
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

1972

An acceleration technique for a conjugate direction algorithm for An acceleration technique for a conjugate direction algorithm for

nonlinear regression nonlinear regression

Larry Wilmer Cornwell

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mathematics Commons

Department: Mathematics and Statistics Department: Mathematics and Statistics

Recommended Citation Recommended Citation
Cornwell, Larry Wilmer, "An acceleration technique for a conjugate direction algorithm for nonlinear
regression" (1972). Doctoral Dissertations. 1861.
https://scholarsmine.mst.edu/doctoral_dissertations/1861

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1861?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

1.~·~
1- 1~

AN ACCELERATION TECHNIQUE FOR A CONJUGATE DIRECTION

ALGORITHM FOR NONLINEAR REGRESSION

by

LARRY WILMER CORNWELL, 1941-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MATHEMATICS
T2630
102 pages

1972
c.l

ABSTRACT
~ ,4

A linear acceleration technique, LAT, is developed

ii

which is applied to three conjugate direction algorithms:

(1) Fletcher-Reeves algorithm, (2) Davidon-Fletcher-Powell

algorithm and (3) Grey's Orthonormal Optimization Procedure

(GOOP). Eight problems are solved by the three algorithms

mentioned above and the Levenberg-Marquardt algorithm.

The addition of the LAT algorithm improves the rate of

convergence for the GOOP algorithm in all problems

attempted and for some problems using the Fletcher-Reeves

algorithm and the Davidon-Fletcher-Powell algorithm.

Using the number of operations to perform function

and derivative evaluations, the algorithms mentioned

above are compared. Although the GOOP algorithm is

relatively unknown outside of the optics literature, it

was found to be competitive with the other successful

algorithms. A proof of convergence of the accelerated

GOOP algorithm for nonquadratic problems is also developed.

iii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation

to Dr. A. K. Rigler for his aid in the selection of this

thesis subject and his guidance in the preparation of this

dissertation.

The author also wishes to express his thanks to the

staff members of the computer centers of the University

of Missouri-Rolla and of Western Illinois University.

Without their cooperation, deadlines would not have been

met.

Finally, the author wishes to express his thanks to

his wife who endured as typist and to his family for

their understanding and encouragement while preparing

this dissertation.

iv

TABLE OF CONTENTS

Page

ABSTRACT •• i i

ACKNOWLEDGEMENTS • •• iii

LIST OF TABLES • ••.•••••••••••••••••••••••••••••••••.••••. vii

I. INTRODUCTION • ••••••••.••.•.••.•..•.•..•..•..••••••. • 1

I I . REVIEW OF LITERATURE •••••••••••••••••.•.••...•.••.•• 8

A. Direct Search Algorithm .•••••••••••.••••••.•.• a

B. Algorithms Using First Derivatives ••.••••.•.. lO

1. Steepest Descent Algorithrns •••.••.••.•.. ll

2. Gauss Algorithms ••.•••••••••••••••••••.. 12

3. Conjugate Direction Algorithms •••.•••••. lS

4. Rank-One Algorithms •••.•••.••••••.••••.. 20

C. Newton-Raphson Algorithrns •••••.•.••.••.•..•.. 22

III. A LINEAR ACCELERATION TECHNIQUE FOR RESET
CONJUGATE DIRECTION ALGORITHMS •....•.••..•••...•••. 25

A. Pat tern Move ••••••••...•.•••••••.•.••••.••••. 2 5

B. One-Dimensional Search ••••••••••••••••••••••. 27

C. The Linear Acceleration Technique (LAT) •.•••• 27

IV. GREY Is ALGORITHM •••••••••••••••••••••••••••••...••• 29

A. Description of GOOP ••••••••••••••••.•••...... 29

B. Convergence of the GOOP-LAT Algorithrn ..••••.• 38

1. Mathematical Prelirninaries ••.••••..•.••. 38

2. Mathematical Developrnent •••.•••••••••••• 43

v

Table of Contents (continued) Page

V. COMPUTATIONAL RESULTS ...•..........•.......•..•.••. 4 7

A. Comparison of Three Conjugate Direction
Algorithms Using LAT with the Levenberg-
Marquardt Algorithrn .•.............•.•........ 48

l. Description of Recorded Material ..••..•• 48

2. Numerical Results on Comparison
of Algorithms 51

B. Comparison of GOOP Algorithms Using Single
and Double Precision Arithmetic .•.•.•........ SS

l. Description of Recorded Material ••...•.. 56

2. Numerical Results on the Effect of
Precision 56

C. Operations Count for Function and
Derivative Evaluation .•......•............... 59

l. Procedure for Making Operations Count •.. 59

2. Description of Recorded Material •....... 6l

3. Numerical Results•..•.•...•...... 62

D. Summary of Computational Results•...... 63

l. Improved Convergence Rate of the
GOOP Algorithm .••....•..........•....... 63

2. Effect of LAT on the Convergence
Rate of the FR Algorithm •............... 63

3. Effect of LAT on the Convergence
Rate of the DFP Algorithm 64

4. Comparison of Single Precision and
Double Precision Arithmetic for the
GOOP Algorithm•...•.............. 6 4

5. Comparison of the Four Algorithms on
the Basis of an Operations Count 65

vi

Table of Contents (continued) Page

VI. CONCLUSIONS. .67

BIBLIOGRAPHY. 71

VITA ..•••.. . 76

APPENDICES. .78

A. Description of Problems 1-8. .78

B. FORTRAN Flow Chart of One-Dimensional
Search 80

c. Computational Details of the Operations
Count • •••••••••.•.•••.•••.••••.•.•.•... .82

D. Stewart's Results for Problems 1 and 5. .94

vii

LIST OF TABLES

Table Page

1.

2.

3.

4.

Problem

Problem

Problem

Problem

1.

2.

3.

4.

Comparison of Algorithms

. .51

. .52

. .52

53 .
5. Problem 5 53

6. Problem 6 54

7. Problem 7 54

8. Problem 8 55

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Problem

Problem

1.

2.

Effect of Precision

. • •••••••••••••••••••••••••.•••••. 56

. 56

Problem 3 .. 57

Problem 4 .. 57

Problem 5 .. 57

Problem 6•..•.....•............. 58

Problem 7 ..•..•....••........•.••.•..••....•.•.....•. 58

Problem 8 58

Operations Count •.•••.•• 62

Stewart's Results for Problems 1 and 5

A Parabolic Valley ••••••••••••••.••.•••••.••••••.•••. 94

A Function of Four Variables ••••••••••••••••••••••••. 95

I. INTRODUCTION

In the study of nonlinear optimization, algorithms

have been developed to optimize two types of problems:

1. Unconstrained Optimization
+

Optimize f(x) where f is a scalar and
+ +
x is ann-vector. f(x) is a linear or

+
nonlinear function of the vector x.

2. Constrained Optimization
+

Optimize f(x) where f is a scalar and
+
x is an n-vector subject to the constraint
+ +
q(x) = 0 (equality can be an inequality)

+
where q is a p-vector and n > p.

+ +
and q(x) are linear or non-linear

+
functions of the vector x.

+
f (x)

This thesis examines the unconstrained optimization

problem and a particular class of algorithms, called

conjugate direction algorithms, used to solve the uncon-

strained optimization problem. Techniques used in

several successful unconstrained optimization algorithms

are combined and applied to the conjugate direction

algorithms. The new algorithm improves the convergence

rate of Grey's Orthonormal Optimization Procedure, GOOP,

and improves the convergence rate for some problems of

the Fletcher-Reeves and Davidon-Fletcher-Powell algorithms.
+ + +

For linear programming problems (f(x) and q(x) are
+

linear in x), an algorithm, called the simplex method,

1

has been developed which converges to the optimal

solution in a finite number of steps or indicates an

unbounded or infeasible solution. For nonlinear

programming problems, no algorithm has been developed

which will converge in a finite number of steps for all

problems. Many algorithms have been developed for the

nonlinear problem which are quite successful for

various types of problems, but the difficulty may still

exist that either the algorithm will diverge or will

converge so slowly that it is useless for some problems.

One method of constrained optimization, called

SUMT, is based on transforming a given constrained

minimization problem into a sequence of unconstrained

minimization problems. This transformation is

accomplished by adding an appropriate auxiliary

function of the problem constraints to define a new

objective function whose minima are unconstrained in

the domain of interest. By gradually removing the effect

of the constraints in the auxiliary function by controlled

changes in the value of a parameter, a sequence or family

of unconstrained problems is generated that have solutions

which converge to a solution of the original constrained

problem. Because the SUMT algorithm is quite widely used

for the constrained optimization problem, the need for a

practical unconstrained optimization algorithm is evident.

2

In classifying the various unconstrained optimization

algorithms for the nonlinear programming problem, one

method would be: a) direct search methods, b) methods

using first partial derivatives, and c) methods using

second partial derivatives. The distinction between the

algorithms listed above can be explained using the

truncated Taylor series:

where

and

f(~

+T
g

G

=

=

+
-+

~X)

a 2f
a2xl

a 2f

ax2axl

-+ f(x) + -+TA-+ g uX

~)
. • • , Clxn

a 2f
axlax2

a 2f 0

a 2x 2

+

a 2f
axlaxn

a 2f

ax2axn

(1.1)

(1. 2)

(1. 3)

+ The vector ~x is the step needed to move from the point
+ -+ +
x to the next point x + ~x.

3

The direct search methods use only the values of

the function and then make use of some other technique

to determine a successful step toward the optimal point.

Two well known algorithms which are classified as direct

search algorithms are attributed to Hooke and Jeeves [1]

and Rosenbrock [2].

By methods using first derivatives, it is meant that

in the algorithm, the first partial derivatives, g, are

provided or approximated. Many conjugate direction

algorithms fit into this classification. The GOOP

algorithm, first described by Grey [3,4] and later

described by Pegis, Grey, Vogl, and Rigler [s] has been

proven to be a conjugate direction algorithm. The

conjugate-gradient algorithm by Fletcher and Reeves [6]

also fits into this classification. The variable metric

algorithm due to Davidon [7] and later described by

Fletcher and Powell [8] as the conjugate direction

algorithm uses the first partial derivatives. Stewart's

algorithm [9] is a version of Davidon's algorithm but

approximates the first partial derivatives by differences.

Huang [10] has shown that several of the existing

conjugate-gradient algorithms and variable metric

algorithms can be described in a generalized algorithm.

Methods using second partial derivatives, use

the matrix of second partial derivatives, G, or use

an approximation of the second partial derivatives.

The Newton-Raphson algorithm is an "old method" which

4

uses the second partial derivatives, G. The "extended

Newton-Raphson" algorithm uses a one-dimensional search

and has been very successful in practice.

One other possible way of classifying nonlinear

programming algorithms is the form of the objective
-+

function f(x).
-+

If it is necessary to write the objective

function, f(x), in the form of sum of squares, then

-+

5

f (x)
-+ -+ T-+ -+

= ~h(x) h(x) (1.4)

where
-+ -+ T
h (x) =

-+ -+
[h1 (x) , h 2 (x) ,

-+
hm (x) J (1.5)

This classification of algorithms is sometimes referred to

as nonlinear least squares or nonlinear regression. Let
-+ x 0 be the nominal initial value of the parameter vector

-+T
and let !:::.x = ••.• ' !:::.xn) be the vector of

differential corrections to be found. Then if we expand
-+ -+

the functions, h(x), in a Taylor series and truncate

after the second term, we find:

-+ -+ -+

h (x) + H!:::.x (1.6)

-+
where h 0 is the m vector of values of the errors at
-+ -+
x = x 0 and H is an rn x n matrix of partial derivatives of

the error function with respect to the parameters. Next

we substitute equation (1.6) into equation (1.4):

-+
f (x) = + + (1.7)

An equation for ~~ is found by setting of =
a~~

0 which yields

6

HTH~~ + = 0 (1.8)

or
-+

~X = (1.9)

This procedure has origin back to Gauss [11], but in

practice the procedure did not converge. A modification

proposed by Hartley [12] helped to improve the convergence

rate of the Gauss procedure. Another extension of the

Gauss method was suggested by Levenberg [13] and later was

developed by Marquardt [14]. Other variations have

recently been presented by Jones [15] and Meyer [16].

All other algorithms previously mentioned which do
-+

not require f(x) to be in a form of sum of squares are

still capable of solving the sum of squares problem. Thus,

the nonlinear least squares or nonlinear regression algo-

rithms are more restrictive type algorithms than those

which minimize a general function, but are more effective

for regression.

One purpose of this thesis is to examine the conjugate

direction algorithms which have the property Q, i.e. the
• -+

algorithms which will converge for a quadrat1c f(x) inn

steps, and to apply a linear acceleration technique to

these algorithms to improve the rate of convergence. In

this paper it is suggested that a pattern type search move

be added to the conventional successful reset conjugate

direction algorithms. The new algorithm consists of using

a conjugate direction algorithm for n iterations, making a

7

pattern move followed by a one-dimensional search in the

pattern move direction, resetting the conjugate direction

algorithm, and then repeating the cycle. Computational

results are provided for several traditional test problems

which indicate that the convergence rate is improved with

the insertion of the linear acceleration technique.

The GOOP algorithm, mentioned above, is one algorithm

which has received very little attention in current liter-

ature.* The algorithm was first developed by Grey for the

design of imaging optics and later described by Pegis, Grey,

Vogl, and Rigler [s] with application to filter design.

Broste and Lavi [17] presented a detailed description of the

algorithm, proved that the algorithm is a conjugate direc-

tion algorithm, and applied it to control problems.

Although the Broste and Lavi paper made major contributions

in mathematically describing the GOOP algorithm and proper-

ties of the algorithm, the numerical results recorded were

misleading. In comparing algorithms, their term iteration

did not have the same meaning for all methods.

A further purpose of this paper is to show that the

GOOP algorithm is convergent in the nonquadratic case and

to present computational results which compare the GOOP

algorithm with other successful algorithms.

*Grey's method appears in production programs of several
military and industrial laboratories; e.g. Aerospace
Corporation, Frankfort Arsenal, White Sands Missle Range,
Westinghouse Research Laboratories, and several Japanese
optics companies.

II. REVIEW OF LITERATURE

Although the field of nonlinear programming is

relatively new, the number of algorithms that have been

suggested to solve the unconstrained optimization problem

is quite large. The purpose of this review of literature

is to describe those algorithms which have been success

fully used in the field.

Several papers have been presented which attempt to

survey the successful algorithms. Two recent articles

in this category are by Powell [18] and Fletcher [19] .

Papers have also been presented which attempt to unify

several successful algorithms into a generalized form.

Broyden [20] and Zeleznik [21] presented unified deriva

tions of the Newton-Raphson or quasi-Newton methods.

Huang [10] and Adachi [22] describe generalized variable

metric algorithms.

A. Direct Search Algorithms

The direct search algorithms are algorithms which do

not calculate derivatives, but examine the objective

function for directions indicating a decrease in f. The

simplest direct search technique is to revise the

variables of the objective function one at a time. In

valley searching terminology, it has been found that this

process generates estimates that fall to the solution, and

most of the computer time is spent in following the valley.

8

Rosenbrock [2] noticed that the points in a valley

were often nearly collinear and tried to identify the

direction of the valley in order to use it as a search

direction. Initially the variables are changed one at a

time as in the process mentioned above, so that on the

first iteration the initial estimate x
0

xo + /..ldl; this estimate is changed to
-+

is changed to

-+ -+

xo + /..ldl + A. d , and so on,
2 2

until the complete iteration

replaces the initial solution by the estimate:

-+ n -+

9

x 0 + 2: A.. d. •
. 1 ~ ~
~=

(2.1)

Before starting a new iteration, the set of n search

directions is changed, and the first search direction is

replaced by the vector:

=
n
2:

i=l

-+
/...d.
~ ~

(2.2)

which is the change in the estimate of the solution that

has been calculated. The remaining new search directions

are obtained by an orthogonalization process, and then the

iterative process is repeated.

The direct search algorithm developed by Hooke and

Jeeves [1] also has been found to be successful. An

iteration of the Hooke and Jeeves algorithm is in two

parts, which are called "exploratory move'' and "pattern

move". The exploratory move is applied first, which is

really a fine adjustment of the values of the variables.

Specifically, small steps are taken along each of the

coordinate directions in order to decrease the objective
+ +

function; let the resultant point be, z. If f(z) is less
+ +

than f(x), then z becomes the starting approximation for
0

the next iteration, but otherwise the step is treated as

a failure. An exploratory move is then made for the next

variable until the n-coordinate directions are explored.

The pattern move is then applied, and it changes the
+

current estimate of the position of solution, z, by the

total change made in the last iteration; let the

resultant point be y. From this point a new exploratory

move is made. The pattern moves can take long steps

along valleys, while the exploratory phase can move down

the side of a valley and identify its direction. The
+ +

fact that f(y) is permitted to be greater than f(x) is
0

the special feature that causes the Hooke and Jeeves

algorithm to be particularly suitable for optimizing

objective functions that have curved valleys.

B. Algorithms Using First Derivatives

10

The literature is abundant with algorithms using first

partial derivatives or approximations of the first partials.

The successful algorithms which use first partials will

be classified into one of the following types of algorithms:

1) steepest descent algorithms, 2) Gauss algorithms,

3) conjugate direction algorithms, and 4} rank-one

algorithms.

1. Steepest Descent Algorithms

The steepest descent algorithm was first described

by Cauchy [23] in 1847. If we consider a nonlinear
-+

11

objective function f(x}, the algorithm will move from the
-+ • -+

present point xi to the next po1nt xi+l by means of the
-+

step ~xi, i.e.,

-+

-+
X
i+l

-+
= X. +

1

The step size ~x. can be written
1

-+

-+
~X. 1 1+ =

-+
~X.

1

where p., ann-vector, denotes the search direction and
1

a., a scalar, is the step size. Then
1

and
-+

-+
= X.

1

-+
f(x)

i+l
= f(x.

1

-+
a.p.

1 1

-+
a. P·)

1 1

(2. 3}

(2.4)

(2.5)

(2.6)

If we let pi be the gradient vector, gi' of the function f
-+

evaluated at the point xi, we determine this direction
-+ -+

vector, pi or gi, and perform a one-dimensional search

-+ -+ minimizing f{xi- aigi} to find the optimum step size ai.

It can be proven that this algorithm has the descent

property, but it may do so in practice very slowly after

12

some rapid inttial progress. Slow convergence is
~

particularly likely when the f(x) contours are narrow

and curved, and it happens when the path of steepest des-

cent zigzags slowly down a narrow ridge, each iteration
~

bringing only a slight reduction in f(x). Forsythe's

paper [24] pr~sented an explaination for this type of
-+

behavior. It was shown that the iterates xk converge to

the null vector by asymptotically alternating between two

directions. ~he even iterates are collinear vectors.

The odd iterates are also collinear in another direction.
-+

Thus, the con~ergence of f(xk) to the optimal value is

linear and no faster than linear.

2. Gauss Algorithms

The Gauss algorithm [11] was first described in 1809.
~

The equation (1.8} is solved for ~x:

(2.7)

-+-
Once the step, ~x, is determined, then the following step

is made:

= + (2.8)

-+ Then the procedure is repeated using the new estimate x 1

in equations (2.7) and (2.8). Unfortunately, this

sequence ofteh diverges when applied to practical problems.

To avoid convergence to a stationary point that is

not a minimwn, and to ensure that an iteration does not

increase the value of the objective function, Hartley's

Modified Gauss-Newton algorithm [12] was developed.

Hartley performs the linearization process by solving the
+

13

system of linear equations (2.7) to get ~x for a direction.

Consider the function

+ +
f(A) = f(x + A~X) (2.9)

for 0 ~A~ 1 and let A' be the value of A for which f(A)

is a minimum on the interval 0 < A < 1. Then let the

vector

+
y =

be the actual step taken.

+
X + (2.10)

One method which has been quite successfully used,

which has the property of using only first derivatives,

is the Levenberg-Marquardt algorithm [13,14]. Marquardt

developed a compromise between the Gauss algorithm and the

steepest descent algorithm. In this algorithm he defines

a procedure for scaling the system of linear equations

comparable with equations (2.7). We will refer to this

system in the form

+ +
A*o* = g* . (2.11)

-+
In the algorithm, when the iterated value, x.,

l.

becomes available, we solve the equation:

-+

14

(A* +
i

.A.r>o*. =
-+
g*.

l.
(2.12)

J l.

-+ -+ -+
for o*

i
The o*i is scaled giving oi. Then the new trial

vector is given by

-+ -+ -+
X = X + 0
i+l i i

Before solving equation (2.12), a value of .A is
j

selected and it must be such that

-+ -+
f(x) < f(x)

i+l i
-+

Marquardt showed that unless f(x.) is a minimum, a
l.

(2.13)

(2.14)

sufficiently large value of .A. can always be chosen such
J

that the inequality (2.14) is true. Some form of trial

and error is needed to find a value of .A. which will lead
J

to satisfaction of the inequality of (2.14).

Through use of this algorithm we always obtain, with-

in a factor determined by .A, the maximum neighborhood in

which the linearized model gives an adequate representation

for our purposes. The algorithm shares with the steepest

descent algorithm the ability to converge from an initial
-+

guess, x , which may be outside the region of convergence
0

of other methods. The algorithm also shares with the Gauss

algorithm the ability to close in rapidly on the converged
-+

value of x, once the vicinity of this value is reached.

15

Thus the algorithm combines the best features of the Gauss

and steepest descent algorithms while avoiding their most

serious limitations.

3. Conjugate Direction Algorithms

The conjugate direction algorithms may be characterized

as algorithms which minimize the objective function for

the k mod (n) iteration in the k-dimensional subspace

determined by k conjugate direction vectors. These

algorithms use or approximate the first partial derivatives

and use strategies that would yield the exact answer if
~

f(x) were a quadratic function inn or less steps,

property Q. These properties do not guarantee fast
~

convergence when the higher derivatives of f(x) are

nonzero, but in practice the algorithms are extremely

successful, although theoretical reasons for the success

have not as yet been completely established.
~ ~

The directions p and q in the space of the variables

are conjugate with respect to the positive definite

quadratic objective function:

~

~(x)
~T~ ~T ~

= c + a x + x Gx (2.15)

if they are both nonzero, and if they satisfy the equation

~T ~
p Gq = 0 (2.16)

The matrix G is the n x n matrix of second partial de-
+ +

rivatives with respect to the x-vector, a is an n-vector

of first partials, and c is a scalar. The reason they are
+

useful is that if we search in the direction p, and find
+ +

the point xi that minimizes ~(xi)' and then we search from
+ +
x. in the conjugate direction q to reach the new estimate

1
+
xi+l' then the new value of the objective function cannot

16

be decreased by immediately searching again in the direction
+
p. We can now calculate the exact minimum of the quadratic

+
function ~(x) by the above process inn steps.

If we note that in the case where the objective

function is quadratic, the condition (2.16) is the same as

the equation:

= 0 (2.17)

+
where gk is the gradient of the objective function at

xk. This equation contains no explicit second derivatives

so we have a means of obtaining conjugacy when only first

derivatives are available. We could start with an
+

arbitrary search direction d 1 and then fork= 2, 3, •.• ,n,
+

we calculate the search direction dk to be orthogonal

to the changes in the gradient vector that were caused by
+ + +

the moves in the directions d 1 , d 2 , •.. , dk-l"

The conjugate gradient algorithm described by Hestenes

and Stiefel [25] and later developed by Fletcher and

Reeves [6] use the above procedure with one addition: The

~

first search direction, d , is the direction of steepest
1

~

descent. The later search directions, dk, are chosen such

that:

~ ~

17

d
k

= + ~ d
k-1 k-1

{2.18)

where ~k-l is a real number. ~ can be calculated by:
k-1

= {2.19)

To obtain a faster rate of convergence, Fletcher and

Reeves recommend that the algorithm should be restarted

with a steepest descent step after each n+l iterations.

An important advantage of the method, which is not

obtained by other conjugate direction algorithms, is

that it does not require storage space for any n x n

matrices.

Shah, Buehler, and Kempthorne [26] described a

conjugate direction method, but it had the property that

for a problem with a quadratic objective function, the

minimum would be found in 2n-l or less steps. The

algorithm was called PARTAN, a parallel tangents algorithm.

It combined steepest descent gradient searches with

acceleration moves which use certain previously determined

search vectors. PARTAN attempted to capitalize on con-

centricity and unimodality to obtain a minimum solution.

Powell D7J described a version of a conjugate

direction algorithm, but his version did not require the

explicit evaluation of any derivatives.

The most widely used conjugate direction algorithm

is due to Davidon [7] which he called a variable metric

algorithm and later described by Fletcher and Powell [a].

To describe the Davidon algorithm, we first note that the
~

18

search direction 8 of the steepest descent iteration at the
~

point x is given by:

~ ~

8 = -Ig (2.20)

We also note that the matrix, I, may be replaced by any

positive definite matrix and the objective function will

still decrease. Thus there exist some choice of this

positive definite matrix which will provide the fast

convergence. Therefore, the kth iteration of Davidon's
~ ~

algorithm changes the estimate xk to the estimate xk+l

by searching for the minimum of the objective function

along the direction

=

where Hk is a positive definite matrix which is chosen

with intention of enhancing the rate of convergence.

(2.21)

To calculate H , the Davidon iteration adds a correction
k+l

19

term to the matrix Hk, that depends on the two vectors:

-+ -+ -+
crk = xk+l xk (2.22)

and -+ -+ -+
yk = gk+l gk (2.23)

And Hk+l is found by:

= (2.24)

where = (2.25)

and = (2.26)

The algorithm usually converges quickly.

Another conjugate direction algorithm which has been

given little attention in the literature, but has been

found to be successful in the field of optical design is

the GOOP, Grey's Orthonormal Optimization Procedure,

algorithm. Because of the lack of publicity, the algorithm

is not widely used. But because the algorithm is being

successfully used in several industrial and research

centers, there is a need for a detailed description of

the algorithm. The most current description of GOOP is

by Broste and Lavi [17]. These authors provided a

detailed description of the mathematical theory upon which

the algorithm is based. They also perform an operations

count for the algorithm. The idea of operations count

is extended in this paper to include the number of opera-

tions performed for function and derivative evaluation.

The algorithm is based on solving the incremental equation

(2.7). The coordinate transformation generated by a

Gram-Schmidt process is used so that each of the trans-

formed parameters can be optimized separately. Then the

transformation is used as a stepwise process in which the

objective function is reduced at each intermediate step.

Broste and Lavi proved that the algorithm was a conjugate

direction algorithm and that for an n-parameter problem

the orthonormal process converges to the minimum in n

steps, property Q. This version of GOOP also had the

property of approximating the first partial derivatives.

A more detailed description of GOOP will be provided in

chapter III.

Huang [10,28] has shown that the algorithms described

as conjugate gradient and variable metric can be described

in a generalized algorithm. He also showed that these

various algorithms can be grouped into classes of

algorithms which generate the same sequence of points

when given the same initial H-matrix and starting point.

Huang [28] and McCormick [29] have recommended the

reset procedure for variable metric algorithms when

minimizing a nonquadratic function. In the algorithms,

if the minimal point of the nonquadratic function cannot

be reached in n or n+l iterations, then the algorithm

can be reset:

20

H = H
~1 0

(2.27)

where H. is the H-matrix of the ith iteration. Huang
~

gave numerical support for the reset algorithm in his

article.

4. Rank-one Algorithms

Rank-one algorithms are relatively new and have not

been completely developed in the current literature.

Powell [18] discusses these algorithms in his recent

article. The idea is a modification of Davidon's variable

metric algorithm. The procedure of calculating Hk+l

has been changed so that the difference (Hk+l - Hk)

is a symmetric matrix of rank-one. The new formula is

+ + + + T

21

=
(Hkyk - 0 k) (HkYk - 0 k)

- + + T+ (2.28)
(Hkyk - 0 k) Yk

+ +
where yk and crk are defined by (2.22).

To use (2.28) in an algorithm, it is necessary to fix
+ +

rules for calculating xk+l from xk and use the Hk matrix.

The reason the idea is so valuable is that there are very

many choices of rules such that n applications of (2.28)

causes H to equal -G-l when the objective function is

quadratic, and, because of the form of the linearization

iteration, this property can lead to fast convergence.

Both Broyden [30] and Davidon proceed to define rules

+
to calculate xk. They use:

= (2.29)

where ak is ~ parameter. Broyden proved that, if the

choice of ak is arbitrary, except that it must not cause

H to be singular or not positive semi-definite, and if
k+l

f (-+x) • d · 1 1s qua rat1c, then H will equal G- • The important
n

feature of this theorem (and the rank-one algorithms) is

that it does not depend on calculating ak by applying a

one-dimensional search to minimize the objective function.

Goldfarb [31] discusses sufficient conditions for the

convergence of a rank-one algorithm.

C. Newton-Raphson Algorithms

The Newton-Raphson procedure estimates the position
-+

of the minimum of f(x) from second and lower order terms

in the Taylor series, i.e.,

22

-+ -+
f(x + b.x)

-+
= f (x) +

-+T-+ -+T -+
b.x g + b.x Gb.x (2.30)

-+
where g and G are defined by equations (1.2) and (1.3),

respectively. At the minimum of a differentiable

-+
function, g = 0, so, if equation (2.30) is exact, the

-+ -+
point x + b.x is the required minimal point only if

-+ -+
g + Gb.x = 0 (2. 31)

-+
is satisfied. Since this equation is linear in b.x, it is

straightforward to calculate

-+ -1-+
b.x = -G g (2.32)

If the second derivative matrix, G, is positive

definite at the solution, then the iterations have

quadratic convergence, provided that the initial estimate

is sufficiently close to the minimal point. By quadratic

convergence, second order convergence is meant and is not

to be confused with property Q. If the initial estimate

is poor, the Newton-Raphson algorithm may fail to con

verge. Also the algorithm may converge to a stationary

point instead of the minimum.

To avoid convergence to a stationary point that is

not a minimum, and to ensure that an iteration does not

increase the value of the objective function, a one-
-+

dimensional search is performed in the direction, 6x, of

equation (2.32). Specifically, consider the function

-+ -+

23

f(A) = f(x + A6X) (2.33)

for 0 < A < 1 and let A' be the value of A for which

f(A) is a minimum. Then let the vector

be the next point.

-+ -+ -+
z = x + A '6x

Another extension to the Newton-Raphson algorithm

(2.34)

was suggested by Levenberg [13]. A nonnegative parameter,

a, that interpolates between the steepest descent iteration

and the Newton-Raphson iteration (2.32) is introduced.

Then the new itetration is the replacement of the estimate,

24

-+ -+ -+
x, by the estimate, x + ~x, where the correction is

defined by the equation

-+
~X = (a I

-1-+
G) g • (2.35)

This technique is often called "Damped Least Squares".

In the case a = 0, equation (2.35) reduces to the Newton-

Raphson iteration while if a becomes very large the
-+

correction to x tends to have the direction of the
-+

gradient g. Another version of the use of the damping

factor is discussed by Buchele [32] .

The most serious disadvantage of the Newton-Raphson

algorithm and its extension is that they require the

second derivatives of the objective function. Often it

happens that the second derivatives are not available or

that the user prefers not to calculate them. This

problem motives the development of algorithms using only

first derivatives.

Another variation of the Newton-Raphson procedure,

called spiral, has been developed by Jones [15]. The

basic idea is that a reduced sum of squares can always

be found in the plane defined by the Newton-Raphson

point and the line of steepest descent at the base point.

The strategy of spiral is to search along a spiral line

which starts in the direction of the steepest descent

direction and then arcs back toward the Newton-Raphson

point in this plane. This new algorithm has been quite

successful for problems with narrow-curved valleys.

III. A LINEAR ACCELERATION TECHNIQUE FOR RESET CONJUGATE

DIRECTION ALGORITHMS

25

The linear acceleration technique, LAT, is a numerical

technique designed to improve the rate of convergence of the

reset conjugate direction algorithms. This chapter de

scribes this numerical technique as a new algorithm. The

new algorithm is a combination of the reset conjugate direc

tion algorithms, a pattern move of Hooke and Jeeves• direct

search algorithm, and a linear search similar to the search

performed in the Modified-Gauss-Newton algorithm described

by Hartley. The LAT algorithm was found to be quite suc

cessful when GOOP (to be described in detail in chapter IV)

was used as the conjugate direction algorithm. The

Fletcher-Reeves and Davidon-Fletcher-Powell conjugate direc-

tion algorithms were also used and found to improve con-

vergence for particular problems.

A. Pattern Move

In developing the direct search algorithm, Hooke and

Jeeves refer to pattern moves. From a particular base
+

point, b , exploratory moves are made in each of the n
1

coordinates until a decrease in the function is found.
+

once the decrease is found, a new base point b , is
2

established. The vector determined by the two base points

(3.1)

26

gives the direction of the pattern move. The new point

after a crude pattern move is given by

+ + + + +
p = b + v = 2b bl 2 2

(3.2)

In their development of the direct search algorithm, Hooke

and Jeeves found that the pattern move was a successful

computational technique, which provided the ability to

follow a valley.

In dealing with the conjugate direction algorithms,

the n iterations could be considered as the exploratory

moves. In working with nonquadratic functions, it is

known that the conjugate direction algorithms approximate

the quadratic problem. Therefore, since n iterations

approximate the quadratic, a pattern move could be made

after these iterations. Then if the pattern move is

successful, the rate of convergence toward the minimum

has been increased at very little computational expense.

Since the reset conjugate direction algorithms reset at

this point of their algorithm anyway, the process of

minimizing the function in the pattern move direction

before resetting appears to be quite feasible. If the

acceleration is done at the nth iteration, the work of the

n + 1th exploration is transferred to the pattern move at

no extra computational expense.

B. One-Dimensional Search

When a pattern move has been successful, it is most

likely that the step length is not optimal in the pattern

move direction. Thus it appears feasible that a one-

dimensional search could be used to determine the optimal

step in the pattern move direction. That is, determine a

which will minimize

+

27

+ av) (3.3)

+ +
where b 2 is the new base point and v is given by equation

(3.1).

Since a one-dimensional search is used in most

conjugate direction algorithms, no additional programming

is necessarily needed. Therefore, it appears to be quite

sensible to gain as much progress toward the minimal point

as is possible before resetting the conjugate direction

algorithm.

C. The Linear Acceleration Technique (LAT)

Combining the various segments discussed in the

previous sections, the new algorithm has the following

steps:
+

a) Select a nominal point x 0 .

b) Perform the conjugate direction algorithm for n
+

iterations, moving from base point, b 1 , to base
+

point b 2 •

c) Determine the direction of the pattern move

by the equation:

-+ -+ -+
v = b bl 2

d) Find the optimal step size a I I such that

-+ -+
f(a) = f(b + av)

2

is minimized as a function of a.

e) Make the pattern move

-+ -+ -+
X = b + a'v

2

where a' is the optimal a in step d) • The
-+

-+
X

vector then becomes the new nominal point x 0 •

f) Reset the conjugate direction algorithm and

return to step b).

28

(3. 4)

(3.5)

(3.6)

IV. GREY'S ALGORITHM

As was indicated earlier, the GOOP algorithm is a

conjugate direction algorithm which has received very

little attention in the literature, but is an algorithm

which is being successfully used in applied fields.

Broste and Lavi [17] have proven that the GOOP algorithm

is a conjugate direction algorithm and that it has

property Q. However, no one has presented a formal proof

of convergence for the nonquadratic problem. The

convergence proofs for other successful algorithms are

described by W. I. Zangwill [32], and in this chapter

Zangwill's mathematical framework is used to prove

the convergence of the GOOP algorithm. To prove con-

vergence, it has been assumed that the linear accel-

eration technique described in chapter III is applied

to the GOOP algorithm. Before presenting the proof,

section A supplies a detailed description of the GOOP

algorithm.

A. Description of GOOP

~

The GOOP process seeks to find changes ~x in a

nominal parameter vector to reduce the criterion function

29

30

-+ T -+
J = ~f(x) f(x). The distinction of the GOOP algorithm

is the manner in solving the incremental equation

T -+ T-+
F F~x + F F = 0

0
(4. 1)

-+ -+
where ~xis the vector of increments, F 0 is an m-vector

and F is m by m matrix of partial derivatives evaluated at

the present point.

The GOOP algorithm generates a coordinate transforma-
-+ -+

tion from the ~x-space to a ~y-space in which the trans-
-+

formed version of (4.1) has a simple solution. The ~Y
-+

obtained is transformed back to obtain ~x which reduces J.

The transformation uses a Gram-Schmidt orthonormal-

ization of the linearly independent vectors given by the

column of the matrix F. Let;, = 3f/3x. be the ith
1 1

-+
column of F and let columns G. of a new matrix G be the

1

orthonormal vectors resulting from the orthonormalization

of F. Then from the Gram-Schmidt process, the relation

between F and G is given by

F = GB (4. 2)

where B is an upper triangu~ar matrix generated along with

G by the orthonormalization process. Then substitute

equation (4.2) into equation (4.1) which yields:

+ = 0 (4. 3)

Because the columns of G are orthonormal, equation (4.3)

simplifies to

-+ T-+

31

BllX + G Fo = 0 . (4. 4)

-+ -+
By defining B~x to be the new variable in the ay-space,

we can reduce equation (4.1) to

Ay = (4. 5)

Since B is an upper triangular matrix it is easily inverted

-+ -+ and the transformation from the Ay-space to the ax-space

is given by

=
-1 -+

B !::..y

-+

=

The transformation to the !::..y-space decouples the
• -+

effect of the parameters ~n the !::..y-space on the various

(4. 6)

quadratic elements of J. In this new space each component

-+ of ~y can be independently adjusted to reduce J without

undoing the reduction achieved by adjusting any other

Ay-component. This is so because the partials of f with
-+

respect to each !::..y-component are the orthonormal columns

of G.

The Gram-Schmidt orthonormalization process is

described by the equations (4.7)-(4.9):

=
-+

(F.
~

i-1
!:

j=l

-+
b · · G ·)/b ..
J~ J ~~

i = 1,2, •.•• ,n

(4.7)

32

-+
where b ..

T-+
= G. F.

J~ J ~
(4.8)

-+ i-1
b .. G.II b .. = IIFi L:

~~
j=l J ~ J

(4. 9)

are the elements of the upper triangular matrix B.

An important feature of this transformation is that

the solution given by equation (4.5) or equation (4.1)

can be computed by a step-wise procedure. Therefore,
-+

only one component ~yi of ~y is computed at each step.

Th f t . (4 5) th . th -+ . en rom equa ~on . , e ~ component of ~y ~s

given by

-+

~y.
~

-+ T-+
= -G· F

~ 0

A single G· can be computed at each step by equations
~

(4 .10)

(4.7)-{4.9) using previously computed orthonormal vectors
-+ -+

and a single column Fi. Therefore, one component of ~y
-+

can be computed at each step. If the column Ci of

C = B-l could be computed at each step, the ~~ correspond-

ing to ~yi would be given by

-+
~X

-+
= c.~y.

~ ~
(4.11)

Since the orthonormalization builds the B matrix one

column at each step, this process can be described as the

construction of a product of. matrices each of the form

B. =
1

1

0

b ..
11

Let B(k) be the matrix product

then

B (i) = B. B. 1 •
1 1-

B = B (n) •

0

1

Since B. has a simple inverse given by
1

B·-1 =
1

1

0 .

the inverse of B(i) is:

Then
-1

B

B(i)-1 =

= B(n)-1

-bl.jb ..
1 11

-b2. /b ..
1 11

1/b·.
11

=

0

1

-1 B.
1

33

(4.12)

(4.13)

(4.14)

(4 .15)

(4.16)

(4.17)

34

If B(i)-l is computed at each step, only the elements

f h .th 1 -1 o t e 1. co umn of Band the matrix B(i) are needed.

Since in succeeding steps the ith column of B(i)-l is not

lt d l."t t b 1 + .th -1 a ere , mus e equa to Ci, the 1. column of B .
-+

Thus Ci can be computed at each step and is given by

c .. = 1.1. 1/b·. 1.1. (4.18)

c .. = -Jl.

c.. = 0 Jl.

i-1
E c "kbk./b·.

k=j J 1. 1.1. if 1 < j < i (4.19)

if i < j < n

h C · the J.th t f -+c Th f t" were .. J..S componen o i• e use o equa 1.ons
Jl.

(4.18) and (4.19) at each step eliminates the process of

an explicit matrix inversion.
-+

Thus at each step the change in ~xi corresponding to

-+
~Yi can be computed.

n
E

i=l

-+
~x. 1. =

-+ Summing ~x. over all steps yields 1.

= (4.20)

=

Thus a stepwise process exists which converges in n steps

for the quadratic function to the same solution as given

by equation (4.6).
+ Let xi be the estimate of the parameter vector after

the ith step such that

-+

-+
X

i
=

-+
X

0
+

i
E

j=l

where x 0 is the initial vector.

-+
x.

J

The stepwise process of the GOOP algorithm is:

Initial Step:
-+

Set X
0

-+
and F

0

.th
~ Step: Compute

-+
ith a) F. = column of

~

-+
b) G. from (4.7), (4.8),

~

-+

=

F

-+
f (x) •

0

= af;ax.
~

and (4.9)

c) c. from (4 .19) and (4.20)
~

d)
-+ T-+

11y. = -G. F
~ ~ 0

-+ -+ -+
e) x. = X. 1 + 11y.C.

~ ~- ~ ~

-+

35

(4.21)

In examining the steps above, the vector C. represents
~

-+ -+
the direction in the /1x-space in which the change 11x. is

~

made. Since

-1 -1
BB = B B = I (4.22) ,

then

-+ -+ T
BC. = e. = (0,0, ••• ,1, ••• ,0) (4.23)

~ ~

Therefore

-+- T T -+
P. (F F)p
~ j

-+- T -+
= C.F FC.

~ J

36

-+- T T T -+= C B G GBC
i j

(4.24)

-+- T -+
= C B BC

i j

= 0 for i '1- j

T
which proves that the directions in GOOP are F F

conjugate. Even though the directions generated by the

conjugate gradient algorithm applied to equation (4.1)

1 T . h are a so F F-conJugate, t ey are not in general the same

directions generated by the GOOP algorithm. In examining

the first direction of each method, the conjugate gradient

algorithm's first move is in the direction of the negative

gradient of equation (4.1). Huang's paper [28] classifies

several familiar algorithms such as Fletcher-Reeves,

Davidon-Fletcher-Powell, and others into a generalized

algorithm. If the initial H matrix is the identity

matrix, then the first move is in the direction of the

negative gradient for all these algorithms. In the GOOP

algorithm, the first move is in the direction of the

x 1-axis or any preassigned coordinate axis. Also the

directions in the GOOP algorithm are not a function of a

residual and if residuals are computed, they are not

orthogonal as in the conjugate gradient algorithm. In any

case, both algorithms solve the quadratic programming

problem in n or less iterations.

One additional feature of the GOOP algorithm is a

procedure which allows the algorithm to continue seeking

reductions in J without completely re-initializing the

computation at an intermediate point. The vector of
+

partials, F., used at the ith step are calculated at the
~

+
most recent estimate of x produced in the preceding step.

The transformation as represented by the matrices G and

B-l can also be adjusted after each step in order to

maintain orthonormality. If the derivatives are not

supplied, f., given by the change in f(~) at the ith
~

step, can be used to recompute the vector of partials

af;ay. by setting
~

+

37

af*/ay. = af./ay. = G;* (4.25)
~ ~ ~ .

+ The * is to denote that G.* may no longer be orthonormal
~

+
to Gj' J = 1, 2, , i-1. The orthonormality can be

restored by adjusting G as follows

where

+
G =

i

g,.
J.J.

=

+
(G.*

~

g ..
J~

+
II G.*

J.

=

i-1 +

L g .. G.) /gii
j=l J ~ J

+ +
G.*G.
~ J

i-1 +
L g .. G.II

j=l J~ J

(4.26)

(4.27)

(4.28)

A corresponding adjustment is made in B-1 by

postmultiplying by

1 -gl.;g .. 1 11 0

38

-1 g = 1/g .. 11 (4.29)

0 1

B. Convergence Of The GOOP-LAT Algorithm

The following convergence proof is directed at the

new algorithm, LAT, described in chapter III where the con-

jugate direction algorithm is GOOP, described in section A.

The definitions, lemmas, theorems, and corollaries in the

Mathematical Preliminaries are taken from Zangwill [33] .

1. Mathematical Preliminaries

DEFINITION 1. By point-to-set map, it is meant that for

any point~£ V ,A(~) is a set in V, i.e., A : V ~ V.*

DEFINITION 2. An algorithm is an iterative process

consisting of a sequence of point-to-set maps Ak : V ~ V.

~1 f . t {~k}~ . Given a point z , a sequence o po1n s z 1 , 1s generated

recursively by use of the recursion

(4.30)

*This notation is used by Zangwill for a point-to-set
map. A more common form of notation is A : v ~ 2v.

39

where any point in the set A (;k)
k

is a possible successor
-+k+l point z .

DEFINITION 3. A solution set is the set of all optimal

points and a solution point is an point in ~' the solution

set.

CONVERGENCE THEOREM A. Let the point-to-set map A : V -+ V
-+

algorithm that given a point zl £ V generates determine an

the sequence
-+k 00

{z }1 . Also let a solution set~ C V be given.

Suppose

(1)
-+k

All points z are in a compact set XCV.

(2) There is a continuous function Z: V-+ E1 such

that
-+

(a) if z is not a solution, then for any
-+ -+
y £ A(z)

-+ -+
z (y) < z (z) (4.31)

-+
(b) if z is a solution, then either the

algorithm terminates or for any
-+ -+
y £ A (z)

-+
Z(y)

-+
< Z (z) (4.32)

and
-+ -+

(3) The map A is closed at z if z is not a solution.

Then either the algorithm stops at a solution, or the

limit of any convergent subsequence is a solution.

40

LEMMA 1. Let C: W ~ X and B: X ~ Y be point-to-set

maps. ~00 ~
Suppose Cis closed at w ,and B is closed on C(w00).

Also assume if ~k ~ ~oo, k E K, and if ~k E C(~k}. 1 k E K,

1 that for some K c= K

~k ~00
X ~X k E

1
K

Then the composition A ~00 = BC is closed at w

(4.33)

COROLLARY 1. Let C: W ~ X and B: X ~ Y be point-to-set

maps. Suppose C is closed at ~oo and B is closed on C(~00).

If X is compact, then A = BC: W ~ Y is closed at ~00 w •

COROLLARY 2. Let C: W ~ X be a function and B: X ~ Y be

a point-to-set map.
~00 Assume C is continuous at w and B is

~

closed at C(x00). Then the point-to-set map A= BC: W ~ Y
~

is closed at W00 •

1 The map M represents a one-dimensional search. It

minimizes the objective function on a segment either of

the ray emanating from ~k in the direction dk or of the
~k ~k ~k+l

line through x in the direction d . Let x be the

point produced by M1 • Mathematically

~k+l ~k k~k
X = X + T d (4.34)

where

= min {f(~k +
~k

Td) I a > T > S} (4.35)

41

and a is either +oo or a positive scalar and, S = 0, -a,

or -oo

1 ~ ~ ~ ~ ~ ~ +
M (x,d) = {yl f(y) =min f(x + Ld),y (4.36)

L£J

~ ~

where (x,d) is a point in E2n, and J is an interval over

which the scalar L varies.

LEMMA 2. Let f be a continuous function. Then M1 is

closed if J is a closed and bounded interval.

DEFINITION 4. A mixed algorithm is an algorithm that has
~

a given basic algorithm map B, which depends only upon z,

such that

B = k £ K • (4.37)

In other words, the basic map B is used infinitely often.

For the remaining k, other maps are employed.

CONVERGENCE THEOREM B. Suppose there is an algorithmic

map B: v ~ V for the nonlinear programming problems (with

associated z function and solution set n) that satisfies

condition 1, 2, and 3 of Convergence Theorem A. Let a

mixed algorithm for the problem be defined by the maps

Ak: V ~ V such that for some K

= B k £ K (4.38)

42

while for k ~ K

z (~+1) < z (~) (4.39)

Further assume that

(1) All -+k z E X where X is compact, and

(2) If -+* z E ~, and

-+
Z(y) (4.40)

then
-+
y E n • (4.41)

Then under these hypotheses the mixed algorithm

either stops at a solution or generates a sequence

{ -+k 00 z }1 such that the limit of any convergent subsequence

is a solution point.

DEFINITION 5.
-+

A step, given a nonoptimal point x, that
. -+

generates a po~nt y for which

z (y)
-+

< Z (x) (4.42)

is called a spacer step.
-+

Also should x be a solution,

then the spacer step must indicate this fact.

DEFINITION 6. A point-to-set map A V -+ V is closed at ~oo

if
-+k -+oo
z -+ z '

-+k -+k
z E A (z) , and (4.43)

for k E K implies (4.44)

The map is said to be closed on X C: V if it is closed at

-+
each z E X.

2. Mathematical Development

In light of the definitions, lemmas, corollaries,

and theorems stated in the Mathematical Preliminaries, the

GOOP algorithm is restated using the new terminology.

GOOP ALGORITHM

M:

(1) Initialization step:
-+0
x 1 is given.

(2) Iteration k: Set i = 1.
-+

(a) Calculate di using the Gram-Schmidt

orthonormalization process.

(b)
-+k -+k

Calculate xi+l £ M(xi,S) where M is

the map defined below and

(c) If i = n go to step (3), otherwise set

i = i + 1 and return to step (a) .

(3) If k = 0 (mod n) go to step (4), otherwise set

k = k + 1 and return to step (2).

(4)
-+k . ld' -+k Spacer step on xn+l y~e 1ng xn+ 2 .

(5)
-+k+l -+k Set x 1 = xn+ 2 , k = k + 1, and return

to step (2).

The map M used in the GOOP algorithm is a mapping

E(i+l)n-+ En. M(~~,S) takes a point i~ and the

subspace generated by the conjugate directions

• ,di} and minimizes the function, J, in the

43

generated subspace, i.e.,

We can classify M as a one-dimensional search since the

GOOP algorithm will continue to half the step, GiTFOCi,
. -+

unt1l J(x) has decreased.

In the description of the algorithm above, the

spacer step has not been specified. The spacer step used

d . . 1 h . th d' . (-+k -+k) a one- 1mens1ona searc 1n e 1rect1on xn+l - x 1

which is the direction of the pattern move.

The proof of the convergence of the GOOP algorithm is

based on the Convergence Theorem B. Before this theorem

can be used, the convergence of the spacer step must be

established. The following lemma establishes this

convergence.

44

LEMMA 3. If the set X is compact and the objective function

is continuous and has a unique minimum, then the algorithmic

map A = M1D, where M1 represents a one-dimensional search,

-+ -+ -+ -+ -+k -+k . h .
D(x) = (x,e), e = xn+l- x 1 , 1s convergent. T e 1nterval

for M1 is T = [-a,a].

PROOf: The map M1D is closed by Corollary 2, because

Dis a continuous function and M1 is a closed map (Lemma 2).

By assumption all points are in a compact set. Then

A = (4.46)

Then corollary 1 verfies that the map A is closed as it

is the composition of closed maps on compact sets, and

condition 3 of Convergence Theorem A is verified.

To prove condition 2, we know that J has continuous

first partial derivatives. . + + By assumpt1on, for any x and e

there is a unique T' for which

+ +

45

J(x + +
T'e) = min

TE:T

J(x + +
Te) • (4.47)

Now let + + + + +
z = x and Z(z) = J(x), and term a point x a

solution if

+
min
TE:T

J(x +
+

Te)
+

= J (x) i = i,2, ... ,n.

At such a point, because of the uniqueness assumption,
+ +
'VJ (x) = 0.

(4.48)

Condition 2 (a) holds easily because if ~k is not a

solution

<
+k

J (x) • (4.49)

Then by Theorem A, the algorithm A = M1 D converges.//

Now taking the Mathematical Framework supplied by

Zangwill and Lemma 3 just developed, the convergence of the

GOOP-LAT algorithm can be examined. The following theorem

establishes the convergence of the GOOP-LAT algorithm for

the nonquadratic problem.

THEOREM C. Under the same assumptions stated in LEMMA 3,

the GOOP-LAT algorithm, a mixed algorithm using the

algorithmic map A = M1D as the spacer step, is convergent.

PROOF: By the previous Lemma 3, we know that the

algorithmic map A = M1D (the spacer step) satisfies con-

ditions 1, 2, and 3 of Convergence Theorem A. Then the

map A would satisfy the condition in Theorem B for the

map B. The mixed algorithm will be defined by the map

Ak = M1D: V + V such that forK ={kjk = 0 mod(n+l)}

46

= B k S K (4.50)

while for k t K

(4.51)

The last fact follows from the property of conjugate

direction algorithms. In generating the conjugate
+ + +

directions, d 1 ,d2 , • ,di, it follows from the

+k definition of M{xi,S), that

(4.52)

Therefore, by the Convergence Theorem B, the GOOP-LAT

algorithm is convergent.//

V. COMPUTATIONAL RESULTS

The linear acceleration technique (LAT) algorithm is

used to solve eight traditional nonquadratic functions.

The LAT algorithm is applied to three conjugate direction

algorithms. The computational results of this chapter:

(1) demonstrate the improved convergence of the GOOP

algorithm,

(2) demonstrate the effect of LAT on the convergence

rate of other successful conjugate direction

algorithms,

(3) demonstrate the efficiency of the GOOP algorithm

performed in single precision arithmetic,

(4) demonstrate that the GOOP algorithm is a

competitive algorithm with the most successful

nonlinear programming algorithms.

In addition to previously referenced papers, many

recent papers [34-39] have made comparisons of various

algorithms and provide sample problems. From these

studies, eight problems were chosen for comparison of

algorithms. These eight problems are described in detail

in appendix A.

The first problem is Rosenbr:ock's parabolic valley

problem [2] with starting point (-1.2, 1.0). The second

problem is CUBE attributed to Witte and Holst [40] with

starting point (0.5, 0.5). Problem three is Beale's [41]

problem with starting point (2.0, 0.7).

47

Problems four, five, and six are the four parameter

problems attributed to Pow.ell [42] with starting values

(lO.O,lO.O,l0.0,-10.0), (3.0,-1.0,0.0,1.0) and

(-0.1,-0.l,O.l,O.l), respectively. The seventh problem

is Wood's problem [43] with starting point

(-3.0,-1.0,-3.0,-1.0). Problem eight is a four parameter

problem attributed to Miele [44] with starting point

(1.0,2.0,2.0,2.0).

A. Comparison Of Three Conjugate Direction Algorithms

Using LAT With The Levenberg-Marquardt Algorithm

48

The following tables show results of the Levenberg

Marquardt algorithm and the conjugate direction algorithms:

(1) GOOF, (2) Davidon-Fletcher-Powell, and (3) Fletcher

Reeves. The Levenberg-Marquardt algorithm is included for

comparison because it has been found to be quite successful.

1. Description of Recorded Material

The following problems were performed on an IBM 360

Model SO computer using double precision arithmetic

except where stated otherwise.

for:

Each table represents the results for a given problem

(1) Reset Fletcher-Reeves, FR(N).

(2) Reset Fletcher-Reeves, FR(N+l).

(3) Reset Fletcher-Reeves with LAT, FR(N)-LAT.

(4) Reset Fletcher-Reeves with LAT, FR(N+l)-LAT.

(5) Reset Davidon-Fletcher-Powell, DFP(N).

(6) Reset Davidon-Fletcher-Powell, DFP(N+l).

(7) Reset Davidon-Fletcher-Powell, with LAT,

DFP(N)-LAT.

(8) Reset Davidon-Fletcher-Powell with LAT,

DFP(N+l)-LAT.

(9) Levenberg-Marquardt Compromise,LMC.

(10) GOOP.

(11) GOOP with LAT, GOOP-LAT.

The two conjugate direction algorithms listed above are

reset algorithms. The N or N+l in parentheses indicates

that the algorithm is reset after N iterations. The

Fletcher-Reeves algorithm is restarted in the gradient

direction. The Davidon-Fletcher-Powell algorithm resets

the H-matrix to the identity matrix.

Because the Fletcher-Reeves and Davidon-Fletcher-

Powell algorithms are different from the GOOP and the

Levenberg-Marquardt algorithms in form, different

stopping conditions are used for the two types of

algorithms. In comparing the results generated for the

eight problems using the two types of algorithms, it is

believed that the stopping conditions listed below

produce a reasonable comparison. Algorithms (1)-(8) use

the stopping condition

49

~ T~
g. g.
~ ~

< (5.1)

50

For algorithms (9)-(11), the stopping condition is

f. < 10-s .
~

(5.2)

In each table, the information provided is: (l) number

of iterations, IT, (2) function evaluation, FE, and

(3) value of the function when the algorithm terminated,

V of F. The number of iterations is a common comparative

item in the literature. For the methods being compared

in this paper, the number of iterations does not give a

true comparison. Specifically, the GOOP algorithm and the

Levenberg-Marquardt algorithm solve the Gauss equation

(2.7). The Fletcher-Reeves and Davidon-Fletcher-Powell

algorithms solve the Newton-Raphson equation (2.32).

The GOOP, Fletcher-Reeves, and Davidon-Fletcher-Powell

algorithms optimize in the n-conjugate directions.

Therefore, it is felt that the number of function

evaluations is more informative about the relative merits

of the various algorithms. To provide additional informa-

tion about the progress of the algorithm, the value of the

function when the algorithm terminated is also indicated.

In the LAT algorithm, a one-dimensional search is

used. Both the Fletcher-Reeves and Davidon-Fletcher-

Powell algorithms use the cubic interpolation search in

optimizing each iteration and this search could be used in

LAT. However, since no one-dimensional search is used in

GOOP and Levenberg-Marquardt algorithms, a simple

one-dimensional search has been written and used in LAT

for all algorithms above. A flow chart for this simple

one-dimensional search is found in appendix B.

2. Numerical Results on Comparison of Algorithms

Algorithm

FR(N)
FR (N+l)
FR(N)-LAT
FR (N+l) -LAT

DFP(N)
DFP(N+l)
DFP(N)-LAT
DFP(N+l)-LAT

GOOP
GOOP-LAT
LMC

IT

48
30
19
30

32
35
14
25

64
24
23

TABLE 1

PROBLEM 1

FE

101
64
70
91

79
90
60
89

224
121

88

V of F

0.1037
0.2659
0.1028
0.1505

0.1462
0.1189
0.7402
0.4949

0.6985
0.4020
0.1812

51

52

TABLE 2

PROBLEM 2

Algorithm IT FE v of F

FR(N) 25 56 0.8283 lo-21
FR (N+l) 18 44 0.3125 lo-15
FR(N)-LAT 19 71 0.3197 lo-13
FR(N+l)-LAT 18 62 0.3125 lo-15

DFP(N) 23 60 0.1602 lo-19
DFP (N+l) 20 64 0.2527 lo-16
DFP(N)-LAT 13 51 0.6687 lo-15
DFP(N+l)-LAT 18 76 0.1131 lo-16

GOOP 46 161 0.3881 10-9
GOOP-LAT 20 106 0.1211 lo-9
LMC 6 20 0.3773 10-12

TABLE 3

PROBLEM 3

Algorithm IT FE v of F

FR(N) 9 22 0.7820 10-13
FR(N+l) 11 26 0.8987 lo-16
FR(N)-LAT 9 34 0.7820 lo-13
FR(N+l)-LAT 11 35 0.8987 lo-16

DFP(N) 9 24 0.2131 lo-15
DFP(N+l) 11 32 0.5083 lo-14
DFP(N)-LAT 9 36 0.2131 lo-15
DFP(N+l)-LAT 11 41 0.5083 lo-14

GOOP 18 63 0.8174 10-9

GOOP-LAT 10 50 0.6725 lo-9

LMC 5 15 0.2792 lo-17

53

TABLE 4

PROBLEM 4

Al9:orithm IT FE V of F

FR(N) 74 167 0.9565 10-9
FR(N+l) 50 123 0.4782 10-9
FR(N)-LAT 58 182 0.3682 -9

10_10 FR(N+l)-LAT 40 129 0.5406 10

DFP(N) 50 204 0.6842 lo-9
DFP (N+l) 29 100 0.1341 10-9
DFP(N)-LAT 39 182 0.1251 10-9
DFP(N+l)-LAT 34 154 0.1448 lo-9

GOOP 24 156. 0.2049 10-8
GOOP-LAT 18 136 0.1202 10-8
LMC 15 57 0.6832 lo-ll

TABLE 5

PROBLEM 5

Al9:orithm IT FE V of F

FR(N) 106 216 0.3325 10-10
FR(N+l) 57 121 0.5196 lo-10
FR(N)-LAT 42 128 0.2927 10-10
FR(N+l)-LAT 47 130 0.7912 lo-10

DFP(N) 26 96 0.8097 lo-lo
DFP (N+l) 36 166 0.2400 10-9
DFP(N)-LAT 25 110 0.7763 10-10
DFP(N+l)-LAT 42 230 0.1035 10-9

GOOP 14 91 0.8549 10-9
GOOP-LAT 12 100 0.1326 lo-8
LMC 9 27 0.2367 lo- 8

54

TABLE 6

PROBLEM 6

Alg:orithrn IT FE V of F

FR(N) 25 57 0.1262 10-10
FR(N+l) 26 58 0.3840 lo-9
FR(N)-LAT 25 74 0.1888 lo-ll
FR(N+l)-LAT 37 108 0.2147 lo-9

DFP(N) 34 153 0.1045 lo-8
DFP(N+l) 14 54 0.9195 lo-12
DFP(N)-LAT 34 177 0.1045 lo-8
DFP(N+l)-LAT 14 60 0.9195 lo-12

GOOP 14 91 0.3156 lo- 8
GOOP-LAT 8 61 0.7246 lo-9
LMC 6 18 0.1448 lo-8

TABLE 7

PROBLEM 7

Alg:orithrn IT FE v of F

FR(N) 38 81 0.1717 10-14
FR(N+l) 28 61 0.1635 10-14
FR(N)-LAT 35 102 0.4289 lo-14
FR(N+l)-LAT 28 76 0.1635 lo-14

DFP(N) 57 129 0.6472 lo-16
DFP(N+l) 56 131 0.3411 lo-13
DFP(N)-LAT 52 160 0.3377 lo-22
DFP(N+l)-LAT 50 145 0.4512 lo-18

GOOP > 80 ------
GOOP-LAT 58 445 0.8781 lo-ll
LMC 53 208 0.9870 lo-16

TABLE 8

PROBLEM 8

Algorithm IT FE V of F

FR (N) 57 117 0.3350 10-9
FR(N+l) 82 167 0.3452 lo-8
FR(N)-LAT 45 127 0.2686 lo-8
FR(N+l)-LAT 46 130 0.2810 10- 8

DFP(N) 53 363 0.4864 10- 8
DFP (N+l) 33 180 0.6752 lo- 8
DFP(N)-LAT 30 186 0.2760 lo-8
DFP(N+l)-LAT 33 198 0.6752 lo- 8

GOOP 20 134 0.9014 lo-B
GOOP-LAT 10 80 0.2665 lo- 8
LMC 20 75 0.6988 lo-lo

B. Comparison of GOOP Algorithms Using Single and Double

Precision Arithmetic

While compiling the results of the previous section,

all problems for each algorithm were computed using

single precision and double precision. In the case of the

Fletcher-Reeves and Davidon-Fletcher-Reeves algorithms,

the problems solved in double precision definitely

improved the convergence rate. The number of iterations

and number of function evaluations decreased in almost

every problem. However, in the case of the GOOP and the

Levenberg-Marquardt algorithms, the convergence rate was

not improved when using double precision arithmetic.

55

1. Description of Recorded Material

Each table represents the results for a given

problem of:

(l) GOOP in single precision, GOOP {S)

(2) GOOP-LAT in single precision, GOOP-LAT (S)

(3) GOOP in double precision, GOOP (D)

(4) GOOP-LAT in double precision, GOOP-LAT (D)

The stopping conditions and one-dimensional search used in

the previous section are the same in the following tables.

2. Numerical Results On The Effect Of Precision

TABLE 9

PROBLEM 1

Al~orithm IT FE V of F

GOOP (S) 64 160 0.6040 10-10
-8 GOOP-LAT (S) 28 115 0.2628 10_10

GOOP (D) 64 224 0.6985 10_10
GOOP-LAT (D) 24 121 0.4020 10

TABLE 10

PROBLEM 2

Al~orithm IT FE V of F

0.2785
-9

GOOP (S) 46 161 10_10
GOOP.,..LAT (S) 12 65 0.7994 10
GOOP (D) 46 161 0.3881 lo-9
GOOP-LAT (D) 20 106 0.1211 lo-9

56

57

TABLE 11

PROBLEM 3

A12orithm IT FE v of F

GOOP (S) 18 63 0.1103 10-8
GOOP-LAT (S) 10 50 0.1103 10-8
GOOP (D) 18 63 0.8174 10-9
GOOP-LAT (D) 10 50 0.6725 10-9

TABLE 12

PROBLEM 4

A12orithm IT FE V of F

GOOP (S) 24 156 0.1254 10-8
GOOP-LAT (S) 16 120 0.2936 1o-9
GOOP (D) 24 156 0.2049 1o-8
GOOP-LAT (D) 18 136 0.1202 10-8

TABLE 13

PROBLEM 5

A12orithm IT FE V of F

GOOP (S) 14 91 0.3705 10-8

GOOP-LAT (S) 12 100 0.1458 10-8

GOOP (D) 14 91 0.8549 10-9

GOOP-LAT (D) 12 100 0.1326 10-8

58

TABLE 14

PROBLEM 6

Al9:orithm IT FE v of F

GOOP (S) 14 91 0.2968 10-a
GOOP-LAT (S) 8 62 0.2632 lo-lo
GOOP (D) 14 91 0.3156 lo-a
GOOP-LAT (D) 8 61 0.1448 lo-a

TABLE 15

PROBLEM 7

Algorithm IT FE v of F

GOOP (S) > 80 ------
GOOP-LAT (S) 50 389 0.1076 10-10
GOOP (D) > 80 ------
GOOP-LAT (D) 58 445 0.8781 10-11

TABLE 16

PROBLEM 8

Algorithm IT FE V of F

GOOP (S) 20 134 0.8891 10-a
GOOP-LAT (S) 10 83 0.3369 lo-10
GOOP (D) 20 134 0.9014 lo-a
GOOP-LAT (D) 10 80 0.2665 lo- 8

59

C. Operations Count for Function and Derivative Evaluation

In examining tables 1-8, it appears that the GOOP

algorithm compares poorly with the other algorithms. It

must be noted that the GOOP algorithm does not use first

derivatives, but rather the algorithm uses approximations

of the derivatives and only calculates the derivatives for

one column of the F matrix per iteration. Therefore, a

comparison of function evaluation is not valid. In this

section, a more valid comparative procedure is attempted.

For each problem used in section A, an operations count is

made for each function and derivative evaluation.

1. Procedure for Making Operations Count

In comparing algorithms, one means of comparison is

the amount of arithmetic to perform the algorithms. The

sources of arithmetic are: (1) execution of the algorithm,

(2) evaluation of the function, and (3) evaluation of the

derivatives. In this paper, the number of operations to

evaluate the function and derivatives are compared for the

specific problems solved.

Because the four algorithms (FR, DFP, LMC, and GOOP)

use the derivatives differently, it is difficult to make a

valid comparison of total number of operations for evalu

ting the function and derivatives. The procedure for

making the count is described below, but the details of

the actual count for each problem is supplied in appendix c.

The Fletcher-Reeves and Davidon-Fletcher-Powell

algorithms evaluate the gradient at the same time that

the function is evaluated. Thus the total number of

operations performed to evaluate the function and gradient

once will be multiplied by the function evaluations, FE,

for a given problem. This will give the total number of

operations for function and derivative evaluation for

this problem.

The Levenberg-Marquardt algorithm makes function

evaluations and uses the derivatives in constructing the

H matrix of equation (1~8). For each iteration the HTH
T+

matrix and H h 0 vector are constructed and then scaled.

If H has dimension m x n and one observes that HTH is

symmetric, then HTH is constructed using (n+l)nm/2

multiplications and (n+l)n(m-1)/2 additions. To construct

HTh0 , m multiplications and m-1 additions are used. Since

HTH is symmetric, scaling HTH requires one multiplication

and one division for each element of HTH above the main

diagonal.

divisions.

This would use (n-l)n multiplications and
T+

To scale H h 0 , one division per element is

needed, i.e., n divisions. The total operations count for

the Levenberg-Marquardt algorithm is the number of

operations to construct and scale HTH and HTh0 , multiplied

by the number of iterations, IT, plus the number of

operations to evaluate the function multiplied by the

number of function evaluations, FE.

60

2. Description of Recorded Material

The procedure described above is applied to each of

the eight problems used in section A. The number of

multiplications and divisions, MD; additions and sub

tractions, AS; exponential subprogram, EXP; tangent

subprogram, TAN; and cosine subprogram, COS; performed

are recorded for each algorithm and problem. The details

of how each problem was evaluated is found in appendix C.

61

62

3 0 Numerical Results

TABLE 17

OPERATIONS COUNT

Problem Algorithm MD AS EXP TAN cos

1 FR 512 256
DFP 480 240
LMC 628 333
GOOP 516 401

2 FR 396 176
DFP 459 204
LMC 172 78
GOOP 349 219

3 FR 440 264
DFP 480 288
LMC 215 160
GOOP 430 430

4 FR 2214 1353
DFP 1800 1100
LMC 1500 894
GOOP 1264 904

5 FR 2178 1331
DFP 1728 1056
LMC 828 486
GOOP 966 693

6 FR 1026 627
DFP 972 594
LMC 552 324
GOOP 642 459

7 FR 1342 1159
DFP 2838 2451
LMC 7739 6202
GOOP 5407 5407

8 FR 3042 936 117 117 117
DFP 4680 1440 180 180 180
LMC 2460 1180 75 75 20
GOOP 1010 370 80 80 0

D. Summary of Computational Results

From the computational results of this chapter, the

following comments are in order.

1. Improved Convergence Rate of the GOOP Algorithm

In all of the eight problems presented, the number of

iterations for the GOOP-LAT algorithm is less than the

number of iterations for the GOOP algorithm. In one of

the eight problems, problem 5, the number of function

evaluations is less for the GOOP algorithm. This would

imply that for this particular problem, the addition of

the LAT algorithm is inefficient (causing more function

evaluations). Closer examination of the results of

this problem, show that when the one-dimensional search
-+

is performed, the optimal point obtained is near the b 2

vector defined in chapter 3, section A. The simple one-

dimensional search used in LAT requires a large number

of function evaluations to obtain this type of optimal

point. However the algorithm is making a relatively small

improvement toward the minimal point of the function.

A more efficient one-dimensional search in LAT should

produce better results for this particular problem.

2. Effect of LAT on the Convergence Rate of the FR

Algorithm

In almost every problem, the number of iterations for

63

64

FR-LAT is less than or equal to the number of iterations

for FR. But in approximately fifty per cent of the cases

presented in tables 1-8, the LAT algorithm does not

improve the rate of convergence. Also when the number of

iterations is decreased, the number of function evaluations

does not decrease. In this case, the FR-LAT algorithm

will not be as efficient as the FR algorithm.

3. Effect of LAT on the Convergence Rate of the DFP

Algorithm

Again in almost every problem, the number of iterations

for DFP-LAT is less than or equal to the number of

iterations for DFP. As in the case of the FR algorithm,

in approximately fifty per cent of the cases presented in

tables 1-8, the LAT algorithm does not improve the rate of

convergence. However, for several problems an improvement

of the rate of convergence (decrease in iterations) and a

decrease in function evaluations is found. Problems 1 and 2

demonstrate these properties.

4. Comparison of Single Precision and Double Precision

Arithmetic for the GOOP Algorithm

Tables 9-16 indicate that the GOOP and GOOP-LAT

algorithms make very little if any improvement in

convergence rate by using double precision arithmetic.

In fact, for some problems described, single precision

arithmetic results are better than the double precision

65

arithmetic results. Although the results for single

precision arithmetic of the FR and DFP algorithms are not

provided in this thesis, it was found that these algorithms

had to be performed in double precision arithmetic to obtain

accurate results. Yet for the GOOP and LMC algorithms,

the double precision arithmetic was not as necessary.

5. Comparison of the Four Algorithms on the Basis of an

Operations Count

Since the GOOP algorithms must approximate the

derivatives, the new comparative procedure of comparing

an operations count for function and derivative evaluations

is found in table 17. It appears that in problem 2,

3, and 7 the GOOP algorithm compares unfavorably with the

optimal algorithm. In problems 1, 4, 5, and 6 the GOOP

algorithm is comparable with the optimal algorithm. In

problem 8, the GOOP algorithm is much more efficient.

Also note that no single algorithm performed well for

all problems.

One other comparison of the GOOP algorithm should

be with a successful version of the DFP algorithm which

approximates derivatives by Stewart [9]. In appendix D

the results for problems 1 and 5 have been reproduced

from Stewart's paper. In this comparison, the GOOP

algorithm appears quite favorably. In problem 1,

Stewart's algorithm performed 145 function evaluations

for f = 2.8 x 10-8 while GOOP performed 115 function

evaluations for f = 2.6 x 10-9. In problem 5, Stewart's

algorithm performed 139 function evaluations for

66

f = 1.1 x 10-8 wh~le GOOP performed 91 function evaluations

-9 for f = 3.7 x 10 •

67

VI. CONCLUSIONS

In some applied fields, the GOOP algorithm has been

successfully used, but very little theoretical work has

been developed for this algorithm. This thesis adds the

linear acceleration technique, LAT, to the GOOP algorithm.

It then provides the theoretical demonstration which had

been conjectured to be true by many users, that the

GOOP-LAT algorithm is convergent for the nonquadratic

nonlinear programming problem. This thesis does not

consider the problem of examining the rate of convergence,

but it is conjectured that the GOOP-LAT algorithm has a

rate of convergence somewhere between linear and quadratic.

The linear acceleration technique, LAT, described in

chapter III definitely makes an improvement on the

convergence rate of the GOOP algorithm. In all the

problems of chapter V, the number of iterations decrease.

In all but one problem, the number of function evaluations

also decreases. Thus the GOOP-LAT algorithm does improve

the convergence rate of the GOOP algorithm and because the

number of function evaluations decreased, the new algorithm

is more efficient than the old.

In applying LAT to the conjugate direction algorithms,

FR and DFP, the improvement of the convergence rate is

not as outstanding. In almost all of the problems, the

convergence rate is improved or unchanged. However, in

most cases the addition of the LAT algorithm is not

68

efficient. Even though the number of iterations decreased,

the number of function evaluations increased.

In comparing the GOOP algorithms with the Levenberg

Marquardt algorithm and other conjugate direction

algorithms, the GOOP-LAT algorithm compares more favorably

than the GOOP algorithm for most problems. The Levenberg

Marquardt algorithm produced good results if the number
+

of elements of the vector h, equation (1.5), is small and
+

if the elements of h have partial derivatives which have

a small number of operations. The Fletcher-Reeves and

Davidon-Fletcher-Powell algorithms produced good results

if the gradient vector, equation (1.2), has a small

number of operations. The GOOP-LAT algorithm produced

favorable results on several problems, but the best

results were for a problem where the number of elements

of the vector h was large and the partial derivatives of

these elements were not relatively simple.

One other attribute of the GOOP-LAT algorithm is

that the single precision arithmetic computational results

are just as favorable as the double precision results.

This is not an attribute of the Fletcher-Reeves and Davidon-

Fletcher-Powell algorithms.

It is felt that the numerical results of this thesis

indicate that the GOOP-LAT algorithm in single precision

arithmetic is an algorithm which is as efficient an

algorithm as the other successful algorithms presented.

It must be noted that no algorithm is going to solve all

problems efficiently, but the GOOP-LAT algorithm is

competitive with these algorithms. The GOOP-LAT algorithm

should be used for the following types of problems:

(1) those problems with partial derivatives which are

extremely difficult to obtain; (2) those problems where
+

the number of elements of the vector h are large and a

large number of operations are necessary to evaluate the

partial derivatives. It is conjectured that a more

efficient one-dimensional search in the LAT algorithm

might improve the convergence rate of the GOOP-LAT

algorithm even more.

The work described in this paper has been concerned

with the development of the LAT algorithm, its application

to conjugate direction algorithms, the convergence of the

GOOP-LAT algorithm, and the comparison of the GOOP-LAT

algorithm with other successful algorithms. Two specific

extensions of this work appear to warrant further study.

The LAT algorithm should be constructed using a more

sophisticated one-dimensional search and the rate of

convergence for the GOOP-LAT algorithm should be examined.

69

McCormick [29] has established that the reset Davidon-

* Fletcher-Powell algorithm is superlinear convergent.

It is conjectured that the GOOP-LAT algorithm has super-

linear convergence.

*Definition of Superlinear Convergence. An algorithm's
convergence is superlinear with respect to every n points
within a sequence if

lim
c-+oo

II~~ - x* II

llx0 - x* II c

= 0

where.~* is the optimal point of the objective function
and X~ indicates the ith point of the sequence which has
been Jreset j times.

70

BIBLIOGRAPHY

1. Hooke, R. and Jeeves, T. A. "Direct Search Solution
of Numerical and Statistical Problems," Journal
of the Association for Computing Machinery,
Vol. 8, 1961, pp. 212-229.

2. Rosenbrock, H. H. "An Automatic Method for Finding
the Greatest or Least Value of a Function,"

71

The Computer Journal, Vol. 3, No. 2, 1960, p. 175.

3. Grey, D. S. "Aberration Theories for Semi-Automatic
Lens Design by Electronic Computers. I •. Pre
liminary Remarks," Journal of Optical Society
of America, Vol. 53, No. 6, 1963, pp. 672-676.

4. Grey, D. s. "Aberration Theories for Semi-Automatic
Lens Design by Electronic Computers. II. A
Specific Computer Program," Journal of Optical
Society of America', Vol. 53, No. 6, 1963,
pp. 677-680.

5. Pegis, R. J.; Grey, D. S.; Vogl, T. P.; and Rigler,
A. K. "The Generalized Orthonormal Optimization
Program and Its Application," Recent Advances
in Optimization Techniques, ed. by A. Lav1 and
T. P. Vogal. New York: John Wiley and Sons, 1966.

6. Fletcher, R. and Reeves, C. M. "Function Minimization
by Conjugate Gradients," The Computer Journal,
Vol. 7, 1959, pp. 149-153.

7. Davidon, w. C. "Variable Metric Method for Minimiza
tion," A.E.C. Research and Development Report,
ANL-5990, 1959.

8. Fletcher, R. and Powell, M. J. D. "A Rapidly Conver
gent Descent Method for Minimization," The
Computer Journal, Vol. 7, 1964, pp. 163=168.

9. Stewart, G. W. "A Modification of Davidon's Minimiza
tion Method to Accept Difference Approximations
of Derivatives," Journal of the Association of
Computing Machinery, Vol. 4, 1962, pp. 441 452.

10.

11. Gauss, K. F. Theoria Matus Corporum Coelestiam,
1809.

72

12. Hartley, H. 0. "The Modified Gauss-Newton Method for
the Fitting of Non-Linear Regression Functions by
Least Squares," Technometrics, Vol. 3, No. 2,
1961, pp. 269-280.

13. Levenberg, K. "A Method for the Solution of Certain
Non-Linear Problems in Least Squares," Quarterly
of Applied Mathematics, Vol. 8, 1944, pp. 212-221.

14. Marquardt, Donald w. "An Algorithm for Least-Squares
Estimation of Non-Linear Parameters," Journal of
the Society of Industrial Applied Mathemat~cs,
Vol. 2, 1963, pp. 164-168.

15. Jones, A. "Spiral--A New Algorithm for Non-Linear
Parameter Estimation Using Least Squares," The
Computer Journal, Vol. 13, 1970, pp. 301-30~

16. Meyer, R. R. "Theoretical and Computational Aspects
of Nonlinear Regression," Nonlinear Programming,
ed. by J. B. Rosen, 0. L. Mangasarin, and K.
Ritter. New York: Academic Press, 1970,
pp. 465-485.

17. Broste, N. A. and Lavi, A. An Orthonormal Optimiza
tion Technique: Theory, Implementation and
Application. Pittsburgh: Carnegie-Mellon
University, 1968.

18. Powell, M. J. D. "A Survey of Numerical Methods for
Unconstrained Optimization," SIAM Review, Vol. 12,
No. 1, 1970, pp. 79-97.

19. Fletcher, R. "A Review of Methods for Unconstrained
Optimization," Optimization, ed. by R. Fletcher.
New York: Academic Press, 1969, pp. 1-12.

20. Broyden, C. G. "A Class of Methods for Solving
Nonlinear Simultaneous Equations," Mathematics of
Computations, Vol. 19, No. 92, 1965, pp. 577-593.

21. Zeleznik, Frank J. "Quasi-Newton Methods for Nonlinear
Equations," Journal of the Association for
Computing Machinery, Vol. 15, No. 2, 1968,
pp. 265-271.

22. Adachi, Norihiko. "On Variable-Metric Algorithms,"
Journal of Optimization Theory and Applications,
Vol. 7, No. 6, 1971, pp. 391-410.

73

23. Cauchy, A. "Methods G,n,rale Pour La R'solution Des
Systems D'equations Simultanees," c. R. Acad.
Sci. Paris, No. 25, 1847, pp. 368-381.

24. Forsythe, G. E. "On the Asymptotic Directions of the
s-Dimensional Optimum Gradient Method, Numerische
Mathematik, Vol. 11, 1968, pp. 57-76.

25. Hestenes, M. R. and Stiefel, E. "Methods of Conjugate
Gradients for Solving Linear Systems," Journal
of Research, National Bureau of Standards,
Vol. 49, 1961, pp. 212-221.

26. Shah, B. V.; Buehler, R. J.; and Kempthorne, o. "Some
Algorithms for Minimizing a Function of Several
Variables," Journal of the Society of Industrial
Mathematics, Vol. 12, 1964, pp. 74-92.

27. Powell, M. J. D. "An Efficient Method for Finding the
Minimum of a Function of Several Variables
Without Calculating Derivatives," The Computer
Journal, Vol. 3, 1964, pp. 155-162.

28. Huang, H. Y. "Numerical Experiments on Quadratically
Convergent Algorithms for Function Minimization,"
Journal of Optimization Theory and Applications,
Vol. 6, 1970, pp. 269-282.

29.

30.

31.

32.

33.

McCormick, G. P. The Rate of Convergence of the Reset
Davidon Variable Metric Method. Madison,
Wisconsin: The Un1vers1ty of Wisconsin,
Mathematics Research Center, United States Army,
MRC Technical Summary Report No. 1012, 1969.

Broyden, c. G. "Quasi-Newton Methods and Their
Application to Function Minimization," Mathematics
Computations, Vol. 21, 1967, pp. 368-381.

Goldfarb, D. "Sufficient Conditions for the Conver
gence of a variable Metric Algorithm," Optimi
zation, ed. by R. Fletcher. New York: Academic
Press, 1969, pp. 273-281.

Buchele, Donald R. "Damping Factor for the Least
Squares Method of Optical Design," Applied
Optics, Vol. 7, No. 12, pp. 2433-2435.

zangwill, Willard I. Nonlinear Programming: A
Unified Aftproach. Englewood Cliffs, New Jersey:
Prentice- all, Inc., 1969.

34. Colville, A. R. A Comparative Study of Nonlinear
Programming Codes. New York: IBM New York
Scientific Center Report No. 320-2949, 1968.

35. Cox, R. A. Comparison of the Performance of Seven
0 timization Al orithms on Twelve Unconstrained
Optimizat~on Prob ems. Pittsburgh: Gulf
Research and Development Company Ref. 1335CN04,
1969.

36.

37.

38.

39.

40.

41.

Holzman, A. G. Comparitive Analysis of Nonlinear
Programming Codes with the Weisman Algorithm.
Pittsburgh: University of Pittsburgh Space
Research Coordinate Center Report No. 113, 1969.

Leon, A. "A Comparison Among Eight Known Optimizing
Procedures," Recent Advances in Optimization
Techniques, ed. by A. Lavi and T. P. Vogl.
New York: John Wiley and Sons, 1966, pp. 23-46.

Murtagh, B. A. and Sargent, R. W. H. "Computational
Experience with Quadratically Convergent
Minimization Methods," The Computer Journal,
Vol. 13, No. 2, 1970, pp. 185-194.

Shanno, D. F. "Parameter Selection for Modified
Newton Methods for Function Minimization,"
SIAM Journal of Numerical Analysis, Vol. 7,
No. 3, 1970, pp. 368-372.

Witte, B. F. and Holst, W. R. "Two New Direct
Minimum Search Procedures for Functions of
Several variables," submitted for presentation
at the 1964 Spring Joint Computer Conference
in Washington, D. c.

Beale, E. M. L. On an Iterative Method for Finding
a Local Minimum of a Function of More Than
One Variable. Princeton: Technical Report 25,
Stat1st1cal Techniques Research Group, Princeton
University, 1958.

74

42. Powell M. J. D. "An Iterative Method for Finding
Stationary Values of a Function of Several
variables," The Computer Journal, Vol. 5, p. 147.

43. Pearson J. D. On Variable Metric Methods of
Mi~imization. McLean, Virginia: Research
Analys1s Corporation, Technical Paper No.
RAC-TP-302, 1968.

44. Cragg, E. E. and Levy, A. V. "Study on a Supermemory
Gradient Method for the Minimization of Func
tions," Journal of Optimization Theory and
Application, Vol. 4, No. 3, 1969, pp. 191-205.

75

VITA

Larry W. Cornwell was born on July 29, 1941, in

Quincy, Illinois. He received his secondary education at

Unity High School in Mendon, Illinois. After completing

four years at Culver-Stockton College in Canton, Missouri,

he received his Bachelor of Arts degree with a major in

mathematics.

From September 1963 to June 1965, he attended

Southern Illinois University in Carbondale, Illinois,

whereupon he received his Master of Science in Education

degree with a major in mathematics. During the academic

year 1963-1964, he taught in the Mathematics Department as

a graduate assistant. He taught mathematics at Murphys

boro High School in Murphysboro, Illinois during the

academic year 1964-1965.

76

From 1965 to 1966, he was an Instructor of Mathematics

at Forest Park Community College in St. Louis, Missouri.

He then served as Assistant Professor and Head of the

Mathematics Department at Culver-Stockton College from

1966 to 1969. During the summers of 1967, 1968, and 1969,

he was granted an N.S.F. Fellowship to attend a Computer

Science Institute at the University of Missouri-Rolla.

From June 1969 to September 1971, he attended the

University of Missouri-Rolla. During the academic year

1969-1970, he taught in the Computer Science Department

as a graduate assistant. The following year he was

granted a N.S.F. Science Faculty Fellowship. He is

presently employed as Assistant Professor of Mathematics

at Western Illinois University in Macomb, Illinois.

On June 15, 1963 he was married to the former

Sara K. Finke of Quincy, Illinois. They have three

children, Brent, Krista, and Michelle.

77

APPENDIX A

Description of Problems 1-8

Problem 1 (Rosenbrock's Function)

where the minimum f = 0 is found at the point {1.0,1.0).

Problem 2 (Cube)

where the minimum f = 0 is found at the point (1.0,1.0).

Problem 3 (Beale's Function)

f = (1.5- x 1 {1- x 2)) 2 + {2.25- x 1 {1- x 22 >> 2

3 2 + (2.625- x 1 {1- x 2))

where the minimum f = 0 is found at the point {3.0,0.5).

Problem 4 {Powell's Four Parameter Function)

f = {x1 + 10x2 >2 + 5{x3

+ 10{x1 - x 4) 2

where the minimum f = 0 is found at the point

(O.O,O.O,O.O,O.O).

78

Problem 5

Same function as problem 4.

Problem 6

Same function as problem 4.

Problem 7 (Wood's Function)

f = lOO(x2 - xl 2)2 + (1 2 x 1) + 90(x4 x3 2)2

+ (1 - x3)2 + 0.2(x2
2 - 1) + 0.2(x4 - 1)2

+ 9.9(x2 + x 4 - 2)2

which is equivalent to the more familiar form

2 2 f = 100(x2 - x 1)
2

+ (1 - x 1) + 2 2 90(x4 - x 3)

+ (1 - x3)2 + 2 10.l(x2 - 1)

+ 19.8(x2 - 1) (x 4 - 1)

+ 10.l(x4 - 1) 2

where the minimum f = 0 is found at the point

(1.0,1.0,1.0,1.0).

Problem 8 (Miele Function)

X
f = (e 1 -

8
+ xl

x 2) 4 + 100(x2 - x 3) 6 + tan4 (x 3 - x 4)

+ (x4 - 1) 2

where the minimum f = 0 is found at the point

(0.0,1.0,1.0,1.0).

79

APPENDIX B

FORTRAN Flow Chart of One-Dimensional Search

In the flow chart below, the following variables and

subprogram are used

FUNCT - Function subprogram which determines the value

of the function, F, for the current value of

the vector X.

F - Current value of the function.

FOLD - Minimum value of the function.

XHOLD - Vector of ~-values at the beginning of the

conjugate direction algorithm.
4

X - Vector of current x-values.

DLTAX - Vector indicating direction determined by the

conjugate direction algorithm.

IDIREC - Flag. If IDIREC = 0, search is adding multiples

of DLTAX. If IDIREC = 1, search is adding

increments of DLTAX.

FACT - Amount of DLTAX being added to base point XHOLD.

SAVEI - Holds last successful value of FACT.

80

,-- - _.,.._--
I

'------~----

r ___ _. ___ _

I

FACT + 1. + 1./I1

I

I,-----------
1 I

•4
I •~~~----------~~-----------------,

1 X(I) + XHOLD(I) + FACT*DLTAX(I)
I

I

1 "- -- - - ~ - - - - - - ID IREC + 1
I

'

,---- ~--
I

I

'
\....-----~-----

FACT.EQ.1.0R.FACT.EQ.2

F

81

APPENDIX C

Computational Details of the Operations Count

The procedure described in chapter V, section c is

applied to the eight problems described in appendix A.

The values for IT and FE used below are the most optimal

values for each particular algorithm found in tables 1-16.

The following abbreviations are used: multiplication and

division, MD; addition and subtraction, AS; exponentiation

subprogram, EXP; tangent subprogram, TAN; and cosine

subprogram, COS. In evaluating gradients and derivatives,

operations are only counted for terms which have not

previously been computed in the function and derivative

evaluation earlier.

Problem 1

a) Evaluation of function

b)

MD = 4
AS = 3

The gradient is

g = [
-400x1 (x2 - x 1

2 >

200(x2 - x 1 2 >

Evaluation of gradient

MD = 4
AS = 1

Total number of operations for function and

gradient

MD = 8
AS = 4

82

c) The H matrix is

[-20x1

-1 ~OJ
For construction of H

MD = 1
AS = 0

For HTH and HTh
. 0

MD = 8
AS = 3

For scaling T H H and Th H 0

MD = 3
AS = 0

Total number of operations for construction and

1 . f HTH and HT~hO sea 1.ng o

MD = 12
AS = 3

FR Alsorithm

MD = 8FE =
AS = 4FE =

DFP Alsorithm

MD = 8FE =
AS = 4FE =

LMC Alsorithm

MD = 12IT +
AS = 3IT +

GOOP Alsorithm

MD = 2IT +
AS = 2IT +

8(64) = 512
4(64) = 256

8(60) = 480
4(60) = 240

4FE = 12(23)
3FE = 3(23)

4FE = 2 (28)
3FE = 2(28)

+ 4 (8 8) = 628
+ 3 (8 8) = 333

+ 4(115) = 516
+ 3(115) = 401

83

Problem 2

a) Evaluation of function

b)

MD = 5
AS = 3

Evaluation of gradient

MD = 4
AS = 1

Total number of operations for function and

gradient

MD = 9
AS = 4

c) The matrix H is

r~:ox/ ~OJ
For construction of H

MD = 1
AS = 0

HTH T-+
For and H ho

MD = 8
AS = 3

HTH and
T-+

For scaling H ho

MD = 3
AS = 0

Total number of operations for construction and
T T-+

scaling of H H and H h 0

MD = 12
AS = 3

84

FR Algorithm

MD = 9FE = 9 (44) = 395
AS = 4FE = 9(44) = 176

DFP Alsorithrn

MD = 9FE = 9(51) = 459
AS = 4FE = 4(51) = 204

LMC Alsorithrn

MD = 12IT + 5FE = 12(6) + 5(20) = 172
AS = 3IT + 3FE = 3 (6) + 3(20) = 78

GOOP Alsorithrn

MD = 2IT + 5FE = 2 (12) + 5(65) = 349
AS = 2IT + 3FE = 2 (12) + 3(65) = 219

Problem 3

a) Evaluation of function

MD = 8
AS = 8

b) The gradient is

-2(1.5- x 1 (1- x 2))(1- x 2 >
2 2

+

-2(2.25- x 1 (1- x 2))(1- x 2)

-2(2.625- x 1 (1- x 23» (1- x 23 >
g =

2(1.5- x 1 (1- x 2 >>x1
2 + 4(2.25 - x 1 (1- x 2)) x1x2

3 2 + 6(2.625- x 1 (1- x 2))x1 x 2

Evaluation of gradient

MD = 12
AS = 4

Total number of operations for function and

gradient

MD = 20
AS = 12

85

86

c) The matrix H is

-1 + x2 xl

-1 + x2
2 2x1x 2

-1 + x2
3 3x1x 2

2

For construction of H

MD = 4
AS = 0

For HTH and
T-+

H h 0

MD = 12
AS = 8

For scaling HTH and HTh
0

MD = 3
AS = 0

Total number of operations for construction and
T T-+

scaling of H H and H ho

MD = 19
AS = 8

FR Algorithm

MD= 20FE = 20(22) = 440
AS = 12FE = 12 (22) = 264

DFP Algorithm

MD = 20FE = 20(24) = 480
AS = 12FE = 12(24) = 288

LMC Algorithm

MD= 19IT + 8FE = 19(5) + 8(15) = 215
AS = SIT + SFE = 8 (5) + 8(15) = 160

GOOP Alsorithm

MD = 3IT + SFE = 3(10) + 8(50) = 430
AS = 3IT + SFE = 3(10) + 8(50) = 430

Problem 4

a) Evaluation of function

MD = 10
AS = 7

b) The gradient is

-+
g =

2(x1 + 10x2) + 40(x1 - x 4) 3

3 20{x1 + 10x2) + 4{x2 - 2x3)

3 10{x3 - x 4) - 8{x2 - 2x3)

3 -10{x3 - x 4) - 40(x1 - x 4)

Evaluation of gradient

MD = 8
AS = 4

Total number of operations for function and

gradient

MD = 18
AS = 11

c) The matrix H is

1 10 0 0

0 0 Is Is

0 2{x2 - 2x3) -4{x2 - 2x3) 0

2llO(x1 - x4) 0 0 -2110{x1 -

For construction of H

MD = 2
AS = 0

HTH T-+
For and H h 0

MD = 44
AS = 33

T T-+
For scaling H H and H ho

MD = 16
AS = 0

87

x4)

Total number of operations for construction and
T T:+ scaling of H H and H ho

MD = 62
AS = 33

FR Algorithm

MD = 18FE = 18(123) = 2214
AS = llFE = 11(123) = 1353

DFP Alg:orithm

MD= 18FE = 18(100) = 1800
AS = llFE = 11(100) = 1100

LMC Algorithm

MD= 62IT + lOFE = 62(15) + 10(57) = 1500
AS = 33IT + 7FE = 33(15) + 7 (57) = 894

GOOP Algorithm

MD= 4IT + lOFE = 4(16) + 10(120) = 1264
AS= 4IT + 7FE = 4(16) + 7(120) = 904

Problem 5

Problem 5 has the same function, gradient, and H

matrix as problem 4. Because the starting points differ

the number of function evaluations, FE, and the number of

iterations, IT, also differ.

FR Algorithm

MD = 18FE = 18(121) = 2178
AS = llFE = 11 (121) = 1331

DFP Algorithm

MD = 18FE = 18(96) = 1728
AS = llFE = 11(96) = 1056

88

LMC Alsorithm

MD = 62IT + lOFE = 62(9) + 10(27)
AS = 33IT + 7FE = 33(9) + 7 (27)

GOOP Alsorithm

MD = 4IT + lOFE = 4(14) + 10 (91)
AS = 4IT + 7FE = 4(14) + 7 {91)

Problem 6

Problem 6 is the same as problem 4.

FR Algorithm

MD = 18FE = 18{57) = 1026
AS = llFE = 11(57) = 627

DFP Algorithm

MD = 18FE = 18(54) = 972
AS = llFE = 11{57) = 594

LMC Algorithm

MD = 62IT + 10FE = 62(6) + 10 (18)
AS = 33IT + 7FE = 33(6) + 7(18)

GOOP Algorithm

MD = 4IT + 10FE = 4(8) + 10{61)
AS = 4IT + 7FE = 4(8) + 7(61)

Problem 7

a) Evaluation of function

MD = 13
AS = 13

89

= 828
= 486

= 966
= 693

= 552
= 324

= 642
= 459

b) The gradient is

-400x1 (x2 - X 2) 1
2 200(x2 - x 1) +

-+ 19.8(x2 + x4
g =

-360x3 (x4 - X 2)
3

2 180(x4 - x 3) +
19.8(x2 + x4

Evaluation of gradient

MD = 9
AS = 6

- 2(1 - xl)

0.4(x2 - 1) +
- 2)

- 2(1- x3)

0.4(x4 - 1) +
- 2)

Total number of operations for function and

gradient

MD = 22
AS = 19

c) The matrix H is

-20x 1 10

-1 0

0 0

0 -1

10.2 0

0 0

0 19.9

For construction

MD = 2
AS = 0

HTH T-+
For and H ho

MD = 77
AS = 66

0 0

0 0

-2/90x3 190

0 0

0 0

0 /0.2

0 19.9

of H

90

For scaling HTH and HTho

MD = 16
AS = 0

Total number of operations for construction and
T T+

scaling of H H and H ho

MD = 95
AS = 66

FR Algprithm

MD = 22FE = 22(61) = 1342
AS = 19FE = 19 (61) = 1159

DFP Alg:orithm

MD = 22FE = 22(129) = 2838
AS = 19FE = 19 (129) = 2451

LMC Alg:orithm

MD= 95IT + 13FE = 95(53)
AS = 66IT + 13FE = 66(53)

GOOP Alg:orithm

MD = 7IT + 13FE = 7(50)
AS = 7IT + 13FE = 7(50)

Problem 8

a) Evaluation of function

MD = 12
AS = 4
EXP = 1
TAN = 1

+ 13(208) = 7739
+ 13(208) = 6202

+ 13(389) = 5407
+ 13(389) = 5407

91

b) The gradient is

c)

4(exl- x }3exl + Bx .7
2 1

-4(exl- x 2) 3 + 600(x 2 - x 3) 5

-+
g =

4tan3 (x3 - x 4)

cos 2 (x3 - x 4)

-4tan3 (x3 - x 4)
+ 2 (x4 - 1)

cos 2 (x3 - x 4)

Evaluation of gradient

MD = 14
AS = 4
cos = 1

Total number of operations for function and

gradient

MD = 26
AS = 8
EXP = 1
TAN = 1
cos = 1

The matrix H is

2(exl X
- x 2)e 1

0 30(x2

0 0

X
- x2) 2(e 1 0

- x3)
2

-30(x2 - x3)
2

2tan(x3 - X) 4 -2tan(x3

0

0

- x4)

cos 2 (x3 - x4)
2 cos (x3 - x4)

4x1
3 0

0 0

For construction of H

MD = 7
cos = 1

T T-+
For H H and H h 0

MD = 55
AS = 44

0 0

0 1

92

93

HTH T-+ For scaling and H h 0

MD = 16

Total number of operations for construction and
T T-+ scaling of H H and H h 0

MD = 78
AS = 44
cos = 1

FR Alsorithrn

MD = 26FE = 26(117) = 3042
AS = 8FE = 8 (117) = 936
EXP = lFE = 1(117) = 117
TAN = lFE = 1(117) = 117
cos = lFE = 1(117) = 117

DFP Alsorithrn

MD = 26FE = 26(180) = 4680
AS = 8FE = 8(180) = 1440
EXP = lFE = 1(180) = 180
TAN = lFE = 1(180) = 180
cos = lFE = 1 (180) = 180

LMC Alsorithrn

MD = 78IT + 12FE = 78(20) + 12 (7S) = 2460
AS = 44IT + 4FE = 44(20) + 4 (7S) = 1180
EXP = OIT + 1FE = 1 (7S) = 7S
TAN = OIT + lFE = 1 (7S) = 7S
cos = liT + OFE = 1(20) = 20

GOOF A1sorithrn

MD = SIT + 12FE = S{lO) + 12(80) = 1010
AS = SIT + 4FE = S{lO) + 4 (80) = 370
EXP = OIT + lFE = 1 (80) = 80
TAN = OIT + lFE = 1 (80) = 80
cos = OIT + OFE = 0

94

APPENDIX D

Stewart's Results for Problems 1 and 5*

TABLE 18

A Parabolic Valley

Iteration Number of

No. function
evaluations

0 1 2.4 101
2 13 3.8 10°
4 26 2.9 100
6 39 1.9 10°
8 56 7.1 10-l

10 70 2.9 10-l
12 83 1.4 10-l
14 97 5.4 10-2
16 111 1.8 10-2
18 124 1.3 lo-3
20 132 1.7 10-6
22 145 2.8 lo-10
23 152 1.0 10-11
24 163 9.0 lo-12
25 169 3.3 10-12
26 174 3.3 10-12

*These tables have been reproduced from Stewart's paper [9].

95

TABLE 19

A Function of Four Variables

Iteration Number of

No. function
evaluations

0 1 2.2 10 2
2 21 1.9 101
4 37 s.s lo-2
6 54 1.1 lo- 2
8 69 3.4 lo-3

10 83 2.7 10-3
12 104 2.8 lo-5
14 122 1.8 10-7
16 139 1.1 lo-8
18 158 8.8 10-9
19 168 8.8 10-9

41 407 1.1 10-10

	An acceleration technique for a conjugate direction algorithm for nonlinear regression
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093
	Page0094
	Page0095
	Page0096
	Page0097
	Page0098
	Page0099
	Page0100
	Page0101
	Page0102
	Page0103

