us the linear complementarity

problem where

q =


c

−b

−d

 , M =


0 −AT −BT

A 0 0

B 0 −D

 . (1.17)
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Observe that the matrix M in (1.17) is bisymmetric if and only if the matrix D

is symmetric. The above steps give us a fairly simple method how any linear problem

in general, can be expressed in the LCP framework. This can also be extended to

quadratic programming problems as stated below.

maximize dTx+ 1
2
xTDx+ bTy

subject to ATy +BTx ≤ c

x ≥ 0, y ≥ 0.

(1.18)

On the other hand, if D is not symmetric, then M is not bisymmetric and the

connection between the market equilibrium model and the quadratic program above

fails to exist.

1.4 Generalizations

So far we considered only the case of LCP where x, s ≥ 0, i.e. when x, s belong to

the non-negative orthrant. In this section we introduce generalizations we shall be

working with in later chapters. First we observe, that non-negative orthrant is an

example of a cone.

A cone K is a set with a following property: (∀t ∈ K )(∀α > 0)(αx ∈ K ).

We already observed that the non-negative orthrant Rn
+ is an example of a cone.

Another example of a cone is so called Lorenz cone Ln+1
+ , which will be described in

Example 2.4.1.

Let Ln+1 be the (n + 1)-dimensional real vector space whose elements are indexed

from zero. Denote (x0, x1, ..., xn) ∈ Rn+1 as (x0; x̄), with x̄ = (x1, ..., xn) ∈ Rn. The

cone of squares of Ln+1 is

Ln+1
+ = {x ∈ Rn+1 : x0 ≥ ‖x̄‖} (1.19)
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Figure 1.1: Graphical representation of ice-cream cone in R3

It is also known as ice-cream cone because of it’s shape in R2 and R3. We include

figure 1.1 and figure 1.4 with ice-cream cone in 3-dimensional and 3 dimensional

spaces respectively (made in Wolfram Mathematica).

Non-negative orthrant Rn
+ and Lorenz cone are both examples of symmetric cones.

We will deal with symmetric cones at length in section (2.3).

Returning back to (1.3) it is a natural way to alter the third condition x, s ∈ Rn
+ into

x, s ∈ Ln+1
+ , example (2.4.1)

We can substitute non-negative orthrant Rn
+ with a any symmetric cone K , given



12

Figure 1.2: Graphical representation of ice-cream cone in R2

that the operations are also appropriately updated.
s = Mx+ q,

xs = 0,

x, s ∈ K

(1.20)

An example of (1.20) and one way to generalize (1.3) is to change the variables

from vectors to matrices. We denote L n
+ as a cone of positive semi-definite n × n

matrices(see example 2.4.2 for details). Let now X,S ∈ L n
+ . Dimension of S n

+ as

a vector space is n̄ = n(n+1)
2

(cause the matrices are symmetrical), so it is natural to

take q ∈ Rn̄. Inner product is just the trace of a matrix product 〈X, Y 〉 = tr (XY ).

Let’s introduce linear operators P,Q : S n
+ 7−→ Rn̄, and a related to them LCP, which

we call semi-definite linear complimentarity problem (SDLCP)


P (X) +Q(S) = q,

XS = 0,

X, S ∈ L n
+

(1.21)
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Therefore, P (X) = (〈P1, X〉, . . . , 〈Pn̄, X〉)T andQ(S) = (〈Q1, S〉, . . . , 〈Qn̄, S〉)T , where

Pi, Qi ∈ S n
+ . We now can rewrite (1.21) by components

tr (PiX) + tr (QiS) = qi, i = 1, . . . , n̄

XS = 0,

X, S ∈ S n
+

(1.22)

Because the product of two symmetrical matrices is not necessary symmetrical as a

matrix and therefore is not even a binary algebraic operation (BAO) on L n
+ , and in

order to be able to use the Newton’s method, we have to substitute second equation

XS = 0 with a symmetrized one. It will now become X◦S = 0, where X◦S = XS+SX
2

.

This product is a BAO on L n
+ , and a commutative one.

Cones are natural generalization of non-negative orthrant Rn
+. This way we can

work with spaces far more advanced than the standard euclidean Rn. The most

potent theoretical apparatus to work with symmetric cones lies in Euclidean Jordan

algebras. Every symmetric cone is a cone of squares of some(i.e. all his elements

are squared elements of) Euclidean Jordan algebra. The formal definitions and most

important results shall be presented in the next chapter.



CHAPTER 2

EUCLIDEAN JORDAN ALGEBRAS AND SYMMETRIC CONES

In this chapter we introduce the concepts of Euclidean Jordan Algebras and Symmet-

ric Cones, very briefly go over their properties and state the most important results

on their characterization.

2.1 Introducing Jordan Algebras

Let us assume that J is finite dimensional inner product space over R - the field of

real numbers.

Definition 2.1.1. Bilinear mapping. A binary algebraic operation ◦ : J 2 −→J is

called bilinear if the following two properties(which one can call axioms of biliniarity)

hold. ∀x, y, z ∈J and∀α, β ∈ R

• (αx+ βy) ◦ z = α(x ◦ z) + β(y ◦ z);

• z ◦ (αx+ βy) = α(z ◦ x) + β(z ◦ y);

Definition 2.1.2. A finite-dimensional inner product space J over field R is called

a Jordan algebra if

1. A bilinear maping ◦ : J 2 −→J is defined. (Definition of R-algebra).

2. x ◦ y = y ◦ x. (Commutativity).

3. x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x. (Jordan’s axiom).

Definition 2.1.3. For an element x we define a linear map L(x) : J −→ J is

defined as follows

∀y ∈J (L(x)y = x ◦ y)
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We will call L(x) a linear operator of x(or associated with x). Part 3 in definition

2.1.2 means that the operators L(x) and L(x2) commute. We define xn = x ◦ xn−1

recursively, and call a property xn ◦ xm = xm+n power associativity. Jordan algebras

are not necessary associative, but they are power associative. The proof is a double

induction, by n and by m.

Definition 2.1.4. An element e is said to be identity if

∀x ∈J (x ◦ e = e ◦ x = x)

Identity is unique and the proof of this fact is trivial(e1, e2 are both identities in

J , then, by definition, e1 = e1 ◦ e2 = e2 ◦ e1 = e2). From now on we will assume that

identity exists in Jordan algebra J under our consideration. As in a basic Linear

Algebra course we will denote R[X] a ring of polynomials with one variable over the

field . For an element x from J we denote another ring of polynomials

R[x] = {p(x)|p ∈ R[X]} (2.1)

Because J is a finite dimensional inner product space, each element x has an integer

k (≤ DimJ ) such that a set of vectors {e, x, x2, x3, ..., xk} is linearly dependent.

Which means that exist real numbers a0, a1, a2, ..., ak such that

akx
k + ...+ a1x+ a0e = 0

We will call p(x) a minimal polynomial of x, if p(x) = 0; plus we will demand for it

to be monic and of minimal degree in order to have uniqueness. A minimal positive

integer k such that there exist a monic polynomial in R[X] that annihilates x we will

call a degree of element x. As we mentioned above degx ≤ DimJ . The minimal

polynomial of x is unique, with a trivial proof.
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Definition 2.1.5. Rank of inner product space J . We will call

r = max {degx|x ∈J }

the rank of J

An element x is said to be regular if deg {x} = r.

Lemma 2.1.6. The set of all regular elements is open and dense in J . There exist

polynomials a1, a2, ..., ar over J such that the minimal polynomial of every regular

element x in J is given by

f(λ;x) = λr − a1(x)λr−1 + a2(x)λr−2 − ...+ (−1)rar(x)

The polynomials a1, a2, ..., ar are unique and ai is homogeneous of degree i.

The polynomial f(λ;x) is called the characteristic polynomial of the regular

element x. Because the regular elements are dense in J , by continuity we can extend

the polynomials ai(x) and, therefore, the characteristic polynomial to all elements of

J . Note that the characteristic polynomial is a polynomial of degree r in λ, where r

is the rank of J . Moreover, the minimal polynomial coincides with the characteristic

polynomial for regular elements, but it divides the characteristic polynomial of non-

regular elements. The coefficient a1(x) is called the trace of x, denoted as tr(x), and

the coefficient ar(x) is called the determinant of x, denoted as det(x). The following

proposition gives us an important property of the trace.

Lemma 2.1.7. Trace is associative as a symmetric bilinear form, i.e.

tr((x ◦ y) ◦ z) = tr(x ◦ (y ◦ z)) (2.2)
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Definition 2.1.8. An element x ∈J is said to be invertible if

∃y ∈ R[X](x ◦ y = e)

We will call such y an inverse of x and denote it as x−1. Because J is power

associative, R[X] is associative and it is a ring, which means x−1 is unique. Now let

us turn to the linear operator L(x).

Lemma 2.1.9. If L(x) is invertible, then x is invertible and

x−1 = L(x)−1e

In the sequel we shall assume J to be a Jordan algebra over R with identity

element e and of rank r.

Definition 2.1.10. For x ∈J we define

P (x) = 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x). P is called a quadratic operator of x(or quadratic represen-

tation of x).

Lemma 2.1.11. An element x ∈ J is invertible if and only if P (x) is invertible,

moreover

P (x)x−1 = x

and

P (x)−1 = P (x−1).

Lemma 2.1.12. ∀x, y ∈J the following holds

1. The differential of the map x −→ x−1 is P (x)−1.
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2. If x and y are invertible, then P (x)y is invertible and

(P (x)y)−1 = P (x−1)y−1 (2.3)

3. P (P (y)x) = P (y)P (x)P (y).

In particular, the equation 3 of Lemma 2.1.12 is usually called the fundamental

formula.

2.2 Euclidean Jordan algebras

Let’s again denote J a Jordan algebra with identity over R.

Definition 2.2.1. Jordan algebra is said to be Euclidean if there exists a positive

definite symmetric bilinear form on J which is (quasi)associative; in other words,

there exists an inner product denoted by 〈·, ·〉, such that

∀x, y, z ∈J (〈x ◦ y, z〉 = 〈x, y ◦ z〉)

From now on we will assume J to be Euclidean Jordan algebra unless otherwise

explicitly mentioned. As in a standard Linear Algebra course an element c for which

c2 = c is called idempotent. Elements c1 and c2 are orthogonal if c1 ◦ c2 = 0.

Because

〈c1, c2〉 = 〈c2
1, c2〉 = 〈c1, c1 ◦ c2〉 = 〈c1, 0〉 = 0 (2.4)

orthogonal(with respect to ◦) elements are orthogonal with respect to Euclidean inner

product too. An idempotent is called primitive if it cannot be represented as a sum

of two orthogonal non-zero idempotents.
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Definition 2.2.2. (Jordan Frame) A set {c1, . . . , cr} is called a Jordan Frame(or

alternatively a complete system of orthogonal primitive idempotents) if each of ci is a

primitive idempotent, ∀i 6= j(ci ◦ cj = 0) and

r∑
i=1

ci = e

The notion of Jordan frame plays an extremely significant role in building the ap-

paratus of analysis per se on Euclidean Jordan algebras. So far they seem ”orphaned”

- there are only the most basic algebraic operations(addition, inner product, bilinear

form) defined here. Using Jordan frames we will be able to extend the definition of

any continuous real valued function of one variable into Euclidean Jordan algebras.

We will start with two crucial theorems.

Theorem 2.2.3. (First spectral theorem). For every element x ∈ J there exist

unique real numbers λ1, λ2 . . . λk, all distinct, and a unique Jordan frame {c1, c2, . . . ck}

such that

x =
k∑
i=1

λici. (2.5)

All ci ∈ R[x].

The numbers λi are called the eigenvalues of x and the equation (2.5) its spectral

decomposition.

As promised, given a real valued function f(·), we define

f(x) = f(λ1)c1 + f(λ2)c2 + . . .+ f(λk)ck. (2.6)

In light of the goal of this work, we would particularly interested in the inverse(provided

that neither of the eigenvalues is zero), square root(only if all the eigenvalues are non

negative) and square functions.

x−1 = λ−1
1 c1 + . . .+ λ−1

k ck. (2.7)
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x
1
2 = λ

1
2
1 c1 + . . .+ λ

1
2
k ck. (2.8)

x2 = λ2
1c1 + . . .+ λ2

kck. (2.9)

What is wonderful about the above definitions, is that they perfectly fit into the

”natural” algebraic way of defining inverse, square root and square. I.e. it is easy to

verify that

x−1 ◦ x = x ◦ x−1 = e (2.10)

as well as

x2 = x ◦ x (2.11)

and

x
1
2 ◦ x

1
2 = x (2.12)

Theorem 2.2.4. (Second spectral theorem) Let r be the rank of J . Given x ∈ J

there exist a Jordan frame {c1, c2, . . . cr} and real numbers λ1, λ2 . . . λr, such that

x =
r∑
i=1

λici. (2.13)

The numbers λ1, λ2 . . . λr as well as their multiplicities are uniquely determined by x.

Moreover,

ak(x) =
∑

1≤i1<...<ik≤r

λi1 , λi2 . . . λik , (2.14)

where ak is the polynomial defined in Lemma 2.1.6.

In particular

tr(x) =
r∑
i=1

λi, det(x) =
r∏
i=1

λi. (2.15)

To emphasize their dependence on x, we will write the eigenvalues as vector function

λ(x) ∈ Rr whose i-th component is λi(x). We will denote λmin(x) and λmax(x) as the

smallest and the largest eigenvalues of x respectively.
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Definition 2.2.5. Two elements x and y are called similar if they share the same set

of eigenvalues. We denote the relation of similarity with x ∼ y.

Another important theorem follows. It will help us to close the circle around the

Euclidean Jordan algebra concept connecting the inner product to the trace.

Theorem 2.2.6. Let J be Jordan algebra over R with identity element e. The

following statements are equivalent.

i J is an Euclidean Jordan algebra.

ii The symmetric bilinear form tr(x ◦ y) is positive definite, i.e. ∀x ∈J

tr(x ◦ x) > 0 (2.16)

From now on we will denote 〈x, y〉 = tr(x◦y) and call it the trace inner product.

We will also define the Frobenius norm associated with this inner product

‖x‖F =
√
〈x, x〉 =

√
tr(x2) =

√√√√ r∑
i=1

λ2
i = ‖λ(x)‖. (2.17)

The sequence of equations (2.17) is significant because it shows that the Frobenius

norm of element x equals standard Euclidean norm of its spectral vector λ(x).

2.3 Symmetric Cones

In this section we will introduce the notion of Symmetric cones, state the most im-

portant results concerning them and discuss some of their properties, all in the light

of the goal of this work. But first we need some definitions.

A set K is called convex if ∀x, y ∈ K and for any α ∈ [0, 1], we have αx+(1−α)y ∈
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K . A set K is called a cone if ∀x ∈ K ∀α ≥ 0(αx ∈ K ). Naturally, we will call a

set K a convex cone if it is both convex and a cone, which in practice means that

for all x, y ∈ K and α, β ≥ 0 we have αx+ βy ∈ K . An interior set of the cone K

is defined containing all the points that belong to K with some neighborhood

A set K∗ = {y ∈ J | < x, y >≥ 0, forallx ∈ K } is called a dual cone of

K (provided that K itself is a cone). K ∗ is always a convex cone, even when the

original one K is not. If a cone coincides with its dual, we call it self-dual. Self-dual

cones have non empty interior. Convex cone K is called homogeneous if for any

x, y ∈ intK there exist an invertible linear operator such that gK = K and gx = y.

Definition 2.3.1. (Symmetric cone). A cone K is called symmetric if it’s self-dual

and homogeneous.

Let’s denote the set of all invertible linear maps from J into itself by GL(J ).

A linear map g is orthogonal if g∗ = g−1, where g∗ denotes a conjugate map. We

shall cal a map g ∈ GL(J ) an automorphism of J if for every x and y in J , we

have g(x ◦ y) = g(x) ◦ g(y), which is equivalent to gL(x)g−1 = L(gx). The set of all

automorphisms of J is denoted as Aut(J ). A map g ∈ GL(J ) shall be called an

automorphism of K if gK = K . The set of all automorphisms of K is denoted

as Aut(K ). We will denote a set of all orthogonal isomorphisms on the cone as

OAut(K ) = {g ∈ Aut(K ) : g∗ = g−1}. (2.18)

The following facst are of importance to us.

Aut(J ) = OAut(K ). (2.19)

Lemma 2.3.2. The trace and the determinant are invariant under Aut(J ).
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We now introduce a relation of partial ordering between the elements of sym-

metric cones.

Definition 2.3.3. If x − y ∈ K then we define x �K y. If x − y ∈ intK then we

define x �K y.

Definition 2.3.4. Let J be Euclidean Jordan algebra, it’s cone of squares is

defined as a set

K (J ) = {x2|x ∈J } (2.20)

Cone of squares is the first link between cones and the realm of Euclidean Jordan

algebras. The following theorem specifies this connection.

Theorem 2.3.5. Let J be Euclidean Jordan algebra, then K (J ) is a symmetric

cone, and is the set of elements x ∈ J for which L(x) is positive semi definite.

Moreover, if x is invertible, then

P (x)intK (J ) = intK (J ) (2.21)

Theorem 2.3.6. A cone is symmetric if and only if it is a cone of squares of some

Euclidean Jordan algebra.

The above crucial and beautiful results show one to one correspondence between

the classes of Euclidean Jordan algebras and Symmetric cones. And now we can

use the apparatus of the former to study the latter. From now on, unless otherwise

specified, we shall have J as Euclidean Jordan algebra and assume K to be its cone

of squares K (J ).

Another important results follows.

Theorem 2.3.7. If x, s ∈ K , then tr(x ◦ s) ≥ 0. Moreover,

(tr(x ◦ s) = 0)⇐⇒ (x ◦ s = 0) (2.22)
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We will call an R-algebra J simple if it contains only trivial ideals- 0 and itself.

Theorem 2.3.8. If J is an Euclidean Jordan algebra, then it is in a unique way a

direct sum of simple Euclidean Jordan algebras.

Definition 2.3.9. A symmetric cone K in a Euclidean space J is called irre-

ducible(simple), if there doesn’t exist non trivial subspaces J1,

mathbbmathscrJ2 ⊂J and symmetric cones K1 ⊂J1,K2 ⊂J2, such that

J = J1

⊕
J2

K = K1

⊕
K2,

(2.23)

where
⊕

denotes direct sum.

Theorem 2.3.10. If K is a symmetric cone, then it is in a unique way a direct sum

of irreducible symmetric cones.

Theorem 2.3.11. If J is a simple Jordan algebra, then it is isomorphic to one of

the following algebras.

1. The algebra in space Rn+1 with Jordan multiplication defined as

x ◦ y = (xTy;x0ȳ + y0x̄), (2.24)

where x = (x0; x̄) and y = (y0; ȳ) with x0, y0 ∈ R and x̄, ȳ ∈ Rn.

2. The algebra of real symmetric matrices with Jordan multiplication defined as

X ◦ Y =
XY + Y X

2
. (2.25)

3. The algebra of complex Hermitian matrices with Jordan multiplication defined

as in (2.25).
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4. The algebra of quaternion Hermitian matrices, with Jordan multiplication de-

fined as in (2.25).

5. The algebra of 33 octonion Hermitian matrices with Jordan multiplication de-

fined as in (2.25).

Above theorem holds a tremendous significance. Any Jordan algebra can be

reduced to(or decomposed into) the combination of the cases enumerated in theorem

(2.25). We will continue with another way of decomposing Euclidean Jordan algebras.

Theorem 2.3.12. (First Peirce decomposition theorem). If J is a Euclidean Jordan

algebra and c an idempotent, then J as a vector space can be decomposed in a direct

sum of

J = J0

⊕
J 1

2

⊕
J1, (2.26)

where

Ji(c) = {x : c ◦ x = ix}. (2.27)

The subspaces J0 and J1 are subalgebras of J , which are orthogonal in terms

J0 ◦J1 = {0}. (2.28)

Moreover,

(J0(c)
⊕

J1(c)) ◦J 1
2
(c) ⊆J 1

2
(c), (2.29)

J 1
2
(c) ◦J 1

2
(c) ⊆J0(c)

⊕
J1(c). (2.30)

We shall have even more sophisticated decomposition.

Theorem 2.3.13. (Second Peirce decomposition theorem). Let J be a Euclidean

Jordan algebra and {c1, . . . , cr} a Jordan frame. Then
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1. J as a vector space can be decomposed in a direct sum of

J =
⊕
i≤j

Jij, (2.31)

where

Jii = Ji(ci) = Rci, (2.32)

Jij = J 1
2
(ci) ∩J 1

2
(cj), i 6= j. (2.33)

2. If we denote by Pij the orthogonal projection on Jij, then

Pii = P(ci), (2.34)

Pij = 4L(ci)L(cj), i 6= j. (2.35)

3.

Jij ◦Jij ⊆Jii + Jjj, (2.36)

Jij ◦Jjk ⊆Jik, i 6= k, (2.37)

Jij ◦Jkl ⊆ {0}, if{i, j} ∩ {k, l} = �. (2.38)

Corollary 2.3.14. Let x ∈J and x =
∑r

i=1 λici be its spectral decomposition. Then

the following statements hold

1. Matrices L(x) and P (x) commute and thus share a common system of eigen-

vectors; moreover, ci are among their common eigenvectors.

2. The eigenvalues of L(x) are of the form

λi + λj
2

, 1 ≤ i ≤ j ≤ r. (2.39)

3. The eigenvalues of P (x) are of the form

λiλj, 1 ≤ i ≤ j ≤ r. (2.40)
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We end this section with a very important lemma. We will use it in the next

chapter in order to have unique solution of the Newton method system of equation.

Lemma 2.3.15. Given x, s ∈ intK , there exists a unique w ∈ intK such that

x = P (w)s.

Moreover,

w = P (x)
1
2

(
P (x)

1
2 s
)− 1

2
=

[
P (s)−

1
2

(
P (s)

1
2x
) 1

2

]
. (2.41)

We will call w defined as in (2.41) the scaling point of x and s, in this order.

2.4 Examples

In this section we will present some examples of Euclidean Jordan algebras and sym-

metric cones.

Example 2.4.1. The quadratic terms algebra Ln+1.

This algebra has several names(quadratic terms algebra, Jordan spin algebra

among them) and is used in relativistic mechanic, where the Jordan algebras were

introduced in 1930-s. In optimization it is valued because of a second order cone

associated with it. Let Ln+1 be the (n + 1)-dimensional real vector space whose

elements are indexed from zero. Denote (x0, x1, ..., xn) ∈ Rn+1 as (x0; x̄), with x̄ =

(x1, ..., xn) ∈ Rn. Define the vector product in this space the following way

x ◦ y = (xTy;x0ȳ + y0x̄). (2.42)

The pair (Ln+1, ◦) is a Jordan algebra - this fact has a trivial proof - with an identity

element e = (1, 0, ..., 0). Every vector x in this algebra satisfies the equation

x2 − 2x0x+ (x2
0 − ‖x̄‖2)e = 0 (2.43)
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Therefore, the rank of Jordan spin algebra Ln+1 is 2, regardless of the dimension of

the real vector space it is based on. Each element has two eigenvalues x0 ± ‖x̄‖, and

therefore, tr(x) = 2x0 and det(x) = x2
0 − ‖x̄‖2. Linear and Quadratic operators have

the following matrices

L(x) =

 x0 x̄T

x̄ x0I

 , (2.44)

Q(x) = 2L(x)2 − L(x2) =

 xTx 2x0x̄
T

2x0x̄ det(x)I + 2x̄x̄T

 . (2.45)

The spectral decomposition of it’s elements is

x = λ1c1 + λ2c2, (2.46)

where, λ1 = x0 − ‖x̄‖, λ2 = x0 + ‖x̄‖ and the idempotents are

c1 =
1

2

 1

− x̄
‖x‖

 , c2 =
1

2

 1

x̄
‖x‖

 . (2.47)

The associative trace inner product, is

〈x, y〉 = tr(x ◦ y) = 2xTy. (2.48)

The cone of squares of Ln+1 is

Ln+1
+ = {x ∈ Rn+1 : x0 ≥ ‖x̄‖}. (2.49)

It is known as Lorenz cone, the ice-cream(because of it’s shape in R2andR3) cone and

by other names.

Example 2.4.2. Jordan algebra Sn of symmetric matrices and positive semi-definite

cone Ln+.
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Denote Sn the matrix space of n-dimensional symmetric real valued matrices.

We will define a symmetric multiplication by

X ◦ Y =
XY + Y X

2
. (2.50)

It is rather easy to show that both commutativity and Jordan’s axiom are satis-

fied and, therefore, (Sn, ◦) is a Jordan algebra. More important, X ◦ X = XX,

therefore characteristic and minimal polynomials, eigenvalues will not change due to

symmetrization of the matrix product. As we are dealing with symmetric(therefore

diagonalizible with real eigenvalues) matrices, the degX is the number of distinct

eigenvalues of X and so it is at most n. Thus, rankSn = n.

As we know, symmetric matrices are diagonalizible, and have only real eigenvalues.

Therefore, its cone of squares Ln+ combines those of symmetric matrices that have non

negative eigenvalues, i.e. positive semidefinite. Let A = QΛQT , where Λ is a diagonal

matrix with eigenvalues, while Q is unitary(orthogonal). The column vectors qi of Q

are mutually orthogonal. We can write

A =
n∑
i=1

λiqiq
T
i , (2.51)

where λi is i-th eigenvalue of A. It is easy to verify that qiq
T
i form a Jordan frame,

using the properties of orthogonal(unitary) matrices.



CHAPTER 3

FEASIBLE INTERIOR POINT METHOD

3.1 System

Let J be a Euclidean Jordan Algebra with rank r, and K be its respective cone

of squares. As we already know, given a square matrix M and a column vector q a

Linear Complementary Problem is formulated as a system


s = Mx+ q

x ◦ s = 0

x, s ∈ K .

(3.1)

As was discussed in the section 1.4, the change from (1.3) is the third line, in

addition, the appropriate operations have to be taken into account. Instead of positive

orthrant we require for x and s to belong to a symmetric cone.

Before setting a Newton system, we need to parametrize (3.1). Newton method

is known to have stability problems when (at least)one of the coordinates is close (or

equal) to zero. Therefore we change the second line in the system by parametrizing

it, in stead of zeros we will have x ◦ s = µe, where µ is positive scalar, and e is a unit

vector. Now we also require strict feasibility x, s ∈ intK . The system now looks the

following way: 
s = Mx+ q

x ◦ s = µe

x, s ∈ intK .

(3.2)

For each µ > 0 the system (3.2) has a unique solution (x(µ), s(µ)), when M is positive

semi-definite, and we call the pair (x(µ), s(µ)) the µ-center of the problem (3.1). The
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set of µ-centers (with µ running through all positive real numbers) shall be known as

the Central path of (3.1). If µ −→ 0, then the limit of the central path exists and

since the limit points satisfy the complementarity condition, the limit yields optimal

solution for the problem (3.1) [6]. The main idea of the method is to approximately

trace a central path while reducing µ to 0.

Now everything is ready to set up the Newton system. First of all, let’s rewrite the

above system as follows  s−Mx+ q = 0

x ◦ s− µe = 0.
(3.3)

Denote

z =

 x

s


and

F (z) =

 s−Mx− q

x ◦ s− µe

 . (3.4)

The gradient of F is, thus,

∇F (z) =

 −M I

S X


.

The Newtonian system, therefore, is −M I

S X


 ∆x

∆s

 = −F (z) (3.5)
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or equivalently  −M∆x+ ∆s = s−Mx− q = 0

s∆x+ x∆s = µe− x ◦ s.
(3.6)

Because L(x) and L(s) do not commute in general, - this in it’s turn is an

implication of the absence of associativity in Jordan algebras - the above system

doesn’t necessarily poses a unique solution. We have to scale it in the same way as

in [8]. As x, s ∈ intK , from Lemma 2.1.12 we have

x ◦ s = µe

if and only if

x = µs−1.

Let’s act with P (u), where u ∈ intK , on the last identity, we obtain

P (u)x = µP (u)s−1 = µ(P (u−1)s)−1,

which is equivalent (just multiply by P (u−1)s from the right) to

P (u)x ◦ P (u−1)s = µe.

We will replace second equation in parametrized system (3.4) with the one above.

This scaling scheme depends on the choice of u. Our new Newtonian system looks as

follows  s = Mx+ q

P (u)x ◦ P (u−1)s = µe
. (3.7)

Again denote

z =

 x

s
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and

F (z) =

 s−Mx− q

P (u)x ◦ P (u−1)s− µe

 .

The Newtonian system is −M I

P (u−1)s ◦ P (u) P (u)X ◦ P (u−1)


 ∆x

∆s

 = −F (z) (3.8)

or equivalently

 −M∆x+ ∆s = 0

P (u−1)s ◦ P (u)∆x+ P (u)x ◦ P (u−1)∆s = µe− P (u)x ◦ P (u−1)s.
(3.9)

3.2 NT-scaling

There are different choices of u. We will choose Nesterov-Todd scaling scheme(NT-

scaling scheme) and the resulting directions are called Nesterov-Todd directions(NT-

directions). This scaling scheme was first proposed by Nesterov and Todd for self-

scaling cones in [16, 17] and then applied by Faybusovich in [5, 6] for symmetric

cones. According to NT-scaling scheme u = w−
1
2 , where w is a scaling point of x and

s. From Lemma 2.3.15 we know that

w = P (x)
1
2

(
P (x)

1
2 s
)− 1

2
=

[
P (s)−

1
2

(
P (s)

1
2x
) 1

2

]
. (3.10)

Define a variation vector v as follows

v =
P (w)−

1
2x

√
µ

=

[
P (w)

1
2 s

√
µ

]
(3.11)
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We also introduce slightly altered direction vectors, which would be used purely

for analysis of the algorithm.

dx =
P (w)−

1
2 ∆x

√
µ

, ds =
P (w)

1
2 ∆s

√
µ

(3.12)

Thus

∆x =
√
µP (w)

1
2dx , ∆s =

√
µP (w)−

1
2ds (3.13)

And the system (3.9) transforms into


√
µP (w)−

1
2ds −M

√
µP (w)

1
2dx = 0

√
µP (w)

1
2 s ◦ P (w)−

1
2P (w)

1
2dx +

+
√
µP (w)−

1
2x ◦ P (w)

1
2P (w)−

1
2ds = µe− P (w)−

1
2x ◦ P (w)

1
2 s.

(3.14)

And after we simplify it


√
µP (w)−

1
2ds −M

√
µP (w)

1
2dx = 0

√
µP (w)

1
2S ◦ dx +

√
µP (w)−

1
2x ◦ ds = µe− P (w)−

1
2x ◦ P (w)

1
2 s.

(3.15)

Multiply first equation by P (w)
1
2

√
µ

and divide the second by by µ to obtain

 ds − P (w)
1
2MP (w)

1
2dx = 0

P (w)
1
2 s◦dx√
µ

+ P (w)−
1
2 x◦ds√
µ

= e− v2.
(3.16)
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If we now denote M̄ = P (w)
1
2MP (w)

1
2 and recall the definition of the variation

vector, we have

 ds − M̄dx = 0

v ◦ dx + v ◦ ds = e− v2.
(3.17)

Dividing the second equation by v we’ll come to the system ds − M̄dx = 0

dx + ds = v−1 − v.
(3.18)

3.3 The Algorithm

Previous discussion can be summarized in the following Algorithm.
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Algorithm: Feasible Full Newton-step Interior Point Algorithm for LCP

over Symmetric Cones

Start

Input:

An accuracy parameter ε > 0;

set the threshold parameter τ = 1√
2
;

set barrier update parameter θ = 1
r
√

2
;

a starting point (x0, s0) ∈ K , µ0 > 0

such that s0 = M̄x0 + q0 and δ (x0, s0, µ0) ≤ τ .

begin
x := x0; s := s0; µ := µ0;

while (µ ≥ ε) or (‖x ◦ s‖F ≥ ε) do.

begin
Calculate w using formula (3.10);

update the the barrier parameter µ := (1− θ)µ;

calculate search directions ∆x,∆s by solving

the system (3.9) for u = w−
1
2 ;

update x := x+ ∆x and s := s+ ∆s.

end

end

Output: ε-approximate solution (x, s)

Finish

Figure 3.1: Feasible Full Newton-step Interior Point Algorithm for LCP over Sym-

metric Cones



CHAPTER 4

ANALYSIS OF THE ALGORITHM

4.1 Feasibility of iterates

In this and following section we will present and discuss the Feasible IPM for LCP

over symmetric cones. First we state two lemmas which will be of utmost importance

in the analysis of the algorithm. We will start with a lemma estimating the range of

eigenvalues of a ◦ product.

Lemma 4.1.1. (Analog of Lemma 4.49 in [8]) Let J be Euclidean-Jordan alge-

bra, x, s ∈ J , and 〈x, s〉 ≥ 0, then

−1

4
‖x+ s‖2

F e �K x ◦ s �K
1

4
‖x+ s‖2

F e (4.1)

Proof. We write

x ◦ s =
1

4
((x+ s)2 − (x− s)2).

Since (x+ s)2 ∈ K, then

x ◦ s+
1

4
(x− s)2 ∈ K.

We know that

(x− s)2 �K λmax{(x− s)2}e �K ‖x− s‖2
F e. (4.2)

Hence,

x ◦ s+
1

4
‖x− s‖2

F e ∈ K (4.3)

and

−1

4
‖x− s‖2

F e �K x ◦ s. (4.4)

Using the same argument we have

x ◦ s =
1

4
((x+ s)2 − (x− s)2) �K

1

4
(x+ s)2, (4.5)
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and

(x+ s)2 �K λmax{(x+ s)2}e �K ‖x+ s‖2
F e. (4.6)

Hence,

x ◦ s �K
1

4
‖x+ s‖2

F e. (4.7)

We, therefore, have

−1

4
‖x− s‖2

F e �K x ◦ s �K
1

4
‖x+ s‖2

F e. (4.8)

Notice that since 〈x, s〉 ≥ 0 we have

‖x+ s‖2
F = 〈x+ s, x+ s〉 =

= 〈x, x〉+ 〈s, s〉+ 2〈x, s〉 ≥

≥ 〈x, x〉+ 〈s, s〉 ≥

≥ 〈x, x〉+ 〈s, s〉 − 2〈x, s〉 = ‖x− s‖2
F ,

(4.9)

which implies that

‖x+ s‖2
F e �K ‖x− s‖2

F e (4.10)

and

−1

4
‖x+ s‖2

F e �K x ◦ s �K
1

4
‖x+ s‖2

F e (4.11)

Q.E.D.

The following lemma connects the norm of a product with norm of a sum.

Lemma 4.1.2. Let J be Euclidean-Jordan algebra, x, s ∈ J , and 〈x, s〉 ≥ 0. Then

‖x ◦ s‖F ≤
1

2
√

2
‖x+ s‖2

F . (4.12)
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Proof. As in the previous lemma

‖x ◦ s‖2
F = ‖1

4
((x+ s)2 − (x− s)2)‖2

F =
1

16
tr[((x+ s)2 − (x− s)2)2] =

=
1

16
[tr((x+ s)4) + tr((x− s)4)− 2tr((x+ s)4)] ≤

≤ 1

16
[tr((x+ s)4) + tr((x− s)4)] =

=
1

16
‖(x+ s)2‖2

F + ‖(x− s)2‖2
F ≤

=
1

8
‖(x+ s)2‖2

F .

Thus,

‖x ◦ s‖F ≤
1

2
√

2
‖x+ s‖2

F (4.13)

Q.E.D.

We shall call x, s such that x ◦ s = µe, the µ−centers and denote them as

x(µ), s(µ). Looking at the second equation of the system (3.18) it is quite natural to

take

δ(x, s, µ) = δ(v) =
1

2
‖v − v−1‖F (4.14)

as a measure of closeness of our solution x, s to the µ−centers x(µ), s(µ). One can

show that v = e is equivalent to x, s being the µ−centers.

We will use Frobenius norm as defined in Chapter 2.

4δ2(v) = ‖v − v−1‖2
F = 〈v − v−1; v − v−1〉 =

〈v; v〉+ 〈v−1; v−1〉 − 2〈v; v−1〉 = tr(v2) + tr(v−2)− 2tr(e).
(4.15)

We can rewrite x+ and s+ as follows

x+ = x+ ∆x = x+
√
µP (w)

1
2dx =

√
µP (w)

1
2 (v + dx)

s+ = s+ ∆s = s+
√
µP (w)−

1
2ds =

√
µP (w)−

1
2 (v + ds)

(4.16)
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As we know from [8] both P (w)−
1
2 and P (w)

1
2 are automorphisms on K , and

therefore x+,s+ are feasible (strictly feasible) if and only if v + dx, v + ds ∈ K

(v + dx, v + ds ∈ intK ).

The following result will be used in proving the feasibility of iterates.

Lemma 4.1.3. If δ(v) ≤ 1, then e+dx ◦ds ∈ K, if δ(v) < 1, then e+dx ◦ds ∈ intK.

Proof. Since 〈dx ◦ ds〉 ≥ 0 according to Lemma 4.1.1,

−1

4
‖dx + ds‖2

F e �K dx ◦ ds �K
1

4
‖dx + ds‖2

F e (4.17)

implying

|λ|{dx ◦ ds}| ≤
1

4
‖dx + ds‖2

F = δ2(v) (4.18)

and

−δ2(v) ≤ λ{dx ◦ ds}) ≤ δ2(v) (4.19)

1− δ2(v) ≤ λ{e+ dx ◦ ds} ≤ 1 + δ2(v) (4.20)

Therefore, if δ(v) ≤ 1

λ{e+ dx ◦ ds} ≥ 0⇐⇒ e+ dx ◦ ds ∈ K (4.21)

and if δ(v) < 1

λ{e+ dx ◦ ds} > 0⇐⇒ e+ dx ◦ ds ∈ intK (4.22)

Q.E.D.

The following theorem will be our main result.
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Theorem 4.1.4. The iterates with full NT-step are feasible if δ(v) ≤ 1 and strictly

feasible if δ(v) < 1.

Proof. For 0 ≤ α ≤ 1 denote

vαx = v + αdx||vαs = v + αds (4.23)

and consider

vαx ◦ vαs = (v + αdx) ◦ (v + αds) = (4.24)

= v2 + αv ◦ (dx + ds) + α2dx ◦ ds = v2 + αv ◦ (v−1 − v) + α2dx ◦ ds =

= (1− α)v2 + αe+ α2dx ◦ ds
(4.25)

Case δ(v) ≤ 1.

From Lemma 4.2.1 we know that e+ dx ◦ ds ∈ K thus dx ◦ ds �K −e, hence

vαx ◦ vαs �K (1− α)v2 + αe− α2e =

= (1− α)(v2 + αe).

For α ∈ [0; 1), (1− α)(v2 + αe) ∈ intK and

vαx ◦ vαs �K 0.

If we now use Lemma 4.51[8] we shall have for α ∈ [0; 1)

det(vαx ) 6= 0,

and

det(vαs ) 6= 0

Since

det(v0
x) = det(v0

s) = det(v) > 0,
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because of continuity of both vectors for α ∈ [0; 1)

det(vαx ), det(vαs ) > 0.

Thus, for any eigenvalues of respective vectors we have (assuming again that α ∈

[0; 1)) λ(vαx ) > 0 and λ(vαs ) > 0. Using the continuity with respect to α once more

we have

λ(v1
x) ≥ 0 , λ(v1

s) ≥ 0, (4.26)

and we are done taking into consideration our remark on feasibility.

Case δ(v) < 1.

Using Lemma 4.2.1 as above for α ∈ [0; 1]

vαx ◦ vαs �K (1− α)v2 + αe− α2e =

= (1− α)(v2 + αe) ≥ 0,

which means that vαx ◦ vαs ∈ intK. Again by lemma 4.51[8] we have

det(vαx ) 6= 0,

det(vαs ) 6= 0.

and, because

det(v0
x) = det(v0

s) = det(v) > 0, rt

by continuity for α ∈ [0; 1]

det(vαx ) > 0, (4.27)

det(vαs ) > 0,

which leads us to

v + dx, v + ds ∈ intK . (4.28)

Q.E.D.
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4.2 Quadratic convergence of iterates

In this section we shall discuss the question of convergence of the Algorithm stated

in Figure 3.1. To start we state some auxiliary lemmas which then will be used in

the proof of the convergence of the Algorithm.

Lemma 4.2.1. Let x, s ∈ intK, µ > 0. Then

〈x+; s+〉 = µ(tr(e) + 〈dx; ds〉). (4.29)

Proof.

〈x+; s+〉 = 〈√µP (w)
1
2 (v + dx);

√
µP (w)−

1
2 (v + ds)〉 =

= µ(〈v; v〉+ 〈v; dx + ds〉+ 〈dx; ds〉) =

= µ(〈v; v〉+ 〈v; v−1 − v〉+ 〈dx; ds〉) =

= µ(〈v; v〉+ 〈v; v−1〉 − 〈v; v〉+ 〈dx; ds〉) =

= µ(tr(e) + 〈dx; ds〉)

Q.E.D.

Lemma 4.2.2. (Analog of Lemma 5.5 in [8]) If we denote

v+ =
P (w+)−

1
2x+

√
µ

=
P (w+)

1
2 s+

√
µ

, (4.30)

then

v+ ∼ (P (v + dx)
1
2 (v + ds))

1
2 .

Proof. By the scaling point lemma(Lemma 4.46 in [8]) we have

√
µv+ = P (w+)

1
2 s+ ∼ (P (x+)

1
2 s+)

1
2 . (4.31)
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By Lemma 4.45 in [8] we have

P (x+)
1
2 s+ = µP (P (w)

1
2 (v+dx))

1
2 ·P (w)

−1
2 (v+ds) ∼ µP (w)

1
2 (v+dx)(v+ds) (4.32)

Thus,

v+ ∼ (P (v + dx)
1
2 (v + ds))

1
2 ,

which concludes the proof.

Lemma 4.2.3. (Lemma 4.56 in [8]) Let x, s ∈ intK , then

‖P (x)
1
2 s− e‖F ≤ ‖x ◦ s− e‖F (4.33)

Lemma 4.2.4. (Lemma 4.58 in [8]) Let x, s ∈ intK , then

λmin

(
P (x)

1
2 s
)
≥ λmin (x ◦ s) . (4.34)

What follows shall be named Quadratic Convergence Theorem.

Theorem 4.2.5. If δ = δ(v) < 1, then the full NT-step, defined in algorithm in figure

3.1, is strictly feasible and

δ(x+, s+, µ) = δ(v+) ≤ δ2√
2(1− δ2)

. (4.35)

Proof. From Theorem 4.1.4 we - because δ < 1 - have v+dx, v+ds, (v+dx)◦(v+ds) ∈

intK Let us denote(as in [8])

u = P (v + dx)
1
2 (v + ds) ∈ intK , (4.36)

ū = (v + dx) ◦ (v + ds) ∈ intK . (4.37)

From Lemma 4.2.2 it follows that v+ ∼ u
1
2 , thus,

v+ − (v+)−1 ∼ u
1
2 − u−

1
2 . (4.38)



45

Now

2δ(v+) = ‖v+ − (v+)−1‖F = ‖u
1
2 − u−

1
2‖F = ‖u−

1
2 (u− e)‖F ≤

≤ ‖u− e‖F
λmin(u

1
2 )

=
‖u− e‖F
λmin(u)

1
2

.

At the same time, using Lemma 4.2.3, we get

‖P (v + dx)
1
2 (v + ds)‖F ≤ ‖(v + dx) ◦ (v + ds)‖F (4.39)

in our terms it is

‖u− e‖F ≤ ‖ū− e‖F (4.40)

and with the help of Lemma 4.2.4 we arrive at

λmin(P (v + dx)
1
2 (v + ds)) ≥ λmin((v + dx) ◦ (v + ds)) (4.41)

which is again simplified with our notation to

λmin(u) ≥ λmin(ū). (4.42)

Hence,

2δ(v+) ≤ ‖u− e‖F
λmin(u)

1
2

≤ ‖ū− e‖F
λmin(ū)

1
2

. (4.43)

Recall that

ū = (v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds =

= v2 + v ◦ (v−1 − v) + dx ◦ ds = v2 + e− v2 + dx ◦ ds = e+ dx ◦ ds
(4.44)

If we now combine two last formulas, by substituting (4.44) into (4.43) we will get

2δ(v+) ≤ ‖e+ dx ◦ ds − e‖F
λmin(e+ dx ◦ ds)

1
2

≤ ‖dx ◦ ds‖F
1 + λmin(dx ◦ ds)

1
2

. (4.45)

Now, we can use Lemma 4.1.1 in order to get

λmin(dx ◦ ds) ≥ −
1

4
‖dx + ds‖2

F = −δ2(v) = −δ2, (4.46)
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1 + λmin(dx ◦ ds) ≥ 1− δ2. (4.47)

From Lemma 4.1.2 we have

‖dx ◦ ds‖F ≤
1

2
√

2
‖dx + ds‖2

F =
√

2δ2 (4.48)

Bottom line, we have

2δ(v+) ≤
√

2δ2

√
1− δ2

(4.49)

and the inequality

δ(v+) ≤ δ2√
2 · (1− δ2)

(4.50)

concludes the proof.

Q.E.D.

4.3 Updating the barrier parameter

Lemma 4.3.1. Let x, s ∈ intK, δ = δ(x, s;µ), and tr(x ◦ s) = µ(tr(e) + tr(dx ◦ ds)).

If µ+ = (1− θ)µ for some µ ∈ (0; 1), then

δ(x, s;µ+)2 ≤ 2θ − θ2

4(1− θ)
· δ2tr(e) + (1− θ)δ2 +

θ2

4(1− θ)
tr(e). (4.51)

Proof. Denote µ+ = (1 − θ)µ, then v(x, s, µ+) = v√
1−θ . Recall that because of com-

mutativity of the inner product(trace in our case) we can write

µtr(v2) = µtr(
P (w)−

1
2x

√
µ

◦ P (w)
1
2 s

√
µ

) =

= tr(x ◦ s) = µ(tr(e) + tr(dx ◦ ds)). (4.52)

Thus,

‖v‖2
F = tr(v2) = tr(e) + tr(dx ◦ ds). (4.53)
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Now, consider

4δ2(x, s;µ+) = ‖ v√
1− θ

−
√

1− θv−1‖2
F = ‖ v√

1− θ
−
√

1− θv+
√

1− θv−
√

1− θv−1‖2
F =

= ‖ θv√
1− θ

+
√

1− θ(v − v−1)‖2
F =

θ2‖v‖2
F

1− θ
+ (1− θ)‖v − v−1‖2

F + 2θ〈v; v − v−1〉 =

= (
θ2

1− θ
+ 2θ)‖v‖2

F + 4(1− θ)δ2 − 2θtr(e) =

= (
θ2

1− θ
+ 2θ)(tr(e) + tr(dx ◦ ds)) + 4(1− θ)δ2 − 2θtr(e) =

= (
θ2

1− θ
+ 2θ)tr(dx ◦ ds) + 4(1− θ)δ2 +

θ2

1− θ
tr(e) (4.54)

Now, we recall that due to the Lemma 4.1.1 we have

−1

4
‖dx + ds‖2

F e �K dx ◦ ds �K
1

4
‖dx + ds‖2

F e, (4.55)

which means, that we can apply the trace-operator to the second inequality and

obtain

tr(dx ◦ ds) ≤
1

4
‖dx + ds‖2

F tr(e) = δ2tr(e) (4.56)

Continuing with the formula for δ2(x, s;µ+)

4δ2(x, s;µ+) = (
θ2

1− θ
+ 2θ)tr(dx ◦ ds) + 4(1− θ)δ2 +

θ2

1− θ
tr(e) ≤

≤ (
θ2

1− θ
+ 2θ) · 1

4
‖dx + ds‖2

F tr(e) + 4(1− θ)δ2 +
θ2

1− θ
tr(e) =

=
2θ − θ2

1− θ
· δ2tr(e) + 4(1− θ)δ2 +

θ2

1− θ
tr(e)
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4.4 Iteration bound

Let again J be a Euclidean Jordan Algebra with rank r, and K be its respective

cone of squares. In the Algorithm in the Figure 3.1 set τ = 1√
2
, θ = 1√

2r
. Therefore,

δ(x0, s0, µ0) ≤ τ = 1√
2
. First, we update the current point. Using Theorem 4.2.5 we

have

δ(x+, s+;µ) ≤ δ2√
2(1− δ2)

≤
1
2√

2(1− 1
2
)

=
1

2
<

1√
2
. (4.57)

It is crucial that δ(x+, s+;µ) ≤ 1
2
. We will rely on this estimate heavily in order to

prove that the Algorithm in the Figure 3.1 is well defined.

Next, we update the barrier parameter µ+ = (1 − θ)µ, and using Lemma 4.3.1 we

obtain, using abbreviation δ+ = δ(x+, s+;µ),

δ(x+, s+;µ+)2 ≤ 2θ − θ2

4(1− θ)
(δ+)2tr(e) + (1− θ)(δ+)2 +

θ2

4(1− θ)
tr(e) =

=
2θ − θ2

4(1− θ)
(δ+)2r + (1− θ)(δ+)2 +

θ2

4(1− θ)
r

(4.58)

Now, using the estimate (4.57), we check whether the inequality δ(x+, s+;µ+) ≤ 1√
2

is satisfied.

δ(x+, s+;µ+)2 ≤ 2θ − θ2

16(1− θ)
· r +

(1− θ)
4

+
θ2

4(1− θ)
r =

=
2θ

16(1− θ)
· r − θ2

16(1− θ)
· r +

(1− θ)
4

+
θ2

4(1− θ)
r =

=
1

8
√

2(1− θ)
− 1

32r(1− θ)
+

(1− θ)
4

+
1

8r(1− θ)
=

=
1

8
√

2(1− θ)
+

(1− θ)
4

+
3

32r(1− θ)
≤ 15

32
<

1

2

(4.59)

The last non trivial inequality in (4.59) is due to the fact that the function f(θ) =

1
8
√

2(1−θ) + (1−θ)
4

+ 3
32r(1−θ) is convex on [0; 1

2
] and f(0), f(1

2
) ≤ 15

32
Thus, the algorithm

is well defined, we start with the property δ ≤ τ = 1√
2

= τ and maintain it through

every iteration.
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Now we are ready to calculate the upper bound on the number of iterations the

Algorithm in figure 3.1 needs to obtain an ε-approximate solution (i.e. a solution pair

x, s satisfying 〈x; s〉 ≤ ε ). At each iteration the duality gap, due to Lemma 4.2.1, is

〈x+; s+〉 = µ(tr(e) + 〈dx; ds〉) ≤ µr(1 + δ2) ≤ µ

(
3r

2

)
. (4.60)

After each iteration µ is reduced by the factor (1 − θ). Therefore after n iterations

the duality gap would satisfy

〈x+; s+〉 ≤ (1− θ)nµ0

(
3r

2

)
. (4.61)

As we need 〈x+; s+〉 ≤ ε, it suffices to require (1− θ)nµ0

(
3r
2

)
≤ ε. Taking logarithm

of this inequality we obtain

n log 1− θ + log µ0
3r

2
≤ log ε (4.62)

or equivalently

log µ0
3r

2
− log ε ≤ −n log 1− θ (4.63)

Because (∀θ ∈ [0, 1))(− log(1− θ) ≥ θ) we have

log µ0
3r

2
− log ε ≤ nθ (4.64)

or in other words

n =

[
1

θ
log µ0

3r

2ε

]
+ 1, (4.65)

where [z] means the integral part of z, would be more than enough.

Thus we just proved

Theorem 4.4.1. If τ = 1√
2
, θ = 1

r
√

2
, then for arbitrary ε > 0 the maximum number

of iterations the Algorithm in Figure 3.1 needs to obtain ε-approximate solution is

n =

[
1

θ
log µ0

3r

2ε

]
+ 1, (4.66)
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which can be written in asymptotic Landau symbolic notation as

O
(
r log

(r
ε

))
. (4.67)



CHAPTER 5

CONCLUSION

Linear Complementarity Problem is very important in Optimization theory. It is

not an optimization problem per se, however it is closely connected to optimization

problems because optimality conditions of several classes of important optimization

problems can be formulated as LCP.

This makes finding efficient methods for solving LCP an important issue. The

most popular among these methods used to belong to finite simplex type pivoting

based algorithms, such as Lemke’s method.

Recently a new group of powerful methods,Interior Point Methods (IPM), have

been developed. These methods are based on Newton method; and are, therefore,

iterative methods.

In this thesis we have considered a generalization of LCP from it’s traditional

formulation (over non-negative orthrant in Rn) to LCP over symmetric cones. We

developed a feasible IPM for this type of problem. This algorithm is full Newton step

method, when a Newton method is being used on each iteration in order to find the

search directions. The advantage of full step approach lies in the fact that we avoid

calculating the step size which consumes processing time and resources. In order

to develop and analyze the algorithm we used sophisticated theoretical apparatus of

Euclidean Jordan algebras.

We proved that with appropriate choice of threshold parameter τ and barrier

decrease parameter θ - namely τ = 1√
2

and θ = 1
r
√

2
- the algorithm converges globally.

It arrives at ε-approximate solution in at most O(r log
(
r
ε

)
) iterations.
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