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ABSTRACT

Real Cayley-Dickson algebras are a class of 21—
dimensional real algebras containing the real numbers, com-
plex numbers, quaternions, and the octonions (Cayley
numbers) as special cases. Each real Cayley-Dickson
algebra of dimension greater than eight (a higher dimen-
sional real Cayley-Dickson algebra) is a real normed
algebra containing a multiplicative identity and an inverse
for each nonzero element. In addition, each element a in
the algebra has defined for it a conjugate element a
analogous to the conjugate in the complex numbers. These
algebras are not alternative, but are flexible and satisfy
the noncommutative Jordan identity. Each element in these
élgebras can be written A = a;tea, where e is a basis
element and a;ra, are elements of the Cayley-Dickson
algebra of next lower dimension.

Results include the facts that for each real Cayley-
Dickson algebra aiaj = ai+j and (aib)aj = ai(baj) for all
integers i,j and any a,b in the algebra. The major result
concerns zero divisors.
+ea B=Db

MAJOR THEOREM. Let A = a +eb2, A,B # 0 be

1 2! 1

elements of any real higher dimensional Cayley-Dickson

algebra. ULet a, and a, not be divisors of zero. Then AB =

1 20¢ &, Dot Be

0 if and only if

2) (alrbllaz) = (al'al'b2)+(a2'a2'b2)+[N(a2)+N(al)]b2'
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where )A,B,C( = (AB)C+A(BC), (A,B,C) = (AB)C-A(BC), and

N(a) = aa.
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I. Introduction.

This paper is a study of the properties of higher
dimensional real Cayley-Dickson algebras. The real Cayley-
Dickson algebras are an infinite class of 2%_dimensional
algebras over the real field. They include all alternative
finite dimensional division algebras over the reals: The
real numbers, complex numbers, quaternions, and the
octonions. The quaternions are a four dimensional noncom-
mutative real algebra devised by W. Hamilton. The octonions
(usually called the Cayley numbers) are an eight dimensional
noncommutative and nonassociative real algebra devised by
A. Cayley. L. E. Dickson in 1919 [11l] devised the process
whereby each of these algebras generates the algebra of
next larger dimension. This class of algebras is thus
called the Cayley-Dickson algebras.

Cayley-Dickson algebras up to dimension eight over
arbitrary fields (and particularly over the real field) have
been extensively studied. It appears that Cayley-Dickson
algebras of dimension higher than eight (higher dimensional
Cayley-Dickson algebras) have been studied relatively
little.

There are several reasons why a study of higher dimen-
sional real Cayley-Dickson algebras could be valuable,

Each such algebra is a normed algebra over the reals with
the added property that each nonzero element has an inverse.

Moreover, the elements of each such algebra satisfy the



conditions necessary to permit their use in relativistic
quantum mechanics, yielding perhaps, more insight into
quantum mechanical phenomena than is presently available.
Lastly, such a study could help classify types of algebras
in the large class of nonassociative algebras, the noncom-
mutative Jordan algebras.

This paper examines, in particular: The algebraic
properties of the zero divisors of higher dimensional real
Cayley-Dickson algebras; certain identities which hold (or
fail to hold) in these algebras; and the properties of
negative integer exponents in these nonassociative algebras.

We indicate the end of a proof in this paper by the

symbol //, after the notation of K. G. Kurosh [20].



II. Review of the Literature.

L. E. Dickson [l11] in the Annals of Math in 1919,
devised a scheme whereby an infinite class of algebras of
dimension 2" could be constructed which contains the real
and complex numbers, the guaternions, and the octonions.
These algebras are called Cayley-Dickson algebras in honor
of Dickson and Arthur Cayley who developed the octonions.
Dickson was writing about the "Eight Square Problem", the
solution to which was given by the following theorem due
to A. Hurwitz in 1898.

. . 2 2 2
The identity (xl to... X )(yl ool t oy

2
1

and y; can hold only for n =1,2,4,8.

2y _

(z + ... + znz) where the z, are linear in X

For examples of this identity, for each specified n, Dickson
used the real numbers, the complex numbers, the quaternions,
and the octonions. One of the consequences of Hurwitz's
theorem is that the only Cayley-Dickson algebras in which
the norm of a product equals the product of the norms are

of dimension 1,2,4,8.

An excellent account of the search for division
algebras over the real field and the relation of that search
to the eight square problem is given by Charles Curtis [10].
This vein of work was completed in 1958 by R.Bott and J.
Milnor [8], [23]. They proved that the only division
algebras over the reals are of dimension 1,2,4 and 8. Hence

the first four Cayley-Dickson algebras over the real numbers



are of primary importance.

A. A. Albert examined Hurwitz's proof and Dickson's
process in 1941, and generalized these ideas to the idea of
quadratic forms [1l}. In 1946 [2] he considered the idea
of an absolute-valued algebra, and showed that all real
algebras are normed algebras. In 1948 [3] he examined the
property of power associativity in rings as well as the
properties of flexibility and trace-admissibility. Each
Cayley-Dickson algebra enjoys these properties. In 1948
[4] he studied trace-admissible algebras and displayed
several more properties of the trace operator which hold in
any Cayley-Dickson algebra.

It was R. D; Schafer in 1954 [26], however, who came
back to examine more closely the Cayley-Dickson algebras
themselves. Indeed, the chief references for the subject

are his 1954 paper and his 1966 book An Introduction to

Nonassociative Algebras [28]. 1In his paper, he derives

certain elementary properties of these algebras and examines
chiefly their derivation algebras. He shows, for example,
that all Cayley-Dickson algebras are flexible. He also
shows that the basis elements of all such algebras are
alternative, even though the algebras are not alternative
if the dimension is greater than eight.

From here, the investigation seems to follow two widely
separating paths. One path of study is the investigation
and classification of the nonassociative algebras in

general. In 1955 [27], Schafer was able to classify simple



noncommutative Jordan algebras of characteristic 0 into
three classes: simple (commutative) Jordan algebras, simple
quasiassociative algebras, and simple flexible algebras of
degree two. He then commented that much remains to be
learned about that last classification inasmuch as it
contains the Cayley-Dickson algebras for which relatively
little is known. Most of the work in these areas of late,
has been in trying to find identities characterizing cer-
tain classes of nonassociative algebras. These have in-
cluded the concepts of standard algebras, generalized
standard algebras, accessible algebras, generalized acces-
sible algebras, and algebras with alternativity conditions.
These have been studied by such people as A. J. Penico [24],
R. D. Schafer [29], [30], R. E. Block [7], E. Kleinfeld
[18], M. H. Kleinfeld, J. F. Kosier [19], and K. McCrimmon
[21].

The other path has been to study the guaternions and
octonions extensively with some of the techniques of other
areas of mathematics. In particular, the ideas of functional
analysis have been applied to them by H. H. Goldstine and
L. P. Horwitz [14], {151, [16], and more recently by J.
Jamison [17]. Number theory and basic algebra methods have
been applied to the guaternions and octonions by S. Eilenberg
and I. Niven [12], M. J. Wonenburger [32], and H. S. Coxeter
[9]. The octonions and their relation to the Dirac wave

equation in physics have been studied by R. Penney [25].



The last paper to date, to the author's knowledge,
specifically mentioning the Cayley-Dickson algebras is R. D.
Schafer's paper in 1970 concerning forms permitting composi-
tion [31]. 1In this paper, he does not mention any signifi-

cant new results about the Cayley-Dickson algebras.



III. Basic Concepts.

A. Definitions.
The following ideas, which can be found in [21] and in
[28], will be used frequently in our study.

Definition 3.1. A ring R is an additive abelian group

with a multiplication satisfying the distributive laws
(x + y)z = xz2 + yz and z(x + y) = zx + zy for any X,y,z in
R. (Note that (xy)z = x(yz) is not assumed.)

Definition 3.2. An algebra A is a ring which is also a

vector space over a field F with a bilinear scalar multipli-
cation satisfying the scalar associative law: r(xy) =
(rx)y = x(ry), for all r in F and for all x,y in A.
Generally, what we have defined is called a nonassocia-
tive algebra to emphasize that the associative law is not
assumed. We will restrict our attention to algebras with a
multiplicative identity element over the real field. It is
important to note that the real field is of characteristic
zero. In the following, we consider algebras rather than
rings; but obviously, many definitions and results do not
depend on scalars and hence are true for rings as well.

Definition 3.3. An element a of an algebra A is a

zero divisor if a # 0 and there exists some element b # 0

of A for which ab = 0 or ba = 0. The elements a and b will

be referred to as mutual zero divisors if they are zero

divisors and ab = 0 or ba = 0.

Definition 3.4. A division algebra is an algebra in




which every element has an inverse and there are no
divisors of zero.

Definition 3.5. The commutator [x,y] is given by

[x,y] = xy - yx.

Definition 3.6. The associator (x,y,z) is given by

(x,y,2) = (xy)z - x(yz).

Definition 3.7. The nucleus of an algebra is the set
of all elements x of an algebra A for which (x,y,z) =
(yvix,2) = (y,z,x) = 0 for all y,z in A.

Definition 3.8. The center of an algebra is the set

of all elements in the nucleus of the algebra which also
commute with all elements of the algebra.

Definition 3.9. An involution (involutorial anti-

automorphism) is a linear operator X - X such that Xy = yx

and X = x. We call x the conjugate of x.

In this paper, we will only be concerned with involu-

[in—,

tions for which x + x and xx are in the center of the

algebra. Dr. A. J. Penico has suggested that these might
best be called "centered involutions".

Definition 3.10. The trace T(x) of the element X is

defined by T(x) = X + X.

Definition 3.11. The norm N (x) of the element X is

defined by N(x) = XX = XxXX.

Definition 3.12. The flexible property is (xy)x =

x(yx). If the flexible property is satisfied for all ele-
ments of an algebra, the algebra is said to be flexible.

Definition 3.13. The right alternative property is




(yx)x = yx2, and the left alternative property is x(xy) =

xzy. If both properties are satisfied by all elements of

an algebra, the algebra is said to be alternative.

B. basic consequences of the definitions.

In this section, we observe basic properties of the
terms defined previously so that efficient algebraic manipu-
lations will be available to examine the Cayley-Dickson
algebras. Many of these observations are well known, and

are included to aid the reader.

The commutator is defined by [x,y] xy - yx. If
[x,vy] = 0, then xy = yx. Clearly, [x,x] = 0 and [Xx,y] =
-[y,x]. 1In an algebra, a scalar r may be thought of as
r » 1 where 1 is the identity element of the algebra, so we
have [r,x] = 0 for all x in the algebra. Moreover, r(x,yl
= [rx,y] = [x,ry]l. Commutators are also additive in each
argument, i.e., [x + y,z] = [x,2] + [y,z] and [x,y + z] =
[x,y] + [x,z]. Thus commutators are linear in each argu-
ment.

Since the trace is in the center of an algebra, we
have the following additional properties of the commutator

and the conjugate.

[§,§] = -[x,y]. These

[x,y] = -[x,y] = -[x,y]

equalities follow from [X,y] [T(x) - x,y] = [T(x),y] +

[-x,y] = 0 - [x,y]; [x,y] = [x,T(y) -yl = [X,T(y)] +

-[x,y]; and TX,y] = Xy - yX = Xy - YX = yX - Xy =

[XI—Y]

[§l§] = [Y,X] = -[le]'
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The associator is defined by (x,y,z) = (xy)z - x(yz):
(x,y,2) = 0 if and only if (xy)z = x(yz). Moreover, if r
is an element of the center, then (r,x,y) = x,r,y) = (x,y,r)

= 0. The associator is also additive in each argument, i.e.,
for example, (x + y,z,w) = (x,z,w) + (y,2z,w). Thus the
associator is linear in each argument.

If an algebra A is flexible, then we have (xy)x =
x(yx); or, in terms of associators, (x,y,x) = 0 for all x,y
in A. By the additive property this means 0 =
(x + w,y,x +w) = (x,v,%) + (x,y,w) + (w,y,x) + (w,y,w) =
(x,y,w) + (w,y,x). Thus in a flexible algebra (x,y,w) =
-(w,y,x), for all x,y,w in A.

The following relations between conjugates and asso-

ciators hold in algebras with involution.

(x,v,2) = -(x,y,2) = -(x,y,2) = -(X,y,2)

= (x,¥,2) = (x,v,2) = (x,¥,2)
= - (%,¥,2)
= (z,y,x)

These properties follow from the observation that
(x,v,2) = (T(x) - x,y,2) = (T(x),y,2) + (-x,y,2z) = 0 -
(x,v,2); and (z,y,X) = (z2y)x - z(yx) = x(yz) - (xy)z =
-(x,¥,2) = (x,7,2).

The "Four Identity" is: (xy,z,w) - (x,yz,w) +
(x,y,2w) = x(y,z,w) + (x,y,2)w. This is easily verified

as being true in any ring, and will be useful in certain

calculations.
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Just as the flexible property can be expressed in
terms of associators, the alternative properties can be as
well. The right alternative property (yx)x = yx2 can be
written as (y,x,x) = 0, and the left alternative property
X (xy) = x2y can be written as (x,x,y) = 0. If an algebra

is alternative, i.e., both the left and right alternative

properties hold, then 0 = (x + y,x + y,2) = (x,%,y) +

(x,¥,2) + (y,%x,2) + (y,v,2) = (x,y,2) + (y,%X,2). Thus in
an alternative algebra (x,y,z) = -(y,x,2). Similarly, in
an alternative algebra (x,y,2z) = -(x,2,y). Moreover, any

two of (x,x,y) =0, (y,x,X) = 0, or (x,y,X) = 0 imply the
third. For example, if the alternative laws hold, then

0

(x,x + y,x +vy) = (x,%x,x) + (xX,y,x) + (x,%x,y) + (x,v,Y)
= (X,¥Y,X).

The trace T (x) has been defined to be in the center of
the algebra. Thus if r = r, then r is in the center since

= 2r. For such an r we have T(rx) = rT(x),

al|

T(r) =1 +
since rx + r¥x = rx + Xr = rx + rx = r{x + x). It is also
clear from the definition that T(x) = T(x).

THEOREM 3.1. In any flexible algebra with involution,

T(xy) = T(yx) and T([xylz) = T(x[yzl).

Proof. Since [x,y] = [X,y], we have Xy - yX = Xy - yX
or xy + §§ = §§ + yx. Therefore, xy + Xy = yx + vx and so
T(xy) = T(yx). Also since (X,v,z) = -(x,y,2z), we have
(x,y,2) + (x,y,2) =0, i.e., T((x,y,z)) = 0. Thus

T([xylz - x[yzl) = T([xylz) - T(x[yz]) = 0.//
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We also note that T(xy) = T(yx) since Xy + xy = xy +
yX = yx + yx. Hence T(xy) = T(xy) because T(xy) = T(yx).
It is not true, however, that T(iy) = T(xy), as can be seen

from the complex numbers with the usual conjugate. There,
trace corresponds to twice the real part of each complex
number, Thus T([1 + i]Ji) = =2, but T([1 - 1i}i) = +2.
Finally, we observe a relationship that exists between

T(xy) and T(xy).

LEMMA 3.2. T(x)T(y) = T(xy) + T(xy).
Proof. T(x)T(y) = (X + X)(y + y) = xy + x§i+ Xy + Xy
= (xy + §§) + (§y + xy + §§ - §§) = T(xy) +

(xy + X[y + y] - yX) = T(xy) + (xy + T(y)x - yx) = T(xy) +
(xy + [T(y) - ¥1R) = T(xy) + (xy + yx) = T(xy) + T(xy).//

In an algebra with involution, several useful rela-
tionships exist between the conjugate and the operation of
association. The following will illustrate.

THEOREM 3.3. In an algebra with involution, the

following hold:

X (Xy)

i) x(xy)

ii)  (yX)x = (yx)X
. -2 -2
iii) x(x"y) = x7(xy).

If the algebra is also flexible, then:

iv) x(xy) = (yx)x
v) x2(yx) = (x2y)x.
Proof. We use the properties of trace to make the

calculations:
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1) x(xy) = (T(x) - x)(xy) = T(x)(xy) - x(xy) =
x[T(x)y - xy]l = x([T(x) - x]y) = x(xy).

ii) is shown in a similar manner. For iii), consider,
x (x%y) = x[R(T(x) - x)y] = x[T(x)% - N(x))y] =
x[T(x) (xy) - N(x)y]l = T(x)[x(xy)] - N(x) (xy). Now by i)
this equals T (x) [x(xy)] - N(x)(xy) = [T(x)x - N(x)] (xy) =
[N(x) + %% - N(x)1 (xy) = %°(xy).

Now assuming the flexible property, iv) follows from

x(iy) = -(x,%,y) + (x§)y = -(§,x,y) + N(x)y = (y,x,i) +

N(x)y (yx)§ - yN(x) + N(x)y = (yx)i.

To show v) holds, recall that an associator is zero if
any entry is in the center. Then (xz,y,x) =
(x[T(x) - x],y,%x) = (T(2)x = N(x),y,x) = (T(x)X,y,x) -
(N(x),y,%) = T(x) (x,y,x) = 0 = 0.//

Definition 3.14. A noncommutative Jordan algebra is a

noncommutative flexible algebra satisfying (x2,y,x) = 0.

COROLLARY 3.4. Any flexible noncommutative algebra

with involution is a noncommutative Jordan algebra.

Proof. This follows from the proof of v) above.//
The following is given by Schafer [28] as an exercise.

LEMMA 3.5. In any flexible algebra: (xz,y,x) =

X(xzy) - xz(xy) = (yxz)x - (YX)XZ-
Proof. x(xzy) - xz(xy) = x[(xx)y] - (xx) (xy) =

- (x,x,xy) + x[x(xy)] + x[(x,x,y) - x(xy)] = (xy,x,x) -

x(y,%X,x) by the flexible property. Now, this last expres-

sion becomes [(xy)x]lx - (xy)x2 - x[ (yx)x] + x(yxz) =

—(xy)x2 + x(yxz) - x[(yx)x] + [(xy)x]lx = -(x,y,xz) -
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x[(yx)x] + [x(yx)]x = —(x,y,xz) + (x,¥X,X) = (xz,y,x).
Likewise (yxz)x - (yx)x2 = [y(xx)1lx - (yx)(xx) =
(yx,%x,x) = [(yx)x]lx + [(yx)x - (y,%x,x)]1x = (X,X,¥)x -

(x,X,xy) by the flexible property. This then becomes
(xzy)x - [x(xy)lx - x2(xy) + x[x(xy)] = (xz,y.X) +
x[x(xy)] - x[(xy)x] = (xz,y,X) - X(X,¥,x) = (xz,y,X).//

LEMMA 3.6. In any noncommutative Jordan algebra we

have (x,x,yx) = (X,%X,y)x and (Xy,X,x) = x(y,X,X).

Proof. We use the "Four Identity" which is valid in
any algebra.

(xx,¥,%X) - (x,xy,x) + (x,x,yx) = x(X,¥,X) + (X,x,V)X.

Now by the noncommutative Jordan identity and the flexible

property, we have (x,x%,yX) = (X,x,y)x.
Similarly, (xy,x,x) - (X,yX,xX) + (x,y,xz) = x(y,x,x) +
(x,y,X)X. Thus, (xy,x,x) = x(y,x,x).//

COROLLARY 3.7. In any noncommutative Jordan algebra

we have [x(xy)lx = x[x(yx)] and [(xy)x]lx = x[(yx)x].

Proof. 0 = (X,x,yX) - (x,%,y)x = xz(yx) - x[x(yx)] -
(xzy)x + [x(xy)lx = —(xz,y.X) + [x(xy)Ix - x[x({yx)] =
[x (xy)]x - x[x(yx)]. The other part is similar.//

We have defined the norm of x to be N(x) = xx, and

have specified that N(x) is in the center. The presence of
norm and trace lead to the next lemma.

LEMMA 3.7. Every element in an algebra with involu-

tion satisfies the quadratic equation: x2 - T(x)x + N(x)1

= 0-
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Proof. x° - T(x)x + N(x)1 = x2 = (x + X)x + x% = 0.//

LEMMA 3.8. The following hold in any algebra with in-

volution:
i) N(r) =2, ifr=7%
ii) N(rx) = r’N(x), if r = T
iii) N(x) = N(x).

Proof. Each is clear from the definition of norm.//

THEOREM 3.9. In any flexible algebra with involution

the following hold:

i) N(xy) = N(xy)

ii)  N(xy) N (xy)

N(yx).

iii) N(xy)
Proof. The proof relies on the fact that the trace is

in the center of the algebra.

i) N(xy) = (xy) (yx) = [x(T(y) - y)](yx) =
[T(y)x - xyl(yx) = [T(y)x](yx) - (xy) (yx) = [T(y)x] (yx) -
(xy) [(T(y) - ¥)x] = [T(y)x]l(yx) - T(y)[(xy)x] + (xy)(yx) =
T(y) [x(yX) - (xy)x] + N(xy) = -T(x) (x,y,X) + N(xy) =
T(x) (x,¥,x) + N(xy) = N(xy).

Now, to prove iii), we note that i) implies N(xy) =
N<§§) = N<§§) = N(yx) = N(yx).

From this ii) follows easily.//

We note here that the fact that N(xy) = N(yx) proved
to be very useful in studying zero divisors in Cayley-

Dickson algebras.

LEMMA 3.10. In any algebra with involution we have:

N(x + y) = N(x) + N(y) + T(x§).



Proof. N(x +y) = (x+y)(x+y) = (x

XX + X7+ 7% 4 vy

T(xy).//

N(x) + N(y) + (xy + xy)

16

N(x) + N(y) +
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IV. The Cayley-Dickson Algebras.

R. D. Schafer's book [28] gives a clear description of
the process that Dickson devised to generate the Cayley-
Dickson algebras. Let A be an algebra with identity 1 and
with an involution. Let A have dimension n. Then we con-
struct an algebra B of dimension 2n over the same field as
A and having A isomorphic to a subalgebra of B. Let B con-

sist of all ordered pairs (al,az) where aj and a, are ele-

2
ments of A. Let addition and multiplication by scalars be
defined componentwise. Moreover define a multiplication in
B by (al,az)(aB,a4) = (ala3 + va,a,,aga, + a3a2), where v is
some nonzero scalar. Defining (1,0), the identity element
of B, as 1, then: A' = {(a,0)]| a in A} is a subalgebra iso-
morphic to A; e = (0,1) is an element of B such that e2 =
vl; and B is the vector space direct sum B = A' § A',

For our purposes, we restrict our field to be the real
numbers, and v to be -1. It will be handier to consider
elements of B to be of the form x = a; + ea, with multipli-
cation given by (al + eaz)(a3 + ea4) = (ala3 - a4a2) +
la4 + a3a2). This notation will be consistently used.
Define X by x = 51 - ea, if x = a, + ea,. Then it 1is easy

e(a

to see that Xy = yx since a » a is an involution for A.
Thus X -~ X is an involution for B. Trace and norm are de-

fined as before with the observation that for x = ay + ea,,
T(x) = T(al) and N(x) = xx = (al + ea2)(al - ea2) =
151 ) + e(-a,a, + a

(a + a 185 la2) = N(al) + N(az). In any

292
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Cayley-Dickson algebra, the inverse of any nonzero element
exists and is defined by x—l = x/N(x). Then xx_l =
x[xX/N(x)] = xx/N(x) = 1. Since this is the case, there are
no non-trivial proper ideals in any of these algebras. The
reader should take note that all of the material presented
above is used repeatedly in the remainder of this paper.

If A is the real numbers, then the B given by the
Cayley-Dickson process is the complex numbers, e 1is repre-

sented by i, and the involution is the familiar conjugate.

2
1 2

1 + ia2. We note that in going from the real to the com-

plex field, order is lost, i.e., the complex numbers are

Moreover, T(x) = 2 Re(x) and N(x) = a + a where x =

a

not ordered.

If A is the complex numbers, B will be the quaternions,
e will usually be represented by j, and ij = k. In going
from the complex numbers to the quaternions, commutativity
is lost since ji = -k.

If A is the gquaternions, B will be the octonions
(usually called the Cayley numbers). The octonions are not
associative, but are alternative and are a division algebra.

If A is the octonions, the 24—dimensional algebra ob-
tained is the smallest Cayley-Dickson algebra which is not
a division algebra since it has zero divisors. It is not
alternative for the same reason. It has no name, and will
be referred to in this paper as A4 in keeping with the

notation of Schafer [26]. To the author's knowledge, A4
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has not been studied extensively, and very little is known
about its properties. This paper is an attempt to answer
some guestions about A4; in particular, questions regarding
zero divisors. In our investigation, however, many other
facts were discovered which are true for all Cayley-
Dickson algebras.

There is an alternate way of looking at each of these
algebras. On can consider the complex numbers as the
vector space generated by {1,i} over the real numbers.
Likewise the quaternions can be thought of as the vector
space over the real numbers having basis elements
{1,i,3,k} with multiplication of basis elements defined

by the following table:

An artibrary element thus has the form ry *+ rli + r2j + r3k,
where the r's are real numbers.

Similarly one can view each of the Cayley-Dickson
algebras as a vector space over the reals. In order to
facilitate notation, let the basis of An be denoted
and ei2 = -e, for

0 0

i # 0. Thus an element of the algebra can be represented

{l=e0,el,...,e2n_1}, where eo2 = e

. . . . n
as the linear combination x = Zi riei, i=20,...,2"-1.
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. . . - n
With this representation x = roe0 - zi lel, i=0,.0e.,27-1.
Also T(x) = 2r0, and N(x) = 21 riz, i = O,...,2n—1. Note
also that 50 = eqy but éi = -e, if 1 # 0. 1In the remainder

of this paper, we shall refer to the subspace re, as simply
"the reals r" with the meaning being clear from context.

LEMMA 4.1. N(x) = 0 if and only if x = 0.

Proof. N(x) = 0 if and only if r., = 0 for all i.
This is equivalent to saying x = 0.//

Tables for the basis element multiplication for A3,
and for A4 will ke found in Appendix A and Appendix B.

It would seem that as the Cayley-Dickson process
continues, some algebraic property would be lost at each
step just as in the first three steps. This paper will
indicate several ways that AS differs from A4, but what is
lost in higher dimensions remains largely unknown.

Another viewpoint is to consider what properties, if
any, are enjoyed by all Cayley-Dickson algebras. This
last question is easily answered at least in part. For
example, if a new norm is defined by n(x) = YN(x), then
each Cayley-Dickson algebra becomes a normed linear space
over the real numbers with the added property of having a
multiplication and an inverse for each nonzero element.
This explains why the techniques of functional analysis
have been useful in the past in studying the quaternions
and the octonions.

Since it has been known for many years that the

octonions are the only alternative, nonassociative division
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algebra over the real numbers, an interesting guestion
answered by Schafer is whether or not any higher dimensional
Cayley-Dickson algebras are alternative. The answer is no,
but they are all flexible as the following shows.

In 1954, R. D. Schafer [26] proved the following
theorem. We shall give an alternate proof here.

THEOREM 4.2. Any Cayley-Dickson algebra is flexible.

Proof. This is obvious for any associative algebra.

It therefore suffices to show that if An is flexible, then

An+l is flexible. Let A = al + ea, and B = bl + eb2 be
elements of A_ .. Then (A,B,A) = (&,B,p) =
[(al—eaz)(bl—ebz)](al+ea2) - (al—eaz)[(bl—ebz)(al+ea2)] =
[(albl—b2a2)+e(—alb2—bla2)](a1+ea2) +
(-al+ea2)[(blal+a2b2)+e(bla2—alb2)]

[(a;b))a)-(byay)a +a, (bya))+a, (ayg) -2y (byag) -2y (ayb,)
(bla2)52+(alb2)52] + el (bja;)a,-(a,by)a,-a; (a;by)
al(Elaz)—al(bla2)+al(alb2)+(Blal)a2+(a252)a2]
[(a;,by,a)) + T(a,(b,a;)) - T(a; (a,by)) + a,(ayby)
(blaz)gz] + e[(blal + Blal)a2 - al(51a2+bla2)] =
[(a;,b),a))+T(a; (ayb,))-T(a; (ayb,y))=(ay,a,,b )= (byray,a,)]
+ e[T(bl) (alaz) - T(bl)(alaz)] = (al,bl,al)+[(a2,a2,bl)
(bl,az,az)] which is zero if An is flexible.//

We note that XyxXx is now unambiguous since (xy)x =
x(yx).

THEOREM 4.3. Let A = a,+ea, and B = b +eb be

2

elements of a Cayley-Dickson algebra of any dimension.
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Then (A,A,B) = [(al,bz,a2)+(a2,a2,bl)+(al,al,bl)] +

e[ (allallbz)_(allblla2)+(azlazrbz)]o

Proof. We first observe that (A,A,B) = -(A,A,B) =

-N(A)B + A(AB).
Now A (AB) = (al+ea2)[(al—ea2)<bl+eb2)] = (a;tea,)

[(albl+b2a2)+e(albz—blaz)] = [al(albl)+al 2a2)—(alb2)a2

(blaz)az] + e[al(albz)-al(bla2)+(élbl)a2+(b252)a2] =

(b +
[—(al,b2,52)+al(albl)+(bla2)52]+e[(Sl,bl,a2)+al(alb2) +
(bzaz)az].
Also -N(A)B = -(aja; + aja,) (b; + eb,) =

[-(aja )by~ (aya,)by] + el-(aja;)b,-(aya,)b,].

so (A,A,B) = [-(a;,by,a,)+a;(@a;b )= (aja )b+
(bjaj)a,~(aja,)by] + el(a;,b,a,)+a; (a;b,)-(aja )b, +
(b252)a2—(a252)b2]. Now since N(a) = aa = aa and is in
the center, we have: (A,A,B) = [—(al,bz,az)
(al,él,bl>+(bl,a2,52)] + el(a;,by,a,)=(a;,ay,b,) +
(b2,52,a2)]. Now using the flexible property and the
properties of conjugates and associators, we have the
result.//

From this we get another theorem of Schafer's (cf.

[28], p. 46) as a corollary.

COROLLARY 4.4. A Cayley-Dickson algebra B is alterna-

tive if and only if the generating algebra A is associative.

Proof. If B is alternative, our equation for (A,A,B)
reduces to (al,bz,az)—e(al,bl,az) which is identically

zero if and only if the algebra A is associative.//
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Finally, we comment here, that it is easy to see that
the center of each Cayley-Dickson algebra is exactly Fl, the

field times the identity.
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V. Exponent Properties.

It is a well known fact that each Cayley-Dickson
algebra is "power associative."”
Definition 5.1. An algebra is power associative if

xl = x, xl+l = xxl, and x x7 = xl+j for all x in the

»

algebra, and i,j positive integers.

This means that (xm,xn,xp) = 0 for all positive
integers m,n,p and x any element of a Cayley-Dickson
algebra. What we wish to do in this section is extend
this definition to integer powers (non-positive as well),

and show that all Cayley-Dickson algebras still obey this

associative property.

LEMMA 5.1. 1In any Cayley-Dickson algebra,(§)n = x".

Proof. We use power associativity and induction on n.

It suffices to note that:

- % = (HE = x &) = KLy

Although every element in a Cayley-Dickson algebra
has an inverse, it is not true that it is unique since
zero divisors exist. For example, if aa«l = 1 and if ab = 0,
then a(a_l+b) = 1 also. To avoid this problem, we adopt
the convention that a~l will always mean a/N(a). Define

ao =1, for a # 0.

LEMMA 5.2. In any Cayley-Dickson algebra,a_lan = an—l

for all integers n greater than or equal to 1.

Proof. We use induction on n. It is clear that the

statement is true for n = 1 by our definitions. For n > 2,
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assume a_lak = ak_l for 1 < k < n-1. Recall that a satis-

fies the quadratic eguation a2 - T(a)a + N(a)l = 0. Then

aX = ‘I‘(a)ak"l - N(a)ak—z. Thus a Ta® = a»l[T(a)a—N(a)]an—2
= [T(a)a-N(a)la Ta® % = [T(a)a-N(a)]al"> = a®71.//

COROLLARY 5.3. The only idempotent elements of An are
0 and 1.

2 _ . . -1_2

Proof. a” = a if and only if a = 0 or a = a "a” =
a_la =1.//

COROLLARY 5.4. For n > 1, we have:

. -1l n n_ -1
i) a "a = a a

ii) @a® = a™ = n(a)a™ l.

Proof. For i) we note that (an_l,a,a-l) =
—(a_l,a,an_l) by flexibility. Thus aPa~l-a""1 -
g 1an - g,

To see ii) note that [a/N(a)]a” = a la® = gL - gyl

= a{a/N(a)]-//

CORQLLARY 5.5. There are no nilpotent elements in any

Cayley-Dickson algebra, i.e., a = 0 implies a = 0.

Proof. Suppose a # 0. Let n be the smallest positive

integer such that a™ = 0. Then an_l = a—lan a—l

so an—l = 0, a contradiction.//

- 0 =20,

THEOREM 5.6. NF(a) = N(aP), where p is a positive

integer and NP (a) is [N(a)lF.

Proof. First note that 0 = (ak,a,ak_l) k

= 5,3, @Y. thus 2F 3) @F ! = @K, Now the

(a ,a,ak—l)

It

proof of the theorem is by induction on p. Assume the

kK k
a a =

statement true for 1 < p < k-1. Then N(ak) =
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("3 @5 = N@ T @)X = w@aFaE ! - pa)nEFY) =
N (a) [N(a)1°71 = w*(a).//

COROLLARY 5.7. (a™)™ % = (a™h)™,

Proof. (a™7L = aN(@™ =E)""(a) = [a/N(a)]" =
@ hH™.

Notation. Let a ™ be defined to be (a-l)m.

LEMMA 5.8. T(a’) = T°(a) - 2N(a).

Proof. T(az) = a2+;7 = a2+52 = a2+52+2a5 - 2aa =

(a + 3)% - 2a3 = T%(a) - 2N(a).//

Theorem 5.6 is the best result possible for norms of
products; for, although N(ab) = N(a)N(b) is valid for
Cayley-Dickson algebras of dimension 1,2,4, and 8, it is
not valid for higher dimensions, because of zero divisors.
For example, if a,b # 0, but ab = 0, then 0 = N(ab) #
N(a)N(b). 1In fact, as an example in the next chapter shows,

both N(ab) > N(a)N(b) and N(a'b') < N(a')N{b') can occur.

Definition 5.2. An algebra is integer power associa-

i+l i3

. . 1 i i 147 .
tive if x7 = x, X = XX, and X x” = X J for all x in

the algebra and i,j any integers.
To the author's knowledge this idea is not found in
the literature. The following leads to the fact that the

Cayley-Dickson algebras are integer power associative.

LEMMA 5.9. For m,n positive integers, (am)—l(an)—l =
(aman)-l. L
m n -.m,-. n
Proof. (am)—l(an)—l = ; a — = (a) (i)
~ min — N(a@)N(a”) N (a)N"(a)
(;in = = m+n, (am+n)—l = (aman)-l.//
N (a) N (a )



LEMMA 5.10. For m,n positive integers, a (@) =

(@) 2a™ = Nt (a)a™ R,

Proof. Note that 0 = (am,a,an—l) = (am,a,an—l) =

-.n-1

m S @ = (@) @)

(a,a, (a)

m-1

n-1 ")n

N(a)a (a) . By induction we have a' (a

N7 (a)a™ J (3)"77 for all j,» 1 < 3 < m,n.
Now if n = m, then am(a)n = Nn(a).

n-n

If n < m, then a™ (@)™ = N(a)a for j

il
o}

If n > m, then am(a)n = Nm(a)(gl)n_m =

N (a) (3)7T (————L7)= NPTy L@ A M a) ] =

n-m (

n-m m=n

N (a) [3/8(a) 1P™ = ¥%a) (@ 5P ™ = x"(a)a™ n.

The proof of the other part is similar.//

THEOREM 5.11. atal = am+n, for all integers m,n.

Proof. Case 1l: mor n = 0; this follows from the
definition of ao.

Case 2: m,n positive; this follows from power asso-

ciativity.

Case 3: m,n negative; a‘a’ = @™ tE™t =
(a—ma—n)-l - (a—m—n)—l - am+n.

Case 4: n negative, m positive; a'a’ = At =
la /N = @ T @) = v M @a™ I/ ) =
SN

Case 5: n positive, m negative; ata® = (a—m)_lan =

TN MM = (@ TN M@ = V@ Y e
= am+n.//

THEOREM 5.12. (a™)® = a"" for all integers m and n.

- am[a(g)n-l]. Hence am(g)n =

27
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Proof. Case 1l: mor n = 0; the result is obvious.

Case 2: m,n positive; this follows by power associa-

tivity.

Case 3: m,n negative; (am)n = ([(a—m)—l]—n)—l =
[(a—m)n]—l _ (a—m)—n _ a(—m)(-—n) .

Case 4: m negative, n positive; (am)n = [(a-m)—l]n =
(a—m)-n - [[a(—m)]n]—l - amn.

Case 5: m positive, n negative; (am)n = [(am)—n]—l =
[am(—n)]—l _ amn.//

We now note that it is not possible easily to extend
these results to fracticonal exponents since even al/2 is
ambiguous. For example, each basis element e, # 1 satis-
fies the equation x2 = -1. An interesting side light does
occur here, however, in that the square of an associator is
in fact a negative real number, as we show below.

LEMMA 5.13. T(x) = 0 implies x> = -N(x).

Proof. Recall, for any x, we have x2—T(x)x+N(x)l = 0.

So, if T(x) = 0, the result follows.//
LEMMA 5.14. (a,b,c)2 = =-N((a,b,c)).
Proof. Recall that (a,b,c) = (¢,b,a) = -(a,b,c) so

T((a,b,c)) = 0. (Theorem 3.1). Thus by Lemma 5.13, the
result follows.//

It is now possible to show that flexibility, (a,b,a) =
0, and the noncommutative Jordan identity, (a2,b,a) =0,
are special cases of a more general identity involving the

associator.



LEMMA 5.15. (an,b,a) = (a,b,an) = 0 for all non-

negative integers n.

29

Proof. The statement is clear for n = 0,1,2. We use

induction and the flexible property to finish the proof.

Assume (an,b,a) = 0 for all n < k. Then (ak+l,b,a) =

(a® [T (a)-31,b,a) = T(a) (&5,b,a)-N(a) ("™ ,b,a) = 0.//
LEMMA 5.16. (am,b,an) = 0 for all non-negative inte-

gers m,n.

Proof. If m = n, the result follows from the flexible

property. If m or n = 0, the result is obvious. If m # n,

and if neither is zero, then (am,b,an) =

@™ Lir(a)-al,b,a™ LT (a)-3]) = T2 (a) @™ 1,p,a""t

T(a)l\l(a)(am-l,b,an—'2

) -—
) - T(a)N(a) (a™2,b,a" 1) -

Nz(a)(am—z,b,an-z), which clearly vanishes by a finite
induction argument. Thus the theorem follows.//

THEOREM 5.17. (am,b,an) = 0 for all integers m,n.

Proof. If m = n, the result is clear. If m,n are

non-negative, the result follows by Lemma 5.16. If m,n are

(amlblan) = ((a)mlbl (a)n) =

. n
negative, then (am,b,a )

—1] -1.,n n+m

M e, N (a)[a "1™ = N (@) (@ ",b,a "

m

(N (a) [a ) = 0.

. . _ m
If m is negative, and n is positive, then (a ,b,an)

-@"%,p,a™) = -(3@)"p,a" = - (@a ",b,a") =

n

~Nm(a)(a—m,b,a )y = 0.

. C L \ . m n
If m 1s positive, and n is negative, then (a2 ,b,a")

_(am'b’an) = —(am,b,(a)n) = —(am,b,Nn(a)a_n) =

-N(a) (a™,pb,a ™) = 0.//

N
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VI. Basis Element Properties.

Some very useful identities which are true in alterna-

tive algebras are the Moufang identities:

i) (xax)y = x[a(xy)]
ii) y(xax) = [(yx)alx
iii) (xy) (ax) = x(ya)x.

Unfortunately, these identities do not hold in Cayley-
Dickson algebras of dimension higher than eight. We will
now show, however, that the Moufang identities and the
alternative property do hold in a restricted, but useful,
sense.

Consider the Cayley-Dickson algebra B of dimension 2"

formed by adjoining e __, to the basis of the PR

2
dimensional algebra. Call the adjoined basis element e for

notational convenience.

THEOREM 6.1. (e,A,B) + (A,e,B) = 0 for all A,B in B.

Proof. Let A = al+ea2 and B = bl+eb2. Then, (e,A,B) +
(A,e,B) = (eA)B - e(AB) + (Ae)B - A(eB) = (—a2+eal)(bl+eb2)
- (o+e1)[(albl-b252)+e(alb2+bla2)] + (—52+eal)(bl+eb2) -
(a,+ea,) (~b,+eb ) = [(—azbl—b251)+e(—52b2+blal)] +
[(51b2+bla2)-e(albl—bzaz)] + [(—ézbl—b2a1)+e(—a2b2+blal)} +
[(a.b,+b.a.)+e(-a.b,+b._a

1Potba5) 1P1tbra))l =

[-azbl—b2a1+alb2+bla2—azbl—b2a1+alb2+bla2] +

e[—a2b2+blal-—albl+b2a2-a2b2+blal-albl

[-T(az)bl + T(al)b2 + T(a2)bl - T(al)bZ] +

+b2a2] =

e[-T(az)b2 + T(al)bl - T(al)bl + T(a2)b2] = 0.//
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LEMMA 6.2. The following are true for all A,B in B.

i) (A,B,e) + (A,e,B) =0

ii) (e,A,A) = (A,A,e) = (e,e,A) = (A,e,e) = 0
1ii) (e,A,B) + (e,B,A) =0

iv) (A,B,e) + (B,A,e) = 0.

Proof. To see i), note that (A,B,e) + (A,e,B) =

-(e,B,A) - (B,e,A) = 0, using the flexible property and
Theorem 6.1. For the same reasons, 0 = (e,A,A) + (A,e,A) =
(e,A,A); 0 = (A,A,e) + (A,e,A) = (A,A,e); 0 = (e,e,pr) +
(e,A,e) = (e,e,A); and 0 = (A,e,e) + (e,A,e) = (A,e,e)
proving 1ii). To see iii), note that (e,A,B) = -(A,e,B) =
(B,e,A) = -(e,B,A). Similarly for iv), (A,B,e) = -(A,e,B)
= (B,e,A) = -(e,B,A).//

With this Theorem and Lemma, the restricted Moufang
identities follow.

THEOREM 6.3. Let e be the adjoined basis element

used to form B. For any A,B in B, the following restricted

Moufang identities hold:

i) (eAe)B = e[A (eB)]

ii) B(eAe) = [(Be)Ale

iii) (eB) (Ae) = e(BA)e,

Proof. i) (eAe)B-e[A(eB)] = (eA,e,B)+(e,A,eB) =
-(e,eA,B)-(e,eB,A) = -{e(eA)]B+e[ (eA)B]+e[ (eB)A]-[e(eB)]A =
—(ezA)B—(ezB)A+e[(eA)B+(eB)A] = AB+BA+e[ (eA)B+ (eB)A] =
e[-e (AB)-e (BA)+ (eA)B+ (eB)A] = e[ (e,A,B)+(e,B,A)] = O.

The proof of ii) is similar. [ (Be)Ale-B(eAe) =

(Be,A,e)+ (B,e,Ae) = - (B,Ae,e)- (A,Be,e) = -[B(Ae)]e +



32

B[ (Ae)el-[A(Be)]le+A[(Be)e] = B[Ae2]+A[Be2]—[B(Ae)+A(Be)]e =
-BA-AB-[B(Ae)+A (Be)le = [(BA)e+ (AB)e-B(Ae)-A(Be)le =
[(B,A,e)+(A,B,e)]le = 0.

For iii), consider: (eB) (Ae)-e(BA)e = (e,B,Ae) +
e[B(Ae)-(BA)e] = -(e,Ae,B) - e(B,A,e) = -(ehe)B +

e[ (Re)B-(B,A,e)] =-e[A(eB)] + e[(Ae)B-(B,A,e)]

-e[A(eB)- (Ae)B+(B,A,e)] = -e[-(A,e,B)+(B,A,e)]
-e[(B,e,A)+(B,A,e)] = 0.//

COROLLARY 6.4. (B,eA,e) = - (B,e,A)e.

Proof. (B,eA,e) = [B(eA)]le - B(eRAe) = [B(eA)l]le ~
[ (Be)A]le = [B(eA)-(Be)Ale = - (B,e,A)e.//

Considering the Cayley-Dickson multiplication, a
question is why (a;+ea,) (b +eb,) = (albl—b252) +

e(51b2+bla2) is a natural definition of multiplication.

It would also be natural to multiply as polynomials to

obtain a +(ea2)(eb2)+al(eb2)+(ea2)bl. Schafer [28]

1°1
proves that, for alternative algebras, the Cayley-Dickson
multiplication and the polynomial multiplication are the
same.

THEOREM 6.5. (cf, [28], p.46). Let A be an alterna-
tive algebra with 1, and with involution, and let the

adjoined element e be such that e2 = -1 and ae = ea for

all a in A, Then the polynomial multiplication in A + eA

is the Cayley-Dickson multiplication.

Proof. Following Schafer's proof, first note that the
alternative laws imply that, for all a,b in A, the follow-

ing hold:



i) a(eb) = e(ab)
ii) (ea)b = e (ba)
iii) (ea) (eb) = -ba.

The remainder of the proof is easy.//

Hence, up to the octonions, the Cayley-Dickson multi-
plication and the polynomial multiplication are the same.
Actually, the restriction that A be an alternative algebra
is stronger than necessary.

THEOREM 6.6. Let A be any Cayley-Dickson algebra.

Let e be the adjoined basis element used to construct B =

A + eA. Assuming that we have already defined in B a dis-

tributive multiplication, let e satisfy:

i) e = -1
ii) ae = ea for all a in A

iii) (e,a,b) + (a,e,b) = 0 for all a,b in A.

Then, for all a,b in A, we have:

i) af(eb) = e(ab)
ii) (ea)b = e (ba)
iii) (ea) (eb) = -ba.

Proof. We first notice that assuming (e,a,b) +
(a,e,b) = 0 for all a,b in A gives us Lemma 6.2, Theorem

6.3, and Corollary 6.4 for a,b in A. Now to see i), con-

sider: 0 = -(e,a,b) - (a,e,b) = (e,g,b) + (E,e,b) =
(ea)b - e(ab) + (ae)b - a(eb) = (ea)b - e(ab) + (ea)b -
a(eb) = [e(T(a)-a)lb + (ea)b - aleb) - e(ab) = T(a) (eb) -

(ea)b + (ea)b - a(eb) - e(ab) = [T(a)-al (eb) - e(ab) =

a(eb) - el(ab).

33
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Similarly, for ii), 0 = (a,b,e) + (a,e,b) = (a,b,e) +
(a,e,b) = (ab)e - a(be) + (ae)b - al(eb) = e(ba) + (ae)b -
a(be-eb) = e(ba) + (ae)b - a(be-be) = e(ba) + (ae)b -

T (b) (ae) = e(ba) + (ae) (b-T(b)) = e(ba) + (ae)b = e(ba) +
(ea)b.

To show iii), we need one of the restricted Moufang
identities. (ea) (eb) = (ea) (be) = e(ab)e = e[(ab)e] =
ele(ba)] = -ba.//

COROLLARY 6.7. Under the same hypotheses as given in

Theorem 6.6, the Cayley-Dickson multiplication in B is the

same as polynomial multiplication in B.

Proof. albl + (eaz)(ebz) + al(ebz) + (ea2)bl = a.b. +

171
(—b2a2) + e(albz) + e(bla2).//

It must not be supposed, however, that ae = ea is
true for arbitrary <lements in the algebra B. In particu-

lar we have:

LEMMA 6.8. Let x

i

a,+ea.,. Then xe = eXx if and only

1 2
if T(az) = 0.
Proof. (al+ea2)e = a,eteaje = —52+e51 whereas
e(al—eaz) = eal—e(eaz) = a2+351. These are equal if and
only if a, = —52.//

This leads one to ask under what conditions the con-
clusions of Theorem 6.6 are true for arbitrary a and b in
B, assuming the Cayley-Dickson multiplication in B.

LEMMA 6.9. Let A,B be elements of B, where A = al+ea2

and B = bl+eb2. Then,

i) A(eB) = e(AB) if and only if T(a,) = 0
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ii) (eA)B = e(BA) if and only if T (AB) = T(bz) = 0

iii) (eA) (eB) = -BA if and only if T(AB) = T(b,) = O.

Proof. Since Theorem 6.1, Lemma 6.2, and Theorem 6.3
are true for A,B in B, we need only note that in the proof
of Theorem 6.6 for i) we must have Ae = eA to get A(eB) =
e (AB) which by Lemma 6.8 means T(a,) = 0. Similarly, to
show (eA)B = e(BA), we examine the proof of ii) in Theorem
6.6, and see we need (AB)e = e(BA) and eB = Be. Thus again
the result follows by Lemma 6.8. For (eA)(eB) = -BA, the
proof of iii) in Theorem 6.6 requires eB = Be and (AB)e =
e(BA).//

We now wish to examine the basis elements themselves.

As stated before, every element in the Cayley-Dickson

algebra An can be written in the form Ziriei, i = 0,...,2n—l,
where ri is real, eO = 1, and ei2 = -1 otherwise. The
basis {eil i = 0,...,2n—l} arises from the basis of An—l by

retaining the old basis and adjoining one new element e n-1
2
and all multiples of it by the old basis elements. So, if

{eo,...,ezn_l_l} is the basis for An-l and the adjoined
basis element 1is e n-1'

, then the basis for An is {eo,el,...,

n-1_

e € _qrecer€i€ L qreces® } where 0 < j < 2 1.

’ e
2741 2 32 2-1

The Cayley-Dickson multiplication demands that we call

n-1

e.e = e . We are now able to observe several

on-1 2071y

interesting properties that are possessed by these basis

elements. In the following, e; is a basis element of An.



36

LEMMA 6.10. Basis elements obey:

1) ejey =eye;, 2fEdor J =0, or if 1 =]

ii) eiej = —ejei, if i, # 0 and 1 # jJ.

Proof. If i or j = 0, or if i = j, the result is

obvious. Otherwise e, and ej may be each of two types,

(e, +e+*0) or (0-ee, ), for 0 < k < 2n—l where e = e
k k - 2n-l
This gives rise to four cases. Since the result is

.

clearly true for quaternions, it will then follow by induc-

tion.

Case 1l: 1i,j < 2n-l; follows from the induction hypo-
thesis.

Case 2: i < 2n—1’ j > 2n—l; here e; = (ei+e-0) and
ey = (0-ee,), for some k < 2L Now ejey = (e;+0) (0-ee, )
= —e(éiek) = e(e;e.), and eje; = (0-ee, ) (e;+0) = -e(e;e.).

case 3: i > 271, 5 < 2™ 1, this proof is similar to
Case 2.

Case 4: 1i,j > 2n-1; here e, = (O—eek) and ej = (O—eem)
for some k,m < 2n—1_ Then eiej = (O—eek)(O-eem) = -émek =
e ., and eje; = (0-ee ) (0-ee, ) =-ekém =ee =ee.//

Although not all Cayley-Dickson algebras are alterna-
tive, their basis elements do satisfy the alternative prop-
erty, as is shown by the following theorem proved by
Schafer [26].

THEOREM 6.11. ei(eiej) = —ej = (ejei)ei for i # 0.

Proof. The proof is essentially the same as Schafer

gives, and is given here for the reader's convenience. By

the flexible property (ei,ei,ej) = -(ej,ei,ei), so it
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suffices to show ei(eiej) = —ej. The result is true for the
octonions, since they are alternative. Thus the proof is
by induction on the dimension of An' Assume the statement

true for An—l' As in the previous Lemma, there are four

cases.
Case 1: 1,3 < 2n—l; the result holds by the induction
hypothesis.
Case 2: i < 2n—l’ j > 2n-l; here e; = (ei+0) and
e. = (0-ee, ), for some k < Zn-l. Now e. (e,e.) =
] k it7iTy
(ei+0)[(ei+0)(0—eek)] = (ei+0)[0+e(eiek)] = e[ei(eiek)] =
—e[ei(eiek)] = —e(—ek) = ee = —ej.
Case 3: i > 2n—l’ j o< 2n—l; here e, = (O—eek) and
n-1 _
ej = (ej+0) for some e, < 2 . Then ei(eiej) =
(O—eek)[(o-eek)(ej+0)] = (O—eek)(O—e[ejek]) = --(ejek)ek =
(e.e, )e, = e.e 2 - -e
€%k’ “k 5%k 5
. . n"l — —_ = -
Case 4: 1i,j > 2 i here e, = (0 ee, ) and e, (O-ee )
for some k,m < 2n-l. Then ei(eiej) = (O-eek)[(0~eek)(0—eem)]
- - _ 2 B _
= (O-eek)(—emek+0) = e[(emek)ek] = e[em(ek )1 = ee,

—ej.//

COROLLARY 6.12. If e, is any basis element of AL

and if x is any element of A , then (e;,e,,x) = 0.
Proof. Let x = erje., j o= O,...,2n-l, rj real. By
the linearity of the associator, (ei,ei,x) = erj(ei,ei,ej)

= 0.//
Notice, however, that Corollary 6.12 does not imply
(ei,ej,x) = —(ej,ei,x), since this would imply that

ei(ejx) = —ej(eix), whenever eiej = —ejei. This is false
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in general, as the following example shows. In any Cayley-
Dickson algebra containing A4, we have (el-els,el—els,e4) =
(eyreyrey) = (egreygrey) = (eggrerey) + (eg5.81508y)
—(el,e15,e4) - (elS,el,e4) = 2elo # 0. The reason this
wasn't zero is that the linearization of (x,x,y) = 0 to

get (x,y,z) = -(y,x,2) required (x,x,y) =0 for all

elements of the algebra.

THEOREM 6.13. -ejr if 1,3 # 0 and i = 3,
orifi#0,3=o0.
eie.el=
. ejr if i =0, or if i,j # 0

and i # j.
Proof. The result is immediate if i = j and 1i,3j # O,
or if 1 # 0 and j = 0. For the other situation, the proof

is by induction on the dimension of An.

Case 1l: 1,3 < 2n—l; this follows by the induction
hypothesis.

Case 2: i < 2n—l, j > 2n—1; here e; = (e;+0) and
ej(O—eek), for k < Zn_l. Thus eieje.l = [ei(o—eek)]ei =
[—e(éiek)]ei = -e[ei(éiek)] = ele; (e;je))] = —eey = ey.

Case 3: i > 2",y < 2"7L; here e; = (0-ee,) and
ey = (e4+0), for k < 2?1l so ejeyey = [(0-eey)e ] (0-eey) =
—[e(ejek)](o-eek) = —ekTEEEET = —ek(ekej) = ey

Case 4: i,3j > 2n-l; here e; = (O—eek) and ej = (O-eem),
for k,m < 21 5o e,e.e, = [(O—eek)(o—eem)J(O—eek) =

(-emék) (0-ee, ) = e[(emék)ek] = e[(ekém)ek] = —el (e e le ] =

-ee = ej, since if k = m, then e, = ej, a contradiction.//
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We are now able to prove a theorem which may seem
obvious, but the proof of which involves several cases.

THEOREM 6.14. (eiej)ek = jei(ejek).

Proof. The result is clear if i,j,k is 0, or if any

two basis elements are the same. Therefore, assume that
each is not the identity and no two are the same. The
proof is by induction on the dimension of An and there are
eight cases. In the proof, great use is made of Theorem
6.6, and the observation that the induction hypothesis and
Lemma 6.10 allow (eiej)ek to be rearranged and reassociated
in any order, with only perhaps a sign change, as long as

i,j,k are less than on1,

Case 1: 1i,j,k < 2n—l; this follows by the induction
hypothesis.
Case 2: 7Jj,k < 2n—l, i > 2n—l; here e, = e e, where
n-1 _ - =
m < 2 . Then (eiej)ek = [(eme)ej]ek j[(eem)ej]ek

j[e(ejem)]e = je[ek(ejem)]. Likewise, ei(ejek) =

k
(eme)(ejek) = t(eem)(ejek) = ie[(ejek)em].

n-l’ 3 2n-l

Case 3: i,k < 2 ; here the proof is

similar to Case 2.

Case 4: 1i,j < 2n-l’ k > 2n—l; this case is similar to
Case 2.
Case 5: i,5 > 2%71, x < 2l here e, = e e and e, =
. r] - ’ r i m j
n-1 _ _
epe, for m,p < 2 . Therefore (eiej)ek = [(eme)(epe)]ek =
i(epem)ek, while ei(ejek) = (eme)[(epe)ek] =

j(eme){e(epek)] = j(epek)em.
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Case 6: i,k > Zn_l, j < 2n—l; this case is similar to
Case 5.

Case 7: 3Jj,k > 2n—l’ i < Zn_l; this case is similar to
Case 5.

Case 8: 1i,j,k > 281, yere e, = e e, e. = e e, and

- i m j

e, = eqe, for some m,p,qg < 2n~l. Then (eiej)ek =
[(eme)(epe)](eqe) = j(epem)(eqe) = i(epem)eq, and ei(ejek) =
(eme)[(epe)(eqe)] = tlepe) (eqe ) = iem(eqep).//

LEMMA 6.15. For basis elements of the octonions:

ei(ejek),

if i,3, or k = 0,
or if i =3, 3 =k, o i=k,
(e.e.)e, =
17377k or if e.,e, = +te. .
— = 173 -k
-e, (ejey ), otherwise.
Proof. The proof for (eiej)ek = ei(ejek) under the
hypotheses is easy. It should be noted, however, that

e = +e,_ 1s equivalent, because of the alternative

k
property, to the statement that the product of any two is

e,
1]

plus or minus the third. The proof of the last situation
involves carefully reviewing the proof of the previous
theorem with e = e4.//

For one application of this material, we consider the
following definition.

Definition 6.1. The anticommutator 1x,yl is defined

to be }1x,y[ = Xy + yX.

. and B = ).b.e, for

For the following, let A = J.a;e, ibiey

i=20,...,n, where a; and bi are real.
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LEMMA 6.16. AB + BA = 2[a b, - Z.a.b.]e0 +

0 1171
22i[<a0bi+aib0)ei], i=1,...,n.

Proof. Recall that e,e. = —ejei if i,3 # 0 and 1 # 73,

and e.e., = e.e; otherwise.

1] J
chart for AB given below.

Consider the multiplication

bOeO blel b2e2 .o bnen
a,e, aoboe0 +a0blel +a0b2e2 cee +a0bnen
a;e, alboel +alblel2 +alb2ele2 .o +albnelen
a6, | aPge,  tagbiese;  tagbye® L. 4anbiese;
a.e anboen +anblenel +anb2ene2 .o +anbnen2
A multiplication chart for BA would be similar, but

with the entries in reverse order. Thus, for each summand

a.b.eiej in AB, in BA. Hence,

1]
all terms for AB + BA cancel,

there is a summand b.a.e.e.
J1J 12
except those of the first

row, the first column, and the diagonal. From the AB table,

we obtain Zi(aobO

the first row,

- a,b;)e,, ziaobiei’ and Ziaiboei from
the diagonal, and the first column. We
obtain similar sums from the BA table, except the results
of the first row and the first column are interchanged.
Thus, adding all those terms which do not cancel, the
result of the lemma is obtained.//

THEOREM 6.17. JA,B[ = 0 if and only if T(A) =
0 and Eiaibi =0, i=1,...,n, where A,B # 0.

Proof. From Lemma 6.16, AB + BA = 0 implies



42

(@aghy - Ziaibi) = 0 and (aobi + aibO) =0 fori=1,...,n.
If a0 = 0, then aib0 = 0 for all i implies ai = 0 for all
i or else b0 = (0, But a;, = 0 for all i contradicts A # 0.
Thus T(B) = 0. On the other hand, if ag # 0, then bi =
[—aib0 ]/a0 so that a0b0+ Ziai[(aibo)/ao] = 0. Then

2 2, _ _ _ _
bo(aO + ... + a, ) = 0, so bO = 0 or A = 0. Thus T(B) = 0.
But AB + BA = 0 if and only if BA + AB = 0 so T(A) = 0 also.
Now by Lemma 6.16, if T(A) = T(B) = 0, then AB + BA =
—Z[Ziaibi]eo. Hence AB + BA = 0 implies T(A) = T(B) = 0
and ).a.b, = 0.

i“ivi

Conversely, if T(A) = T(B) = 0 and Ziaibi = 0, then

Lemma 6.16 implies AB + BA = 0.//
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VII. Zero Divisors.

In this section, we consider zero divisors in the
Cayley-Dickson algebras. First we consider norms, and
then use the properties of norms to examine zero divisors.

A. A. Albert [2] defines an absolute-valued algebra
to be an algebra over the reals with a function f: A - R,
such that £(0) = 0, f(a) > 0 if a # 0, and f(ab) = f(a)f(b).
He proves that the octonions are the only absolute-valued
nonassociative algebra. He also defines a normed algebra
in a similar way, but requires only f(ab)< f(a)f(b).
Albert then shows that every real algebra is a normed
algebra under f(a) = Zilril, where a = Ziriei’ with e, a
basis element of the algebra, i =1,...,n.

In any Cayley-Dickson algebra of dimension higher than

eight, for the norm N (a) aa, we have N(a) = 0 if and only

if a = 0, N(a) > 0 for a # 0; but, in general, N(ab) #
b

N(a)N(b), since if a and are mutual zero divisors,

N(a)N(b) # 0 and N(ab) = 0. What is striking, though, is
that under this norm, these algebras are not even normed
algebras. Consider the following example from A4:

Let A = e, ,+te and B = e, +e +e4—e Then AB =

1 710 0 "1 15°

+e. +te Hence, N(A) = 2, N(B) = 4; but N(ABR)

1 710 "11°

—e0+e
= 4. i.e., N{A)N(B) > N(AB).

Now, let A = el-elO and B be as before. Here, AB =

—e0+el+2e5—elo—ell+2el4. Thus, N(A) = 2, N(B) = 4;

but N(AB) = 12. 1i.e., N(A)N(B) < N(AB).
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The question then arises as to what exactly is the
relationship between N(AB) and N(A)N(B).

THEOREM 7.1. 1In any Cayley-Dickson algebra

N(A)N(B) - N(AB) = [N(al)N(bl)-N(albl)] +
[N(a))N(b,)-N(ajb,)] + [N(a,)N(bj)-N(ab;)] +

[N(a,)N(b,)-N(a,b,)] + T[(albl)(azﬁz)—(albz)(5251)], where

A = ajtea, and B = b, +eb,.
Proof. Recall that N(@a) = N(al) + N(az). Therefore
N(A)N(B) = [N(aj)+N(a,)][N(b))+N(by)] = N(a;)N(by) +

N(a2)N(bl) + N(al)N(b2) + N(az)N(bz).

On the other hand, AB = (albl_bZaZ) + e(alb2+bla2),
so N(AB) = N(albl) + N(bzaz) - T[(albl)(bzaz)] + N(albz) +
N(blaz) + T[(albz)(blaz)] = N(albl) + N(albz) + N(bzaz) +

N(blaz) + T[(albl)(azﬁz)—(albz)(5251)]. The result now

follows after recalling the facts that: N(ab) = N(ba) =
N(ab) = N(ab), T(ab) = T(ba), T([ablc) = T(albec]), and
T (ab) = T(ab).//

COROLLARY 7.2. In A,, N(A)N(B) - N(AB) =

4!
T[(albl)(a252>—<alb2)(azbl)].

Proof. Here, ai’bj are octonions and hence, N(aibj)
N(ai)N(bj)-//
Note that now an alternate proof of N2(A) = N(A2) in
. . . 2 - -
A4 is obtained by observing that T[N(az)al (alaz)(azal)]
0, because of the Moufang identities in A3.
A major difference between A4 and the octonions is the

existence of zero divisors in A4. We now wish to examine

zero divisors in detail. In the following, assume that A
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and B are mutual zero divisors, A and B are elements of A _,

and that A = al+ea2, B = bl+eb2.

THEOREM 7.3. The following are equivalent:

i) AB =0

ii) BA =0

iii) AB 0

iv) a"ip =0
v) (eA) (eB) = 0

vi) (eA)B

0

vii) A (eB) 0.

In addition, the above imply:

viii) T@) = 0
ix) T(al) = 0
X) T(a2) =0

xi) A and B are linearly independent.

Proof. 1i) <= 1ii) This follows from the facts that
N(A) = 0 if and only if A = 0, and N{(AB) = N(Ba).
i) » xi) Recall that there are no nilpotent elements

in An' Let mA + nB = 0, for m,n real. Then, mA2 + nAB = 0

implies mA2 = 0. This implies m = 0. Similarly for n.

1) <= iii) In any flexible ring with involution
N(AB) = N(AB). Thus the following are all equivalent:
AB = 0, N(AB) = 0, N(AB) = 0, and AB = 0.

iii) <> iv) This follows from the identity N
[AB]/N (a).

i) » wviii) AB = [T(A)-A]lB - AB, so AB = 0 implies

AB = 0 and T(A)B = 0. Thus T(A) = 0.
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viii) » 1ix) This follows from the fact that for A =

a1+ea2,

iii) <> v) By the restricted Moufang identities,

T(A) = T(al).

(eA) (eB) = 0 if and only if 0 = (eA) (eB) = (eA) (Be) =

e(AB)e if and only if AB = 0.

V) >. X)) eA = —a2+eal. Hence T (eA) = T(a2) = 0.
ii) <> vi) Since T(AB) = T (AB) = T(a;) = Tla,) =
T(bl) = T(b2) = 0, the result follows from Lemma 6.9, i.e.,

(eA)B = e(BA).
iii) «» vii) By the same reasoning as above, Lemma
6.9 gives A(eB) = e(AB).//

LEMMA 7.4. The following are equivalent:

i) T(A) =0

ii) A =-A
. -1
iii) A = -A/N(A)
iv) A% - -N(Aa).
Proof. A = r e, *+ Ziriei and A = rje, - Jir.e., i =
l1,...,n. Moreover, T(A) = 0 means ry = 0. Hence, i), 1ii),
and 1ii) are equivalent. To see 1iv), recall that A2 - T{a)Aa

+ N(A)L = 0.//
We now find it desirable to define an isomorphism, *,
from An to An in the following way.

e e % — _ . _
Definition 7.1. Let A al ea2 ££ A al+ea2.

The * isomorphism gives some added information about
zero divisors, but first we need to consider some properties

of the * operator.
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THEOREM 7.5. The following properties hold for the *

operator.
i) A + A* = 2a

ii) A* = A

if and only if a; is real.
iii) A* = A if and only if a, = 0.

iv) T(@A¥*) =T
v) N(A*) = N(A)

vi) (A+B)* = A*+B¥

vii) (AB)* = A*B¥*

viii) (rA)* = raA*, r real
ix) (eA)* = —-eA¥
x) [A,B]* = [A*,B*]
xi) (A,B,C)* = (A*,B*,C¥*)

.

xii) (A)* = A
xiii) A** = A,

4 * == —-— —
Proof. i) A + A (al+ea2)+(al eaz) 2al.

1 1 * = - = 3. - = A 1 1 3
ii) A al ea, a; ea2 A if and only if a, a s

i.e., if and only if ay is real.

iii) A¥* = a,-ea, = al+ea2 = A if and only if a, = 0.

iv) T(aA*) = A* + A¥ = (al—ea2)+(él+ea2) = al+5l = T (A)

v) N(A*) = A*A* = (al~ea2)(51+ea2) = a151+a252 = N(Aa).

vi) (A+B)* = [(al+bl)+e(a2+b2)]* = (al+bl)—e(a2+b2) =
(al-ea2)+(bl—eb2) = A*+B*,

vii) (AB)* = [(albl—b252)+e(51b2+bla2)]* = (albl—bzaz)

—e(alb2+bla2)

viii) (rA)* = r*A* = raA*.

= (al ea2)(bl eb2) A*B*,

ix) (eA)* = e*A* = -eA¥*.
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X) [A,B]* = (AB-BA)* = A*B*-B*A* = [A* B*],
xi) (A,B,C)* = [(AB)C-A(BC)]* = (A*B*)C*-A* (B*C*) =

(A*,B*,C*) .

1 3 PN * -— 3 — * =_ — —. -— Ax
xii) (a) (al ea2) al+ea2 (al ea2$ A*,
111 *k = — = =
xiii) A (al ea2)* al+ea2 A.//

We are now able to consider * operators and zero

divisors.

LEMMA 7.6. AB = 0 if and only if A*B*

O.
Proof. Since from the definition of A*, it is clear

that A* = 0 if and only if A = 0, we have 0 AB = (AB)* =

A*B*,//

Definition 7.2. Let (A,B} be the vector subspace

generated by elements A and B.

Now, we consider the structure of the subspace <A,B>
generated by mutual zero divisors A and B. We already know,
by Theorem 7.3, that A and B are linearly independent.

THEOREM 7.7. If A is a zero divisor, then

-N @) 1™2,

if n is an even integer.

(-n@)1 ™ D72y, if n is an odd integer.

Proof. First we observe that the result is true for n

an even or odd positive integer. This follows from the

fact that A2 = ~-N(A). Thus if n is even, Al = (Az)n/2 =

n/2

-8 a)1%/2. 1f n is odd, A" = @ ha = ((-n@)1 (1),

Now if n is zero, the result is obvious.

If n is negative, the at = (A—l)-—n = [—A/N(A)]—n =

([-1/N(a)]1 " ®)A™™. Hence, if n is even, A" =
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-1/N@) PN @) 172 = N @) 1TV 16 s odd, A =
-1/8 @1 =N )1 T2 o gy HE B2y, )

Note that, since AB = 0 if and only if BA = 0, the
results of Theorem 7.7 hold true for B as well.

THEOREM 7.8. If A and B are mutual zero divisors,

then:

- @) 1% 2 [-n(B) 1™ 2

, n,m even integers.

n.m mwn 0 , n,m odd integers.

([—N(A)]n/z[—N(B)](m—l)/z)B, n even, m odd.

(n-1)/2 m/2

([-N(A)] [-N(B)] YA, n odd, m even.

Proof. Simply multiply Al by B" using the results

of Theorem 7.7.//

THEOREM 7.9. Let A and B be mutual zero divisors,

then:

i) '<A,B> = rl+r2A+r3B, r. real,

ii) {(a,B} is a commutative Jordan subalgebra of An,

iii) {a,B) is not alternative.

Proof. i) This is clear by Theorem 7.8.

ii) This follows since the basis elements A and B
are commutative, and since all elements of An satisfy the
Jordan identity.

iii) This follows since, A°B = -N(A)B # A(AB) = 0.//

Thus, the vector subspace generated by any two mutual
zero divisors is a three dimensional, non-alternative,
commutative Jordan algebra with zero divisors.

Now, let us go back to the nature of the zero divisors

themselves. Our objective is to determine just when an
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element A in An will be a zero divisor.

LEMMA 7.10. AB = 0 is equivalent to any pairing of

an equation i) or ii) with an equation iii) or iv), where:

i) albl+b2a2 = 0 iii) blaz—alb2 = 0
ii) blal+a2b2 = 0 iv) azbl—bzal = 0.
Proof. Recall T(a) = 0 implies a = —a. Then AB = 0

if and only if equations i) and iii) hold; B(eA) = 0 if

and only if equations i) and iv) hold; BA

0 if and only

if equations ii) and iii) hold; and (eA)B 0 if and only
if equations ii) and iv) hold.//

Definition 7.3. The antiassociator )A,B,C( is defined

by )A,B,C( = (AB)C + A(BC).

LEMMA 7.11. The antiassociator is linear in each

argument.
Proof. The proof is similar to that of showing the
associator is linear in each argument.//
We may now prove the major theorem of this section.
+ea

THEOREM 7.12. Let A = a and B = bl+eb2, where

1 2

A,B # 0. Let a, # 0 and a, # 0 have no zero divisors.

Then AB = 0 if and only if i) and ii) hold, where:

i) dajsbysa, (= -(aj.a;,by)+(a,,a,,b,)+IN(a,) ~N(a)) b,
ii) (al,bl,az) = (al,al,b2)+(a2,a2,b2)+[N(a2)+N(a1)]b2,
Proof. If AB = (0, then (albl+b2a2) = 0 and
(albz—blaz) = 0 by Lemma 7.10. Thus albl = —b2a2 and
alb2 = bla2' Thus (albl)a2 = -(b2a2)a2 and al(albz) =

al(blaz). Adding gives (albl)a2 + al(blaz) = al(aébz)
2 -—
(byajla, = _(al’al’bZ) +a;"b,y - (b2,a2,a2) b,a,
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~(ajsa ;b)) +(a,,a,,by) + (a%-a 2)b2, using the flexible

2
property. Now, recall T(a) = 0 implies N(a) = —a2. Thus,
)al,bl,az( = —(al,al,b2)+(a2,a2,b2)+[N(a2)—N(al)]b2.
Similarly, (albl)a2_al(bla2) = —(b2a2)a2 - al(alb2)

_ _ 2 .2

(b2,a2,a2) bla2 +(al,al,b2) a; b2. Thus, (al’bl’aZ)
Conversely, it is easy to see that equation i) implies

(albl)a2+al(bla2) = al(albz)—(bzaz)a2 and that equation ii)

implies (albl)a2_al(bla2) = —(b2a2)a2-al(alb2). Now, if

we add these two equations, and then subtract them, we get

2(albl)a2 = -2(b2a2)a2 and 2al(bla2) = 2al(alb2). i.e.,

(a.b,+b..a )a2 = 0 and a, (b

1°17 P22 11827
have no zero divisors, then albl+b2a2 = 0 and albz-bla2 =

albz) = 0. Now if al and a,

0. Hence, by Lemma 7.10, AB = 0.//

THEOREM 7.13. Let A and B be mutual zero divisors.

Then:
i) T([alaz]bl) = T([alaz]bz) = 0
ii) a; = jaz implies albl = alb2 = 0
iii) a; and a, are not nonzero real numbers
iv) a; = 0 implies a2bl = a2b2 =0
v) a, = 0 implies albl = alb2 = 0.
Proof. i) From albl = —b2a2 and blal = —a2b2, we see
that (albl)al = —(b2a2)al and —al(blal) = al(azbz). Adding,

and using the flexible property, we obtain 0 = al(azbz)—
(b2a2)a1 = al(a2b2) - al(a2b2) = al(a2b2)+alla252) =

imi 1
T(al[a2b2]) = T([alazlbz). In a similar manner, we also

have (albz)al = (blaZ)al and al(azbl) = al(bzal).
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Subtracting and using the flexible property gives 0 =
al(azbl)—(blaz)al, and the proof follows as before.

ii) If a; = a,, then albl+b2al = (0 and albl—bzal = Q.
Thus, since T(al) = T(bz) = (0, and b2al = alb2’ we obtain

albl = alb2 = 0. If a; = -ay, then albl—bzal = 0 and
albl+b2al = 0; and the result follows as before.
iii) This follows directly from T(al) = T(a2) = 0.

iv) and v) follow directly from AB = 0 if and only if

albl+b2a2 = 0 and albz—bla2

0 and b2al-a2bl = 0.//

= 0 if and only if blal+a2b2 =

We now consider how zero divisors behave in A4.

THEOREM 7.14. Let A be a zero divisor ig A4. Then:

i) a # +a

ii) a; and a, are not real numbers

iii) N(al) = N(a2).

Proof. i) This follows from Theorem 7.13, ii), and
the fact that ai’bi are octonions and have no zero divisors.

ii) This follows from Theorem 7.13, iii) and the fact
that if a, were zero, Theorem 7.13, iv) and v), implies A
or B = 0.

iii) Recall that the octonions are an absolute-valued
algebra, i.e., N(ab) = N(a)N(b). Also, in any Cayley-
Dickson algebra, N(a) = N(-a) = N(a) > 0. Thus, AB = 0 if

and only if albl+b2a2 = 0 and albz—bla2 = 0. Hence

N(al)N(bl) = N(bz)N(az) and N(al)N(bz) = N(bl)N(az).
Dividing, we obtain [N(al)]/N(az) = [N(az)]/N(al). Thus,

N2(al) = N2(a2) and the result follows.//
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We are now able to prove our most useful result for
finding zero divisors in A4.

THEOREM 7.15. A and B are mutual zero divisors'ig A4

if and only if the following three conditions hold:

i) N(ay) = N(a,)
ii) b, = [(a;byla,l/N(a;)
iii) )al,bl,az( = 0,
where A = al+ea2 ¢
Proof. If AB = 0, then by Theorem 7.12 and the fact

and B = bl+eb

that octonions are alternative, we obtain )al,bl,az( =
[N(az)—N(al)]b2 and (al,bl,az) = [N(a2)+N(al)]b2. Now by
Theorem 7.14, iii) N(a2) = N(al). Thus, )al,bl,az( = 0

and (al,bl,az) = 2N(al)b2. Now 2(albl)a2 = (al,bl,az) +

Ja,,b 2N(al)b2. Thus, the result follows.

llaz( =
Conversely, if N(al) = N(az), then b2 = [(albl)azl/N(al)

ll

implies [N(a2)+N(al)]b2 = 2(albl)a2 =

(albl)az—al(bla2)+(albl)a2+al(bla2) = (al,bl,az) +
)al'bl’aZ( = (al’bl’a2) by iii). Finally, N(al) = N(a2)
and )al,bl,az( = 0 imply )al,bl,az( = [N(a2)—N(al)]b2.

Now since by the alternative property, (al,al,bz) =
(a2'a2’b2) = 0, the result follows by Theorem 7.12.//

COROLLARY 7.16. If A and B are mutual zero divisors,

then the following holds in A4:

i) No three of al,az,bl, and b2 can be gquaternions.

ii) Each of the following antiassociators is zero:

)al,bl,az(i )bllallbz(; )allbzlaz(; )bllazlbz(;

)azlbllal(; )bzlallbl(; )azlbzlal(; )bzlazlbl(.
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Proof. We first prove ii) by noting that the follow-
ing are all equivalent: AB = 0, BA = 0, (eA)B = 0,
B(eA) = 0, (eA) (eB) = 0, (eB)(eA) = 0, (eB)A = 0, and

A (eB)

0. Thus the order of the ai in al+ea2 and the bi

in bl+eb2 may be permuted.

i) If any three were quaternions, they would be
associative, contradicting part ii).//

Considering the above, one would hope to be able to
look at a particular A # 0, at least in A4, and determine
whether or not it is a divisor of zero by inspection. 1In
fact, we do know that if A = al+ea2 is in A4, and if
N(al) # N(a2), a; = iaz, T(al) or T(a2) # 0, or either
real, then A is not a zero divisor by Theorem 7.14,

a, or a

1 2
and Theorem 7.3. Each of the necessary and sufficient
conditions for zero divisors, however, involved considering
B as well as A. The following example illustrates that
putting all the restrictions on A that we have encountered

as necessary (without considering B) still doesn't guaran-

tee that A will be a divisor of zero.

Let A = (e5+e6+e7)+e8(e5—e6+e7). Then N(al) = N(a2),
T(a;) = T(a,) = 0, and a, # ta,. Yet letting b, = );r.e,,
i=20,...,7, and computing )al,bl,az( = 0 yields bl = 0.

Hence B = 0 and A is not a zero divisor.

Thus, it appears that there is no way to look at a
specific A and be sure if it is a zero divisor, unless you
actually solve for B such that AB = 0. There are two

obvious ways to do this. The first would be to set
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B = zibiei' i= 0,...,2n—l. Then after calculating AB =

Ziciei’ i = 0,...,2n—1, one could set each c, = 0 and solve.
Unfortunately, the multiplication could be extremely long,
and solving c,; = 0 could result in solving 201 equations
in 2"-1 unknowns. The author used a PL-1 computer program
to aid in working several examples in this way. This
program, which multiplies arbitrary Cayley-Dickson elements
in A4, is included in Appendix C. Even a computer is little
help in solving the system of equations when its solutions
are not rational, however.

The other way suggested by our previous work is to

n-1_

set b 1, and solve equations i)

1 = LiFieyr i=20,...,2
and ii) of Theorem 7.12. 1In A4, this reduces the problem
to, at worst, seven equations in seven unknowns. The aid
of a computer in performing the multiplication is useful,
even here. Solving the equations remains tedious, however.
It seems apparent that what is needed is further investiga-
tion into the antiassociator. From here, we concentrate on

zero divisors in A4, where the elements ai’bi acted on by

the antiassociator will be octonions.

LEMMA 7.17. 1If a,b,c are octonions, then )a,b,c( = 0
implies T(a) = T(b) = T(c) = 0.
Proof. By Theorem 7.15 (ab)c+a(bc) = 0 implies

(a//N(a) + e8[c/¢Nic5]) is a zero divisor. Hence,
T(a//N{@)) = 0. Thus T(a) = 0. The other parts are

similar.//
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We now consider for which basis elements of the
octonions the antiassociator vanishes.

THEOREM 7.18. For basis elements of the octonions,

)ei,ej,ek( = 0 if and only if
i) DNone of i,j, or k is O,

ii) No two of i,j,k are the same,

iii) e;e; # te,.
Otherwise, )ei,ej,ek( = 2(eiej)ek.
Proof. Recall Lemma 6.15.//

THEOREM 7.19. For basis elements of the octonions,

if i,j,k # 0, then:

i

i) )e.,ei,ej(

5 )ej,e.,ei( = -2e.,

1
ii) -2e., if i = 3,
)eire-lei( = J

J 2e,, if i # 3,

J

iii) )ei,ej,ek( = -)ek,ej,eiT.

Proof. i) Since basis elements are alternative, we
have )e.,e.,e.( = e.ze. + e.{e.e.) = 2e.2e. = =-2e,..

i'7i" g i 7j i 7i7j i 73 3j

ii) Recall Theorem 6.13.

iii) If i,3,k # 0, then -)ek,ej,ei( = —(ekej)ei—ek(ejei)
= —ei(ejek)—(eiej)ek = ei(ejek)+(eiej)ek = )ei,ej,ek(.//

Since we are interested in antiassociators of elements
each of which has trace 0, the condition that i,j,k # O

in Theorem 7.19 is no restriction to us.

THEOREM 7.20. Let ei,ej,e be basis elements of any

Cayley-Dickson algebra. Then )ei, jrjej,ek( = 0 implies

)ei,ej,ek( =0 for all j = 0,...,n.
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Proof. Noti i i .e. = .
otice first, that since (elej)ek iel(ejek)
by Theorem 6.14, )el,ej,ek( = either 0 or 2(eiej)ek. Now

(.

by linearity we may write )e,,).r.e.,e ( as ).r.)e.,e.,e
Y Y lZ]JJ'k ZJj)ljk

Suppose not all these terms are zero, say rm)ei,em,ek( # 0,

m=1,...,h. Then 0 = Zmrm)ei,em,ek( = Zmrm-Z(eiem)ek =

2[ei(2 roe )le..

mmm

But Corollary 6.12 says (A,ek,ek) = 0, hence if
Aek = 0, then 0 = (Aek)ek = A(ekz) = +A., Likewise, if
e;B=0, B=0. Thus ] r e = 0 which is a contradiction

of the linear independence of the em's.//

With the apparatus above, we often may calculate all
the zero divisors of a given number in A4 quickly since
many, if not most, antiassociators will vanish. In fact,
by Theorem 7.18, since we assume i,j,k # 0, )ei,ej,ek( =0
unless i = j, j = k, or i = k, or eiej = te,. The only
time we even need to consult the basis multiplication table
is for that last case, ejey = te, .

Consider the following example. Let A = e tege,. We

seek B such that AB = 0. Let b, = Y.r.e., i =10,...,7.

iTiTif
Since T(bl) =0, ry = 0. Since T([alaz]bl) = g,
T([elezlbl) = T(e3bl) = 0, implying ry =" 0. Now expanding
0 = )el,ziriei,ez( and discarding any antiassociator which

is zero, we obtain 0 = rl)el,el,e2(+r2)el,e2,e2( =

-2r1e2—2r2el. Thus rl = r2 = 0. Hence bl = r4e4+r5e5+

r686+r7e7. Now letting b2 = [(albl)aZ/N (al) =

r,.e.+‘r.e_-—r

[e] (r e trgectroe +roe,)le, we get by, = ry€,~Tg@gTIg€e I €q-

474 "5°5 76
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H ’ = - - =
ence, B (r4e4+r5e5+r6e6+r7e7)+e8(r7e4 r6e5+r5e6 r4e7)

r4(e4+e15)+r5(e5—el4)+r6(e6+el3)+r7(e7— ), for all real

®12
ri, i=4,...,7.

Thus the properties of the antiassociator allow us to
perform otherwise long tedious multiplications with a
minimum of steps.

The last thing we do in this section is examine the

equation AX = B and its solutions.

LEMMA 7.21. In an alternative algebra with involution,

AX = B, A # 0, always has A_lB as a solution.
1

proof. Since A(a !B) = -(a,a”%,B)+B = - (a,A/N(A),B) +
B= (A,A,B)/N(A) + B = B, we conclude that A-lB is always
a solution.//

This seemingly obvious choice of a solution need not

work in A4, however.

THEOREM 7.22. 1In A4, we have the following:

a(a™ls) = B + [(a;,b,,a,)-e(a;,b;,a,)1/N(B), where A =
a;tea, and B = bl+eb2.

Proof. A(A—lB) =B + (A,A,B)/N(a), and by Theorem 4.3,
(A,7A,B) = (al'bz’az)'e(al'bl’az) for A,B in A,.//

It is clear that only certain equations will have the
solution A_lB. However, even then, the solution may not be
unique. For example, if A has a zero divisor C, so that
AC = 0, then A(X+C) = B if AX = B. The situation can be
worse, however, because for some equations of this type,
there are no solutions. Consider the following example.

= - 1 = «sce . l. 1
Let A = egte;; and X ziriei’ i 0, ,15. Then a little
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calculation shows AX = (—r5—r15)eO + (r5—r15)elO -

(r4+rl4)(el+ell) + (r7+rl3)e2 + (r7—rl3)e8 +

(rlz-r6)(e3+e9) + (rl—rll)(e4+el4) + (ro-rlo)e5 +
) = (rytrgles + (rg-ryle .
117 e3 and egr €y and 147

It is clear that no choice of r, will let

(r tr, . )e Je

0°F10’€15 €12

Notice the pairing of ey and e

+ (r3+r9)(e6—

and e6 and e12'

AX be any single element of any of these pairs. In par-
ticular, (e5+el5)X = el has no solution in A4.

An unproven conjecture is that if AX = B has a solu-
tion, then X = A—lB is a solution. In particular, all
zero divisors for (e5+e15) must be of the form:
m(el+ell

Hence, another unproven conjecture is that if A has no zero

divisor, then AX = B has the unique solution X = a"1ls.

) + n(e3—e9) + p(e6+elz) + q(e4-el4), m,n,p,q real.
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VIII. Examples and Counter Examples.

In the first part of this section, we wish to find the
set of zero divisors of a given nonzero A in A4. Then we
wish to find all zero divisors of that set. In general,
this is extremely complicated; but if A is of the form
A = ei+e8ej, 1 <i, j <7, the situation results in seven
disjoint systems of interrelated zero divisors.

In the following, let {A,B} be the set of all linear
combinations of A and B. Also, let {X} <«» {Y} indicate that
xy = 0 for all x in X and for all y in Y.

THEOREM 8.1. Each A of the form ei+e8ej which has a

zero divisor is in one and only one system below, and all

of its zero divisors are in the same system.

System 1:

v v
{61*610'82'89}‘““““*{e4'e15'e7+elz}:::><:::{es+el4'e6'913}
{el—elo,e2+e9}<——————+{e4+e15,e7—e12} {es-el4,e6+el3}

A A
System 2:

7 v
{el+ell,e3—e9}é——————é{e4+el4,e6—e12}:::><:::{e5+e15,e7—el3}

+e9}€——————>{e4—el4,e6+e12} ,e_te. o}

lej=e;q,85 {eg-eygreqtey s

A A

System 3:

r —
{e1+elz'e4‘eg}“"““"{e2+915'e7‘elo}:::><:::{e3 ®147%¢%e11’
{el—elz,e4+e9}e——————9{ez—els,e7+elo} {e3+el4,e6—ell}
&




System 4:

61

{e +e

{el—el3,e5+e9

A

v
17€137%57 %9

. v
}(_—_—_—é{ez—el4’e6+elO}:::><:i:{e3_e15’e7+ell}
}6~—~———9{e2+e } {e3+e15,e7—ell}
A

1476710

System 5:

fe.+e, e -
€17€147%67 %9

{e,~e

17%147%6%%9

A

e, .} {e3+e

¥
137€57€1¢ 1274711}
}&~*————9{e2—el3,e5+elo} {e3—e12,e4+ell}

Je———{e,te

System 6:

{e,+e

{el—els,e

7

1
17€157€77 %9
+e9

w_
137857€17}
}

}6——————>{e2—e12,e4+e10} {e3+e

{e,~e +e

te >{eyte) e me ) 3713785

11

System 7:

{e,+ M
€y7€117%37¢1

v
0 3{?4fel3'e5+e12}j::><:i:{es+e15'e7'el4}

{ez—ell,e3+e 0}€~————${e4+el3,e5—e12} {e6—e15,e7+el4}
A A
Proof. To see that this theorem is true, one must

compute all zero divisors of elements of the form e tege..

Although this is quite lengthy, it is easy to do using the

methods of the last chapter.//

1 5 if A = al+ea2.

that each system above has the following form:

Recall that A* = a,-ea

¥
{ng8x}€ %{y,egy}$\\\:;>*<:::{z,esz}
{x*,(e8x)*}<——————${y*,(esy)*} {z*, (egz)*}

A A

Then notice



62

Thus we may find all zero divisors of the element
eite for example, by looking at system 1, and noting
that all zero divisors of ml(el+elo) + m2(e2—e9) are of the
form nl(e4—e15) + n2(e7+e12) + n3(e5+el4) + n4(e6—el3),
where n. and m, are arbitrary real numbers.

Consideration of the examples above suggests the
following.

THEOREM 8.2. Let A be a fixed nonzero element ig A4.

Let B = {B| AB = 0} and egB = {egB| B is in B}. Then B is

an additive group closed under multiplication by eg-

Proof, First eBB is contained in B since (e8B)A = 0
if and only if AB = 0. Similarly, B is contained in e88

since B = -e (e8B). Thus B is closed under multiplication

8
by €g.
To see that B is an additive group, consider that AB, =

0 and AB, = 0 implies A(Bl+B2) = 0 and the fact that AB = 0

2
implies A(~-B) = 0.//

It is not true, in general, that BiBj is in B when Bi
and Bj are in B. For example: Let A = el+e10’ Bl = ey ey,
and B2 = e5+el4. Then ABl = AB2 = 0. But Ble = 2(el—elo)
so that A(Ble) = 4ell # 0.

An unanswered gquestion remains as to whether or not
there exists A,B,C in A4 such that AB = AC = BC = 0. From
the systems of zero divisors above, it is clear that such
A,B,C do not exist of the form ei+e8ej. If such A,B,C do

exist in any Cayley-Dickson algebra, then the subspace

generated by A, B, and C would be a subalgebra.
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Another unanswered question also deals with mutual zero
divisors. Let B = {B| AB = 0}. Then we have observed that

(esA)B = 0. Now does XB = 0 imply X = 0, X = A, or X = eghA?

If A = ei+e ej, the answer is yes, in view of the systems

8

above. In fact, for every example the author has considered,
the answer is in the affirmative.

Earlier, we observed that AB = 0 implies that (A,B) is
a commutative Jordan algebra with zero divisors. We now
consider an example of the nature of (A,B) where B =

{B]| AB = 0}. ©Let A = Then considering system 1,

€47 %15°
we see that B = {rlBl+r2B2+r3B3+r4B4}, where Bl = el+elo,

B, = e B, = e_~-e and B

2 2 79’ 73 5 ~14' 4
arbitrary real number. Note that B is a four dimensional

~-e = e6+el3, where r. is an
subset of A4. In every example of dozens worked out, the
same thing occured. For A = ei+e8ej, the systems above
show that B is always four dimensional.

Now consider the set generated by A and B. It is easy
to verify that —A2/2 = eqr (A—[B1B3]/2)/2 = ey
(A+[B1B3]/2)/2 = ey B1B2/2 = €gy €485 = €15, €158, T €4,
68815 = e7, and e4e7 = e3. Moreover, the following table
shows closure under multiplication for these basis elements.
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o €3 €4 ®7 g €11 ©12 €15
€0 €0 €3 €4 €7 g €11 €12 €15
°3 €3 o €7 ~€y €11 "Ss ~C15 €12
€4 €4 I ~%0 €3 €12 15 %3 “€11
€7 €7 €4 ~e3 ~%p €15 TC12 €11 "Sg
g €g L1 "%12 "€15 "% €3 €4 €7
11 | 11 €3 “€15 €12 %3 ~©0 ~Cy €4
€12 | 12 €15 g TC11 T4y €7 ) ~€3
€15 | €15 "®12 €11 g ~€y ~€y 3 %0

Thus, <A,B> is an eight dimensional subalgebra of A4.
Note that (A,B) is clearly not isomorphic to the octonions
since it contains zero divisors. The following result is
now apparent.

LEMMA 8.3. Not all eight dimensional subalgebras of

A4 are isomorphic to the octonions.

One of the original questions which prompted this
paper, was how A5 differed from A4. Some answers to this
can now be considered.

First of all, recall from Theorem 7.5, i), that if
A = a,tea

1 2
THEOREM 8.4. (A+A* ,A+A* ,B+B*) = 0 for all A,B in A4,

C % i 2
is in An’ then A + A* is in A__,.

but (A+A*,A+A*,B+B*) # 0 for all A,B in A5.
Proof. A3 is alternative, A4 is not.//
As was seen in the last chapter, a major difference

between A4 and A5 is in the nature of their zero divisors.

Let us recall here these differences. If A and B are
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mutual zero divisors, then the following hold for A,B in A4,
but do not necessarily hold for A,B in AS:

i) ay # +a

2’
ii) a; and a, must be nonzero,
iii) N(al) = N(az).

The fact that each of these holds for zero divisors in
A4 was shown in Theorem 7.14. The fact that they do not
hold in A5 is easy to see. For, let a be an element of A4

such that for bl and b, in A4 we have abl = ab2 = 0 (as in

2
the example immediately following Theorem 8.2). Now,

letting A = (a+el6a) and B = (bl+e16b2), we see that A and
B are elements of AS; but AB = 0, contradicting i). Simi-

larly let A = (0+e._.a) and B be as before. Then AB = 0,

16
contradicting ii) and iii).

Finally, it was mentioned in the beginning of this
paper that many results have been obtained in non-
associative algebras by considering "defining identities”.
All algebras satisfying a particular identity, or group of
identities, are classed together and then studied. Examples
of this which we have seen are the flexible algebras, the
alternative algebras, and the noncommutative Jordan
algebras. Several such classes of algebras are well known,
and others appear only recently in the literature. Each is
an attempt to restrict a broad class of algebras such as

the noncommutative Jordan algebras to a smaller, more

fruitful, class of algebras. In order to proceed, we need

the following definitions.
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Definition 6.1. A finite-dimensional algebra is said

to be a standard algebra if it satisfies the identities:
i) (x,v,2) + (z,x,y) - (x,z,y) = 0,
ii) (w,x,y2) - (wy,x,2) - (wz,x,y) = 0,
for all w,x,y,z in the algebra.
This definition was first given by A. A. Albert [3].

Definition 6.2. A nonassociative algebra over a field

F of characteristic # 2 is a generalized standard algebra

A if:
i) A is flexible,
ii) H(x,y,z)xX = H{(x,y,xz), where H(x,y,z) = (X,y,z)
+ (y,2z,x) + (z,x,y),
iii)  (x,y,wz) + (w,y,xz) + (2,y,xw) = [x,(w,2,y)] +

(x,w,[y,z]),
iv) if F has characteristic 3, then (x,y,xz) = 0,
v) ylx(wz)l-xly(wz)]l+(x,wz,y)+[(wz)x]y-[(wz)ylx =
[y(xw)—x(yw)+(x,w,y)+(wx)y—(wy)x]z+
wly (wz)=-x(yz)+(x,z,y)+(zx)y=- (zy)x],
for all w,x,y,z in A.
Schafer first gave this definition in 1968 [29].

Definition 6.3. An accessible algebra is defined by

the identities:
i) (x,y,2) + (z,x,¥y) - (x,z,y) = 0,
ii) ([w,x],y,2) = 0.
These were first given by E. Kleinfeld [18].

Definition 6.4. A generalized accessible algebra

satisfies the identities:
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i) Ix,(z,y,y)] = 0,
ii) 3(x,y,[w,2]) = =-[w, (x,y,2)]1-2[x, (y,z,w)]+
2y, (z,w,x)]1+[z, (w,x,v)].

These were first defined by E. Kleinfeld, M. H.
Kleinfeld, and J. F. Kosier [69].

The best account of the interrelation between these
ideas is given in the last mentioned paper, and is condensed
in the following diagram, where — stands for implication:

é////,JORDAN\\\\\\=\ k///ASSOCIATIVE\\\\A
COMMUTATIVE k/////’,’STANDARD\\\\\S) ALTERNATIVE

ACCESSIBLE GEN. STANDARD‘///
\\\\\*‘GEN. ACCESSIBLE kf///

We now wish to show, by means of counter examples, that
not only the Cayley-Dickson algebras are not generalized
accessible; but also that they do not satisfy any of the
defining identities given above, except (X,y,x) = 0 and
(x,y,xz) = 0, i.e., the flexible property and the noncommu-
tative Jordan identity, respectively.

Proceeding through the identities in the order given,
the standard identities are not satisfied.

i) If x = ec, Y = g/ Z = €y then (x,y,z) +
(z,x,y) - (x,2,y) = 6e7 # 0.

ii) If x = ey y = el+elo, z = ey-ecy w = e7+e12,
so that yz = yw = 0, then (w,x,y2) - (wy,x,z) - (wz ,x,y) =
0 -0 - (2e8,el,el+elo) = -4e3 # 0.

The generalized standard identities ii), iii), and v)

do not hold.
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ii) Let x = €1/ Y = €15/, 2 = e,- Then H(x,y,z)x =

—2ell, but H(x,y,xz) = 2ell'

1ii) Let x =y = s W = z = e,. Then all terms

€157 4
in (x,y,wz)+(w,y,x2)+(z,y,xw) = [x,(w,z,y)] + (x,w,[y,z])

are zero except (x,w,l[y,z]) which is 4ell'
v) Let x = ec=€y4r Y = e5+el4, z = e,~€yy, W=
ejteq ;- Then yl[x(wz)]l-x[y(wz)]+(x,wz,y)+[(wz)x]y-[(wz)ylx
= 0. On the other hand: [y (xw)-x(yw)+(x,w,y)+ (wx)y-{(wy)x]lz
twly (xz)-x(yz)+(x,2,y)+ (zx)y-(zy)x] = —2e4 - 4e5 + 4e14 +
Zel5 # 0.
The accessible identities do not hold.

i) (x,y,2) + (z,x,y) - (x,2,y) = 0 was one of the

standard identities.

ii) ([w,x],y,2) = 0 doesn't hold, for let w = ey
X =e,, Y = eg, and z = eg- Then ([w,x],y,2) = (wx,y,z) -
(xw,y,2z) = (e3,e5,68)-(-e3,e5,e8) = 2(e3,e5,e8) = -de ), # 0.

The generalized accessible identities fail to hold.

i) Let x = ey, y = e;=€y5, Z = €,. Then [x,(z,y,y)] =

[e3,—2elo] = —4e9 # 0.

ii) Let x = z and y = w. Then 3(x,y,[w,z])

-[w, (x,y,2)]1-2[x, (y,z,w)]+2[y, (z2,w,x)]+[x, (w,x,y) ] becomes

3(x,y,[y,z]) = 0 because of the flexible property. Letting

xy = -yx yields (x,y,[y,x]) = —2(Xy)2+2x[y(xy)], so letting
X = ej=e;¢ and y = ejte;q, we obtain (x,y,ly,x]) =

4(e4+e10) # 0.
Richard Block [71, in 1969, further generalized the

generalized standard algebras by considering noncommutative
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Jordan algebras that also satisfy what he calls alterna-
tivity conditions. He gives the following definitions.

Definition 6.5. An algebra A is completely alternative

if (x,ly,z],w) + (x,w,[y,z]) = 0, for all x,y,z,w in A.

Definition 6.6. An algebra A is semicompletely alter-

native if (([x,vy]),z,z) = 0, for all x,y,z in A.

Definition 6.7. An algebra A is strongly alternative

if ([v,w], [x,y],2z) + ([v,w],z,[x,y]) = 0, for all x,y,z,v,w
in A,

We now show that the Cayley-Dickson algebras do not
satisfy any of these identities.

The Cayley-Dickson algebras are not completely alter-
native. If w = x and y = x, then (x,l[y,zl,2z) + (x,x,[x,2])
= (x,%x,[x,z]) by the flexible property. Now, let z = x =
ej=€i5r ¥ = €. Then (x,x,[x,z]) = 4(e5—ell) # 0.

The semicompletely alternative identity fails by
letting 2 =X = ej=egy and y = e,. For (Ix,vl,2,2) =
—4(e5—ell) # 0.

Finally, the strongly alternative identity fails.

For, if v = e9/2, W= ej3, X = el/2, Y = ey and z = ey
we have ([v,w},I[x,y],z)+([v,w]l,2,[x,y]) = (e4,e15,el) +
(e4,el,e15) = Zelo # 0.

Thus, not only are the Cayley-Dickson algebras not
members of any of the algebras defined above, not one of
the defining identities holds in the sixteen dimensional

Cayley-Dickson algebra.
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IX. Conclusions.

In this paper we have examined the structure of zero
divisors in real Cayley-Dickson algebras. A necessary and
sufficient condition for zero divisors in a real Cayley-
Dickson algebra of any dimension was found. Antiassociators
played a major role in the description of zero divisors.

It was found that the use of an IBM 360 computer was
very valuable in finding examples and in checking hypotheses.
It appears that computers hold much promise in the further
study of higher dimensional Cayley-Dickson algebras.

Finally, we have observed that Cayley-Dickson algebras
are a class of noncommutative Jordan algebras which are
integer power associative. The fact that A4 satisfies none
of the defining identities of the preceding chapter is
significant. It means that there remains much work to be
done in classifying noncommutative Jordan algebras. It
appears no one has considered as a class noncommutative
Jordan algebras which are integer power associative. The
author feels that favorable results could be obtained from

such a study.
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Appendix A
BASIS MULTIPLICATION TABLE FOR OCTONIONS

0 €1 €2 €3 €4 €5 s €7
€0 0 €1 €2 €3 €4 €5 ®6 €7
€1 1 %o ®3 7% °5  Te4 TSy 6
€2 2 %3 "% €1 €6 €7 %4 TS5
€3 3 €2 T%1 "% €7 "% €5 TSy
€4 4 "85 TS %7 "% €1 €2 €3
€5 5 €4 7%y ¢ %1 "%0 "©3 €2
®6 6 €7 €4 TS5 7% €3 "% &1
€7 7 %6 €5 €4 T&3 T&2 €1 %0
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Appendix B
BASIS MULTIPLICATION TABLE FOR A4

1 2 3 4 5 6 7
1 2 ©3 S G5 & &g
0o %3 %2 S5 "%y T8 &
3 "% ®1 % ©7 "% "S5
2 "%1 TS ®7 "% G5 "%y
5 "% "7 "% €1 ©2  ©3
4 "7 S %1 "% "3 %2
7 S4 "5 TS €3 "¢ %
6 S5 ©4 T®3 T%2  ©1 "%
9 ~%10 "®11 "%12 "%13 "%14 "%15
g ~©11 €10 "®13 ®12 €15 "C14
11 %8 "% "®14 "€15 ©12 ®13
10 ® ©g "®15 €14 "®13 C12
13 ®14 ©15 ©g "% T®10 "°11
12 ©15 14 %9 g €11 "C10
15 €12 ®13 ©10 "%11 S8 %9
14 €13 %12 ©11 f10 "%9 8



Appendix B continued
BASIS MULTIPLICATION TABLE FOR A4

€11 €12 €13 €14 €15
€0 €11 €12 €13 €14 €15
€1 €10 “€13 €12 €15 “€14
€2 ~%9 “€14 “C15 €12 €13
€3 ~Cg “€15 €14 ~€13 €12
€4 €15 ~Cg ~C9 ~C10 €11
5 “€14 9 ~Cg €11 "€10
€6 €13 €10 e ~Cg 9
€7 ~€12 €11 €10 ) ~Cg
eg 3 €4 €5 €6 €7
9 €2 ~C5 €4 €7 ~%6
€10 e "6 I €4 5
€11 ~©0 ~C7 €6 ~e5 €4
€12 €7 ~©0 ~€1 ~€ ~€3
€13 “%6 €1 o 3 )
€14 e5 €2 ~€3 ~o 1
€15 "4 €3 €2 €1 %0
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Appendix C
PL-1 PROGRAM FOR CHARACTER STRING MULTIPLICATION
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