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ABSTRACT 

The important and high~y productive Florida land-pebble phosphate 

field is located in west central peninsular Florida in portions of Hills­

borough, Polk, Hardee, and Manatee counties. The Pine Level phosphate 

area, described in detai~ in this report, is south of the preViously 

known and mi.ned deposits and occurs in port:Lons of Manatee, Sarasota, 

and De Soto count:Les. Resu~te of the current geologic study of the Pine 

Level phosphate depoe:lt and the evaluation of the overall potential of 

this southern part of the land-pebble fie~d are presented. 

The entire southern part of the phosphate fie~d is underlain by 

more than 15,000 feet of Cretaceous and Tertiary carbonate strata. 

Phosphate deposits are confined to a thin clastic veneer of sediments 

that overlie the carbonate strata, and include the upper c~astic member 

of the Hawthorn Formation of Miocene age, the Bone Valley Formation of 

Pliocene age, and unnamed strata of Pleistocene age. The total thickness 

of the phosphatic veneer is somewhat more than 100 feet. 

The Pine Leve~ phosphate depoSit, characteristic of the heretofore 

undescribed phosphate deposits in the southern part of the nor:Lda ~and­

pebble phosphate fie~d, is compared With the deposits of the main pro­

ducing area in the northern part of the fie~d. The Pine Level deposit 

differs markedly from the deposits in the main producing district. The 

differences include the more localized and erratic distribution of mine­

ab~e phosphate concentrations, inclusion of portions of the upper c~astic 

member of the Hawthorn Formation w1. thin the mineabl.e unit, origin and age 

or the deposits, significant contrasts in pebb~e and concentrate qual.ity 

and quantit~ related to the mode of origin, the l.ack of deve~opment of 

the al.\I.Bl:lnum phosphate zone, and the enrichment of the contained carbonate 



1.1.1. 

f1uorapatite by rep1acement processes. 

Very gent1e scarps, representi.ng P1ei.stocene sea standsti11s, di­

vide the 1and-pebb1e fi.e1d into several physi.ographic subdi.vi.sions. The 

physiographic provi.nces of the 1and-pebb1e fie1d and the origin of the 

Pi.ne Leve1 deposit are re1ated to three, and possib1y four, P1eistocene 

interg1acia1 marine advances that have reworked and recyc1ed the apatite 

parti.c1es of the Bone Va11ey and Hawthorn Formati.ons into new 1ower-

1eve1 P1ei.stocene deposits that surround and f1ank buried remnant pa1eo­

is1ands of the Bone Va11ey Formati.on. 

Fi.e1d re1ati.ons, chemi.cal analYses and petrographic studi.es of a 

series of apati.te pebb1es rangi.ng from deep1y buri.ed, 1ow-grade, b1ack, 

impure apati. te to sha11ow, hi.gh-grade, re1ati. ve1y pure, wh1. te apati. te, 

i.ndi.cates that high-grade white apatite in the P1.ne Leve1 deposit 1.s 

deri.ved from i.ni.ti.al 1ow-grade b1ack apati.te. The alteration occurs by 

progressive rep1acement of mi.neral impuri.t1.es wi.thin the b1ack apati.te 

as erosi.on continually reduces the depth of buri.a1 and the b1ack apatite 

is subjected to 1.ncreasi.ngly aci.dic and oxi.di.zi.ng ground water acti.vi.ty. 

S1.mplif1.ed evaluation criteria that serve to identify economical1y 

valuab1e deposi.ts of the Pine Leve1 phosphate type are described. These 

cri.teria are easi1y and readi.1y determi.nab1e by the exp1oration geologi.st 

or engi.neer i.n search of such deposi.ts. 

The s11.mes (c1ay) content of the Pi.ne Leve1 phosphate deposit i.s 

much 1ower than i.n the depos:1 ts of the main produc:1ng area and provides 

the basis for a new method of 1and rec1amat:1on that may e1i.minate the 

expens:1ve and difficu1t conventi.ona1 method of s1i.mes di.sposal i.n per­

manent storage reservoi.rs. 
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I. INTRODUCTION 

A. Outline of the Problem 

The phosphate occurrences and deposits of Manatee, Hardee, Sara­

sota, De Soto, and Charlotte counties, Florida, are the subject matter 

of this dissertation. The general area is south of the main producing 

district of the important Florida land-pebble phosphate field, but is 

partly included within the known extent of the southern part of the 

field. Phosphate exploratory work conducted in the area by the author 

resulted in the discovery of a heretofore unreported type of phosphate 

rock deposit in the Pine Level area of northwestern De Soto County and 

the adjacent portion of Manatee County. 
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It was evident at an early stage of the exploratory work that the 

occurrences of phosphate in this southern area differed markedly from 

the deposits of the main producing district. The major differences ex­

hibited by these occurrences are: 

1. the unexpected distribution of phosphatic units within a much 

thicker portion of the stratigraphic section; 

2. the lack of characteristic widespread blanket-type continuity 

of the deposits; 

3. sudden inexplicable changes in thickness or stratigraphic 

position of certain phosphatic strata within short distances; 

4. the variable, and often marginal, quality of the phosphate 

rock in many of the samples; 

5. common deleterious carbonate contamination of phosphatic 

sand strata by abundant shell fragments, limestone pebbles, or thin 

beds of limestone or dolomite; and, 

6. the apparent absence or decrease of the very important 



weather~ng and leach~ng processes that have altered the phosphat~c 

rocks of the m~n produc~ng d~str~ct. 
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In short, these southern depos~ts and occurrences differ notably 

from the depos~ts ~n the northern port~on of the land-pebble field. The 

geolog~cal events that led to their formation are ev~dently d~fferent. 

B. Purpose of This Study 

The purpose of this study is: 

1. to present the geolog~c results of a det~led invest~gation 

of a previously unreported type of phosphate deposit, herein designated 

the Pine Level deposit, south of the main producing district of the Flor­

ida land-pebble phosphate field; 

2. to evaluate the detailed geologic data and suggest the mode of 

origin of this unique phosphate deposit; 

3. to examine the effects of weather~ng and leaching of selected 

phosphate rock samples and define their relationships to the economi­

cally valuable Pine Level phosphate deposit; 

4. to compare the origin and geologic history of this deposit 

with the m~n produc~ng district of the land-pebble field and determine 

the significant geologic events responsible for the differences in the 

phosphate occurrences of the two areas; 

5. to indicate whether other deposits of the Pine Level type are 

present ~n the southern part of the land-pebble field; 

6. to indicate some of the economic factors which must be con­

sidered in the evaluation of phosphate deposits of the Pine Level 

type; 

7. to offer suggestions for future geologic exploration in the 

southern part of the land-pebble field including a discussion of the 



relative favorability of the different physiographic subdivisions; 

and, 

8. to indicate the ecologica1 and land reclamation advantages 

of a deposit of the Pine Level type and to relate these advantages to 

the grain size distribution and sedimentation characteristics of the 

clastic components of the mineable phosphate strata. 

c. Scope and Methods of This Stugy 

3 

During the exploration period a tota1 of 1,644 sha11ow exploration 

core holes, varying from about 25 to 100 feet in depth, were drilled on 

102.000 acres in the Pine Level and adjacent areas. A descriptive lith­

ologic log of each drill hole was prepared, and about 2,200 phosphatic 

interva1s in the drill cores were sampled. These samples were a11 1ab­

oratory processed, and severa1 different screened fractions of the recov­

ered phosphate rock from each sample were ana1yzed for phosphate and sev­

era1 other important constituents. 

About 1 ,800 of the tota1 samples and 1 ,308 of the tota1 drill. holes 

are concentrated in the Pine Level area. These data were part of the 

intensive exploration effort to delineate and determine ~neable ore 

reserves, to justify possible acquisition costs, and to obtain geologic 

information for subsequent engineering studies. The geol.ogic data 

provided by this intensive phase of the exploration program is the basis 

for this detailed study of the geology of the Pine Level deposit. More 

genera1 remarks regarding the entire southern portion of the land-pebble 

field are mainl.y based on interpretations of the geol.ogic data from the 

other 336 drill hol.es. 

This study consisted of the foll.owing phases: 

1. A renew of the geol.ogy, minera1ogy, history, origin, and 
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proAuction methods of the main phosphate producing district and a brief 

compilation of this review to serve as a background framework against 

which the detailed geologic data of the Pine Level area may be com­

pared. 

2. Correlation of the stratigraphic units in the Pine Level area 

from an interpretation of the 1,308 lithologic logs and sample data. 

3. Study of the physiography of the area and the relationship 

of certain physiographic features to the geological events that re­

sulted in the Pine Level deposit. 

4. Interpretation of the Pleistocene paleogeography of the Pine 

Level area and the relationship of certain of these features to the 

genesis of the deposit. 

5. Chemical, geochemical, and petrographic studies of selected 

phosphate rock samples to determine the nature, extent, and history of 

weathering of the phosphate rock and its relationship to the formation 

of mineable phosphate deposits of this type. 

6. Study and interpretation of the engineering and economic data 

of the Pine Level deposit and the correlation of these data with var­

ious determinable geologic features that may serve as simple guides in 

the continued exploration for additional deposits of the Pine Level type. 

7. Study of the major ecological and land reclamation problem of 

the phosphate industry, and the relationship of unique geologic fea­

tures of the Pine Level deposit that may be advantageous in the solution 

or mitigation of this serious problem. 

8. Preparation of selected maps, cross sections, and tables to 

effectively depict the salient and most important geologic features 

of the Pine Level deposit. 
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D. General Geography 

1. The Florida Land-Pebble Field 

The Florida land-pebble phosphate field is in the west central 

portion of the Florida peninsula in Polk, Hillsborough, Hardee, and 

Manatee counties (Fig. 1). All phosphate rock production to date has 

been localized in southwestern Polk County and the adjacent southeastern 

portion of Hillsborough County. 

The producing area is approximately 50 miles by rail from the port 

of Tampa, on the Gulf Coast, where special tidewater terminals are main­

tained for loading phosphate rock for seaborne shipments. The entire 

area is easily accessible by an extensive network of federal, state, 

and county roads. The area is drained to the south by the Peace River 

and a major tributary, Horse Creek; to the southwest by the Manatee 

River; and to the west by the Alafia River. 

2. The Pine Level Area 

The Pine Level area is south of the preViously known extent of 

the land-pebble field and encompasses about 100 square miles in north­

western De Soto County, southeastern Manatee County, and an adjoining 

part of Sarasota County (Fig. 1). Florida State Highway 72 from Sara­

sota passes through the southern part of the area, and Florida State 

Highway 70 from Tampa crosses the north part. These two roads are 

connected by several north-south county roads within the area. United 

States Highway 17, connecting Punta Gorda and Bartow, passes a few miles 

to the east and joins highways 70 and 72 at Arcadia. 

Ranching is the principal commercial activity of the area. A 

few ranchers maintain citrus groves, but citrus production is not an 

important factor in the local economy. Arcadia, the county seat of 
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De Soto County, is the commercial center and largest city in the vic­

inity with a population of about 6,ooo. 
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The climate is subtropical with a mean temperature of about 72° F. 

Below freezing temperatures occasionally occur during the winter. The 

average annual rainfall is approximately 55 inches. About 60 percent 

of the yearly precipitation occurs between June 1 and September 30 

during thunder showers or occasional hurricanes. 

The eastern part of the area is drained by Horse Creek and its 

tributaries, and the western part by Big Slough Canal. The stream 

valleys are generally shallow with gradual slopes to the interstream 

divides, and are characterized by swamps or marshes with streams that 

readily overflow their poorly defined channels during the rainy season. 

Cypress and live oak are common trees along the streams. The inter­

stream areas are dotted by small depressions called bay heads, heads, 

or ponds, and are sparsely covered by longleaf pine, with abundant 

palmetto and wire grass as undergrowth. Elevations in the area range 

from about 30 to 75 feet. 

E. Summary of Previous Work 

No detailed investigations of the phosphate deposits of the Pine 

Level area have been made prior to the present study. However, several 

short stratigraphic and ground water studies include all or portions of 

the area. Some of the more informative papers are described below. 

The early paper by Matson and Sanford (1913) contains general 

information on De Soto County. A report on the geology of Florida by 

Cooke and Mossom (1929) also contains references to the general geology 

of the area. Important papers on artesian water in peninsular Florida, 

by Stringfield, were published in 1933 and 1936. A report on Pleisto-



cene shorelines by MacNeil (1950) contains references to the general 

area. Bergendahl (1956) refers to the general geology and phosphate 

reserves of De Soto County :in an :important paper. The ground water 

resources and stratigraphy of the Manatee County portion of the area 

are discussed by Peek (1958). Pur:i. and Vernon (1964) :include refer­

ences to the stratigraphy and paleontology of the general area. The 

very important recent physiographic study by White (1970) contains 

:important references to the Pine Level area. 

8 

The geology, mineralogy, or descriptions of the phosphate deposits 

of the northern portion of the land-pebble field have been reported in 

more or less detail in the papers mentioned below. 

The term Bone Valley was :introduced by Matson and Clapp (1909) 

in a paper discussing commercial phosphate mining activities :in Polk 

County. Matson (1.915) described the phosphate deposits of Florida, 

including the land-pebble field. The potential phosphate reserves of 

Florida are discussed by Mansfield (1".942). Altschuler, Cisney, and 

Barlow (1952) conducted x-ray studies of sedimentary apatite from the 

land-pebble field; and Altschuler, Jaffe, and Cuttita (1956) reported on 

the occurrence of uranium in the aluminum phosphate zone of the Bone 

Valley Formation. Cathcart (1956) summarized the distribution of 

uranium :in the calcium phosphate zone of the land-pebble field while 

Altschuler, Clarke, and Young (1958) investigated the geochemistry of 

uranium :in the phosphate deposits. Cathcart and HcGreevy ( 1959) re­

ported on the results of wide-s.paced exploratory drilling conducted by 

the u. s. Geological Survey in 1953. The most :important and detailed 

studies of the phosphate deposits of the land-pebble field have been 

publ.:l.shed by Cathcart (1963a, 1.963b, 1963c, 1964, 1966). 



Specific references are made at appropriate places in the text 

to additional pertinent publications that are listed in the biblio­

graphy. 

F. Glossary of Specialized Florida Phosphate Industry Terms 
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The Florida phosphate deposits, as may be seen in the previous 

section of this paper, have received scant attention from the more 

renowned economic geologists of earlier times. This is undoubtedly a 

reflection of the widespread extent and shallow depth of burial of the 

phosphate deposits that promoted, in the early years, their simple and 

easy discovery. Exploration, development, and even mining, were all 

generally conducted by persons with little or no geological or engineer­

ing training. As a result of this early isolation from the mainstream 

of deve1opments in economic geology a unique colloquial vocabulary 

evolved. This terminology is still in standard use within the Florida 

phosphate industry. 

Though it is an inconvenience to the general reader to use this 

specialized terminology, all of the laboratory data are reported in these 

terms, and because this paper will be most useful to the Florida phos­

phate industry, it is necessary that these terms be defined here for 

use at appropriate places in the subsequent discussion. 

1. Hining Terms 

Overburden - includes all of the covering strata that must be 

removed prior to actual mining of the underlying phosphate deposit. 

Aluminum Phosphate ~ - an irregular zone of leaching character­

ized by a white color and the presence of aluminum phosphate minerals. 

The zone is included in the overburden. 
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Matr~x - that part of the strat~grap~c sect~on that can be m~ned. 

It ~s synonymous with "ore" ~n the usual sense of that word. Often 

used more freely, it designates a h:i.ghly phosphatic sand unit, even 

though the unit has not actually been determined to be ore :in the 

str:i.ct sense. 

2. Process:i.ng Terms 

Pebble- a coarse phosphate product, +14 mesh (+1.17 mm) :in s~ze. 

In th:i.s paper, "pebble" denotes phosphate part~cles that are coarser 

than th:i.s mesh s:i.ze. 

~- the -14/+150 mesh (-1.17 to 0.104 mm) port~on of the matr:i.x 

that must be treated by flotation methods to separate the phosphate 

part:i.cles from adm~xed quartz sand. 

Concentrate - the fine phosphate product, -14/+150 mesh, recovered 

from the feed by flotat:i.on. In th~s paper the term "pellet" w~ll be 

used to denote the phosphate part:i.cles in th:i.s s~ze range, and the term 

"concentrate" will be reserved for use in descr~bing a marketable prod­

uct of th~s s~ze range. 

Phosphate ~ - v~ous comb~nat:i.ons of the pebble and concentrate 

products, depending upon customer requirements, are marketed as "phos­

phate. rock". 

Ta:i.l:ings - the -t4/+150 mesh quartz sand fract~on of the feed. 

Th:i.s material has no economic value and :is d~sposed of :in prenously 

m:i.ned areas. 

Sl~e - the slime (or slimes) is that portion of the matrix that 

is -1:50 mesh ( -o. 1.04 mm) :in s:lze. It :is also a waste product and 

presents a very serious and expensive disposal problem. 
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3. Chemical Terms 

~ - is bone phosphate of lime or tricalcium phosphate, ca3(P04)2 , 

and is equal to percent P2o 5 x 2.185. All industrial analyses in the 

Florida phosphate field are report.ed as percent BPL. 

I & A - is the combined analysis of iron oxide. (Fe2o 3 ) and alum­

inum oxide (Al2o 3 ). Most industrial analyses report these combined 

oxides as percent. I & A. 

Insoluble Residue or Insol - is the acid insoluble residue remain-

ing after digestion of a phosphate rock sample in acid by a standard 

industry procedure. Generally the percent insoluble residue is very 

near the actual Sio2 content. 
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II. REVIEW OF THE FLORIDA LAND-PEBBLE FIELD 

A. General Statement 

The Florida land-pebble field is one of the great mining districts 

of the world. The district annually produces approXimately one-fourth 

of the world's phosphate rock requirements from seventeen separate 

producing operations in Polk and Hillsborough counties (Fig. l). Pro-

duction statistics are shown in Table I. The figures shown in the table 

include about 4,000,000 tons per year produced from north Florida and 

North Carolina since 1966. 

Table I. Phosphate Rock Production Statistics for Florida and North 
Carolina (from Minerals Yearbook, u. s. Bureau of Mines). 

Year 
Production Value Value/ton % of u. s. % of World 

~tonsl ~dollarsl Production Production 

1969 28,835,000 155,197,000 $5.38 76 
1968 29,571,000 173,190,000 5.86 72 32 
1967 29,796,000 193,283,000 6.49 75 35 
1966 28,04~,000 184,075,000 6.56 72 29 
1965 21 ,388,000 138,744,000 6.49 73 25 
1964 16,252,000 115,513,000 7.11 71 28 
1963 14,377 ,ooo 100,749,000 7.01 72 29 
1962 13,624,000 93,669,000 6.88 70 29 
1961 12,667,000 88,395,000 6.98 68 28 

The industry employs several thousand people and supports an 

extensive attendant business providing mining equipment, repair fa-

cilities, engineering services, transportation, and operating neces-

sities. The industry is an important factor in the economy of 

Florida. 

A brief description of the general geology, mineralogy, chem-

istry, origin, and production practices of the deposits in the main 

production area is presented here to provide a background against 

which pertinent geologic features of the Pine Level deposit may be 

compared in subsequent sections of this paper. 
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B. Structure and Geologic Setting 

Both the Pine Level area and the land-pebble field are within 

the Florida Peninsula sedimentary province of the eastern Gulf of 

Mexico sedimentary basin (Pressler, 1947, p. 1851). The Province is 

characterized by a very thick, predominately carbonate sedimentary 

sequence overlain by a thin clastic cover of late Tertiary and Quater­

nary age. The important phosphate deposits are confined to this thin 

veneer of clastic sediments. 

Formations in the area dip gently southward a few feet per mile 

from the Ocala uplift toward the South Florida embayment. Figure 2, 

reproduced from Puri and Vernon (1964), shows the relationship of the 

land-pebble field and the Pine Level area to the major structural and 

sedimentary features of Florida. 

c. General Geology 

The land surface in the main producing area of Polk and Hills­

borough counties is a gently rolling upland about 80 to over 150 feet 

above sea level. Pleistocene sand mantles the greater part of the area 

and unconformably overlies the Pliocene Bone Valley Formation, which, 

in turn, unconformably overlies the Miocene Hawthorn Formation. The 

geologic structure of the area, as noted, is relatively simple. The 

formations dip very gently toward the south away from the Ocala uplift. 

The Hawthorn Formation underlies the area at shallow depths and 

consists of tan, cream, or white, sandy, argillaceous, phosphatic lime­

stone or dolomitic limestone. The top few feet of the limestone is 

locally altered to a phosphate-rich, calcareous clay residuum. Very 

locally a few feet of an upper noncalcareous clastic member overlies 

the limestone (Cathcart, l963c, p. 12; 1964, p. 13; 1966, p. 11). It 
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consists of a dark grayish green, olive-green, yellowish green, or 

brownish-green clayey sand that contains traces to moderate amounts 

of brown or black phosphate pellets. 

The Bone Valley Formation consists of two conformable members 

of variable thickness: a lower phosphatic unit and an upper, clayey, 

very slightly phosphatic sand member. 

The overlying Pleistocene deposits are loose, incoherent, non­

clayey sand of quite v~iable thickness. Local sand-filled channels 

are present that have eroded and removed all of the underlying Bone 

Valley Formation. 

The mineable phosphate bed, or matrix, may consist of portions 

of either, or both, of the lower member of the Bone Valley Formation 
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and the residuum of the underlying Hawthorn Formation. Where the alum­

inum phosphate zone is absent or poorly developed the matrix may include 

all of the lower member of the formation along with the underlying Haw­

thorn residuum, if it is present. Where the zone is well developed the 

upper portion or, perhaps, most of the lower member may be unmineable. 

Where it is intensely developed the entire phosphatic section, including 

both the lower member of the Bone Valley and the Hawthorn residuum, may 

be unmineable. The matrix is thus seen to be confined to a stratigraphic 

position immediately adjacent to the Hawthorn-Bone Valley unconformity; 

and may include part or all of the lower member of the Bone Valley Form­

ation; part or all of the Hawthorn residuum; or a combination of the 

residuum and part or all of the lower member of the Bone Valley. The 

greater bulk of the phosphate is contained within the lower member of 

the Bone Valley Formation. 

The matrix unit in the main producing area is fairly continuous, 
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relatively flat-lying, unconsolidated, generally about 10 to 25 feet 

thick, and consists of fine to coarse recoverable phosphate particles 

(pebbles and pellets) mixed with quartz sand and clay which contains 

phosphate particles of micron and submicron size. The matrix normally 

consists of roughly equal parts of recoverable phosphate, quartz sand, 

and interstitial clay. The phosphate content of the clay fraction is 

not recoverable by present processing methods. 

The recoverable phosphate particles are rounded, oval-shaped, 

somewhat flattened, shiny, structureless, highly polished, white, gray, 

brown, or black particles of sedimentary apatite ranging in size from 

about t inch in diameter to very fine sand. 

D. Mineralogy 

The mineral assemblage of the matrix is basically simple and con­

sists, as noted above of quartz sand, interstitial clay, and the phos­

phate mineral carbonate-fluorapatite (Altschuler et ~., 1953). The 

apatite particles are aggregates of micron-sized crystals. The index 

of refraction ranges from 1.575 to 1.625 and is typically about 1.6o5. 

The mineral appears isotropic in thin section, but fibrous varieties 

show slight birefringence, positive elongation, and parallel extinction. 

The specific gravity of pure apatite particles is 2.96 to 2.99. 

The apatite is demonstrably smaller in unit-cell dimensions than 

igneous fluorapatite. Structural differences revealed by x-ray studies 

are best explained by chemical variations which can be expressed by the 

formula ca10CP0 4co3 ) 6F2 _3 (Altschuler~~., 1953). 

The interstitial clay in the matrix is mainly iron-rich mont­

morillonite but minor attapulgite has been reported (Berman, 1953). 



Altschuler et al. (1956, p. 496) indicate that the clay in the upper 

part of the Hawthorn Limestone, normally montmorillonite, has been 

transformed to attapulgite in areas where the limestone has been ir-

regularly dolomitized. 
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The phosphata particles in the aluminum phosphate zone are white, 

vesicular, friable, light :in weight and consist of the s.econdary alum-

:inum phosphate minerals wavell:ite, Al3 (P04 ) 2(0H) 3 •5 H2o; crandallite, 

CaA13 (P04 ) 2(oR) 5 •H2o; and, locally, mill:is:ite, (NaK)caA16 (P0 4 ) 4 (oH) 9 • 

3H20 (Altschuler ~ &·, 1956, p. 496). The :interstitial montmorillonite 

has been converted to kaolinite. 

E. Chemical Composition of the Phosphate Rock 

Gulbrandsen 0969, p. 370) uses the basic formula ca5 CP04) 3F 

for marine apatite, but notes that the formula :is modified by signifi­

cant substitutions. Carbonate substitution for phosphate (Po4 ) :is 

ubiquitous and occurs in amounts that commonly range from a few tenths 

of a percent to several percent equivalent co2 (Altschuler et al., 1952; 

Altschuler~ .2J:_., 1958). Paired substitution of sodium and sulfate for 

calcium and phosphate, respectively, appears to occur also :in about the 

same magnitude as carbonate substitution (Gulbrandsen, 1960). Fluorine 

is gener.ally present in amount greater than the apparent structural 

requirement, and the excess :is probably combined with carbonate :in sub­

stitution for phosphate (Gulbrandsen, 1969). Characteristic lesser sub-

st:itutes are strontium, rare earths, uranium, and thorium for calcium. 

The typical analytical variability of marketable phosphate rock 

from the land-pebble field, courtesy of Wellman-Lord, Inc., Lakeland, 

Florida, is shown below: 
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Constituent Percent 

P205 30-3'5 
CaO 46-50 
Ca0/P2o5 ratio 1.45-1.55 
F 3.3-4.0 
Fe2o3 0.7-2.6 
Al2o3 0.7-2.6 
Na2o 0.5-0.6 
K20 o.5-o.6 
Si02 5-10 
MgO 0.20-0.50 

Cl 0.003-0.03 

C02 1.5-4.4 

Organi.c Carbon 0.25-0.40 

F. Mineral Contaminants 

The chemical analysis indicates a variety of constituents are 

present that are not accounted for by substitutions. These include 

Fe2o3' AJ..2o3 , K20, Si02 , MgO, Cl, and organi.c carbon. These impurities 

are contained in other minerals that form surface coatings and inclusions 

on and within the apatite particles. 

These minerals include various clays, iron and aluminum oxides and 

phosphates, limestone, dolomite, pyrite or marcasite, carbon, and quartz. 

These minerals usually occur as microcrystalline aggregates within s:i.m-

ilar apatite aggregates, and study of natural marine apatites has been 

plagued by the extreme difficulty of separating the apatite from the in-

timately mixed impurities. Interpretations based on chemical determin-

ations of composition are always uncertain because of these impurities 

(Gulbrandsen, 1969, p. 370). 

G. Origin of the Deposits 

The source of the high phosphatic content of the lower member of 



the Bone Valley Formation begins with the Hawthorn-Bone Valley ero­

sional interval. Erosion during this period removed all but a few 

remnants of the upper clastic member of the Hawthorn Formation (Cath­

cart, 1964, p. 41). This exposed the underlying limestone member to 

chemical weathering which formed an irregular karst surface with a 

residual calcareous clay mantle containing abundant pellets of phos­

phate and secondary phosphatized limestone pebbles. Marine trans­

gression during Pliocene time dolomitized the weathered limestone, 

19 

and reworked the clastic residuum into the Bone Valley Formation, at 

the same time adding unknown amounts of quartz, clay, and phosphate 

(Altschuler~ al., 1956, p. 496). According to Cathcart (1964, p. 41) 

"Phosphate was precipitated, limestone fragments were phosphatized, 

and the phosphate in the residual mantle was enriched, sorted, and con­

centrated". The deposition of the lower member was suceeded without 

interruption, except locally at the northern edge of the land-pebble 

field, by the upper member. 

Another period of erosion and weathering occurred between the re­

treat of the Bone Valley sea and the deposition of the overlying loose 

sand of the Pleistocene. 

Critical points in the above interpretation that are stressed for 

future discussion are: (1) the upper clastic member of the Hawthorn 

Formation did not contribute any detrital phosphate to the Bone Valley 

deposits, (2) the phosphate pellets are derived from the reworked res­

iduum of the Hawthorn Limestone, (3) the pebbles in the deposits are 

phosphatized Hawthorn limestone pebbles, and (4) marine apatite was 

actively precipitated in the Bone Valley sea and it enriched the 

previously existing apatite particles and phosphatized limestone pebbles. 
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Evidence in the P~ne Level area suggests alternative conclusions. 

H. Effects of Weathering 

At least two major periods of weathering have altered the phosphatic 

sediments of the land-pebble field (Cathcart, 1966, p. 23). The first, 

during the Hawthorn-Bone Valley erosion :interval, formed the phosphatic 

rich calcareous clay residuum on top of the Hawthorn Limestone. A 

later per~od of :intense lateritic weathering caused the development of 

the aJ.umnum phosphate zone with the alteration of apatite to the alum­

inum phosphate minerals and alteration of montmor~J.J.onite to kaolinite 

(Altschuler et ~., 1956). 

The weathering was accomplished by downward percolating acid ground 

water. The alteration stopped at the water table or at impervious clay 

beds. Therefore, the base of the alteration is at different strati­

graphic positions throughout the area. In general, the alteration is 

most intense in areas of thinnest cover, such as in the Alafia and 

Peace River drainage basins; and :is poorly developed :in :interstream 

areas with thicker cover. Cathcart notes (1966, p. 24) that the alter­

ation of montmorillonite to kaolinite releases HgO, and suggests that 

the dolomitization of the top of the Hawthorn Limestone took place dur­

ing this weathering period. 

It has been pointed out that the geochemistry, mineralogy, and 

petrology of the alteration processes resulting :in the formation of the 

alumnum phosphate minerals have been studied :in some detail.. The start­

ing point :in all of these studies :is the relatively high grade apatite 

of the matrix. Did the downward leaching process also significantly 

alter the apatite of the underlying matrix? Was :it initially a rela­

tively J.ow grade apatite with abundant mineral contaminants that were 



21 

partially removed by lessened but continued activity of the same down­

ward leaching that formed the aluminum phosphate zone? Was the enrich­

ment of the apatite particles in the matrix unrelated to precipitation 

of apatite in the Bone Valley sea as suggested by Cathcart? Evidence 

from the Pine Level area bearing on these questions will be discussed 

later in this paper. 

I. Mining Procedure 

The Florida phosphate industry, because of the shallow depth of 

the phosphate deposits, the lithologic character, and other geologic 

features of the phosphate deposits, utilizes large-scale earth-moving 

production techniques in the mining operations. The overburden is 

stripped by large walking draglines equipped with buckets ranging in 

size from 16 to 42 cubic yards. The overburden, normally 20 to 50 feet 

thick, is dumped as a linear ridge in the adjacent, previously mined 

cut. The width of a mining cut depends on the boom length of the drag­

line, but is normally about 200 feet wide. The length of the cut is 

dependent on the distribution of the matrix and the property boundaries, 

but commonly may be a mile or more. After a suitable area of matrix 

is uncovered, it is immediately dug by the dragline and deposited at a 

pit sump on top of the bench near the dragline. Here the matrix is 

slurried to about 25 percent solids by hydraulic monitors, and pumped 

in 16 to 20 inch lines to the washing and flotation plant for recovery 

of the contained phosphate. The dragline continues advancing along the 

cut until the pit sump can no longer be reached. At this point the pit 

sump is moved ahead, and mining of the cut then continues. Matrix pump­

ing lines several miles in length are common. 
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J. Processing Hethods 

At the treatment plant the matrix slurry is passed over a series 

of 14 mesh vibrating screens. The +14 mesh material obtained is all 

marketable phosphate pebble. The remaining matrix slurry is deslimed 

at 150 mesh in a series of cyclones. The cyclone overflow contains the 

-150 mesh slimes which consist mainly of montmorillonite clay, but often 

contain some clay-size phosphate as well as an amount of very fine sand 

and silt size particles. The slime slurry is pumped to a specially 

constructed storage area for disposal. 

The cyclone underflow contains the -14/+ 150 mesh deslimed flota­

tion feed. The feed is dewatered, conditioned for flotation, and the 

marketable concentrate recovered in a two-step flotation process. Var­

iations in the processing techniques used by the different companies 

have been recently discussed by Aparo (1970). The waste sand tailings, 

left after the phosphate has been removed, are pumped back into pre­

viously mined cuts where they are utilized in land reclamation. All 

of the operating companies routinely reclaim mined areas. 
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III • PHYSIOGRAPHY OF THE LAND-PEBBLE FIELD AND THE PINE LEVEL AREA 

A. Pleistocene Shorelines 

The Florida peninsula and the land-pebble field have been subjected 

to repeated inundations by different stands of the sea during the Pleis­

tocene interglacial stages. A number of ancient shoreline terraces 

associated with these former sea standstills have been recognized. Dif­

ferent investigators have assigned different elevations and ages to some 

of them. Table II summarizes some of the interpretations that have 

been presented to date. 

The Florida peninsula is underlain by limestone. This has been 

dissolved and has resulted in differential sagging of the overlying 

surface. Sellards (1914), using data on flow of large springs and the 

dissolved mineral content of their waters, estimated that the surface 

of central peninsular Florida is being lowered by solution at an aver­

age rate of one foot in 5,000 or 6,000 years. 

The older, higher shorelines have been subjected to a long period 

of erosional dissection, coupled with underlying limestone solution, 

and are difficult to recognize and correlate in the field. The use of 

key contour lines on topographic maps to depict them may be significant­

ly in error in areas of considerable sagging. The younger, lower, more 

recent shorelines are more readily recognized--particularly in areas 

underlain by clastic rocks where subsurface solution has not been so 

active. 

Inasmuch as several higher ridges in Polk County slightly exceed 

150 feet in elevation, it can be concluded that the entire land-pebble 

field was covered by the Coharie sea, and all but the small ridge areas 

were covered during the Okefenokee advance. The Wicomico advance covered 
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Table II. Marine Terraces in Florida. 

Terrace Elevation Age 

After Cooke {12~2~ 

Brandywine 270 feet Afton:i.an 
Coharie 215 feet Yarmouth 
Sunderland 170 feet Yarmouth 
Wicomico 100 feet Sangamon 
Penholoway 70 feet Sangamon 
Talbot 42 feet Sangamon 
Pamlico 25 feet Wisconsin 

After MacNeil { 12.502 
Okefenokee 150 feet Yarmouth 
W:Lcom:Lco 100 feet Sangamon 
Pamlico 25 to 35 feet Wisconsin 
Silver Bluff 8 to 10 feet Recent 

After Vernon ~1~,21l 

Coharie 220 feet Afton:i.an 
Okefenokee 150 feet Yarmouth 
Wicomico TOO to 105 feet Sangamon 
Paml:Lco 25 to 30 feet Wisconsin 

After Puri & Vernon ~ 126~2 

Erosion Nebraskan Glacial 
Coharie 220 feet Aftonian Interglacial 

Erosion Kansan Glacial 
Okefenokee 150 feet Yarmouth Interglacial 

Erosion Illinoian Glacial 
Wicomico 100 feet Sangamon Interglacial 

Erosion Early Wisconsin Stadial 
Pamlico 30 feet Peorian Interstadial 

Erosion Late Wisconsin Stadi.al 
Silver Bluff 8 feet Late Wisconsin Interstadial 

After Alt & Brooks { 126.22 
215 to 250 feet Upper Miocene 

90 to 100 feet Pliocene 
Insignificant Stand 70 to 80 feet Pliocene or Pleistocene 
Insignificant Stand 45 to 55 :feet Pliocene or Pleistocene 

25 to 30 feet Pleistocene 
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the Pine Level area but not the northern portion of the land pebble 

field. The Pamlico sea probably reached the extreme southwestern cor­

ner of the Pine Level area. 

~--Physiographic Subdivisions 

Figure 3 shows that the land-pebble field is included within por­

tions of the Polk Upland, and the De Soto Plain; and the Pine Level 

area occupies portions of the De Soto Plain, a northwestern continu­

ation of the Caloosahatchee Incline, and the Gulf Coastal Lowlands. 

1 • Polk Upland 

The ground surface in the Polk Upland, except for the somewhat 

higher Lakeland and Lake Henry Ridges, generally ranges between 100 and 

130 feet in elevation. An inconspicuous but persistent south-facing 

scarp separates the Polk Upland from the De Soto Plain on the south. 

The toe of the scarp is some 80 to 90 feet in elevation. The crest is 

somewhat more variable in elevation, but is generally slightly above 

100 feet. 

The Bone Valley Formation underlies a large part of the Polk Upland. 

Its siliceous character has hindered karst development and the effects 

of solution are not as intense as they are throughout much of the Flor­

ida peninsula. There is much better development of surface streams in 

the Polk Upland. The Peace, Manatee and Alafia Rivers all head in the 

Polk Upland with widely branching tributaries. Topographic dissection 

in the Upland generally amounts to some fifty feet. 

2. De Soto Plain 

The northern edge of the De Soto Plain is at the foot of the scarp 

that forms the south boundary of the Polk Upland. The southern edge 
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of the Plain, some th~rty odd m~les to the south at the crest of the 

northwest extens~on of the Caloosahatchee Incline, ~s only 20 to 30 

feet lower at an elevat~on of 60 feet. The De Soto Plain is thus seen 

to be very flat with an average drop in elevat~on to the south of about 

one foot per m~le or less. F~gure 4A ~s a typical view of the De Soto 

Plain in the Pine Level area. Relief along stream valleys, such as the 

entrenched Peace River, may locally exceed 30 feet. The De Soto Plain, 

like the Polk Upland, is also underlain by predominately siliceous rocks 

and karst development does not exist. Drainage, compared to most of 

peninsular Florida, is well developed. 

The portion of the Pine Level area within the De Soto Plain is 

dotted with small ponds or bay heads that are interconnected to Horse 

Creek or Big Slough Canal by fairly well defined drainage channels that 

permit fairly rapid runoff during periods of heavy rainfall. 

3. Caloosahatchee Incline 

The Caloosahatchee Incline and ~ts northwest continuation into the 

Pine Level area has a toe elevation of about 40 feet, and rises north­

ward to a crest elevation of about 60 feet within a distance of approx­

imately four miles. The surface inclination therefore is about 5 feet 

per mile, or more than five times the average slope of the De Soto Plain. 

This gentle scarp separates two of the largest and flattest plains 

of Florida. It div~des the vast lowland to the south which comprises 

the Okeechobee Plain, the Immokalee Rise, the Everglades, and the Gulf 

Coastal Lowlands; none of which exceed the toe elevation of the scarp; 

from the higher, but equally flat, De Soto Plain. 

The Caloosahatchee Incline, in the Pine Level area, is much more 

profusely dotted with ponds than the De Soto Plain portion, but due to 



B. View of the CaJ.oosahatchee Incline. Note shaJ.-
1ow pond in center of picture behind live oak 
tree and fence. 

Fi.gure 4 . Typical. views i.n the Pine Leve1 area . 
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the greater surface slope, it is also fairly well drained. Figure 4B 

is a view of the Caloosahatchee Incline in the Pine Level area. 

4. Gulf Coastal Lowlands 
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The Gulf Coastal Lowlands vary from an elevation of 40 feet at the 

toe of the Caloosahatchee Incline to sea level some twenty miles or so 

to the southwest along the Gulf Coast. The average slope is very flat 

for a few miles to the crest of the Pamlico scarp. It then steepens to 

the toe of the scarp, and then continues with very slight inclination to 

the coast. The Lowlands are very profusely dotted with ponds, and are 

very poorly drained. A heavy summer shower of several inches may result 

in the accumulation of water over the ground surface that may take sev­

eral days to dissipate. Figure 5 is an aerial view of a portion of the 

Gulf Coastal Lowlands in the Pine Level area. 

c. Origin of the Physiographic Subdivisions 

The Polk Upland is a relatively mature upland that has been dis­

sected by a well defined drainage system. The Pleistocene sediments, 

covering most of the Upland, are deposits resulting from the Coharie and 

Okefenokee seas. 

White (1970, p. 133) concludes that the southern bounding scarp of 

the Po~ Upland is most probably an erosional marine shoreline made by 

a standstill of the Wicomico sea. It is not known if the scarp repre­

sents the actual maximum advance of the Wicomico sea, but the develop­

ment of the scarp is indicative of a prolonged standstill. 

The De Soto Plain is considered to be a submarine shoal plain dev­

eloped during the Wicomico standstill; and the Caloosahatchee Incline 

and its northwest continuation is regarded as a depositional feature, 
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Figure 5. Aerial view of a portion of the Gulf coastal 
Lowlands in the Pine Level area. 
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at the distal or down-current end of the submarine shoal, that has been 

uniquely preserved by virtue of emerging through the protected waters of 

a low energy coast (White, 1970, p. 141). 

According to White's interpretation an elevation of about 40 feet 

should define the top of the Wicomico transgressive sequence in the Pine 

Level area. The remaining sediments above an elevation of 40 feet should 

consist of the submarine shoal deposits. The stratigraphic sequence in 

the Pine Level area does not support this interpretation. 

Cooke is the only other worker to recognize a scarp at about the 

forty foot level (Table II), but his interpretation is at considerable 

variance with that of White. According to Cooke, the toe of the above 

described scarp at about 40 feet records the maximum advance of a 

Talbot sea; the scarp itself is considered to be the Penholoway terrace; 

the ground between 60 and 70 feet in elevation is the Penholoway scarp; 

and the area above 70 feet is the southern end of the Wicomico terrace. 

This is certainly tenuous at best. 

The writer believes that the northwest extension of the Caloosa­

hatchee Incline is an erosional marine shoreline developed during a 

somewhat transient sea standstill at about 60 feet. Whether it devel­

oped during a temporary pause in the regression of the Wicomico sea; 

during a brief temporary higher advance of the Pamlico sea; or during 

a separate Peru1oloway or Talbot sea transgression in Sangamon time, as 

indicated by Cooke, has not been determined. The abundant ponds in the 

Gulf Coastal Lowland and the northwest extension of the Caloosahatchee 

Incline are evidence of a shallow, relatively late, emergent coastal 

sea floor. 

In summary, the Polk Upland has been subjected to two Pleistocene 
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marine invasions (Coharie and Okefenokee); the DeSoto Plain to three 

(Coharie, Okefenokee, and Wicomico); the Pine Level area to three or, 

possibly, four (Coharie, Okefenokee, Wicomico, and, possibly, Pamlico); 

and the Gulf Coastal Lowlands to five (Coharie, Okefenokee, Wicomico, 

Pamlico, and Silver Bluff). Development of the physiographic divisions 

discussed and their relationships to the various sea standstills are de­

picted in Figure 6. 

This rather protracted discussion of physiography and Pleistocene 

marine transgressions bears on the fact that all of the Florida phos­

phate rock produced to date from the land-pebble field has been obtained 

from the Polk Upland above the Wicomico scarp (Figs. 1 and 3). This is 

not merely a coincidence. 



N•rtlil 

r 
A. Maximum advance of Okefenokee sea. 

(approx.150') 

? 2ft :o mHn 
Sea • 

C. Standstill during formation of 
Caloosahatchee Incline. (approx. 60') 

by DSC 

B. Maximum advance of Wicomico sea. 
(approx. 90') 

"'i 

Figure 6. Physiographic diagrams depicting central peninsular Florida during various sea standstills. ~ 



34 

IV. STRATIGRAPHY 

Deposits of late Pleistocene age completely mantle the entire Pine 

Level area. Information pertaining to the underlying covered formations 

is derived from the shallow exploration core holes, and the logs of sev­

eral water wells and two deep oil-test wells in adjoining counties. 

A. Pre-Tertiary Rocks 

Rocks older than middle Eocene in the general vicinity of the Pine 

Level area are known from two deep oil-test wells in adjoining counties. 

The data from these wells indicate that rocks of Cretaceous age should 

occur at a depth of about 5,000 teet in the Pine Level area. 

One well, located about 25 miles northwest of the Pine Level area 

in the NWt Section 14, T. 35 s., R. 19 E., Manatee County, was drilled 

by Magnolia Petroleum Corporation. This well entered the Upper Cret­

aceous at 5,120 feet below sea level and ended in Cretaceous rocks at 

more than 10,000 teet below sea level (Peek, 1958, p. 14). The Cret­

aceous rocks consist ot interbedded shale, limestone, and anhydrite. 

The other well, located about 50 miles southeast ot the Pine Level 

area in the~ Section 34, T. 38 s., R. 29 E., Highlands County, was 

drilled to a depth of 12,985 feet by Humble Oil and Refining Company. 

According to Applin (1951) this well penetrated Cretaceous l~estone, 

dolomite and anhydrite between 5,096 and 12,618 feet. The lower 367 

teet (below 12,618 teet) penetrated basalt, rhyolite porphyry, and re­

lated volcanic rocks tentatively classified as early Paleozoic, or 

possibly, Precambrian. 

B. TertiarY System 

The formations of Tertiary age in the Pine Level area, and their 



approximate thicknesses are listed in Table III. The formations 

penetrated by the water wells (Fig. 7) are briefly described in the 

following sections. 

1. Eocene Series 
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.AY£.!1 ~ Limestone: The upper part of the late middle Eocene in 

Florida was named the Avon Park Limestone by the Applins (1944, p. 1680, 

1686). It crops out to the north in Citrus and Levy Counties and is the 

oldest formation exposed at the surface in Florida. It is also the old­

est formation penetrated by water wells in the vicinity of the Pine Level 

area. 

Lithologically the Avon Park in the Manatee County well (Fig. 7) 

varies from white to tan, fairly soft, coquinoid or granular limestone, 

to dark brown, hard, crystalline dolomite. Most of the limestone beds 

are dolomitic. The formation contains a prolific, distinct middle 

Eocene microfauna (Puri and Vernon, 1964, p. 52). 

The Avon Park Limestone thins from about 700 feet in Manatee County 

(Peek, 1958, p. 16) to about 300 feet in Highlands County, and is evi­

dently about 600 feet thick under the Pine Level area. 

Ocala Grou~: The term Ocala Limestone was first used by Dall (1892, 

p. 103-104) to describe exposures in the vicinity of Ocala, Marion County, 

Florida. Puri and Vernon (1964, p. 57) discuss the subsequent revisions 

of the Ocala Limestone. The Florida Geological Survey now recognizes 

the Ocala Group as subdivided into three formations which, in ascending 

order, are the Inglis, Williston, and Crystal River Formations. 

The Ocala Group lies unconformably on the Avon Park Limestone and 

is about 300 fee~ thick. The upper part in Manatee County consists of 

cream, tan, and grayish-tan, soft, chalky, highly fossiliferous lime-
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Table III. Geologic Formations in the Pine Level Area 

Formation ·~haracteristics 

Soil, gravel, peat, mucl<, hardpan. 

Upper Pleistocene Tan, light gray, or brownish gray, fine- to coarse-
Sand grained, clayey to loose, incoherent sand. 

Lower Pleistocene Gray, fine- to coarse-grained, incoherent, phos-
Sand phatic sand with thin beds of dark green sandy 

clay or marly limestone. 

Bone Valley Brownish gray, fine- to coarse-grained, cohesive, 
Formation clayey, phosphatic sand. 

Hawthorn Form- Upper clastic member of gray, fine-grained phos-
at ion phatic sand and interbedded green clay. Lower mem-

ber of tan, sandy, phosphatic limestone. 

Tampa Formation White, gray, and tan, hard, dense, sandy limestone 
with thin chert beds. Locally phosphatic. 

Suwannee Lime- Creamy white to tan, granular, porous limestone with 
stone some beds of crystalline dolomitic limestone. 

Ocala Group Cream, tan, and grayish tan, soft, chalky, highly 
fossiliferous limestone. 

Avon Park Lime- White to tan, fairly soft, coquinoid, granular 
stone limestone or dark brown, hard, dolomite. 

Lake City Lime- Cream and tan, chalky to granular, fossiliferous, 
stone dolomitic to gypsiferous limestone. 

Oldsmar Limestone Tan and brown, granular, porous limestone interbedded 
with chert, anhydrite, and tan, crystalline dolomite. 

Cedar Keys Form- Cream to tan, fairly hard, granular, gypsiferous lime-
at ion stone and tan to brown, crystalline dolomite. 

Thickness . 
(feet) 1 

0-10 

0-33 

0-50 

0-16 

:!:300 

!100 

~150 

300 

6oo 

500 

950 

2,000 

VI 
0\ 
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stone. The lower part is similar but contains beds of brown and tan, 

hard, crystalline dolomite and dolomitic limestone, 

2. Oligocene Series 

38 

Suwannee Limestone: The name Suwannee Limestone was proposed by 

Cooke and Hansfield (1936, p, 71) for the yellowish limestone exposed 

along the Suwannee River in Hamilton and Suwannee Counties in northern 

peninsular Florida. The formation is differentiated from the underly­

ing Eocene formations and the overlying Miocene formations on the basis 

of lithology and faunal content, and is separated from these formations 

by unconformities. 

The Suwannee Limestone is not continuous in the subsurface of pen­

insular Florida, As shown in Figure 7 the formation is about 125 feet 

thick in the Hanatee County well, 300 feet thick in the Hardee County 

well, and 15 feet thick in Highlands County, The formation is missing 

in eastern Highlands County (Bishop, 1956, p, 23). 

The formation is a creamy-white to tan, soft to hard, granular, 

porous limestone with some beds of crystalline and dolomitic limestone. 

It contains many echinoids, mollusks, and foraminifers. 

3, Miocene Series 

The deposits of Miocene age in the Pine Level area are referred to 

the Tampa Formation of early Miocene age (Cooke, 1945, p, 1.07), and the 

Hawthorn Formation of middle and late Miocene age. Both of the formations 

are of marine origin, but they represent different depositional environ­

ments and are probably separated by an unconformity. 

Tampa Formation: The Tampa Formation lies unconformably on the 

Suwannee Limestone and consists of white, gray, and tan, hard, dense, 



sandy limestone which locally contains fine-grained phosphorite. The 

limestone is crystalline and dolomitic, and contains thin beds of 

chert. It is generally fossiliferous and contains echinoid plates 

and spines, ostracods, foraminifers, and mollusks. 

The formation, like the Suwannee, is not continuous in the sub­

surface. It is about 140 feet thick in the Manatee County well, 90 

feet thick in Hardee County, and missing in Highlands County. It is 

probably about 100 feet thick in the Pine Level area. 

39 

Hawthorn Formation: The term "Hawthorn Formation" has a complex 

history in Florida. Originally, the name "Hawthorne" was given by Dall 

(1892, p. 107) to the phosphatic limestone believed to be of "older" 

Miocene age near the town of Hawthorne in Alachua County. Younger than 

the Hawthorne "beds", but still of "older" Miocene age, were the Tampa, 

Chipola, and Alum Bluff "beds", which were assigned by Dall (1892, p. 112) 

to the Tampa group. Later, due to a readjustment of the Oligocene­

Miocene boundary, the Tampa group was regarded as Oligocene by Dall and 

others. 

Matson and Sanford (1913, p. 87-88) shortened the name "Hawthorne" 

to "Hawthorn". They believed that the land-pebble phosphate deposits 

lie upon an eroded surface of the Alum Bluff Formation. 

According to Sellards (1915, p. 34-35), the Alum Bluff Formation 

was the parent rock from which the land-pebble phosphates were derived. 

Sellards (1916, p. 91-92) later introduced evidence of a Miocene vert­

ebrate fauna in the Alum Bluff Formation. The opinion that the Alum 

Bluff Formation should be considered Miocene was generally accepted by 

later workers. 

Gardner (1926, p. 1-2) recognized three distinct marine faunas of 

Miocene age, and, on the basis of these faunas, she raised the Alum 



Bluff of western Florida to the rank of a group divided into three form­

ations, each of which was characterized by a separate fauna. In descend­

ing order these were: Shoal River Formation, Oak Grove Sand, and Chip­

ala Formation. 

Cooke and Mossom (1929, p. 98) retained Gardner's Alum Bluff Group 

but reinstated the Hawthorn Formation as a lateral equivalent in penin­

sular Florida of the Alum Bluff Group in western Florida. Within the 

Hawthorn Formation, Cooke and Mossom (1929, p. 115) included the earlier 

Alum Bluff Formation of Matson and Clapp (1909, p. 91) and the original 

Hawthorne "beds", the Manatee River Marl, the Sopchoppy Limestone, and 

the Jacksonville Limestone of Dall. In general, Cooke (1945, p. 144) 

retained this classification, but he tentatively transferred to the 

Duplin Marl some beds of late Miocene age that Cooke and Mossom (1929, 

p. 115) assigned to the Hawthorn Formation. 

As a result of the above investigations, the Florida Geological 

Survey considers the Hawthorn Formation of peninsular Florida to be a 

facies equivalent of the western Alum Bluff Group of middle Miocene 

age (Puri and Vernon, 1964, p. 117). However, Cathcart reports (1964, 

p. 20) that MacNeil, in a personal communication, suggest that the 

upper part of the formation in the northern part of the land-pebble 

field is either late middle Miocene or early upper Miocene. Also, 

Bergendahl (1956, p. 73-79) has described a "sand of late Miocene age" 

that underlies all of De Soto County, which, based upon stratigraphic 

position and lithologic similarity, is equivalent to the upper part of 

the Hawthorn Formation in the northern part of the land-pebble field. 

The formation in the land-pebble field thus apparently ranges from 

middle into upper Miocene, and the upper part of the formation is evi-



dently younger than the Alum Bluff Group of the Florida panhandle. 

It is recognized that the inclusion of Bergendahl's "sand of 

late Miocene age" in the Hawthorn Formation properly requires a re­

definition of the Hawthorn Formation or a revision of the upper age 

limits of the Alum Bluff Group. The clear lithologic similarity of 

the "sand of late Miocene age 11 , the upper clastic member of the land­

pebble field, and the phosphatic Hawthorn Formation of northern pen­

insular Florida indicates a reVision of the Alum Bluff Group is re­

quired. This must await a comprehensive regional study of the pale­

ontology of the upper part of the Hawthorn Formation south of the Polk 

Upland. 
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The strata assigned to the Hawthorn Formation in this paper follows 

the usage of Cathcart (1964) and includes all deposits of Hiocene age 

that are younger than the Tampa Formation; and, again following Cath­

cart, the formation is divided into a lower limestone member and an 

upper unnamed clastic member. 

The lower Hawthorn Limestone Hember underlies, except very locally, 

the entire land-pebble field and the Pine Level area. Details of the 

distribution, lithologic variations, and thickness must be obtained 

from well data. In the main producing district it forms the "basement" 

or "bedrock" under all of the mineable phosphate deposits. 

The lower member consists essentially of white, gray, and tan, 

soft to hard, sandy, crystalline limestone v~th numerous thin interbeds 

of white calcareous clay or sandy marl. The member contains sparse to 

locally abundant phosphate pellets and pebbles. The thickness appar­

ently ranges from about 250 feet in Manatee County to 160 feet in Hardee 

County, and 70 feet in Highlands County (Fig. 7). 



The upper clastic member of the Hawthorn Formation crops out or 

underlies, at relatively shallow depth, a large part of the northern 

Florida peninsula (Vernon and Puri, 1964). It has mostly been removed 

by erosion from the northern part of the land-pebble field and the area 

of the Ocala uplift (Fig. 2). 

The detailed stratigraphic relations between the upper clastic 

member of this paper and the phosphatic Hawthorn Formation north of 

the land-pebble field are not known. Similar fine- to medium-grained 

phosphatic sands are widespread and are being mined by Occidental Hin­

erals Corporation of Florida in Hamilton County. Pirkle (1967, p. 238) 

shows the location of several other potential deposits in the Hawthorn 

Formation of the northern Florida peninsula; and Espenshade and Spencer 

(1963, p. 54) discuss areas favorable for prospecting. 

In the main producing district the upper clastic member is locally 

present in the southeastern part of the Lakeland quadrangle where it has 

a maximum thickness of about 10 feet (Cathcart, 1964); it has been noted 

at several localities in the northwestern part of the Fort Meade quad­

rangle where it is also about 10 feet thick (Cathcart, 1966); and thin 

isolated remnants up to five feet thick are occasionally noted in the 

Keysville quadrangle (Cathcart, 1963a). In northeastern Jvlanatee County 

the member begins thickening toward the south and reaches a thickness of 

70 feet in the southern part of the Chicora quadrangle (Cathcart, 1963c) 

The member was probably once continuous over the land-pebble field 

but was probably much thinner than to the north and the south as a re­

sult of deflection around the southern end of the Ocala uplift (Cath­

cart, l963b, p. 22). The present thickness and erratic distribution of 

the member in the northern part of the land-pebble field is the result 



of post depositional erosion. 

The upper clastic member underlies the entire Pine Level area 

(Fig. 8) and is a dark gray, brownish-gray, or greenish-gray, fine-
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to very fine-grained phosphatic sand; interbedded green clay; and minor 

thin, light gray, soft phosphatic limestone or marl beds. Sand con­

stitutes about 60 to 70 percent of the member penetrated by the explor­

ation core holes, and clay about 30 to 40 percent, although most of the 

sand units contain varying amounts of interstitial clay. The thin 

limestone or marl beds constitute a minor part of the member. 

The phosphate content of the sand units varies from traces to as 

much as 25 percent of the total weight of the unit. Particulars of the 

phosphate content are discussed in detail in a succe.eding section of 

this paper. 

The top of the upper clastic member is an irregular erosion our­

face that ranges from 41 feet above sea level to 31 feet below sea 

level in the Pine Level area. Figure 9 is partially a subsurface con­

tour map of the buried Hawthorn erosional surface in the area. The 

erosional relief on the Hawthorn surface in Manatee County is about 60 

feet and ranges from 10 feet above sea level to 50 feet below sea level 

(Peek, 1958, p. 21). 

The thickness of the upper clastic member is about 40 feet in the 

Manatee County well, and thickens to 300 feet in Highlands County (Fig. 

7). Only the uppermost part of the member has been penetrated and 

sampled by the exploration core holes in the Pine Level area. The thick­

ness of the member in the Pine Level area was consequently not determined 

during the exploration program but it is estimated, by inference, to be 

about 100 feet thick. The member is thus seen as a south-thickening 
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Figure 8. Geologic map and index to cross sections, Pine Level are~; 

De Soto, Manatee, and Sarasota counties, Florida. 
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Figure 9. Paleotopographic map of the Pliocene-Pleistocene 

erosion surface in the Pine Level area; De Soto, 

Manatee, and Sarasota counties, Florida. 
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wedge of clastic sediments that varies from a few feet in thickness in 

the south part of the main producing area to a thickness of, perhaps, 

100 feet in the Pine Level area. 

Citronelle Formation: A discussion of the regional stratigraphic 

relationships and the interpretation of the regional geologic history, 

to which the Pine Level deposit is related, requires the brief consider­

ation of an additional important geologic feature of the Florida penin­

sula, and another formation not now present in the land-pebble field. 

These are the Lake Wales Ridge and the Citronelle Formation. 

The Lake Wales Ridge is present in central peninsular Florida. 

It trends in a. general north-south direction from Highlands County on 

the south into Clay County to the north along a distance of about 200 

miles, and divides the peninsula into two nearly equal parts. The 

southern portion of the Ridge is shown on Figure 3. The Ridge forms 

the high elevation "backbone" of the Florida peninsula and attains 

elevations of near 300 feet in southern Polk County. 

The Lake Wales Ridge is covered by a blanket of loose to slightly 

indurated surface sands. The surface sands are underlain by clastic 

deposits of the Citronelle Formation which, in turn, rest upon sands, 

clays, marls, limestone, dolomite, and phosphate concentrations of the 

Hawthorn Formation. The Citronelle consists of cross-bedded, coarse, 

fluvial deposits of quartz sand, quartz granules, and interstitial 

kaolinitic clay. The Citronelle Formation has been dated by invert­

ebrate fossils as late Hiocene by Ketner and IvlcGreevy (1959, p. 49). 

The Citronelle sediments are thought to have been deposited as 

part of a prograding delta that built southward into the present area 

of Florida (Pirkle .£i.!J:,., 1964, p. 1131). Considerable parts of such 

deposits have been removed by stream erosion and advancing Pleistocene 
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seas, leaVing the higher parts of the delta as a remnant ridge, the 

Lake Wales Ridge. Presumably the eastern part of the land-pebble field, 

at least, may have been blanketed at the close of Miocene time by some 

unknown thickness of Citronelle sediments. 

Alachua Formation: In addition to the Hawthorn phosphate deposits 

of the northern Florida peninsula and the Bone Valley deposits of the 

land-pebble field, another group of deposits has contributed to Florida 

phosphate rock production in the past. These are the hard-rock deposits 

of the Alachua Formation. A brief description of these deposits is re­

counted here because the author suggests that the origin of these de­

posits may be related to the origin of the phosphate pebbles in the 

Bone Valley Formation. 

The hard-rock phosphate deposits occur in a linear belt that extends 

northwest about 110 miles from southern Hernando to southern Suwannee 

County along the crest of the Ocala uplift (Fig. 2). The deposits 

characteristically are a rubble of platy fragments and botryoidal 

masses of hard apatite with soft white claylike apatite, clay, sand, 

chert, and limestone. The deposits are highly irregular in shape and 

size and are several feet to more than 100 feet in thickness and a few 

hundred square feet to more than 40 acres in area (Espenshade and 

Spencer, 1963, p. 32). The phosphate deposits rest upon Avon Park, 

Ocala, or Suwannee limestone that is intricately pitted by ground water 

solution; pinnacles of limestone may project 20 to 30 feet above the 

general surface of the limestone up into the phosphate deposit, or the 

phosphatic rubble may fill old sink holes to considerable depths. 

These highly irregular rubble deposits, along with some clay and 

sand have generally been assigned to the Alachua Formation (Sellards, 
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1913; Hatson, 1915). Pirkle (1956) summarizes the nomenclature of 

the Alachua Formation and believes that strata of both the Hawthorn 

Formation and Pleistocene sediments have been included in the Alachua. 

Espenshade and Spencer (1963, p. 38) conclude that the deposits formed 

somewhere in the range between middle Miocene and early Pliocene. 

According to Espenshade and Spencer ( 1963, p. 40-lt-5) phosphatic 

strata of the Hawthorn Formation evidently once covered all or most of 

the hard-rock district. Uplift during early Pliocene time exposed the 

area to subaerial erosion. A surface drainage system of brief duration 

developed, but was soon succeeded by the underground drainage system 

which now predominates. 

Development of the underground drainage system accelerated the 

leaching of phosphate and carbonate from the overlying and enclosing 

strata. Calcium carbonate was first leached by descending acidic water; 

after its removal, phosphate was gradually dissolved and carried down­

ward, and perhaps laterally, to be deposited as secondary apatite in 

the zone where limestone was being actively dissolved and the acidic 

water was being neutralized. 

Solution slumping took place repeatedly, causing brecciation of 

secondary apatite and mixing it with other materials. Phosphate dep­

osition was discontinuous, and several generations of secondary apatite 

are commonly evident. The process resulted in an irregular chaotic 

rubble breccia consisting of portions of phosphate particles from the 

overlying Hawthorn Formation, secondary apatite plates and botryoidal 

masses, limestone fragments, sand, and clay. Considerable erosion has 

taken place since the formation of the hard-rock deposits. 
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4. Pliocene Series 

~ Valley Formation: The Bone Valley Formation was first called 

the Bone Valley gravel (Matson and Clapp, 1909) for phosphate beds west 

of Bartow, Polk County, where the beds were being mined commercially for 

phosphate. It originally included all of the mineable phosphate plus 

the overlying clayey sand containing traces of phosphate, but it ex­

cluded the underlying lower limestone member of the Hawthorn Formation, 

and the overlying loose Pleistocene sand. Cooke (1945, p. 203) dis­

carded the term "gravel" because only a small part of these deposits is 

really gravel, and used the term Bone Valley Formation. Cathcart (1963a, 

p. 15) has shown that the lower part of the mineable phosphate bed is 

in some places a residuum of the underlying lower limestone member of the 

Hawthorn Formation. The lower phosphatic member of the Bone Valley Form­

ation in the main portion of the field thus does not necessarily include 

all of the mineable phosphate. 

Riggs and Freas (1965) proposed a revision of the Bone Valley Form­

ation. They applied the name Bone Valley to the upper clastic member 

of the Hawthorn, and called the Bone Valley Formation proper an 

"unnamed" Pliocene and Pleistocene formation. Their proposal has not 

been taken seriously. 

The Bone Valley Formation, as shown by Cathcart's geologic maps, 

entirely underlies almost all of the Polk Upland portion of the land­

pebble field. There are small, local areas of Pleistocene channeling 

where the formation has been removed, and recycled into the Pleisto­

cene channel-fill deposits (Cathcart, 1966, Fig. 4). Also several 

streams and rivers have downcut through the formation and redistributed 

the phosphate particles downstream into Recent "river pebblen deposits. 
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The upper clayey sand member between the loose Pleistocene sand and 

the lower phosphatic member is not recognized in the Pine Level area, 

The Bone Valley Formation has been largely removed from the Pine Level 

area by Pleistocene erosion. The subsurface distribution of the un­

eroded remnants of the lower phosphatic member of the formation are 

shown on Figure 8. The lower member is recognized on the basis of 

stratigraphic position, a relatively uniform basal elevation, and lith­

ologic similarity to the formation in the quadrangles studied by Cath­

cart. 

The Bone Valley Formation i.n the Pine Level area is a browni.sh­

gray, fine- to coarse-grained, cohesive, clayey, phosphatic sand, The 

phosphate content varies from about 15 to 40 percent by weight, and 

will be discussed in more detail in a later section. The thickness of 

the formation ranges from 0 to about 16 feet. 

Cathcart summarizes the evidence bearing on the age of the Bone 

Valley Formation and concludes the vertebrate fossils and large avi­

fauna indicate the age is Pliocene (1966, p, 16), 

5, Hawthorn-Bone Valley Unconformity 

The upper surface of the Hawthorn Formation in the Polk Upland 

is a very irregular erosional surface that has been modified by, at 

least, two periods of erosion, The first occurred after deposition of 

the Hawthorn Formation but before the deposition of the overlying Bone 

Valley Formation, The second is apparently related to a more recent 

erosional cycle for the streams and major rivers, such as the Peace 

and Alafia, are entrenched into the Hawthorn surface. There are some 

exceptions, but, in general, the present drainage pattern is similar 

to the ancestral stream patterns (Cathcart, 1963a, p. 20). The upper 



member of the Hawthorn was eroded and removed during the earlier 

cycle of erosion. 
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Cathcart's contour maps show the present surface of the Hawthorn 

varies from about 150 feet above sea level to ten feet below sea level, 

and is a very irregular karst surface that was formed by chemical weath­

ering after the removal of the upper member. The greatest local relief 

is along present day streams, so the actual relief on the Hawthorn 

surface immediately prior to the deposition of the Bone Valley Formation 

was more moderate than indicated by the present surface. This period of 

chemical weathering formed the phosphate-rich, calcareous clay residuum 

on the Hawthorn Lj_mestone surface. 

The Hawthorn-Bone Valley contact in the Pine Level area is best 

shown in cross sections A-A' (Fig. 10) and J-J' (Fig. 13). It can be 

seen that the contact is at an elevation of about 30 feet in the remnant 

area near the Manatee-De Soto county line and appears to increase some 

eight miles to the northeast to an elevation of around 40 feet in Section 

8,- T. 37 s., R. 24 E. in De Soto County (Fig. 8). Local relief on the 

contact appears to be on the order of, at most, several feet. 

The difference in the basal elevation of the two remnants indicates 

a westerly dip of approximately one foot per mile. Cathcart (1963a, 

p. 40) has commented that Tampa Bay and Charlotte Harbor on the Florida 

west coast are typical drowned river valleys while the straight cast 

coast of Florida resembles a coast line of emergence. From this rel­

ationship and an evident west dip of the Hawthorn surface in the Keys­

ville quadrangle, he concludes that westward tilting of the Florida 

peninsula may have occurred after the development of the erosion sur­

face. The ten foot difference in elevation discussed above could be 
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Figure 10. Cross section A-A'. 
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Figure 11. Cross sect~ons B-B' through F-F•. 
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Figure 12. Cross sections G-G• through I-I'. 
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Figure 13. Cross sections J-J' through L-L'. 
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accounted for by such westward t~lt~ng, however, such a m~nor d~fference 

~n elevat~on ~s more rea~ly expl~ned as a gentle surface of low rel~ef 

upon wh~ch the Bone Valley Format~on was depos~ted. 

The small s~ze and l~m~ted areal extent of the Bone Valley eros~onal 

remnants do not supply suff~c~ent def~~te ~nformat~on regard~ng the pos­

sible conf~gurat~on of the Hawthorn-Bone Valley surface ~n the P~ne Level 

area. 

Bergendahl's (1956) "sand of late N~ocene age" ~ndicates that dep­

osition of the upper clast~c member continued for a much longer period 

of time ~n the Pine Level area, and the erosional interval that str~pped 

the member from the Polk Upland was of much more l~m~ted durat~on. The 

apparent gentle surface suggests that the per~od of eros~on follo~ng 

the depos~t~on of the Hawthorn may have been of much less sever~ty ~n 

the P~ne Level area. Cert~nly the per~od of chem~cal weather~ng that 

formed the phosphate-rich residual source of the Bone Valley phosphate 

pellets in the Polk Upland could not have had the same result in the 

clast~c terr~n of the P~ne Level area. A phosphate-r~ch mantle and re­

worl<::.ed, phosphate-r~ch fluvial depos~ ts most likely developed on the 

underly~ng phosphat~c sands of the upper member of the Hawthorn Form­

at~on ~n the P~ne Level area during the ~nterval. 

c. Quaternary System 

1. Ple~stocene Ser~es 

The pr~nc~pal difference ~n the Pleistocene deposits of the Polk 

Upland and the Pine Level area is related to recycling of sedimentn by 

the successive mar~ne ~nundat~ons. 

The sed~mentary deposits under the Lakeland and Lal<::.e Henry R~dges 

are generally coarse sand depos~ts (Altschuler and Young, 1960, F~g. 
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89.2; Pirkle~~., 1967, p. 253) that are most likely erosional rem­

nants of Coharie deposits derived, in large part, from the Citronelle 

Formation. 

The remainder of the Pleistocene deposits above the Wicomico scarp 

in the Polk Upland are Okefenokee sediments that have probably been 

mainly derived from both the upper member of the Bone Valley Formation 

and recycled Coharie deposits. 

The Wicomico deposits under the De Soto Plain appear to be essen­

tially composed of materials recycled from both the Bone Valley and 

Hawthorn Formations. Phosphate particles in the Wicomico deposits 

are ever present and locally very abundant. 

The Pamlico deposita appear to be mainly recycled Wicomico de­

posits. They appear, in general, to contain somewhat less phosphate 

than the Wicomico deposits with the more abundant addition of broken 

shell fragments. 

The Pine Level area, as noted in the section on physiography, has 

apparently been subjected to at least three Pleistocene marine trans­

gressions separated by periods of subaerial erosion. Each succeeding 

marine invasion probably reworked part or all of the deposits of the 

previous cycle so that reconstruction of the detailed geologic history 

is not possible from the information available. The difficulty is fur­

ther compounded by the fact that only sediments lowest in elevation and 

youngest in age (Pamlico and Silver Bluff) contain identifiable fossils 

of a marine environment (Puri and Vernon, 1964, p. 286). The writer 

recognizes two lithologically distinct deposits of apparent Pleistocene 

age in the Pine Level area: a lower, phosphatic, transgressive marine 

sand, and an upper, marginal marine to fluvial, regressive sand that 
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blankets the entire area. The Ple1stocene age assignment is indicated 

by stratigraphic position and a genesis related to regional Pleistocene 

hi.story. 

The two units are here1n des1gnated lower and upper Pleistocene on 

the basis of stratigraphic position. They may contain reworked deposits 

of several different Pleistocene marine invasi.ons so the lower and upper 

designation does not denote any age significance. 

Lower Pleistocene ~: This unit consists of medium to very dark 

gray, fine- to coarse-grained, incoherent, loose, slightly clayey, phos­

phat:Lc sand Wi. th mi.nor thin intercalated beds of dark green sandy cl.ay. 

Well rounded to subrounded, gray l.imestone granules and pebbles are 

characteristic and locally abundant, as are broken pelecypod fragments. 

Gray l:Lmestone, often partially decomposed by ground water so as to form 

a clayey rubble or marl, occurs in thin beds and may locally constitute 

as much as ten percent of the unit. The upper part of the unit is a 

local, erratically distributed orange-green mottled clay that varies 

from 0 to several feet in thickness. 

The top of the sand occurs at an elevation approximating 20 feet 

above sea level in the Gulf Coastal Lowland portion of the Pine Level 

area, and at an elevation of 30 to 50 feat above sea level under the 

De soto Plain portion. The sand does not now overlap or cover the 

Bone Valley Formation, but surrounds it at lower elevations {Figs. 8, 

10, 11, 12, 13). The unit varies from a feather edge to more than 50 

feet in thickness. 

Most of the phosphate reserves of the Pine Level area, in marked 

contrast with the main producing area of the land-pebble field, occur 

in this lower Pleistocene sand. Details of the distribution and occur-



renee of phosphate within the unit will be discussed in a following 

section. 
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Upper Pleistocene ~: The upper Pleistocene sand blankets and 

covers the entire Pine Level area. It is a tan, light gray, or brownish­

gray, fine- to coarse-grained, slightly clayey to loose, incoherent sand. 

The relationships of the clayey sand and the loose sand indicate that 

the loose sand appears to occur as channel fill; it is locally very 

coarse-grained; and it may represent a fluvial deposit that is younger 

than the clayey sand. The thickness of the upper Pleistocene unit varies 

from a few feet to more than 33 feet in thickness. 

2. The Pliocene-Pleistocene Unconformity 

Erosional relief on the base of the Pleistocene surface in the 

main producing area is not known in detail. One of Cathcart's cross 

sections (1963c, Fig. 3) shows local relief in this section is about 

50 feet. Most of his other sections commonly show a variation on the 

base of the Pleistocene terrace sand of 10 to about 30 feet. 

Figure 9 is a subsurface contour map of the pre-Pleistocene eros­

ional surface (the surface formed by the transgressive marine erosion) 

in the Pine Level area. Both the lower transgressive phosphatic sand 

and the upper regressive sand are variable in thickness. The elevation 

of the base of the phosphatic sand varies from 31 feet below sea level 

in the swt Section 36, T. 37 s., R. 23 E. to 32 feet above sea level 

(Fig. 13, section J-J•, hole 18-5). The base of the upper sand varies 

from near sea level in the swt Section 36, T. 37 s., R. 23 E. to 48 feet 

above sea level in Section 8, T. 37 s., R. 24 E. Maximum relief on the 

erosional surface is therefore 79 feet at the present time. 
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3. Recent Deposits 

Phosphate sand and fine gravel deposited in bars along Horse Creek, 

muck and peat deposits in swamps and ponds, and iron-cemented "hardpan" 

a few feet beneath the surface constitute deposits of Recent age in the 

Pine Level area. The deposits are thin and erratic in distribution and 

have not been designated on the geologic map (Fig. 8). It is possible 

that the channel fill deposits, discussed above, may be of Recent age. 



V. PLEISTOCENE PALEOGEOGRAPHY OF THE PINE LEVEL AREA 

A. Introductory Comment 

The configuration of the basal Pleistocene surface allows some 

interpretations pertaining to the paleogeography of the Pine Level 
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area during the Wicomico transgression (Fig. 9). Additional geologic 

criteria related to such interpretations include the location and con­

figuration of the Bone Valley erosional remnants, the general elevation 

of these remnants, the surrounding and flanking relationship of the low­

er Pleistocene sand, and the distribution of the matrix. These data in­

dicate a variety of marine landforms were formed by the transgressive 

sea. These include a series of islands, several tidal passes, a low 

energy tidal terrace area, and areas of scouring by more active currents. 

B. Bone Valley Islands 

One of the more interesting and obvious features indicated by Fig­

ure 9 is that the erosional remnants of the Bone Valley Formation occupy 

the greater proportion of the total area above an elevation of about 30 

feet above sea level (see stippled areas on Fig. 9). Below this elev­

ation; except for the very small, local areas shown on Figure 8 where 

the upper Pleistocene sand fills channels scoured into the underlying 

Hawthorn; the lower Pleistocene sand rests directly on the Hawthorn 

Formation. Above this elevation the lower Pleistocene sand is not 

present, and the upper Pleistocene sand rest directly on the Bone Valley 

Formation. The contours within the stippled areas (Fig. 9) are there­

fore drawn on the contact between the upper sand and the Bone Valley 

Formation; and the contours outside of the stippled areas are con­

sequently drawn on the lower Pleistocene sand-Hawthorn contact. 

These relationships clearly indicate the present Bone Valley 
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remnants were islands that stood above the advancing Wicomico sea 

during a temporary standstill where high tide reached an elevation of 

about 30 feet. The Bone Valley Formation outside of the stippled areas 

was eroded, winnowed, and recycled into the surrounding and flanking 

lower Pleistocene sand. The Hawthorn sediments between this elevation 

and the present base of the lower Pleistocene sand suffered similar eros­

ion and redistribution. 

It may also be noted that the base of the Bone Valley remnants, 

which represent the high tide mark of this temporary Wicomico stand­

still, increases from about 28 feet in Section 22, T. 37 s., R. 22 E.; 

to near 35 feet in Section 11, T. 37 s., R. 23 E.; and then to nearly 

40 feet in Section 8, T. 37 s., R. 24 E. This could indicate that the 

Pine Level area has in fact been tilted westward approximately one foot 

per mile since this Wicomico standstill. 

c. Tidal Passes 

The distribution of the lower Pleistocene matrix is indicative of 

the presence of an active tidal pass trending in an arcuate north-south 

direction from Section 31 through the east part of Section 17 into Sec­

tion 5, all in T. 37 s., R. 23 E. Further eVidence, in addition to the 

north-south extended distribution of the matrix along this trend (Fig. 

8), supports this interpretation. The depression or scour in Sections 

17 and 20 is indicative of active current movement through this area, 

and the phosphate content of the sediments in this pass area is quite 

minor with an abundance of shell fragments and limestone pebbles (Fit;. 

11 , section F-F 1 , hole 20-3). Further, the pass area rer.1:.Uned a low 

swale after the continued advance of the Wicomico sea, and it subse­

quently became filled with green clay that was eroded from the Hawthorn 
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Formation to the north and carried south into quiet water where it set­

tled into and filled the swale. The thickest and most persistent occur­

rence of the green clay in the top portion of the lower Pleistocene sru1d 

occurs within this tidal pass area (Fig. 10, section A-A', hole 8-4; Fig .. 

11, section F-F', hole 20-3). The scour in Sections 24, T. 37 s., R. 22 

E. and Section 19, T. 37 s., R. 23 E. indicates the tidal flow, in part 

or at one time, passed through this area. 

The configuration of the matrix from the southwest corner of Sec­

tion 32 to the southeast part of Section 14, T. 37 s., R. 22 E., is 

again indicative of redistribution of phosphate by tidal activity through 

a pass in the extreme northern part of Section 23. The pass appears to 

be rather shallow from Section 14 toward the southwest to the center of 

Section 28. At this point the Hawthorn surface steepens rather abruptly 

into an apparent scour that contains a considerable thickness of sand 

similar to the upper Pleistocene sand (Fig. 10, section A-A'). The 

abruptness may be related to some older small wave cut clifflike fea­

ture that formed when the sea stood at a lower level, but an explanation 

for the local thick section of nonphosphatic sand is not apparent. 

Tho relationship at the extreme west :part of the Pine Level area 

is not well understood and probably results, for tJ.1e moGt part, from a 

lack of definitive J.i tho logic information in the northwest part of the 

map area. 

The presence of the passes implies that the northerru:wst part of 

the Pine Level area was occupied by a lagoon or embayment which restrict­

ed tidal action. The position of the actual shore line was evj_dcntly 

north of the Pine Level area at this time. The limited number of drill 

holes in Sections land 2, T. 37 s., R. 23 E., and Section 20, T. 37 s., 
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R. 22 E. contain a higher proportion of clay and clayey sand in the 

lower Pleistocene deposits and provides evidence of deposition in a much 

lower energy environment. 

D. Beach Terrace 

The large area between 20 and 30 feet in elevation in the south­

eastern corner of Manatee County evidently represents a lower energy 

wave cut terrace area that was protected from the more erosive activity 

of tidal or longshore currents. 

This area is covered by a relatively thin and uniform veneer of 

lower Pleistocene sand (Fig. 10, section A-A'). The recovered +14 mesh 

pebble in this area contains, in general, a greater amount of coarser 

limestone pebbles than in most areas. Most of these limestone pebbles 

can be separated from the phosphate pebbles by a secondary screening at 

6 or 8 mesh. 
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VI. DESCRIPTION OF THE PINE LEVEL l1ATRIX 

A. General Description 

The mineable phosphate zone, or matrix, of the Pine Level area may 

consist of any one of five different combinations of three different 

stratigraphic units: (1) only the Bone Valley Formation (Fig. 10, sec­

tion A-A', hole 24-15), (2) only some port:i.on or all of the lower Pleist­

ocene sand (Fig. 10, s.ection A-A', hole 28-6), (3) the Bone Valley Form­

ation and a portion of an underlying phosphatic sand of the Hawthorn 

Formation (Fig. 10, sect:i.on A-A', hole 22-37), (4) a combination of all 

or the basal part of the lower Pleistocene sand and underlying phosphatic 

sand of the Hawthorn Formation (Fig. 10, section A-A', hole 28-30), and 

(5) only a. phosphatic sand unit of the Hawthorn Formation. The strati­

graphic composition of the matrix thus varies from place to place through­

out the Pine Level area. 

The matrix ranges from 5 feet to over 40 feet in thickness and 

averages 14 feet. The thickness of the overburden also averages 14 

feet. The basal elevation of the matrix varies from near sea level in 

Section 32, T. 37 s., R. 22 E. to about 40 feet above sea level in Sec­

tion 8, T. 37 s., R. 24 E. The largest recoverable tonnage of phosphate 

rock occurs in the lower Pleistocene sand, and the actual reserve tonnage 

in the Hawthorn Formation is relatively minor. 

B. Lower Pleistocene Hatrix 

The lower Pleistocene sand contains an incredible abundance of 

phosphate particles reworked from both the Hawthorn and Bone Valley 

Formations, but it is not everywhere economically mineable. In a large 

part of the area the phosphatic section is too th:i.n (Fig. 10, section 

A-A', hole 33-29) or replaced by other sediments (Fig. 13, section J-J' 
' 
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hole 24-12), the phosphate content is too meager (Fig. 12, section H-H', 

hole 16-6A), or the phosphatic portion is too contaminated by calcium 

carbonate in the form of limestone pebbles or shell fragments to be 

useful (Fig. to, section A-A', holes 32-5, 32-32, 28-6, and 27-6). 

The actual lower Pleistocene matrix is generally restricted to the 

areas immediately adjacent to the Bone Valley remnants (Fig. 8), and as 

the distance from these remnants increases, becomes increasingly con­

taminated with limestone pebbles and shell fragments. The higher energy 

currents closely adjacent to the remnants winnowed and removed more of 

the materials of lighter specific gravity, and left a concentration of 

the fluorapatite particles. 

The limestone pebbles are unusual in that in many local areas, be­

cause of the round shape, the difference in specific gravity, and their 

response to the energy of the depositional environment, they are often 

larger in size than the phosphate pebbles. In a great number of samples 

the use of a secondary coarse screening will remove all of the limestone 

pebbles from the +14 mesh fraction with minor loss of the phosphate con­

tent. The flat shell fragments, on the other hand, having exposed only 

surface edges to current flow, are much more varied in size. Moreover, 

the normal agitation of processing further breaks them into smaller frag­

ments which eventually contaminate the flotation concentrate. 

The lower Pleistocene matrix may constitute the entire thickness of 

the lower Pleistocene sand (Fig. 11, section B-B', hole 22-14), may occur 

at the top of it (Fig. 12, section I-I', hole 12-11), or may be restricted 

to the middle portion (Fig. 12, section H-H', hole 15-3). The top of the 

Pleistocene matrix normally forms a relatively uniform surface locally 

whereas the base, lying on the Hawthorn erosion surface and flanking tho 
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Bone Valley remnants, is considerably more irregular (Fig. 11, sections 

B-B• and c-c•). 

Table IV presents the laboratory assay data for 20 Pleistocene 

matrix samples from 15 drill holes. The field lithologic logs of the 

15 drill holes are included in the Appendix. The chemical analyses in 

Table IV and in all subsequent tabulations of analytical data were ob­

tained commercially from Thornton Laboratories, 1145 East Cass Street, 

Tampa, Florida. The weighted average figures shown are derived from the 

actual weights of the sample fractions. 

The apatite pebbles and pellets of the Pleistocene matrix are al­

most always black to dark brown. The +14 mesh pebble is low in BPL con­

tent, and relatively high in CaD and acid insoluble residue. Fortunately 

the pebble content of the matrix is relatively low, and the concentrates 

sufficiently high in BPL content and low in CaD, so that blending the 

pebble with the concentrate results in a marketable product. Sample 

2062 (Table IV) is an example of an uneconomic sample highly contam:inated 

by carbonate. 

As shown by Table IV, the pebble content varies from about 2 to 12 

percent of the matrix and averages about 5 percent, the feed content 

varies from about 70 to 90 percent, and averages about 83 percent, and 

the slimes content varies from about 6 to 24 percent and averages about 

12 percent. The recoverable phosphate rock content is in excess of 20 

percent of the matrix. An important fact, not shown by Table IV, is 

that approximately 50 percent of the slimes actually occur in the silt 

size range. The actual clay content of the Pleistocene matrix is very 

low. As a consequence, with little clay to serve as a "binder", the 

matrix is usually quite loose, incoherent, and unconsolidated. 



Table IV.. Lower Pleistocene Matrix Samples * 

-14+150 MESH -150 -14+150 MESH + 14 MESH PEBBLE FEED MESH CONCENTRATES CROSS HOLE# SAMPLE SLIMES 
SECTION # 

j of % BPL eao/ % j of % BPL j of % BPL CaO/ j 
Sample P2o5 Insol. Sample Sample ______ P2o5 Insol. 

-
B-B' 22- 6 1975 + 1976 5.14 60.53 1.55 12.66 85.10 19.80 9.75 68.75 1.50 4.76 

27-13 1030 + 1031 4.74 63.79 1.55 8.11 82.40 17.48 12.86 68.47 l. 54 5.01 
C-C' 23- 5 315A + 316A 5.29 61.91 1.59 10.89 88.49 20.06 6.21 67.56 1.55 6.92 

23-37 1956 2.54 63.98 1.53 9.20 85.82 18.20 11.64 71.10 1.47 3.89 
0-D' 14-25 1362 + 1363 4.67 62.32 1.46 13.59 72.13 23.20 23.50 72.31 1.45 3.82 

24- 8 312A + 313A 3.42 62.04 1.56 11.46 84.12 22.45 12.46 68.35 1.49 6.71 
E-E' 19-50 2184 6.75 66.27 1.57 5.15 71.86 19.38 21.40 71.90 1.52 0.91 
F-F' 18-39 2280 6.32 63.32 1.54 10.05 84.04 21.55 9.64 70.84 1.49 2.14 

H-H' 16-11 2339 3.73 64.22 1.51 12.02 84.83 19.20 11.44 73.47 1.46 1.73 

I-I' 14-2 2469 2.17 68.32 1.53 4.95 87.86 17.18 9.97 70.86 1.50 3.00 
J-J' 9- 4 2059 3.63 64.82 1.49 10.60 89.82 18.83 6.55 72.31 1.46 2.79 

9- 7 2062 11.83 47.28 1.87 10.20 76.38 19.61 11.79 66.73 1.56 3.60 

K-K' 18-29 2425 10.57 61.92 1.57 8.75 70.38 22.12 19.05 67.65 1.59 5.64 

L-L' 8- 8 2055 3.66 65.06 1.50 10.36 89.94 20.23 6.40 69.96 1.47 6.02 
8-13 2065 5. 54 62.34 1.51 12.59 82.69 20.11 11.77 70.50 1.46 4.18 

Weighted Average: 4.95 61.76 1.57 10.07 82.92 19.92 12.13 70.11 1.50 4.23 

* Analyses by Thornton Laboratories, Tampa, Florida. 
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c. Bone Valley Hatrix 

The Bone Valley Formation in the Pine Level area is preserved as a 

series of erosional remnants that were not destroyed and reworked by the 

transgressive Wicomico sea. The upper barren member of the Bone Valley 

Formation, if it was. formerly present in the Pine Level area, has been 

completely stripped from the area by the Wicomico transgression. In 

addition, part of the upper portion of the lower phosphatic member has 

probably been removed. The Bone Valley Formation in several areas is 

too thin to be mineable and contains a very high proportion of pebble 

(Fig. 13, section J-J 1 , hole 9-10 and section L-L', hole 8-5). It ap­

pears as if the pebble is a residual concentration remaining after the 

removal of the finer portions of the matrix by the winnowing currents of 

the Wicomico sea. 

The Bone Valley matrix, except where it is too thin as noted, is 

minable for its full thickness wherever it occurs (Fig. 10, section A-A', 

Fig. 11, sections B-B' and c-c•, Fig. 12, section G-G'). The Bone Valley 

rests with slight unconformity on the upper member of the Hawthorn Form­

ation, and the base of the matrix forms a surface of very low relief. 

The upper surface is also relatively gentle except where the overlying 

upper Pleistocene sand has channeled down into or through it (Fig. 10, 

section A-A', holes 24-5, 24-10, 18-11, 18-34). The average thickness 

of the matrix normally varies between 12 and 15 feet. The matrix does 

not contain any detrital limestone pebbles or shell fragments. 

Table V presents the laboratory assay data for 15 Bone Valley matrix 

samples from 15 drill holes. The field lithologic logs of the 15 holes 

are included in the Appendix. 

The apatite pebbles and pellets from the Bone Valley matrix are 



Table V. Bone Valley Fonnation Matrix Samples * 

-14+150 MESH -150 -14+150 MESH + 14 MESH PEBBLE MESH CROSS HOLE# SAMPLE FEED 
SLIMES CONCENTRATES 

SECTION # 
% of % BPL CaO/ % !l of % BPL %of % BPL CaO/ % 

Sample P2o5 Insol. Sample Sample ______ P2o5 Inso1. 
-

A-A' 22-12 492 8.92 63.43 1.50 9.06 80.01 18.05 11.07 70.83 1.49 0.92 
23-12 2127 4.62 67.30 1.50 6.74 87.14 18.75 8.24 72.79 1.46 1.59 
18-19 1551 11.18 66.84 1.53 6.49 75.45 19.87 13.37 73.53 1.46 1.54 
18-33 2265 13.93 65.87 1.53 6.63 74.95 25.00 11.ll 71.13 1.44 1.34 
18- 1 1533 18.46 66.63 1.48 8.74 75.73 21.42 5.82 74.53 1.42 1.83 

B-B' 22- 8 1964 9.84 66.08 1.50 7.58 77.66 22.80 12.50 71.30 1.49 2.88 
c-c• 23-38 1957 3.47 65.50 1.50 9.65 81.16 19.15 15.37 72.98 1.50 2.59 
D-D' 24- 1 2133 5.14 66.79 1.52 6.83 75.92 15.62 18.94 73.16 1.45 1.70 

E-E' 19-16 2157 9.74 64.88 1.52 8.83 74.12 30.60 16.14 71.87 1.49 2.51 
19-49 2181 7.15 68.88 1.52 4.88 83.42 20.50 9.43 73.74 1.49 1.01 

F-F' 18-10 1569 6.12 64.01 1.50 10.66 78.55 22.77 15.34 71.63 1.50 1.91 

G-G' 14-39 2480 4.04 65.66 1.51 7.62 86.43 20.78 9.53 71.95 1.50 1.48 
J-JI 18-20 2385 20.17 64.86 1.53 8.97 65.36 24.67 14-47 70.36 1.48 4.00 

K-K' 19-26 2391 22.29 66.24 1.53 7.44 50.59 23.67 27.12 70.71 1.50 3.67 

L-L' 8- 5 2053 5.24 64.49 1.52 8.84 81.56 19.07 13.20 70.75 1.50 3.25 

Weighted Average: 9.38 65.72 1.52 7.98 77.32 21.30 13.30 72.03 1.48 2.09 

* Analyses by Thornton Laboratories, Tampa, Florida. .....;] 
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white, tan, light gray, and brown. The +14 mesh pebble is of nominal 

BPL, CaO, and insoluble residue content. The concentrates are high 

quality, and the blend of the pebble and concentrate is good, market­

able phosphate rock. 

77 

The pebble content varies from about 3 to 22 percent and averages 

about 9 percent, the feed content varies from about 50 to 87 percent 

and averages about 77 percent, and the slimes content varies from about 

6 to 27 percent and averages about 13 percent. The recoverable phosphate 

rock content is in excess of 20 of the matrix. The slimes content of the 

Bone Valley matrix is predominately clay. The amount of silt size part­

icles in the slimes is minimal, and the interstitial clay "binds" the 

matrix so that it is coherent. 

D, Hawthorn Matrix 

The Hawthorn surface, as discussed, is an irregular erosional sur­

face with at least 72 feet of relief in the Pine Level area, and is either 

overlain by the Bone Valley Formation, the lower Pleistocene sand, or the 

upper Pleistocene sand. The upper part is lithologically variGble and 

r.1ay change from a rich phosphatic sand to clay or sandy clay within a 

relatively short distance (Fig. 11, section F-F', holes 18-26, lC.-28). 

These circumstances have foiled repeated attempts to develop a system­

atic stratigraphic sequence for that po.rt of the 1:1ember penetrated by 

the exploration core holes, 

The Hawthorn Formation, like the lower Pleistocene sand, contains an 

abundance of apatite. However, unlike the lower Pleistocene sand, tho 

quantity is rarely sufficiently high for the phosphatic sand to be 

economically mined by itself. In a few local areas, where the phos­

phate content is relatively high, it is economically mineable. ~lore 
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often it must be mined in conjunction with the overlying Bone Valley or 

lower Pleistocene matrix (Fig. 10, section A-A' , hole 24-1 ; Fig. 11 , sec­

tion B-B', hole 22-21). It is most often under these circumstances that 

the phosphatic sand of the upper clastic member of the Hawthorn Formation 

in the Pine Level area may be designated matrix in the strict sense of 

the term. 

Table VI presents the laboratory assay data for 20 Hawthorn matrix 

samples. from 15 drill holes. The term "matrix" is here used more freely. 

The field lithologic logs of the 15 drill holes are included in the Ap­

pendix. 

The apatite pebbles and pellets of the Hawthorn matrix are white, 

tan, brown, or black. The +14 mesh pebble is very low in BPL content, 

and very high in CaO and acid insoluble residue. The concentrate is 

marketable phosphate rock with a nominal BPL and CaD content. 

The Hawthorn matrix is always fine- to very fine-grained with a 

very low pebble content. As shown by Table VI, the pebble content never 

exceeds 1.5 percent of the matrix by weight. The feed content varies 

from about 78 to 95 percent of the matrix and averages about 86 percent, 

and the slimes content varies from about 9 to 15 percent and averages 

about 14 percent. The recoverable phosphate rock content is less than 

20 percent. The slimes content of the Hawthorn matrix may vary from 

silt size particles to mostly clay. Normally the clay content report­

ed in the slimes occurs as thin green clay seams in the matrix. The 

phosphatic sand rarely contains much interstitial clay, and is often 

loose, incoherent, and unconsolidated. 

E. Summary of Distinguishing Matrix Characteristics 

The Hawthorn matrix is readily and easily distinguished in field 



Table VI. Hawthorn Formation 11Matrixn Samples* 

-14+150 MSSH -150 -14+150 MESH + 14 MESH PEBBLE MESH 
CROSS SAMPLE FEED SLIMES CONCENTRATES 

HOLE# SECTION # % or % BPL eao/ % j of % BPL %or % BPL CaO/ j 
Sample P2o5 Insol. Sample Sample ______ P2o5 Insol. 

A-A' 18-19 1552 + 1553 0.94 61.18 1.61 8.19 77 .liJ 9.47 21.46 72.45 1.48 1.60 
18-11 1571 0.46 58.93 1.71 13.84 87.73 10.23 11.81 71.54 1.48 1.83 
18-34 2267 + 2268 0.18 51.44 1.68 14.11 86.38 10.83 13.44 70.57 1.51 1.32 
18-33 2266 0.78 63.26 1.54 9.74 92.70 14.95 6.52 69.60 1.51 2.90 
18- 1 1534 0.91 63.94 1.49 9.71 90.44 10.91 8.65 72.65 1.46 1.36 

D-D' 24-1 2134 0.19 60.25 1.56 llo91 90.33 10.80 9.48 73.62 1.44 1.12 

E-E' 19-16 2158 0.20 58.81 1.61 9.60 77.87 14.72 21.93 67.38 1.54 4.30 
19~9 2182 + 2183 0.61 57.95 1.66 7.73 80.05 18.93 19.34 69.31 1.54 1.77 
19-50 2185 0.12 49.39 1.63 18.04 95.36 14.15 4.51 68.57 1.53 1.39 

H-H' 16-11 2340 0.77 61.18 1.56 9.61 82.32 13.60 16.91 70.86 1.51 1.13 
I-l' 12- 6 1855 + 1856 0.45 59.49 1.52 17.23 81.10 12.95 18.45 72.93 1.48 1.60 

J-J' 18-14 1821 1.20 63.51 1.50 11.12 84.57 14.95 14.23 70.61 1.48 2.23 
18-20 2386 o.86 52.54 1.58 20.11 79.70 14.73 19.45 67.37 1.52 5.01 

K-K' 19-26 2392 + 2393 1.21 35.66 1.84 29.75 86.16 14.85 12.63 67.56 1.54 .3.88 
19- 6 1816 1.11 61.21 1.44 15.00 89.81 12.91 9.08 70.95 1.47 2.58 

Weighted Average: 0.78 55.78 1.60 15.61 85.65 1.3. 55 13.57 69.93 1.51 2.48 

* Analyses by Thornton Laboratories, Tampa, Florida. 
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samples on the basis of the lean phosphate content, interstratified 

green clay seams, lack of pebble, and fine grain. The Bone Valley mat­

rix can usually be distinguished by the color of the apatite, the high 

apatite content, the greater abundance of pebble, the elevation of the 

Hawthorn-Bone Valley contact, and the cohesiveness resulting from the 

interstitial clay. The Pleistocene matrix is distinguished by the color 

of the apatite, the high apatite content, the sparser amount of pebble, 

the possible presence of detrital limestone and shell fragments, the in­

coherence resulting from the lack of interstitial clay, and the eleva­

tion of the base of the matrix. If the assignment as Bone Valley or 

Pleistocene matrix cannot be made in the field, the laboratory data will 

normally resolve the problem. 

F. Chemical Quality of the Phosphate Rock 

A large bulk sample of matrix was prepared from drill hole samples 

collected in six sections in T. 37 s., R. 22 E. It is believed that the 

sample is representative of at least several million tons of the Pine 

Level phosphate rock. The detailed analysis of the phosphate rock ob­

tained from this sample is shown in Table VII. The analysis is nominal 

for Florida phosphate rock. 



Table VII. Analysis of Phosphate Rock from Composite Sample* 

Constituent 

Phosphorus Pentoxide (P2o5) 

Equivalent BPL = 68.81 

Calcium Oxide ( CaO) 

Iron OXide (Fe2o3 ) 

Aluminum OXide (Al2o3) 

Acid Insoluble (including Si02) 

Silica (Si02) • 4.91 

Carbon Dioxide ( C02) 

Organic Matter (C) 

Combined Water (H20) 

Fluorine (F) 

Total Sulfur (as so3 ) 

Magnesium OXide (.MgO) 

Sodium OXide (Na2o) 

Potassium OXide (~0) 

Chlorides ( Cl) 

Total 

Percent 

31.49 

46.87 

1.72 

0.80 

4.92 

0.17 

2.68 

2.07 

1.5.5 

0.30 

0.79 

0.21 

o.o1 

99.11 

Analysis by Thornton Laboratories, Tampa, Florida. 
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VII. EFFECTS OF WEATHERING 

A. General Statement 

Alterat~on phenomena assoc~ated w:i..th several d~fferent per~ods of 

weathering have profoundly altered the phosphat~c sed~ments of Florida. 

Alterat~on and weathering have played a major role ~n the format~on of 

the econom~c deposits of the main producing area (Cathcart, 1966, p. 23). 

The role of leaching and redeposit~on of phosphate by ground water in the 

hard-rock field, and the formation of the alum~num phosphate zone by the 

alteration activity of ac~d~c ground water in the land-pebble field have 

been previously discussed. The Pine Level deposit, due to the much more 

limited time that it has been exposed to weathering processes, has a dif­

ferent history of weathering and alteration, but the results are equally 

~mportant. If it were not for the favorable consequences of these act~­

vit~es the Pine Level deposit would not be economically mineable today. 

B. Depth of Bu~al and AEat~te Qual~ty Relat~ons~ps 

1. AEatite Color Changes 

One of the most obv~ous features of the apatite in the P~ne Level 

deposit ~s the ~nvariable color change w:i..th increas~ng depth. The color 

change ~s equally pronounced in all three of the matr~x units and is 

~stinctly and posit~vely related to the depth of burial. 

The entire color change ranee is rarely exhib~ted ~n any one drill 

hole. The normal color r.:mge ~n a single hole is usually less than half 

of the total range. The color range scale is therefore cor;,posi ted from 

a number of drill holes in different areas. 

The compos~ted color change progress~on in the apat~te particles 

vdth ~ncreasing depth, from near surface to those most deeply buried, 

is as follows: 



1 • White ( N9) 

2. Very light gray (N8) to pinldsh gray (5 YR 8/1) 

3. Light brownish gray (5 YR 6/1) to pale yellovliGh brovn:. 
(10 YR G/2) 

4. Brownish c;ray (5 YR 4/1) to dark yellowish brown 
( 10 YR 4/2) 

5. Dark brownish gray (5 YR 3/1) to dusky yellowish 
brown (10 YR 2/2) 

6. Brownish blacl-t ( 5 YR 2/1) to dusky yellowish brown 
( 10 YR 2/2) 

7. Grayish black (N2) 
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The BPL content of the white apatite is the highest and that of the 

black apatite the lowest, and the BPL content is positively correlated 

with the color changes. This relationship is discussed in detail in a 

later section of this chapter. 

2. Water Table Level 

A well defined color change in the sediments, commonly around 25 

or 30 feet in depth, is encountered in most of the drill holes. The 

color contact is variable in depth from area to area and usually occurs 

over a four or five foot interval. Immediately above the color contact 

the phosphatic sands are generally medium to darl~ brownish gray with 

brown apatite particles. Immediately below the contact the sands nrc 

very dark gray to grayish black with grayish black apatite rmrticle:.::;. 

Clays in the Hawthorn Formation or in the lower Pleistocene sand con-

monly chanc;e across the gradational contact fror:t a li,sht to medim:l cray-

ish green to a very dark green. 

The Bone Valley Formation, by virtue of its occurrence in the hic;hor 

elevation island remnants, is always above this color chance. The 

change, in areas where the Bone Valley occurs, is generally ten feet 

or so below the base of the Bone Valley in the upper portion of the 
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Hawthorn. The color change is deeper and more variable in depth in the 

areas awa:y from the Bone Valley island remnants. The cl.ays in the Haw­

thorn, under the island remnants, have served as a permeability barrier 

that prevented any deeper downward development of the color change. 

When two or more samples are obtained from the same drill hole 

and are separated by this contact, the upper sample invariably con­

tains better quality apatite. This re1ationship is indicated by Tables 

VIII and IX. Clearly, some deleterious impurities from above this con­

tact have been removed. 

These data suggest the co1or contact represents the maximum depth 

of alteration by the present f1uctuating ground water table, and the up­

per samp1es in Tabl.es VIII and IX have been beneticial].y altered by this 

descending ground water. 

3. Depth ot Bur:f.a1 

As a general but reasonable approximation it can be stated that the 

Bone Valley matrix occurs at the highest overall elevation, the lower 

Pleistocene matrix at an intermediate elevation, and the Hawthorn matrix 

at the generall.y lowest overa11 elevation. AS a fUrther broad general­

ization, all of the Bone Valley matrix is above the color change related 

to the water table, the lower Pleistocene matrix is partly above and 

partly below it, and most of the Hawthorn samples are below it. The 

differences in the weighted average analyses shown in Tables IV, V, 

and VI are readily explained by the above relationship at the water 

table color change. 

c. General Mineralogical Aspects of Possible Leaching Mechanism 

The quantitative chemical relationships that could be invol.ved in 



Table VIII. Comparison of Upper and Lower Pleistocene Hatrix Samples 
in the Same Drill Hole• 

+ 14 HESH PEBBLE -1 4+ 1 50 HESH 
CONCENTRATES CROSS HOLE # SAMPLE 

SECTION # CaO/ % CaD/ ol 
/0 
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% BPL 
P205 Insol. %BPI .. P2o5 Incol. 

B-B' 22-6 1975 61.11 1.55 12.44 69.79 1.48 4-83 

fa c-c• 23-5 315A 63.12 1.62 9-33 67.32 1.55 8.07 ft 
p 

D-D' 24-8 312A 65.77 1.53 8.93 69.79 1.46 6.20 

Weighted Average: 61.95 1.56 11.52 69.23 1.49 5.81 

B-B' 22-6 1976 51.77 1.66 16.13 64.79 1.58 4-49 

ei c-c• 23-5 316A 61.16 1.57 11.85 67.80 1.54 5.82 5!: s 
D-D' 24-8 313A 59.37 1.58 13.26 66.93 1 .51 7.21 

Weighted Average: 59.70 1.58 12.69 66.76 1.54 5.99 

* Analyses by Thornton Laboratories, Tampa, Florida. 



Table IX. Comparison of Upper and Lower Hawthorn Formation Samples 
in the Same Drill Hole • 

+ 14 MESH PEBBLE 
-1 4+ 1 50 HESH 

CROSS HOLE # SAHPLE # CONCENTRATES 

SECTION GaO/ % CaO/ % 
% BPL P2o5 Insol. % BPL r 2o5 Insol. 

A-A' 18-34 2267 None 72.18 1.50 0.88 

E-E' 19-49 2182 65.74 1.54 6.28 70.99 1.53 1.53 

I-I I 12- 6 1855 63.27 1.53 11.79 73.67 1.48 1.33 

Weighted Average: 64.89 1.54 8.17 71.84 1. 51 1.36 

A-A 1 18-34 2268 51.44 1.68 14.11 69.00 1.52 1.74 

E-E 1 19-49 2183 39.96 2.07 11.03 66.68 1.57 2.15 

I-I I 12- 6 1856 55.27 1 .51 22.92 72.23 1 .49 1.85 

Weighted Average: 48.07 1. 78 15.68 68.89 1.53 1.96 

• Analyses by Thornton Laboratories, Tampa, Florida • 
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the beneficial alteration of the Pine Level apatite by ground water is 

shown by a series of four weighted average analyses calculated for four 

grades of pebble selected from the approximately 1,800 sample analyses. 

The four analyses are calculated from samples in each of the grade 

ranges: 50-55 percent. BPL, 55-60 percent BPL, 60-65 percent BPL, and 

65-70 percent BPL. Ten, large volume, randomly selected pebble samples 

were used to derive the weighted average composite analysis in each 

grade range. Each composite analysis represents a significant amount 

of the total available pebble in the Pine Level deposit within that 

grade range, and the calculated composites are therefore believed to be 

representative. The four calculated analyses are given in Table X. The 

column labeled 11unanalysed constituents" represents the difference be­

tween 100 percent and the sum of the constituents reported in the other 

columns. 

It can be seen that the lowest grade pebble (composite 1) is rela-

tively low in P2o5 and relatively high in every other constituent. The 

highest grade pebble (composite 4) is nominal, commercial quality phos­

phate rock that is relatively high in P2o5 content and relatively low in 

the other constituents. These data indicate that the major impurities in 

composites 1, 2, and 3 may be quartz, calcite, dolomite, and other uniden­

tified minerals. These analyses, coupled with the color changes and the 

decreasing quality with depth, previously discussed, strongly indicD.te 

that the mineral contaminants are removed by some method, ::wst probo.bly 

by some mechanism involving ground water activity, so that low sr3de 

apatite is beneficially altered to nominal commercial quality phosph<1 tc 

rock. 



Sample 

1 

2 

3 

4 
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Table X. Ca1culated Weighted Average Analyses of Composite 
Pebble Samples. • 

Percent 

BPL P205 I&A Insol MgO CaO CaO/ Unanalyzed 
P205 Constituents 

52.39 23.98 3.06 10.90 2.79 41.21 1. 72 18.06 

57.84 26.47 2.75 10.24 1.63 42.54 1. 61 16.37 

62.80 28.74 2.64 9.00 0.71 44.72 1.56 14.19 

67.59 30.93 2.32. 6.19 0.41 46.78 1.51 13.37 

Weighted average composite of ten random large volume pebble 
samples in: 

1 = 50-55 % BPL range (22.9-25.2 % P 2o5 ) 

2 = 55-60 % BPL range (25.2-27.5 % P2o5 ) 

3 = 60-65 % BPL range (27.5-29.7 % P2o5 ) 

4 = 65-70 % BPL range (29.7-32.0 % P2o5 ) 

• Analyses by Thornton Laboratories, Tampa, Florida. 
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D. The Aluminum Phosphate Zone in the Pine Level Area 

EVidence of the intense lateritic weathering that formed the alum­

inum phosphate zone in the main producing area is not abundant in the 

Pine Level area. In many places, where the oTerburden is tlrl.n or aP­

parently more permeable, sparse apatite pebbles in the basal portion of 

the upper Pleistocene sand may be altered to soft, white, chalky alumi­

num phosphate minerals (see Appendix-Field Logs of Selected Drill Holes). 

Also, the uppermost few inches of the matr:L:x: may be similarly altered. 

The period of lateritic weathering that profoundly altered the Bone 

Valley apatite in the main producing district was less intense in the 

Pine Level area. 

E. Detailed Stu¢1 of Selected S!ffiPles 

To exam:i.ne the mechani.sm of the mi.neralogi.cal and chemical changes 

in the alteration process, a set of four pebble samples has been studied 

in more detail. The four samples were prepared by hand sorting four 

color phases of apatite pebbles in the 0.05 to 0.20 inch size range 

from a large volume of pebble samples. The four selected color phases 

are white, gray, brown, and black. These colors very well represent the 

entire range of apatite pebbles in the Pine Level deposit. The white 

pebbles are characteristic of shallow apatite that has been most in­

tensively altered, the gray pebbles are characteristic of the zone a­

bove the water table color change, the brown pebbles represent apatite 

within or slightly below the horizon of the color change, and the black 

pebbles represent deeply buried unaltered apatite from well below the 

color change zone. 

x-ray diffractometer patterns of the four colored samples are shown 

in F:Lgure 14. Carbonate_ fluorapatite i.s the most abundant mineral i.n 
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all of the samples. Calcite also is present in all of the samples. 

Quartz is identified in all but the white phosphate rock, and dolomite 

is only identifiable in the black phosphate. 

1. Petrographic Relationships 

Thin sections of the four samples were prepared for petrographic 

study. The apatite in the thin sections appears to be amorphous, iso­

tropic, and consists of microcrystalline aggregates of crystals too 

small to be resolved by the microscope (Russel and Trueman, 1971, p. 

1206). A few pebbles or portions of pebbles consist of fibrous apatite 

that exhibits slight birefringence. At least two stages of apatite, 

based on a different appearance as the result of impurity inclusions, 

can be distinguished in plain transmi. tted light. The earlier stage 

generally contains submicroscopic inclusions that impart a "dusty" ap­

pearance to the apatite while the later stage is clear and appears to 

be completely amorphous. It commonly fills cracks and fractures, occurs 

as a rim completely encasing the earlier variety, or embays and replaces 

other mineral.s. 

The thin sections of the black pebbles (Figs. 15 and 16) contain a­

bundant subhedral, angular grains or calcite that range from submicro­

scopic in size to nearly a millimeter in the longest dimension. The 

cal.ci te grain boundaries are generally very sharp and distinct. The 

apati. te is predominately the "dusty" variety contailli.ng abundant bi­

refringent microcrystalline impurities that impart a deep, intense 

bronze sheen under crossed nicols. Several pebbles have pronounced 

thin rims of black amorphous apatite that appears to be later than the 

core. Pyrite and quartz were not identified in the thin sections, but 

were noted in crushed material examined under the binocular microscope. 
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Figure 15. 

Figure 16. 

Thin sect~on of black phosphate rock pebble. Rock is 
character~zed by large angular inclusions of calc~te 
(white) in a groundmass of carbonate fluorapat~te. 
Plain light, X85. 

Same view as above with crossed nicols. Note large 
calcite grains, finger-like slightly birefringent 
apatite grain at lower left, abundant birefr~ngent 
impurit~es in apatite at upper right, and scattered 
impurities in isotropic apatite throughout remainder 
of section. 
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Figure 17. Thin section of brown phosphate rock pebble. Groundmass 
of carbonate fluorapatite (dark gray) contains large 
rounded calcite grain (medium gray) partially replaced 
by clear apatite (white). Smaller grains of former cal­
cite (white) have been entirely replaced by clear apatite. 
Irregular opaque splotches are colloidal iron oxide ap­
parently derived from pyrite. Plain light, X85. 

Figure 18. Same View as above with crossed nicols. Note diffused 
boundaries of remaining cal.ci te. 
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Figure 19. Thin section of gray phosphate rock pebble (approx­
imately upper two-thirds of View). Groundmass of 
carbonate fluorapatite (light gray) contains second­
ary apatite (dark gray) that has replaced former cal­
cite grai.ns. Plai.n l.ight, X85. 

Figure 20. Same view as above With crossed nicols. Note general 
reduction of contained birefringent impurities as 
compared to previous figures. 
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Fi.gure 19 

Fi.gure 20 
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Figure 21. Thin section of white phosphate rock pebble. Entire 
section is groundmass of carbonate fluorapatite. Note 
apparent diffused boundary between two s.tages of apat:i. te 
in left portion of the v:i.ew. Plain light, X85. 

Figure 22. Same View as above with crossed nicols. Note continued 
reduction of birefringent impurities. 
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F:i.gure 21 

F:i.gure 22 
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The brown pebbles contain much less calcite, and the grain bound­

aries are corroded, embayed, and partially replaced by amorphous apa­

tite (Figs. 17 and 18). The pyrite of the black pebbles now appears to 

have been altered to amorphous iron oxide which imparts the brown color 

to the pebbles. Again, quartz was not noted in the thin sections. 

Calcite grains in the gray pebbles (Figs. 19 and 20) are seen to 

be largely replaced by amorphous apatite. Impurities of both iron 

oxide and minute birefringent minerals are relatively minor. 

Thin sections of the white pebbles (Figs. 21 and 22) are almost 

completely amorphous apatite. Calcite has been almost entirely re­

placed and only the centers of a few pebbles contain remnant concen­

trations of iron oxide. Other impurities are not recognizable. 

2. Chemical Relationships 

Detailed chemical analyses of the important constituents in the 

four color phases are given in Table XI. Analyses of the minor con­

stituents; essentially water, chlorine, sulfate, and sodium; were not 

obtained and are reported as "Not Assayed" in the table. 

The chemical analyses appear to correlate quite well with the 

petrographic and x-ray observations. The decreasing CaO:P2o5 ratio, 

coupled with the abrupt decrease in co 2 content from the black to 

the brown samples, clearly indicates an increase in apatite at the ex­

pense of calcite. The decreasing insoluble residue content also in­

dicates an increase in apatite at the expense of silicate (?) i:~1-

purities. The color of the black pebbles is explained by the hiGh or­

ganic carbon content and finely disseminated pyrite. 



Table XI. Analyses of Selected Colored Samples 

Color 

Constituent Black Brown Gray White 

P205 25.65 29.64 30.71 32.19 

CaO 43.16 46.00 46.16 47.38 

Ca0/P2o5 Ratio 1.68 1.55 1.50 1.47 

Fe2o3 1.83 2.47 0.92 0.76 

Al203 0.74 0.84 1.81 1.89 

C02 8.74 4.96 4.74 4.67 

C (Organic) 0.66 0.24 0.28 0.20 

Insoluble Residue 5.99 4.67 3.63 3.50 

F 2.88 3.38 3.53 3.69 

MgO 2.40 0.52 0.58 0.31 

Not Assayed 7.95 7.28 7.64 5.41 

Total 100.00 100.00 100.00 100.00 

Precise sample colors based on the Geological Society of America 
Rock Color Chart: 

Black • Grayish Black (N2) 
Brown = Grayish Brown ( 5 YR 4/2) 
Gray = Light Brownish Gray (5 YR 6/1) 
White • Light Pinkish Gray (5 YR 9/1) 
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3. Chemistry of Replacement 

The analyses of Table XI proVide the basis for a semiquantitative 

estimation of the progressive mineralogical changes that occur in the 

formation of the white apatite pebbles from the impure black pebbles. 

Such an estimate requires some s:i..mplifying assumptions regarding the 

unidentified mineral inclusions, that detract from the precision of the 

estimate, but, nevertheless, should yield useful general information 

on the course of the overall replacement process. 

To pursue this examination the folloWing simplifying assumptions 

are used: 

(1) The 0.74% A12o3 in the black pebble is present in an unaltered, 

unidentified mineral impurity, and the excess of this amount in the re-

ma:i..n:i..ng samples :l.s present in crandalli te that has altered from apatite 

The sto:i..ch:l.ometric ratios are 

% A12o3 x 2.707 = crandallite, x 0.36? == % CaO, and x 0.928 == % P2o5• 

It is assumed that the excess Al.2o 3 in the brown, gray, and wh:l. te samples 

has been added from an external source. 

(2) The carbonate anion substitutes for the phosphate anion :i..n the 

apatite in such an amount that the formula can be artificially expressed, 

based on an "average" amount of substitution, as ca11 <P04>6<co3)F2_y 

This is a simplification or the formula ca4 • 96~a0 •033<P04> 2.a99 

(CO ) 2 (SO ) 1 F1 116 (0H) 0 050 calculated by Russel and Trueman 3 0.1 2 4 o.o 9 • • 
(19?1, P• 1210) for Florida phosphate rock. The ratios are therefore 

% p2o5 X 2.603 =%apatite, X 1.440 =% CaO, X 0.1034 =% C0 2 , and 

% apatite x 0.0892 = % F. 

(3) The excess fluorine shown by Table XI over the amount re-

quired above is present i.n the apatite (Gulbrandsen, 1969, p. 370). 



(4) The remaining excess Cao over the amount required for cal­

cite, crandallite, and apatite is present in other unidentified min-

erals, and 
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(5) The 0.31% MgO of the white sample is present in unidentified 

minerals since it is assumed that all MgO in dolomite would have been 

replaced during the formation of the white sample. The excess of this 

amount in the remaining samples is present as Mgco
3 

(in dolomite) so 

that % MgO x 2.092 = % MgC0
3

• 

Table XII presents the calculated mineralogical composition of the 

four samples based on the above assumptions. It is, of course, realized 

that the data can be subjected to many different interpretations. For 

example, A1
2

o
3 

could logically be at least partly assigned to kaolinite, 

and Sio
2 

is probably not entirely present as quartz but in unidentified 

silicate minerals. The purpose is not to precisely determine these de-

tails but to clearly indicate that all of the other minerals have been 

progressively replaced by apatite during the process of forming high 

grade light colored apatite from the low grade, impure black apatite 

4. Conclusions 

The data presented in this section demonstrates that the commercial 

quality apatite of the Pine Level area has most likely formed since the 

retreat of the Wicomico sea with the consequent exposure of the sediments 

to weathering and erosion. It appears that descending, slightly acidic 

ground water leached phosphate from overlying Pleistocene sediments and 

carried it downward where apatite has systematically replaced mineral 

impurities in the underlying phosphate particles. That apatite, or 

rather the phosphate ion, is mobile in slightly acidic ground and sur­

face water is shown by Kaufman (1969). The initial replacement of dolo-
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Table XII. Calculation of Mineral Constituents 
of Selected Colored Samples 

Color 
Black Brown Graz White 

1. Surplus Al2o3 (+0.74%) o.oo 0.10 1.07 1.15 
2. % Crandallite (1 x 2o707) OoOO 0.27 2o90 3.11 
3. Contained CaO in 2 (1 x .367) o.oo 0.04 0.39 0.42 
4. Contained P2o5 in 2 (1 x .928) o.oo 0.09 0.99 1.07 
5. Balance CaO (Assay- 3) 43.16 45.96 45.77 46o96 
6. Balance P2o5 (Assay - 4) 25.65 29.55 29.72 31.12 
7. % Apatite (6 x 2.6o3) 66.77 76.92 77.36 81.01 
8. Contained F in 7 (6 x .0892) 2.29 2.64 2.65 2.78 
9. Surplus F (Assay - 8) 0.59 0.74 0.88 0.91 

10. Adjusted % Apatite (7 + 9) 67.36 77.66 78.24 81.92 
11. Contained CaO in 10 (6 x 1.449) 37.17 42.82 43.06 45.09 
12. Contained co2 in 10 (6 x .1034) 2.65 3o05 3.07 3.22 

13. Balance GaO ( 5 - 11) 5.99 3.14 2.71 1.87 

14. Surplus co2 (Assay - 12) 6.09 1.91 1.67 1.45 

15. Surplus MgO (+ 0.31%) 2.09 0.21 Oo27 o.oo 
16. % MgC03 (15 x 2.092) 4.37 0.44 o. 56 o.oo 
17. Balance co2 (14 -(16 - 15) 3.81 1.68 1.38 1.45 

18. % CaC03 (17 x 2.274) 8.66 3.82 3.14 3.30 

19. Balance CaO (13 -(18 - 17) 1.14 1.00 0.95 0.02 

Swnmar;y 

% Apatite 67.36 77o66 78.24 81.92 

% Crandallite o.oo 0.27 2.90 3.11 

% MgC03 4.37 0.44 0.56 o.oo 
% eaco3 8.66 3o82 3.14 3.30 

% Si02 (Insol assay) 5.99 4.67 3.63 3. 50 

% Other Mineral Constituents 13.62 13.14 11.53 8.17 

% Total Apatite 67.36 77.66 78.24 8lo92 

% Total other Mineral Constituents 32.64 22.34 21.76 18.08 
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~te and calc1te was rapid and probably resulted from Simple neutral­

ization of acidic water by the carbonates. Alteration of pyrite to 

iron oxide is also apparently an early alteration process. Replacement 

of the other minerals appears to follow calcite replacement and apparent­

ly occurs later at shallower depths where oxidation-reduction processes 

are ev1dently more prevalent. 
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VIII. GEOLOGIC HISTORY OF THE LAND-PEBBLE FIELD AND PINE LEVEL AREA 

A. Introduct~on 

Var~ous events in the geologic history of central peninsular Flor­

ida have been ~scussed, necessar~ly, in previous portions of t~s paper, 

so the treatment of the subject here entails a certain amount of redun­

dancy. However, a recapitulation, in proper chronological sequence, 

serves to relate the events to one another ~n a more coherent manner. 

Further, ~t provides a means tor emphas~zing the interrelated events 

that are most important in the development of the phosphate deposits 

of the land-pebble field and the Pine Level area. 

B. Early Terti!£Y Events 

The early Tertiary sedimentary rocks, from the Paleocene Cedar Keys 

Formation through the ~ddle Miocene lower limestone member of the Haw­

thorn Format~on, are characterized by an unconformable assemblage of 

carbonate strata deposited in the Florida Peninsula sedimentary prov­

~nce. These sedimentary depos~ts record shallow water, offshore mar­

ine environments, with the shore line tar to the north. The Flor~da 

peninsula was a shallow shelf area that continued to develop by the 

accretion of carbonate strata over the older Peninsular Arch. 

The numerous unconformities and variable distribution of these 

carbonate strata indicate the peninsular area was structurally very 

unstable with numerous periods of erosion and tilting. During these 

times portions of the area were above the sea and formed an insular 

syatem surrounded by shallow limestone marine banks. This long period 

of alternate shallow water marine carbonate deposition and erosion was 

terminated by the closing stages of the Ocala uplift. 
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c. The Upper Member of the Hawthorn Format~on 

Movement of the Ocal.a upl.ift apparentl.y termi.nated dur~ng m:Lddl.a 

Miocene time. The present l.ocat~on and configurat~on of the upl.~ft in­

dicates it is a relativel.y l.ocal feature confined to the west central. 

part of the Florida pen:i.nsul.a (Fig. 2). The actual. upUft, however, 

affected all. of the Fl.orida peninsula, which, for the first t~e, re­

ceived cl.astic sediments derived t.rom the continental. land mass. These 

deposits are represented by the upper clastic member of the Hawthorn 

Formation of middle M~ocene age, and, according to Bergendahl. (1956, 

p. 73-79), of upper Miocene age in the Pine Level. area. 

The fine-gra:ined, clastic, phosphatic materials of the Hawthorn 

Formation were moved southward from the continental. land mass and were 

depos~ted in a shallow, marine enVironment with sufticient fluctuating 

energy to, at t~mes, transport fine- to medi.um-gra:ined phosphatic sands. 

At other times current act~vity was minimal. and lenses and beds of cl.ay 

were deposited in quiet water. 

The distribut~on of the clastic Hawthorn ae~ments indicates the 

presence of a massive del.ta along the Georgia, Al.abama, and Florida 

lines that possibl.y extended down the peninsula (Pur:!. and Vernon, 1964, 

p. 153). The southward extending distributary system from this del.ta 

furnished the materials that compose the cl.astic deposits of the 

Hawthorn. 

The Hawthorn deposits probabl.y covered most of the Florida penin­

sula but may have been thin or more sporadically distributed over the 

ocala upl.ift. The l.and mass created by the Ocala uplift probably stood 

as a shallow, broad submar:l.ne plai.D.1 a ser~es of undulating lU.lls form­

:l.ng a large insular area, or as a narrow peninsula that extended south 
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from Georgia along the west part of peninsular Florida (Vernon, 1951, 

p. 181-184). 

D. The Citronelle Formation 

During late Miocene time the southward migration of the delta 

distributary system reached, at least, into the Vicinity of the land­

pebble field. The continuous southward extension of the system was 

evidently accompanied by shoaling, and finally complete Withdrawal of 

the surrounding seas, so that deposition of the characteristic phos­

phatic upper member of the Hawthorn Formation was terminated from north 

to south in response to the southward growth of the delta. Deposition 

apparently ceased in the area of the hard-rock phosphate deposits by the 

end of middle Miocene time, but continued in the Pine Level area to well 

into the upper Miocene. 

The deltaic se~ments eventually extended as far south as the south­

ern terminus of the Lake Wales Ridge in Highlands County (Fig. 3). The 

uneroded remnants of these deltaic sediments are preserved as the Cit­

ronelle Formation comprising the body of sediments in the Lake Wales 

Ridge. 

Miocene time closed with gentle uplift of the Florida peninsula and 

a cessation of the unusual conditions that resulted in the deposition of 

the clastic Hawthorn deposits and the related deltaic Citronelle Form­

ation. Figure 23A depicts the land-pebble field and the Pine Level area 

at the end of Miocene time. 

E. Post-Miocene Period of Erosion 

The erosional interval between the retreat of the Miocene sea and the 

deposition of the Pliocene Bone Valley Formation occurred at different 
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~ntervals in various localities in the central Florida peninsula. The 

area of the hard-rock deposits was e~dently emergent during late Miocene 

and early Pliocene time. The unusual hard-rock deposits were formed dur­

ing this interval in the manner previously described. Apparently the 

Citronelle deposits did not reach westward into the area for the hard­

rock deposits were being formed during late Miocene deposition of the 

Citronelle Formation. 

In the main producing area of the land-pebble field it seems lLkelY 

that Citronelle deposits or equivalent sediments probably extended into 

and covered part or the area. The erosional interval, in this area, 

probably began With the retreat of the }~ocene sea. During this inter­

val the sediments overlying the lower Hawthorn limestone member were re­

moved by eroSion. A drainage system developed on the Hawthorn limestone 

surface, and chemical weathering developed a karst surface and a richly 

phosphatic, calcareous clay residual mantle (Cathcart, 1963a, p. 20). 

The erosional events in the Pine Level area seem to be of less mag­

nitude and appear to indicate a later retreat of the Miocene sea, coupled 

With a lower elevation that precluded development of the comparable deep 

drainage system of the main producing area. It is not certainly known 

if the Citronelle sediments ever extended into the area. Erosion and 

weathering during the interval developed a phosphate-rich, res~dual soil 

mantle on top of the upper clastic member of the Hawthorn. 

The preceeding chapter of this paper has discussed the alteration 

and weathering of the apatite pebble of the Pine Level deposit. The 

important point must be emphasized here that the apatite in both the 

Hawthorn Limestone residuum of the main producing district and the phos­

phate rich mantle of the Pine Level area have most probably been sub-
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jected to s~mi~ar weathering processes dur~ng this Miocene-P~ocene 

eroSional. interval.. The apatite in these residual deposits was, con­

sequently, almost surely a better quality product at this point in time 

than the apatite in the underlying Hawthorn sediments. 

F, Deposit~on of the Bone Val~ey Formation 

A return to marine depositional conditions :l.n the area of the land­

pebble fie~d during P~:l.ocene time is :indicated by the advance of a trans­

gress:l..ve sea that eroded, Winnowed, and sorted the residual. materials on 

top of the two Hawthorn members. The advancing sea reworked the residual 

materials i.nto a basal. conglomerate contai.J:dng an abundance of apatite 

pebbles and pel1ets. The distribution of this deposit; the lower phos­

phatic member of the Bone Val~ey Formation; the coarse character and len­

ticular bedding of the phosphati.c sediments, and the presence of land 

mammal, shark, ray, manatee, and bird remains are indicative of a trans­

gressive marine enVironment. 

The retreat and withdrawal of the sea formed a regressive sand, the 

upper bar~en member of the Bone Valley Formation, that probably blanketed 

the entire land-pebble fie1d, inc~uding the Pine Level area, These events 

are depicted i.n Figure 23B. 

G. P1eistocene EVents 

The retention and release of tremendous vo1umes of water during the 

vari.ous glacial and interglacial stages caused extraordinary fluctuations 

of sea level during Pleistocene time. During periods of relative stabil­

ity at various interglacial stages, terraces, representing sea standstills, 

deve1oped at several elevations i.n Florida (Table II). These old shore­

~ne• indicate that the Pine Leve1 area was inundated by these encroach-
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ing seas at least three, ud. poss:Lbly four t:Lmes. The record or the 

earlier seas in the Pine Level area have been ob1:Lterated by the later 

Wicomico transgression. The inferred sequence of Pleistocene events is 

depicted in Figures 23C through 2}K. 

The advancing Wicomico sea stripped and reworked the preT:Lous de­

posi.ts, modified the topography of the Hawthorn surface, and red:Lstri.buted 

much of the contained apati.te in the lower member of the Bone Valley Form­

ation i.nto new lower level deposi.ts of Pleistocene age. In the Pi.ne 

Level area, at this ti.me, several h:Lgher elevation Bone Valley remnants 

ex:isted as a seri.es of small. offshore isl.ands. These were being sub­

jected to erosion by waves and tidal currents when an apparent increased 

influx of glaci.al. meltwater to the oceans raised sea level. rapidly enough 

that the islands were completely i.nundated and spared from further de­

struction. Schnabl.e and Goodell. (1968, p. 19) describe si.mi.lar circum­

stances surrounding the inundation and burial. ot all island, now Dog Is­

land Reef, near Al.l.i.gator Harbor on the Apalachi.col.a Coast. 

As the sea continued advancing toward the Polk Upland the reworked 

elastic components were moved seaward and completely buried the Bone 

Valley islands. The finer clay particles, Winnowed from both the Bone 

Valley and the Hawthorn Formations, were settling in deeper, qUiet water 

so that, tinall.y, as the aea neared the Polk Upland, the lower Pleistocene 

sand of the Pine Level area was covered by green clay. The Wicomico sea 

apparently reached a maximum elevation of about 100 feet and d:Ld not 

affect the Bone Valley Formation under the Polk Upland. 

The retreating Wicomico sea eroded and removed most of the green clay 

unit, and deposited a regressive sand sequence that completely blanketed 

and covered the area south of the Polk Upland. The northern extension 
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of the Caloosahatchee Incline into the Pine Level area is thought to 

represent a temporary standstill in the retreating Wicomico sea. The 

incursion of the Pamlico and Silver Bluff seas evidently did not reach 

into the Pine Level area. 

H. Pleistocene Periods of Weathering 

The Polk Upland portion of the land-pebble field was not affected 

by the Wicomico transgression and has been undergoing erosion and weath­

ering since the withdrawal of the Okefenokee sea. The Pine Level area, 

on the other hand, has only been subjected to these processes since the 

retreat of the Wicomico sea. 

It would appear from this fact that the period of intense later-

itic weathering, that so altered the phosphatic sediments of the main 

producing area, but did not affect the Pine Level area, may have started 

or occurred largely during the time the Pine Level area was covered by 

the Wicomico sea. If it did occur later, say during Pamlico time, the 

Pine Level area would have been much closer to sea level, and, perhaps, 

was so poorly drained that the intense lateritic weathering did not 

affect the area. 

I. Recent Events 

It is thought that the lower general elevation, and consequent poor 

drainage, of the Pine Level area inhibited the deTelopment of the 1.m­

portant weathering processes. They are therefore believed to be essen­

tially of Recent age with the most extensive leaching and alteration of 

the Pine LeTel deposit beginning with the retreat or the Silver Bluff 

sea. 



IX. ORIGIN OF THE LAND-PEBBLE PHOSPHATE DEPOSITS 

A. GeneraJ. Or:1.s;1n of Marine Apatite 
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In sp:1.te of the extens:1.ve and very detailed studies of the Perm:1.an 

Phosphor:1.a and the Pl:1.ocene Bone Valley Format:1.oas by the u. s. Geolog­

:1.ca1 Survey s:i.nee 1947, and an a1most overwhelmng volume of 1:1. terature 

by numerous other :1.nvest:1.gators, there does not yet ex:Lst a un:1.fying 

hypothesis for the format:1.on of marine apat:1.te that :1.s acceptable to all, 

or even most, invest:1.gators. The problem stems from the complex chemd­

cal act:1.V:1.ty of the phosphate ion, and the var:1.ety of occurrences of 

carbonate fluorapat:1.te. 

Some common occurrences of apatite :1.n sediments include: micro­

crysta11:1.ne aggregates as nodules, pellets, and ool:1.tes; m:1.crocrystalline 

aggregates as laminae, beds, and :1.nterst:1.t:1.al cement; fish teeth, fish 

scales, and bones of birds, mammals, and fish; phosphatic shells of cer­

tain invertebrates; replacement of calcareous shells and oolites; re­

placement of l:Lmestone; replacement of wood; and coprol:1.tes. The pel­

letal form is the overwhelming mode of occurrence of apatite in the 

land-pebble field. The various modes of occurrence clearly indicate 

that a variety of origins are involved in the formation of carbonate 

fluorapatite. Pellets and oolites are thought by many to represent 

direct preeip1tation trom sea water; limestone and wood replacements 

ob~ously involve secondary meehan:1.sms; and the formation of original 

bone and certain phosphatic shells is an organic process. The principal 

lack of consensus in the origin of marine apatite revolves around the 

phase relationAhips of phosphorus in sea water, and the possibility of 

direct precipitation of apatite from sea water. 

Perhaps the only point of real agreement is the relationship of 
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organic matter and phosphorus, and the acceptance that the phosphorus in 

the present deposits is immediately derived !rom the death and decompo­

sition or organisms. Phosphorus is an essential component or all l~ving 

matter. It is present in plants and the sort part or an:tmals in general­

ly small amounts, but is a major component or the skeletal parts or ver-

tebrates and of some of the hard parts of invertebrates. Phosphorus is 

present in organic matter largely as organic and inorganic orthophosphate 

(Po4 ) compoun4s (Waggaman, 1952, o. 16) and is used in a seemingly end­

less cycle. The "red tides" or phytilplank.ton, with the attendant "mass 

mortalities" that result in the death or thousands of fish, that constant-

ly afflict the west coast of Florida each summer (the summer of 1971 is 

particularly notable) provides one spectacular example of a mechanism 

whereby phosphorus is locally concentrated in sea water and might be 

precipitated under favorable conditions. 

The u. s. Geological Survey, as a result or their studies of the ex-

tensive Rpr~ary" bedded phosphorites o! the Phosphoria Formation, has 

particularly championed the mechanism o! direct precipitation. Gulbrand­

sen (1969) recently summarized the work of the Survey on this problem and 

presents a simplified physical chemical anal.ysis of the phase relation­

ships of phosphorus in sea water. Gulbrandsen (1969, P• 365) concludes: 

"Optimum cond:l tions tor the formation of large a­
mounts of apatite seem to be the coincidence or a 
special steady supply of phosphate, originally de­
rived from organic matter, and a decreased capacity 
of sea water for phosphate. These conditions prob­
ably prevail :in shallow parts of the seas upon con­
tinents where large amounts of organic matter accu­
mulate in oxygenated waters of higher than normal 
temperature, pH, and salinity". 

Mcconnel takes a d:Lfterent point of view and contends (1965, p. 

1061) "that the necessary condit~ons for precip~tation probably can-
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not be evaluated sol.e1y by means of inorganic chemi.cal. theory". He 

concl.udes that most phosphorites have originated by precipitation 

under biochemical infl.uences in a manner analogous to the formation of 

teeth and bone. McConnel consi.ders that phosphorite is precipitated 

from sea water by organisms with the possibl.e aid of an enzyme, car­

boni.c anhydrase. Accordi.ng to hi.s vi.ew direct inorganic precipitation 

ot apatite from sea water does not occur. 

By contrast, Pevear (1966, 1967) in studies of the Atl.antic Coast 

phosphates concl.udes (1967, p. 566), 

"Direct inorgan:i.c preci.p:ttat:Lon of carbonate apat:Lte 
from sea water :Ls probably not possible and no organic 
or b:Lol.ogic mechanism is presently known to be oper­
ative in the marine enVi.ronment. The replacement 
process has been observed both :Ln the laboratory and 
in the !iel.d. In the light of the existing data, :Lt 
appears that :tnorganic replacement of calc:Lum carbon­
ate by phosphate ions in sea water is the only reason­
able mechanism tor phosphorite formation". 

In summary, current vi.ews i.nd:Lcate that marine apat:Lte is formed 

by d:Lrect inorgan:tc prec:tpi.tat:ton directly from sea water, only by the 

life processes of organisms, or only by the replacement of calcium car-

bonate by phosphate ions in sea water. The recycl.ed, clastic deposits 

of the Pine Level area do not shed any light on thi.s particul.ar probl.em, 

but do :indicate that some chemi.cal features usually ascribed to "primary" 

marine apatite may be the resul.t of later phenomena associated wi.th 

weathering. 

B. Summary of the Orig;Ln of the Pi.ne Level Deposit 

The apatite of the Pine Level. deposit has, as its original source, 

the previ.ously reworked clastic apatite particles of the Hawthorn Form-

at:ton. Apatite is aJ1 abundant component of the upper member of' the Haw-

thorn Formation :Ln the Pi.ne Level area, and is esti.mated to constitute 
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10 percent by weight of the member. The fo11owing samples from Table 

VI probab1y characterize the "initial" or "original" apatite or the 

upper clastic Hawthorn member: section E-E•, hole 19-16, sample 2158; 

section J-J•, ho1e 18-20, samp1e 2386; and section K-K•, ho1e 19-26, 

samples 2392 + 2393. 

The Miocene-Pliocene erosional interval deve1oped a phosphate-rich 

soi1 mantle on the top of the exposed upper member. The apatite in the 

mant1e was subjected to weathering processes and was beneficially altered 

to a higher quaLity apatite than in the unweathered, uneroded portion of 

the underlying upper member. 

The incursion or the Bone Valley sea into the area eroded, sorted, 

and reworked the above described residual mantle into a basal conglom­

erate containing a higher proportion of apatite than the underlying Haw­

thorn Formation. On the basis of the ratio of pebble content (Tables V 

and VI), a minimum of 12 volumes of the upper Hawthorn member were re­

worked to provide one vo1ume of the resulting Bone Valley Formation. 

Much of the Hawthol'n cl.ay, fine sand, and fine phosphate pe1lets were 

removed from the area by active currents. It is thought that the upper 

member of the Bone Valley Formation was probably deposited in the Pine 

Level area, but its presence at this time is not recognized. 

The w1 thdrawal. of the Bone Val.ley sea again exposed the area to 

erosion and weathering but the presumed cover of sediments probably 

inhibited alteration by ground water leaching. A similar pattern is 

thought to have continued through early Pleistocene time with the ad­

vance and w:Lthdrawal. of the Okefenokee and Coharie seas. Evidence of 

the sediments associated with these invasions, and the possible weath­

ering effects associated with their withdrawals have been obliterated 
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by later geologic events. 

The W~comico sea removed any remaining overlying se~menta and 

eroded and destroyed much of the Bone Valley Format~on and scoured an 

uregular surface on the upper member of the Hawthorn Format~on. Apa­

tite particles from both the Hawthorn and Bone Valley Formations were 

reworked into the basal transgressive phosphatic deposits of the Wico­

mico sea. The combining of about one volume of Hawthorn matrix with 

an equal volume of Bone Valley matr~x would correspond in pebble ratio 

to the lower Pleistocene matrix (Tables IV, V, and VI). 

The following samples from Table IV probably characte~ze the 

approld.mate chemical quality of the apatite of the deposit at this 

po~nt in time: section c-c•, hole 23-5, samples 315A + 316A; section 

K-K•, hole 18-29, sample 2425. The concentrate fraction has been alter­

ed slightly from the "original" Hawthorn and the pebble fraction has been 

considerably upgraded. It is believed that this occurred during the 

erosional intervals between the retreat of the Hawthorn sea and the ad­

vance of the Wicomico sea. 

The Pine Level area, while exposed to erosion, remained near sea 

level during Pamlico and SilTer Bluff time, was probably poorly drained, 

and the effects of weathering probably proceeded Tery slowly. The 

more intense weathering effects that have altered the apatite to com­

mercial quality is evidently of Recent age and followed the retreat of 

the Silver Bluff sea. 

c. comparison With Orig;Ln of Polk Upland Deposits 

Major ~fferences in the above described origin of the Pine Level 

deposit and the origin of the Polk Upland deposits according to both 

Cathcart (1964) and Altschuler~~· (1956) are as follows: (1) the 
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upper clast~c member of the Hawthorn Format~on d~d not contr~bute any 

detr~tal phosphate to the Bone Valley deposita since the phosphate pel­

lets in the Bone Valley matrix are entirely derived f.rom the chemically 

weathered Hawthorn Limestone, and the pebbles were originally phosphat­

ised limestone pebbles; (Z) marine apat~te was actively precipitated in 

the Bone Valley sea, and it enriched the previously existing pebbles and 

pelle.ts; and (3) the per:Lod o:f intense lateritic 1reatherins formed the 

al~num phosphate zone and developed the present calcareous olay re­

s~duum on top of the Hawthorn ~mestone, but the effects on the apat~te 

of the matrix are apparently of no consequence. ~he extraneous pebble 

source is aimed to account tor the fact that the Hawthorn ~mestone prob­

abl7 contains ~naufticient pebbles, and that many of the apatite pebbles 

~n the Bone Valley Format~on in the main producing area are phosphatized 

limestone particles that contain the same fossils as the underly~ng Haw­

thorn Limestone. 

D. Considerat~on of Major D~fferences of Oris;l,n 

The wr~ter does not argue or contend that the interpretations of 

Cathcart or Altschuler et ~· regarding the or:l.~n of the Bone Valley 

deposits of the Polk Upland are incorrect. It is rather suggested that 

the study of the P~ne Level deposit indicates that, perhaps, some alter­

native factors may warrant additional consideration. The origin ot the 

deposits may be more complicated than has been previously reported. 

Some of the addit~onal factors that possibly should be considered are 

discussed below. 

1. Source of the Apatite 

The Pine Level deposit ~ndicates that the apatite is derived from 

the underlying clastic member of the Hawthorn Formation. This member 
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original1y extended over the main producing area and, most 11ke1y, 

contributed a significant amount of apatite to the Bone Val1ey Forma­

tion. An extraneous derivation of the Bone Val1ey pebb1e is not re­

quired if the phoaphate is derived from the c1astic member. Further, 

the condition that chemic~ weathering formed a phosphate-rich re­

siduum wou1d not be req~red. A considerable amount of the fine grain­

ed fraction of the clastic member would have to have been removed from 

the area by streams to provide the present pebb1e concentration of the 

Polk Upland deposits. 

It m~ be noted, on the other hand, that the hard-rock deposits of 

the Ocala uplift area evidently developed prior to the incursion of the 

Bone Val1ey sea. They may originally bave been sufficient1y extensive 

to have invo1ved the Hawthorn Limestone at the northwestern end of the 

land•pebble field. Erosion of these deposits in ear1y Pliocene time 

could have contributed some, or even most, of the pebbles to the present 

Bone Val1ey matrix. 

2. Harine Apatite Enrichment Versus llteration by Weathering 

The Bone Valley sea is an ideal. examp1e o t the type of marine en­

vironment discusaed by Gulbrandsen {1969) wherein apatite might be dir­

ectly precipitated from sea water. The relative abundance of phosphat­

ized bone and shark teeth attest to the abundance of organic matter which 

could have furnished more than the required supply of phosphorus. streams, 

draining from the phosphatic Hawthorn and hard-rock terrain to the north, 

could also have contributed more than a sufficient supp1y of phosphorus 

to the Bone Valley sea. If it can in fact be shown that apatite was 

prec~pitated trom the Bone Va11ey sea, then the apatite particles might 

indeed have been enriched to their present qua1ity at this time. 
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This study presents eVidence which indicates that alteration by the 

activity of ground water is the enrichment mechanism in the Pine Level 

area. It is therefore suggested that apatite may not have been pre­

cipitated in the Bone Valley sea, but that enrichment of the Bone Valley 

apatite most likely occurred subsequent to the deposition of the matrix, 

probably, in large measure, during the period of intense lateritic weath­

ering. 

3. Possible Pleistocene Reworking 

The local and regional relief on the base of the Bone Valley Form­

ation as shown by Cathcart's maps and the exposure of the area to two 

Pleistocene marine invasions (Okefenokee and Coharie) suggest that por­

tions of the Bone Valley Formation might conceivably have been reworked 

into Pleistocene deposits similar to those of the Pine Level area that 

have not heretofore been recognized. 

E. Unsolved Problems 

1. Source of Hawthorn Apatite 

Sediments related to Miocene embayments in the Atlantic Coastal 

Plain from the Brightseat Formation of Maryland to the Hawthorn Form­

ation of the Pine Level area contain billions of tons of detrital apa­

tite. Miocene deposits were formerly mined in the Charleston, South 

Carolina area; are now being mined along Pamlico Sound in North Caro­

lina, and in north Florida; and are known to be of commercial quality 

in the savannah, Georgia area. It seems logical to believe the apatite 

is probably related to some common origin. The apatite pellets are 

detrital, oval-shaped, and highly polished. Have they been reworked 

into these Miocene sediments from some previous sediments? Was the 

apatite precipitated and formed in this grade, size, and shape, or has 
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it been derived by erosion and attrition from bedded phosphorites or 

phosphate nodu~es? Why does the Miocene series of the At~antic Coastal 

P~ain contain such an abundance of apatite? 

Pevear assigns a Miocene age to this apatite and describes a possib~e 

origin (1966, pp. 254-255): 

nrt seems justified, therefore, to envision sediment­
ation during Miocene time as having occurred on a 
coast not di.ssimi~ar to that of modern Georgia, wi.th 
a wide she~f and shore~ine embayed by many estuaries. 
During a period of warm c~imate and relative~y ~ow 
re~ief limey sediments accumulated within the shel­
tered confines of productive coastal estuaries on a 
broad continental. she~f. CooJ.ing climatic conditions 
resu~ted in a slackening or w:i..thdrawaJ. of limestone­
forming conditions and a possib~e s~ight increase in 
productiVity due to increased co2 solubi~ity. High 
productiv:l..ty, especial~ of marsh grass and benthic 
aJ.gae, raised inorganic phosphorus concentrations to 
a point where ~ime mud was rep~aced by phosphorite. 
During a period of 60,000 years one foot of phos­
phorite was produced over most aJ.~ the estuaries. 
Smal~ she~f instabilities resu~ted in significant 
changes. of sea ~evel on the shallow she~f causing the 
surf zone to transgress over the estuary breaking up 
and somewhat redistributing the phosphorite. The 
process of formation and breaking up of the phos­
phorite layer occurred repeated~ during Miocene 
time". 

Perhaps the Pine Leve~ area represents one of these embayments. If 

it does not, the detrital. apatite may haTe been transported into the 

area from north of the Florida state line by the Miocene de~ta dis-

tributary system prev:Lous~y discussed. 

2. Pel~et and Pebb~e Differences 

The reason for the obvious fact that the pebbJ.e fraction in any 

aamp~e from the land-pebb~e fie~d contains more impurities than the 

concentrate fraction has not been determined. The pel~ets of the con-

centrate fraction may represent smaJ.~er detrital grains derived from 

broken pebb~es from which all impurities have been scrubbed orr by 

attrition; the pel~ets may have initia~J.y formed as smal~, higher 
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quality part~c~es; or the pe~lets, aa a resu~t or the~r small Size, have 

allowed rap~d and more thorough alterat~on by groundwater wh~le the 

pebbles st~ll encase cons~derable ~mpur~t~es ~th~n them. 



X. ECONOMIC GEOLOGY 

A. Economic Evaluation of Deposits of the Pine Level Type 

1. Introductorz Statement 

1Z6 

The economic evaluation of the Pine Level and similar phosphate 

deposits differs from the evaluation many other mineral deposits in that 

various production cost parameters may be somewhat more variable. The 

The depth of overburden, the matrix thickness, the pebble to concentrate 

ratio, flotation recovery, and product grade may vary Yidel~ within short 

distances. 

In addition, many of the direct production costs are generally inter­

related. Some of the direct costs of a producing operation might, for ex­

ample, be assigned to the following cost centers: 

1. Mine overburden stripping 

z. Matrix mining 

3. Matrix pumping 

4. Washing 8.1ld screening 

5. Flotation 

It can be seen that the increased production cost of an increased 

thickness of overborden could be offset by an equal increase in the thick­

of matrix, or a re4uction in the pumping distance by being closer to the 

plant, or a higher pebble content which would reduce washing and screen­

ing unit costs, or an increase in recoverable flotation concentrate. Sim­

ilarly a combination of adverse costs might be offset by a combination 

of favorable coats, or by an increase in the sales price of a higher 

grade marketable product. 

The detailed economic evaluation of this type of phosphate deposit 

thus embraces a wide variety of disciplines including geology, engineer­

ing, and marketing. In the final analysis a team effort is required to 

properly conduct a detailed economic evaluation. However, a study of 
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the engineering and production cost data developed for the Pine Level 

deposit in 1969 indicates that most of these cost parameters, as well 

as certain quality requirements, can be expressed in terms easily deter­

minable by the exploration geologist or engineer. 

2. Hining Considerations 

Most phosphate rock plants in central Florida produce at an annual 

rate of about 2,000,000 tons per year of marketable phosphate rock, or 

are at least capable of such a production rate. Any new facility or 

company, planning to produce Florida phosphate rock, must plan prod­

uction at least at this rate to maintain competetive unit costa. If the 

plant and mining equipment are to be depreciated over a 20 year period, 

the required phosphate rock reserve is 40 million tons. The period of 

20 years is stated because this is the reasonable, expected life of the 

equipment involved. 

Acquisition cost of the reserve, in terms of fee simple purchase, 

probably should not exceed $0.30 to $0.40 per reserve ton of phosphate 

rock in the ground. This cost will depend somewhat on the quality of 

the reserve, the cash position, and immediate and long range capital 

investment plana of the company contemplating acquisition. An econ­

omic analysis is normally required to properly evaluate the sensitivity 

of this cost item. A deposit that yields an average of 5,000 tons per 

acre of recoverable phosphate rock will need to underlie 8,000 acres to 

provide the required reserve, and phosphate land values in Florida vary 

from about $300 to $2,000 per acre. 

The minimum size dragline with the materials handling capability of 

providing the required 2,000,000 tons per year of production will be in 

to 20 to 25 cubic yard range if the overburden and matrix thickness are 
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favorab~e. Such a ••chine cannot efficiently or economically mine matrix 

less than three feet thick. Further, the effective working area from 

one pit sump set-up is determined by the length of the dragline boom. 

Matrix containing less than 3,500 tons per acre of recoverable phosphate 

rock will reqUire more frequent moves of the pit sump with an attendant 

increase in production costs. 

If the overburden is too thick an inordinate amount of time 11:1.11 be 

reqUired for overburden removal and the plant cannot be adequately SUP­

plied with matrix from the pit sump set-up. Consequently; unless other 

alternatives are aYailable, such as two draglines supplying the same 

plant; the thickness of overburden should not be more than three times 

greater than the thickness of the matrix. 

The matrix slurry from the mine requires treatment at the plant to 

recover the contained phosphate rock. If the content, or recovery, is 

too low, the processing cost will be excessive. As a general rule the 

recoverable product should exceed 350 tons per acre-foot of matrix mined, 

and the BPL content of the flotation teed should be greater than 15 per-

cent. 

Another factor reqUiring some consideration is the total depth 

that would be required to mine a given deposit. A 20 cubic yard drag­

line cannot, tor example, mine a deposit with a one-to-one overburden 

to matrix ratio at a total depth of much over fifty feet without a ser­

ious cycle-time sacrifice. An appropriate dragline must be selected with 

both the deposit and plant reqUirements in mind. 

The concentrate fraction must be recoverable by competitive flot­

ation methods. Some apatite pellets, to cite one example, may be soft 

and friable, and may "sli.me" during processing, with the end result that 
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they cannot be economically condit~oned for tlotat~on treatment. 

3. Chemical Qu~ty Factors 

The mi~um grade o! marketable Flor~da phosphate rock contains 66 

percent BPL (30 percent P2o5). In general, h~gher qual~ty rock collllllancis 

a premium pr~ce and is preferred by d~stant customers due to the lower 

tre~ght cost per un:J. t ot contained BPL. 

Excess~ve calcium carbonate in the phosphate rock requ~res costly 

treatment with addit~onal sulfuric ac~d ~n the manufacture of fertillzer. 

The ratio of the contained CaD to P 2o5 is a commonly used "yardstick" of 

expected sulfur~c ac~d consumpt~on. The nominal ratio for marketable rock 

is about 1 • .50. 

Al.uminum oxi.de and iron on de (usually reported as combined I & A) 

are undes1rable ~n rock used to make wet-process phosphor~c acid because 

they form insoluble chemical complexes that settle slowly and create 

sludge problema. They aJ.so create problems in the manufacture of super­

phosphate and give a poor physical condit~on upon curing. The combined 

I & A should not exceed 4.0 percent. 

Magnesium Will form an insoluble ammonium-magnesium-phosphate com­

plex if it is present in the phosphoric acid used to produce ammonium 

phosphate fert~l~zers. The presence of organic matter causes a foaming 

problem in the manufacture of phosphoric acid. Excess s~o2 , generally 

reported as "Insol" is undesirable as it detracts from the possible BPL 

content, and incurs "dead weight" shipp~ng charges. 

4. Summ!fY of Mi~um Requ~rements 

The foregoing taotora are IIWDJilarized in tabular form below. It 

muat be understood \hat these are general ~de~nes that serve, at best, 
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to recognize deposits of merit, are based on 1969 costs, and are not a 

substitute for the required engineering and economic studies. 

1. The minimum reserve required for a proposed mining operation 
is about 40,000,000 tons, which, at an average recoverable 
yield of about 5,000 tons per acre, will underlie 8,000 acres. 

2. Minimum matrix thickness is 3 feet provided the recoverable 
phosphate rock exceeds 3,500 tons per acre. 

3· The overburden to matrix ratio should not exceed 3 to 1. 

4• The recoverable phosphate rock must exceed 350 tons per 
acre foot in the matrix. 

5. The BPL content of the flotation feed must exceed 15 percent. 

6. The dragline to be selected must be capable or supplying the 
plant requirements from the maximum depths that will be en­
countered in mining the deposit. 

7. The concentrate fraction must be amenable to standard, com­
petitive flotation techniques. 

8. The minimum grade of marketable phosphate rock contains 66 
percent BPL. 

9. The Ca0/P2o5 ratio should be in the nominal 1.50 range. 

10. The combined I & A should not exceed 4.0 percent. 

11. A MgO content in excess of 0.60 percent will be difficult to 
market if the rock is used in ammonium phosphate production. 

B. Exploration for Other Deposits 

1. Polk Upland 

The area of the land-pebble phosphate field encompassed by the Polk 

Upland has been extensively explored (see Cathcart). Most of the entire 

area has long been owned or controlled by the various phosphate companies. 

The opportunity to acqUire sufficient reserves in this area by an option 

and exploration procedure is exceedingly limited. New companies that 

have most recently entered, or have announced their intentions to enter, 

the phosphate business in this area (United States Steel, Kerr-McGee, and 

Freeport) have done so by some type of partnership arrangements vdth other 
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companies that own the reserves. 

2. De Soto Plain 

During the course of the exploration program about ZOO or so holes 

were dr~lled on var~ous tracts in the De Soto Plain in eastern Manatee, 

western Hardee, and northern De Soto counties. These holes were With~n 

the land-pebble field between the Polk Upland the the ~ne Level area. 

The holes were concentrated in sever~ d~fferent areas and d~d not 

systemat~cally or properly sample the entire area under consideration. 

However, the dr~ll holes encountered a variety of geologic features 

similar to the Pine Level area and clearly were ind~cative of an identical 

mode of origin. Irregularly distributed suberop patterns of the Bone 

Valley Formation, perhaps "island" remnants as in the Pine Level area, 

were encountered ~n three different areas; several holes in one area 

contained as much as 50 feet of lower Pleistocene matrix; and one area 

contained a commercial quantity of phosphate concentrates in a very th~ck, 

but deep, section of the Hawthorn Formation. It is obvious that deposits 

or the Pine Level type may be present in the De Soto Plain between the 

Polk Upland and the Pine Level area. 

During the period of the explorat~on program described herein, a 

number of other companies were also conducting exploration work in the 

area. Several other reserve acquisition programs, in addition to the 

Phillips program in the Pine Level area, were completed during this time. 

These include purchases of acreage by Pittsburgh Plate Glass in Manatee 

County, stauffer Chemical and Duval Chemical in Hardee County, and Int­

ernational Minerals in De Soto and Manatee Counties. These purchases 

clearly prove that other deposits are present in the area under discussion. 

The writer believes that the De Soto Plain offers the best oppor-
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tunity to acquire reserves by the option and exploration method in the 

land-pebble field. The immediate question, in view of the exploration 

drilling that has been conducted, concerns the intensity of the explor­

ation coverage. The writer estimates that perhaps half of the total 

area has been tested by some exploration holes. 

In this regard it must be emphasized that deposits of the Pine Level 

type are stratigraphically irregular and lack the blanket-type continuity 

of the Polk Upland deposits. Drilling procedures and patterns, quite 

appropriate in the Polk Upland, may not be adequate in the De Soto Plain. 

It is not, and has not, been uncommon in the Polk Upland to base a prelim­

inary evaluation program on exploration drill holes located approximately 

at the center of 160 acre blocks. This is the equivalent of four holes 

per section. If the four holes all encounter a thick and intense develop­

ment of the aluminum phosphate zone it can reasonably be concluded that 

the section is unfavorable and unworthy of additional expenditures. If, 

on the other hand, the four holes all encounter mineable thicknesses of 

matrix, it can be almost assuredly concluded that the section is under­

lain by significant phosphate rock reserves. 

The unusual stratigraphic and areal distribution of the matrix in 

a deposit of the Pine Level type precludes such assured interpretations 

from a comparable limited exploration drill hole pattern. Some, and per­

haps even most, of the exploration efforts conducted to date in the De 

soto Plain have been based on previous and long-standing experience in 

the Polk Upland. The writer believes the validity of such efforts is 

questionable. Exploration for deposits of the Pine Level type requires 

an interpretation of the geologic history and environment of deposition 

of every drill hole. These geologic guides and interpretations form the 
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so~e basis tor an effective exploration program tor phosphate deposits 

ot the Pine Level type in the De Soto Plain portion of the land-pebble 

field. 

3. 'l'he Gu~t Coastal. Lowlap,d 

The Gulf Coastal Lowland does not appear to contain phosphate de­

posi.ts of interest at the PJ"esent ti.me. This is particularly true of the 

area in Sarasota, Manatee, and Charlotte counties below the Paml:l.co 

shore line. The apatite has been extensive~y reworked in this area and 

a great amouat ot fragmental shell is intermixed with it. Until some 

economical method of flOtation is deYeloped that will separate calcite 

from apatite, the phosphate concentratioDS in this area are of no i.n­

terest. The area :Ls also very low and poorly clra:Lned, the apatite :La 

black, not suffic:1ently altered, and of raarg:Lnal grade. 

c. Ecologictl Cons:1derationa 

One of the most tl"oubleaome aspects of Flor:1da phosphate rock prod­

uction :1s the d:1sposa1 of slimes. It is a particularly expensive phase 

of the total operat:Lon, and requ:1rea constant supervision and mainten­

ance. The accidental introduction of slimes into the Alaf:ia and Peace 

Rivers on several occasions in recent years has resulted :in serious 

envi.ro:r&llental damage. 

In a recent :Lnstance in 1968, an o~d s~ime disposal dam, near the 

headwaters of the Peace River, accidently ruptured and released a very 

large quantity of slimes into the Peace River. The slimes f1owed down 

the river to Charlotte Harbor where the clay finally !loculated :1n salt 

water and settled out. Residents ot Arcadia, near the Pine Level area, 

described the local ~ene at the time as a "river of pancake batter with 
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thousands of dead fish". The company responsible was requi~ed to clean 

up the river, restock it with fish, and, in addition, was tined $250,000 

by the state of Florida. 

The Bone Va11ey ~atrix, as has been described, consists of about 

equa1 parts of recoverable phosphate, sand tailings, and slimes. The 

-150 mesh slimes contain a very minor proportion of fine sand and silt 

size particles and predominately consists of montmorillonite. The tail­

ings to slimes ratio is therefore approXimately oae to one. 

The normal method of slimes ~sposal is within a large perimeter 

dam 25 feet or so high. The dams are usually constructed around a 

mined-out area to gain the advantage of the additional space. Most 

slimes dams encompass several hundreds of acres, and the slimes from 

the plant are pumped into these ponds for permanent storage and dis­

posal. 

The cl~ particles rapidly settle to where the slimes are about 

12 to 15 percent solids, and then settle exceedingly slowly. Many 

ponds 20 to 30 years old have finally reached a condition where the 

slimes are somewhat like gelatin and contain a maximum of around 30 per­

cent solids by weight. They thus actually require about the same dis­

posal space as the volume of the original matrix from which they were 

derived. 

The various companies are conducting numerous experimental studies 

designed to reclaim these areas, and to fine a more effective method of 

disposal, including the addition of various flocculating agents, and the 

concentration of the slimes by new ultra-fine flotation techniques. Nu­

merous disposal attempts have been made to blend the sand tailings and 

slimes in varying proportions in the hope the settling sand would entrap 

the clay particles and form a reconstituted sediment. These efforts have 
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not been productive, for the clay always remains in suspenSion. 

Recently American Cyanamic (Timberlake, 1969) has reported the 

encouraging results of a new series of experiements in reconstituting 

the sediments. Simply, the system involves having the dragline cast a 

series of spoil banks at right angles to the mining cut, in addition to 

the normal spoil bank paralleling the cut, as mining aJ.ong the cut 

proceeds. After several parallel cuts are mined in this manner the 

mined area will consist of a aeries of rectangular unfilled depressions 

surrounded on two s:i.des by the spoil baJlks paralleling the cut, and, on 

the other two side, by the extra spoil banks at right angles. The rec­

ta.ugul.e depressions are then aequential.l.y filled Wi. th a layer or slimes 

which settles to about 10 to 15 percent so~ids :in a relatively short time. 

The clear top-water is pumped ott and a layer ot thickened sand tailings 

is pumped into each pond. The sequence is repeated several times until 

the rectangular area is filled. The spoil banks can then ~e smoothed 

out and graded and the lan~ is very effectively recl.aimed. American 

Cyanamid has been successful in disposing about oa-hal.f of the total 

slimes by this method, with the other halt being routed to conventional 

disposal. This system has therefore been successfully applied in the 

case where the sand taiUngs to sl:ime ratio .:l.s 2 to 1 • 

The Pine Level. deposit conta:tns four parts by weight of sand tail­

ings to one part by weight of slimes for a ratio of 4 to 1. The sort­

ing and w::lnllowi.ng act:Lon of the Wicom:Lco sea has very effectively re­

moved a large amount of the interstitial c~ay and greatly enhanced the 

m1neab11ity of the Pine Level deposit. 

The best overall reclamation procedure must await actual production 

experiments and test, but ths particle size d~stribution of the depoa~t, 
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and the resuJ.ts ache:l.ved by .Amer:Lcan Cyanam:Ld, cJ.earJ.y :l.nd:l.cate that 

the P:l.ne LeTeJ. deposit ia un:LqueJ.y tavorabJ.e tor cemp1ete and attract:Lve 

recJ.amat:l.on ot the m:l.ned J.ands. Ot equal :importance, the neoesa:Lty of 

construct:l.ng and ma:l.nta:l.n:Lng the expensive and dangerous sJ.:Lmes storage 

areas may be obv:Lated. 
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XI. CONCLUSIONS 

The detailed study of the geology of the Pine Level phosphate de­

posit and the Polk Upland portion of the land-pebble phosphate field 

yields the following conclusions: 

(1) The deposits of the two areas are significantly different in 

a number of important respects. These differences are summarized in 

Table XIII. 

(2) The economic phosphate deposit of the Pine Level area is an 

unusual, unique, unreported type in a transgressive sand deposited by 

the Pleistocene Wicomico sea that eroded, dissected, and redistributed 

phosphate from both the Hawthorn and Bone Valley Formations into new re­

cycled clastic deposits of Pleistocene age. 

(3) The entire southern portion of the Florida land-pebble field 

below the Wicomico scarp has. been subjected to a similar geologic his­

tory. This explains the differences in the deposits north and south of 

this scarp. 

(4) The decrease in quality of the phosphate, coupled with signi­

ficant color changes, with increasing depth clearly indicates that an 

upgrading process to commercial quality is dependent upon ground water 

leaching of undesireable contaminants and replacement by apatite. 

(5) There need not have been any actual apatite precipitation in 

the Bone Valley sea as proposed by Cathcart (1964) and Altschuler et ~· 

(1956). The phosphate particles are more likely recycled from pre­

existing sources. 

(6) The high grade rock of the main producing district was prob­

ably not formed by enrichment in the Bone Valley sea but by processes 

involving ground water leaching and apatite replacement that accompanied 



Table XIII. Compariaon of the Phosphate Deposita of the Pine Le·nl Area and the Polk Upland. 

1. Distribution of Bone Valley Formation 

2. Hathorn clutic aember 

3. Origin 

4. Ase of depoai ta 

5. Source of apatite pell.ets 

6. Source of apatite pebbles 

?. Enrichment of apatite 

8. Area of collUIIercial deposita 

9. Aluminum phosphate zone 

10. Age of weathering 

11. Pebble content 

12. Pebble quality 

13. Concentrate content 

14. Concentrate quality 

15. Slimes content 

Pine Level Area 

Local and erratic 

Present 

Rnorked Hawthorn and 
Bone Valley Formations 

Mainly Pleiatocene 

Hawthorn claatic member 

Hawthorn clastic member 

By weatherins and replace-
ment 

Small 

Very minor 

Recent 

Low 

Poor \o moderate 

High 

Poor to high 

Low 

Polk UJ!land 

Widespread 

Abaent 

Reworked Hawthorn residuum 

Pliocene 

Hawthorn limestone member 

Introduced (?) 

Precipitated in the Bone 
Valley sea 

Very larse 

Widespread and locally 
intense 

Okefenokee to Recent 

High 

Moderate to high 

Low to moderate 

Moderate to very hish 

HiSh 

-~ 
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the per~od of ~ntense 1ater~t~c weather~ng. 

(7) The Pine Leve1 depos~t, with a tai1ings to a1imes ratio of 4 

to 1 offers a ld.glli.ficaD.t advantage in land reclamation over the d.­

posits of the main produc~ng district with a ratio of 1 to 1. The 

exceeding1y serious s11mes disposal probl.em may be eliminated. and com­

plete l.and reclamation ache~ved at less cost. 

(8) Other simi.lar depoa:its e:x:i.st ~n the southern portion ot the 

land-pebble field. Exploration for these deposits requires the thorough 

app1ication ot the basic principl.es of geol.ogy. 
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XIV. APPENDIX: FIELD LITHOLOGIC LOGS OF SELECTED DRILL HOLES 

Explanation .!£ Dril.l E.2l! Nwn])ers 

The drill hole num])er is a four-part number such as: 37-24-24-8. 

The first number indicates the township south, tbe second num])er in­

dicates the range eaat, the third num])er indicates the section, and 

the final number is the assigned hole number within the section. In 

the above example, the drill hole number indicates that the hole is 

number 8 in Section 24, T. 37 s., R. 24 E. The drill holes included 

within the appendix are arranged 1.n numerical sequence according to 

the above number:i.ng system. 



Depth (teet l 
~ To 

o.o 10.6 

10.6 12.3 

12.3 18.0 

18.0 29.6 

29.6 30.5 

30.5 31.5 
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Hole # 37-22-14-22 

Location: Section 14, T. 37 s., R. 22 E. 
Date: October 19, 1965 

Thick. 
(feetl Description 

Upeer Pleistocene 

10.6 Sand: brownish gray, fine- to coarse­
grained, soft, incoherent with an estimated 
5 percent interstitial clay. 

Lower Pleistocene 

1.7 Clay: light grayish green. 

5.7 Sand: dark brownish gray, fine- to coarse-
grained with an estimated 10 percent inter-
stitial clay content; phosphatic with an 
estimated 20 percent white and tan phosphate 
pebbles and pellets. Sample I. ;Q62. 

11.6 Sand: dark brownish gray, fine- to coarse-
grained, sort and incoherent with no inter-
stitial clay; minor thin seams of grayish 
green, sandy, phosphatic clay; phosphatic 
with 15 to 20 percent dark brown phosphate 
pebbles and pellets. Sample fl. ;Q6J. 

Hawthorn Formation 

0.9 Clay: dark grayish green. 

1.0 Sand: black to very dark gray 1 medium- to 
very fine-grained, incoherent with no inter-
stitial clay; estimate 5 to 10 percent fine 
black phosphate pellets. 



Depth (feet) 
~ ..!2.._ 

o.o 3.0 

3.0 8.1 

8.1 22.2 

22.2 26.5 

Hole # 37-22-14-39 

Location: Section 14, T. 37 s., R. 22 E. 
Date: June 25, 1968 

Thick. 
(feet) 

Upper Pleistocene 

Description 
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3.0 Sand: light brown, medium-grained, soft 
and incoherent with an estimated 3 percent 
interstitial clay content. 

Lower Pleistocene 

5.1 Clay: light grayish green. 

Bone Valle~ Formation 

14.1 Sand: medium grayish green, fine- to 
coarse-grained, estimated 15 percent 
interstitial clay; phosphatic with an 
estimated 25 percent white and tan 
phosphate pebbles and pellets. Sam,ele 
ll 2480. 

Hawthorn Formation 

4.3 Clay: brownish green with sparse, thin 
seams of fine brown sand. 



Depth (feet) 
~ ...k_ 

o.o 14.1 

1.4.1 14.3 

14.3 36.3 

36.3 42.7 

42.7 51.3 

Hole # 37-22-22-6 

Location: Section 22, T. 37 s., R. 22 E. 
Date: March 26, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

14.1 

0.2 

Sand: tan to brown, fine- to coarse­
grained, estimated 3 percent interstitial 
grayish green clay. 

Sand: tan, fine- to coarse-grained, 
estimated 3 percent interstitial clay; 
phosphatic with traces of soft, white 
aluminum phosphate pebbles. 

Lower Pleistocene 

22.0 Sand: grayish green, fine- to coarse-
grained, phosphatic with 25 percent brown, 
gray, and white phosphate pebbles and 
pellets; estimate 15 percent interstitial 
clay. Sample # 197~. 

6.4 Sand: dark gray, fine- to coarse-grained, 
5 percent interstitial clay; phosphatic 
with 20 percent dark brown to black phos-
phate pebbles and pellets. Sample IJ. 19Z6. 

Hawthorn Formation 

8.6 Clay: dark grayish green. 
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Depth (feet) 
.E£2!! ..!5?_ 

o.o 7.2 

8.2 

8.2 16.5 

16.5 27.9 

Hole # 37-22-22-8 

Location: Section 22, T. 37 s., R. 22 E. 
Date: March 22, 1968 

Thick. 
(teet} Description 

Upper Pleistocene 

1.0 

Sand: light brownish gray, tine- to coarse­
grained with 10 percent interstitial clay. 

Sand: tan, fine- to coarse-grained with 
15 percent interstitial clay and traces ot 
sort, white aluminum phosphate pebbles. 

Bone Valley Formation 

8.3 Sand: tan, fine- to coarse-grained, phos­
phatic with estimated 30 percent white, gray, 
and brown phosphate pebbles and pellets; 
15 percent interstitial clay. Sample I 1964. 

Hawthorn Formation 

11.4 Sand: light brownish green, fine-grained, 
10 percent thin seams or grayish green clay 
and 15 percent interstitial grayish green 
clay; phosphatic with 5 percent fine, brown 
phosphate pellets. 



Dept.h (feet) 
12:2!! ~ 

o.o 3.6 

3.6 6.8 

6.8 13.6 

13.6 15.7 

22.0 

1.51 

Hole I 37-22-22-12 

Location: Section 22, T. 37 s., R. 22 E. 
Date: December 15, 1964 

Thick. 
(feetl Description 

Upper Pleistocene 

3.6 

3.2 

Sand: light brown, medium-grained with 
estimated 3 percent interstitial clay. 

Sand: very dark gray, fine- to coarse­
grained with 10 percent interstitial clay; 
phosphatic with traces of white aluminum 
phosphate pebbles. 

Bone Valley Formation 

6.8 

2.1 

Sand: dark brown, fine- to coarse-grained, 
phosphatic with an estimated 25 percent 
brown phosphate pebbles and pellets; 10 
percent interstitial clay. Upper part o! 
Sample I 492. 
Sand: brownish gray, fine- to coarse­
grained, phosphatic with an estimated 
30 percent brown phosphate pebbles and 
pellets; 10 percent interstitial clay. 
Lower part of Sample II 492. 

Hawthorn Formation 

6.3 Sand and clay: interbedded fine- to very fine­
grained, bro~sh gray, slight~ phosphatic 
sand and grayish green clay. Approximately 
50 percent o! each in alternating thin seams. 



Depth (feet~ 
~ -12.... 

o.o 8.0 

8.0 9.8 

9.8 10.3 

10.3 13.3 

13.3 15.8 

15.8 18.5 

18.5 25.6 
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Hole # 37-22-23-5 

Location: Section 23, T. 37 s., R. 22 E. 
Date: October 27, 1964 

Thick. 
(feet) Description 

Upper Pleistocene 

8.0 

1.8 

0.5 

Sand: brown, medium-grained with 15 
percent interstitial clay. 

Sand: dark brown, medium-grained with 
10 percent interstitial clay. 

Sand: dark brown, medium-grained with 
10 percent interstitial clay and traces or 
brown phosphate pebbles and pellets. 

Lower Pleistocene 

3.0 

2.5 

2.7 

7.1 

Sand: dark brownish gray, fine- to medium­
grained with 5 percent interstitial clay; 
phosphatic with 25 percent white, tan, and 
green phosphate pebbles and pellets. Sample 
# 315A. 
Sand: dark brownish gray, fine- to coarse­
grained with 10 percent interstitial clay; 
phosphatic with 25 percent brown phosphate 
pebbles and pellets. Middle part of Sample 
# 315A. 
Sand: brownish gray, fine- to medium­
grained with 10 percent interstitial clay; 
phosphatic with 30 percent brown phosphate 
pebbles and pellets. Lower part of Sample 
If 315A. 
Sand: brownish gray, fine- to medium­
grained with 15 percent interstitial clay; 
phosphatic with 30 percent brown to dark 
brown phosphate pebbles and pellets. Sample 
II 316A. 

Continued on next page 



25.6 

26.7 

27.2 

26.7 

27.2 

28.6 

Ho1e # 37-22-23-5-continued 

Hawthorn Formation 

1.1 

0.5 
Clay: dark grayish green. 

Sand: brownish gray, fine-grained with 
15 percent interstitial green c1ay; 
phosphatic with an estimated 10 percent 
dark brown phosphate pe11ets. 

Clay: dark grayish green with a trace 
of fine phosphatic sand with black phos­
phate pellets. 
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Depth (feet) 
fr.2!!! ..12._ 

o.o 

9.1 

10.6 

13.0 

22.1 

9.1 

10.6 

13.0 

22.1 

Hole # 37-22-23-12 

Location: Section 23, T. 37 s., R. 22 E. 
Date: April 25, 1968. 

Thick. 
(feet) Description 

Upper Pleistocene 

9.1 

1.5 

Sand: tan to brown, fine- to coarse­
grained with 5 percent interstitial 
clay. 

Clay: light grayish green. 

Sand: very light gray, fine- to coarse­
grained with 5 percent interstitial clay; 
phosphatic with traces of soft, white 
aluminum phosphate pebbles. 

Bone Valley Formation 
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9.1 Sand: brownish green, fine- to coarse­
grained with 10 percent interstitial clay; 
phosphatic with 20 percent white to brown 
phosphate pebbles and pellets. Sample # 
2127. 

Hawthorn Formation 

Sand: very light gray, fine-grained; 
contains abundant, soft interstitial 
marl or calcareous clay; slightly 
phosphatic. 



Depth (feet) 
!:!:.2!! To 

o.o 12.1 

12.1 

13.3 32.9 

32.9 38.3 

Hole # 37-22-23-37 

Location: Section 23, T. 37 s., R. 22 E. 
Date: March 21, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

12.1 Sand: brownish gray, medium-grained 
with 15 percent interstitial clay. 

1.2 Sand: gray, fine- to coarse-grained 
with 10 percent interstitial clay; 
phosphatic with traces of soft, white 
aluminum phosphate pebbles. 

Lower Pleistocene 
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19.6 Sand: medium grayish green, fine- to 
coarse-grained with 15 percent interstitial 
clay; phosphatic with 20 percent dark gray 
to dark brown phosphate pebbles and pellets. 
Sample (I 1956. 

Hawthorn Formation 

5.4 Clay: dark grayish green. 



Depth (feet) 
~ To 

o.o 11.5 

11.5 

12.7 22.2 

22.2 31.5 

Hole # 37-22-23-38 

Location: Section 23, T. 37 s., R. 22 E. 
Date: March 21, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

11. 5 Sand: brown, fine- to coarse-grained 
with 15 percent interstitial clay. 

1.2 Sand: tan, fine- to coarse-grained 
with 10 percent interstitial clay; 
phosphatic with traces of soft, white 
aluminum phosphate pebbles. 

Bone Valley Formation 

9.5 Sand: light brownish gray, fine- to 
coarse-grained with 10 percent inter­
stitial clay and 5 percent clay in thin 
seams; phosphatic with 20 percent brown, 
gray, and black phosphate pebbles and 
pellets. Sample # 195z. 

Hawthorn Formation 

9.3 Clay: grayish green. Top part contains 
abundant thin, fine-grained phosphatic 
sand seams. Lower part very marly. 
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Depth (feet) 
~ To 

o.o 

12.6 

15.1 

21.6 

27.2 

29.4 

33.6 

12.6 

15.1 

21.6 

27.2 

29.4 

33.6 

35.5 

Hole # 37-22-24-1 

Location: Section 24, T. 37 s., R. 22 E. 
Date: April 26, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

12.6 

2.5 

Sand: brown, fine- to coarse-grained 
with 10 percent interstitial clay. 

Sand: tan, fine- to coarse-grained 
with 15 percent interstitial clay; 
phosphatic with traces of soft, white 
aluminum phosphate pebbles. 

Bone Valley Formation 

6.5 Sand: greenish gray, fine- to coarse­
grained with 15 percent interstitial clay 
and 5 percent clay in thin seams; phos­
phatic with 20 percent white to brown 
phosphate pebbles and pellets. Sample 
II 2133. 

Hawthorn Formation 

5.6 

2.2 

4.2 

1.9 

Sand: greenish brown, fine-grained 
with 10 percent interstitial green clay 
and 5 percent thin green clay seams; 
phosphatic with 10 percent brown phos­
phate pellets. Sample # 2134. 

Sand: tan, fine-grained with sparse 
interstitial clay; slightly phosphatic. 

Clay: tan, very calcareous. 

Clay: dark green, ver.y calcareous. 

1.57 



Depth ~feetl 
~ -..!£_ 

o.o 8.0 

8.0 15.5 

15.5 17.0 

17.0 19.8 

19.8 20.0 

20.0 23.4 

23.4 30.3 

30.3 34.6 

34.6 36.9 
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Hole # 37-22-24-8 

Location: Section 24, T. 37 s., R. 22 E. 
Date: October 27, 1964 

Thick. 
~feet~ 

Upper 

8.0 

7.5 

1.5 

Lower 

2.8 

0.2 

6.9 

Description 

Pleistocene 

Sand: brown, medium-grained with 15 
percent interstitial clay. 

Sand: light brown, fine- to medium-grained 
with 10 percent interstitial clay. 

Sand: light gray, medium-grained with 5 
percent interstitial clay, soft, incoherent. 

Pleistocene 

Sand: brownish gray, fime- to medium­
grained with 10 percent interstitial clay; 
phosphatic with 25 to 30 percent brown 
phosphate pebbles and pellets. Top part 
of Sample # 312A. 

Clay: grayish green. Middle part S&mple 
II 312A. 

Sand: brownish gray, fine- to medium­
grained with 5 percent interstitial clay 
and 5 percent thin clay seams; phosphatic 
with 30 to 35 percent brown phosphate 
pebbles and pellets. Lower part of 
Sample # 312A. 

Sand: brownish gray, fine- to medium­
grained with 5 percent interstitial clay 
and 5 percent thin clay seams; phosphatic 
with 25 percent very dark brown phosphate 
pebbles and pellets. Sample # 313A. 

Hawthorn Formation 

2.3 

Clay and sand: interbedded dark green clay 
and fine-grained, slightly phosphatic sand. 

Clay: light to medium gray, very calcareous 
with hard, irregular patches and masses of 
limestone. Probably a weathered limestone 
bed. 



Depth (feet) 
£:!:2!! To 

o.o 5.0 

5.0 7.9 

7.9 8.6 

8.6 9 • .3 

10.8 

10.8 16.7 

16.7 22.7 

22.7 26 • .3 

1,9 

Hole # .37-22-27-1.3 

Location: Section 27, T • .37 s., R. 22 E. 
Date: April 27, 1965 

Thick. 
(.feet) Description 

Upper Pleistocene 

5.0 Sand : brown. 

Lower Pleistocene 

2.9 

0.7 

0.7 

1.5 

5.9 

6.0 

Clay: very light gray, very calcareous 
with ha.rd, irregular masses of limestone. 

Sand: very light gray, medium-grained, 
phosphatic with 10 percent white phosphate 
pebbles and pellets; 50 percent interstitial 
clay. 

Sand: light gray, medium-grained with 5 
percent interstitial clay; slightly phos­
phatic. 

Sand: light brownish gray, fine- to coarse­
grained with 5 percent interstitial clay; 
phosphatic with 30 percent white and light 
brown phosphate pebbles and pellets. Sample 
# 1030 (continued below). 

Sand: brownish gray, fine- to medium­
grained with 10 percent interstitial clay; 
phosphatic with 25 percent brown phosphate 
pebbles and pellets. Remainder of Sample 
II 1030. 
Sand: brownish gray, fine- to medium­
grained with 10 percent interstitial clay; 
phosphatic with 20 percent brown phosphate 
pebbles and pellets. Sample # 1031. 

Hawthorn Formation 

.3.6 Marl: very light gray, soft, very clayey • 



Depth (feet) 
~ ..12_ 

o.o 11.7 

11.7 13.0 

13.0 18.0 

18.0 24.0 

24.0 29.7 

29.7 30.9 

30.9 39.5 

Hole # 37-23-12-6 

Location: Section 12, T. 37 s., R. 23 E. 
Date: January 12, 1968 

Thick. 
(feet) 

Upper Pleistocene 

Description 

11.7 Sand: brow.nish gray, fine- to medium­
grained with 5 percent interstitial clay, 
sort, incoherent. 
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1.3 Sand: very light gray, fine- to very 
coarse-grained with 10 percent interstitial 
clay; slightly phosphatic with traces or 
sort, white aluminum phosphate pebbles. 

Bone Valley Formation 

5.0 Sand: very light grayish green, fine- to 
very coarse-grained with 15 percent inter­
stitial green clay; phosphatic with 25 
percent tan and brown phosphate pebbles 
and pellets. Sample I 1854. 

Hawthorn Formation 

6.0 

1.2 

8.6 

Sand: very light gray, fine- to medium­
grained with 15 percent interstitial clay; 
phosphatic with 10 to 15 percent fine, 
tan to brown phosphate pellets. Sample 
# 1855. 
Sand: light brown, fime- to medium-grained 
with 10 percent interstitial clay; phos­
phatic with 15 to 20 percent brown phos­
phate pellets. Sample # 1856. 

Sand: light brownish gray, very fine­
grained, slightly clayey, slightly phos­
phatic. 
Clay: dark grayish green with 20 percent 
thin, fine-grained, very dark gray, phos­
phatic sand seams. 



Depth (feet) 
From To 

o.o 

15.2 

16.1 

31.6 

15.2 

16.1 

31.6 

33.3 

Hole # 37-23-14-2 
Location: Section 14, T. 37 s., R. 23 E. 
Date: June 21, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

15.2 Sand: dark brown, fine- to coarse­
grained. Zone of hardpan from 5 feet 
to 8.5 feet. 

Lower Pleistocene 

Limestone: white 
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0.9 
15.5 Sand: greenish brown, fine- to coarse­

grained with 15 percent interstitial clay; 
phosphatic with 20 percent brown and gray 
phosphate pebbles and pellets. Sample 
# 2469. 

Hawthorn Formation 

1.7 Clay: dark green. 



Depth (feet) 
~ To 

o.o 

16.7 

17.3 

40.2 

42.8 

16.7 

34.9 

40.2 

42.8 

45.2 
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Hole I 37-23-16-11 

Location: Section 16, T. 37 s., R. 23 E. 
Date: May 28, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

16.7 

0.6 

Sand: brown, fine- to very coarse­
grained with sparse interstitial clay 
and minor hardpan. 

Sand: tan, fine- to coarse-grained 
with sparse interstitial clay and traces 
of white, soft aluminum phosphate pebbles. 

Lower Pleistocene 

17.6 Sand: tan to brolm, fine- to coarse­
grained with 10 percent interstitial clay 
and very minor clay seams; phosphatic with 
20 percent white, tan, and brown phosphate 
pebbles and pellets. Sample H 2339. 

Hawthorn Formation 

Sand: gray, fine-grained with sparse inter­
stitial clay and minor thin clay seams; 
phosphatic with 10 to 15 percent fine, 
black phosphate pellets. Sample I 2340. 

Clay: grayish green. 

Limestone: light gray, hard. 



Depth (feet) 
From _!2_ 

o.o 22.0 

22.0 26.9 

26.9 36.5 

40.5 

Hole # 37-23-18-1 

Location: Section 18, T. 37 s., R. 23 E. 
Date: June 22, 1966 

Thick. 
(feet) Description 

Upper Pleistocene 

22.0 Sand: brown to light gray, medium­
grained, clayey in basal part. 

Bone Valley Formation 

Sand: light brownish gray, fine- to 
coarse-grained with 10 percent inter­
stitial clay; phosphatic with 25 percent 
light gray to tan phosphate pebbles and 
pellets. Sample I 1533. 

Hawthorn Formation 

9.6 

4.0 

Sand: medium brown, fine-grained with 
5 percent interstitial clay; slightly 
phosphatic with 10 percent brown phos­
phate pellets. Sample # 153~· 
Sand: very dark gray, fine-grained with 
5 percent interstitial clay; slightly 
phosphatic with 5 percent fine, black 
phosphate pellets. 
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DeEth ~feet2 
f!E!! To 

o.o l.4.0 
14.0 l.4.7 

16.5 

16.5 25.0 

25.0 32.a 

32.a 37.3 

Hole II 37-23-1$-10 
Location: Section 1a, T. 37 s., R. 23 E. 
Date: June 27, 1966 

Thick. 
~feet2 

UEEer 

1.4.0 
0.7 

DescriEtion 

Pleistocene 

Sand: light brown, medium-grained. 

Sand: medium brown, fine- to coarse­
grained with 10 percent interstitial clay 
and a trace of soft, white aluminum phos­
phate pebbles. 

Bone Valley Formation 
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1.a Sand: medium gray, fine- to coarse-grained 
with 10 percent interstitial clay; phosphatic 
with 25 percent dark bro~ to black phosphate 
pebbles and pellets. Upper part of SamEle 
II 1569. 

8.5 Sand: medium gray, fine- to medium-grained 
with 10 percent interstitial clay and minor 
thin clay seams; phosphatic with 20 percent 
dark brown to black phosphate pebbles and 
pellets. Lower part of Sample II 1569. 

Hawthorn Formation 

?.a Sand: brownish gray, fine- to very fine­
grained with sparse interstitial clay; 
phosphatic with 10 percent dark brown 
phosphate pellets. SamEle # 1570. 

Sand: very dark gray, fine- to very fine­
grained with sparse interstitial clay; 
phosphatic with 5 percent black phosphate 
pellets. 



Depth (feet) 
~ ~ 

o.o 23.6 

23.6 28.0 

28.0 35.0 

35.0 38.5 

Hole H 37-23-18-11 

Location: Section 18, T. 37 s., R. 23 E. 
Date: June 'Zl, 1966 

Thick. 
(feet) Description 

Upper Pleistocene 

23.6 Sand: light brown to light gray, fine­
grained with 15 percent interstitial 
clay. 

Hawthorn Formation 

Sand: light brownish gray, fine-grained 
with 10 percent interstitial clay; phos­
phatic with 10 percent white to tan phos­
phate pellets. Sample # 1571 (continued 
below). 
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7.0 Sand: light brown, fine-grained with 10 
percent interstitial clay; phosphatic with 
5 percent dark brown phosphate pellets. 
Remainder of Sample # 1571. 

3.5 Sand: dark gray, fine-grained, slightly 
clayey, slightly phosphatic with 5 percent 
black phosphate pellets. 



Depth (.feet) 
f.!:2!! To 

o.o 8.0 

8.0 10.8 

10.8 19.4 

19.4 

34.0 

34.0 37.5 

Hole # 37-23-18-12 
Location: Section 18, T. 37 s., R. 23 E. 
Date: June 23, 1966 

Thick. 
(.feet) Description 

Upper Pleistocene 

8.0 Sand: dark brownish gray, fine-grained 
with 15 percent interstitial clay. 

Lower Pleistocene 

2.8 Clay: light grayish green. 

Bone Valley Formation 
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8.6 Sand: light brownish gray, .fine- to 
coarse-grained with 15 percent interstitial 
clay; phosphatic with 25 percent white and 
tan phosphate pebbles and pellets. Sample 
# 1551. 

Hawthorn Formation 

2.5 

Sand: light brown, .fine- to very fine­
grained; very sparse interstitlal clay; 
estimated 50 percent clay in thin seams; 
phosphatic with 10 percent .fine, brown 
phosphate pellets. Sample # 1552. 

Sand: medium brown, fine- to very .fine­
grained with very sparse interstitial 
clay; phosphatic with 15 percent brown 
phosphate pellets. Sample # 1553. 

Sand: very dark gray to black, .fine- to 
medi~grained with sparse interstitial 
clay; phosphatic with 5 percent .fine, 
black phosphate pellets. 



Depth (.feet) 
From To 

o.o 12.6 

12.6 19.0 

19.0 32.2 

32.2 37.5 
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Hole H 37-23-18-33 

Location: Section 18, T. 37 s. R. 23 E. 
Date: May 16, 1968 

Thick. 
(.feet) Description 

Upper Pleistocene 

12.6 Sand: brownish gray, fine- to coarse­
grained with 10 percent interstitial clay. 

Bone Valley Formation 

6.4 Sand: greenish gray, .fine- to coarse­
grained with 15 percent interstitial clay 
and minor clacareous clay seams; phosphatic 
with 25 percent brown phosphate pebbles 
and pellets. Sample # 2265. 

Hawthorn Formation 

13.2 

5.3 

Sand: greenish tan, fine-grained with 10 
percent interstitial clay; phosphatic with 
10 to 15 percent fine, brown phosphate 
pellets. Sample # 2266. 

Clay: dark gray, sandy, very calcareous. 



Depth (teet) 
!!:.2!! ..!2... 

o.o 

15.8 

15.8 26.1 

26.1 31.5 

31.5 .36.4 
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Hole I 37-23-18-34 

Location: Section 18, T. 37 s., R. 23 E. 
Date: May 16, 1968 

Thick. 
(teet) Description 

Upper Pleistocene 

0.9 

Sand: brown, fine- to coarse-grained 
with very sparse interstitial clay. 

Sand: tan, fine- to coarse-grained 
with very sparse interstitial clay and 
a trace of soft, white aluminum phos­
phate pebbles. 

10.3 Sand: tan, fine-grained with 5 percent 
interstitial clay and 5 percent thin green 
clay seams. 

Hawthorn Formation 

Sand: light brown, fine-grained with 5 
percent interstitial clay; phosphatic with 
5 to 10 percent tine, brown phosphate 
pellets. Sample II 226z. 
Sand; dark gray, tine-grained, like above 
with very dark gray to black phosphate. 
Sample It 2268. 



De;eth {feetl 
From ...12_ 

o.o 12.8 

12.8 24.7 

24.7 28.8 

28.8 29.8 
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Hole # }7-23-18-39 

Location: Section 18, T. 37 s., R. 23 Eo 
Date: May 20, 1968. 

Thick. 
{feetl 

Upper 

12.8 

Description 

Pleistocene 

Sand: tan to greenish gray, fine- to 
coarse-grained with very sparse inter­
stitial clay. 

Lower Pleistocene 

11.9 Sand: greenish brown, fine- to coarse-
grained with 10 percent interstitial clay 
and minor thin clay seams; phosphatic with 
20 percent brown phosphate pebbles and 
pellets. Sam;ele II 2280. 

4.1 Clay: greenish gray with minor phosphatic 
sand, very calcareous with minor irregular 
masses of hard limestone. 

1.0 Clay: dark gray, sandy with trace of fine 
dark gray phosphate pellets. 



Depth (teet) 
~ ...!2.... 

o.o 

10.4 

17.0 

30.0 

38.8 

10.4 

17.0 

30.0 

38.8 

42.1 

Hole I 37-23-19-16 

Location: Section 19, T. 37 s, R. 23 E. 
Date: Ma;y 8, 1968 

Thick. 
(teet) Description 

Upper Pleistocene 

10.4 Sand: tan, tine- to coarse-grained, 
slightlY clayey. 

Bone Valley Formation 

6.6 Sand: greenish gra;y, tine- to coarse­
grained with 10 percent interstitial 
clay; phosphatic with 35 percent white, 
gray, and brown phosphate pebbles and 
pellets. Sample # 215,2. 

Hawthorn Formation 

5.6 

8.8 

3.3 

Sand: greenish brown, tine- to coarse­
grained with 5 percent green clay seams 
and 5 percent interstitial clay; phos­
phatic with 15 percent tine brown phos­
phate pellets. Sample # 2158. 
Clay: brownish green with minor thin 
seams or phosphatic sand. 

Clay: gra;yish green. 

Limestone: light gray, cla;yey, ver.r sort 
and weathered. 

1'70 



Depth (feet) 
!:!:2!!. ..!2.._ 

o.o 

13.5 20.0 

20.0 31.1 

31.1 35.4 

35.4 38.7 

Hole # 37-23-19=49 

Location: Section 19, T. 37 s., R. 23 E. 
Date: May 5, 1968 

Thick. 
(teet) Description 

Upper Pleistocene 

13.5 Sand: brown to tan, tine- to coarse­
grained, very sparsely clayey. 

Bone Valley Formation 

Sand: tan, tine- to coarse-grained, 
sparse interstitial clay; phosphatic 
with 25 percent white, tan, and brown 
phosphate pebbles and pellets. Sample 
I 2181. 

Hawthorn Formation 

11.1 Sand: grayish green, fine-grained with 
sparse interstitial clay and 5 percent 
thin, green clay seams; phosphatic with 
15 percent brown to dark brown phosphate 
pellets. Sample # 2182. 

4.3 Sand: dark grayish green, tine-grained, 
sparse interstitial clay, 10 percent thin 
clay seams; phosphatic with 20 percent 
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dark gray to black, fine phosphate pellets; 
slightly marly. Sample II 2183. 

3.3 Clay: dark grayish green. 



Depth (feet) 
From ..!2_ 

o.o 

23.3 42.1 

42.1 52.3 

52.3 55.6 

55.6 59.1 

Hole # 37-23-19-50 

Location: Section 19, T. 37 s., R. 23 E. 
Date: May 6, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

23.3 Sand: tan, fine- to coarse-grained, 
very soft and incoherent. 

Lower Pleistocene 

18.8 Sand: greenish brown, fine- to coarse­
grained with sparse interstitial clay; 
phosphatic with 20 percent brown phos­
phate pebbles and pellets. Sample # 
~· 

Hawthorn Formation 

10.2 Sand: dark gray, fine- to coarse­
grained with very sparse interstitial 
clay; phosphatic with 20 percent dark 
gray phosphate pebbles and pellets. 
Coarse pebble fraction is very minor. 
Sample II 2185. 

3.3 Sand: dark greenish gray, fine-grained 
with 20 percent interstitial clay and 
sparse, minor calcareous patches; phos­
phatic with 15 percent dark gray phos­
phate pellets. Sample # 2186. 

Limestone: gray, alternating soft, 
clayey masses and hard zones. 
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DeEth 
!:!:.2!! 

o.o 

7.7 

10.0 

14.0 

17.9 

~reetl 
-.12_ 

7.7 

10.0 

14.0 

17.9 

24.7 

29.5 

Hole I 37-24-8-5 
Location: Section s. T. 37 s., R. 24 E. 
Date: April 10, 1968 

Thick. 
(feet) 

Upper Pleistocene 

Description 

7.7 Sand: tan, fine- to coarse-grained. 

Lower Pleistocene 

2.3 Clay: tan and green mottled. 

Bone Valley Formation 

4.0 Sand: greenish gray, fine- to coarse­
grained with 15 percent interstitial 
clay; phosphatic with 20 percent brown 
to gray phosphate pebbles and pellets. 
Sample It 205.3. 

Hawthorn Formation 

3.9 
6.8 

Clay: white. very calcareous. 

Clay: greenish tan with minor seams 
of fine phosphatic sand. 

Clay: grayish green. 
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Depth (feet) 
f!:2!!! To 

o.o 
5.9 

7.1 

5.9 
7.1 

30.2 

Hole # 37-24-8-8 
Location: Section 8, T. 37 s., R. 24 E. 
Date: April 11, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

5.9 
1.2 

Sand: tan, fine- to coarse-grained. 

Sand: tan, fine- to coarse-grained; 
phosphatic with a trace of soft, white 
aluminum phosphate pebbles. 

Lower Pleistocene 

20.3 

2.8 

Sand: light gray, fine- to coarse­
grained with 15 percent interstitial 
clay; phosphatic with 25 percent white 
to gray phosphate pebbles and pellets. 
SM!ple ll 2055. 

Marl: light gray, some irregular, hard 
calcareous masses. 
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Deeth (feet) 
!:!:2!! -!2._ 

o.o 

25.2 

37.6 

Hole # 37-24-8-13 
Location: Section 8, T. 37 s., R. 24 E. 
Date: April 12, 1968 

Thick. 
(feet) Descrietion 

Upeer Pleistocene 

25.2 Sand: light brown, fine- to coarse­
grained, 15 percent interstitial clay. 

Lower Pleistocene 

9.2 Sand: medium gray, fine- to medium­
grained, very clayey and soft; phos­
phatic with 15 percent brown to gray 
phosphate pebbles and pellets. Sample 
, 2065. 

Hawthorn Formation 

3.2 Sand: grayish green, very fine-grained, 
soft, incoherent, slightly phosphatic, 
very clayey (estimate 40 percent clay). 
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Depth (feet) 
!!:2!! _I2,_ 

o.o 17.6 

17.6 18.4 

18.4 33.5 

34.9 40.3 

Hole I 37-24-9:4 
Location: Section 9, T. 37 s., R. 24 E. 
Date: April 11, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

Sand: brown, fine- to coarse-grained, 
minor thin hardpan zone. 
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o.s Sand: medium brown, fine- to ver7 coarse­
grained, slightly clayey; trace of soft, 
white aluminum phosphate pebbles. 

Lower Pleistocene 

Sand: tan to dark gray, fine- to coarse­
grained, ver.y slightly clayey, soft, 
incoherent; phosphatic with 25 percent 
gray phosphate pebbles and pellets. 
Sample f 2059. 

Hawthorn Formation 
Marl: medium gray, clayey with some hard, 
irregular calcareous patches. 

Sand: dark grayish green, fine-grained, 
very clayey, sparsely phosphatic. 



Depth (feet) 
~ _!2._ 

o.o 15.0 

15.0 26.1 

26.1 32.5 

32.5 42.0 

42.0 43.0 

43.0 48.3 
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Hole # 37-?4-9-Z 
Location: Section 9, T. 37 s., R. 24 E. 
Date: April 12, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

15.0 Sand: tan, fine- to coarse-grained. 

Lower Pleistocene 

11.1 

1.0 

Limestone: light tan, very porous and 
soft, incoherent. 

Sand: brownish gray, fine- to very coarse­
grained with 15 percent interstitial clay 
and 5 percent clay seams, abundant hard 
calcareous masses, 10 percent black phos­
phate pebbles and pellets. 

Sand: dark gray, fine- to coarse-grained 
with 10 percent interstitial clay and 
minor marl; phosphatic with 20 percent 
black phosphate pebbles and pellets. 
Sample # 2062. 

Sand: very dark gray, fine- to very coarse­
grained; similar to above but with abundant 
hard marl masses. 

Sand: As above but sparsely phosphatic. 



Depth (feet} 
~ ..12... 

o.o 
12.0 

14.0 

35.5 

12.0 

14.0 

35.5 

40.6 

Hole # 37-24-18-14 

Location: Section 18, T. 37 s., R. 24 E. 
Date: December 11, 1967 

Thick. 
(feet) Description 

Upper Pleistocene 

12.0 

2.0 

Sand: brown, fine- to medium-grained. 

Sand: tan, fine- to coarse-grained with 
sparse interstitial clay and a trace of 
soft white aluminum phosphate pebbles. 

Hawthorn Formation 

21.2 Sand: light gray, fine-grained, very 
sparse interstitial clay, 10 percent 
thin clay seams; phosphatic with 25 per-
cent tan and bro~ phosphate pellets. 
Sample II 1821. 

5.1 Clay: dark grayish green with 10 percent 
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thin, fine-grained, phosphatic sand seams. 



Depth (feet} 
!::!:.2!! _!2._ 

o.o 12.7 

12.7 20.8 

20.8 28.8 

28.8 32.4 

Hole # 37-24-18-20 
Location: Section 18, T. 37 s., R. 24 E. 
Date: June 6, 1968 

Thick. 
(feet} 

Upper Pleistocene 

Description 

12.7 Sand: brown, fine- to coarse-grained. 

Bone Valley Formation 
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8.1 Sand: brownish gray to greenish gray, fine­
to coarse-grained, clayey; phosphatic with 
25 percent white and brown phosphate pebbles 
and pellets. Sample # 2382• 

Hawthorn Formation 

8.0 Sand: brownish gray, fine-grained with 
sparse interstitial clay and minor clay 
seams; phosphatic with 15 percent brown 
phosphate pellets. Sanple # 2386. 

3.6 Clay: gray, very calcareous, phosphatic. 



Depth (feet) 
.E!:2!!!. _!.2... 

o.o 16.0 

16.0 

25.6 31.8 

Hole # 37-24-18-29, 
Location: Section 18, T. 37 s., R. 24 E. 
Date: June 12, 1968 

Thick. 
(feet) 

Upper Pleistocene 

Description 

18o 

16.0 Sand: tan to brown, fine- to coarse­
grained, very slightly clayey, incoherent. 

Lower Pleistocene 

9.6 Sand: greenish gray, fine- to coarse­
grained with 30 percent interstitia1 
cl~; phosphatic with 25 percent brown 
phosphate pebbles and pellets and minor 
limestone pebbles. Sample H 2425. 

Hawthorn Formation 

6.2 Clay: brownish green, mottled, with 
minor, thin seams of fine phosphatic 
sand. 



Depth (feet) 
f!:2!! ..1:2_ 

o.o 25.1 

25.1 43.2 

43.2 51.3 

Hole # 37-~-19-6 
Location: Section 19, T. 37 s., R. 24 E. 
Date: December 8, 1967 

Thick. 
(.feet) Description 

Upper Pleistocene 

25.1 Sand: dark to medium brown, fine- to 
coarse-grained, very slightly clayey. 

Hawthorn Formation 

18.1 

8.1 

Sand: brownish gray, fine- to medium­
grained, slightly clayey; phosphatic with 
15 percent white, tan, and brown phos­
phate pellets. Sample # 1816. 

Sand: very dark gray, fine-grained, 10 
percent interstitial clay, slightly phos­
phatic, minor irregular patches or masses 
of marl. 
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Depth (feet) 
From To 

16.4 

2Jo9 4lo2 

4lo2 47o7 

47.7 52o4 

Hole # 37-24-19-26 

Location: Section 19, T. 37 s., R. 24 E. 
Date: June 7, 1968 

Thick. 
(feet) Description 

Upper Pleistocene 

16.4 Sand: brown, fine- to coarse-grained. 

Bone Valley Formation 

7.5 Sand: greenish gray, fine- to coarse­
grained, clayey; phosphatic with 25 
percent White to brown phosphate pebbles 
and pellets. Sample # 2391. 

Hawthorn Formation 

17.3 Sand: brown, fine- to medium-grained, 
15 percent interstitial clay; phosphatic 
with 15 percent brown phosphate pellets. 
Sample fi. 22 22. 
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6.5 Sand: dark gray, fine- to coarse-grained, 
slightly clayey; phosphatic with 15 percent 
black phosphate pellets. Sample # 2292· 

4.7 Clay: dark grayish green, marly. 
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