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ABSTRACT 

n Real Cayley-Dickson algebras are a class of 2 -

ii 

dimensional real algebras containing the real numbers, com-

plex numbers, quaternions, and the octonions (Cayley 

numbers) as special cases. Each real Cayley-Dickson 

algebra of dimension greater than eight (a higher dimen­

sional real Cayley-Dickson algebra) is a real normed 

algebra containing a multiplicative identity and an inverse 

for each nonzero element. In addition, each element a in 

-the algebra has defined for it a conjugate element a 

analogous to the conjugate in the complex numbers. These 

algebras are not alternative, but are flexible and satisfy 

the noncommutative Jordan identity. Each element in these 

algebras can be written A= a 1+ea 2 where e is a basis 

element and a 1 ,a2 are elements of the Cayley-Dickson 

algebra of next lower dimension. 

Results include the facts that for each real Cayley­

Dickson algebra aiaj = ai+j and (aib)aj = ai(baj) for all 

integers i,j and any a,b in the algebra. The major result 

concerns zero divisors. 

MAJOR THEOREM. Let A= a 1+ea2 , B = b 1+eb2 , A,B ~ 0 be 

elements of any real higher dimensional Cayley-Dickson 

algebra. Let a 1 and a 2 not be divisors of ~· Then AB = 

0 if and only if 

1) )a1 ,b1 ,a2 ( = -(a1 ,a1 ,b2 )+(a2 ,a2 ,b2 )+IN(a2 )-N(a1 )Jb2 , 

2) (a1 ,b1 ,a2 ) = (a1 ,a1 ,b2 )+(a2 ,a2 ,b2 )+[N(a2 )+N{a1 )Jb2 , 



where )A,B,C( = (AB)C+A(BC), (A,B,C) = (AB)C-A(BC), and 

N (a) = aa. 

iii 
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I. Introduction. 

This paper is a study of the properties of higher 

dimensional real Cayley-Dickson algebras. The real Cayley­

Dickson algebras are an infinite class of 2n-dimensional 

algebras over the real field. They include all alternative 

finite dimensional division algebras over the reals: The 

real numbers, complex numbers, quaternions, and the 

octonions. The quaternions are a four dimensional noncom­

mutative real algebra devised by w. Hamilton. The octonions 

(usually called the Cayley numbers) are an eight dimensional 

noncomrnutative and nonassociative real algebra devised by 

A. Cayley. L. E. Dickson in 1919 [11] devised the process 

whereby each of these algebras generates the algebra of 

next larger dimension. This class of algebras is thus 

called the Cayley-Dickson algebras. 

Cayley-Dickson algebras up to dimension eight over 

arbitrary fields (and particularly over the real field) have 

been extensively studied. It appears that Cayley-Dickson 

algebras of dimension higher than eight (higher dimensional 

Cayley-Dickson algebras) have been studied relatively 

little. 

There are several reasons why a study of higher dimen­

sional real Cayley-Dickson algebras could be valuable. 

Each such algebra is a normed algebra over the reals with 

the added property that each nonzero element has an inverse. 

Moreover, the elements of each such algebra satisfy the 



conditions necessary to permit their use in relativistic 

quantum mechanics, yielding perhaps, more insight into 

quantum mechanical phenomena than is presently available. 

Lastly, such a study could help classify types of algebras 

in the large class of nonassociative algebras, the noncom­

mutative Jordan algebras. 

2 

This paper examines, in particular: The algebraic 

properties of the zero divisors of higher dimensional real 

Cayley-Dickson algebras; certain identities which hold (or 

fail to hold) in these algebras; and the properties of 

negative integer exponents in these nonassociative algebras. 

We indicate the end of a proof in this paper by the 

symbol//, after the notation of K. G. Kurosh [20]. 



II. Review of the Literature. 

L. E. Dickson Ill] in the Annals of Math in 1919, 

devised a scheme whereby an infinite class of algebras of 

dimension 2n could be constructed which contains the real 

and complex numbers, the quaternions, and the octonions. 

These algebras are called Cayley-Dickson algebras in honor 

of Dickson and Arthur Cayley who developed the octonions. 

Dickson was writing about the "Eight Square Problem", the 

solution to which was given by the following theorem due 

to A. Hurwitz in 1898. 

The identity (xl 
2 + + xn 2) (yl2 + 2) ... + . . . Yn = 

(zl 
2 + + z 2) where the linear in . . . z . are x. n l. l. 

and y. can hold only for n = 1,2,4,8. 
l. 

3 

For examples of this identity, for each specified n, Dickson 

used the real numbers, the complex numbers, the quaternions, 

and the octonions. One of the consequences of Hurwitz's 

theorem is that the only Cayley-Dickson algebras in which 

the norm of a product equals the product of the norms are 

of dimension 1,2,4,8. 

An excellent account of the search for division 

algebras over the real field and the relation of that search 

to the eight square problem is given by Charles Curtis [10]. 

This vein of work was completed in 1958 by R.Bott and J. 

Milnor [8], [23]. They proved that the only division 

algebras over the reals are of dimension 1,2,4 and 8. Hence 

the first four Cayley-Dickson algebras over the real numbers 



are of primary importance. 

A. A. Albert examined Hurwitz's proof and Dickson's 

process in 1941, and generalized these ideas to the idea of 

quadratic forms Il]. In 1946 I2] he considered the idea 

of an absolute-valued algebra, and showed that all real 

algebras are normed algebras. In 1948 [3] he examined the 

property of power associativity in rings as well as the 

properties of flexibility and trace-admissibility. Each 

Cayley-Dickson algebra enjoys these properties. In 1948 

[4] he studied trace-admissible algebras and displayed 

several more properties of the trace operator which hold in 

any Cayley-Dickson algebra. 

4 

It was R. D. Schafer in 1954 [26], however, who came 

back to examine more closely the Cayley-Dickson algebras 

themselves. Indeed, the chief references for the subject 

are his 1954 paper and his 1966 book An Introduction to 

Nonassociative Algebras [28]. In his paper, he derives 

certain elementary properties of these algebras and examines 

chiefly their derivation algebras. He shows, for example, 

that all Cayley-Dickson algebras are flexible. He also 

shows that the basis elements of all such algebras are 

alternative, even though the algebras are not alternative 

if the dimension is greater than eight. 

From here, the investigation seems to follow two widely 

separating paths. One path of study is the investigation 

and classification of the nonassociative algebras in 

general. In 1955 [27], Schafer was able to classify simple 
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noncommutative Jordan algebras of characteristic 0 into 

three classes: simple (commutative) Jordan algebras, simple 

quasiassociative algebras, and simple flexible algebras of 

degree two. He then commented that much remains to be 

learned about that last classification inasmuch as it 

contains the Cayley-Dickson algebras for which relatively 

little is known. Most of the work in these areas of late, 

has been in trying to find identities characterizing cer­

tain classes of nonassociative algebras. These have in­

cluded the concepts of standard algebras, generalized 

standard algebras, accessible algebras, generalized acces­

sible algebras, and algebras with alternativity conditions. 

These have been studied by such people as A. J. Penico [24], 

R. D. Schafer [29], [30], R. E. Block [7], E. Kleinfeld 

[18], M. H. Kleinfeld, J. F. Kosier [19], and K. McCrimmon 

[21]. 

The other path has been to study the quaternions and 

octonions extensively with some of the techniques of other 

areas of mathematics. In particular, the ideas of functional 

analysis have been applied to them by H. H. Goldstine and 

L. P. Horwitz [14], [15], [16], and more recently by J. 

Jamison [17]. Number theory and basic algebra methods have 

been applied to the quaternions and octonions by s. Eilenberg 

and I. Niven [12], M. J. Wonenburger [32], and H. S. Coxeter 

[9]. The octonions and their relation to the Dirac wave 

equation in physics have been studied by R. Penney [25]. 
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The last paper to date, to the author 1 s knowledge, 

specifically mentioning the Cayley-Dickson algebras is R. D. 

Schafer's paper in 1970 concerning forms permitting composi­

tion [31]. In this paper, he does not mention any signifi­

cant new results about the Cayley-Dickson algebras. 
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III. Basic Concepts. 

A. Definitions. 

The following ideas, which can be found in [21] and in 

[28], will be used frequently in our study. 

Definition 3.1. A ring R is an additive abelian group 

with a multiplication satisfying the distributive laws 

(x + y)z = xz + yz and z(x + y) = zx + zy for any x,y,z in 

R. (Note that (xy)z = x(yz) is not assumed.) 

Definition 3.2. An algebra A is a ring which is also a 

vector space over a field F with a bilinear scalar multipli­

cation satisfying the scalar associative law: r(xy) = 

(rx)y = x(ry), for all r in F and for all x,y in A. 

Generally, what we have defined is called a nonassocia­

tive algebra to emphasize that the associative law is not 

assumed. We will restrict our attention to algebras with a 

multiplicative identity element over the real field. It is 

important to note that the real field is of characteristic 

zero. In the following, we consider algebras rather than 

rings; but obviously, many definitions and results do not 

depend on scalars and hence are true for rings as well. 

Definition 3.3. An element a of an algebra A is a 

zero divisor if a ~ 0 and there exists some element b ~ 0 

of A for which ab = 0 or ba = 0. The elements a and b will 

be referred to as mutual zero divisors if they are zero 

divisors and ab = 0 or ba = 0. 

Definition 3.4. A division algebra is an algebra in 



which every element has an inverse and there are no 

divisors of zero. 

Definition 3.5. The commutator [x,y] is given by 

[x,y] = xy - yx. 

Definition 3.6. The associator (x,y,z) is given by 

( X 1 y 1 Z ) = ( XY ) Z - X ( y Z ) • 

Definition 3.7. The nucleus of an algebra is the set 

of all elements x of an algebra A for which (x,y,z) = 

(y,x,z) = (y,z,x) = 0 for all y,z in A. 

Definition 3.8. The center of an algebra is the set 

of all elements in the nucleus of the algebra which also 

commute with all elements of the algebra. 

Definition 3.9. An involution (involutorial anti-

automorphism) is a linear operator x ~ x such that xy = yx 

and x = x. We call x the conjugate of x. 

In this paper, ~will only b~.concerned with involu­

tions for which x + x and xx are in the center of the 

algebra. Dr. A. J. Penico has suggested that these might 

best be called "centered involutions". 

Definition 3.10. The trace T (x) of the element X is 

defined by T(x) = X + x. 

Definition 3.11. The norm N(x) of the element X is 

defined by N (x) = XX = XX. 

Definition 3.12. The flexible property is (xy)x = 

x{yx). If the flexible property is satisfied for allele-

ments of an algebra, the algebra is said to be flexible. 

Definition 3.13. The right alternative property is 

8 



(yx) x 

2 
X Y• 

2 = yx , and the left alternative property is x(xy) = 

If both properties are satisfied by all elements of 

an algebra, the algebra is said to be alternative. 

B. Basic consequences of the definitions. 

In this section, we observe basic properties of the 
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terms defined previously so that efficient algebraic manipu-

lations will be available to examine the Cayley-Dickson 

algebras. Many of these observations are well known, and 

are included to aid the reader. 

The commutator is defined by [x,y] = xy - yx. If 

[x,y] = 01 then xy = yx. Clearly, [x,x] = 0 and [x,y] = 

-[y,x]. In an algebra, a scalar r may be thought of as 

r • 1 where 1 is the identity element of the algebra, so we 

have [r,x] = 0 for all x in the algebra. Moreover, r[x,y] 

= [rx,y] = [x,ry]. Commutators are also additive in each 

argument, i.e. , [ x + y, z] = [ x, z] + [ y, z] and [ x, y + z] = 

[x,y] + [x,z]. Thus commutators are linear in each argu-

ment. 

Since the trace is in the center of an algebra, we 

have the following additional properties of the commutator 

and the conjugate. 

[x,y] = -[x,y] = -[x,y] = [x,y] = -[x,y]. These 

equalities follow from [x,y] = [T(x} - x,y] = [T(x),y] + 

[-x,y] = 0 - [x,y]; [x,y] = [x,T (y) - y] = [x,T(y)] + 

[x,-y] = -[x,y]; and [x,y] = xy- yx = xy- yx = yx- xy = 

[y,xl = [y,xl = -[x,y]. 
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The associator is defined by (x,y,z) = (xy)z- x(yz): 

(x,y,z) = 0 if and only if (xy)z = x(yz). Moreover, if r 

is an element of the center, then (r,x,y) = (x,r,y) = (x,y,r) 

= 0. The associator is also additive in each argument, i.e., 

for example, (x + y, z ,w) = (x, z ,w) + (y, z ,w). Thus the 

associator is linear in each argument. 

If an algebra A is flexible, then we have (xy)x = 
x(yx); or, in terms of associators, (x,y,x) = 0 for all x,y 

in A. By the additive property this means 0 = 

(x + w,y,x + w) = (x,ylx) + (x,y,w) + (w 1 y,x) + (w,y 1 w) = 

(x,y,w) + (w,y 1 x). Thus in a flexible algebra (x 1 y,w) = 
-(w,y,x), for all x,y,w in A. 

The following relations between conjugates and asso­

ciators hold in algebras with involution. 

(xI y I z) = - (x, y, z > = - (x, y, z > = - (x, y, z > 

= ex, y, z > = ex, y I z > = ex, y, z > 

= -<x,y,z> 

= (z,y,x) 

These properties follow from the observation that 

(x,y,z) = (T(x) - x 1 y,z) = (T(x),y,z) + (-x,y,z) = 0-

(x,y,z); and (z,y,x) = (zy)x- z(yx) = x(yz) - (xy)z = 
- (x,y,z) = cx,y,z>. 

The "Four Identity" is: (xy,z,w)- (x,yzlw) + 

(x,y,zw) = x(y,z,w) + (x,y,z)w. This is easily verified 

as being true in any ring, and will be useful in certain 

calculations. 



Just as the flexible property can be expressed in 

terms of associators, the alternative properties can be as 

well. The right alternative property (yx)x = yx2 can be 

written as (y,x,x) = 0, and the left alternative property 

x(xy) = x 2y can be written as (x,x,y) = 0. If an algebra 

is alternative, i.e., both the left and right alternative 

properties hold, then 0 = (x + y,x + y,z) = (x,x,y) + 

(x,y,z} + (y,x,z) + (y,y,z) = (x,y,z) + (y,x,z). Thus in 

an alternative algebra (x,y,z) = -(y,x,z}. Similarly, in 

an alternative algebra (x,y,z) = -(x,z,y). Moreover, any 

two of (x,x,y} = 0, (y,x,x) = 0, or (x,y,x} = 0 imply the 

third. For example, if the alternative laws hold, then 

11 

0 = (x,x + y,x + y) = (x,x,x) + (x,y,x) + (x,x,y) + (x,y,y) 

= (x,y,x). 

The trace T(x) has been defined to be in the center of 

the algebra. Thus if r = r, then r is in the center since 

T(r) = r + r = 2r. For such an r we have T(rx) = rT(x), 

since rx + rx = rx + xr = rx + rx = r(x + x}. It is also 

clear from the definition that T(x} = T(x). 

THEOREM 3.1. In any flexible algebra with involution, 

T(xy) = T(yx} and T([xy]z) = T(x[yz]). 

Proof. Since [x,y] = [x,y], we have xy- yx = xy- yx 

or xy + yx = xy + yx. Therefore, xy + xy = yx + yx and so 

T(xy) = T(yx). Also since (x,y,z) = -(x,y,z), we have 

(x,y,z) + (x,y,z) = 0, i.e., T((x,y,z)) = 0. Thus 

T([xy]z- x[yz]} = T([xy]z) - T(x[yz]) = 0.// 
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We also note that T(xy) = - -T(yx) since xy + xy = xy + 

yx = yx + yx. Hence T(xy} = T(xy) because T(xy) = T(yx}. 

It is not true, however, that T(xy} = T(xy}, as can be seen 

from the complex numbers with the usual conjugate. There, 

trace corresponds to twice the real part of each complex 

number. Thus T([l + i]i) = -2, but T([l- i]i) = +2. 

Finally, we observe a relationship that exists between 

T(xy) and T(xy). 

LE~1A 3.2. T(x)T(y) = T(xy) + T(xy). 

Proof. T(x)T(y} = (x + x} (y + y} = xy + xy + xy + xy 

= (xy + yx} + {xy + xy + xy- yx) = T(xy) + 

(xy + x[y + y] - yx} = T(xy} + (xy + T(y}x- yx) = T(xy) + 

(xy + [T(y) - y]x} = T(xy) + (xy + yx} = T(xy} + T(xy}.// 

In an algebra with involution, several useful rela-

tionships exist between the conjugate and the operation of 

association. The following will illustrate. 

THEOREM 3.3. In an algebra with involution, the 

following hold: 

i) x(xy) = x(xy) 

ii) {yx)x = (yx)x 

iii) -2 -2 x{x y} = x (xy}. 

If the algebra is also flexible, then: 

iv) x{xy) = (yx)x 

v) x 2 (yx} = (x 2y)x. 

Proof. We use the properties of trace to make the 

calculations: 
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i ) X ( xy ) = ( T (X ) - X ) ( xy ) = T (X ) ( xy ) - X ( xy ) = 

x[T(x)y- xy] = x([T(x) - x]y) = x(xy). 

ii) is shown in a similar manner. For iii), consider, 

x(x2y) = x[x(T{x)- x)y] = x[T(x)x- N(x))y] = 

x[T(x) (xy) - N(x)y] = T(x) [x(xy)] - N(x) (xy). Now by i) 

this equals T(x) [x(xy)] - N(x) (xy) = [T(x)x- N(x)] {xy) = 

[ N ( x) + x 2 - N ( x) ] ( xy ) = x 2 ( xy ) • 

Now assuming the flexible property, iv) follows from 

x(xy) = -(x,x,y) + (xx)y = -(x,x,y) + N(x)y = (y,x,x) + 

N(x)y = (yx)x- yN(x) + N(x)y = (yx)x. 

To show v) holds, recall that an associator is zero if 

any entry is in the center. 2 Then (x ,y,x) = 

(x[T(x)- x],y,x) = (T(x)x- N(x),y,x) = (T{x)x,y,x) -

(N(x),y,x) = T(x) (x,y,x) - 0 = 0.// 

Definition 3.14. A noncommutative Jordan algebra is a 

noncommutative flexible algebra satisfying (x 2 ,y,x) = 0. 

COROLLARY 3.4. Any flexible noncommutative algebra 

with involution is a noncommutative Jordan algebra. 

Proof. This follows from the proof of v) above.// 

The following is given by Schafer [28] as an exercise. 

LEMMA 3.5. In any flexible algebra: 
2 (x ,y,x) = 

2 2 2 2 
x(x y) - x (xy) = (yx )x - (yx)x . 

Proof. x(x 2y) - x 2 (xy) = x[ (xx)y] - (xx) (xy) = 

-(x,x,xy) + x[x(xy)] + x[ (x,x,y) - x(xy)] = (xy,x,x) -

x(y,x,x) by the flexible property. Now, this last expres­

sion becomes [(xy)x]x- (xy)x2 - x[ (yx)x] + x(yx2 ) = 

-(xy)x2 + x(yx2 ) - x[(yx)x] + [(xy)x]x = -(x,y,x2 ) -



2 2 
x[(yx)x] + [x(yx)]x=-(x,y,x) + (x,yx,x) = (x ,y,x). 

Likewise (yx 2)x- (yx)x 2 = [y(xx)]x- (yx) (xx) = 

(yx,x,x) - [ (yx)x]x + [ (yx)x - (y,x,x) ]x = (x,x,y)x -

(x,x,xy) by the flexible property. This then becomes 

2 2 2 
(x y)x- [x(xy)]x- x (xy) + x[x(xy)] = (x ,y,x) + 

2 2 
x[x(xy)]- x[(xy)x] = (x ,y,x)- x(x,y,x) = (x ,y,x).// 

LEMMA 3.6. In any noncommutative Jordan algebra we 

have (x,x,yx) = (x,x,y)x and (xy,x,x) = x(y,x,x). 

Proof. We use the "Four Identity" which is valid in 

any algebra. 

(xx,y,x)- (x,xy,x) + (x,x,yx) = x(x,y,x} + (x,x,y)x. 

Now by the noncommutative Jordan identity and the flexible 

property, we have (x,x,yx} = (x,x,y)x. 
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2 
Similarly, (xy,x,x) - (x,yx,x) + (x,y,x ) = x(y,x,x) + 

(x,y,x)x. Thus, (xy,x,x) = x(y,x,x).// 

COROLLARY 3.7. In any noncommutative Jordan algebra 

we have [x (xy) ]x = x[x (yx)] and [ (xy)x]x = x[ (yx)x]. 

Proof. 0 = (x,x,yx) - (x,x,y)x = x 2 (yx) - x[x (yx)] -

2 2 
(x y)x + [x(xy)]x = -(x ,y,x) + [x(xy)]x- x[x(yx)] = 

[x(xy)]x- x[x(yx)]. The other part is similar.// 

We have defined the norm of x to be N(x) = xx, and 

have specified that N(x) is in the center. The presence of 

norm and trace lead to the next lemma. 

LEMMA 3.7. Every element in an algebra with involu­

tion satisfies the quadratic equation: x 2 - T(x)x + N(x)l 

= o. 
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Proof. x 2 - T(x)x + N(x)l = x2 - (x + x)x + XX= 0.// 

LEMMA 3.8. The following hold in any algebra with in­

volution: 

i) N(r) = 2 r , if r = r 

ii) N(rx) = r 2N(x), if r = r 
iii) N(x) = N(x). 

Proof. Each is clear from the definition of norm.// 

THEOREM 3.9. In any flexible algebra with involution 

the following hold: 

i) N(xy) = N(xy) 

ii) N<xy> = N(xy) 

iii) N(xy) = N (yx). 

Proof. The proof relies on the fact that the trace is 

in the center of the algebra. 

i) N (xy) = (xy) (yx) = [x (T (y) - y) 1 (yx) = 

[T(y)x- xy] (yx) = [T(y)x] (yx) - (xy) (yx) = [T(y)x] (yx) -

(xy) r (T(y) - Y.>xl = [T (y)xl (yx) - T (y) r <xy>xl + (xy) <Y.x> = 

T(y) [x(yx) - (xy)x] + N(xy) = -T(x) (x,y,x) + N(xy) = 
T(x) (x,y,x) + N(xy) = N(xy). 

Now, to prove iii), we note that i) implies N(xy) = 

N(xy> = N(yx> = N(yx> = N(yx>. 

From this ii) follows easily.// 

We note here that the fact that N(xy) = N(yx) proved 

to be very useful in studying zero divisors in Cayley-

Dickson algebras. 

LEMMA 3.10. In any algebra with involution we have: 

N(x ± y) = N(x) + N(y) ± T(xy). 
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Proof. N(x + y) = (x + y) (x + y) = (x + y) <x + y) = - - - - -
- - - (xy xy) N(x) N(y) XX + xy + yx + yy = N(x) + N (y) + + = + + - - - -

'l' (xy). I I 
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IV. The Cayley-Dickson Algebras. 

R. D. Schafer's book 128] gives a clear description of 

the process that Dickson devised to generate the Cayley­

Dickson algebras. Let A be an algebra with identity 1 and 

with an involution. Let A have dimension n. Then we con-

struct an algebra B of dimension 2n over the same field as 

A and having A isomorphic to a subalgebra of B. Let B con­

sist of all ordered pairs (a1 ,a2 ) where a 1 and a 2 are ele­

ments of A. Let addition and multiplication by scalars be 

defined componentwise. Moreover define a multiplication in 

B by (a 1 ,a2 ) (a3 ,a 4 ) = (a1 a 3 + va4a 2 ,a1 a 4 + a 3a 2 ), where vis 

some nonzero scalar. Defining (1,0), the identity element 

of B, as 1, then: A' = { (a,O) I a in A} is a subalgebra iso­

morphic to A; e = (0,1) is an element of B such that e 2 = 

vl; and B is the vector space direct sum B =A'$ A'. 

For our purposes, we restrict our field to be the real 

numbers, and v to be -1. It will be handier to consider 

elements of B to be of the form x = a 1 + ea 2 with multipli­

cation given by (a1 + ea 2 ) (a 3 + ea4 ) = (a1a 3 - a 4a 2 ) + 

e(a1a 4 + a 3a 2 ). This notation will be consistently used. 

Define X by X = a 1 - ea2 if X = a 1 + ea2 • Then it is easy 

to see that xy = yx since a ~ a is an involution for A. 

Thus x ~ x is an involution for B. Trace and norm are de-

fined as before with the observation that for x = a 1 + ea 2 , 

T(x) = T(a1 ) and N(x) = xx = (a1 + ea 2 > (a1 - ea2 ) = 

(a1a 1 + a 2a 2 ) + e(-a1a 2 + a 1a 2 ) = N(a1 ) + N(a 2 ). In any 
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Cayley-Dickson algebra, the inverse of any nonzero element 

exists and is defined by x-l = x/N(x). Then xx-l = 

x[x/N{x)] = xx/N{x) = 1. Since this is the case, there are 

no non-trivial proper ideals in any of these algebras. The 

reader should take note that all of the material presented 

above is used repeatedly in the remainder of this paper. 

If A is the real numbers, then the B given by the 

Cayley-Dickson process is the complex numbers, e is repre-

sented by i, and the involution is the familiar conjugate. 

2 2 
Moreover, T(x) = 2 Re(x) and N{x} = a 1 + a 2 where x = 

a 1 + ia2 • We note that in going from the real to the com­

plex field, order is lost, i.e., the complex numbers are 

not ordered. 

If A is the complex numbers, B will be the quaternions, 

e will usually be represented by j, and ij = k. In going 

from the complex numbers to the quaternions, commutativity 

is lost since ji = -k. 

If A is the quaternions, B will be the octonions 

(usually called the Cayley numbers}. The octonions are not 

associative, but are alternative and are a division algebra. 

If A is the octonions, the 24-dimensional algebra ob-

tained is the smallest Cayley-Dickson algebra which is not 

a division algebra since it has zero divisors. It is not 

alternative for the same reason. It has no name, and will 

be referred to in this paper as A4 in keeping with the 

notation of Schafer [26]. To the author's knowledge, A4 
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has not been studied extensively, and very little is known 

about its properties. This paper is an attempt to answer 

some questions about A4 ; in particular, questions regarding 

zero divisors. In our investigation, however, many other 

facts were discovered which are true for all Cayley-

Dickson algebras. 

There is an alternate way of looking at each of these 

algebras. On can consider the complex numbers as the 

vector space generated by {l,i} over the real numbers. 

Likewise the quaternions can be thought of as the vector 

space over the real numbers having basis elements 

{l,i,j,k} with multiplication of basis elements defined 

by the following table: 

1 i j k 

1 1 i j k 

i i -1 k -j 

j j -k -1 i 

k k j -i -1 

An artibrary element thus has the form r 0 + r 1i + r 2 j + r 3k, 

where the r's are real numbers. 

Similarly one can view each of the Cayley-Dickson 

algebras as a vector space over the reals. In order to 

facilitate notation, let the basis of A be denoted 
n 

2 2 
{l=e0 ,e1 , ••• ,e 2n_ 1 }, where e 0 = e 0 and ei = -e 0 for 

i ~ 0. Thus an element of the algebra can be represented 

as the linear combination x = L1.· r.e., i = 0, ..• ,2n-l. 
1. 1. 
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With this representation L· i n 
X = roeo - r. e., = 0, ••• ,2 -1. 

1 1 1 

Also T(x) 2r0 , and N(x) L· 
2 i n Note = = r. = 0, ••• ,2 -1. I 

1 1 

-also that eo = eo, but e. 
1 = ~ -e. if i 

1 
0. In the remainder 

of this paper, we shall refer to the subspace re 0 as simply 

.. the reals r" with the meaning being clear from context. 

LEMMA 4.1. N(x) = 0 if and only if x = 0. 

Proof. N(x) = 0 if and only if r. = 0 for all i. 
1 

This is equivalent to saying x = 0.// 

Tables for the basis element multiplication for A3 , 

and for A4 will be found in Appendix A and Appendix B. 

It would seem that as the Cayley-Dickson process 

continues, some algebraic property would be lost at each 

step just as in the first three steps. This paper will 

indicate several ways that A5 differs from A4 , but what is 

lost in higher dimensions remains largely unknown. 

Another viewpoint is to consider what properties, if 

any, are enjoyed by all Cayley-Dickson algebras. This 

last question is easily answered at least in part. For 

example, if a new norm is defined by n(x) = IN(x), then 

each Cayley-Dickson algebra becomes a normed linear space 

over the real numbers with the added property of having a 

multiplication and an inverse for each nonzero element. 

This explains why the techniques of functional analysis 

have been useful in the past in studying the quaternions 

and the octonions. 

Since it has been known for many years that the 

octonions are the only alternative, nonassociative division 
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algebra over the real numbers, an interesting question 

answered by Schafer is whether or not any higher dimensional 

Cayley-Dickson algebras are alternative. The answer is no, 

but they are all flexible as the following shows. 

In 1954, R. D. Schafer [26] proved the following 

theorem. We shall give an alternate proof here. 

THEOREM 4.2. Any Cayley-Dickson algebra is flexible. 

Proof. This is obvious for any associative algebra. 

It therefore suffices to show that if A is flexible, then n 

An+l is flexible. Let A = a 1 + ea2 and B = b 1 + eb 2 be 

elements of An+l. Then (A,B,A) = (A,B,A) = 

[ (a1-ea2 ) (b1-eb2 )] (a1+ea2 ) - (a1-ea2 ) [ (b1-eb2 > (a1+ea 2 ) 1 = 

[ (a1£1-b2a 2 > +e (-a1 b 2 -51 a 2 ) 1 (a1 +ea2 > + 

(-a1+ea 2 ) [ (b1a 1+a25 2 )+e(b1a 2-a1b 2 )] = 

£ (al5l>al-<b2a2)al+a2<52al>+a2(a2bl)-al<5lal>-al(a252>­

(b1a 2 )a2+(a1b 2 )a2 J + e[(b1a 1 >a2-<a2£2 >a2-a1 ca1b 2)-

al(bla2)-al(bla2)+al(alb2)+(blal)a2+(a2b2)a2] = 

[(a1 ,£1 ,a1 ) + T(a 2 (b2a 1 ))- T(al (a2b 2 )) + a 2 (a2b 1 )­

(b1a 2 )a2 ] + e[ (b 1a 1 + b1a 1 )a2 - a 1 c£1a 2+b1a 2 )J = 

[(a1 ,b1 ,a1 )+T(a1 (a25 2 >>-T<a1 (a2£2 >>-<a2 ,a2 ,b1 >-<b1 ,a2 ,a2 >1 

+ e[T(b1 ) (a1a 2 ) - T(b1 ) (a1a 2 )] = (a1 ,b1 ,a1 )+[(a2 ,a2 ,b1 )-

(b1 ,a2 ,a2 )] which is zero if An is flexible.// 

We note that xyx is now unambiguous since (xy)x = 

x (yx). 

THEOREM 4.3. Let A= a 1+ea 2 and B = b 1+eb2 be 

elements of a Cayley-Dickson algebra of any dimension. 



Then (A,A,B) = [ (a1 ,b2 ,a2 )+(a 2 ,a2 ,b1 )+(a1 ,a1 ,b1 )l + 

e[(a1 ,a1 ,b2 )-(a1 ,b1 ,a2 )+(a2 ,a2 ,b2 )]. 

Proof. We first observe that (A,A,B) = -(A,A,B) = 

-N(A)B + A(AB). 

Now A(AB) = (a1+ea 2 )[ (a1-ea2 ) (b1+eb 2 )] = (a1+ea 2 ) 

[ <a1b 1 +b 2a 2 >+e<a 1b 2-b1a 2 >l = [a1 <a1b 1 )+a1 cb 2a 2 >-<a1b 2 )a 2 + 

(bla2)a2] + e[al (alb2)-al(bla2)+(albl)a2+(b2a2)a2] = 

[-Ca1 ,b2 ,a2 >+a1 ca1b 1 )+(b1a 2 >a 2 l+e[ ca 1 ,b1 ,a2 >+a1 (a1b 2 ) + 

(b2a2)a2]. 

Also -N(A)B = -(a1a 1 + a 2a 2 ) (bl + eb2 ) = 

[-(alal)bl~(a2a2)bl] + e[-(alal)b2-(a2a2)b2]. 

so (A,A,B) = [-Ca1 ,b 2 ,a 2 )+a 1 ca 1b1 >~ca1a 1 >b1+ 

(bla2)a2-(a2a2)bl] + e[(al,bl,a2)+al(alb2)-(alal)b2 + 

(b 2a 2 )a 2-(a2a 2 )b 2 ]. Now since N(a) = aa = aa and is in 

the center, we have: 

(al,al,bl)+(bl,a2,a2)] + e[(al,bl,a2)-(al,al,b2) + 

(b 2 ,a2 ,a2 )]. Now using the flexible property and the 

properties of conjugates and associators, we have the 

result.// 

From this we get another theorem of Schafer's (cf. 

[28], p. 46) as a corollary. 
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COROLLARY 4.4. A Cayley-Dickson algebra B is alterna-

tive if and only if the generating algebra A is associative. 

Proof. If B is alternative, our equation for (A,A,B) 

reduces to (a1 ,b2 ,a2 )-e(a1 ,b1 ,a2 ) which is identically 

zero if and only if the algebra A is associative.// 
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Finally, we comment here, that it is easy to see that 

the center of each Cayley-Dickson algebra is exactly Fl, the 

field times the identity. 
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V. Exponent Properties. 

It is a well known fact that each Cayley-Dickson 

algebra is 11 power associative." 

Definition 5.1. An algebra is power associative if 
1 i+l . . . '+' 

x = x, x = xx1 , and x1xJ = x1 J for all x in the 

algebra, and i,j positive integers. 

. ( m n p .. Th1s means that x ,x ,x ) = 0 for all pos1t1ve 

integers m,n,p and x any element of a Cayley-Dickson 

algebra. What we wish to do in this section is extend 

this definition to integer powers (non-positive as well), 

and show that all Cayley-Dickson algebras still obey this 

associative property. 

LEID1A 5.1. - n n In any Cayley-Dickson algebra, (x) = x • 

Proof. We use power associativity and induction on n. 

It suffices to note that: 

(x)k+l = (x)kx = (xk)x = x(xk) = xk+l.// 

Although every element in a Cayley-Dickson algebra 

has an inverse, it is not true that it is unique since 

zero divisors exist. 
-1 

For example, if aa = 1 and if ab = 0, 

-1 
then a(a +b) = 1 also. To avoid this problem, we adopt 

the convention that a-l will always mean a/N(a). Define 

0 a = 1, for a 'f 0. 

LEMMA 5. 2. 
-1 n n-1 In any Cayley-Dickson algebra,a a = a 

for all integers n greater than or equal to 1. 

Proof. We use induction on n. It is clear that the 

statement is true for n = 1 by our definitions. For n > 2, 



assume a-lak = ak-l for 1 < k < n-1. Recall that a satis­

fies the quadratic equation a 2 - T(a)a + N(a)l = 0. Then 
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k k-1 k-2 -1 n -1 n-2 
a = T(a)a - N(a)a • Thus a a = a [T(a}a-N(a}]a 

= [T(a)a-N(a)]a-lan- 2 = [T(a)a-N(a)]an- 3 = an-1 .;; 

COROLLARY 5.3. The only idempotent elements of An are 

0 and 1. 

Proof. 

a-1a = 1.// 

a if and only if a = 0 or a 
-1 2 = a a = 

COROLLARY 5.4. For n > 1, we have: 

i) 

ii) 

-1 n n -1 
a a = a a 

- n a a 

Proof. Fori) we note that (an-l,a,a-1 ) = 

-1 n-1 n -1 n-1 
-(a ,a,a ) by flexibility. Thus a a -a = 

n-1 -1 n -a +a a = 0. 

To see ii) note that [a/N(a)]an 

= an[a/N(a)].// 

-1 n 
= a a n-1 

= a n -1 
= a a 

COROL~ARY 5.5. There ~no nilpotent elements in any 

Cayley-Dickson algebra, i.e., an= 0 implies a= 0. 

Proof. Suppose a ~ 0. Let n be the smallest positive 

integer such that an= 0. Then an-l = a-lan= a-l • 0 = 0, 

n-1 so a = 0, a contradiction.// 

THEOREM 5.6. NP(a) = N(aP), where pis a positive 

integer and NP(a) is [N(a)]P. 

Proof. k k-1 k - k-1 First note that 0 = (a ,a,a ) = (a ,a,a ) 

k - - k-1 =(a ,a,(a) ). 

proof of the theorem is by induction on p. 

statement true for 1 ~ p ~ k-1. Then N(ak) 

Assume the 

kk 
= a a = 
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(aka) (a)k-l = N(a)ak-l(a)k-l = N(a)ak-lak-l = N(a)N(ak-l) = 

N(a) [N(a)]k-l = Nk(a).// 

COROLLARY 5. 7. 

Proof. - m [a/N(a)] = 

Notation. Let a-m be defined to be (a-l)m. 

LEMMA 5. 8. T(a 2 ) = T2 (a) - 2N(a). 

Proof. 2 2 ~ 2 -2 2 2 T(a ) =a +a =a +a =a +a +2aa- 2aa = 

Theorem 5.6 is the best result possible for norms of 

products; for, although N(ab) = N(a)N(b) is valid for 

Cayley-Dickson algebras of dimension 1,2,4, and 8, it is 

not valid for higher dimensions, because of zero divisors. 

For example, if a,b ~ 0, but ab = 0, then 0 = N(ab) ~ 

N(a)N(b). In fact, as an example in the next chapter shows, 

both N(ab) > N(a)N(b) and N(a'b') < N(a')N(b') can occur. 

Definition 5.2. An algebra is integer power associa-

t . . f l lVe l X = X, 
i+l i i J. "+" 

x = xx , and x x = x 1 J for all x in 

the algebra and i,j any integers. 

To the author's knowledge this idea is not found in 

the literature. The following leads to the fact that the 

Cayley-Dickson algebras are integer power associative. 

LE~1A 5.9. For m,n positive integers, (am)- 1 (an)-l = 

( m n)-1 a a • 

Proof. 

(a)m+n 

Nm+n(a) 
= 

= 



LE!vlMA 5.10. m - n For m,n positive integers, a (a) ::::; 

Proof. m n-1 m - n-1 
Note that 0 = (a ,a,a ) = (a ,a,a ) = 

m - - n-1 (ama) (a) n-1 m - - n-1 am(a)n (a ,a, (a) ) = - a [a(a) ]. Hence 

N(a)am-l(a)n-1. By induction we have am(a)n = 

Nj(a)am-j (a)n-j for all j ' 1 < j ~ m,n. -
Now if n = m, then am{a)n = Nn(a). 

If n < m, then am(a)n = Nn{a)am-n for j = n. 

If n > m, then am(a)n = ~(a) (a)n-m = 

Nm (a) (a) n-rn(~=m (a)J = ~+n-rn (a) [(a) n-m /Nn-m (a) 1 = 
Nn m (a)7 

~(a) [a/N(a)]n-m = Nn(a) (a-l)n-m = Nn(a)am-n. 

The proof of the other part is similar.// 

THEOREM 5.11. rn n rn+n a a = a , for all integers m,n. 

Proof. Case 1: m or n = 0; this follows from the 

definition of 0 a • 

Case 2: m,n positive; this follows from power asso-

ciativity. 

Case 3: 
m n m,n negative; a a 

-m -n -1 -ro-n -1 m+n 
(a a ) = (a ) = a • 

Case 4: 
m n m -n -1 

n negative, m positive; a a = a (a ) = 

arn[a-n/N{a-n)] = am[(a)-n/N-n(a)] = [N-n(a)am+n]/N-n(a} = 
m+n a 

m n -m -1 n 
Case 5: n positive, m negative; a a = (a ) a = 
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= 

[ (a-m)/N(a-m)Jan = [ (a)-m/N-m(a)Jan ::::; [N-rn(a)an- (-m) ]/N-m(a) 

= arn+n.// 

THEOREM 5.12. (am)n = amn for all inte·gers rn and n. 



Proof. Case 1: m or n = 0; the result is obvious. 

Case 2: m,n positive; this follows by power associa-

tivity. 

Case 3: m,n negative; (am)n = ([(a-m)-l]-n)-1 = 

[ (a-m)n]-1 = (a-m)-n = a(-m) (-n) = amn. 

Case 4 ·. t' 't' (am)n __ [(a-m)-l]n __ m nega 1ve, n pos1 1ve; 

(a-m)-n = [[a(-m) 1n 1-l = amn. 

C 5 · · . (am)n __ [ (am)-n]-1 __ ase : m pos1t1ve, n negat1ve; 

[am(-n) 1-l = amn.// 

We now note that it is not possible easily to extend 

th lt t f t . 1 t . 1/2 . ese resu s o rae 1ona exponen s s1nce even a 1s 

ambiguous. For example, each basis element e. ~ 1 satis-
1 

fies the equation x 2 = -1. An interesting side light does 
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occur here, however, in that the square of an associator is 

1n fact a negative real number, as we show below. 

Lill"MA 5. 13. 2 T(x) = 0 implies x = -N(x). 

Proof. Recall, for any x, we have x 2-T(x)x+N(x)l = 0. 

So, if T(x) = 0, the result follows.// 

LID1MA 5.14. 2 (a,b,c) = -N ( (a,b,c)). 

Proof. Recall that (a,b,c) = (c,b,a) = -(a,b,c) so 

T ( (a,b,c)) = 0. (Theorem 3.1). Thus by Lemma 5.13, the 

result follows.// 

It is now possible to show that flexibility, (a,b,a) = 

0, and the noncommutative Jordan identity, 2 (a ,b,a) = 0, 

are special cases of a more general identity involving the 

associator. 
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LE!V'~ 5.15. n n (a ,b,a} = (a,b,a ) = 0 for all non-

negative integers n. 

Proof. The statement is clear for n = 0,1,2. We use 

induction and the flexible property to finish the proof. 

n k+l Assume (a ,b,a) = 0 for all n < k. Then (a ,b,a) = 
(ak[T{a)-a] ,b,a) = T(a) (ak,b,a)-N(a) {ak-l,b,a) = 0.// 

LEMMA 5.16. m n 
(a ,b,a ) = 0 for all ~-negative inte-

gers m,n. 

Proof. If m = n, the result follows from the flexible 

property. If m or n = 0, the result is obvious. If m ~ n, 

and if neither is zero, then {am,b,an) = 

{a m-l [ T {a) -a] 1 b , an -l [ T (a) -a] ) = T 2 {a) (a m-l , b , an -l ) -

T{a)N{a) (am-l,b,an- 2)- T(a)N(a) (am- 2 ,b,an-l)-

2 m-2 n-2 N (a) {a ,b,a ), which clearly vanishes by a finite 

induction argument. Thus the theorem follows.// 

THEOREM 5.17. 
m n (a ,b,a ) = 0 for all integers m,n. 

Proof. If m = n, the result is clear. If m,n are 

non-negative, the result follows by Lemma 5.16. If m,n are 

m n m n - m - n negative, then {a ,b,a ) = {a ,b,a ) = ((a) ,b, (a) ) = 

(Nm(a) [a-l]m,b,Nn(a) [a-l]n) = Nn+m(a) (a-m,b,a-n) = 0. 

m n 
If m is negative, and n is positive, then (a ,b,a ) = 

m n - m n _ _m -m n) -{a ,b,a) =-{{a) ,b,a) = -(N (a)a ,b,a = 

-~(a) (a-m,b,an) = 0. 

m n 
If m is positive, and n is negative, then (a ,b,a ) = 

( m n - n m n -n - a ,b,a ) = - (am,b, (a) ) = -{a ,b,N {a) a ) = 

-N(a) (am,b,a-n) = 0.// 
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VI. Basis Element Properties. 

Some very useful identities which are true in alterna-

tive algebras are the Moufang identities: 

i) (xax)y = x[a(xy)] 

ii) y(xax) = [ (yx)a]x 

iii) (xy) (ax) = x(ya)x. 

Unfortunately, these identities do not hold in Cayley-

Dickson algebras of dimension higher than eight. We will 

now show, however, that the Moufang identities and the 

alternative property do hold in a restricted, but useful, 

sense. 

Consider the Cayley-Dickson algebra B of dimension 2n 

formed by adjoining e n-l to the basis of the 2n-l 
2 

dimensional algebra. Call the adjoined basis element e for 

notational convenience. 

'rHEOREM 6 . 1. (e,A,B) + (A,e,B) = 0 for all A,B in B. 

Proof. Let A= a 1+ea 2 and B = b 1+eb 2 . Then, (e,A,B) + 

(A,e,B) = (eA)B- e(AB) + (Ae)B- A(eB) = (-a2+ea1 ) (b1 +eb 2 ) 

- (O+el) [ (a 1b 1-b 2a 2 )+e (a1b 2+b 1 a 2 ) J + (-a 2+ea 1 ) (b 1+eb 2 ) -

(a 1+ea 2 ) (-b 2+eb 1 ) = [ (-a2b 1-b 2a1 )+e(-a2b 2+b 1 a 1 )J + 

[ (a1b 2+b 1a 2 )-e(a1b 1-b 2a 2 )J + [ (-a 2b 1-b 2a 1 )+e(-a2b 2+b 1a1 )J + 

[ (a 1b 2+b 1a 2 )+e(-a1b 1 +b 2a 2 )J = 

[-a2bl-b2al+alb2+bla2-a2bl-b2al+alb2+bla2J + 

e[-a2b2+blal-albl+b2a2-a2b2+blal-albl+b2a2] = 

[-T(a2 )b1 + T(a1 )b 2 + T(a 2 )b 1 - T(a1 )b 2 ] + 

e[-T(a2 )b 2 + T(a1 )b1 - T(a1 )b1 + T(a 2 )b 2 ] = 0.// 
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LEMMA 6.2. The following are true for all A,B in B. ----
i) (A, B, e) + (A, e, B) = 0 

ii) (e,A,A) = (A,A,e) = (e,e,A) = (A, e, e) = 0 

iii) (e,A,B} + (e,B,A} = 0 

iv} (A, B, e) + (B,A,e) = 0. 

Proof. To see i) , note that (A,B,e) + (A, e, B) = 

- (e,B,A) - (B,e,A) = 0, using the flexible property and 

Theorem 6.1. For the same reasons, 0 = (e,A,A) + (A,e,A) = 

( e , A , A ) ; 0 = (A , A , e ) + (A, e , A ) = (A , A , e ) ; 0 = ( e , e , A ) + 

( e , A, e ) = ( e , e , A) ; and 0 = (A 1 e 1 e ) + ( e 1 A 1 e ) = (A 1 e 1 e ) 

proving ii). To see iii), note that (e,A,B) = -(A,e,B) = 

(B 1 e 1 A} = - (e 1 B 1 A). Similarly for iv) 1 (A 1 B,e) = - (A 1 e 1 B) 

= (B 1 e,A} = - (e,B 1 A) .// 

With this Theorem and Lemma, the restricted Moufang 

identities follow. 

THEOREM 6.3. Let e be the adjoined basis element 

used to form B. For any A,B in B, the following restricted 

Moufang identities hold: 

i} (eAe)B = e[A(eB)] 

ii) B(eAe) = [ (Be)A]e 

iii} (eB} (Ae) = e (BA) e. 

Proof. i) (eAe)B-e[A(eB)] = (eA 1 e,B)+(e,A,eB) = 

-(e,eA,B)-(e,eB,A) = -[e(eA)]B+e[ (eA)B]+e[ (eB)A]-[e(eB}]A = 

-(e2A}B-(e 2B)A+e[(eA)B+(eB)A] = AB+BA+e[ (eA)B+(eB)A] = 

e[-e(AB)-e(BA)+(eA)B+(eB)A] = e[ (e,A,B)+(e,B,A)] = 0. 

The proof of ii) is similar. [ (Be)A]e-B(eAe) = 

(Be,A,e)+(B,e,Ae} = -(B,Ae,e)-(A,Be,e) = -[B(Ae)]e + 
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B[(Ae)e]-[A(Be)]e+A[(Be)e] = B[Ae 2 ]+A[Be2 ]-[B(Ae)+A(Be)]e = 

-BA-AB-[B(Ae)+A(Be)]e = [ (BA)e+(AB)e-B(Ae)-A(Be)]e = 
[(B,A,e)+(A,B,e)]e = 0. 

For iii), consider: (eB) (Ae)-e (BA)e = (e,B,Ae) + 

e[B(Ae)-(BA)e] = -(e,Ae,B) - e(B,A,e) = -(eAe)B + 

e[(Ae)B-(B,A,e)]=-e[A(eB)] + e[(Ae)B-(B,A,e)] = 

-e[A(eB)-(Ae)B+(B,A,e)] = -e[-(A,e,B)+(B,A,e)] = 

-e[(B,e,A)+(B,A,e)] = 0.// 

COROLLARY 6.4. (B,eA,e) = -(B,e,A)e. 

Proof. (B,eA,e) = [B(eA}]e- B(eAe) = [B(eA)]e-

[(Be)A]e = [B(eA)-(Be}A]e = -(B,e,A)e.// 

Considering the Cayley-Dickson multiplication, a 

question is why (a1+ea2 ) (b1+eb 2 ) = (a1b 1-b2i 2 > + 

e<i1b 2+b1a 2 ) is a natural definition of multiplication. 

It would also be natural to multiply as polynomials to 

obtain a 1 b 1+(ea2 ) (eb 2 )+a1 (eb 2 )+(ea2 )b1 • Schafer [28] 

proves that, for alternative algebras, the Cayley-Dickson 

multiplication and the polynomial multiplication are the 

same. 

THEOREM 6.5. (cf, [28], p.46). Let A be an alterna-

tive algebra with 1, and with involution, and let the 

adjoined element e be such that e 2 = -1 and ae = ea for 

all a in A. Then the polynomial multiplication in A + eA 

is the Cayley-Dickson multiplication. 

Proof. Following Schafer's proof, first note that the 

alternative laws imply that, for all a,b in A, the follow-

ing hold: 



i) a(eb) = e(ab) 

ii) (ea)b = e (ba) 

iii) (ea) (eb) = -ba. 

The remainder of the proof is easy.// 

Hence, up to the octonions, the Cayley-Dickson multi­

plication and the polynomial multiplication are the same. 

Actually, the restriction that A be an alternative algebra 

is stronger than necessary. 

THEOREM 6.6. Let A be any Cayley-Dickson algebra. 

Let e be the adjoined basis element used to construct B = 

A + eA. Assuming that we have already defined in B a dis­

tributive multiplication, let e satisfy: 

i) e 2 = -1 

-ii) ae = ea £or all a in A 

iii) (e,a,b) + (a,e,b) = 0 for all a,b in A. 

Then, for all a,b in A, we have: 

i) a(eb) = e(ab) 

ii) {ea)b = e(ba) 

iii) (ea) (eb) = -ba. 

Proof. We first notice that assuming (e,a,b) + 

(a,e,b) = 0 for all a,b in A gives us Lemma 6.2, Theorem 

6.3, and Corollary 6.4 for a,b in A. Now to see i), con­

sider: o = - (e,a,b) - (a,e,b) = {e,a,b) + (a,e,b) = 
(ea)b- e(ab) + (ae)b- a(eb) = (ea)b- e(ab) + (ea)b 

a(eb) = Ie(T(a)-a)]b + (ea)b- a(eb) - e(ab) = T(a) (eb) -

(ea)b + (ea)b- a(eb) - e(ab) = IT(a)-a] (eb) - e(ab) = 

a ( eb ) - e ( ab ) • 
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Similarly, for ii), 0 = (a,b,e) + (a,e,b) = (a,b,e) + 

(a,e,b) = (ab)e- a(be) + (ae)b- a(eb) = e(ba) + (ae)b­

a(be-eb) = e(ba) + (ae)b- a(be-be) = e(ba) + (ae)b­

T(b)(ae) =e(ba) + (ae)(b-T(b)) =e(ba) + (ae)b=e(ba) + 

(ea)b. 

To show iii), we need one of the restricted Moufang 

identities. (ea) (eb) = (ea) (be) = e (ab)e = e[ (ab)e] = 

COROLLARY 6.7. Under the same hypotheses as given in 

Theorem 6.6, the Cayley-Dickson multiplication in B is the 

same as polynomial multiplication in B. 
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Proof. a 1b 1 + (ea2 ) (eb2 ) + a 1 (eb2 ) + (ea2 )b1 = a 1b 1 + 

(-b2a2) + e(alb2) + e(bla2).// 

It must not be supposed, however, that ae = ea is 

true for arbitrary 8lements in the algebra B. In particu-

lar we have: 

LEMMA 6.8. Let x = a 1+ea 2 • Then xe =ex if and only 

if T(a2 ) = 0. 

- -Proof. (a1+ea 2 )e = a 1e+ea 2e = -a2+ea1 whereas 

e(al-ea2) = eal-e(ea2) 

only if a 2 = -a2 .;; 

These are equal if and 

This leads one to ask under what conditions the con-

elusions of Theorem 6.6 are true for arbitrary a and b in 

B, assuming the Cayley-Dickson multiplication in B. 

LEMMA 6.9. Let A,B be elements of B, where A= a 1 +ea 2 

and B = b 1+eb2 • Then, 

i) A(eB) = e(AB) if and ~nly if T(a2 ) = 0 
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ii) (eA)B = e(BA) if and only if T(AB) = T(b 2 ) = 0 

iii) (eA) (eB) = -BA if and only if T(AB) = T(b 2 ) = 0. 

Proof. Since Theorem 6.1, Lemma 6.2, and Theorem 6.3 

are true for A,B in B, we need only note that in the proof 

of Theorem 6.6 for i) we must have Ae = eA to get A(eB) = 

e(AB) which by Lemma 6.8 means T(a2 ) = 0. Similarly, to 

show (eA)B = e(BA), we examine the proof of ii) in Theorem 

6.6, and see we need (AB)e = e(BA) and eB =Be. Thus again 

the result follows by Lemma 6.8. For (eA) (eB) = -BA, the 

proof of iii) in Theorem 6.6 requires eB = Be and (AB)e = 

e(BA).// 

We now wish to examine the basis elements themselves. 

As stated before, every element in the Cayley-Dickson 

algebra An can be written in the form r.r.e., i = 0, ••. ,2n-1, 
1 1 1 

where r. is real, e 0 = 1, and e. 2 = -1 otherwise. The 
1 1 

basis {e. I i = 0, ••• ,2n-l} arises from the basis of A 1 by 
1 n-

retaining the old basis and adjoining one new element e 1 2n-

and all multiples of it by the old basis elements. So, if 

{e0 , ••• ,e _ 1 } is the basis for A 1 and the adjoined 
2n -1 n-

basis element is e n-l' then the basis for An is {e0 ,e1 , ••• , 
2 

} h 0 < J. < 2n-l_l. e 1 ,e 1 , ••• ,e.e 1 , ••• ,e were 
2n- -1 2n- J 2n- 2n-l 

The Cayley-Dickson multiplication demands that we call 

e.e 1 = e 1 • 
J 2n- 2n- +j 

We are now able to observe several 

interesting properties that are possessed by these basis 

elements. In the following, e. is a basis element of A • 
1 n 
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LEMMA 6.10. Basis elements obey: 

i) e.e. = e .e., if i or j = 0, or if i = j 
~ J J ~ --

ii) e.e. = -e .e., if i,j I 0 and i I j • 
~ J J ~ 

Proof. If i or j = 0, or if i = j, the result is 

obvious. Otherwise e. and e. may be each of two types, 
~ J 

( + 0) (0 ) f 0 < k < 2n-l h ek e• or -eek , or w ere e = e 1 • 
2n-

This gives rise to four cases. Since the result is 

clearly true for quaternions, it will then follow by indue-

tion. 

Case 1: i,j < 2n-l; follows from the induction hypo-

thesis. 

Case 2: i < 
n-1 2 , . 2n-l 

J ~ ; here e. = (e.+e·O) and 
~ ~ 

e. = (0-eek), for some k < 2n-l. Now e.e. = (e.+O) (0-eek) 
J ~ J ~ 

= -e(eiek) = e(eiek), and ejei = (0-eek) (ei+O) = -e(eiek). 

Case 3: i > 2n-l, j < 2n-l; this proof is similar to 

Case 2. 

C 4 · · 2n-l h (0 ) d (0 ) ase : ~,J ~ ; ere ei = -eek an ej = -eem 

n-1 
for some k,m < 2 • Then eiej = (0-eek) (0-eem) = -emek = 

-
emek, and ejei = (0-eem) (0-eek) =-~em= ekem = emek.// 

Although not all Cayley-Dickson algebras are alterna-

tive, their basis elements do satisfy the alternative prop-

erty, as is shown by the following theorem proved by 

Schafer [26]. 

THEOREM 6.11. e. (e.e.) =-e.= (e.e.)e. fori I 0. 
~ ~ J J J 1 1 ---

Proof~ The proof is essentially the same as Schafer 

gives, and is given here for the reader's convenience. By 
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suffices to show e. (e.e.) =-e .• The result is true for the 
l. l. J J 

octonions, since they are alternative. Thus the proof is 

by induction on the dimension of A • Assume the statement 
n 

true for A 1 • As in the previous Lemma, there are four 
n-

cases. 

Case 1: n-1 
i,j < 2 ; the result holds by the induction 

hypothesis. 

Case 2: n-1 i < 2 1 j ~ 2n-l; here e. = (e.+O) and 
1. 1. 

n-1 
e. = (0-eek), for some k < 2 • Now e. (e. e.) = 

J l. 1. J 

(e.+O) [ (e.+O) (0-eek)] = (e.+O) [O+e(e.ek)J = e[e. (e.ek)] = 
l. 1. 1. l. 1. 1. 

-e[ei (eiek)] = -e(-ek) = eek = -ej. 

n-1 n-1 
Case 3: i ~ 2 , j < 2 ; here ei = (0-eek) and 

e. = (e.+O) for 
J J 

n-1 
some ek < 2 • Then e. (e. e.) = 

1. 1. J 

(0-eek) [ (0-eek) (ej+O)] = 

2 
(ejek)ek = ejek = -ej. 

(0-eek) (O-e[ejek]) = - (ejek)ek = 

Case 4: 

for some k,m 

. . 2n-l 
l.,J ~ i here ei = (0-eek) and ej = (0-eem) 

Then e. (e. e.) = (0-eek) [ (0-eek) (0-ee ) ] n-1 
< 2 • 

1. l. J m 

= ( 0-ee ) ( -e e +0) 
k m k = e[ (emek)ek] = -e[em(ek2 )] = eem = 

-e .. I I 
J 

COROLLARY 6.12. If ei is any basis element of An' 

and if xis rlnv element of A, then (e.,e.,x) = 0. 
~ -- n ---- 1. l. 

Proof. Let x = I.r.e., j 
J J J 

n = 0, .... , 2 -1, r . real. 
J 

By 

the linearity of the associator, (e.,e.,x) = I.r.(e.,e.,e.} 
1. 1. J J 1. 1. J 

= o. I I 

Notice, however, that Corollary 6.12 does not imply 

(e.,e.,x) = -(e.,e.,x), since this would imply that 
1. J J 1. 

e. (e.x) =-e. (e.x), whenever e.e. = -e.e .• This is false 
l. J J 1. 1. J J 1. 
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in general, as the following example shows. In any Cayley­

Dickson algebra containing A4 , we have (e1-e15 ,e:1-e15 ,e4} = 

(el,el,e4} - (el,el5'e4) - (el5'el,e4) + (el5'el5'e4) = 

-<e1 ,e15 ,e4} - (e15 ,e1 ,e4 ) = 2e10 ~ 0. The reason this 

wasn't zero is that the linearization of (x,x,y) = 0 to 

get (x,y,z) = -(y,x,z) required {x,x,y) = 0 for all 

elements of the algebra. 

THEOREM 6.13. 

e.e.e. = 
l. J l. 

e.' 
J 

if i,j 

or if i --
if i = -
and i F 

~ 0 and i = --
~ 0, j = o. 

o, or if i,j - -
j. 

j I 

F 

Proof. The result is immediate if i = j and i,j F 0, 

or if i F 0 and j = 0. For the other situation, the proof 

is by induction on the dimension of An. 

n-1 Case 1: i,j < 2 ; this follows by the induction 

hypothesis. 

Case 2: i < 2n-l, j ;:: 2n-l; here ei = (ei+O) and 

( } f k < 2n-l. ej 0-eek , or Thus e. e . e. = I e. ( 0-eek)] e. = 
l. J l. l. l. 

[ -e (e . ek) l e. = 
l. l. 

-e[ei (eiek)] = e[ei (eiek)] = -eek = ej. 

Case 3: 
. 2n-l . 
l. .:: , J < 

n-1 2 ; here ei = (0-eek) and 

0 

e . = (e. +0) , 
J J 

n-1 for k < 2 • So e.e.e. = I (0-eek)e.] (0-eek) = 
l. J l. J 

-[e(ejek)] (0-eek) 

Case 4: i, j 

n-1 for k ,m < 2 • 

= -ek{ejek) = -ek(ekej) = ej. 

> 2n-l; here ei = {0-eek} and ej = (0-eem), 

So e. e .. e. = I (0-eek} (0-eem) J (0-eek) = 
l. J l. 

(-emek) (0-eek) = e[ (emek}ekl = ei (ekem)ek] = -e[ (ekem}ek] = 

-eem = ej, since if k = m, then ei = ej' a contradiction.// 



We are now able to prove a theorem which may seem 

obvious, but the proof of which involves several cases. 

THEOREM 6.14. { e . e . ) ek = +e . { e . ek ) • 
]. J - ]. J 

Proof. The result is clear if i,j,k is 0, or if any 

two basis elements are the same. Therefore, assume that 

each is not the identity and no two are the same. The 

proof is by induction on the dimension of An and there are 

eight cases. In the proof, great use is made of Theorem 

6.6, and the observation that the induction hypothesis and 
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Lemma 6.10 allow {eiej)ek to be rearranged and reassociated 

in any order, with only perhaps a sign change, as long as 

i,j,k are less than 2n-l. 

Case 1: 

hypothesis. 

Case 2: 

i,j,k n-1 
< 2 i this follows by the induction 

n-1 n-1 
j,k < 2 , i ~ 2 ; here ei = erne, where 

rn < 2n-l. Then {e.e.)ek = [ (e e)e.]ek = +[ (ee )e.]ek = 
1 J m J - m J 

+[e{e.e )]ek = +e[ek(e.e )]. Likewise, e. (e.ek) = 
- J m - J m 1 J 

{ e e) ( e . ek) = + ( ee ) ( e . ek) = +e [ ( e . ek) e ] • 
m J - m J - J m 

Case 3: i,k < 2n-l, j > 2n-l; here the proof is 

similar to Case 2. 

case 4: i,j < 2n-l, k > 2n-l; this case is similar to 

Case 2. 

Case 5: i J. > 2n-l k < 2n-l,. here e. = e e and e. = 
' - ' 1 rn J 

e e, for rn,p < 2n-l. Therefore (e.e.)ek = [ (e e) (e e)]ek = 
p 1 J m p 

±<epem)ek, while ei(ejek} = (erne) [(epe)ek] = 
+(e e)[e(e ek)] = +(e ek)e. - m p - p m 
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Case 6: 
n-1 n-1 

i,k > 2 , j < 2 ; this case is similar to 

Case 5. 

Case 7: n-1 n-1 
j,k > 2 , i < 2 ; this case is similar to 

Case 5. 

C 8 · · k 2n-l h ase : 1,], ~ ; ere e. = e e, e. = e e, and 
1 m J p 

e = e e, k q 
n-1 

for some m,p,q < 2 Then ( e . e . ) ek = 
1 J 

[ (e e) (e e)] (e e) = 
m P q 

+(e e } (e e) = +(e e )e , and 
- p m q - p m q e. (e. ek) = 

1 J 

(erne) [ (epe} (eqe)] = +(e e) (e e } = +e (e e ).// 
- m qp -m qp 

LEMMA 6.15. For basis elements of the octonions: 

(e. e.) ek = 
1 J 

e. (e. ek}, 
1 J 

---
if i,j, or k = 0, 

or if i = j , j = --
or if e.e. = +_ek. 
-- 1 J 

-e. (e.ek)' otherwise. 
1 J 

k, or i = k, 

Proof•. The proof for (e. e.) ek = e. (e. ek) under the 
1 J 1 J 

hypotheses is easy. It should be noted, however, that 

e.e. = +ek is equivalent, because of the alternative 
1 J -

property, to the statement that the product of any two is 

plus or minus the third. The proof of the last situation 

involves carefully reviewing the proof of the previous 

theorem with e = e 4 ./! 

For one application of this material, we consider the 

following definition. 

Definition 6.1. The anticomrnutator ]x,y[ is defined 

to be ]x,y[ = xy + yx. 

For the following, let A= \.a.e. and B = I.b.e. for 
l1 1 1 1 1 1 

i=O, ••• ,n, where a. and b. are real. 
1 1 



LEMMA 6.16. AB + BA = 2[a 0b 0 - Iiaibi]e 0 + 

2L.((a0b.+a.b0 )e.], i = l, ••• ,n. 
l l l l 
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Proof. Recall that e.e. = -e.e. if i,j f 0 and if j, 
l J J l 

and e.e. = e.e. otherwise. Consider the multiplication 
l J J l 

chart for AB given below. 

aoeo 

alel 

a2e2 

a e 
n n 

boeo 

aoboeo 

albOel 

a2b0e2 

blel 

+aOblel 

+alblel 
2 

+a2ble2el 

b2e2 

+a0b2e2 

+alb2ele2 

+a2b2e2 
2 

b e n n 

+a 0b e n n 

+albnelen 

+a2bne2en 

+a b e 2 
n n n 

A multiplication chart for BA would be similar, but 

with the entries in reverse order. Thus, for each summand 

a.b.e.e. in AB, there is a summand b.a.e.e. in BA. Hence, 
lJlJ JlJl 

all terms for AB + BA cancel, except those of the first 

row, the first column, and the diagonal. From the AB table, 

we obtain I 1. (a 0b 0 - a.b.)e 0 , I.a 0b.e., and I.a.b0e. from 
l l l l l l l l 

the diagonal, the first row, and the first column. We 

obtain similar sums from the BA table, except the results 

of the first row and the first column are interchanged. 

Thus, adding all those terms which do not cancel, the 

result of the lemma is obtained.// 

THEOREM 6.17. ]A,B[ = 0 if and only if T(A) = T(B) = 

0 and \.a.b. = 0, i = l, ••. ,n, where A,B f 0. 
-- L1 1 l 

Proof. From Lemma 6.16, AB + BA = 0 implies 



If a 0 = 0, then aibO = 0 for all i implies ai = 0 for all 

i or else b 0 = 0. 

Thus T(B) = 0. On 

[ -aibO ]/ao so that 

2 a 2) bo<ao + . . . + n 

But a. = 0 for all i contradicts A ~ 0. 
1. 

the other hand, if ao ~ 0, then b. = 
1. 

a 0b 0 + I i a i [ (a i b 0 ) I a 0 l = o. Then 

= 0, so bo = 0 or A = o. Thus T (B) = 
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0. 

But AB + BA= 0 if and only if BA + AB = 0 so T (A) = 0 also. 

Now by Lemma 6.16, if T(A) = T(B) = 0, then AB + BA = 
-2[I.a.b.]e0 • Hence AB + BA = 0 implies T(A) = T(B) = 0 

1. 1. ~ 

and L . a . b . = 0. 
1. 1. 1. 

Conversely, if T(A) = T(B) = 0 and r.a.b. = 0, then 
1. 1. 1. 

Lemma 6.16 implies AB + BA = 0.// 
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VII. Zero Divisors. 

In this section, we consider zero divisors in the 

Cayley-Dickson algebras. First we consider norms, and 

then use the properties of norms to examine zero divisors. 

A. A. Albert [2] defines an absolute-valued algebra 

to be an algebra over the reals with a function f: A + R, 

such that f(O) = O, f(a) > 0 if a~ 0, and f(ab} = f(a}f(b). 

He proves that the octonions are the only absolute-valued 

nonassociative algebra. He also defines a normed algebra 

in a similar way, but requires only f(ab}~ f(a}f(b). 

Albert then shows that every real algebra is a normed 

algebra under f<a> =I· !r. 1, where a= I.r.e., with e. a 
l l l l l l 

basis element of the algebra, i = l, ••• ,n. 

In any Cayley-Dickson algebra of dimension higher than 

eight, for the norm N(a} = aa, we have N(a} = 0 if and only 

if a= 0, N(a) > 0 for a~ 0; but, in general, N(ab) ~ 

N(a)N(b), since if a and bare mutual zero divisors, 

N(a)N(b) ~ 0 and N(ab) = 0. What is striking, though, is 

that under this norm, these algebras are not even normed 

algebras. Consider the following example from A4 : 

Let A = e 1+e10 and B = e 0+e1 +e4-e15 • Then AB = 

-e0+e1+e10+e11 • Hence, N(A) = 2, N(B} = 4; but N(AB) 

= 4 • i . e. , N (A) N (B) > N (AB) • 

Now, let A = e 1-e10 and B be as before. Here, AB = 
-e0+e1+2e5-e10-e11+2e14 • Thus, N(A) = 2, N(B) = 4; 

but N(AB) = 12. i.e., N(A)N(B) < N(AB). 



The question then arises as to what exactly is the 

relationship between N(AB) and N(A)N(B). 

THEOREM 7.1. In any Cayley-Dickson algebra 

N(A)N(B) - N(AB) = [N(a1 )N(b1 )-N(a1b 1 )] + 

[N(a1 )N(b 2 )-N(a1 b 2 )] + [N(a 2 )N(b1 )-N(a2b 1 )] + 

[N (a 2 ) N (b2 ) -N (a 2b 2 ) 1 + T [ (a1 b 1 ) (a2E2 )- (a1 b 2 ) (a2E1 )], where 

A = a 1+ea 2 and B = b 1+eb2 • 

Proof. Recall that N(A) = N(a1 ) + N(a2 ). Therefore 

N(A)N(B) = [N(a1 )+N(a2 )] [N(b1 )+N(b2 )] = N(a1 )N(b1 ) + 

N(a2 )N(b1 ) + N(a1 )N(b 2 ) + N(a 2 )N(b2 ). 

on the other hand, AB = (a1b1-b2a 2 > + e(a1b 2+b1a 2 ), 

so N(AB) = N(a1b 1 ) + N(b2a 2)- T[(albl) (b2a 2 )] + N(a1b 2 ) + 

N(b1a 2 > + T[(a1b 2 > (b1a 2 >l = N(a 1b 1 > + N(a1b 2 > + N(b2a 2 > + 

N(b1a 2 > + T[(a1b 1 ) (a2E2 >-<a1b 2 ) (a 2E1 >J. The result now 

follows after recalling the facts that: N(ab) = N(ba) = 

N(ab) = N(ab), T(ab) = T(ba), T([ab]c) = T(a[bc]), and 

T(ab) = T(ab>.ll 

COROLLARY 7.2. In A4 , N(A)N(B) - N(AB) = 

T £ ca1 b1 > ca2E2 >- ca1b 2 > ca 2E1 > 1 • 
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Proof. Here, a.,b. are octonions and hence, N(a.b.) = 
l. J l. J 

N (a. ) N (b. ) • I I 
l. J 

Note that now an alternate proof of N2 (A) = N(A 2 ) in 

2 - -A4 is obtained by observing that T[N(a2 >a1 -(a1a 2 > (a 2a 1 )l = 
0, because of the Moufang identities in A3 • 

A major difference between A4 and the octonions is the 

existence of zero divisors in A4 • We now wish to examine 

zero divisors in detail. In the following, assume that A 
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and B are mutual zero divisors, A and B are elements of A , 
n 

and that A = a 1+ea 2 , B = b 1+eb 2 • 

THEOREM 7.3. The following are equivalent: 

i) AB = 0 

ii) BA = 0 

iii} AB = 0 

iv} A-lB = 0 

v) (eA} (eB) = 0 

vi} (eA)B = 0 

vii) A(eB) = 0. 

In addition, the above imply: 

viii} T(A} = 0 

ix) T (a1 } = 0 

x) T (a 2 } = 0 

xi) A and B are linearly independent. 

Proof. i) +-+ ii} This follows from the facts that 

N(A) = 0 if and only if A= 0, and N(AB) = N(BA). 

i) + xi) Recall that there are no nilpotent elements 

in A Let rnA + nB = 0, for m,n real. Then, mA2 + nAB = 0 
n 

implies mA2 = 0. This implies m = o. Similarly for n. 

i} +-+ iii) In any flexible ring with involution 

N(AB) = N (AB) . Thus the following are all equivalent: 

AB = 0, N(AB) = 0, N(AB) = 0, and AB = 0. 

iii} +-+ iv) This follows from the identity A-lB = 

[AB] /N (A). 

-i) + viii) AB = [T(A)-A]B- AB, so AB = 0 implies 

AB = 0 and T(A)B = 0. Thus T(A) = 0. 



viii) + ix) This follows from the fact that for A = 

a 1 +ea 2 , T(A) = T(a1 ). 

iii) ++ v) By the restricted Moufang identities, 

(eA) (eB) = 0 if and only if 0 = (eA) (eB) = (eA) (Be) = 

e(AB)e if and only if AB = 0. 

v) + x) eA = -a2+ea1 • 

ii) ++vi) Since T(AB) 

Hence T(eA) = T(a 2 ) = 0. 

= T(AB) = T(a ) = T(a ) = 1 2 
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T(b1 ) = T(b 2 ) = 0, the result follows from Lemma 6.9, i.e., 

{eA)B = e(BA). 

iii) ++ vii) By the same reasoning as above, Lemma 

6.9 gives A(eB) = e(AB).// 

LEMMA 7.4. The following are equivalent: 

i) T (A) = 0 

-ii) A = -A 

iii) A-l = -A/N(A) 

iv) A 2 = -N (A). 

Proof. 

l, ... ,n. Moreover, T(A) = 0 means r 0 = 0. Hence, i), ii), 

and iii) are equivalent. To see iv), recall that A2 - T(A)A 

+ N(A)l = 0.// 

We now find it desirable to define an isomorphism, * 

from A to A in the following way. 
n n 

Definition 7.1. ~A* = a 1-ea2 if A = a 1 +ea 2 . 

The * isomorphism gives some added information about 

zero divisors, but first we need to consider some properties 

of the * operator. 
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THEOREM 7.5. The following properties hold for the * 

operator. 

i.e. , 

i) A + A* = 2a1 

ii) A* = A if and --- only if a 1 

iii) A* = A if and only if a 2 

iv) T (A*) = T (A) 

v ) N (A* ) = N (A) 

vi) (A+B) * = A*+B* 

vii) (AB) * = A*B* 

viii) (rA)* = rA*, r real 

ix) (eA)* = -eA* 

x) [A,B]* = [A*,B*] 

xi) (A,B,C)* = (A*,B*,C*) 

xii) (A)* = A* 

xiii) A** = A. 

is real. 

= o. 

Proof. i) A +A* = (a1 +ea 2 )+(a1-ea2 ) = 2a1 • 

ii) A* = al-ea2 = al-ea2 =A if and only if al = al' 

if and only if al is real. 

iii) A* = a 1-ea 2 = a 1 +ea 2 = A if and only if a2 = o. 

iv) T(A*) = A* + A* = (a1-ea2 )+(a1+ea 2 ) = al+al = T (A). 

v) N(A*) = A*A* = (a1-ea2 ) (a 1+ea 2 ) = a 1a 1+a 2a 2 = N(A). 

vi) (A+B)* = [ (a1+b1 )+e(a2+b 2 )]* = (a1+b1 )-e(a 2+b 2 ) = 

(a1-ea2 )+(b1-eb2 ) = A*+B*. 

vii) (AB)* = [ (a1b 1-b2a 2 )+e(a1b 2+b1a 2 )]* = (a 1b 1-b 2a 2 ) 

-e(a1b 2+b1a 2 ) = (a1-ea2 ) (b1-eb 2 ) = A*B*. 

viii) (rA)* = r*A* = rA*. 

ix) (eA)* = e*A* = -eA*. 
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x) [A,B]* = (AB-BA)*= A*B*-B*A* = [A*,B*]. 

xi) {A,B,C)* =I (AB)C-A(BC)]* = (A*B*)C*-A*(B*C*) = 

(A* , B* , C * ) • 

xii) (A)* = {a -ea > * 1 2 = - {a1--ea 2 ) a 1+ea 2 = = A*. 

xiii) A** = (a -ea ) * 
1 2 = a 1+ea2 = A.// 

We are now able to consider * operators and zero 

divisors. 

LEMMA 7.6. AB = 0 if and only if A*B* = 0. 

Proof. Since from the definition of A*, it is clear 

that A* = 0 if and only if A = 0, we have 0 = AB = (AB)* = 

A*B*.// 

Definition 7.2. Let (A,B) be the vector subspace 

generated by elements A and B. 

Now, we consider the structure of the subspace <A,B) 

generated by mutual zero divisors A and B. We already know, 

by Theorem 7.3, that A and B are linearly independent. 

THEOREM 7.7. If A is a zero divisor, then 

[-N(A)]n/2 , if n is an~ integer. 

([-N(A)] (n-l)/2 )A, if n is an odd integer. 

Proof. First we observe that the result is true for n 

an even or odd positive integer. This follows from the 

2 fact that A = -N(A). 

[-N(A)]n/2 • If n is odd, An= (An-l)A = ([-N(A)] {n-l)/2 )A. 

Now if n is zero, the result is obvious. 

If n is negative, the An= (A-l)-n = [-A/N(A)]-n = 

{[-1/N(A)]-n)A-n. Hence, if n is even, An= 



[-1/N{A)]-n[-N(A)]-n/2 = I-N(A)](-n/ 2 )+n. If n is odd, An= 

[-1/N(A)]-n[-N(A)] (-n-1)/2 = (I-N(A)] [ (-n-l)/2J+n)A.// 

Note that, since AB = 0 if and only if BA = 0, the 

results of Theorem 7.7 hold true forB as well. 

THEOREM 7.8. If A and Bare mutual zero divisors, 

then: 

[-N(A)]n/2 [-N(B)]m/2 , n,m even integers. 

0 , n,m odd integers. 
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([-N(A)]n/ 2 [-N(B)] (m-l)/ 2 )B, n even, m odd. 

([-N(A)] (n-l)/2 [-N(B)]m/2 )A, n odd, m even. 

Proof. Simply multiply An by Bm using the results 

of Theorem 7.7.// 

THEOREM 7.9. Let A and B be mutual zero divisors, 

then: 

i) <A,B> = r 1+r 2A+r 3B, r. real, 
]. 

ii) (A, B) is a commutative Jordan subalgebra of A n' 

iii) (A, B) is not alternative. 

Proof. i) This is clear by Theorem 7.8. 

ii) This follows since the basis elements A and B 

are commutative, and since all elements of A satisfy the 
n 

Jordan identity. 

iii) This follows since, A2B = -N(A)B ~ A(AB) = 0.// 

Thus, the vector subspace generated by any two mutual 

zero divisors is a three dimensional, non-alternative, 

commutative Jordan algebra with zero divisors. 

Now, let us go back to the nature of the zero divisors 

themselves. Our objective is to determine just when an 



element A in A will be a zero divisor. 
n 

Lill~ 7.10. AB = 0 is equivalent to any pairing of 

an equation i) or ii) with an equation iii) or iv), where: 

if 

and 

if 

if 

i) a 1b 1+b 2a 2 = 0 

ii) b 1a 1+a 2b 2 = 0 

iii) b1a 2-a1b 2 = 0 

iv) a 2b1-b2a 1 = 0. 

Proof. Recall T(a) = 0 implies a= -a. Then AB = 0 

and only if equations i) and iii) hold; B(eA) = 0 if 

only if equations i) and iv) hold; BA = 0 if and only 

equations ii) and iii) hold; and (eA) B = 0 if and only 

equations ii) and iv) hold.// 

so 

Definition 7.3. The antiassociator )A, B,C ( is defined 

by )A,B,C( = (AB)C + A(BC). 

LEMMA 7.11. The antiassociator is linear in each 

argument. 

Proof. The proof is similar to that of showing the 

associator is linear in each argument.// 

We may now prove the major theorem of this section. 

THEOREM 7.12. Let A= a 1+ea 2 and B = b1+eb 2 , where 

A,B ~ 0. Let a 1 ~ 0 and a 2 ~ 0 have no zero divisors. 

Then AB = 0 if and only if i) and ii) hold, where: 

i) )a1 ,b1 ,a2 ( = -(a1 ,a1 ,b 2 )+(a2 ,a2 ,b 2 )+[N(a 2 )-N(a1 )lb 2 

ii) (a 1 ,b1 ,a2 ) = (a1 ,a1 ,b 2 )+(a2 ,a2 ,b2 )+[N(a2 )+N(a1 ) ]b2 . 

Proof. If AB = 0, then (a1b1+b 2a 2 ) = 0 and 

(a1b 2-b1a 2 ) = 0 by Lemma 7.10. Thus a 1b 1 = -b2a 2 and 

a 1b 2 = b 1a 2 • Thus (a 1b 1 )a2 = -(b 2a 2 )a 2 and a 1 (a1b 2 ) = 

a 1 (b1a 2 ). Adding gives (a1b 1 )a2 + a 1 <b 1a 2 ) 

(b2a2)a2 = -(al,al,b2) + al2b2 (b2,a2,a2) 



-(al,al,b2)+(a2,a2,b2) 

property. Now, recall 

2 2 
+ (a1 -a2 )b 2 , using the flexible 

T(a) = 0 implies N(a) = -a2 • Thus, 

>a1 ,b1 ,a2 ( = -(a1 ,a1 ,b2 )+(a 2 ,a2 ,b2 )+IN(a2 )-N(a1 )]b2 • 

Similarly, (a 1b 1 )a2-a1 (b1a 2 ) = -(b2a 2 )a2 - a 1 (a1b 2 ) = 
2 2 

-(b2 ,a 2 ,a2 )-b1a 2 +(a1 ,a1 ,b2 )-a1 b 2 • Thus, (a1 ,b1 ,a2 ) = 

(a1 ,a1 ,b2 )+(a2 ,a2 ,b2 )+[N(a2 )+N(a1 )]b2 • 
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Conversely, it is easy to see that equation i) implies 

(a1b 1 )a2+a1 (b1a 2 ) = a 1 (a 1b 2 )-(b2a 2 )a2 and that equation ii) 

implies (a 1b 1 )a2-a1 (b1a 2 ) = -(b2a 2 )a2-a1 (a1b 2 ). Now, if 

we add these two equations, and then subtract them, we get 

2(a1b 1 )a2 = -2(b2a 2 )a2 and 2a1 (b1a 2 ) = 2a1 (a1b 2 ). i.e., 

(a1b 1+b 2a 2 )a2 = 0 and a 1 (b1a 2-a1b 2 ) = 0. Now if a 1 and a 2 

have no zero divisors, then a 1b 1+b 2a 2 = 0 and a 1b 2-b1a 2 = 

0. Hence, by Lemma 7.10, AB = 0.// 

Then: 

THEOREM 7.13. Let A and B be mutual zero divisors. 

i) T([a1a 2 lb1 ) = T([a1a 2 ]b2 ) = 0 

ii) a 1 = ±a2 implies a 1b 1 = a 1b 2 = 0 

iii) a 1 and a 2 are not nonzero real numbers 

iv) a 1 = 0 implies a 2b 1 = a 2b 2 = 0 

v) a 2 = 0 implies a 1b 1 = a 1b 2 = 0. 

Proof. i) From a 1b 1 = -b2a 2 and b 1a 1 = -a2b 2 , we see 

that (a1b 1 )a1 = -(b2a 2 )a1 and -a1 (b1a 1 ) = a 1 (a 2b 2 ). Adding, 

and using the flexible property, we obtain 0 = a 1 (a 2b 2 )-

(b2a2)al = al (a2b2)- al (a2b2) = al (a2b2)+al(a262) = 

T(a1 [a2b 2 ]) = T([a1a 2 ]b2 ). In a similar manner, we also 

have (alb2)al = (bla2)al and al(a2bl) = al(b2al). 



Subtracting and using the flexible property gives 0 = 

a 1 (a 2b 1 )-(b1a 2 )a1 , and the proof follows as before. 
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ii) f h b I a 1 = a 2 , t en a 1 1+b 2a 1 = 0 and a 1b 1-b2a 1 = 0. 

Thus, since T(a1 ) = T(b 2 ) = 0, and b 2a 1 = a 1b 2 , we obtain 

a 1b 1 = a 1b 2 = 0. If a 1 = -a2 , then a 1b 1-b 2a 1 = 0 and 

a 1b 1+b 2a 1 = 0; and the result follows as before. 

iii) This follows directly from T(a1 ) = T(a 2 ) = 0. 

iv) and v) follow directly from AB = 0 if and only if 

a 1b 1+b 2a 2 = 0 and a 1b 2-b1a 2 = 0 if and only if b 1a 1+a2b 2 = 

0 and b 2a 1-a 2b 1 = 0.// 

We now consider how zero divisors behave in A4 • 

THEOREM 7.14. Let A be ~zero divisor in A4 . Then: 

i) a 1 ~ ~a2 

ii) a 1 and a 2 are not real numbers 

iii) N(a1 ) = N(a 2 ). 

Proof. i) This follows from Theorem 7.13, ii), and 

the fact that a.,b. are octonions and have no zero divisors. 
l l 

ii) This follows from Theorem 7.13, iii) and the fact 

that if a. were zero, Theorem 7.13, iv) and v), implies A 
l 

or B = 0. 

iii) Recall that the octonions are an absolute-valued 

algebra, i.e., N(ab) = N(a)N(b). Also, in any Cayley­

Dickson algebra, N(a) = N(-a) = N(a) ~ 0. Thus, AB = 0 if 

and only if a 1b 1+b2a 2 = 0 and a 1b 2-b1a 2 = 0. Hence 

N(a1 )N(b1 ) = N(b 2 )N(a 2 ) and N(a 1 )N(b 2 ) = N(b1 )N(a 2 ). 

Dividing, we obtain [N(a1 )]/N(a 2 ) = [N(a 2 )l/N(a1 ). Thus, 

N2 (a1 ) = N2 (a 2 ) and the result follows.// 



We are now able to prove our most useful result for 

finding zero divisors in A4 • 

THEOREM 7 .15. A and B are mutual ze·ro divisors· in A 4 

if and only if the following three conditions hold: 

i) N (a1 ) = N (a2 ) 

ii) b 2 = [(a1b 1 )a2 ]/N(a1 ) 

iii) )a1 ,b1 ,a2 ( = 0, 

where A = a 1+ea2 and B = b 1+eb 2 • 

Proof. If AB = 0, then by Theorem 7.12 and the fact 

that octonions are alternative, we obtain )a1 ,b1 ,a2 ( = 

[N(a2 )-N(a1 )Jb2 and (a1 ,b1 ,a2 ) = [N(a2 )+N(a1 )Jb2 • Now by 

Theorem 7.14, iii) N(a2 ) = N(a1 ). Thus, )a1 ,b1 ,a2 ( = 0 

and (a1 ,b1 ,a2 ) = 2N(a1 )b2 • Now 2(a1b 1 )a2 = (a1 ,b1 ,a2 ) + 

)a1 ,b1 ,a2 ( = 2N(a1 )b2 • Thus, the result follows. 
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Conversely, if N(a1 ) = N(a2 ), then b 2 = [(a1b 1 )a2 1/N(a1 ) 

implies [N(a 2 )+N(a1 )Jb2 = 2(a1b 1 )a2 = 

(albl)a2-al(bla2)+(albl)a2+al(bla2) = (al,bl,a2) + 

)a1 ,b1 ,a2 ( = {a1 ,b1 ,a2 ) by iii). Finally, N(a1 ) = N(a 2 ) 

and )a1 ,b1 ,a2 ( = 0 imply )a1 ,b1 ,a2 ( = [N(a2 )-N(a1 )Jb2 . 

Now since by the alternative property, {a1 ,a1 ,b2 ) = 

(a2 ,a2 ,b2 ) = O, the result follows by Theorem 7.12.// 

COROLLARY 7.16. If A and Bare mutual ~divisors, 

then the following holds in A4 : 

i) No three of a 1 ,a2 ,b1 , and b 2 ~be quaternions. 

ii) Each of ~ following antiassociators is zero: 

)al,bl,a2(; )bl,al,b2(; )al,b2,a2(; )bl,a2,b2(; 

)a2,bl,al (; )b2,al,bl (; )a2,b2,al {; )b2,a2,bl {. 



Proof. We first prove ii) by noting that the follow-

ing are all equivalent: AB = 0, BA = 0, (eA)B = 0, 

B(eA) = 0, (eA) (eB) = 0, (eB) (eA) = 0, (eB)A = 0, and 

A(eB) = 0. Thus the order of the ai in a 1+ea 2 and the bi 

in b 1+eb 2 may be permuted. 

i) If any three were quaternions, they would be 

associative, contradicting part ii).// 

Considering the above, one would hope to be able to 

look at a particular A f 0, at least in A4 , and determine 

whether or not it is a divisor of zero by inspection. In 

fact, we do know that if A = a 1+ea 2 is in A4 , and if 

N(a1 ) f N(a 2 ), a 1 = ~a2 , T(a1 ) or T(a 2 ) t 0, or either 
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a 1 or a 2 real, then A is not a zero divisor by Theorem 7.14, 

and Theorem 7.3. Each of the necessary and sufficient 

conditions for zero divisors, however, involved considering 

B as well as A. The following example illustrates that 

putting all the restrictions on A that we have encountered 

as necessary (without considering B) still doesn't guaran-

tee that A will be a divisor of zero. 

Yet letting b 1 = I.r.e., 
J. J. J. 

i = 0, •.. ,7, and computing )a1 ,b1 ,a2 ( = 0 yields b 1 = 0. 

Hence B = 0 and A is not a zero divisor. 

Thus, it appears that there is no way to look at a 

specific A and be sure if it is a zero divisor, unless you 

actually solve for B such that AB = 0. There are two 

obvious ways to do this. The first would be to set 



B = I.b.e., i = 0, ••• ,2n-1. Then after calculating AB = 
1 1 1 

55 

I.c.e., i = 0, ••• ,2n-1, one could set each c. = 0 and solve. 
1 1 1 1 

Unfortunately, the multiplication could be extremely long, 

and solving c. = 0 could result in solving 2n-l equations 
1 

in 2n-l unknowns. The author used a PL-1 computer program 

to aid in working several examples in this way. This 

program, which multiplies arbitrary Cayley-Dickson elements 

in A4 , is included in Appendix C. Even a computer is little 

help in solving the system of equations when its solutions 

are not rational, however. 

The other way suggested by our previous work is to 

set b = I.r.e., i n-1 and solve equations i) = 0, ••• ,2 -1, 
1 1 1 1 

and ii) of Theorem 7.12. In A4, this reduces the problem 

to, at worst, seven equations in seven unknowns. The aid 

of a computer in performing the multiplication is useful, 

even here. Solving the equations remains tedious, however. 

It seems apparent that what is needed is further investiga-

tion into the antiassociator. From here, we concentrate on 

zero divisors in A4 , where the elements a.,b. acted on by 
1 1 

the antiassociator will be octonions. 

LEMMA 7.17. If a,b,c are octonions, then )a,b,c( = 0 

implies T(a) = T(b) = T(c) = 0. 

Proof. By Theorem 7.15 (ab)c+a(bc) = 0 implies 

(a//N(a} + e 8 [c/IN{c)]) is a zero divisor. Hence, 

T(a/IN(a)) = 0. Thus T(a) = 0. The other parts are 

similar.// 



We now consider for which basis elements of the 

octonions the antiassociator vanishes. 

THEOREM: 7.18. For basis elements of the octonions, 

)e.,e.,ek( = 0 if and only if 
1. J 

i) None of i,j, or k is 0, 

ii) 

iii) e.e. =I ±ek. 
1. J 

Otherwise, )e.,e.,ek( = 2(e.e.)ek. 
1. J 1. J 

Proof. Recall Lemma 6.15.// 

THEOREM 7.19. For basis elements of the octonions, 

if i,j,k =I 0, then: 

i) )e.,e.,e.( = )e.,e.,e. ( = -2e., 
1. 1. J J 1. 1. J 

ii) { -2ej, if i = j I 

)e.,e.,e.( -= 
1. J 1. 2e., if i =I j I 

J -
iii) ) e. , e., ek ( = - ) ek, e . , e . {. 

1. J J 1. 

Proof. i) Since basis elements are alternative, we 

have )e. ,e. ,e. ( 2 + e. (e.e.) 2e. 2 -2e .• = e. e. = e. = 
1. 1. J 1. J 1. 1. J 1. J J 

ii) Recall Theorem 6.13. 
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iii) If i,j,k =I 0, then -)ek,e.,e. ( = -(eke.)e.-ek(e.e.) 
J 1. J 1. J 1. 

=-e. (e.ek)-(e.e.)ek =e. (e.ek)+(e.e.)ek = )e.,e.,ek{.// 
1. J 1. J 1. J 1. J 1. J 

Since we are interested in antiassociators of elements 

each of which has trace 0, the condition that i,j,k =I 0 

in Theorem 7.19 is no restriction to us. 

~HEO~EM 7.20. Let 

Cayley-Dickson algebra. 

)e.,e.,ek( = 0 for all j 
1. J ---- ---

e.,e.,ek be basis elements of any 
1. J -

Then )e.,I.r.e.,ek( = 0 implies 
1. J J J 

= o, ... ,n. 
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Proof. Notice first, that since (e.e.)ek =+e. (e.ek) 
J. J - J. J 

by Theorem 6.14, )e1 ,ej,ek( =either 0 or 2(eiej)ek. Now 

by linearity we may write )e. ,I.r.e.,ek( as I.r.)e.,e.,ek(. 
l J J J J J l J 

Suppose not all these terms are zero, 

m = l, •.. ,h. Then 0 = I r )e. ,e ,ek( m m 1 m 

2[e.(I r e )]ek. 
1 m m m 

But Corollary 6.12 says (A, ek, ek) 

say r )e.,e ,ek( 1 0, m 1 m 

= Imrm·2(eiem)ek = 

= 0, hence if 

Aek = 0, then 0 = (Aek) ek = A(ek2) = +A. Likewise, if 

e.B = 0, 
l 

B = 0. Thus I r e = mmm 0 which is a contradiction 

of the linear independence of the em's.// 

With the apparatus above, we often may calculate all 

the zero divisors of a given number in A4 quickly since 

many, if not most, antiassociators will vanish. In fact, 

by Theorem 7.18, since we assume i,j,k 1 0, )e. ,e.,ek( = 0 
l J 

unless i = j, j = k, or i = k, or e.e. 
l J 

= ±ek. The only 

time we even need to consult the basis multiplication table 

is for that last case, eiej = ±ek. 

Consider the following example. Let A= e 1+e 8e 2 • We 

seek B such that AB = 0. Let b 1 = I.r.e., i = 0, .•. ,7. 
l l l 

Since T(b1 ) = 0, r 0 = 0. Since T([a1a 2 Jb1 ) = 0, 

T([e 1e 2 Jb1 ) = T(e 3b 1 ) = 0, implying r 3 = 0. Now expanding 

0 = )e 1 ,I.r.e. ,e 2 ( and discarding any antiassociator which 
l l l 

is zero, we obtain 0 = r 1 )e1 ,e1 ,e2 C+r 2 >e 1 ,e2 ,e2 ( = 

-2r1e 2-2r2e 1 • Thus r 1 = r 2 = 0. Hence b 1 = r 4e 4+r5e 5+ 

r 6e 6+r 7e 7 • Now letting b 2 = [ (a1b 1 )a2/N(a1 ) = 

[e1 (r 4e 4+r 5e 5+r6e 6+r7e 7 )Je 2 we get b 2 = r 7e 4-r6e 5+r 5e 6-r4e 7 • 



Hence, B = (r 4e 4tr5e 5tr6e 6tr7e 7 )te 8 (r 7e 4-r6e 5tr5e 6-r4e 7 ) = 

r 4 <e 4te15 >+r5 (e5-e14 >+r6 (e6te13 )tr7 {e7-e12 ), for all real 

r., i:::; 4, ••• ,7. 
~ 

Thus the properties of the antiassociator allow us to 

perform otherwise long tedious multiplications with a 

minimum of steps. 

The last thing we do in this section is examine the 

equation AX = B and its solutions. 
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LE~~ 7.21. In~ alternative algebra with involution, 

AX = B, A ':/-
-1 

0, always has A B ~ a solution. 

Proof. Since A(A-lB) = -(A,A-l,B)+B = -(A,A/N(A},B) + 

-1 
B = (A,A,B)/N(A) + B = B, we conclude that A B is always 

a solution.// 

This seemingly obvious choice of a solution need not 

work in A4 , however. 

THEOREM 7.22. In A4 , we have the following: 

-1 
A(A B)= B + [(a1 ,b2 ,a2 )-e(a1 ,b1 ,a2 )]/N{A}, where A= 

a 1+ea 2 and B = b 1+eb2 • 

Proof. A{A-lB) = B + {A,A,B}/N{A), and by Theorem 4.3, 

{A,A,B) = (a1 ,b2 ,a2 }-e(a1 ,b1 ,a2 ) for A,B in A4.;; 

It is clear that only certain equations will have the 

solution A- 1B. However, even then, the solution may not be 

unique. For example, if A has a zero divisor C, so that 

AC = 0, then A{X+C} = B if AX = B. The situation can be 

worse, however, because for some equations of this type, 

there are no solutions. Consider the following example. 

Let A= es+elS and X= Iiriei, i = 0, ••• ,15. Then a little 



calculation shows AX = (-r 5-r15 )e0 + (r 5-r15 >e10 -

(r4+rl4) (el+ell) + (r7+rl3)e2 + (r7-rl3)e8 + 

(rl2-r6) (e3+e9) + (rl-rll) (e4+el4) + (rO-rlO)es + 

(rO+rlO)elS + (r3+rg) (e6-el2) - (r2+r8)e7 + (r8-r2)el3" 

Notice the pairing of e 1 and e 11 , e 3 and e 9 , e 4 and e 14 , 

and e 6 and e 12 • It is clear that no choice of ri will let 

AX be any single element of any of these pairs. In par­

ticular, (e 5+e15 )x = e 1 has no solution in A4 • 

An unproven conjecture is that if AX = B has a solu­

tion, then X = A-lB is a solution. In particular, all 

zero divisors for (e 5+e15 ) must be of the form: 
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m(e1+e11 ) + n(e3-e9 ) + p(e6+e12 ) + q(e 4-e14 ), m,n,p,q real. 

Hence, another unproven conjecture is that if A has no zero 

divisor, then AX = B has the unique solution X = A- 1B. 
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VIII. Examples and Counter Examples. 

In the first part of this section, we wish to find the 

set of zero divisors of a given nonzero A in A4 • Then we 

wish to find all zero divisors of that set. In general, 

this is extremely complicated; but if A is of the form 

A= e.+e8e., 1 < ~, j _< 7, the situation results in seven 
~ J -

disjoint systems of interrelated zero divisors. 

In the following, let {A,B} be the set of all linear 

combinations of A and B. Also, let {X} ++ {Y} indicate that 

xy = 0 for all x in X and for all y in Y. 

THEOREM 8.1. Each A of the form ei+e8ej which has ~ 

zero divisor is in one and only one system ~elow, and all 

of its zero divisors ~ in the same system. 

System 1: 

System 2: 

System 3: 
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System 4: 

System 5: 

{el+el4'e6-e9}~(------~){e2+el3'e5-elO}~{e3+el2'e4-ell} 

. {el-el4'e6+eg}< >{e2-el3'e5+el0} {e3-el2'e4+ell} 

System 6: 

System 7: 

{e2+ell' e3 -elO H ){ e4 ~el3' es+el2 }>< { e6+el5' e7-el4} 

{e2-ell'e3+el0}~(~---;>{e4+el3'e5-el2} {e6-el5'e7+el4} 

Proof. To see that this theorem is true, one must 

compute all zero divisors of elements of the form e.+e8e .• 
1 J 

Although this is quite lengthy, it is easy to do using the 

methods of the last chapter.// 

Recall that A* = a 1-ea2 if A = a 1+ea2 • Then notice 

that each system above has the following form: 



62 

Thus we may find all zero divisors of the element 

e 1+e10 , for example, by looking at system 1, and noting 

that all zero divisors of m1 (e1+e10 ) + m2 (e2-e9 ) are of the 

form nl (e4-el5) + n2(e7+el2) + n3(e5+el4) + n4(e6-el3), 

where n. and m. are arbitrary real numbers. 
~ ~ 

Consideration of the examples above suggests the 

following. 

THEOREM 8.2. Let A be a fixed nonzero element in A4 • 

Let B = {BI AB = O} and e 8 B = {e8Bi B is in 8}. Then B is 

an additive group closed under multiplication £y e 8 • 

Proof. First e 8 B is contained in B since (e8B)A = 0 

if and only if AB = 0. Similarly, B is contained in e 8B 

since B = -e8 (e8B). Thus B is closed under multiplication 

by e 8 • 

To see that B is an additive group, consider that AB1 = 
0 and AB2 = 0 implies A(B1+B 2 ) = 0 and the fact that AB = 0 

implies A(-B) = 0.// 

It is not true, in general, that B.B. is in B when B. 
~ J l 

and B. are in B. For example: Let A = el+elO' Bl = e4-el4' J 

and B2 = es+el4" Then ABl = AB 2 = 0. But B1B2 = 2(el-el0) 

so that A(B1 B2 ) = 4e11 ~ 0. 

An unanswered question remains as to whether or not 

there exists A,B,C in A4 such that AB = AC = BC = 0. From 

the systems of zero divisors above, it is clear that such 

A,B,C do not exist of the form e.+e8e.. If such A,B,C do 
~ J 

exist in any Cayley-Dickson algebra, then the subspace 

generated by A, B, and C would be a subalgebra. 
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Another unanswered question also deals with mutual zero 

divisors. Let B = {BI AB = 0}. Then we have observed that 

(e8A)B = 0. Now does XB = 0 imply X= 0, X= A, or X= e 8A? 

If A= e.+e8e., the answer is yes, in view of the systems 
1 J 

above. In fact, for every example the author has considered, 

the answer is in the affirmative. 

Earlier, we observed that AB = 0 implies that (A,B) is 

a commutative Jordan algebra with zero divisors. We now 

consider an example of the nature of (A,B) where B = 

{BI AB = 0}. Let A = e 4-e15 . Then considering system 1, 

we see that B = {r1 B1+r 2B2+r 3B3+r 4B4 }, where B1 = e 1+e10 , 

B2 = e 2-e9 , B3 = e 5-e14 , and B4 = e 6+e13 , where ri is an 

arbitrary real number. Note that B is a four dimensional 

subset of A4 • In every example of dozens worked out, the 

same thing occured. For A= e.+e8e., the systems above 
1 J 

show that B is always four dimensional. 

Now consider the set generated by A and B. It is easy 

2 to verify that -A /2 = e 0 , (A-[B1 B3 ]/2)/2 = e 4 , 

(A+[BlB3]/2)/2 = elS' BlB2/2 = e8, e4e8 = el2' el5e4 = ell' 

e 8e 15 = e 7 , and e 4e 7 = e 3 • Moreover, the following table 

shows closure under multiplication for these basis elements. 



eo 

e3 

e4 

e7 

e8 

ell 

el2 

elS 

eo 

e3 

e4 

e7 

e8 

ell 

el2 

elS 

-e 
0 

-e 0 

-e 4 

-e 0 

-elS 

el2 

-ell 

e8 

-e 0 

-e 
3 

-e 4 

-e 7 

-e 0 

-e 4 

-e 
7 

-e 8 

-e 3 

-e 
0 
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Thus, (A,B) is an eight dimensional subalgebra of A4• 

Note that (A,B) is clearly not isomorphic to the octonions 

since it contains zero divisors. The following result is 

now apparent. 

LEMMA 8.3. Not all eight dimensional subalgebras of 

A4 ~ isomorphic to the octonions. 

One of the original questions which prompted this 

paper, was how AS differed from A4. Some answers to this 

can now be considered. 

First of all, recall from Theorem 7.5, i), that if 

A= a 1+ea2 is in An' then A+ A* is in An-l· 

THEOREM 8.4. (A+A*,A+A*,B+B*) = 0 for all A,B in A4 , 

but (A+A*,A+A*,B+B*) 1 o for all A,B in As. 

Proof. A3 is alternative, A4 is not.// 

As was seen in the last chapter, a major difference 

between A4 and A5 is in the nature of their zero divisors. 

Let us recall here these differences. If A and B are 
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mutual zero divisors, then the following hold for A,B in A4, 

but do not necessarily hold for A,B in A5 : 

i) a 1 ~ ±a2 , 

ii) a 1 and a 2 must be nonzero, 

iii} N(a1 ) =N(a2). 

The fact that each of these holds for zero divisors in 

A4 was shown in Theorem 7.14. The fact that they do not 

hold in A5 is easy to see. For, let a be an element of A4 

such that for b1 and b2 in A4 we have ab1 = ab 2 = 0 (as in 

the example immediately following Theorem 8. 2) • Now, 

letting A = (a+e16a) and B = (bl +el6b2) ' we see that A and 

Bare elements of A5 ; but AB = 0, contradicting i). Simi­

larly let A = (O+e16a) and B be as before. Then AB = 0, 

contradicting ii) and iii). 

Finally, it was mentioned in the beginning of this 

paper that many results have been obtained in non­

associative algebras by considering "defining identities". 

All algebras satisfying a particular identity, or group of 

identities, are classed together and then studied. Examples 

of this which we have seen are the flexible algebras, the 

alternative algebras, and the noncornmutative Jordan 

algebras. Several such classes of algebras are well known, 

and others appear only recently in the literature. Each is 

an attempt to restrict a broad class of algebras such as 

the noncommutative Jordan algebras to a smaller, more 

fr.ui tful, class of algebras. In order to proceed, we need 

the following definitions. 
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Definition 6.1. A finite-dimensional algebra is said 

to be a standard algebra if it satisfies the identities: 

i) (x,y,z) + (z,x,y) - (x,z,y) == 0, 

ii) (w,x,yz) - (wy,x,z) - (wz,x,y) = 0, 

for all w,x,y,z in the algebra. 

This definition was first given by A. A. Albert [3]. 

Definition 6.2. A nonassociative algebra over a field 

F of characteristic ~ 2 is a generalized standard algebra 

A if: 

i) A is flexible, 

ii) H(x,y,z)x = H(x,y,xz), where H(x,y,z) = (x,y,z) 

+ (y 1 Z 1 X) + ( Z 1 X 1 y) 1 

iii) (x,y,wz) + (w,y,xz) + (z,y,xw) = [x, (w,z,y)] + 

iv) 

v) 

(x,w,[y,z]), 

2 
if F has characteristic 3, then (x,y,x ) = 0, 

y [x (wz)] -x [y (wz)] + (x, wz, y) + [ (wz) x] y- [ (wz) y] x = 

[y(xw)-x{yw)+(x,w,y)+(wx)y-(wy)x]z+ 

w[y(wz)-x(yz)+{x,z,y)+(zx)y- (zy)x], 

for all w,x,y,z in A. 

Schafer first gave this definition in 1968 [29]. 

Definition 6.3. An accessible algebra is defined by 

the identities: 

i) (x,y,z) + (z,x,y) - (x,z,y) = 0, 

ii) (Iw,x] ,y,z) = 0. 

These were first given by E. Kleinfeld [18]. 

Definition 6.4. A generalized accessible algebra 

satisfies the identities: 



i) [x, (z,y,y)] = 0, 

ii) 3(x,y, [w,z]) = -[w, (x,y,z)]-2[x, (y,z,w)J+ 

2[y, (z,w,x)]+[z, (w,x,y)]. 

These were first defined by E. Kleinfeld, M. H. 

Kleinfeld, and J. F. Kosier [69]. 

The best account of the interrelation between these 
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ideas is given in the last mentioned paper, and is condensed 

in the following diagram, where---+ stands for implication: 

~ JORDAN ASSOCIATIVE~ 

COMMUTATIVE > STANDARD~ ALTERNATIVE 

ACCESSIBLE GEN. STANDARD~ 
~GEN. ACCESSIBLE/ 

We now wish to show, by means of counter examples, that 

not only the Cayley-Dickson algebras are not generalized 

accessible; but also that they do not satisfy any of the 

defining identities given above, except (x,y,x) = 0 and 

2 (x,y,x) = 0, i.e., the flexible property and the noncommu-

tative Jordan identity, respectively. 

Proceeding through the identities in the order given, 

the standard identities are not satisfied. 

i) If X = es, y = e8' z = elO' then (x,y,z} + 

(z,x,y) - (x,z,y) = 6e7 ~ 0. 

ii) If X = el, y = el+elO' z = e4-el5' w = e7+el2' 

so that yz = yw = o, then (w,x,yz) - (wy ,x, z) - (wz,x,y) = 

0 - 0 - (2e 8 ,e1 ,e1+e10 > = -4e 3 ~ 0. 

The generalized standard identities ii), iii), and v) 

do not hold. 
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ii) Let x = e 1 , y = e 15 , z = e 4 • Then H(x,y,z)x = 

-2e11 , but H(x,y,xz) = 2e11 • 

iii) Let x = y = e 1 , w = e 15 , z = e 4 . Then all terms 

in (x,y,wz)+(w,y,xz)+(z,y,xw) = [x,(w,z,y)] + (x,w,[y,z]) 

are zero except (x,w,[y,z]) which is 4e 11 • 

v) Let x = e 5-e14 , y = e 5+e14 , z = e 4-e15 , w = 

Then y[x(wz)]-x[y(wz)]+(x,wz,y)+[(wz)x]y-[(wz)y]x 

= 0. On the other hand: [y(xw)-x(yw)+(x,w,y)+(wx)y-(wy)x]z 

+w[y(xz)-x(yz)+(x,z,y)+(zx)y-(zy)x] = -2e 4 - 4e 5 + 4e14 + 

2e15 'f 0. 

The accessible identities do not hold. 

i) (x,y,z) + (z,x,y) - (x,z,y) = 0 was one of the 

standard identities. 

ii} ([w,x] ,y,z) = 0 doesn't hold, for let w = e 1 , 

x = e 2 , y = e 5 , and z = e 8 . Then ([w,x] ,y,z) = (wx,y,z) 

(xw,y,z) = (e 3 ,e 5 ,e 8 )-(-e 3 ,e5 ,e 8 ) = 2(e 3 ,e5 ,e 8 ) = -4e14 'I 0. 

The generalized accessible identities fail to hold. 

i} Let x = e 3 , y = e 1-e15 , z = e 4 • Then [x, (z,y,y)] = 

[e 3 ,-2e10 J = -4e 9 'f 0. 

ii) Let x = z andy= w. Then 3(x,y, [w,z]) = 

-[w, (x,y,z)]-2[x, (y,z,w)]+2[y, (z,w,x)]+[x, (w,x,y)] becomes 

3(x,y, [y,z]) = 0 because of the flexible property. Letting 

xy = -yx yields (x,y,[y,x]) = -2(xy) 2+2x[y(xy)], so letting 

x = e 1-e15 andy= e 7+e 13 , we obtain (x,y,[y,x]) = 

4(e 4+e10 ) :f 0. 

Richard Block 17], in 1969, further generalized the 

generalized standard algebras by considering noncommutative 



Jordan algebras that also satisfy what he calls alterna­

tivity conditions. He gives the following definitions. 
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Definition 6.5. An algebra A is completely alternative 

if (x, [y,z] ,w) + (x,w, [y,z]) = 0, for all x,y,z,w in A. 

Definition 6.6. An algebra A is semicomEletely alter­

native if ([x,y],z,z) = 0, for all x,y,z in A. 

Definition 6.7. An algebra A is strongly alternative 

if ([v,w], [x,y],z) + ([v,w],z, [x,y]) = 0, for all x,y,z,v,w 

1.n A. 

We now show that the Cayley-Dickson algebras do not 

satisfy any of these identities. 

The Cayley-Dickson algebras are not completely alter­

native. If w = x andy= x, then (x, [y,z],z) + (x,x, [x,z]) 

= (x,x, [x,z]) by the flexible property. Now, let z = x = 

e 1-e15 , y = e 4 • Then (x,x,[x,z]) = 4(e 5-e11 ) ~ 0. 

The semicompletely alternative identity fails by 

letting z = x = e 1-e15 , andy= e 4 . For ([x,y],z,z) = 

-4(e5-e11 ) ~ 0. 

Finally, the strongly alternative identity fails. 

For, if v = e 9;2, w = e 13 , x = e 1/2, y = e 14 , and z = e 1 , 

we have ([v,w],[x,y],z)+([v,w],z,[x,y]) = (e 4 ,e15 ,e1 ) + 

(e4,el,el5) = 2el0 ~ 0. 

Thus, not only are the Cayley-Dickson algebras not 

members of any of the algebras defined above, not one of 

the defining identities holds in the sixteen dimensional 

Cayley-Dickson algebra. 
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IX. Conclusions. 

In this paper we have examined the structure of zero 

divisors in real Cayley-Dickson algebras. A necessary and 

sufficient condition for zero divisors in a real Cayley­

Dickson algebra of any dimension was found. Antiassociators 

played a major role in the description of zero divisors. 

It was found that the use of an IBM 360 computer was 

very valuable in finding examples and in checking hypotheses. 

It appears that computers hold much promise in the further 

study of higher dimensional Cayley-Dickson algebras. 

Finally, we have observed that Cayley-Dickson algebras 

are a class of noncommutative Jordan algebras which are 

integer power associative. The fact that A4 satisfies none 

of the defining identities of the preceding chapter is 

significant. It means that there remains much work to be 

done in classifying noncommutative Jordan algebras. It 

appears no one has considered as a class noncommutative 

Jordan algebras which are integer power associative. The 

author feels that favorable results could be obtained from 

such a study. 
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Appendix A 

BASIS MULTIPLICATION TABLE FOR OCTONIONS 

eo e1 e2 e3 e4 e5 e6 e7 

eo eo e1 e2 e3 e4 e5 e6 e7 

e1 e1 -e 
0 e3 -e 2 e5 -e 4 -e 7 e6 

e2 e2 -e 3 -e 
0 e1 e6 e7 -e 4 -e 5 

e3 e3 e2 -e 1 -e 0 e7 -e 6 e5 -e4 

e4 e4 -e 5 -e 6 -e 7 -e 
0 e1 e2 e3 

e5 e5 e4 -e 7 e6 -e 1 -e 0 
-e 3 e2 

e6 e6 e7 e4 -e 5 -e 2 e3 -e 
0 

-e 1 

e7 e7 -e 6 e5 e4 -e 3 -e 2 e1 -e 
0 
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Appendix B 

BASIS MULTIPLICATION TABLE FOR A4 

eo el e2 e3 e4 e5 e6 e7 e8 e9 elO 

eo eo el e2 e3 e4 e5 e6 e7 e8 e9 elO 

el el -e 
0 e3 -e 2 e5 -e 4 -e 7 e6 e9 -e 8 -ell 

e2 e2 -e 3 -e 
0 el e6 e7 -e 4 -e 5 elO ell -e 8 

e3 e3 e2 -e 
1 

-e 
0 e7 -e 6 e5 -e 4 ell -elO e9 

e4 e4 -e 5 -e 6 -e 7 -e 
0 el e2 e3 el2 el3 el4 

e5 e5 e4 -e 7 e6 -e 1 -e 
0 

-e 3 e2 el3 -el2 el5 

e6 e6 e7 e4 -e 5 -e 2 e3 -e 
0 

-e 
1 el4 -el5 -el2 

e7 e7 -e 6 e5 e4 -e 3 -e 2 el -e 
0 el5 el4 -el3 

e8 e8 -e 9 -elO -ell -e12 -el3 -el4 -el5 -e 
0 el e2 

e9 e9 e8 -ell elO -e13 el2 el5 -el4 -e 1 -e 0 
-e 3 

elO elO ell e8 -e -el4 -el5 el2 el3 -e e3 -e 
9 2 0 

ell ell -elO e9 e8 -el5 el4 -el3 el2 -e 3 -e 2 el 

el2 el2 el3 el4 el5 e8 -e 9 -elO -ell -e 4 es e6 

el3 el3 -el2 el5 -el4 e9 e8 ell -elO -e 5 -e 4 e7 

el4 el4 -el5 -el2 el3 elO -ell e8 e9 -e 6 -e 7 -e 4 

el5 el5 el4 -el3 -el2 ell elO -e 9 e8 -e 7 e6 -e 5 
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Appendix B continued 

BASIS MULTIPLICATION TABLE FOR A4 

ell el2 el3 el4 elS 

eo ell el2 6 13 el4 el5 

el elO -el3 el2 el5 -el4 

e2 -e 9 -el4 -elS el2 el3 

e3 -e 8 -elS el4 -el3 el2 

e4 el5 -e 8 -e 9 -elO -ell 

es -el4 e9 -e 8 ell -elO 

e6 el3 elO -ell -e 8 e9 

e7 -el2 ell elO -e 9 
-e 8 

e8 e3 e4 es e6 e7 

e9 e2 -e 5 e4 e7 -e 6 

6 10 -e 1 
-e 6 -e 7 e4 es 

6 11 -e 0 
-e 7 e6 -e 5 e4 

6 12 e7 -e 0 
-e 1 -e 2 

-e 3 

6 13 
-e el -e e3 -e 

6 0 2 

6 14 es e2 -e 3 
-e 0 el 

6 15 
-e e3 e2 -e -e 

4 1 0 



Appendix C 

PL-1 PROGRAM FOR CHARACTER STRING MULTIPLICATION 

CAYLEY-DICKSON ALGEBRA ELEMENTS 

SKC: PROCEDURE OPTl(;f\:) (Mfl.l."') • DC l . I'll ' 

~f l (*).CHAR ( lOC) 1/.:~K. CuNl Fdll tl) , 
lll>.1 f!XEO, 
H F l XED_, 
512(*) CHAt{(l00) V1-\F< C'!NlPULLED 

~ FtXEO , ' 
ZPCJ (HI ... f:: ( 2) 
Sl](*) CH~~~db4) VA~<:.. ' .. J•:~-:DfJLU:.fJ, 
CfllQ U~~.k.( 15) VAP. , 
UJl FIXFf1, 
LU(O:t5,v: l5) FIXED, 

XYZ LHARC100) Vf~Y!NG , 
PRJD(*,*I, t..HI\k(l.;'J) Vt." tCNTR.UILFD, 

F fiXED 

NU~(*) J:'Jf~-~U~~ ·~>:,_,59 1 l>~,JRuLLEO, 
~·!U2(*1 PlLJUI-E ·~_,S~'J' C:.•~:-,R;_,LLED, 

' N U 3 C * ) P i C l U P t: ' ~ S ::; ~ '1 1 r U r..; l h: (j L L E 0 , 
NUK(*) PICTUt-.E •::;:l:::0~9' ,uitvfROLLfD, 
(M,O,I,K,JJL'M~,~Y,iX,~,!~t~O,lK,IQ) FIXE[) , 
DU CHAR(80 Vt.!', 
TN C HA '' ( l ) 
CAT OiL· 1\ { 6 4 J V r R , 
S CHAR(l), 
NUEl(*l FIXED CONf~ULL~D , 
NUF2C*) FiXEn ((~fkOLLfO , 
NUE3(*1 FTX[f1 CCI\ITkCLLlll, 
~UM(!l*~ PlC.TU~E •ss~~Y' l~~7~LLLED , 
~tR P1C.U~E ')~J$9' , 
S A V ( H \ F ( 6 4 ) V t1 P , 
N E E ( * , * ) F l X F D CJ N .f t-. ~ , L L E D , 
CZ,Y,X,W 1 V,UJT'~~'R'. PpA.) FIXED , 
C ( * ) CHAR ( J 2 V /'.: '..., C •, l'< i t • :::,L L!:. 0 , 

TFMP CHAR ( 100) Vt\P.. , 
OUT CHARC2J0) VAR , 
fEII.1F FIXFD , 
T[~L Fi.XED ; 
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I* 
All ELFMENT SHGULD Bl PUT lN /. l~rw DATA f~kO AND EJ'.Lrl PAi-,1 

SEPARAlfl) ~y CuMfviAS 
IN FkONT 1JF EACH DATA ~ECl!CIJ ;~DATA (kti-D ~HOULD BE ru:.CE::D 

W H { C H C 0 NT A 1 N ') T HE N U ~ 8 E "< r' F P td~ 1 t, N 0 1 ~ f N T H F. N U ~ H E F<, U F 
ELEMFNT IN EACH PA~l·. lHESt NU~B(qS SHUULO BE RTGH1 
JU~TIFlED iN A 5 COLUMN fiFLO. ALL PFMA~NING 5 COLUMN 
FJ.ELD!:> SHOULD AE FILL CY ·:. BEFORE PUNNING THIS PRQGP.t..M C''·JF r-'U~T F1ND CUT THE LARGFSl 
LFNGTH !1F ANY OUTPUT lLP~t:Nl ,;,'W Tt!Er>.. CHANGE "!'HE FiELD 

PRCDC* *) t..HAR(---) VA~ CCNTROLLED LUC~TED IN THE O~CLA~~ SIAr~MET~ TO FIT THIS ~L[M[Nl 
I lS THE NUMAfR OF POLY~C~lAL 
K IS lHF NUMRE::P GF ELEME~I~ ,~ THE 
J lS THf NUMRER UF ELEMt:~lS !N THt 
l I S 1 H f N U ~BE h OF ELF M E f\ 1 ~ I t\ l H l 
Y I S r H F t\J U M 8 E R 0 F E L E ,., F 1\. -, ~ 1 ~~ ., H t 
~ IS THf ~UMBE~ OF ELE~ENT~ t~ lHf 
W I S T H t N U M R E !=: C' F E: L E t-1 H n S i :--.: f H ~ 

Fl R.~ T PCL YI.DMI Al 
SE.Cr'r~~ POLYNOMl AL 
THIF.U PlJLYhi(IMIAL 
FCURTH POLYNOMIAL 
FIFTH PIAYNuMIAL 
S l X ·r H P r:: L Y N :_, M I A L 



V IS THE f'..IUMBF.R OF ELEt-',Et-..TS ih flH: SEVFNH1 PL~LYNOMIAL 
U iS THf NUMBFR OF ELEMENTS IN THE EIGHTH POLYNDMl~l 
T IS THE NUMBEP CF Elt:MENTS IN lHf Nl"JTH PULY~LMIAL 
SS I~ THE NUMBE~ GF ELEMfNTS IN lHt TENTH POLYNCMIAL 
~ lS THE NU~PER DF ELEMEt-..15 iN IHE ELEVEN1H P~LVNG~lAL 
H I~ THI: !~UMbER uF ELI::MEI\1:> 1N THF TWELFTH POLYNf'MlAL 
B T$ lHE NUMBEI~ C:F lLFMfNTS ,~.T\1 "IHI-: THJRlE.FNTH POlY''4CMlto~l 
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~ 15 lHE NUMBFP. OF ELLI-lFN"f!:J lN "IHt FOIJRlHTEENlH PULYNClMI~-<l 
l IS THE CHECK DIG&l F~R HACK~PPOS MULT. 

NVl(*) ST1(*) NUEl(*) NU2(*) ST2(*) NUE2(*) 
tWfv1(>l<*) Pf...lJ[)(>:c 9 *) I~FE(*,*l 

*I 
ON ENDFILE(SYSiN) GO IG UUTT; 

I* GET TARLE *I 
OC M = 0 IJY l ·1 J 15 ; 
GET EDIT ((LU(M,G) DO 0 = 0 RV 1 TO 15),0U) 
(1 6 ( F (3 ), X ( lJ h A ( 1 6 ) ) ; 
Pill fD!T ((LU(M,O) on 0 = 0 t-.Y 1 ·1 l 15)) 
{SKIP( l),l6(X(2),F(3l) t: 
END ; 

I* GEl THE NUMBER LF Elf~UHS *I 
STA: GET EDIT (l,K,J,z,v,x,~,v,u,),_~,k,H,G,A,L) 

(l6(F(5.0))); 
PUT PAGE ; 
PUT SKIP DATA (i,K,J,Z,Y,X,W,V,Lt1,SS,R,H,a,A,L) 
ZQ l = 1 ; 
AL LOCA 1 E ST 1( K) ; 
A l L Of AT f S l 2 ( J ) ; 
;~LLOCATE NUl(K) ; 
ALLnCATE NU2(J) ; 
ALLOCATE NUM(K,J) 

I =I-2 ; 
tLLVCATE NUEL(K} ; 
/'LLfJCATE '\ill~2(J) ; 

ALLOCATE PRODCK,J) 
ALLOCATE NEE{K,J); PIJT Pt..Gl: lt~T ('PLLYNut.1lAL 1'); 
DO Ml = 1 BY 1 T 1J K ; 
J=O ; 
GFT EOl.l .CSTl(~~ZJ,OU) (A(64),A(l6)) i 
~Ul{~Z)=0; PUf !:JKtP DAl/\ (:)fl(Mt)) 
IF SUBS., R ( Sll ( t.A Z ) , 1 t 1) = l ' 

SUB~TR(STlCMZ),l,l)= 2' 
SUBSTR(STl(MZ),l,l)= -• 
SUBSlRtST1P·1ZJ, l,U= 3' 
SUBSTR($Tl(MZ),l,l)= 4' 
SUBST~(STlCMZ),l,l)= 5' 
SUBSTR(ST1(MZ),l,1)= 6' 
SUBS fk ( S T l( ~ l I , 1 , 1) = 7' 
SUBSTR(STl(~Z),l,l)= A' 
SUBSTk{STllMZ),l,l)= 9' 
SUP.~,TkCSll(~Z),l,ll= C' TrlFf; nr_; 

f) 0 0 = 1 1-3 Y 1 T tl 6 4 I..J H ! E ( S lJ t3 ~ I ~ ( S I 1 ( "-1Z ) , 0 t l ) ... = ' t ' I 
fND ; 
CAl=SUBSTR(STlCMZ),l,G-1) 
I H =-1 ; on IX= LENGTHCCt•TI BY -1 lu 1 ; 
!H=IH+l ; 
IF IX=1 & SUBSTF(CAT,1,ll='-' lHE~ DO 
NUl(Ml)=-l*NUl(Ml) 
GC' TO XXX ; 
F.ND ; 
TN=$lJBSTRCCI~T,1X,l) ; 
DO Q = n BY 1 TO g ; 
PUT STF·U-JG($) £:01f (W) (F(l.U)) 
iF T~=S THEN on ; 

END ; 
JUMP: !:NO ; 

NUl(MZJ=NU1CMZ)+Q*lO**IH ; 
GO TG JUMP ; 
END ; 

XXX: F.~D ; 
bbSlj'JN~i(~~)llH~ 64 wHlLF (5U·:>~TI-<(::>.Il(MZ},fJ0,1) .... =' '); 
END ; 



SAV=SURSTR(STllMZ),U!I-2,21; 
TN=SUBS1PlSAV,2,l) ; 
00 Q = 0 BY 1 TU q ; 
PUT STRING($) EDIT (01 (F(1.~ll 
IF fN=S THEN Dfl ; 

NUE1(Ml)=IJ ; 
GO TO JQ ; 
END ; 

ENO ; 
JQ: TN=SU~STRCSAVfl,l) ; 

DO Q = 0 BY 1 0 q ; 
PUT STklNG(S) EDIT (Q) (F(1.0)) 
IF TN=S THEN on ; 

NUEl(fol:l)=NUE11•"1l)+O*lO; 
GO TO J QQ ; 
FND ; 

END ; 
JQ(~: Ir: 00-5-0=0 THEN :>Tl(MZ)=' t ; 

EL:, E S T 1 ( ~z ) = ~U R!:. l R ( S T l ( 1-'J l , C H, U'J- 5-;J) 
END ; 

i<.f: ZOZ=ZQZ+l ; 
PUl STRINGIZPQ) ~Oil lZQll (F(2,~)) 
CHZQ=•POLYNCtMIAL I II ZPQ ; 
PUT PAGE LIST CCHZ:)); 
OG MZ = 1 BY 1 TC J ; 
GFT EOlT (ST2(~Zl,OUl (A{64),A(l6)) 
0=0 ; 
NlJ2CMZl=O ; 
PL'f SKIP DATA (Sf2(MZll ; 
IF ~UBSfPlST2l-.,Zl,l,U='l' 

SUASTR(ST2(MZ),l,l)='2' 
S'JBSTPlST2P~Z), 1,11='-' 
SUBSTR(ST2(MZ),l,l)='3' 
SUBSTR(ST2(MZ),l,ll='4' 
SUB~TR(Sl2(~l),l,l)='5' 
SUBSTRCST2l~Z),l,ll='6' 
SUBS1R(ST2(MZ), 1,1)= '7' 
SURSTR($12(MZ),l,ll= 1 8 1 

SUBSTRl~T2(MZ),l,ll='9' 
S~BSTRlST2(MZl,l,ll= 1 0 1 THEN OG ; 

DO CJ = 1 R Y 1 l L fA· W H 1 l [( .) U R :;) 1 F ( S I 2 ( :'1Z ) , L , l) -. = 1 , ' ) 

ENO ; 
tAT=SU~SlR(ST2(MZl,l,J-l) ; 
IH=-1 ; 
00 IX= LFNGlH(CtT) BY -1 TO l ; 
IH=IH+l ; 
IF IX=l & ~UBSHI.fC.A-IrlrU='-' IHE:I-.. DC: 
NU7(MZ)=-1*NU2(MZ) ; 
GL TO QQ(,) ; 
ENO ; 
TN=SUBSTR(CAT,IX,1) ; 
DO Q = 0 BY l TO q ; 
PUT STRING(S) FOil (Q) (F(l.D)) 
IF TN=S THEN OG ; 

NU2(~l)=NU2(M7)+0*10**JH 
GO TO JUt~P2 ; 
END ; 

END ; 
JUMP2: END ; 

Q~~Q: END ; 
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ab 5dGN~ 2 tM§~=l fo 64 WHiLUSUBSTtdST2(MZl,CU,l)-.=' 'l 
END ; 
~AV=SUBSTk(~T2tMZ),00-2,2) ; 
TN=SUBSTR(~AV,2,1) ; 
DO Q = 0 BY 1 TO 9 ; 
PUT STklNG(S) EDIT (Q} (F(l.U)) 
IF fN=S THEN DG ; 

NUE2(MZ}=Q ; 
GL.l TO JQ2; 
END ; 



END ; 
JQ2: TN=SUBSTR(SAV,l,l) 

DO Q = 0 AY 1 TO q ; 
PUT STRING(S) EDIT (Q) (F(l.U)) 
IF TN=S THEN DO ; 

NUf2(MZ)=NUE2(MZ)+n*l0 
GO TO JQQ7 ; 
END ; 

END ; 
JOQ7: IF 00-5-U=O THE"J Sl2{MZ)='' ; 

E l S E S l 2 ( M l ) = S t J 8 S T k ( S T 2 ( M l l , (l + 1 , ;J L;- 5- ') ) 
END ; 

I* MULTIPLY *I 
DO MZ = 1 BY 1 TU K ; 
00 MY = 1 BY 1 TO J ; 
IF L=l THFN SAB=LU(NUE2(MY),NUEl(Ml)) 
f L S E SA B = L U ( NU E 1 ( M l ) , N U E 2 ( MY) ) ; 
IF SAB<O THEN DC ; 

NUM(MZ,MYl=-l*{NUltMZ)*~U2(MV)) ; 
NEE(MZ,MY)=-l*SAB ; 
END ; 

ELSE IF SAB=l00 THEN DO ; 
NU"'(MZ,MY)=-l*(N1Jl('-1Z)*I\U2(MY)) ; 
NEE(MZ,MY)=O; 
END ; 

ELSE DO ; 
NU~H M/, ~W) =t>-JU 1 ( Ml) *~·~lJ2 ( f'I!Y) 
~~ E E ( "-1Z , M Y ) = S A B ; 
END ; 

PROD(MZ ,MY)=STl (Ml) II s f2(MY) 
END ; 
END ; 
IF I:>O THEN DO ; 

FREE STl ; 
FR( E NUl ; 
FRFE NUEl ; 
FRFE Sl2 ; 
FREE N1l2 ; 
FREE NUE2 ; 
M=K*J ; 
~LLOCATE Sll(M) ; 
ALLOCATE NLJlCM) 
ALLOCATF NUEl(M) 
IK=O ; 

DO MZ=l BY 1 TJ K ; 
00 MY = 1 ~y 1 n· J 
!K=IK+l ; 

STl(~5{(f~9~~C~l~t!M~) ; 
NUF1(1K)=NFE(MZ,MY) 
END ; 
FND ; 
K=M ; 
~[s~=~FT~~~ ~~~N; J=Y ; 
ELSE IF 1=3 THEN J=X ; 
ELSE IF 1=4 THEN J=W ; 
ELSE IF I=5 THEN J=V ; 
ELSE IF 1=6 THEN J=U ; 
ELSE lF 1=7 1HEN J=T ; 
fLSE IF J=d lHEN J=SS ; 
tLSE IF 1=9 THEN J=K ; 
ELSE IF 1=10 THEN J=H ; 
ELSE lF I=ll THEN J=C ; 
ELSE IF 1=12 THEN J=t ; 

!=l-lLiOCATE ST2(J) ; 
ALLOCATE NU2(J) ; 
ALLOCATE NUE2(J); 
FREE PROD ; 
FREE NUM ; 
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PUT 

ST: 

00: 

EN: 

I* 

FREE NEE 
ALLOCATF. 
ALLOCATE 
ALLOCATE 

GO TG R E ; 
END ; 
FREE ST 1 • 
FREE S l2 i 
FREE NUl ; 
FREE NU2 ; 
FPEE NUEl ; 
FREE NUE2 ; 
M= K*J ; 

. 
' PROD(K,J) 
NUM(K,J) ; 
NEE(K,J); 

ALLOCATE STlCMJ 
ALUJCA TE NUl (M) ; 
ALLOCATE NUEU~l; IK=O; 
gg ~~ ~ l ~~ l t8 ~ ~ 
IK=IK+l ; 
ST1CIK)=PROOCMZ,MY) ; 
~H~1~~~;~~~~~~!~~~,;; 
END ; 
END ; 
MM=M*32 ; 

SKIP DATA01fMMJ; 
~LtOCATE C ~MJ ; 
rnJ ~Z=l BY 1 TO M ; 
IQ:l ; 
IK=l ; 
DO 0 = 1 BY l TO LENGTH(Sl"l tMZ)) ; 
IF SUBSlRCSllPH),O,l)=•,• Tt.tEN DC 

CtiKJ=SUBSlR(Sl'l(MZJ,IQ,J-lQJ ; 
IK=IK+l ; 
IQ=O+l ; 
ENO ; 

END ; 
IK=IK-1 ; 
IF IK>l THEN DO ; 
DO P=2 BY 1 TO IK ; 
IF C(P-ll>ClPl THEN GL TG DO ; 
GO TO EN ; 
TEMP=C ( P) ; 
C ( P) =C ( P-1) ; 
C(P-U=TE~P ; 
GO TO ST ; 
END ; 
END ; 
ST lC MZ) = 1 ' ; 
DO P=l BY l TO !K ; 
s "f 1( M z ) = s ll( M l ) I I c ( p ) I I ' ' ' ; 
END ; 
END ; 
FREE C ; 
CHECK FOR THE SAME ELEMENTS *I 
00 P=l BY 1 TO M-1 ; 
DO O=P+l BY 1 TC M ; 
IF STl(P)=Sll(O) & NUEltPJ=NUEl(O) 
NUl(P)=NUl(Pl+NUl(O) ; 
NUl C 0) =0 ; 
END ; 
END ; 
END ; 
00 P=l BY 1 TO M-1 ; 
IF NUlC P)=O THE-N G!l TO ZAZ ; 
XYZ=•t•ltNUl(PliiS"fl(P); 
00 O=P+l BY 1 TO M ; 
IF NU1{0)=0 THFN GO TU OF ; 
IF NUE1(0)=99 THEN GO TO QE ; 
IF NUEl(P)=NUEl(O) THEN 00 ; 
'<Yl=XYZI INUUOJ IISlUOJ ; 
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THEN DO 



NU El ( 0) ,:9q 
ENO ; 

QE: END ; 
Sll(P)=XYZI l 1 l'l I 1 E1 1 I~Ufl(P) ; 

ZAZ: END ; 
IF NlJlC M)=O THEN GO T:J SZ ; 
IF NUE1CMJ=99 lHEN GO TO Sf ; s l u M ) = I ( I I I NU 1( M ) I I s T 1( ~ ) I I ) E I I I•.J u E 1 ( M ) 

SZ: DO P= 2 BY 1 TO f-1 ; 
IF NUEl(P-l)>NUEl(P) THEN GO TO Ol ; 
GO TO El ; 
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oz: ~f~r;t!lf~~P!lJE~F~~~t~~!N~tl~~\iNVE~~~~CP)=NUElfP-1) ; 
STlCP-l)=TEMP ~ NUlCP-l)=TEMF ; NUEl(P-lJ=TEML ; 
GO Tu SZ ; 

EZ: END : PUT PAGE LI~l I'ANSWEk =•) ; PUT ~KlPC2) ; 
I* LIST FINAL ELEMENT *I 

IX=O ; 
Du 0=1 BY 1 TO M ; 
IF NUE1(0J=99 THEN GO TO EA ; 
lF NU1(0)=0 THEN GO TO EA ; 
IF STl(O)='' THEN GO TO [A ; 
F=lNDEXCST1CO),• ') ; 
1)0 WHILE (F>O) ; 
STlfOJ=SUBSTRCSll(O),l,F-lJII 
SUHSTR(ST1(0) 1 F+l,LENGTHCSTl(G)J-FJ ; 
F=INDEX(STl(O),• 'J ; 
END ; 
F=INOEXCSllC0) 9 1 ,) 1 ); 
IF F>O THEN 
s T lC 0 , = su 8 ~ T R ( s 1 1 ( tJ ) t l t F- u I I 
SUBSTRCSTlCOJ,F+l,LENGTHfSTl(O))-FJ ; 
IX=IX+l • 
IF IX>l fHEN SllC0)= 1 +'11STUO) ; 
PUT SKIP LIST CST110)) ; 

EA: END ; 
IF IX=O THEN PUT SKIP Li~T ( 1 0 1 ) ; 

FREE STl ; 
FREE NUl ; 
FREE NUE 1 ; 
GO TO STA ; 

OUTT: END ; 
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