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ABSTRACT 
~ ,4 

A linear acceleration technique, LAT, is developed 

ii 

which is applied to three conjugate direction algorithms: 

(1) Fletcher-Reeves algorithm, (2) Davidon-Fletcher-Powell 

algorithm and (3) Grey's Orthonormal Optimization Procedure 

(GOOP). Eight problems are solved by the three algorithms 

mentioned above and the Levenberg-Marquardt algorithm. 

The addition of the LAT algorithm improves the rate of 

convergence for the GOOP algorithm in all problems 

attempted and for some problems using the Fletcher-Reeves 

algorithm and the Davidon-Fletcher-Powell algorithm. 

Using the number of operations to perform function 

and derivative evaluations, the algorithms mentioned 

above are compared. Although the GOOP algorithm is 

relatively unknown outside of the optics literature, it 

was found to be competitive with the other successful 

algorithms. A proof of convergence of the accelerated 

GOOP algorithm for nonquadratic problems is also developed. 
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I. INTRODUCTION 

In the study of nonlinear optimization, algorithms 

have been developed to optimize two types of problems: 

1. Unconstrained Optimization 
+ 

Optimize f(x) where f is a scalar and 
+ + 
x is ann-vector. f(x) is a linear or 

+ 
nonlinear function of the vector x. 

2. Constrained Optimization 
+ 

Optimize f(x) where f is a scalar and 
+ 
x is an n-vector subject to the constraint 
+ + 
q(x) = 0 (equality can be an inequality) 

+ 
where q is a p-vector and n > p. 

+ + 
and q(x) are linear or non-linear 

+ 
functions of the vector x. 

+ 
f (x) 

This thesis examines the unconstrained optimization 

problem and a particular class of algorithms, called 

conjugate direction algorithms, used to solve the uncon-

strained optimization problem. Techniques used in 

several successful unconstrained optimization algorithms 

are combined and applied to the conjugate direction 

algorithms. The new algorithm improves the convergence 

rate of Grey's Orthonormal Optimization Procedure, GOOP, 

and improves the convergence rate for some problems of 

the Fletcher-Reeves and Davidon-Fletcher-Powell algorithms. 
+ + + 

For linear programming problems (f(x) and q(x) are 
+ 

linear in x), an algorithm, called the simplex method, 

1 



has been developed which converges to the optimal 

solution in a finite number of steps or indicates an 

unbounded or infeasible solution. For nonlinear 

programming problems, no algorithm has been developed 

which will converge in a finite number of steps for all 

problems. Many algorithms have been developed for the 

nonlinear problem which are quite successful for 

various types of problems, but the difficulty may still 

exist that either the algorithm will diverge or will 

converge so slowly that it is useless for some problems. 

One method of constrained optimization, called 

SUMT, is based on transforming a given constrained 

minimization problem into a sequence of unconstrained 

minimization problems. This transformation is 

accomplished by adding an appropriate auxiliary 

function of the problem constraints to define a new 

objective function whose minima are unconstrained in 

the domain of interest. By gradually removing the effect 

of the constraints in the auxiliary function by controlled 

changes in the value of a parameter, a sequence or family 

of unconstrained problems is generated that have solutions 

which converge to a solution of the original constrained 

problem. Because the SUMT algorithm is quite widely used 

for the constrained optimization problem, the need for a 

practical unconstrained optimization algorithm is evident. 

2 



In classifying the various unconstrained optimization 

algorithms for the nonlinear programming problem, one 

method would be: a) direct search methods, b) methods 

using first partial derivatives, and c) methods using 

second partial derivatives. The distinction between the 

algorithms listed above can be explained using the 

truncated Taylor series: 

where 

and 

f(~ 

+T 
g 

G 

= 

= 

+ 
-+ 

~X) 

a 2f 
a2xl 

a 2f 

ax2axl 

-+ f(x) + -+TA-+ g uX 

~) 
. • • , Clxn 

a 2f 
axlax2 

a 2f 0 

a 2x 2 

+ 

a 2f 
axlaxn 

a 2f 

ax2axn 

( 1.1) 

( 1. 2) 

( 1. 3) 

+ The vector ~x is the step needed to move from the point 
+ -+ + 
x to the next point x + ~x. 
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The direct search methods use only the values of 

the function and then make use of some other technique 

to determine a successful step toward the optimal point. 

Two well known algorithms which are classified as direct 

search algorithms are attributed to Hooke and Jeeves [1] 

and Rosenbrock [2]. 

By methods using first derivatives, it is meant that 

in the algorithm, the first partial derivatives, g, are 

provided or approximated. Many conjugate direction 

algorithms fit into this classification. The GOOP 

algorithm, first described by Grey [3,4] and later 

described by Pegis, Grey, Vogl, and Rigler [s] has been 

proven to be a conjugate direction algorithm. The 

conjugate-gradient algorithm by Fletcher and Reeves [6] 

also fits into this classification. The variable metric 

algorithm due to Davidon [7] and later described by 

Fletcher and Powell [8] as the conjugate direction 

algorithm uses the first partial derivatives. Stewart's 

algorithm [9] is a version of Davidon's algorithm but 

approximates the first partial derivatives by differences. 

Huang [10] has shown that several of the existing 

conjugate-gradient algorithms and variable metric 

algorithms can be described in a generalized algorithm. 

Methods using second partial derivatives, use 

the matrix of second partial derivatives, G, or use 

an approximation of the second partial derivatives. 

The Newton-Raphson algorithm is an "old method" which 

4 



uses the second partial derivatives, G. The "extended 

Newton-Raphson" algorithm uses a one-dimensional search 

and has been very successful in practice. 

One other possible way of classifying nonlinear 

programming algorithms is the form of the objective 
-+ 

function f(x). 
-+ 

If it is necessary to write the objective 

function, f(x), in the form of sum of squares, then 

-+ 

5 

f (x) 
-+ -+ T-+ -+ 

= ~h(x) h(x) (1.4) 

where 
-+ -+ T 
h (x) = 

-+ -+ 
[h1 (x) , h 2 (x) , 

-+ 
hm (x) J (1.5) 

This classification of algorithms is sometimes referred to 

as nonlinear least squares or nonlinear regression. Let 
-+ x 0 be the nominal initial value of the parameter vector 

-+T 
and let !:::.x = ••.• ' !:::.xn) be the vector of 

differential corrections to be found. Then if we expand 
-+ -+ 

the functions, h(x), in a Taylor series and truncate 

after the second term, we find: 

-+ -+ -+ 

h (x) + H!:::.x (1.6) 

-+ 
where h 0 is the m vector of values of the errors at 
-+ -+ 
x = x 0 and H is an rn x n matrix of partial derivatives of 

the error function with respect to the parameters. Next 

we substitute equation (1.6) into equation (1.4): 

-+ 
f (x) = + + (1.7) 



An equation for ~~ is found by setting of = 
a~~ 

0 which yields 

6 

HTH~~ + = 0 (1.8) 

or 
-+ 

~X = (1.9) 

This procedure has origin back to Gauss [11], but in 

practice the procedure did not converge. A modification 

proposed by Hartley [12] helped to improve the convergence 

rate of the Gauss procedure. Another extension of the 

Gauss method was suggested by Levenberg [13] and later was 

developed by Marquardt [14]. Other variations have 

recently been presented by Jones [15] and Meyer [16]. 

All other algorithms previously mentioned which do 
-+ 

not require f(x) to be in a form of sum of squares are 

still capable of solving the sum of squares problem. Thus, 

the nonlinear least squares or nonlinear regression algo-

rithms are more restrictive type algorithms than those 

which minimize a general function, but are more effective 

for regression. 

One purpose of this thesis is to examine the conjugate 

direction algorithms which have the property Q, i.e. the 
• -+ 

algorithms which will converge for a quadrat1c f(x) inn 

steps, and to apply a linear acceleration technique to 

these algorithms to improve the rate of convergence. In 

this paper it is suggested that a pattern type search move 

be added to the conventional successful reset conjugate 

direction algorithms. The new algorithm consists of using 

a conjugate direction algorithm for n iterations, making a 
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pattern move followed by a one-dimensional search in the 

pattern move direction, resetting the conjugate direction 

algorithm, and then repeating the cycle. Computational 

results are provided for several traditional test problems 

which indicate that the convergence rate is improved with 

the insertion of the linear acceleration technique. 

The GOOP algorithm, mentioned above, is one algorithm 

which has received very little attention in current liter-

ature.* The algorithm was first developed by Grey for the 

design of imaging optics and later described by Pegis, Grey, 

Vogl, and Rigler [s] with application to filter design. 

Broste and Lavi [17] presented a detailed description of the 

algorithm, proved that the algorithm is a conjugate direc-

tion algorithm, and applied it to control problems. 

Although the Broste and Lavi paper made major contributions 

in mathematically describing the GOOP algorithm and proper-

ties of the algorithm, the numerical results recorded were 

misleading. In comparing algorithms, their term iteration 

did not have the same meaning for all methods. 

A further purpose of this paper is to show that the 

GOOP algorithm is convergent in the nonquadratic case and 

to present computational results which compare the GOOP 

algorithm with other successful algorithms. 

*Grey's method appears in production programs of several 
military and industrial laboratories; e.g. Aerospace 
Corporation, Frankfort Arsenal, White Sands Missle Range, 
Westinghouse Research Laboratories, and several Japanese 
optics companies. 



II. REVIEW OF LITERATURE 

Although the field of nonlinear programming is 

relatively new, the number of algorithms that have been 

suggested to solve the unconstrained optimization problem 

is quite large. The purpose of this review of literature 

is to describe those algorithms which have been success­

fully used in the field. 

Several papers have been presented which attempt to 

survey the successful algorithms. Two recent articles 

in this category are by Powell [18] and Fletcher [19] . 

Papers have also been presented which attempt to unify 

several successful algorithms into a generalized form. 

Broyden [20] and Zeleznik [21] presented unified deriva­

tions of the Newton-Raphson or quasi-Newton methods. 

Huang [10] and Adachi [22] describe generalized variable­

metric algorithms. 

A. Direct Search Algorithms 

The direct search algorithms are algorithms which do 

not calculate derivatives, but examine the objective 

function for directions indicating a decrease in f. The 

simplest direct search technique is to revise the 

variables of the objective function one at a time. In 

valley searching terminology, it has been found that this 

process generates estimates that fall to the solution, and 

most of the computer time is spent in following the valley. 

8 



Rosenbrock [2] noticed that the points in a valley 

were often nearly collinear and tried to identify the 

direction of the valley in order to use it as a search 

direction. Initially the variables are changed one at a 

time as in the process mentioned above, so that on the 

first iteration the initial estimate x 
0 

xo + /..ldl; this estimate is changed to 
-+ 

is changed to 

-+ -+ 

xo + /..ldl + A. d , and so on, 
2 2 

until the complete iteration 

replaces the initial solution by the estimate: 

-+ n -+ 

9 

x 0 + 2: A.. d. • 
. 1 ~ ~ 
~= 

(2.1) 

Before starting a new iteration, the set of n search 

directions is changed, and the first search direction is 

replaced by the vector: 

= 
n 
2: 

i=l 

-+ 
/...d. 
~ ~ 

(2.2) 

which is the change in the estimate of the solution that 

has been calculated. The remaining new search directions 

are obtained by an orthogonalization process, and then the 

iterative process is repeated. 

The direct search algorithm developed by Hooke and 

Jeeves [1] also has been found to be successful. An 

iteration of the Hooke and Jeeves algorithm is in two 

parts, which are called "exploratory move'' and "pattern 

move". The exploratory move is applied first, which is 



really a fine adjustment of the values of the variables. 

Specifically, small steps are taken along each of the 

coordinate directions in order to decrease the objective 
+ + 

function; let the resultant point be, z. If f(z) is less 
+ + 

than f(x ), then z becomes the starting approximation for 
0 

the next iteration, but otherwise the step is treated as 

a failure. An exploratory move is then made for the next 

variable until the n-coordinate directions are explored. 

The pattern move is then applied, and it changes the 
+ 

current estimate of the position of solution, z, by the 

total change made in the last iteration; let the 

resultant point be y. From this point a new exploratory 

move is made. The pattern moves can take long steps 

along valleys, while the exploratory phase can move down 

the side of a valley and identify its direction. The 
+ + 

fact that f(y) is permitted to be greater than f(x ) is 
0 

the special feature that causes the Hooke and Jeeves 

algorithm to be particularly suitable for optimizing 

objective functions that have curved valleys. 

B. Algorithms Using First Derivatives 

10 

The literature is abundant with algorithms using first 

partial derivatives or approximations of the first partials. 

The successful algorithms which use first partials will 

be classified into one of the following types of algorithms: 

1) steepest descent algorithms, 2) Gauss algorithms, 



3) conjugate direction algorithms, and 4} rank-one 

algorithms. 

1. Steepest Descent Algorithms 

The steepest descent algorithm was first described 

by Cauchy [23] in 1847. If we consider a nonlinear 
-+ 

11 

objective function f(x}, the algorithm will move from the 
-+ • -+ 

present point xi to the next po1nt xi+l by means of the 
-+ 

step ~xi, i.e., 

-+ 

-+ 
X 
i+l 

-+ 
= X. + 

1 

The step size ~x. can be written 
1 

-+ 

-+ 
~X. 1 1+ = 

-+ 
~X. 

1 

where p., ann-vector, denotes the search direction and 
1 

a., a scalar, is the step size. Then 
1 

and 
-+ 

-+ 
= X. 

1 

-+ 
f(x ) 

i+l 
= f(x. 

1 

-+ 
a.p. 

1 1 

-+ 
a. P·) 

1 1 

( 2. 3} 

(2.4) 

(2.5) 

(2.6) 

If we let pi be the gradient vector, gi' of the function f 
-+ 

evaluated at the point xi, we determine this direction 
-+ -+ 

vector, pi or gi, and perform a one-dimensional search 

-+ -+ minimizing f{xi- aigi} to find the optimum step size ai. 

It can be proven that this algorithm has the descent 

property, but it may do so in practice very slowly after 
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some rapid inttial progress. Slow convergence is 
~ 

particularly likely when the f(x) contours are narrow 

and curved, and it happens when the path of steepest des-

cent zigzags slowly down a narrow ridge, each iteration 
~ 

bringing only a slight reduction in f(x). Forsythe's 

paper [24] pr~sented an explaination for this type of 
-+ 

behavior. It was shown that the iterates xk converge to 

the null vector by asymptotically alternating between two 

directions. ~he even iterates are collinear vectors. 

The odd iterates are also collinear in another direction. 
-+ 

Thus, the con~ergence of f(xk) to the optimal value is 

linear and no faster than linear. 

2. Gauss Algorithms 

The Gauss algorithm [11] was first described in 1809. 
~ 

The equation (1.8} is solved for ~x: 

(2.7) 

-+-
Once the step, ~x, is determined, then the following step 

is made: 

= + (2.8) 

-+ Then the procedure is repeated using the new estimate x 1 

in equations (2.7) and (2.8). Unfortunately, this 

sequence ofteh diverges when applied to practical problems. 

To avoid convergence to a stationary point that is 

not a minimwn, and to ensure that an iteration does not 



increase the value of the objective function, Hartley's 

Modified Gauss-Newton algorithm [12] was developed. 

Hartley performs the linearization process by solving the 
+ 

13 

system of linear equations (2.7) to get ~x for a direction. 

Consider the function 

+ + 
f(A) = f(x + A~X) (2.9) 

for 0 ~A~ 1 and let A' be the value of A for which f(A) 

is a minimum on the interval 0 < A < 1. Then let the 

vector 

+ 
y = 

be the actual step taken. 

+ 
X + (2.10) 

One method which has been quite successfully used, 

which has the property of using only first derivatives, 

is the Levenberg-Marquardt algorithm [13,14]. Marquardt 

developed a compromise between the Gauss algorithm and the 

steepest descent algorithm. In this algorithm he defines 

a procedure for scaling the system of linear equations 

comparable with equations (2.7). We will refer to this 

system in the form 

+ + 
A*o* = g* . (2.11) 



-+ 
In the algorithm, when the iterated value, x., 

l. 

becomes available, we solve the equation: 

-+ 

14 

(A* + 
i 

.A.r>o*. = 
-+ 
g*. 

l. 
(2.12) 

J l. 

-+ -+ -+ 
for o* 

i 
The o*i is scaled giving oi. Then the new trial 

vector is given by 

-+ -+ -+ 
X = X + 0 
i+l i i 

Before solving equation (2.12), a value of .A is 
j 

selected and it must be such that 

-+ -+ 
f(x ) < f(x ) 

i+l i 
-+ 

Marquardt showed that unless f(x.) is a minimum, a 
l. 

(2.13) 

(2.14) 

sufficiently large value of .A. can always be chosen such 
J 

that the inequality (2.14) is true. Some form of trial 

and error is needed to find a value of .A. which will lead 
J 

to satisfaction of the inequality of (2.14). 

Through use of this algorithm we always obtain, with-

in a factor determined by .A, the maximum neighborhood in 

which the linearized model gives an adequate representation 

for our purposes. The algorithm shares with the steepest 

descent algorithm the ability to converge from an initial 
-+ 

guess, x , which may be outside the region of convergence 
0 

of other methods. The algorithm also shares with the Gauss 

algorithm the ability to close in rapidly on the converged 
-+ 

value of x, once the vicinity of this value is reached. 
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Thus the algorithm combines the best features of the Gauss 

and steepest descent algorithms while avoiding their most 

serious limitations. 

3. Conjugate Direction Algorithms 

The conjugate direction algorithms may be characterized 

as algorithms which minimize the objective function for 

the k mod (n) iteration in the k-dimensional subspace 

determined by k conjugate direction vectors. These 

algorithms use or approximate the first partial derivatives 

and use strategies that would yield the exact answer if 
~ 

f(x) were a quadratic function inn or less steps, 

property Q. These properties do not guarantee fast 
~ 

convergence when the higher derivatives of f(x) are 

nonzero, but in practice the algorithms are extremely 

successful, although theoretical reasons for the success 

have not as yet been completely established. 
~ ~ 

The directions p and q in the space of the variables 

are conjugate with respect to the positive definite 

quadratic objective function: 

~ 

~(x) 
~T~ ~T ~ 

= c + a x + x Gx (2.15) 

if they are both nonzero, and if they satisfy the equation 

~T ~ 
p Gq = 0 (2.16) 



The matrix G is the n x n matrix of second partial de-
+ + 

rivatives with respect to the x-vector, a is an n-vector 

of first partials, and c is a scalar. The reason they are 
+ 

useful is that if we search in the direction p, and find 
+ + 

the point xi that minimizes ~(xi)' and then we search from 
+ + 
x. in the conjugate direction q to reach the new estimate 

1 
+ 
xi+l' then the new value of the objective function cannot 
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be decreased by immediately searching again in the direction 
+ 
p. We can now calculate the exact minimum of the quadratic 

+ 
function ~(x) by the above process inn steps. 

If we note that in the case where the objective 

function is quadratic, the condition (2.16) is the same as 

the equation: 

= 0 (2.17) 

+ 
where gk is the gradient of the objective function at 

xk. This equation contains no explicit second derivatives 

so we have a means of obtaining conjugacy when only first 

derivatives are available. We could start with an 
+ 

arbitrary search direction d 1 and then fork= 2, 3, •.• ,n, 
+ 

we calculate the search direction dk to be orthogonal 

to the changes in the gradient vector that were caused by 
+ + + 

the moves in the directions d 1 , d 2 , •.. , dk-l" 

The conjugate gradient algorithm described by Hestenes 

and Stiefel [25] and later developed by Fletcher and 

Reeves [6] use the above procedure with one addition: The 



~ 

first search direction, d , is the direction of steepest 
1 

~ 

descent. The later search directions, dk, are chosen such 

that: 

~ ~ 
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d 
k 

= + ~ d 
k-1 k-1 

{2.18) 

where ~k-l is a real number. ~ can be calculated by: 
k-1 

= {2.19) 

To obtain a faster rate of convergence, Fletcher and 

Reeves recommend that the algorithm should be restarted 

with a steepest descent step after each n+l iterations. 

An important advantage of the method, which is not 

obtained by other conjugate direction algorithms, is 

that it does not require storage space for any n x n 

matrices. 

Shah, Buehler, and Kempthorne [26] described a 

conjugate direction method, but it had the property that 

for a problem with a quadratic objective function, the 

minimum would be found in 2n-l or less steps. The 

algorithm was called PARTAN, a parallel tangents algorithm. 

It combined steepest descent gradient searches with 

acceleration moves which use certain previously determined 

search vectors. PARTAN attempted to capitalize on con-

centricity and unimodality to obtain a minimum solution. 



Powell D7J described a version of a conjugate 

direction algorithm, but his version did not require the 

explicit evaluation of any derivatives. 

The most widely used conjugate direction algorithm 

is due to Davidon [7] which he called a variable metric 

algorithm and later described by Fletcher and Powell [a]. 

To describe the Davidon algorithm, we first note that the 
~ 
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search direction 8 of the steepest descent iteration at the 
~ 

point x is given by: 

~ ~ 

8 = -Ig (2.20) 

We also note that the matrix, I, may be replaced by any 

positive definite matrix and the objective function will 

still decrease. Thus there exist some choice of this 

positive definite matrix which will provide the fast 

convergence. Therefore, the kth iteration of Davidon's 
~ ~ 

algorithm changes the estimate xk to the estimate xk+l 

by searching for the minimum of the objective function 

along the direction 

= 

where Hk is a positive definite matrix which is chosen 

with intention of enhancing the rate of convergence. 

(2.21) 

To calculate H , the Davidon iteration adds a correction 
k+l 
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term to the matrix Hk, that depends on the two vectors: 

-+ -+ -+ 
crk = xk+l xk (2.22) 

and -+ -+ -+ 
yk = gk+l gk (2.23) 

And Hk+l is found by: 

= (2.24) 

where = (2.25) 

and = (2.26) 

The algorithm usually converges quickly. 

Another conjugate direction algorithm which has been 

given little attention in the literature, but has been 

found to be successful in the field of optical design is 

the GOOP, Grey's Orthonormal Optimization Procedure, 

algorithm. Because of the lack of publicity, the algorithm 

is not widely used. But because the algorithm is being 

successfully used in several industrial and research 

centers, there is a need for a detailed description of 

the algorithm. The most current description of GOOP is 

by Broste and Lavi [17]. These authors provided a 

detailed description of the mathematical theory upon which 

the algorithm is based. They also perform an operations 

count for the algorithm. The idea of operations count 

is extended in this paper to include the number of opera-

tions performed for function and derivative evaluation. 



The algorithm is based on solving the incremental equation 

(2.7). The coordinate transformation generated by a 

Gram-Schmidt process is used so that each of the trans-

formed parameters can be optimized separately. Then the 

transformation is used as a stepwise process in which the 

objective function is reduced at each intermediate step. 

Broste and Lavi proved that the algorithm was a conjugate 

direction algorithm and that for an n-parameter problem 

the orthonormal process converges to the minimum in n 

steps, property Q. This version of GOOP also had the 

property of approximating the first partial derivatives. 

A more detailed description of GOOP will be provided in 

chapter III. 

Huang [10,28] has shown that the algorithms described 

as conjugate gradient and variable metric can be described 

in a generalized algorithm. He also showed that these 

various algorithms can be grouped into classes of 

algorithms which generate the same sequence of points 

when given the same initial H-matrix and starting point. 

Huang [28] and McCormick [29] have recommended the 

reset procedure for variable metric algorithms when 

minimizing a nonquadratic function. In the algorithms, 

if the minimal point of the nonquadratic function cannot 

be reached in n or n+l iterations, then the algorithm 

can be reset: 
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H = H 
~1 0 

(2.27) 



where H. is the H-matrix of the ith iteration. Huang 
~ 

gave numerical support for the reset algorithm in his 

article. 

4. Rank-one Algorithms 

Rank-one algorithms are relatively new and have not 

been completely developed in the current literature. 

Powell [18] discusses these algorithms in his recent 

article. The idea is a modification of Davidon's variable 

metric algorithm. The procedure of calculating Hk+l 

has been changed so that the difference (Hk+l - Hk) 

is a symmetric matrix of rank-one. The new formula is 

+ + + + T 
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= 
(Hkyk - 0 k) (HkYk - 0 k) 

- + + T+ (2.28) 
(Hkyk - 0 k) Yk 

+ + 
where yk and crk are defined by (2.22). 

To use (2.28) in an algorithm, it is necessary to fix 
+ + 

rules for calculating xk+l from xk and use the Hk matrix. 

The reason the idea is so valuable is that there are very 

many choices of rules such that n applications of (2.28) 

causes H to equal -G-l when the objective function is 

quadratic, and, because of the form of the linearization 

iteration, this property can lead to fast convergence. 

Both Broyden [30] and Davidon proceed to define rules 

+ 
to calculate xk. They use: 

= (2.29) 



where ak is ~ parameter. Broyden proved that, if the 

choice of ak is arbitrary, except that it must not cause 

H to be singular or not positive semi-definite, and if 
k+l 

f ( -+x) • d · 1 1s qua rat1c, then H will equal G- • The important 
n 

feature of this theorem (and the rank-one algorithms) is 

that it does not depend on calculating ak by applying a 

one-dimensional search to minimize the objective function. 

Goldfarb [31] discusses sufficient conditions for the 

convergence of a rank-one algorithm. 

C. Newton-Raphson Algorithms 

The Newton-Raphson procedure estimates the position 
-+ 

of the minimum of f(x) from second and lower order terms 

in the Taylor series, i.e., 
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-+ -+ 
f(x + b.x) 

-+ 
= f (x) + 

-+T-+ -+T -+ 
b.x g + b.x Gb.x (2.30) 

-+ 
where g and G are defined by equations (1.2) and (1.3), 

respectively. At the minimum of a differentiable 

-+ 
function, g = 0, so, if equation (2.30) is exact, the 

-+ -+ 
point x + b.x is the required minimal point only if 

-+ -+ 
g + Gb.x = 0 ( 2. 31) 

-+ 
is satisfied. Since this equation is linear in b.x, it is 

straightforward to calculate 

-+ -1-+ 
b.x = -G g (2.32) 



If the second derivative matrix, G, is positive 

definite at the solution, then the iterations have 

quadratic convergence, provided that the initial estimate 

is sufficiently close to the minimal point. By quadratic 

convergence, second order convergence is meant and is not 

to be confused with property Q. If the initial estimate 

is poor, the Newton-Raphson algorithm may fail to con­

verge. Also the algorithm may converge to a stationary 

point instead of the minimum. 

To avoid convergence to a stationary point that is 

not a minimum, and to ensure that an iteration does not 

increase the value of the objective function, a one-
-+ 

dimensional search is performed in the direction, 6x, of 

equation (2.32). Specifically, consider the function 

-+ -+ 
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f(A) = f(x + A6X) (2.33) 

for 0 < A < 1 and let A' be the value of A for which 

f(A) is a minimum. Then let the vector 

be the next point. 

-+ -+ -+ 
z = x + A '6x 

Another extension to the Newton-Raphson algorithm 

(2.34) 

was suggested by Levenberg [13]. A nonnegative parameter, 

a, that interpolates between the steepest descent iteration 

and the Newton-Raphson iteration (2.32) is introduced. 

Then the new itetration is the replacement of the estimate, 
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-+ -+ -+ 
x, by the estimate, x + ~x, where the correction is 

defined by the equation 

-+ 
~X = (a I 

-1-+ 
G) g • (2.35) 

This technique is often called "Damped Least Squares". 

In the case a = 0, equation (2.35) reduces to the Newton-

Raphson iteration while if a becomes very large the 
-+ 

correction to x tends to have the direction of the 
-+ 

gradient g. Another version of the use of the damping 

factor is discussed by Buchele [32] . 

The most serious disadvantage of the Newton-Raphson 

algorithm and its extension is that they require the 

second derivatives of the objective function. Often it 

happens that the second derivatives are not available or 

that the user prefers not to calculate them. This 

problem motives the development of algorithms using only 

first derivatives. 

Another variation of the Newton-Raphson procedure, 

called spiral, has been developed by Jones [15]. The 

basic idea is that a reduced sum of squares can always 

be found in the plane defined by the Newton-Raphson 

point and the line of steepest descent at the base point. 

The strategy of spiral is to search along a spiral line 

which starts in the direction of the steepest descent 

direction and then arcs back toward the Newton-Raphson 

point in this plane. This new algorithm has been quite 

successful for problems with narrow-curved valleys. 



III. A LINEAR ACCELERATION TECHNIQUE FOR RESET CONJUGATE 

DIRECTION ALGORITHMS 
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The linear acceleration technique, LAT, is a numerical 

technique designed to improve the rate of convergence of the 

reset conjugate direction algorithms. This chapter de­

scribes this numerical technique as a new algorithm. The 

new algorithm is a combination of the reset conjugate direc­

tion algorithms, a pattern move of Hooke and Jeeves• direct 

search algorithm, and a linear search similar to the search 

performed in the Modified-Gauss-Newton algorithm described 

by Hartley. The LAT algorithm was found to be quite suc­

cessful when GOOP (to be described in detail in chapter IV) 

was used as the conjugate direction algorithm. The 

Fletcher-Reeves and Davidon-Fletcher-Powell conjugate direc-

tion algorithms were also used and found to improve con-

vergence for particular problems. 

A. Pattern Move 

In developing the direct search algorithm, Hooke and 

Jeeves refer to pattern moves. From a particular base 
+ 

point, b , exploratory moves are made in each of the n 
1 

coordinates until a decrease in the function is found. 
+ 

once the decrease is found, a new base point b , is 
2 

established. The vector determined by the two base points 

(3.1) 
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gives the direction of the pattern move. The new point 

after a crude pattern move is given by 

+ + + + + 
p = b + v = 2b bl 2 2 

(3.2) 

In their development of the direct search algorithm, Hooke 

and Jeeves found that the pattern move was a successful 

computational technique, which provided the ability to 

follow a valley. 

In dealing with the conjugate direction algorithms, 

the n iterations could be considered as the exploratory 

moves. In working with nonquadratic functions, it is 

known that the conjugate direction algorithms approximate 

the quadratic problem. Therefore, since n iterations 

approximate the quadratic, a pattern move could be made 

after these iterations. Then if the pattern move is 

successful, the rate of convergence toward the minimum 

has been increased at very little computational expense. 

Since the reset conjugate direction algorithms reset at 

this point of their algorithm anyway, the process of 

minimizing the function in the pattern move direction 

before resetting appears to be quite feasible. If the 

acceleration is done at the nth iteration, the work of the 

n + 1th exploration is transferred to the pattern move at 

no extra computational expense. 



B. One-Dimensional Search 

When a pattern move has been successful, it is most 

likely that the step length is not optimal in the pattern 

move direction. Thus it appears feasible that a one-

dimensional search could be used to determine the optimal 

step in the pattern move direction. That is, determine a 

which will minimize 

+ 
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+ av) (3.3) 

+ + 
where b 2 is the new base point and v is given by equation 

(3.1). 

Since a one-dimensional search is used in most 

conjugate direction algorithms, no additional programming 

is necessarily needed. Therefore, it appears to be quite 

sensible to gain as much progress toward the minimal point 

as is possible before resetting the conjugate direction 

algorithm. 

C. The Linear Acceleration Technique (LAT) 

Combining the various segments discussed in the 

previous sections, the new algorithm has the following 

steps: 
+ 

a) Select a nominal point x 0 . 

b) Perform the conjugate direction algorithm for n 
+ 

iterations, moving from base point, b 1 , to base 
+ 

point b 2 • 



c) Determine the direction of the pattern move 

by the equation: 

-+ -+ -+ 
v = b bl 2 

d) Find the optimal step size a I I such that 

-+ -+ 
f(a) = f(b + av) 

2 

is minimized as a function of a. 

e) Make the pattern move 

-+ -+ -+ 
X = b + a'v 

2 

where a' is the optimal a in step d) • The 
-+ 

-+ 
X 

vector then becomes the new nominal point x 0 • 

f) Reset the conjugate direction algorithm and 

return to step b). 
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( 3. 4) 

(3.5) 

(3.6) 



IV. GREY'S ALGORITHM 

As was indicated earlier, the GOOP algorithm is a 

conjugate direction algorithm which has received very 

little attention in the literature, but is an algorithm 

which is being successfully used in applied fields. 

Broste and Lavi [17] have proven that the GOOP algorithm 

is a conjugate direction algorithm and that it has 

property Q. However, no one has presented a formal proof 

of convergence for the nonquadratic problem. The 

convergence proofs for other successful algorithms are 

described by W. I. Zangwill [32], and in this chapter 

Zangwill's mathematical framework is used to prove 

the convergence of the GOOP algorithm. To prove con-

vergence, it has been assumed that the linear accel-

eration technique described in chapter III is applied 

to the GOOP algorithm. Before presenting the proof, 

section A supplies a detailed description of the GOOP 

algorithm. 

A. Description of GOOP 

~ 

The GOOP process seeks to find changes ~x in a 

nominal parameter vector to reduce the criterion function 

29 
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-+ T -+ 
J = ~f(x) f(x). The distinction of the GOOP algorithm 

is the manner in solving the incremental equation 

T -+ T-+ 
F F~x + F F = 0 

0 
( 4. 1) 

-+ -+ 
where ~xis the vector of increments, F 0 is an m-vector 

and F is m by m matrix of partial derivatives evaluated at 

the present point. 

The GOOP algorithm generates a coordinate transforma-
-+ -+ 

tion from the ~x-space to a ~y-space in which the trans-
-+ 

formed version of (4.1) has a simple solution. The ~Y 
-+ 

obtained is transformed back to obtain ~x which reduces J. 

The transformation uses a Gram-Schmidt orthonormal-

ization of the linearly independent vectors given by the 

column of the matrix F. Let;, = 3f/3x. be the ith 
1 1 

-+ 
column of F and let columns G. of a new matrix G be the 

1 

orthonormal vectors resulting from the orthonormalization 

of F. Then from the Gram-Schmidt process, the relation 

between F and G is given by 

F = GB ( 4. 2) 

where B is an upper triangu~ar matrix generated along with 

G by the orthonormalization process. Then substitute 

equation (4.2) into equation (4.1) which yields: 

+ = 0 ( 4. 3) 



Because the columns of G are orthonormal, equation (4.3) 

simplifies to 

-+ T-+ 
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BllX + G Fo = 0 . ( 4. 4) 

-+ -+ 
By defining B~x to be the new variable in the ay-space, 

we can reduce equation (4.1) to 

Ay = ( 4. 5) 

Since B is an upper triangular matrix it is easily inverted 

-+ -+ and the transformation from the Ay-space to the ax-space 

is given by 

= 
-1 -+ 

B !::..y 

-+ 

= 

The transformation to the !::..y-space decouples the 
• -+ 

effect of the parameters ~n the !::..y-space on the various 

( 4. 6) 

quadratic elements of J. In this new space each component 

-+ of ~y can be independently adjusted to reduce J without 

undoing the reduction achieved by adjusting any other 

Ay-component. This is so because the partials of f with 
-+ 

respect to each !::..y-component are the orthonormal columns 

of G. 

The Gram-Schmidt orthonormalization process is 

described by the equations (4.7)-(4.9): 

= 
-+ 

(F. 
~ 

i-1 
!: 

j=l 

-+ 
b · · G ·)/b .. 
J~ J ~~ 

i = 1,2, •.•• ,n 

(4.7) 
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-+ 
where b .. 

T-+ 
= G. F. 

J~ J ~ 
(4.8) 

-+ i-1 
b .. G.II b .. = IIFi L: 

~~ 
j=l J ~ J 

( 4. 9) 

are the elements of the upper triangular matrix B. 

An important feature of this transformation is that 

the solution given by equation (4.5) or equation (4.1) 

can be computed by a step-wise procedure. Therefore, 
-+ 

only one component ~yi of ~y is computed at each step. 

Th f t . ( 4 5 ) th . th -+ . en rom equa ~on . , e ~ component of ~y ~s 

given by 

-+ 

~y. 
~ 

-+ T-+ 
= -G· F 

~ 0 

A single G· can be computed at each step by equations 
~ 

( 4 .10) 

(4.7)-{4.9) using previously computed orthonormal vectors 
-+ -+ 

and a single column Fi. Therefore, one component of ~y 
-+ 

can be computed at each step. If the column Ci of 

C = B-l could be computed at each step, the ~~ correspond-

ing to ~yi would be given by 

-+ 
~X 

-+ 
= c.~y. 

~ ~ 
(4.11) 

Since the orthonormalization builds the B matrix one 

column at each step, this process can be described as the 

construction of a product of. matrices each of the form 



B. = 
1 

1 

0 

b .. 
11 

Let B(k) be the matrix product 

then 

B (i) = B. B. 1 • 
1 1-

B = B (n) • 

0 

1 

Since B. has a simple inverse given by 
1 

B·-1 = 
1 

1 

0 . 

the inverse of B(i) is: 

Then 
-1 

B 

B(i)-1 = 

= B(n)-1 

-bl.jb .. 
1 11 

-b2. /b .. 
1 11 

1/b·. 
11 

= 

0 

1 

-1 B. 
1 
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(4.12) 

(4.13) 

(4.14) 

( 4 .15) 

(4.16) 

(4.17) 
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If B(i)-l is computed at each step, only the elements 

f h .th 1 -1 o t e 1. co umn of Band the matrix B(i) are needed. 

Since in succeeding steps the ith column of B(i)-l is not 

lt d l."t t b 1 + .th -1 a ere , mus e equa to Ci, the 1. column of B . 
-+ 

Thus Ci can be computed at each step and is given by 

c .. = 1.1. 1/b·. 1.1. (4.18) 

c .. = -Jl. 

c.. = 0 Jl. 

i-1 
E c "kbk./b·. 

k=j J 1. 1.1. if 1 < j < i (4.19) 

if i < j < n 

h C · the J.th t f -+c Th f t" were .. J..S componen o i• e use o equa 1.ons 
Jl. 

(4.18) and (4.19) at each step eliminates the process of 

an explicit matrix inversion. 
-+ 

Thus at each step the change in ~xi corresponding to 

-+ 
~Yi can be computed. 

n 
E 

i=l 

-+ 
~x. 1. = 

-+ Summing ~x. over all steps yields 1. 

= (4.20) 

= 

Thus a stepwise process exists which converges in n steps 

for the quadratic function to the same solution as given 

by equation (4.6). 
+ Let xi be the estimate of the parameter vector after 



the ith step such that 

-+ 

-+ 
X 

i 
= 

-+ 
X 

0 
+ 

i 
E 

j=l 

where x 0 is the initial vector. 

-+ 
x. 

J 

The stepwise process of the GOOP algorithm is: 

Initial Step: 
-+ 

Set X 
0 

-+ 
and F 

0 

.th 
~ Step: Compute 

-+ 
ith a) F. = column of 

~ 

-+ 
b) G. from (4.7), (4.8), 

~ 

-+ 

= 

F 

-+ 
f (x ) • 

0 

= af;ax. 
~ 

and (4.9) 

c) c. from ( 4 .19) and (4.20) 
~ 

d) 
-+ T-+ 

11y. = -G. F 
~ ~ 0 

-+ -+ -+ 
e) x. = X. 1 + 11y.C. 

~ ~- ~ ~ 

-+ 
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(4.21) 

In examining the steps above, the vector C. represents 
~ 

-+ -+ 
the direction in the /1x-space in which the change 11x. is 

~ 

made. Since 

-1 -1 
BB = B B = I (4.22) , 

then 

-+ -+ T 
BC. = e. = (0,0, ••• ,1, ••• ,0) (4.23) 

~ ~ 



Therefore 

-+- T T -+­
P. (F F)p 
~ j 

-+- T -+­
= C.F FC. 

~ J 
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-+- T T T -+­= C B G GBC 
i j 

(4.24) 

-+- T -+­
= C B BC 

i j 

= 0 for i '1- j 

T 
which proves that the directions in GOOP are F F 

conjugate. Even though the directions generated by the 

conjugate gradient algorithm applied to equation (4.1) 

1 T . h are a so F F-conJugate, t ey are not in general the same 

directions generated by the GOOP algorithm. In examining 

the first direction of each method, the conjugate gradient 

algorithm's first move is in the direction of the negative 

gradient of equation (4.1). Huang's paper [28] classifies 

several familiar algorithms such as Fletcher-Reeves, 

Davidon-Fletcher-Powell, and others into a generalized 

algorithm. If the initial H matrix is the identity 

matrix, then the first move is in the direction of the 

negative gradient for all these algorithms. In the GOOP 

algorithm, the first move is in the direction of the 

x 1-axis or any preassigned coordinate axis. Also the 

directions in the GOOP algorithm are not a function of a 

residual and if residuals are computed, they are not 

orthogonal as in the conjugate gradient algorithm. In any 

case, both algorithms solve the quadratic programming 



problem in n or less iterations. 

One additional feature of the GOOP algorithm is a 

procedure which allows the algorithm to continue seeking 

reductions in J without completely re-initializing the 

computation at an intermediate point. The vector of 
+ 

partials, F., used at the ith step are calculated at the 
~ 

+ 
most recent estimate of x produced in the preceding step. 

The transformation as represented by the matrices G and 

B-l can also be adjusted after each step in order to 

maintain orthonormality. If the derivatives are not 

supplied, f., given by the change in f(~) at the ith 
~ 

step, can be used to recompute the vector of partials 

af;ay. by setting 
~ 

+ 
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af*/ay. = af./ay. = G;* (4.25) 
~ ~ ~ . 

+ The * is to denote that G.* may no longer be orthonormal 
~ 

+ 
to Gj' J = 1, 2, . . . . , i-1. The orthonormality can be 

restored by adjusting G as follows 

where 

+ 
G = 

i 

g,. 
J.J. 

= 

+ 
(G.* 

~ 

g .. 
J~ 

+ 
II G.* 

J. 

= 

i-1 + 

L g .. G.) /gii 
j=l J ~ J 

+ + 
G.*G. 
~ J 

i-1 + 
L g .. G.II 

j=l J~ J 

(4.26) 

(4.27) 

(4.28) 



A corresponding adjustment is made in B-1 by 

postmultiplying by 

1 -gl.;g .. 1 11 0 
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-1 g = 1/g .. 11 (4.29) 

0 1 

B. Convergence Of The GOOP-LAT Algorithm 

The following convergence proof is directed at the 

new algorithm, LAT, described in chapter III where the con-

jugate direction algorithm is GOOP, described in section A. 

The definitions, lemmas, theorems, and corollaries in the 

Mathematical Preliminaries are taken from Zangwill [33] . 

1. Mathematical Preliminaries 

DEFINITION 1. By point-to-set map, it is meant that for 

any point~£ V ,A(~) is a set in V, i.e., A : V ~ V.* 

DEFINITION 2. An algorithm is an iterative process 

consisting of a sequence of point-to-set maps Ak : V ~ V. 

~1 f . t {~k}~ . Given a point z , a sequence o po1n s z 1 , 1s generated 

recursively by use of the recursion 

(4.30) 

*This notation is used by Zangwill for a point-to-set 
map. A more common form of notation is A : v ~ 2v. 
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where any point in the set A (;k) 
k 

is a possible successor 
-+k+l point z . 

DEFINITION 3. A solution set is the set of all optimal 

points and a solution point is an point in ~' the solution 

set. 

CONVERGENCE THEOREM A. Let the point-to-set map A : V -+ V 
-+ 

algorithm that given a point zl £ V generates determine an 

the sequence 
-+k 00 

{z }1 . Also let a solution set~ C V be given. 

Suppose 

(1) 
-+k 

All points z are in a compact set XCV. 

(2) There is a continuous function Z: V-+ E1 such 

that 
-+ 

(a) if z is not a solution, then for any 
-+ -+ 
y £ A(z) 

-+ -+ 
z (y) < z ( z) (4.31) 

-+ 
(b) if z is a solution, then either the 

algorithm terminates or for any 
-+ -+ 
y £ A (z) 

-+ 
Z(y) 

-+ 
< Z ( z) (4.32) 

and 
-+ -+ 

(3) The map A is closed at z if z is not a solution. 

Then either the algorithm stops at a solution, or the 

limit of any convergent subsequence is a solution. 
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LEMMA 1. Let C: W ~ X and B: X ~ Y be point-to-set 

maps. ~00 ~ 
Suppose Cis closed at w ,and B is closed on C(w00 ). 

Also assume if ~k ~ ~oo, k E K, and if ~k E C(~k}. 1 k E K, 

1 that for some K c= K 

~k ~00 
X ~X k E 

1 
K 

Then the composition A ~00 = BC is closed at w 

(4.33) 

COROLLARY 1. Let C: W ~ X and B: X ~ Y be point-to-set 

maps. Suppose C is closed at ~oo and B is closed on C(~00 ). 

If X is compact, then A = BC: W ~ Y is closed at ~00 w • 

COROLLARY 2. Let C: W ~ X be a function and B: X ~ Y be 

a point-to-set map. 
~00 Assume C is continuous at w and B is 

~ 

closed at C(x00 ). Then the point-to-set map A= BC: W ~ Y 
~ 

is closed at W00 • 

1 The map M represents a one-dimensional search. It 

minimizes the objective function on a segment either of 

the ray emanating from ~k in the direction dk or of the 
~k ~k ~k+l 

line through x in the direction d . Let x be the 

point produced by M1 • Mathematically 

~k+l ~k k~k 
X = X + T d (4.34) 

where 

= min {f(~k + 
~k 

Td ) I a > T > S} (4.35) 
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and a is either +oo or a positive scalar and, S = 0, -a, 

or -oo 

1 ~ ~ ~ ~ ~ ~ + 
M (x,d) = {yl f(y) =min f(x + Ld),y (4.36) 

L£J 

~ ~ 

where (x,d) is a point in E2n, and J is an interval over 

which the scalar L varies. 

LEMMA 2. Let f be a continuous function. Then M1 is 

closed if J is a closed and bounded interval. 

DEFINITION 4. A mixed algorithm is an algorithm that has 
~ 

a given basic algorithm map B, which depends only upon z, 

such that 

B = k £ K • (4.37) 

In other words, the basic map B is used infinitely often. 

For the remaining k, other maps are employed. 

CONVERGENCE THEOREM B. Suppose there is an algorithmic 

map B: v ~ V for the nonlinear programming problems (with 

associated z function and solution set n) that satisfies 

condition 1, 2, and 3 of Convergence Theorem A. Let a 

mixed algorithm for the problem be defined by the maps 

Ak: V ~ V such that for some K 

= B k £ K (4.38) 
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while for k ~ K 

z (~+1) < z (~) (4.39) 

Further assume that 

(1) All -+k z E X where X is compact, and 

(2) If -+* z E ~, and 

-+ 
Z(y) (4.40) 

then 
-+ 
y E n • (4.41) 

Then under these hypotheses the mixed algorithm 

either stops at a solution or generates a sequence 

{ -+k 00 z }1 such that the limit of any convergent subsequence 

is a solution point. 

DEFINITION 5. 
-+ 

A step, given a nonoptimal point x, that 
. -+ 

generates a po~nt y for which 

z (y) 
-+ 

< Z (x) (4.42) 

is called a spacer step. 
-+ 

Also should x be a solution, 

then the spacer step must indicate this fact. 

DEFINITION 6. A point-to-set map A V -+ V is closed at ~oo 

if 
-+k -+oo 
z -+ z ' 

-+k -+k 
z E A (z ) , and (4.43) 

for k E K implies (4.44) 

The map is said to be closed on X C: V if it is closed at 

-+ 
each z E X. 



2. Mathematical Development 

In light of the definitions, lemmas, corollaries, 

and theorems stated in the Mathematical Preliminaries, the 

GOOP algorithm is restated using the new terminology. 

GOOP ALGORITHM 

M: 

( 1) Initialization step: 
-+0 
x 1 is given. 

(2) Iteration k: Set i = 1. 
-+ 

(a) Calculate di using the Gram-Schmidt 

orthonormalization process. 

(b) 
-+k -+k 

Calculate xi+l £ M(xi,S) where M is 

the map defined below and 

(c) If i = n go to step (3), otherwise set 

i = i + 1 and return to step (a) . 

(3) If k = 0 (mod n) go to step (4), otherwise set 

k = k + 1 and return to step (2). 

( 4) 
-+k . ld' -+k Spacer step on xn+l y~e 1ng xn+ 2 . 

( 5) 
-+k+l -+k Set x 1 = xn+ 2 , k = k + 1, and return 

to step (2). 

The map M used in the GOOP algorithm is a mapping 

E(i+l)n-+ En. M(~~,S) takes a point i~ and the 

subspace generated by the conjugate directions 

• ,di} and minimizes the function, J, in the 
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generated subspace, i.e., 

We can classify M as a one-dimensional search since the 

GOOP algorithm will continue to half the step, GiTFOCi, 
. -+ 

unt1l J(x) has decreased. 

In the description of the algorithm above, the 

spacer step has not been specified. The spacer step used 

d . . 1 h . th d' . (-+k -+k) a one- 1mens1ona searc 1n e 1rect1on xn+l - x 1 

which is the direction of the pattern move. 

The proof of the convergence of the GOOP algorithm is 

based on the Convergence Theorem B. Before this theorem 

can be used, the convergence of the spacer step must be 

established. The following lemma establishes this 

convergence. 
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LEMMA 3. If the set X is compact and the objective function 

is continuous and has a unique minimum, then the algorithmic 

map A = M1D, where M1 represents a one-dimensional search, 

-+ -+ -+ -+ -+k -+k . h . 
D(x) = (x,e), e = xn+l- x 1 , 1s convergent. T e 1nterval 

for M1 is T = [-a,a]. 

PROOf: The map M1D is closed by Corollary 2, because 

Dis a continuous function and M1 is a closed map (Lemma 2). 

By assumption all points are in a compact set. Then 

A = (4.46) 

Then corollary 1 verfies that the map A is closed as it 



is the composition of closed maps on compact sets, and 

condition 3 of Convergence Theorem A is verified. 

To prove condition 2, we know that J has continuous 

first partial derivatives. . + + By assumpt1on, for any x and e 

there is a unique T' for which 

+ + 

45 

J(x + + 
T'e) = min 

TE:T 

J(x + + 
Te) • (4.47) 

Now let + + + + + 
z = x and Z(z) = J(x), and term a point x a 

solution if 

+ 
min 
TE:T 

J(x + 
+ 

Te) 
+ 

= J (x) i = i,2, ... ,n. 

At such a point, because of the uniqueness assumption, 
+ + 
'VJ (x) = 0. 

(4.48) 

Condition 2 (a) holds easily because if ~k is not a 

solution 

< 
+k 

J (x ) • (4.49) 

Then by Theorem A, the algorithm A = M1 D converges.// 

Now taking the Mathematical Framework supplied by 

Zangwill and Lemma 3 just developed, the convergence of the 

GOOP-LAT algorithm can be examined. The following theorem 

establishes the convergence of the GOOP-LAT algorithm for 

the nonquadratic problem. 



THEOREM C. Under the same assumptions stated in LEMMA 3, 

the GOOP-LAT algorithm, a mixed algorithm using the 

algorithmic map A = M1D as the spacer step, is convergent. 

PROOF: By the previous Lemma 3, we know that the 

algorithmic map A = M1D (the spacer step) satisfies con-

ditions 1, 2, and 3 of Convergence Theorem A. Then the 

map A would satisfy the condition in Theorem B for the 

map B. The mixed algorithm will be defined by the map 

Ak = M1D: V + V such that forK ={kjk = 0 mod(n+l)} 
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= B k S K (4.50) 

while for k t K 

(4.51) 

The last fact follows from the property of conjugate 

direction algorithms. In generating the conjugate 
+ + + 

directions, d 1 ,d2 , • ,di, it follows from the 

+k definition of M{xi,S), that 

(4.52) 

Therefore, by the Convergence Theorem B, the GOOP-LAT 

algorithm is convergent.// 



V. COMPUTATIONAL RESULTS 

The linear acceleration technique (LAT) algorithm is 

used to solve eight traditional nonquadratic functions. 

The LAT algorithm is applied to three conjugate direction 

algorithms. The computational results of this chapter: 

(1) demonstrate the improved convergence of the GOOP 

algorithm, 

(2) demonstrate the effect of LAT on the convergence 

rate of other successful conjugate direction 

algorithms, 

(3) demonstrate the efficiency of the GOOP algorithm 

performed in single precision arithmetic, 

(4) demonstrate that the GOOP algorithm is a 

competitive algorithm with the most successful 

nonlinear programming algorithms. 

In addition to previously referenced papers, many 

recent papers [34-39] have made comparisons of various 

algorithms and provide sample problems. From these 

studies, eight problems were chosen for comparison of 

algorithms. These eight problems are described in detail 

in appendix A. 

The first problem is Rosenbr:ock's parabolic valley 

problem [2] with starting point (-1.2, 1.0). The second 

problem is CUBE attributed to Witte and Holst [40] with 

starting point (0.5, 0.5). Problem three is Beale's [41] 

problem with starting point (2.0, 0.7). 
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Problems four, five, and six are the four parameter 

problems attributed to Pow.ell [42] with starting values 

(lO.O,lO.O,l0.0,-10.0), (3.0,-1.0,0.0,1.0) and 

(-0.1,-0.l,O.l,O.l), respectively. The seventh problem 

is Wood's problem [43] with starting point 

(-3.0,-1.0,-3.0,-1.0). Problem eight is a four parameter 

problem attributed to Miele [44] with starting point 

(1.0,2.0,2.0,2.0). 

A. Comparison Of Three Conjugate Direction Algorithms 

Using LAT With The Levenberg-Marquardt Algorithm 
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The following tables show results of the Levenberg­

Marquardt algorithm and the conjugate direction algorithms: 

(1) GOOF, (2) Davidon-Fletcher-Powell, and (3) Fletcher­

Reeves. The Levenberg-Marquardt algorithm is included for 

comparison because it has been found to be quite successful. 

1. Description of Recorded Material 

The following problems were performed on an IBM 360 

Model SO computer using double precision arithmetic 

except where stated otherwise. 

for: 

Each table represents the results for a given problem 

(1) Reset Fletcher-Reeves, FR(N). 

(2) Reset Fletcher-Reeves, FR(N+l). 

(3) Reset Fletcher-Reeves with LAT, FR(N)-LAT. 

(4) Reset Fletcher-Reeves with LAT, FR(N+l)-LAT. 



(5) Reset Davidon-Fletcher-Powell, DFP(N). 

(6) Reset Davidon-Fletcher-Powell, DFP(N+l). 

(7) Reset Davidon-Fletcher-Powell, with LAT, 

DFP(N)-LAT. 

(8) Reset Davidon-Fletcher-Powell with LAT, 

DFP(N+l)-LAT. 

(9) Levenberg-Marquardt Compromise,LMC. 

(10) GOOP. 

(11) GOOP with LAT, GOOP-LAT. 

The two conjugate direction algorithms listed above are 

reset algorithms. The N or N+l in parentheses indicates 

that the algorithm is reset after N iterations. The 

Fletcher-Reeves algorithm is restarted in the gradient 

direction. The Davidon-Fletcher-Powell algorithm resets 

the H-matrix to the identity matrix. 

Because the Fletcher-Reeves and Davidon-Fletcher-

Powell algorithms are different from the GOOP and the 

Levenberg-Marquardt algorithms in form, different 

stopping conditions are used for the two types of 

algorithms. In comparing the results generated for the 

eight problems using the two types of algorithms, it is 

believed that the stopping conditions listed below 

produce a reasonable comparison. Algorithms (1)-(8) use 

the stopping condition 
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~ T~ 
g. g. 
~ ~ 

< (5.1) 



50 

For algorithms (9)-(11), the stopping condition is 

f. < 10-s . 
~ 

(5.2) 

In each table, the information provided is: (l) number 

of iterations, IT, (2) function evaluation, FE, and 

(3) value of the function when the algorithm terminated, 

V of F. The number of iterations is a common comparative 

item in the literature. For the methods being compared 

in this paper, the number of iterations does not give a 

true comparison. Specifically, the GOOP algorithm and the 

Levenberg-Marquardt algorithm solve the Gauss equation 

(2.7). The Fletcher-Reeves and Davidon-Fletcher-Powell 

algorithms solve the Newton-Raphson equation (2.32). 

The GOOP, Fletcher-Reeves, and Davidon-Fletcher-Powell 

algorithms optimize in the n-conjugate directions. 

Therefore, it is felt that the number of function 

evaluations is more informative about the relative merits 

of the various algorithms. To provide additional informa-

tion about the progress of the algorithm, the value of the 

function when the algorithm terminated is also indicated. 

In the LAT algorithm, a one-dimensional search is 

used. Both the Fletcher-Reeves and Davidon-Fletcher-

Powell algorithms use the cubic interpolation search in 

optimizing each iteration and this search could be used in 

LAT. However, since no one-dimensional search is used in 

GOOP and Levenberg-Marquardt algorithms, a simple 



one-dimensional search has been written and used in LAT 

for all algorithms above. A flow chart for this simple 

one-dimensional search is found in appendix B. 

2. Numerical Results on Comparison of Algorithms 

Algorithm 

FR(N) 
FR (N+l) 
FR(N)-LAT 
FR (N+l) -LAT 

DFP(N) 
DFP(N+l) 
DFP(N)-LAT 
DFP(N+l)-LAT 

GOOP 
GOOP-LAT 
LMC 

IT 

48 
30 
19 
30 

32 
35 
14 
25 

64 
24 
23 

TABLE 1 

PROBLEM 1 

FE 

101 
64 
70 
91 

79 
90 
60 
89 

224 
121 

88 

V of F 

0.1037 
0.2659 
0.1028 
0.1505 

0.1462 
0.1189 
0.7402 
0.4949 

0.6985 
0.4020 
0.1812 
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TABLE 2 

PROBLEM 2 

Algorithm IT FE v of F 

FR(N) 25 56 0.8283 lo-21 
FR (N+l) 18 44 0.3125 lo-15 
FR(N)-LAT 19 71 0.3197 lo-13 
FR(N+l)-LAT 18 62 0.3125 lo-15 

DFP(N) 23 60 0.1602 lo-19 
DFP (N+l) 20 64 0.2527 lo-16 
DFP(N)-LAT 13 51 0.6687 lo-15 
DFP(N+l)-LAT 18 76 0.1131 lo-16 

GOOP 46 161 0.3881 10-9 
GOOP-LAT 20 106 0.1211 lo-9 
LMC 6 20 0.3773 10-12 

TABLE 3 

PROBLEM 3 

Algorithm IT FE v of F 

FR(N) 9 22 0.7820 10-13 
FR(N+l) 11 26 0.8987 lo-16 
FR(N)-LAT 9 34 0.7820 lo-13 
FR(N+l)-LAT 11 35 0.8987 lo-16 

DFP(N) 9 24 0.2131 lo-15 
DFP(N+l) 11 32 0.5083 lo-14 
DFP(N)-LAT 9 36 0.2131 lo-15 
DFP(N+l)-LAT 11 41 0.5083 lo-14 

GOOP 18 63 0.8174 10-9 

GOOP-LAT 10 50 0.6725 lo-9 

LMC 5 15 0.2792 lo-17 
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TABLE 4 

PROBLEM 4 

Al9:orithm IT FE V of F 

FR(N) 74 167 0.9565 10-9 
FR(N+l) 50 123 0.4782 10-9 
FR(N)-LAT 58 182 0.3682 -9 

10_10 FR(N+l)-LAT 40 129 0.5406 10 

DFP(N) 50 204 0.6842 lo-9 
DFP (N+l) 29 100 0.1341 10-9 
DFP(N)-LAT 39 182 0.1251 10-9 
DFP(N+l)-LAT 34 154 0.1448 lo-9 

GOOP 24 156. 0.2049 10-8 
GOOP-LAT 18 136 0.1202 10-8 
LMC 15 57 0.6832 lo-ll 

TABLE 5 

PROBLEM 5 

Al9:orithm IT FE V of F 

FR(N) 106 216 0.3325 10-10 
FR(N+l) 57 121 0.5196 lo-10 
FR(N)-LAT 42 128 0.2927 10-10 
FR(N+l)-LAT 47 130 0.7912 lo-10 

DFP(N) 26 96 0.8097 lo-lo 
DFP (N+l) 36 166 0.2400 10-9 
DFP(N)-LAT 25 110 0.7763 10-10 
DFP(N+l)-LAT 42 230 0.1035 10-9 

GOOP 14 91 0.8549 10-9 
GOOP-LAT 12 100 0.1326 lo-8 
LMC 9 27 0.2367 lo- 8 
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TABLE 6 

PROBLEM 6 

Alg:orithrn IT FE V of F 

FR(N) 25 57 0.1262 10-10 
FR(N+l) 26 58 0.3840 lo-9 
FR(N)-LAT 25 74 0.1888 lo-ll 
FR(N+l)-LAT 37 108 0.2147 lo-9 

DFP(N) 34 153 0.1045 lo-8 
DFP(N+l) 14 54 0.9195 lo-12 
DFP(N)-LAT 34 177 0.1045 lo-8 
DFP(N+l)-LAT 14 60 0.9195 lo-12 

GOOP 14 91 0.3156 lo- 8 
GOOP-LAT 8 61 0.7246 lo-9 
LMC 6 18 0.1448 lo-8 

TABLE 7 

PROBLEM 7 

Alg:orithrn IT FE v of F 

FR(N) 38 81 0.1717 10-14 
FR(N+l) 28 61 0.1635 10-14 
FR(N)-LAT 35 102 0.4289 lo-14 
FR(N+l)-LAT 28 76 0.1635 lo-14 

DFP(N) 57 129 0.6472 lo-16 
DFP(N+l) 56 131 0.3411 lo-13 
DFP(N)-LAT 52 160 0.3377 lo-22 
DFP(N+l)-LAT 50 145 0.4512 lo-18 

GOOP > 80 ------
GOOP-LAT 58 445 0.8781 lo-ll 
LMC 53 208 0.9870 lo-16 



TABLE 8 

PROBLEM 8 

Algorithm IT FE V of F 

FR (N) 57 117 0.3350 10-9 
FR(N+l) 82 167 0.3452 lo-8 
FR(N)-LAT 45 127 0.2686 lo-8 
FR(N+l)-LAT 46 130 0.2810 10- 8 

DFP(N) 53 363 0.4864 10- 8 
DFP (N+l) 33 180 0.6752 lo- 8 
DFP(N)-LAT 30 186 0.2760 lo-8 
DFP(N+l)-LAT 33 198 0.6752 lo- 8 

GOOP 20 134 0.9014 lo-B 
GOOP-LAT 10 80 0.2665 lo- 8 
LMC 20 75 0.6988 lo-lo 

B. Comparison of GOOP Algorithms Using Single and Double 

Precision Arithmetic 

While compiling the results of the previous section, 

all problems for each algorithm were computed using 

single precision and double precision. In the case of the 

Fletcher-Reeves and Davidon-Fletcher-Reeves algorithms, 

the problems solved in double precision definitely 

improved the convergence rate. The number of iterations 

and number of function evaluations decreased in almost 

every problem. However, in the case of the GOOP and the 

Levenberg-Marquardt algorithms, the convergence rate was 

not improved when using double precision arithmetic. 
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1. Description of Recorded Material 

Each table represents the results for a given 

problem of: 

(l) GOOP in single precision, GOOP {S) 

(2) GOOP-LAT in single precision, GOOP-LAT (S) 

(3) GOOP in double precision, GOOP (D) 

(4) GOOP-LAT in double precision, GOOP-LAT (D) 

The stopping conditions and one-dimensional search used in 

the previous section are the same in the following tables. 

2. Numerical Results On The Effect Of Precision 

TABLE 9 

PROBLEM 1 

Al~orithm IT FE V of F 

GOOP (S) 64 160 0.6040 10-10 
-8 GOOP-LAT (S) 28 115 0.2628 10_10 

GOOP (D) 64 224 0.6985 10_10 
GOOP-LAT (D) 24 121 0.4020 10 

TABLE 10 

PROBLEM 2 

Al~orithm IT FE V of F 

0.2785 
-9 

GOOP (S) 46 161 10_10 
GOOP.,..LAT (S) 12 65 0.7994 10 
GOOP (D) 46 161 0.3881 lo-9 
GOOP-LAT (D) 20 106 0.1211 lo-9 
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TABLE 11 

PROBLEM 3 

A12orithm IT FE v of F 

GOOP (S) 18 63 0.1103 10-8 
GOOP-LAT (S) 10 50 0.1103 10-8 
GOOP (D) 18 63 0.8174 10-9 
GOOP-LAT (D) 10 50 0.6725 10-9 

TABLE 12 

PROBLEM 4 

A12orithm IT FE V of F 

GOOP (S) 24 156 0.1254 10-8 
GOOP-LAT (S) 16 120 0.2936 1o-9 
GOOP (D) 24 156 0.2049 1o-8 
GOOP-LAT (D) 18 136 0.1202 10-8 

TABLE 13 

PROBLEM 5 

A12orithm IT FE V of F 

GOOP (S) 14 91 0.3705 10-8 

GOOP-LAT (S) 12 100 0.1458 10-8 

GOOP (D) 14 91 0.8549 10-9 

GOOP-LAT (D) 12 100 0.1326 10-8 
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TABLE 14 

PROBLEM 6 

Al9:orithm IT FE v of F 

GOOP (S) 14 91 0.2968 10-a 
GOOP-LAT (S) 8 62 0.2632 lo-lo 
GOOP (D) 14 91 0.3156 lo-a 
GOOP-LAT (D) 8 61 0.1448 lo-a 

TABLE 15 

PROBLEM 7 

Algorithm IT FE v of F 

GOOP (S) > 80 ------
GOOP-LAT (S) 50 389 0.1076 10-10 
GOOP (D) > 80 ------
GOOP-LAT (D) 58 445 0.8781 10-11 

TABLE 16 

PROBLEM 8 

Algorithm IT FE V of F 

GOOP (S) 20 134 0.8891 10-a 
GOOP-LAT (S) 10 83 0.3369 lo-10 
GOOP (D) 20 134 0.9014 lo-a 
GOOP-LAT (D) 10 80 0.2665 lo- 8 
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C. Operations Count for Function and Derivative Evaluation 

In examining tables 1-8, it appears that the GOOP 

algorithm compares poorly with the other algorithms. It 

must be noted that the GOOP algorithm does not use first 

derivatives, but rather the algorithm uses approximations 

of the derivatives and only calculates the derivatives for 

one column of the F matrix per iteration. Therefore, a 

comparison of function evaluation is not valid. In this 

section, a more valid comparative procedure is attempted. 

For each problem used in section A, an operations count is 

made for each function and derivative evaluation. 

1. Procedure for Making Operations Count 

In comparing algorithms, one means of comparison is 

the amount of arithmetic to perform the algorithms. The 

sources of arithmetic are: (1) execution of the algorithm, 

(2) evaluation of the function, and (3) evaluation of the 

derivatives. In this paper, the number of operations to 

evaluate the function and derivatives are compared for the 

specific problems solved. 

Because the four algorithms (FR, DFP, LMC, and GOOP) 

use the derivatives differently, it is difficult to make a 

valid comparison of total number of operations for evalu­

ting the function and derivatives. The procedure for 

making the count is described below, but the details of 

the actual count for each problem is supplied in appendix c. 



The Fletcher-Reeves and Davidon-Fletcher-Powell 

algorithms evaluate the gradient at the same time that 

the function is evaluated. Thus the total number of 

operations performed to evaluate the function and gradient 

once will be multiplied by the function evaluations, FE, 

for a given problem. This will give the total number of 

operations for function and derivative evaluation for 

this problem. 

The Levenberg-Marquardt algorithm makes function 

evaluations and uses the derivatives in constructing the 

H matrix of equation (1~8). For each iteration the HTH 
T+ 

matrix and H h 0 vector are constructed and then scaled. 

If H has dimension m x n and one observes that HTH is 

symmetric, then HTH is constructed using (n+l)nm/2 

multiplications and (n+l)n(m-1)/2 additions. To construct 

HTh0 , m multiplications and m-1 additions are used. Since 

HTH is symmetric, scaling HTH requires one multiplication 

and one division for each element of HTH above the main 

diagonal. 

divisions. 

This would use (n-l)n multiplications and 
T+ 

To scale H h 0 , one division per element is 

needed, i.e., n divisions. The total operations count for 

the Levenberg-Marquardt algorithm is the number of 

operations to construct and scale HTH and HTh0 , multiplied 

by the number of iterations, IT, plus the number of 

operations to evaluate the function multiplied by the 

number of function evaluations, FE. 
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2. Description of Recorded Material 

The procedure described above is applied to each of 

the eight problems used in section A. The number of 

multiplications and divisions, MD; additions and sub­

tractions, AS; exponential subprogram, EXP; tangent 

subprogram, TAN; and cosine subprogram, COS; performed 

are recorded for each algorithm and problem. The details 

of how each problem was evaluated is found in appendix C. 
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3 0 Numerical Results 

TABLE 17 

OPERATIONS COUNT 

Problem Algorithm MD AS EXP TAN cos 

1 FR 512 256 
DFP 480 240 
LMC 628 333 
GOOP 516 401 

2 FR 396 176 
DFP 459 204 
LMC 172 78 
GOOP 349 219 

3 FR 440 264 
DFP 480 288 
LMC 215 160 
GOOP 430 430 

4 FR 2214 1353 
DFP 1800 1100 
LMC 1500 894 
GOOP 1264 904 

5 FR 2178 1331 
DFP 1728 1056 
LMC 828 486 
GOOP 966 693 

6 FR 1026 627 
DFP 972 594 
LMC 552 324 
GOOP 642 459 

7 FR 1342 1159 
DFP 2838 2451 
LMC 7739 6202 
GOOP 5407 5407 

8 FR 3042 936 117 117 117 
DFP 4680 1440 180 180 180 
LMC 2460 1180 75 75 20 
GOOP 1010 370 80 80 0 



D. Summary of Computational Results 

From the computational results of this chapter, the 

following comments are in order. 

1. Improved Convergence Rate of the GOOP Algorithm 

In all of the eight problems presented, the number of 

iterations for the GOOP-LAT algorithm is less than the 

number of iterations for the GOOP algorithm. In one of 

the eight problems, problem 5, the number of function 

evaluations is less for the GOOP algorithm. This would 

imply that for this particular problem, the addition of 

the LAT algorithm is inefficient (causing more function 

evaluations). Closer examination of the results of 

this problem, show that when the one-dimensional search 
-+ 

is performed, the optimal point obtained is near the b 2 

vector defined in chapter 3, section A. The simple one-

dimensional search used in LAT requires a large number 

of function evaluations to obtain this type of optimal 

point. However the algorithm is making a relatively small 

improvement toward the minimal point of the function. 

A more efficient one-dimensional search in LAT should 

produce better results for this particular problem. 

2. Effect of LAT on the Convergence Rate of the FR 

Algorithm 

In almost every problem, the number of iterations for 
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FR-LAT is less than or equal to the number of iterations 

for FR. But in approximately fifty per cent of the cases 

presented in tables 1-8, the LAT algorithm does not 

improve the rate of convergence. Also when the number of 

iterations is decreased, the number of function evaluations 

does not decrease. In this case, the FR-LAT algorithm 

will not be as efficient as the FR algorithm. 

3. Effect of LAT on the Convergence Rate of the DFP 

Algorithm 

Again in almost every problem, the number of iterations 

for DFP-LAT is less than or equal to the number of 

iterations for DFP. As in the case of the FR algorithm, 

in approximately fifty per cent of the cases presented in 

tables 1-8, the LAT algorithm does not improve the rate of 

convergence. However, for several problems an improvement 

of the rate of convergence (decrease in iterations) and a 

decrease in function evaluations is found. Problems 1 and 2 

demonstrate these properties. 

4. Comparison of Single Precision and Double Precision 

Arithmetic for the GOOP Algorithm 

Tables 9-16 indicate that the GOOP and GOOP-LAT 

algorithms make very little if any improvement in 

convergence rate by using double precision arithmetic. 

In fact, for some problems described, single precision 

arithmetic results are better than the double precision 
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arithmetic results. Although the results for single 

precision arithmetic of the FR and DFP algorithms are not 

provided in this thesis, it was found that these algorithms 

had to be performed in double precision arithmetic to obtain 

accurate results. Yet for the GOOP and LMC algorithms, 

the double precision arithmetic was not as necessary. 

5. Comparison of the Four Algorithms on the Basis of an 

Operations Count 

Since the GOOP algorithms must approximate the 

derivatives, the new comparative procedure of comparing 

an operations count for function and derivative evaluations 

is found in table 17. It appears that in problem 2, 

3, and 7 the GOOP algorithm compares unfavorably with the 

optimal algorithm. In problems 1, 4, 5, and 6 the GOOP 

algorithm is comparable with the optimal algorithm. In 

problem 8, the GOOP algorithm is much more efficient. 

Also note that no single algorithm performed well for 

all problems. 

One other comparison of the GOOP algorithm should 

be with a successful version of the DFP algorithm which 

approximates derivatives by Stewart [9]. In appendix D 

the results for problems 1 and 5 have been reproduced 

from Stewart's paper. In this comparison, the GOOP 

algorithm appears quite favorably. In problem 1, 

Stewart's algorithm performed 145 function evaluations 



for f = 2.8 x 10-8 while GOOP performed 115 function 

evaluations for f = 2.6 x 10-9. In problem 5, Stewart's 

algorithm performed 139 function evaluations for 
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f = 1.1 x 10-8 wh~le GOOP performed 91 function evaluations 

-9 for f = 3.7 x 10 • 
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VI. CONCLUSIONS 

In some applied fields, the GOOP algorithm has been 

successfully used, but very little theoretical work has 

been developed for this algorithm. This thesis adds the 

linear acceleration technique, LAT, to the GOOP algorithm. 

It then provides the theoretical demonstration which had 

been conjectured to be true by many users, that the 

GOOP-LAT algorithm is convergent for the nonquadratic 

nonlinear programming problem. This thesis does not 

consider the problem of examining the rate of convergence, 

but it is conjectured that the GOOP-LAT algorithm has a 

rate of convergence somewhere between linear and quadratic. 

The linear acceleration technique, LAT, described in 

chapter III definitely makes an improvement on the 

convergence rate of the GOOP algorithm. In all the 

problems of chapter V, the number of iterations decrease. 

In all but one problem, the number of function evaluations 

also decreases. Thus the GOOP-LAT algorithm does improve 

the convergence rate of the GOOP algorithm and because the 

number of function evaluations decreased, the new algorithm 

is more efficient than the old. 

In applying LAT to the conjugate direction algorithms, 

FR and DFP, the improvement of the convergence rate is 

not as outstanding. In almost all of the problems, the 

convergence rate is improved or unchanged. However, in 

most cases the addition of the LAT algorithm is not 
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efficient. Even though the number of iterations decreased, 

the number of function evaluations increased. 

In comparing the GOOP algorithms with the Levenberg­

Marquardt algorithm and other conjugate direction 

algorithms, the GOOP-LAT algorithm compares more favorably 

than the GOOP algorithm for most problems. The Levenberg­

Marquardt algorithm produced good results if the number 
+ 

of elements of the vector h, equation (1.5), is small and 
+ 

if the elements of h have partial derivatives which have 

a small number of operations. The Fletcher-Reeves and 

Davidon-Fletcher-Powell algorithms produced good results 

if the gradient vector, equation (1.2), has a small 

number of operations. The GOOP-LAT algorithm produced 

favorable results on several problems, but the best 

results were for a problem where the number of elements 

of the vector h was large and the partial derivatives of 

these elements were not relatively simple. 

One other attribute of the GOOP-LAT algorithm is 

that the single precision arithmetic computational results 

are just as favorable as the double precision results. 

This is not an attribute of the Fletcher-Reeves and Davidon-

Fletcher-Powell algorithms. 

It is felt that the numerical results of this thesis 

indicate that the GOOP-LAT algorithm in single precision 

arithmetic is an algorithm which is as efficient an 



algorithm as the other successful algorithms presented. 

It must be noted that no algorithm is going to solve all 

problems efficiently, but the GOOP-LAT algorithm is 

competitive with these algorithms. The GOOP-LAT algorithm 

should be used for the following types of problems: 

(1) those problems with partial derivatives which are 

extremely difficult to obtain; (2) those problems where 
+ 

the number of elements of the vector h are large and a 

large number of operations are necessary to evaluate the 

partial derivatives. It is conjectured that a more 

efficient one-dimensional search in the LAT algorithm 

might improve the convergence rate of the GOOP-LAT 

algorithm even more. 

The work described in this paper has been concerned 

with the development of the LAT algorithm, its application 

to conjugate direction algorithms, the convergence of the 

GOOP-LAT algorithm, and the comparison of the GOOP-LAT 

algorithm with other successful algorithms. Two specific 

extensions of this work appear to warrant further study. 

The LAT algorithm should be constructed using a more 

sophisticated one-dimensional search and the rate of 

convergence for the GOOP-LAT algorithm should be examined. 
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McCormick [29] has established that the reset Davidon-

* Fletcher-Powell algorithm is superlinear convergent. 

It is conjectured that the GOOP-LAT algorithm has super-

linear convergence. 

*Definition of Superlinear Convergence. An algorithm's 
convergence is superlinear with respect to every n points 
within a sequence if 

lim 
c-+oo 

II~~ - x* II 

llx0 - x* II c 

= 0 

where.~* is the optimal point of the objective function 
and X~ indicates the ith point of the sequence which has 
been Jreset j times. 
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APPENDIX A 

Description of Problems 1-8 

Problem 1 (Rosenbrock's Function) 

where the minimum f = 0 is found at the point {1.0,1.0). 

Problem 2 (Cube) 

where the minimum f = 0 is found at the point (1.0,1.0). 

Problem 3 (Beale's Function) 

f = (1.5- x 1 {1- x 2 )) 2 + {2.25- x 1 {1- x 22 >> 2 

3 2 + (2.625- x 1 {1- x 2 )) 

where the minimum f = 0 is found at the point {3.0,0.5). 

Problem 4 {Powell's Four Parameter Function) 

f = {x1 + 10x2 >2 + 5{x3 

+ 10{x1 - x 4 ) 2 

where the minimum f = 0 is found at the point 

(O.O,O.O,O.O,O.O). 
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Problem 5 

Same function as problem 4. 

Problem 6 

Same function as problem 4. 

Problem 7 (Wood's Function) 

f = lOO(x2 - xl 2)2 + (1 2 x 1 ) + 90(x4 x3 2)2 

+ (1 - x3)2 + 0.2(x2 
2 - 1) + 0.2(x4 - 1)2 

+ 9.9(x2 + x 4 - 2)2 

which is equivalent to the more familiar form 

2 2 f = 100(x2 - x 1 ) 
2 

+ (1 - x 1 ) + 2 2 90(x4 - x 3 ) 

+ (1 - x3)2 + 2 10.l(x2 - 1) 

+ 19.8(x2 - 1) (x 4 - 1) 

+ 10.l(x4 - 1) 2 

where the minimum f = 0 is found at the point 

(1.0,1.0,1.0,1.0). 

Problem 8 (Miele Function) 

X 
f = (e 1 -

8 
+ xl 

x 2 ) 4 + 100(x2 - x 3 ) 6 + tan4 (x 3 - x 4 ) 

+ (x4 - 1) 2 

where the minimum f = 0 is found at the point 

(0.0,1.0,1.0,1.0). 
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APPENDIX B 

FORTRAN Flow Chart of One-Dimensional Search 

In the flow chart below, the following variables and 

subprogram are used 

FUNCT - Function subprogram which determines the value 

of the function, F, for the current value of 

the vector X. 

F - Current value of the function. 

FOLD - Minimum value of the function. 

XHOLD - Vector of ~-values at the beginning of the 

conjugate direction algorithm. 
4 

X - Vector of current x-values. 

DLTAX - Vector indicating direction determined by the 

conjugate direction algorithm. 

IDIREC - Flag. If IDIREC = 0, search is adding multiples 

of DLTAX. If IDIREC = 1, search is adding 

increments of DLTAX. 

FACT - Amount of DLTAX being added to base point XHOLD. 

SAVEI - Holds last successful value of FACT. 
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APPENDIX C 

Computational Details of the Operations Count 

The procedure described in chapter V, section c is 

applied to the eight problems described in appendix A. 

The values for IT and FE used below are the most optimal 

values for each particular algorithm found in tables 1-16. 

The following abbreviations are used: multiplication and 

division, MD; addition and subtraction, AS; exponentiation 

subprogram, EXP; tangent subprogram, TAN; and cosine 

subprogram, COS. In evaluating gradients and derivatives, 

operations are only counted for terms which have not 

previously been computed in the function and derivative 

evaluation earlier. 

Problem 1 

a) Evaluation of function 

b) 

MD = 4 
AS = 3 

The gradient is 

g = [
-400x1 (x2 - x 1

2 > 

200(x2 - x 1 2 > 

Evaluation of gradient 

MD = 4 
AS = 1 

Total number of operations for function and 

gradient 

MD = 8 
AS = 4 
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c) The H matrix is 

[ -20x1 

-1 ~OJ 
For construction of H 

MD = 1 
AS = 0 

For HTH and HTh 
. 0 

MD = 8 
AS = 3 

For scaling T H H and Th H 0 

MD = 3 
AS = 0 

Total number of operations for construction and 

1 . f HTH and HT~hO sea 1.ng o 

MD = 12 
AS = 3 

FR Alsorithm 

MD = 8FE = 
AS = 4FE = 

DFP Alsorithm 

MD = 8FE = 
AS = 4FE = 

LMC Alsorithm 

MD = 12IT + 
AS = 3IT + 

GOOP Alsorithm 

MD = 2IT + 
AS = 2IT + 

8(64) = 512 
4(64) = 256 

8(60) = 480 
4(60) = 240 

4FE = 12(23) 
3FE = 3(23) 

4FE = 2 ( 28) 
3FE = 2(28) 

+ 4 ( 8 8) = 628 
+ 3 ( 8 8) = 333 

+ 4(115) = 516 
+ 3(115) = 401 
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Problem 2 

a) Evaluation of function 

b) 

MD = 5 
AS = 3 

Evaluation of gradient 

MD = 4 
AS = 1 

Total number of operations for function and 

gradient 

MD = 9 
AS = 4 

c) The matrix H is 

r~:ox/ ~OJ 
For construction of H 

MD = 1 
AS = 0 

HTH T-+ 
For and H ho 

MD = 8 
AS = 3 

HTH and 
T-+ 

For scaling H ho 

MD = 3 
AS = 0 

Total number of operations for construction and 
T T-+ 

scaling of H H and H h 0 

MD = 12 
AS = 3 
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FR Algorithm 

MD = 9FE = 9 (44) = 395 
AS = 4FE = 9(44) = 176 

DFP Alsorithrn 

MD = 9FE = 9(51) = 459 
AS = 4FE = 4(51) = 204 

LMC Alsorithrn 

MD = 12IT + 5FE = 12(6) + 5(20) = 172 
AS = 3IT + 3FE = 3 ( 6) + 3(20) = 78 

GOOP Alsorithrn 

MD = 2IT + 5FE = 2 (12) + 5(65) = 349 
AS = 2IT + 3FE = 2 (12) + 3(65) = 219 

Problem 3 

a) Evaluation of function 

MD = 8 
AS = 8 

b) The gradient is 

-2(1.5- x 1 (1- x 2))(1- x 2 > 
2 2 

+ 

-2(2.25- x 1 (1- x 2 ))(1- x 2 ) 

-2(2.625- x 1 (1- x 23» (1- x 23 > 
g = 

2(1.5- x 1 (1- x 2 >>x1 
2 + 4(2.25 - x 1 (1- x 2 )) x1x2 

3 2 + 6(2.625- x 1 (1- x 2 ))x1 x 2 

Evaluation of gradient 

MD = 12 
AS = 4 

Total number of operations for function and 

gradient 

MD = 20 
AS = 12 

85 



86 

c) The matrix H is 

-1 + x2 xl 

-1 + x2 
2 2x1x 2 

-1 + x2 
3 3x1x 2 

2 

For construction of H 

MD = 4 
AS = 0 

For HTH and 
T-+ 

H h 0 

MD = 12 
AS = 8 

For scaling HTH and HTh 
0 

MD = 3 
AS = 0 

Total number of operations for construction and 
T T-+ 

scaling of H H and H ho 

MD = 19 
AS = 8 

FR Algorithm 

MD= 20FE = 20(22) = 440 
AS = 12FE = 12 (22) = 264 

DFP Algorithm 

MD = 20FE = 20(24) = 480 
AS = 12FE = 12(24) = 288 

LMC Algorithm 

MD= 19IT + 8FE = 19(5) + 8(15) = 215 
AS = SIT + SFE = 8 ( 5) + 8(15) = 160 

GOOP Alsorithm 

MD = 3IT + SFE = 3(10) + 8(50) = 430 
AS = 3IT + SFE = 3(10) + 8(50) = 430 



Problem 4 

a) Evaluation of function 

MD = 10 
AS = 7 

b) The gradient is 

-+ 
g = 

2(x1 + 10x2) + 40(x1 - x 4 ) 3 

3 20{x1 + 10x2) + 4{x2 - 2x3 ) 

3 10{x3 - x 4 ) - 8{x2 - 2x3 ) 

3 -10{x3 - x 4 ) - 40(x1 - x 4 ) 

Evaluation of gradient 

MD = 8 
AS = 4 

Total number of operations for function and 

gradient 

MD = 18 
AS = 11 

c) The matrix H is 

1 10 0 0 

0 0 Is Is 

0 2{x2 - 2x3 ) -4{x2 - 2x3 ) 0 

2llO(x1 - x4) 0 0 -2110{x1 -

For construction of H 

MD = 2 
AS = 0 

HTH T-+ 
For and H h 0 

MD = 44 
AS = 33 

T T-+ 
For scaling H H and H ho 

MD = 16 
AS = 0 
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Total number of operations for construction and 
T T:+ scaling of H H and H ho 

MD = 62 
AS = 33 

FR Algorithm 

MD = 18FE = 18(123) = 2214 
AS = llFE = 11(123) = 1353 

DFP Alg:orithm 

MD= 18FE = 18(100) = 1800 
AS = llFE = 11(100) = 1100 

LMC Algorithm 

MD= 62IT + lOFE = 62(15) + 10(57) = 1500 
AS = 33IT + 7FE = 33(15) + 7 (57) = 894 

GOOP Algorithm 

MD= 4IT + lOFE = 4(16) + 10(120) = 1264 
AS= 4IT + 7FE = 4(16) + 7(120) = 904 

Problem 5 

Problem 5 has the same function, gradient, and H 

matrix as problem 4. Because the starting points differ 

the number of function evaluations, FE, and the number of 

iterations, IT, also differ. 

FR Algorithm 

MD = 18FE = 18(121) = 2178 
AS = llFE = 11 (121) = 1331 

DFP Algorithm 

MD = 18FE = 18(96) = 1728 
AS = llFE = 11(96) = 1056 
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LMC Alsorithm 

MD = 62IT + lOFE = 62(9) + 10(27) 
AS = 33IT + 7FE = 33(9) + 7 ( 27) 

GOOP Alsorithm 

MD = 4IT + lOFE = 4(14) + 10 (91) 
AS = 4IT + 7FE = 4(14) + 7 {91) 

Problem 6 

Problem 6 is the same as problem 4. 

FR Algorithm 

MD = 18FE = 18{57) = 1026 
AS = llFE = 11(57) = 627 

DFP Algorithm 

MD = 18FE = 18(54) = 972 
AS = llFE = 11{57) = 594 

LMC Algorithm 

MD = 62IT + 10FE = 62(6) + 10 (18) 
AS = 33IT + 7FE = 33(6) + 7(18) 

GOOP Algorithm 

MD = 4IT + 10FE = 4(8) + 10{61) 
AS = 4IT + 7FE = 4(8) + 7(61) 

Problem 7 

a) Evaluation of function 

MD = 13 
AS = 13 

89 

= 828 
= 486 

= 966 
= 693 

= 552 
= 324 

= 642 
= 459 



b) The gradient is 

-400x1 (x2 - X 2) 1 
2 200(x2 - x 1 ) + 

-+ 19.8(x2 + x4 
g = 

-360x3 (x4 - X 2) 
3 

2 180(x4 - x 3 ) + 
19.8(x2 + x4 

Evaluation of gradient 

MD = 9 
AS = 6 

- 2(1 - xl) 

0.4(x2 - 1) + 
- 2) 

- 2(1- x3) 

0.4(x4 - 1) + 
- 2) 

Total number of operations for function and 

gradient 

MD = 22 
AS = 19 

c) The matrix H is 

-20x 1 10 

-1 0 

0 0 

0 -1 

10.2 0 

0 0 

0 19.9 

For construction 

MD = 2 
AS = 0 

HTH T-+ 
For and H ho 

MD = 77 
AS = 66 

0 0 

0 0 

-2/90x3 190 

0 0 

0 0 

0 /0.2 

0 19.9 

of H 
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For scaling HTH and HTho 

MD = 16 
AS = 0 

Total number of operations for construction and 
T T+ 

scaling of H H and H ho 

MD = 95 
AS = 66 

FR Algprithm 

MD = 22FE = 22(61) = 1342 
AS = 19FE = 19 (61) = 1159 

DFP Alg:orithm 

MD = 22FE = 22(129) = 2838 
AS = 19FE = 19 (129) = 2451 

LMC Alg:orithm 

MD= 95IT + 13FE = 95(53) 
AS = 66IT + 13FE = 66(53) 

GOOP Alg:orithm 

MD = 7IT + 13FE = 7(50) 
AS = 7IT + 13FE = 7(50) 

Problem 8 

a) Evaluation of function 

MD = 12 
AS = 4 
EXP = 1 
TAN = 1 

+ 13(208) = 7739 
+ 13(208) = 6202 

+ 13(389) = 5407 
+ 13(389) = 5407 
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b) The gradient is 

c) 

4(exl- x }3exl + Bx .7 
2 1 

-4(exl- x 2 ) 3 + 600(x 2 - x 3 ) 5 

-+ 
g = 

4tan3 (x3 - x 4 ) 

cos 2 (x3 - x 4 ) 

-4tan3 (x3 - x 4 ) 
+ 2 (x4 - 1) 

cos 2 (x3 - x 4 ) 

Evaluation of gradient 

MD = 14 
AS = 4 
cos = 1 

Total number of operations for function and 

gradient 

MD = 26 
AS = 8 
EXP = 1 
TAN = 1 
cos = 1 

The matrix H is 

2(exl X 
- x 2 )e 1 

0 30(x2 

0 0 

X 
- x2) 2(e 1 0 

- x3) 
2 

-30(x2 - x3) 
2 

2tan(x3 - X ) 4 -2tan(x3 

0 

0 

- x4) 

cos 2 (x3 - x4) 
2 cos (x3 - x4) 

4x1 
3 0 

0 0 

For construction of H 

MD = 7 
cos = 1 

T T-+ 
For H H and H h 0 

MD = 55 
AS = 44 

0 0 

0 1 
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HTH T-+ For scaling and H h 0 

MD = 16 

Total number of operations for construction and 
T T-+ scaling of H H and H h 0 

MD = 78 
AS = 44 
cos = 1 

FR Alsorithrn 

MD = 26FE = 26(117) = 3042 
AS = 8FE = 8 (117) = 936 
EXP = lFE = 1(117) = 117 
TAN = lFE = 1(117) = 117 
cos = lFE = 1(117) = 117 

DFP Alsorithrn 

MD = 26FE = 26(180) = 4680 
AS = 8FE = 8(180) = 1440 
EXP = lFE = 1(180) = 180 
TAN = lFE = 1(180) = 180 
cos = lFE = 1 (180) = 180 

LMC Alsorithrn 

MD = 78IT + 12FE = 78(20) + 12 (7S) = 2460 
AS = 44IT + 4FE = 44(20) + 4 (7S) = 1180 
EXP = OIT + 1FE = 1 (7S) = 7S 
TAN = OIT + lFE = 1 (7S) = 7S 
cos = liT + OFE = 1(20) = 20 

GOOF A1sorithrn 

MD = SIT + 12FE = S{lO) + 12(80) = 1010 
AS = SIT + 4FE = S{lO) + 4 (80) = 370 
EXP = OIT + lFE = 1 ( 80) = 80 
TAN = OIT + lFE = 1 (80) = 80 
cos = OIT + OFE = 0 
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APPENDIX D 

Stewart's Results for Problems 1 and 5* 

TABLE 18 

A Parabolic Valley 

Iteration Number of 

No. function 
evaluations 

0 1 2.4 101 
2 13 3.8 10° 
4 26 2.9 100 
6 39 1.9 10° 
8 56 7.1 10-l 

10 70 2.9 10-l 
12 83 1.4 10-l 
14 97 5.4 10-2 
16 111 1.8 10-2 
18 124 1.3 lo-3 
20 132 1.7 10-6 
22 145 2.8 lo-10 
23 152 1.0 10-11 
24 163 9.0 lo-12 
25 169 3.3 10-12 
26 174 3.3 10-12 

*These tables have been reproduced from Stewart's paper [9]. 
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TABLE 19 

A Function of Four Variables 

Iteration Number of 

No. function 
evaluations 

0 1 2.2 10 2 
2 21 1.9 101 
4 37 s.s lo-2 
6 54 1.1 lo- 2 
8 69 3.4 lo-3 

10 83 2.7 10-3 
12 104 2.8 lo-5 
14 122 1.8 10-7 
16 139 1.1 lo-8 
18 158 8.8 10-9 
19 168 8.8 10-9 

41 407 1.1 10-10 
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