
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 1988

An integrated programming environment for pseudo-code An integrated programming environment for pseudo-code

development, IPE-PC development, IPE-PC

Nurcan Coskun

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Coskun, Nurcan, "An integrated programming environment for pseudo-code development, IPE-PC" (1988).
Doctoral Dissertations. 688.
https://scholarsmine.mst.edu/doctoral_dissertations/688

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F688&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F688&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/688?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F688&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

AN IN TEG R A TED PR O G R A M M IN G ENVIRONM ENT FO R

PSEUDO CODE DEVELOPM ENT, IPE-PC

BY

N U RCA N COSKUN 1957-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment o f the Requirements for the Degree

D OCTO R OF PHILOSOPHY

in

CO M PU TER SCIENCE

1988

ii

An Integrated Programming Environment, IPE-PC, that supports pseudo-code

development has been designed and implemented. This environment is based on a Pascal-like

language which is designed according to the requirements of a language-based environment. The

nucleus of IPE-PC is a language-based editor which represents programs as graphs internally.

The same representation is used in every mode of the environment (i.e., editing, compilation,

execution, debugging and translation). The system provides facilities to take advantage of both

top-down and bottom-up programming. Stepwise refinement has been supported by providing

comment structures that can be transformed into procedures. Bottom-up programming is

supported because it is possible to create and save program segments which can be inserted to

the programs at the appropriate points.

ABSTRACT

iii

ACKNOW LEDGEM ENTS

The author wishes to express her sincere thanks to Dr. Tom J. Sager for his supervision,

guidance, counsel, and help in the completion of this dissertation. She would also like to thank

her committee members Dr. Pete Ho, Dr. John B. Prater, Dr. Billy E. Gillett, and Dr. Paul D.

Stigall for their interest and help.

IV

TABLE OF CONTENTS

Page

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF ILLUSTRATIONS ..vii

I. INTRODUCTION .. 1

II. LITERATURE SURVEY ON PROGRAMMING IN SMALL4

A. USER IN T E R F A C E ... 4

B. LANGUAGE BASED EDITORS .. 6

1. Template-driven Language Based Editors ... 7

2. Language Based Editors without Templates ...8

3. Hybrid D esign ..8

C. INTERNAL REPRESENTATION ..9

1. Text Representation .. 9

2. Token Oriented Approach ...9

3. Tree ... 10

4. G ra p h ... 10

D. EXTERNAL REPRESENTATION ... 11

E. LEXICAL ANALYSIS .. 11

F. PARSING ... 12

G. INTERPRETER AND COMPILER ... 12

1. In terpre ter.. 12

2. Compiler .. 13

H. DEBUGGER .. 14

I. ERROR HANDLING .. 15

J. UNPARSER AND PRETTY-PRINTER ... 16

K. DOCUMENTATION AND COMMENT HANDLING 16

L. TOP-DOWN VS. BOTTOM-UP PROGRAM CONSTRUCTION . . 17

V

M. LANGUAGE .. 18

N. RELATED WORK ... 19

O. PROGRAMMING IN THE LARGE ... 23

III. DESIGN AND IMPLEMENTATION OF IPE-PC 24

A. LANGUAGE D E S IG N .. 24

1. Motivation .. 24

2. Control Structures ...26

a. Sequence ... 27

b. Comments .. 27

c. IF Statement .. 29

d. IF-ELSE IF-ELSE Structure .. 30

e. Iteration ... 32

3. Procedures .. 35

a. Input Parameters ... 35

b. Output Parameters ... 35

c. Access to Nonlocal Names .. 35

4. Views ... 37

a. Local Views ...37

b. Global Views .. 38

5. Input and Output Facilities .. 38

B. INTERNAL REPRESENTATION .. 39

1. Type-List .. 40

2. Program-List ..42

3. Mapping Pointers .. 44

C. LANGUAGE BASED EDITOR ...45

1. Templates ...45

a. Algorithm Window Templates .. 45

b. Variable Window Templates ... 58

c. Type Window Templates ..58

2. User Interface ..60

VI

a. Top Window ..60

b. Message Window ...63

c. Menu Window ... 63

D. EXECUTION AND DEBUGGING ... 64

E. EXTERNAL REPRESENTATION ... 65

F. RUN TIME EN V IRO N M EN T.. 66

G. MULTIPLE LANGUAGE SUPPORT .. 68

H. PORTABILITY ... 68

IV. CONCLUSION AND FUTURE DIRECTIONS ..69

BIBLIOGRAPHY ... 71

VITA ...79

APPENDICES

A. GRAMMAR ... 80

B. USER MANUAL .. 84

C. IPE-PC LISTING FILES .. 93

D. PASCAL PROGRAMS ... 110

E. EXTERNAL REPRESENTATION ... 123

F. INTERACTIVE INPUT - OUTPUT FILE ... 160

Fi|

1

2

3

4

5

6

7

8

9

10

11

12

vii

ige

27

29

31

32

33

34

39

40

41

41

44

45

LIST OF ILLUSTRATIONS

A Sequence Control Structure

An IF-ELSE Logical Control Structure

An IF-ELSE IF-ELSE Logical Control Structure

A WHILE Logical Control Structure

An UNTIL Logical Control Structure

A FOR Logical Control Structure

A Start Node of Program Graph

A Type Node in the Type List

An Array Descriptor ...

A Field Descriptor

A Procedure or Program Node

A Tree Node ..

1

I. INTRODUCTION

The main purpose of programming is to automate the solution of time consuming

problems. Especially if those problems have a repetitive nature, solving the problem

algorithmically, will solve it, hopefully, for all possible cases.

Computers are becoming a very important necessity for not only high-tech oriented

applications, but also for other type of less skill oriented applications (like word processing, file

processing etc.). It seems people with a variety of skills have to use computers in some form.

In other words, programming is becoming a skill as important as basic mathematics and reading

skills.

Programming is a difficult problem itself. It has a very repetitive nature, all programmers

go through similar steps. It is a difficult job for most people. Its difficulty and repetitiveness

suggests that it is a good candidate for automation. If we can automate the programming

process successfully, this Would help not only pure computer scientists, but also millions of

potential users.

The importance and necessity of this automation has been understood by the research

community in the last 10 years50. Quite a few groups are doing research in this area. Although

there are a few experimental systems that are used in a few universities and research

labs16'18*26’27'39-59'67-65, most of us are still living with the old fashioned tool-kit approach. In other

words, we are using independently implemented editors, debuggers, compilers and interpreters

managed by the operating systems. All of these tools have different interfaces, and switching

from one mode to another is not always natural. The representation of programs in various

modes is different : text in editors, machine code in the O.S., a tree representation in compilers

etc. . These representational differences naturally create different requirements in different

applications.

Recent research has shown that it is possible to use the same program representation for

editing, compilation, debugging and interpretation67. The uniformity in the representation also

brings uniformity in the implementation and user interface. It seems, when we integrate these

2

tools, it is possible to create a coherent environment. This is not surprising, since these tools are

logically related (they are all designed for the solution of the problems in the computer).

The reason that people came up with independently implemented tools in the first place,

was the difficulty of these problems (design of system programs) and the lack of understanding

in their solutions. In the last 20 years, it was convenient to concentrate on these tools separately

for the sake of problem simplification. At this point in the development of our science, we have

enough understanding of them to be able to integrate or design them as a whole unit. As a

matter of fact, recent research is a sign of this.

Programming environment research can be grouped into two major categories10:

1) Programming in the large.

2) Programming in the small.

The research on "programming in the large" is concerned with the efforts of groups of

people to develop large software systems with long intended lifetimes. On the other hand,

"programming in the small" is concerned with the efforts of individual programmers to develop

moderate-sized programs (a few thousand lines) within a short period of time (a few months).

Both categories require large amounts of diverse knowledge29-36-42-70.

The ultimate goal of this kind of research, is to design a programming environment that

can create a comfortable environment for different levels of skills and requirements. The

environment should be designed to hide the unnecessary features (for that particular user) and

suggest a simple subset when it is needed.

The main objective of this research is to explore the design and implementation issues in

the "programming in the small" area. An integrated programming environment that supports

structured programming was designed and implemented for this purpose. This environment

supports both pseudo-code and source code development. The psuedo-code is created by using

stepwise refinement. When the design of the pseudo code is complete, it can be translated into

Pascal33.

3

This environment was designed in an integrated way: it will edit, compile, debug, interpret

and translate programs using an integrated tool. The passage from one mode to another is very

natural, because all of them use the same program representation.

4

II. LITERATURE SURVEY ON PROGRAMMING IN SMALL

The tools and techniques which are used in the design and implementation of the recently

developed integrated programming environments will be described below to set up the

background in the field. The problem areas are also discussed for the different aspects of

environment design.

A. USER INTERFACE

Human factors are very important issues that have to be considered in the design of

integrated programming environments. The environment must be designed to provide a

user-friendly interface. The features that are provided in the environment must be designed in a

uniform and consistent way with each other. The major issue in the design of integrated

programming environments is to provide integrated facilities for the program development

activities. These integrated facilities should look like different features of a whole. In other

words, the transitions between the different modes, such as editing, execution, and debugging

must be smooth. The command language should be easy to use, and easy to leam.

A menu-driven approach is used to issue commands in most of the recently developed

integrated programming environments. The menu is usually displayed according to the current

context. Only a subset of the menu is valid for different modes and views.

Menu commands can be issued by using function, arrow and other keys of the keyboard.

It is also possible to use a pointing device (i.e., a mouse) to point to the menu item that is

needed. This is especially desirable if the required string for that command is more than one

character.

It is also possible to use high level programming languages as a command language. In

this case, it is possible to create user tailored complicated commands. In comparison to

menu-driven commands, it is harder to develop such an interface, although it looks more

powerful. Pascal has been used as a subset of the debug command language in the DICE24 and

MAGPIE20 systems . Usually the high level command language is the same language that is

5

used to develop programs in the environment, this provides a uniform treatment of the facilities

in the environment.

Interactive assistance should be provided in an integrated programming environment to

provide a user-friendly interface. Even if there is a menu system, the user has to know what the

menu entries mean. A "help" facility may provide additional assistance for the explanation of

menu entries as in GNOME26.

It is desirable to have a program view larger than 24 lines of text which is provided in

most of the terminals that are used today. It is very difficult to use overlapping and separate

windows on this type of screen because of limited space. Comments are treated as the

description of refinement steps in some environments67- In these environments, the executable

statements and/or other refinement steps that belong to a comment/refinement step are indented

to show the control structure of the program. Holophrasting75, hiding the internal parts of

comments to save space and improve readibility of the whole structure of the program, has been

used as in SUPPORT75 and SED3 to improve the user interface.

It is possible to create different views of the program to speed up the program

development in an integrated programming development environment. For example, one

window may show the names of the procedures, their descriptions, their interfaces and other

windows may be used for variable, constant, and type declarations. The algorithmic content of

the program may be displayed in the form of a flow chart as well as text. More than one

window can be used to display different segments of the different procedures at the same time.

During the execution, the run time stack as well as the contents of the variables can be displayed

on a separate window for debugging purposes. Each of these different views provides important

information to support program development activities. It is especially desirable to have more

than one view on the screen at the same time. In programming environments, such as PECAN53

and MAGPIE20 , high resolution bitmapped displays are used to provide multiple views at the

same time.

6

B. LANGUAGE BASED EDITORS

A language based editor, LBE, is an editor that understands the syntax and semantic rules

of the corresponding language. In comparison to the traditional text editors, LBE's are harder to

implement because they attempt to understand the meaning of their input. In other words, the

CPU and memory requirements of LBE's are higher than those of text editors. Because of the

constant decline in the hardware prices, it is feasible now to implement such editors for some

programming languages.

language based editors are designed to develop programs in the language that they

support. Therefore, they are special purpose editors tailored according to the requirements of

their language. Since a LBE understands the structure of the program, it can display the

programs in a formatted way by using automatic indentation.

A LBE can diagnose the syntax and semantic errors immediately and inform the user

about them by displaying error diagnostic messages, and corrective actions. Some LBE's even

attempt to recover from those errors as in COPE6. Therefore, it is easier to learn programming

in a language based environment. One does not have to remember all the rules of the language

to write correct programs. LBE's have been used successfully in educational environments26-67.

LBE's can support good documentation, good programming styles and reduce typing

efforts. Therefore it increases the productivity of the programmers.

A LBE also forms the nucleus of an integrated set of programming tools to support all

phases of program development. The usage of LBE's in the design of integrated programming

environments is very popular17-20-22*26-67.

The design of language based editors can be analyzed in three categories:

7

1. Template-driven Language Based Editors.

A template is a predefined, formatted pattern of keywords, punctuation marks and

placeholders. Each placeholder designates the syntactic class of permissible insertions67.

Templates resemble the productions of a grammar. In a template-driven editor, there is

almost a one-to-one correspondence between templates and productions in the grammar.

Templates can be used to construct programs in a top-down fashion similar to the construction

of a derivation tree for a string in a language.

Each template corresponds to one production in the grammar, its expansion consists of a

sequence of formatted terminal and nonterminal symbols. The terminals are keywords and

punctuation symbols. Nonterminals are placeholders, which can be expanded by either other

templates or terminals, i. e., identifiers.

Template driven editors enforce a top-down construction of the program. The templates

can be expanded in a consistent way with the corresponding grammar rules. Therefore, it is

impossible to violate syntax rules of the grammar. Since the keywords, punctuation symbols and

indentation are provided automatically, typing effort is reduced.

The usage of templates seems appropriate for most of the control structures, such as IF,

WHILE, and UNTIL. On the other hand, it might be very tedious for expressions. Therefore,

this pure template-driven approach is relaxed to favor expression entry in the text mode in some

systems67. It is possible to have syntax violations in the expressions in such systems.

All the edit operations in a template-driven editor are in terms of templates. The program

is no longer considered as a text. Therefore, some modifications, that seem very easy to do in

text editors, can be a difficult task in a syntax driven environment67. A typical example of this

problem is to convert an existing WHILE statement to an IF statement as in the following

Pascal segment.

8

WHILE (Score > = 0) DO IF (Score > = 0) THEN
BEGIN ? BEGIN

NumScores: = NumScores + 1; -----> NumScores: = NumScores + 1;
Sum: = Sum + Score Sum: = Sum + Score

END END

In the text editor all we have to do is to replace WHILE keyword with the IF keyword and

replace DO by THEN keyword after the expression. In a template-driven editor there are two

possibilities:

1) Provide a special purpose command for this modification. Then we should be

able to enumerate all such possibilities and design the command language accordingly.

2) Use two clip operations to save a copy of expression and statement parts, then

insert a WHILE template and expand the expression and statement parts by using the clipped

information. Finally, delete the IF statement.

2. Language Based Editors without Templates.

Although template driven editors work well for the novice programmers, experienced

programmers may find the usage of the templates tedious. Also, strictly template-driven systems

can not accept programs created outside of that environment. It is desirable to design a system

that can also accept the programs in the form of text files. So, in this group of environments46

the programs can be entered in the traditional way. However, the editor still knows the rules of

the language, so the programmer is informed about the violations right away. It is harder to

enforce syntax and semantic correctness in this type of environment. Incremental compilation is

another issue that is harder to tackle in this type of approach.

3. Hybrid Design.

This group of environments31 provide a hybrid form of editor. The user can freely switch

between the template and nontemplate editor modes. So, it is possible to take advantage of both

approaches. However, it seems that multiple entry modes may bring confusion for the novice

user, and also increases the complexity of the implementation of the system.

9

C. INTERNAL REPRESENTATION

Internal representation refers to the data structures that are used to represent the programs

when they are developed. Internal representation can be discussed in four major categories:

1. Text Representation.

In this approach, the programs are represented as a sequence of characters. This type of

view provides the ability to move the cursor to anywhere on the screen without any restriction.

So, it is possible to issue editor commands, such as INSERT, DELETE, REPLACE, .. etc.,

anywhere on the screen. This provides a uniform view of the program as a sequence of

characters.

Pure text representation is not appropriate for LBE's unless the editor is designed to

develop short programs. Sometimes, text representation is used to speed up display of the

programs in LBE's which contains another data structure like a parse tree to represent

programs. This implies a space overhead, but faster execution. Morris, et al46 designed such an

editor.

2. Token Oriented Approach.

When the programs are entered, lexical analysis is applied and tokens are formed. A linked

list of tokens is the data structure that is used to represent the programs. This type of

representation is more appropriate for language based editors than text representation. There is

no need to reapply the lexical analysis on the program once it is scanned unless it is modified,

this speeds up parsing in comparison to the pure text representation. On the other hand, it is

difficult to decide when and how to reparse the program, and how to support incremental

parsing.

This type of representation is not very popular among LBE designers. Brun, et al14

implemented a token oriented editor for the PORTAL language on VAX/VMS.

10

3. Tree.

Syntax trees and parse trees have extensively been used by LBE designers31-67-75.

A parse tree1 (concrete syntax tree) shows how the start symbol of a grammar (concrete

syntax) generates a string in a language. Therefore, parse trees are language dependent internal

representations. The syntactic sugar (keywords, punctuation symbols, .. etc.) are on the tree as

well as operands and operators. This will speed up unparsing to produce a text image of the

program, but it is not space efficient.

In an abstract syntax tree1 (syntax tree), each node represents an operator and the children

of the node represents the operands. Abstract syntax trees differ from parse trees because

superficial distinctions of form do not appear in syntax trees. It is easier to translate this

language independent representation to produce programs in different programming languages.

A text image for the tree can be generated by using tables or special print procedures.

4. Graph.

A graph data structure is necessary if we want to keep information about data flow as well

as control flow. It is possible to produce optimized code from this representation. It is also

useful to detect data flow anomalies and produce useful information for debugging. The

programs can be interpreted directly by a data flow machine if this type of representation is used

as in Ottenstain, et. al51. Graphs have been used as major data structures in the design of the

incremental programming support environment, IPSEN48.

11

D. EXTERNAL REPRESENTATION

The program can be saved either as text or in a form which helps the construction of

internal representation easily. If the programs are saved as text, then the internal representation

has to be constructed out of the text when the edit session starts unless the internal

representation is text. This may slow down the response time of the system. On the other hand

this implies that the environment is able to process programs which are created outside of the

environment as well. If the program is saved in a form to speed up the construction of internal

representation, the response time will be faster when the edit session starts.

Some systems save both text and coded form of internal representation if they are using

text to speed up the display of the programs.

Even if the text is not required for internal manipulations, it may be desirable to be able to

construct internal representations out of the text to support programs created outside of the

environment.

E. LEXICAL ANALYSIS

Depending on the internal representation, the usage frequency of lexical analysis changes.

If it is a strictly template driven editor, lexical analysis is only needed for the terminal tokens

such as identifiers and constants, and there is no need to form tokens for keywords, punctuation

symbols, and operators. If it is a partially template driven editor, then lexical analyzer may

produce a series of tokens for each text entry corresponding to the expansion of expressions and

assignment statements. In a nontemplate language based editor, lexical analysis has to be applied

to the input program to build the parse tree.

12

F. PARSING

Parsing in the language based environments depends on the internal representation of the

programs. In a strictly template-driven approach, parsing disappears. Because, the parse tree is

constructed top-down when the templates are expanded. In a partially template-driven editor,

the parser only takes care of the expressions and/or assignment statements. A simple parser is

sufficient for this purpose. In the nontemplate approach, a parsing algorithm1 suitable to the

language grammar has to be used to construct the parse tree.

Some language based environments use a hybrid approach for editor design. They let the

user modify segments of the program by using text editor commands. In this case, multiple

entry parsers31 can be used to parse the program segments that are modified on the text window.

In the multiple entry parser, the starting symbol of the derivation is not restricted to the starting

symbol of the grammar. Any nonterminal symbol of the grammar can be used as the starting

symbol for the analysis of a program segment. The subtree that is produced for the text

segment, can then be inserted as the expansion of a placeholder in one of the program

templates. Of course, the root of the subtree must be consistent with the type of expansion

required for that placeholder.

G. INTERPRETER AND COMPILER

1. Interpreter.

Most of the integrated programming environments use an interpreter17’53'67. Since these

interpreters use the internal representation to execute the programs, the speed of the execution

depends on the suitability of the internal structure. Obviously, if the program is kept as a text

internally, the interpretation would be very slow. On the other hand, internal representations

such as trees and graphs can be interpreted rather fast, because the program is already tokenized

and the parse tree is constructed. In the pure template driven editors, a preorder traversal of the

syntax tree will be the basis of the interpretation. In the partially template driven editors, the

object code for the expression and assignment statements can be produced incrementally during

program development, so no translation is needed before the execution starts.

13

Interpreters can be used easily to produce useful debugging information during the

execution, because the operands in the object code are pointers to the symbol table. Therefore,

the contents of the variables can be displayed easily without any overhead. Since the

interpretation is done in a syntax driven way, it is also easy to stop and/or pause the execution

at certain points in the program.

2. Compiler.

Compilers can also be used to execute programs in the language based environments20’24.

Programs can be translated either by using the internal representation or by creating a source file

which is compiled by the compilers outside of the environment. In the later case, it is harder to

implement efficient debugging actions. One way is to extend the source programming language

to define the debugging actions20. Another way is to insert "debugging segments" into the

program code according to the directions of the system commands24.

Obviously, the execution will be faster for the compiled programs, which could be a plus

for the development and testing of large programs.

On the other hand, even if the program is large, the modules can be developed and tested

by using interpretation in a bottom-up way. Once the modules are tested they can be compiled

together to test the program as a whole. If the environment supports the development of large

programs, incremental compilation (at the module level) can be used to speed up the

compilation of the program.

A hybrid approach is best suited for practical purposes. During the program development,

an interpreter provides enormous advantages for the debugging over the compiler. Once the

program is developed and tested, it can be compiled by using optimizer compilers to produce

efficient object code that can be used in the production environments.

14

H. DEBUGGER

The use of interpreters provides powerful debugging facilities. In most of the integrated

programming environments, the same internal structure is used to support the editor, interpreter,

and debugger. Therefore visual feedback about the execution flow can be provided very easily

by displaying the program on the screen and by moving the cursor to the current statement that

is being executed or by highlighting the corresponding area. This feature is called "tracing"67. The

speed of the "tracing" facility can be adjusted during execution by using debugger commands. It

is also possible to switch to a "single-stepping"67 mode. In "single-stepping" mode, the user may

control the execution speed manually. One statement at a time can be executed and contents of

the variables can be checked. Another facility called "reverse execution"67 is a very interesting

facility used experimentally by some environment designers67. Reverse execution has been

provided for the purposes of finding the exact location of a bug. Reverse execution is simulated

by keeping the effects of the assignment statements on a stack and then restoring those

overwritten values back to their locations to cancel the effect of the current assignment

statement. So, the programmer can locate the exact location of the bug by interleaving the

reverse and forward execution.

Although this "visual feedback" provides helpful information to the programmer, this may

slow down the execution speed. Therefore, a classical interpreter mode without any visual

feedback may be provided. Before the execution starts in the classical mode, the programmer

may identify the stop points by using commands like "stop at procedure X", or 'stop at line Y

in procedure X" as in DBX77, debugger of UNIX. When the execution flow reaches that point,

execution may continue in single stepping mode by giving visual feedback.

The "tracing", "single-stepping", "reverse execution", and "classic execution' should be

interleaved smoothly for the successful debugging of programs.

It is also possible to interleave the execution with the edit operations as in Cornell

Synthesizer61. Once the execution is suspended, the program can be edited by using the usual

edit operations. The program execution can be continued if and only if those edit operations did

not create an inconsistency between the program state and activation stack. If an edit operation

15

changes the type of a variable, for example, the execution may not continue with the current

activation stack.

The debugging facilities that are described above can also be implemented in the

environments that use compilers. But the implementation will be much harder, and the

overhead may slow down the response time of the system considerably.

I. ERROR HANDLING

Most of the language based environments produce only diagnostic messages about the

errors. Syntax errors can be detected very easily by the language based editors. It is harder to

implement full static semantic checking. To speed up the response time of the environment,

attributed syntax trees are used for type checking. Every node in the tree carries a type attribute.

When there is a change to the type of an identifier, the type attributes of the nodes that refer to

this identifier (these nodes can be found easily by using reference lists in the symbol table) are

reevaluated. Therefore, it is always possible to find all the statements with the syntax and/or

semantic errors. These statements can be highlighted to give a visual feedback to the

programmer. When the cursor is moved to an erroneous statement, the corresponding error

message can be generated by using the value of the attribute on the node.

Some language based environments attempt to repair the syntax errors as well as

informing about them. The repair may not always be the one which is intended by the user.

Therefore it is essential to provide an "undo" mechanism to eliminate the effect of the repair.

COPE6 is an example of an integrated programming environment which includes an extensive

error repair facility. The user can enter approximate forms of the source program segments. The

error repair mechanism attempts to form a valid program construct out of this incomplete

description. Although it may be desirable to have this type of facility, it is very difficult to

implement for a reasonable sized system.

Language based environments can also detect run time errors successfully. Since most of

them use interpreters, the locations of the operands are found through the symbol table during

the execution. For example, it is very easy to check a reference beyond the array limits. When

16

there is a run time error, the execution can be suspended or stopped by giving a visual feedback

about the exact location of the error.

J. UNPARSER AND PRETTY-PRINTER

Most of the language based environments represent the programs as an abstract syntax

tree internally. To produce a text image out of this tree, it has to be unparsed. Abstract syntax

trees can be unparsed easily by using a preorder traversal. If the nodes on the tree do not carry

information about the concrete syntax (keywords, punctuation symbols, indentation), then

tables or special print procedures can be used to produce this information. If the concrete syntax

is kept on the nodes, it will be unparsed faster but this is not space efficient.

Template driven editors always force the programs to be pretty-printed. The format

(indentation) of each template is part of its definition. So, when a placeholder is expanded, the

template chosen is printed in an indented fashion.

In the nontemplate type editors, once a program segment is entered, it is reprinted by

following the corresponding indentation rules. Since nontemplate editors can not enforce the

syntax correctness, it is harder to pretty-print the program after a syntax error.

The indentation amount that is used by the pretty-printer can be adjusted by the

programmer if the environment contains commands to adjust this parameter.

K. DOCUMENTATION AND COMMENT HANDLING

Comments can be handled in two different ways in a language based environment.

1) Comments can be used in exactly the same way the corresponding programming

language uses them. In this case, the source language defines the rules about how and where to

create the comments.

2) The source language can be modified slightly to treat comments as the

descriptions of the refinement steps67. In this case, the executable statements and/or other

refinement steps that belong to this refinement step are indented to show the control structure of

the program. Therefore, comments are treated as special nodes in the abstract syntax tree. It has

17

been found that this approach not only increases the readability of the programs but also these

descriptions make up the documentation about the logic of the program. The display of the

refinement of a comment can be suppressed by using special commands to present more

information about the program logic in a small area as in Cornell Synthesizer47.

L. TOP-DOWN VS. BOTTOM-UP PROGRAM CONSTRUCTION

Most of the integrated programming environments support top-down

programming40157,58’61'67. It is also possible to support bottom-up program construction in a

language based environment as in reference 32. The programmer can create program segments

and name them. These segments can be kept in a library and can be copied and modified any

time. Finally, these program segments can be arranged to form procedures and programs.

A hybrid form gives advantages of each approach for program construction. In

programming environments like Cornell Synthesizer, the program segments can be clipped and

named. Then, these segments can be inserted at the appropriate places in the program.

Libraries for common algorithmic segments can be kept globally as well as locally. In

other words, the environment may provide a library that contains such segments. The

programmer may borrow any of them when they are needed. It is harder to implement a global

"common algorithmic segment" library. First of all, the segments have to be identified and

implemented. Second, the information retrieval from this library should be fast enough to

represent a comfortable interactive environment for the programmer. Also the programmer

should be educated about the availability of such segments, or about how to fmd the segments

by using an approximate description about them (rather than an exact name). It may be

impossible for the programmer to remember all the names of algorithmic segments in such a

library.

It is desirable to have a library that implements all the operations of abstract data

structures (i. e., linked fist, stack, queue, tree, graph). The system should be able to produce

code for different concrete data structures. For example, it should be able to use the same search

18

segment to search a linked list as well as an array. Although there is an increasing interest on

this area in the field, satisfactory results have not been produced yet29-70.

A satisfactory implementation of such a global library may increase programmer

productivity tremendously. The programmer does not have to reinvent the same segments again.

M. LANGUAGE

State of the art integrated programming environments have been developed for the

languages with simple syntax like LISP and BASIC. Because of the rapid developments in the

hardware technology, computers are becoming cheaper and more powerful everyday. Therefore,

it is possible now to implement such environments for other programming languages.

Prototype environments for programming languages such as ADA, PASCAL, C, FORTRAN,

and PL/I have been implemented. Adi of these environments are tailored according to the

requirements of a particular language. It is only possible to write programs in one language in

these environments.

The internal structures like trees and graphs can be used to create a language independent

environment. The language specific information of the environment can be isolated easily in the

tables, then this information can be retrieved for the display and other language specific

purposes. Some of the example environments that are designed to generate language specific

environments are discussed in references 17, 22, 26, 53 and 55.

The internal structures like trees and graphs are also suitable for translation purposes.

Generation of source programs in different programming languages from such internal structures

is fairly easy. A few systems like ALBE/LNF41 and Schemacode38 experiment with this idea.

Since integrated programming environments are language specific, they have been found

very useful to teach programming languages in educational environments. Because they have

superior programming support facilities, they have also been designed to be used in research and

development environments.

19

The next section summarizes some of the major programming environment research and

discusses the usage of them in educational and research environments, as well as their features to

support multiple programming language's.

N. RELATED WORK

Some of the state of the art integrated programming environments will be discussed below.

Although most of these environments are prototypes and are being used to explore the main

issues in the field, some of them have been used successfully in educational and research

environments.

The Cornell Synthesizer67 is one of the earliest integrated programming environments

developed for a block-structured programming language. The programming language

implemented for the Synthesizer is PL/CS, an instructional dialect of PL/1. It is operational

under UNIX as well as on Terak(LSI-ll) microcomputers. The Synthesizer has been adopted

for elementary programming instruction at Cornell University, Rutgers University, Princeton

University, and Hamilton College.

Another project55 at Cornell University concerns the development of a

language-independent system for generating Synthesizer-like systems from a grammatical

specification of a given programming language. An attribute grammar is used to define the

syntax, display format, and semantics of each template and phrase.

An Interactive Software Development Environment, ISDE17* was implemented in Berkeley

Pascal on UNIX. It is possible to derive an environment for a specific language as an

instantiation of a language-independent meta-environment in ISDE. Environments for the

subsets of ADA, PASCAL, MODULA-2, and GALILEO have been partially generated.

The SUPPORT75 environment,The Still Unnamed Production Programming Oriented

Research Tool Environment, was implemented in PASCAL for a VAX 11/780 under Berkeley

UNIX. It also runs on a Sun Microsystems workstation and on an IBM PC computer. It

provides an integrated program development and execution environment for a subset of

PASCAL.

20

P O E 22, Pascal Oriented Editor, is a full-screen language based editor, which is

implemented as a first step in development of a comprehensive Pascal program development

environment. It is operational on VAX ll 's under Berkeley UNIX and on HP 9800 series

personal workstations. Poe is written in Pascal, and it is designed to be readily transportable to

new machines. HP 9800 version of Poe contains 27,000 source lines and requires about 270K

bytes of main memory. An editor-generating system called POEGEN is also implemeted by the

same group.

The Distributed Incremental Compiling Environment, DICE24, is a highly integrated

programming environment which provides programmer support in the case where the

programming environment resides in a host computer and the program is running on a target

computer that is connected to the host. DICE is implemeted in 20,000 lines of INTERLISP on

a DEC20 computer. Its incremental compiler accepts almost full Pascal including input-output

facilities.

Gandalf Novice Programming Environment, GNOME26, is used to teach programming to

undergraduates at Carnegie-Mellon University. It runs on VAX 11/780's under UNIX.

GNOME Pascal editor implements standard Pascal, and uses Berkeley Pascal interpreter to

generate code and do the rest of the semantic checking. GNOME environment has 3 other

syntax-directed editors : a family tree editor, a Karel editor, and a Fortran editor that are used

for educational purposes. ALOE editor generator has been used to develop this family of

structured editors.

MAGPIE20 is an interactive programming environment for Pascal. MAGPIE is

implemeted on an engineering workstation that was developed as a research tool within the

Computer Research Laboratory at Textronix. It consists of more than 40,000 lines of Pascal

code and about two thousand lines of C and assembly language code.

Arcturus62, a Prototype Advanced Ada Programming Environment, is another system that

explores key programming environment issues. It offers an approach to the integrated use of

compiled and interpreted Ada. Arcturus has been used with considerable success in the compiler

classes at University of California, Irvine.

21

SYNED2S'31 is the editor component of an interactive programming environment under

development at Bell Labs. It is designed to accommodate the needs of professional programmers

at Bell Labs. Syned accepts almost full C language and runs under UNIX.

PECANS3 is a program development system generator for algebraic programming

languages and has been developed at Brown University. An important objective of PECAN

project is to investigate ways of making full use of the computing power and graphics available

on the new generation personal computers. It is implemented on APOLLO workstations.

COPE6, a Cooperative Programming Environment, is developed at Cornell University. It

implements PL/C, and provides automatic error-repair. It is written in C and runs under UNIX

on a VAX.

The ALICE68 Pascal system was developed by Looking Glass Software for the ICON

computer and other 16-bit machines. It was created for the Ontario Ministry of Education and it

is one of the fust syntax-directed editors to go beyond the prototype stage and the full

educational software market. ALICE has been tested with high school students in the Waterloo

region.

An Incremental Programming Environment, IPE45, is based on compilation technology,

but provides facilities traditionally found only on interpretive systems. The IPE prototype runs

under UNIX on a DEC/VAX. This environment also contains an editor generator.

PASES61 is an interactive programming environment that supports the creation of Pascal

programs.

A program development system, SIMPLE16, supports the development of Pascal

programs. SIMPLE is implemented on a PDP 11/34, under RSX-11M operating system; the

output programs are compiled and run on a Univac 1100/80.

PAS LAB27 is a computer learning package to develop programs in Pascal. It has been

used to teach programming courses at Worcester Polytechnic. PASLAB allows student to

understand what is happening inside the computer relative to statements in Pascal programs

constructed by an expert.

22

PMS69, A Program to Make Learning Pascal Easier, is also developed to be used in an

educational environment. PMS is organized as a collection of "minilanguages' each of which

demonstrates and allows the user to experiment with, a certain category of Pascal features. PMS

is written in Pascal and runs on several computers including the IBM PC. It has been used to

teach programming courses at Acadia University.

ALBE/P41 is a language-based editor for Pascal. ALBE/P has been modified as

ALBE/LNF in which programs can be entered in Language-Neutral Form (LNF), a Pascal

subset with language features common to C, PL/I, and ALGOL. When the program

development is complete, ALBE/LNF can generate equivalent programs for the programming

languages Pascal, C and Fortran. ALBE is implemented in VAX/VMS.

A Conversational Algol system, CONA7, is an environment for Algol-60 language. It has

been used in introductory programming courses at University of Sheffield. CONA was

implemented in Algol 60 and runs under Maximop.

CAPS73 is a highly interactive diagnostic compiler and interpreter that allows beginning

programmers to prepare, debug, and execute fairly simple programs at a graphics display

terminal. It has been used to teach Fortran, PL/I and Cobol in the programming courses at

University of Illinois at Urbana-Champaign.

The Lisp Tutor* is designed to teach LISP at Carnegie-Mellon University. It is a large

LISP program that runs under Franz LISP on VAXes, and it brings Al techniques into

educational-software development. It has been observed that it can lead college students to

faster, more effective learning of LISP programming.

IPSEN48, an Incremental Programming Support Environment, is an environment in which

all software documents are represented internally by graph-like high level data structures. It

supports programming in large as well as programming in small.

SEE39, A Student's Educational Environment, is designed to teach ADA programming

language. It provides a toolset that includes an 'Analogy' Knowledge Base, a network of

language subsets and a structure oriented editor.

23

Bonal et al12 developed an Informal Programming Language, IPL, which is based on

programming like semantics with a Natural-Language like format. The approach relies on a

system knowledge of the domain to disambiguate the IPL code. This type of interface can be

used as an interface for a database system and as the front-end of a programming tutor.

Integral C59, developed at Textronix, Inc., is an industrial grade integrated programming

environment for C programming on an engineering workstation. It runs under Ultrix on a VAX

station equipped with a bitmapped display.

Cedar65 is a programming environment which was developed at Xerox Palo Alto Research

Center. Cedar supports the development of programs written in a single programming language,

also called Cedar. Its primary purpose is to increase the productivity of programmers whose

activities include experimental programming and the development of prototype software systems

for a high-performance personal computer.

O. PROGRAMMING IN THE LARGE

The integrated programming environments for programming in the large includes facilities

to automate all kinds of software-development activities, such as organization and project

management, requirements definition, system design, software design, implementation,

programming, quality assurance, enhancement and repair, security and privacy34.

Facilities provided for programming in the small is only a subset of the whole

environment. An environment that supports all phases of the software life cycle should be

designed in a uniform manner for all aspects of software development activities. In other words,

the design philosophy and command language must be uniform for all the tools provided by the

system. The transitions from one tool to another must be smooth. Examples of such

environments can be found in references 15, 28, and 48.

24

III. DESIGN AND IMPLEMENTATION OF IPE-PC

An integrated programming environment that supports structured programming was

designed and implemented. This environment supports both pseudo-code and source code

development. A Pascal like programming language has been developed and used as the basis of

the environment. The internal representation of a program is a graph and used uniformly in

every mode of the environment. The environment supports the editing, compilation,

interpretation, debugging, and translation of programs.

A. LANGUAGE DESIGN

A programming language is designed according to the requirements of a language based

environment. A lot of features are implemented as in Pascal. Only the original features of the

language will be discussed here.

1. Motivation.

Programming languages are designed according to the requirements of the environments in

which they are used. In the traditional programming environments, the programs are developed

by using the text editors where the programs are represented as text, a sequence of characters.

This text is then processed by the compilers to produce an executable version of the same

program. Therefore, some redundant features, such as keywords and punctuation symbols, are

used in the language syntax as aids to the user. For example, in the following Pascal program

segment;

WHILE (I < = N) DO
BEGIN

N FA CT:= N FA C T * I ;
I := I + 1

END

the BEGIN-END pair is needed to enclose the statements that belong to the WHILE loop.

Since programming languages like Pascal are free format, such keywords and/or punctuation

symbols are needed to show the scope of a statement list-. The compiler for such a language is

blind to the format and indentation that is used by the programmer. In other words, the

programmer has to learn to use keywords and punctuation symbols appropriately for the sake of

25

the compiler and a reasonable set of format and indentation rules for the sake of himself and

other interested parties. Basically, a combination of formal and informal rules have to be used to

develop programs in such languages. Since every programmer has a different taste, the programs

which are created by using different styles may look different although they follow the same

formal rules. Another typical example is the dangling-else problem;

IF (Number > = 0) THEN
IF (Number > Largest) THEN

Largest : = Number
ELSE IF (Number < Smallest) THEN

Smallest : = Number
ELSE

WRITELN('Negative Number');

In the Pascal segment above, the intention of the programmer is clear from the program

segment ; ELSE part is intended to belong to the first IF statement. On the other hand, a Pascal

rule states that in a nested IF statement, each ELSE clause is matched with the nearest

preceding unmatched IF, so the program segment above is interpreted by the compiler as if the

intention of the programmer is as follows:

IF (Number > = 0) THEN
IF (Number > Largest) THEN

Largest := Number
ELSE IF (Number < Smallest) THEN

Smallest : = Number
ELSE

WRITELN('Negative Number');

Even experienced programmers may find themselves in a similar situation. The problems stated

above can be eliminated if the language is designed as fixed-format. If a template driven editor is

used to support such a language, the correct format and indentation will be provided by the

system. Keywords will only be used to differentiate instruction types. There is no need to use

the punctuation symbols because the format and indentation of the statements will show their

scope. This would eliminate problems caused by misspelled keywords and missing/excessive

punctuation symbols. A problem in such an environment may come from the small screen area

that is provided on most terminals. If the nesting level is too deep, there may not be enough

space left on the screen for the indentation. This problem can be solved by providing a left-right

scroll facility in the editor. Indentation amount can be adjusted by the system and/or

programmer automatically according to nesting level or taste. Fortunately, deep nesting does not

occur very often. Even jf the left-right scroll facility is not provided, the system may inform the

26

user about the problem and ask the user to reduce the indentation or implement the current

refinement as a procedure.

Another aspect that should be considered in the design of an integrated programming

environment is its suitability to simulate the programming process. The traditional programming

environments assume that the program has already been developed on a paper in the form of a

pseudo-code or the programmer has a clear picture in his mind about the control structures

(i.e., procedures and their interfaces) when he sits in front of the terminal. Therefore, when the

programmer enters the code he does not necessarily include documentation, since typing is a

time consuming process. Documentation is probably left on a scratch paper that is used when

the program logic is developed. Missing documentation often becomes a problem during

program maintenance which is a very costly process.

Most text books on programming encourage the programmers to design programs

top-down by stepwise refinement. Top-down programming produces program documentation as

a natural output of the process. Automation of program development opposed to program

typing provides the following advantages:

1) The documentation will be saved automatically.

2) It will provide a more organized, cleaner and faster environment for program development.

3) Such an environment can be upgraded to provide automatic source code generation from the

pseudo-code.

One of the important objectives of this project is to design an environment that can

automate top-down programming by stepwise refinement. Such an environment can automate

pseudo-code development as well as source code.

2. Control Structures.

The simplicity is one of the main objectives of this design. Only three basic logic control

structures are sufficient for the expression of any program logic34. These basic control structures

are sequence, IF-ELSE, and WHILE structures. In the current prototype, sequence, IF-ELSE

27

IF-ELSE, WHILE, UNTIL and FOR control structures are implemented. However, the

language can be upgraded to include more sophisticated control structures like CASE.

a. Sequence.

The sequence structure is concatenation of one or more statement nodes. It is represented

as a linked list internally as shown in Figure 1. It is possible to insert and delete new statements

at any point in the list. All of the statements that belong to the same sequence structure have

the same indentation level. Each of the statements in the list can be expanded by using the

appropriate templates, such as assignment, if, while, etc..

-> < = > - > ->

Figure 1. A Sequence Control Structure

b. Comments.

A comment is text written in pure English to explain parts of the program. It starts with a

special character that is produced by the editor. The character that is used in the prototype is

It is preferable to use one of the special graphic characters provided on the terminals for this

purpose. However, this would make the implementation terminal dependent. The editor can be

modified to include commands to change this character according to the taste of individual

programmers.

The difference between comment statements in this language and Pascal is not only

syntax. A comment statement in this language can be best described as the description of

refinement steps. The statements that are used to achieve the purpose of a comment are

indented to show the logical structure of the program. So, the programmer may start

programming by specifying the important tasks that should be performed for the solution of the

problem. Each step will be described by using one comment statement. Then, these comments

28

can be refined by using other comments and/or statements which are indented properly. By

using such a comment facility, stepwise refinement of top-down programming can be automated

effectively. One distinguishing feature of this environment is the following: the programmer can

choose to transform a refinement step to a procedure anytime. If the programmer points to a

step and issues a procedure construction command, the system will ask for the name of the

procedure and then it will create a procedure with this name. The body of the procedure will be

the comment and its refinement. The corresponding program segment will be deleted from the

main program by the system. The user can insert the appropriate call statement at that position

and define the procedure interface by using the editor commands. A conversational facility can

be used to help automation of the procedure interface description and procedure call insertion at

this point. Procedure construction commands can be issued for the other control structures as

well.

29

c. IF Statement.

It provides a choice between two alternatives as it is described in Figure 2.

IF (expression) THEN
sequence A

ELSE
sequence B

Figure 2. An IF-ELSE Logical Control Structure

30

d. IF-ELSE IF-ELSE Structure.

This control structure is used in the applications where the control flow depends on a

series of predicates. The actions that have to be performed for each predicate is different.

Although this type of logic can be implemented by using a nested IF-ELSE structure, inclusion

of IF-ELSE IF-ELSE structure does not necessarily imply a redundancy in the language. It

eliminates the deep nesting levels that might be a problem in a template driven editor. Another

problem with the deep nesting level is poor readability.

Since CASE statement is a special case of IF-ELSE IF-ELSE structure, it is not included

in the design.

31

IF Pa THEN
sequence 0

ELSE IF />, THEN
sequence 1

ELSE IF P2 THEN
sequence 2

ELSE IF Pn THEN
sequence n

ELSE
sequence n + 1

Figure 3. An IF-ELSE IF-ELSE Logical Control Structure

32

e. Iteration.

WHILE , UNTIL, and FOR structures are included in the language to provide basic

looping capability. These iteration structures are described in Figures 4, 5, and 6.

WHILE (expression) DO
sequence

sequence

7R

true

false

Y

Figure 4. A WHILE Logical Control Structure

33

REPEAT
sequence

UNTIL (expression)

Figure 5. An UNTIL Logical Control Structure

34

FOR var < - initial TO final BY inc
sequence

Figure 6. A FOR Logical Control Structure

35

Pascal uses different syntax for procedures and functions. A simpler approach, similar to

C37, is preferred in this design, a single procedure type will be used to define both procedures

and functions. When the procedure call is used as a separate statement the returned value is

ignored, otherwise the returned value will be used as the value of the procedure.

The procedure interfaces must be described explicitly. Procedures communicate with the

caller through the parameters and global variables. There are two kinds of parameters namely

input and output parameters.

a. Input Parameters.

Input parameters specify the locations for the input values which must be supplied for the

execution of the corresponding procedure. They are implemented by "call by value" mechanism.

So, any updates to these variables do not create any side effect.

b. Output Parameters.

Output parameters are the values calculated by the procedure to be returned to the

invoking procedure. They are implemented by "call by reference" mechanism. Any update to

these locations will be reflected in the corresponding actual parameters.

c. Access to Nonlocal Names.

Any global access must be defined explicitly in the symbol table of the procedure.

Procedures can only access the variables of the main program as globals. The scopes of the

variables are lexical. Since no nested procedure declarations are allowed, all nonlocal names may

be bound to statically allocated storage.

The syntax of a procedure call is similar to Pascal with one exception. Actual parameters

corresponding to the formal input parameters precede the actual parameters corresponding to

the formal output parameters. This principle simply reflects the black box view of the

3. Procedures.

36

procedures.

readability.

It is only logical to place these two group of parameters separately to increase the

Input
------- >

Procedure

A

V
Global

Output
---------->

37

It is possible to generate different views of a program in a language based environment.

Views can be classified as local and global. Description of these views are important to explain

language design as well as implementation because these views show how the program is

presented to the programmer. The operations that can be performed in each view will be

discussed later.

a. Local Views.

Local views are about the specific information for each procedure and main program.

There are three kinds of local view:

1) Algorithm View; This view displays the algorithmic structure of the procedure or

main program.

2) Symbol Table View: It displays the declaration of identifiers that are referenced in

the corresponding algorithm. Each identifier has its own definition which consists of four fields:

name, type, kind, and comment. There is no need to use any separators between the fields and

declaration units since the symbol table is fixed format. Declarations, with < unknown > type

and kind attributes, are created automatically during the program development if the

corresponding identifier is not already defined. This symbol table view corresponds to the

variable declaration statements of Pascal.

Symbol name is a unique identifier whose length is up to eight characters.

Symbol type is either a basic data type (integer, character, real, and boolean) or a user defined

type identifier.

Symbol kind can be input, output, global, local, or proc. Input kind is used to define formal

input parameters. Output kind is used to define formal output parameters. Global kind is used

for the explicit declaration of global variable access and local kind is used to define local

variables. Similarly, proc kind is used to represent identifiers for the procedure names.

Symbol comment field can be used to explain the purpose of an identifier.

4. Views.

38

3) Execution View can be used to display the contents of the symbols in the current

scope during the execution. Execution view is implemented by using the data structure used for

the symbol table view.

b. Global Views.

Global views summarize global information for the whole program.

1) Procedure view: This view creates an index to all the procedures and its main

program. Names of the procedures are displayed as a list. Operations are provided to define

and/or change the interface of each procedure.

2) Type view: Definition of user defined data types is global. Since all the user

defined types have to be created in this view, type definition can not be part of a variable

declaration. This approach simplifies the implementation and language.

Each of these views are implemented as a separate window. In the current

implementation, it is only possible to see one view at a time.

5. Input and Output Facilities.

READ and WRITE statements are implemented as procedure calls supported by the

environment. A conversational style for input editing is implemented as follows: When a

READ statement is interpreted, the system generates a message that gives the name of the

identifier and the expected data type. If the programmer enters a wrong data type, the system

produces a diagnostic message and asks again for a correct value. This conversation goes on

until the programmer enters correct data or quits the execution. This simplifies the coding,

because the programmer does not have to include unnecessary WRITE statements to create an

informatory interactive environment. Similarly, the WRITE statement prints the name of the

identifier with the corresponding data value. All of this conversation is kept in a fde that can be

referred to at the end or during the execution. Appendix F includes an interactive I/O file

produced from the execution of an example program given in Appendix C.

39

B. INTERNAL REPRESENTATION

The internal representation of programs is a graph. The start node of the graph contains

ten fields; one field points to a linked list called "type-list" and another points to a linked list

called "program-list". Both are doubly linked lists. The other eight fields are used for mapping

information about the type and program lists.

Type -> Type - > Type . . . - > Type
List
Pointer

Def 1 < - Def 2 < -... Def n

Program -> Main - > Proc ...- > Proc
List
Pointer

Pgm < - 1 < -... n

Mapping
Pointers

Figure 7. A Start Node of Program Graph

40

Type-List is used to create the type view. Every node in the list, contains the following

fields:

Name, a unique type identifier whose length is up to eight characters.

Code shows the kind of user defined data type. Array and structure types are implemented in

the current prototype.

Size shows the storage requirements for an object with this type.

Comment explains the purpose of the type definition.

Row and Lines are used to calculate the mapping information. "Row" shows the current row

for this type definition. "Lines" shows the number of necessary lines to display the whole type

definition.

Id-List, a linked list of symbol table entries that use this type definition.

Type-Ptr points to the type descriptor for this aggregate data type. Different type descriptors are

needed for the specification of arrays and structures.

1. Type-List.

Figure 8. A Type Node in the Type List

41

Type Descriptor for array is a node that contains the following fields:

Information contains the text entered by the programmer for the definition of

array dimensions.

Object contains information for the number of dimensions and limits for

each dimension.

Code shows the data type of each element in the array. Separate integers are

used to show basic data types. If the code is aggregate data type then

Type-Ptr field of the descriptor points to the corresponding node in the Type-List.

Information
Object
Code

Type-Ptr

Figure 9. An Array Descriptor

Type Descriptor for structure is a doubly linked list of field definitions. Each node in the list

contains the following fields for the description of a field:

Name, a unique field name whose length is up to eight characters.

Offset shows offset of this field in the structure.

Code shows the data type of this field. If the data type is aggregate, then

Type-Ptr field in the node points to the corresponding type definition in

the Type-List.

Figure 10. A Field Descriptor

42

Program-List is used to create other views in the environment. The first node represents

the main program. The rest of the nodes are for the procedure definitions. A Program-List node

contains the following fields:

Name, a unique procedure name whose length is up to eight characters. Name of the main

program is "main" by default.

Symbol Table, a data structure for the symbols defined in this procedure. In the current

prototype, an open hash-table'of size 100 has been used as the data structure for the symbol

table implementation. A hash function is applied on the symbol names to find hash position.

The identifiers with the same hash value makes up a linked list at that hash position. The fields

of a symbol node in the hash table are described as follows:

Name, a unique symbol name whose length is up to eight characters.

Comment field can be used to insert explanation about the symbol.

Offset of the symbol in the activation stack.

Type can be a basic data type (integer, character, real, or boolean) or an aggregate

data type. Integer codes are used to differentiate between basic data type and

aggregate data type. If the type is aggregate then

Type-Ptr field points to the corresponding type definition in the Type-List.

Reference List pointers are used to show the head and tail of reference list. This

list contains addresses of the nodes that reference this symbol.

Root points to the syntax tree of this procedure. Abstract syntax tree for the algorithmic part of

a procedure is constructed by using the tree nodes that are described below. Construction of

syntax trees will be discussed later.

There are nine fields in a tree node:

Information contains the text entered by the programmer (i.e. assignment

statements, expressions, procedure calls and comments).

Code is an integer code that shows the node type. Possible node types are

procedure root, program root, if, else, else if, while, until, for, lb, ub, inc,

variable, expression, procedure call, return, and statement.

Valid is a type attribute for the node. It shows whether there is a

2. Program-List.

43

syntax/semantic error in the information part of the node.

Parent, Child, Sibling, and Reverse-Sibling are pointer fields that point to the

parent, child, right-sibling, and left-sibling of the node, respectively.

Object contains the object code produced for the expressions, assignment

statements and procedure calls.

Object-Size shows the size of the object code.

Mapping Information About the Symbols is implemented with four pointer fields. The hash

table keeps the information about the symbols unordered. The order of the symbol definitions is

kept in a doubly-linked mapping list. Each node in this list contains two fields. The "Row" field

shows the current row of the symbol definition in the window. The "Place" field points to the

symbol node in the hash table. "Var-Chain" and "Var-Tail" show the first and last item in the

variable mapping list. "Var-Start" and "Var-Finish" fields show the first and last symbols in the

current window.

Mapping Information About the Algorithmic Part, Syntax Tree is implemeted with four pointer

fields. The internal representation of algorithmic part of a procedure is an abstract syntax tree.

This abstract tree has to be unparsed to construct a text image to be displayed in the algorithmic

window. A mapping list is constructed by using a preorder traversal of the tree. Each node in

the mapping list contains the following fields:

Place points to a node in the tree.

Row shows the current row of the text that corresponds to the text image of

the node.

Line shows the number of lines needed to display the whole unit.

Col shows the indentation level.

"Chain" and 'Tail" show the first and last nodes in the mapping list. "Start" and "Finish" show

the first and last nodes of the mapping list in the current algorithm window.

Size shows the size of the activation record for the procedure.

Input, Output and Global pointer fields are used for the description of the procedure interface.

Each of them points to a linked list. A node in the input list simply points to a formal input

parameter in the symbol table. Output and global lists are defined similarly. A node in the

44

output list points to a formal output parameter and the global list is used to keep track of global

variables.

Name
Symbol Table

Root (Pointer to the root of
the program/proc tree)
Four mapping pointers
for the Symbol Table

Four mapping pointers
for the algorithmic part

Size
Pointer to the Input List

Pointer to the Output List
Pointer to the Global List

Figure 11. A Procedure or Program Node

3. Mapping Pointers.

Four pointer fields are used for the mapping information of the type list. Two of them are

used to point to the first and last type nodes in the type list. The other two are used to show

first and last nodes in the current window. These pointers are used to create the Type-Window.

Other four pointer fields are used to create the Procedure-Window similarly.

45

C. LANGUAGE BASED EDITOR

A template driven language based editor has been used as the basis of the programming

environment. Templates are used to generate major control structures. Expressions, left hand

side of the assignment statements, procedure calls, and comments are inserted in the text mode.

Syntax trees for the program/procedure are constructed by the usage of the templates during the

program development. A recursive descent parser1 has been used for the expression parsing and

translation into a postfix object code.

1. Templates.

Templates are used to develop algorithmic structure, variable declarations, and type

definitions of the program as described below.

a. Algorithm Window Templates.

Each template corresponds to a subtree that can be inserted into the syntax tree as the

expansion of a template/placeholder. Templates and the corresponding simplified trees are

described below (the dash under the placeholders shows the current position of the cursor).

Each node in the tree consists of four fields. The code field is an integer that shows the node

type, information points to a text string, child points to the first of the children of this node, and

sibling points to the sibling of the node. Figure 12 describes the tree node that will be used in

the following trees. Only the contents of the fields will be shown in the trees. A constant

identifier has been used to show different node types. If a pointer field is never used in a node,

its content will be represented as 'NIL'. If it can be expanded, it will be represented as

Figure 12. A Tree Node

It is generated by the editor as the root node of the main program.

1) Main Program Template

46

Template

Main Program :

Tree

If an insert command is applied at the main program template, the cursor moves to the end of

the header string, "Main Program and any text entered by the programmer is typed starting

from this position.

Template Tree

Main Program : This is a program description

PGM

a program
description"

NIL

47

Only a refinement step, an indented statement template, can be inserted to expand a main

program template/comment. After applying the refinement step command at the current

position of the cursor the syntax tree is modified as follows.

Template

Main Program : This is a program description
< statement >

Tree

2) Procedure Template

It is generated as the root node of the syntax tree when a new procedure is constructed (for the

following example, assume that the procedure name is '"sort").

Template Tree

sort procedure :

Editor operations are applied on this template in a similar way to the main program template.

It is used to generate a statement in the program.

3) Statement Template

48

Template

< statement >

Tree

It can be expanded as a comment by inserting text at the current position of the cursor.

Comment

-This is a comment

Tree

A refmement step can be inserted as the expansion of a comment template as follows.

Refinement Step Tree

-This is a comment
< statement >

49

It is used to generate an IF statement. A statement template can be expanded as an IF template

as follows.

4) IF Template

Template

< statement >

Tree

An "IF" command produces the following expansion at the current position of the cursor.

Template Tree

IF < expression >
< statement >

50

ELSE part of the IF statement is optional. An "ELSE" command at the current position of the

cursor produces the following expansion.

Template Tree

IF < expression >
< statement >

ELSE
< statement >

51

It is used to generate an "ELSE IF" part in an existing IF statement. An "ELSE IF" command

at the current cursor position of the program segment above produces the following expansion.

5) ELSE IF Template

Template

IF < expression >
< statement >

ELSE IF < expression >
< statement >

ELSE
< statement >

Tree

52

"ELSE IF" command can. be applied at the beginning of an ELSE IF template as well. A

second application of the command at the current position of the cursor produces the following

modifications.

Template

IF < expression >
< statement >

ELSE IF < expression >
< statement >

ELSE IF < expression >
< statement >

ELSE
< statement >

Tree

53

It is used to generate a WHILE statement. A statement template can be expanded as a WHILE

statement as follows.

6) WHILE Statement

Template

< statement >

Tree

A "WHILE" command produces the following expansion at the current position of the cursor.

Template Tree

WHILE < expression >
< statement >

54

An "UNTIL" command produces the following expansion when it is applied on a statement

template.

Template Tree

REPEAT
< statement >

UNTIL < expression >

7) UNTIL Statement

The internal representations of WHILE and UNTIL templates are the same. Therefore,

implementation of commands that can change an existing WHILE statement to UNTIL or vice

versa does not carry any overhead for the modification of internal structure. Only the displayed

text has to be reprinted by using the appropriate keywords.

55

A "FOR" command produces the following expansion when it is applied on a statement

template.

8) FOR Statement

Template

FOR <var> <- < lb> TO <ub> BY <inc>
< statement >

Tree

56

It is used to generate an assignment statement. An "assignment" command at a statement

template produces the following expansion.

Template Tree

< var > < - < expression >

9) Assignment Template

Assignment statement is the same as the assignment statement in Pascal with the following

exception; it is possible to assign a real quantity to an integer location by omitting the fractional

part. The assignment operator, is also different. The environment can be made flexible

enough to change this operator during the edit session.

57

It is used to generate a procedure call statement. A "procedure call" command at a statement

template produces the following expansion.

10) Procedure Call Template

Template

< Procedure Call >

Tree

STM

CALL

NIL
NIL

11) Return Template

It is used to generate a return statement. A "return" command at a statement template produces

the following expansion.

Template

retumQ

Tree

STM

.

RETURN
.

NIL
NIL

Insert command can be used to insert an expression in the return template.

58

b. Variable Window Templates.

Variable declarations are created by using the variable template. A variable template

consists of four fields.

Variable Template

< identifier > < type > < kind > < comment >

The first placeholder can be expanded by inserting a unique variable identifier, the second

placeholder can be expanded by inserting a basic data type or user defined type identifier. Basic

data type identifiers are int, real, char, and bool for integer, real, character, and boolean types,

respectively. The kind field is expanded by inserting one of the five possible kinds; input,

output, global, local, and proc for the formal input parameter, formal output parameter, global

variables, local variables, and procedure names, respectively. Comment field can be expanded

by inserting a text for the explanation of that variable. The internal representation of variable

declarations is a combination of a variable mapping fist and a hash table as was discussed

previously. Each of the fields in the template has a fixed starting column in the window.

c. Type Window Templates.

The basic type template consists of three fields.

Type Template

< type identifier > < type description > < comment >

The first placeholder can be expanded by inserting a . unique type identifier. The second

placeholder can be expanded by using an array or structure template. After applying "array

construct" command at the current cursor position of the following type template,

list < type description > < comment >

59

the following expansion is obtained:

list array < dimensions >
of < type ^ < comment >

< dimensions > placeholder can be expanded by entering a valid dimension description, and

< type > placeholder can be expanded by entering a basic data type or user defined data type

identifier. After applying "structure construct" command at the current cursor position of the

following type template,

data < type description > < comment >

the following expansion is obtained:

data struct < comment >
< field > : <type>

< field > placeholder can be expanded by entering a unique field identifier. Expansion of

< type > placeholder is described earlier. Any number of fields can be added to the structure by

using editor commands. Internal representation of type templates is discussed in the previous

section.

60

2. User Interface.

User interface will be described below. The details can be found in the user manual

provided in Appendix B. The screen area is divided into three windows described as follows.

a. Top Window.

The first 21 lines of the screen are used as the top window. There are ten possible views

supported by the system, namely: welcome, file directory, clip directory, clip display, procedure,

procedure interface, algorithm, symbol table, type and execution. In the current prototype, it is

only possible to see one view at a time in the top window.

Welcome View

Welcome view displays a welcome message. Programmer can use the commands displayed at the

menu window to perform the following actions;

• to look at the file directory,

• to edit a program, and

• to leave the environment.

File Directory View

File directory view displays the names of the programs in the directory. The operations that can

be done in this context are;

• a program file can be deleted from the file directory,

• a program file can be copied to create a new program, and

• quit command takes the programmer back to welcome window.

Clip Directory and Clip Display Views

Clip directory view displays the names of the program segments, clips, that are saved by the

programmer. Clips can be created in the algorithm window by deleting or copying an existing

program segment. These segments can be copied to the appropriate points as the expansion of a

statement template in the algorithm window.

Unwanted clips can be deleted in the clip directory window. It is also possible to invoke

the clip display view to look at the contents of a specified clip.

61

Procedure and Procedure Interface Views

Procedure view displays names of the procedures and main program. The following operations

are possible;

• to change the order of the procedures in the window,

• to look at the procedure interface view for a specified procedure and

change the order of parameters,

• to copy a procedure,

• to delete a procedure,

• to invoke the algorithm view of a specified procedure or a main program,

• to quit the view by saving the current program and return to the welcome window

after issuing quit command.

Algorithm View

Algorithm view is supported by a template driven language based editor. Algorithms are

constructed by using templates and inserting text at the appropriate placeholders. Diagnostic

messages about syntax and semantic errors are displayed in the message window. The following

operations can be performed;

• Expanding < statement > placeholder as a comment. Comments can also be inserted

at the main program and procedure header templates.

• Inserting text at the < var > , < expression > , < procedure call > , < lb > , < ub > ,

and < inc > placeholders. When text is entered/modified at these placeholders, object

code in postfix form is created and inserted into the internal node. Attributes of the

node are also adjusted according to the results of syntax and semantic checks. If there

is an error, a diagnostic message is displayed in the message window and the

corresponding statement on the screen is highlighted.

• The text which is inserted by using the comment construction and insert operations

can be modified in text editor mode.

• Expanding < statement > placeholder with IF template.

• Expanding < statement > placeholder with WHILE template.

• Expanding < statement > placeholder with UNTIL template.

• Expanding < statement > placeholder with FOR template.

62

• Expanding < statement > placeholder with assignment template.

• Expanding < statement > placeholder with procedure call template.

• Expanding < statement > placeholder with return template.

• To move to parent node.

• To move to sibling node.

• To find the locations of all the statements with the syntax and/or semantic error.

• A statement and its refinement can be saved in the clip directory by deleting/copying

that program segment.

• An unnamed clip can be constructed by deleting a statement and its refinement

• Only the refinement part of a statement can be deleted to construct a named or

unnamed clip.

• A < statement > template can be expanded by using a named or unnamed clip.

• A statement and its refinement can be transformed into a procedure.

• A statement and its refinement can be deleted.

• Execution in single-stepping mode can be started.

• Quit command takes the user back to the procedure window.

• The cursor can move to the beginning of templates and placeholders. Different

commands are provided for upward, downward, left and right direction cursor

movements.

• The refinement steps that belong to if, else, while, until, for, program and procedure

headings, and comments are implemented as a statement fist. Commands are provided

to insert a statement preceding or following a current statement.

• To produce the listing file of the program.

• To produce the Pascal version of the program.

• To print out the input and output file.

• To invoke type and local symbol table views.

• To invoke the algorithm view of a specified procedure.

63

Symbol Table and Type Views

Symbol table view is used to create variable declarations in a template driven fashion as

discussed earlier. During the program development if one of the variables that is used is

undeclared, the declaration of that symbol is created automatically with < unknown >

attributes.

Type view is used to define user defined data types.

Execution View

Execution view displays the contents of the variables in the current scope. It can be

invoked during single stepping execution. Uninitialized locations are shown with the

" < undefined > " value.

b. Message Window.

The next two lines of the screen are used as the message area. It is used for three purposes;

Input entry : Programmer enters inputs from this window.

Output display area : Outputs generated by the WRITE statements are displayed here.

Message display area : Messages generated by the system are displayed here.

c. Menu Window.

The last line on the screen is used as the menu window. It displays valid commands that

can be applied at the top window.

64

D. EXECUTION AND DEBUGGING

Execution of the programs starts in the single-stepping67 mode. In this mode, the cursor

shows the current statement executed and the value of the current expression is displayed in the

message window. The execution is controlled manually.

Some of the possible operations are;

• execute the next statement,

• switch to tracing67 mode execution, and

• invoke the execution view to look at the contents of the variables in the current

scope.

In the tracing mode execution, the current statement executed is highlighted for a short

period of time, then the execution will continue with the next statement similarly.

Some of the possible operations in this mode are;

• increase the execution speed,

• decrease the execution speed, and

• switch to single-stepping mode.

Selective visual-feedback is provided to speed up the execution in both modes. When the

execution flow reaches a procedure/function call, it is possible to disable the visual-feedback for

that call. If the visual feedback is abled, the algorithm view of that procedure is drawn and

execution continues. At the end of procedure execution the execution flow goes back to the

window with the invoking algorithm view.

65

E. EXTERNAL REPRESENTATION

Programs are saved by creating three files. These files have the same name but different

types. The file with "tree" type is created to save information about the algorithm parts of the

main program and procedures. The file with "sym" type is used to save symbol table definitions

and the third file with "typ" type is constructed out of the type-list. External representation

closely resembles the internal representation used in the environment. Linked lists and the trees

are saved in a coded form to reconstruct the data structure in a short time. Integer codes are

used to represent node links, node types etc.. The strings in the files correspond to the

information entered in the text mode (i.e. comments, expressions, variables, and procedure calls

are saved as text). When the internal representation is constructed out of these files, the strings

are reparsed to construct the object code if it is necessary.

This type of external representation speeds up the reconstruction of internal

representation. Furthermore, there is no significant difference between the space requirements of

this type of external representation and pure text representation. The Pascal representation of

the sort program, given in Appendix D, requires 7578 bytes of disk space. On the other hand,

the IPE-PC representation of the same program, given in Appendix E, requires 10142 bytes of

hard disk space.

66

F. RUN TIME ENVIRONMENT

When the execution command is issued, type definitions are checked. If there are any

unresolved type definitions, execution can not start. The storage requirements of each user

defined data type is also calculated.

The second step is the calculation of activation record size for each procedure and main

program. The activation size is kept in the size field of the procedure node. When the activation

record size is calculated, the offsets of the variables are found and the corresponding fields in the

symbol nodes are initialized. The offset fields of the global variables are initialized with their

addresses since global variable locations are static. The addresses of local variables are calculated

by subtracting their offsets from the top of the stack.

A run time stack is used for memory allocation. Each word in memory includes a flag for

the detection of reference to uninitialized variable locations. These flags are turned off for all the

words in a newly allocated activation record. When there is an assignment to a memory

location, its flag is turned on. The activation record of a procedure is pushed when it is

invoked. The actual input parameters are evaluated and their values are assigned to the

locations of the corresponding formal input parameters. The locations that are allocated for

formal output parameters are initialized with the address of the corresponding actual output

parameters. Any reference to a formal output parameter location is an indirect reference. The

reference to the input formal parameters and local variables are done by subtracting their offset

from the top of the stack to find the address. Since a global variable offset field contains its

address, there is no need for the address calculation for global variables. The procedure

activation record is popped off when the execution flow returns to the caller.

67

Interpreter

A recursive procedure is used to interpret the program. Since expressions are translated to

a postfix form, a procedure that evaluates such expressions has also been implemented. This

procedure is invoked from the main interpreter when the execution flow reaches the assignment

statements or expression parts of WHILE, IF, UNTIL and FOR statements.

Addressing Array Elements

Multi-dimensional arrays are stored in row-major order. The subscripts of indexes can

range between 0 and an upper limit. The following formula1 has been used to calculate the

address of an array element, A[/,, I2, l k] :

base + ((...((/,N 2 + I 2)N 3 + /3)...)A* +/*) x w

where w : width of each array element,

base : relative address of the storage allocated for the array,

N j : high, -f 1 for all j , j = 1,&

high, : the upper bound of jth dimension.

68

G. MULTIPLE LANGUAGE SUPPORT

When the program design is completed, the program can be translated to Pascal. The

implementation of the translation routines is not hard since the programs are represented as

syntax trees internally. The translated program can be compiled by optimizing compilers to be

used in production environments. Some example programs and their Pascal versions produced

by the environment are included in the Appendices C and D.

The language used in this environment has common features with other block structured

languages like PL/I, C, Pascal, and Ada. Therefore it is possible to upgrade the environment to

support multiple languages by implementing translation routines for each of these languages.

H. PORTABILITY

The system is implemented under UNIX on a VAX 11/780. It can be easily transported to

other systems with the UNIX environment. The implementation language was chosen as "C "

because of its portability and suitability for system programming.

The screen management routines78 that are used in the editor are provided by UNIX. To

transport the system to a non-UNIX environment, these window management routines have to

be implemented or the available facilities of that machine have to be used.

69

IV. CONCLUSION AND FUTURE DIRECTIONS

Early language-based editors appeared in the 1970's3-21-22’25-26-31'41-46'54'62'68’75-76. There has been

quite a lot of research work in both academia and industry on this subject. Recently the work

has been concentrated on integrated programming environments6-7-16-17,20-24-45-53-61-67. Almost all of

these integrated programming environments include a structure editor which is integrated with

an interpreter/compiler and debugger. More ambitious projects attempt to. design integrated

software development environments to support all phases of the software lifecycle1S-28-48.

Although, we would like to think that the developments in the computer science field are faster

than in other fields, the reality is different. We are still programming by using independently

designed tools rather than a coherent, uniform environment. The general consensus is the

urgency and importance of such software50. The need for programming environments can be

considered at three levels. The simple starting point is to design an integrated programming

environment for small one person projects. The second step is of course to use this knowledge

to design software development environments for team work. The ultimate goal should be to

create an intelligent system that can save the information that is created during the software

development. The system should contain a database to keep the reusable code and provide this

as necessary in an efficient way. A knowledge database can be used to increase productivity in

terms of both reusable code and easy access to requirements, specifications etc.29-36-42-70.

The first step to develop such an environment was taken with this project. An Integrated

Programming Environment, IPE-PC, that supports pseudo-code development has been designed

and implemented. This environment is based on a Pascal-like language which is designed

according to the requirements of a language-based environment. The nucleus of IPE-PC is a

language-based editor which represents programs as graphs internally. The same representation

is used in every mode of the environment(i.e. editing, compilation, execution, debugging and

translation). The system provides facilities to take advantage of both top-down and bottom-up

programming. Stepwise refinement has been supported by providing comment structures that

can be transformed into procedures. Bottom-up programming is supported because it is possible

to create and save program segments which can be inserted into programs at the appropriate

points. When the program design is completed, the program can be translated into Pascal. It is

70

fairly easy to implement translation routines for different languages because of the tree like

program representation.

Future Directions :

The prototype should be upgraded to include file I/O facilities and more sophisticated

control structures. Top-down and bottom-up testing of procedures should also be supported by

automating the inclusion of drivers and stubs.

Another important improvement can be made by transporting the system to a

microcomputer with an advanced graphics terminal. The window management system should be

modified to display more than one view at the same time on the screen.

Translation of IPE-PC programs to the different languages can be automated by using a

table-driven approach. This approach reduces translator design for a particular high level

language to the table design. Table design can also be automated by designing a table generator

from an attribute grammar specification of the target language.

71

BIBLIOGRAPHY

1. Aho, A.Y., Sethi, R., and Ullman, J.D., Compilers Principles,Techniques and Tools,

Addison-Wesley Publishing Company, 19S6.

2. Albizuri-Romero, M.B., 'Internal Representation of Programs in Grase', SIGPLAN

Notices, 1985, Vol. 20, No. 8, pp. 41-50.

3. Allison, L., 'Syntax Directed Program Editing', Software Practice and Experience, 1983,

Vol. 13, pp. 453-465.

4. Anderson, J.R., and Reiser B.J., 'The Lisp Tutor", BYTE, 1985, No. 4, pp. 159-75.

5. Arango, G., and Freeman, P., "Modeling Knowledge for Software Development", IEEE,

Third International Workshop on Software Specification and Design, 1985, pp. 63-66.

6. Archer, Jr.J., and Conway, R., 'COPE: A Cooperative Programming Environment",

Technical Report, Dept, of Computer Science, Cornell University, 1981.

7. Atkinson, L.V., and McGregor, J.J., 'CONA-A Conversational Algol System", Software

Practice and Experience, 1978, Vol. 8, pp. 699-708.

8. Atkinson, L.V., McGregor, J.J., and North, S.D., 'Context Sensitive Editing as an

Approach to Incremental Compilation", The Computer Journal, 1981, Vol. 24, No. 3, pp.

222-229.

9. Balzer, R. 'Transformational Implementation", IEEE Trans, on SE., 1981, Vol. SE-7,

No.l, pp. 3-14.

10. Barstow, D., 'Artifical Intelligence and Software Engineering", Proceedings of the 9th

International Conference on Software Eng., 1987, pp. 200-11.

11. Bhujade, M.R., "Visual Specification of Blocks in Programming Languages', SIGPLAN

Notices, 1987, Vol. 22, No. 8, pp. 24-6.

72

12. Bonar, J., and Well, W., 'A n Informal Programming Language', Expert Systems in

Government Symposium, 1985, pp. 136-44.

13. Boute, R.T., "Building a Uniform Programming Environment Based on Data

Abstraction', Proceedings of the 6th ACM European Regional Conference, 1981, pp.

415-24.

14. Bran, G., "The Token-Oriented Approach to Program Editing", Sigplan Notices, 1985,

Vol. 20, No. 2, pp. 17-20.

15. Campbell, R.H., and Kirslis, P.A., " The SAGA Project: A System for Software

Development", ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 73-80.

16. Celentano, A., Vigna, P.D., and Ghezzi, C., "SIMPLE: A Program Development System",

Computer Languages, 1980, Vol. 5, pp. 103-114.

17. Chesi, M., Dameri, E., Franceschi, M.P., Gatti, M.G., and Simonelli, C., "ISDE: An

Interactive Software Development Environment", ACM Software Eng. Notes, 1984, Vol.

9, No. 3, pp. 81-88.

18. Christensen, L.C., Stokes, G.E., Hays, B., and Coons, E.D., 'TEACH: A

Knowledge-Driven Lab Assistant for a Computer-Based Instruction System", Expert

Systems in Government Symposium, 1985, pp. 588-95.

19. Cohen, E., Text-Oriented Structure Commands for Structure Editors", SIGPLAN

Notices, 1982, Vol. 17, No. 11, pp. 45-49.

20. Delisle, N.M., Menicosy D.E., and Schwartz, M.D., "Viewing a Programming

Environment as a Single Tool", ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp.

49-56.

21. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., and Levy, J J ., 'A Structure-oriented

Program Editor: A First Step Towards Computer Assisted Programming', International

Computing Symposium, 1975, North Holland Publishing Company, pp. 113-120.

73

22. Fischer, C.N., Pal, A., and Stock, D.L., "The POE Language-Based Editor Project",

ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 21-29.

23. Foisseau, J., Jacquart, R., Lemaitre, M., Lemoine, M., Vignat, J.C., and Zanon, G.,

"Program Development with or without Coding", IFIP, 1980, pp. 327-330.

24. Fritzson, P., "Preliminary Experience from the DICE System, A Distributed Incremental

Compiling Environment", ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 113-123.

25. Ganser, E.R., Horgan, J.R., Moore, D J., Surko, P.T., Swartwout, D.E., and Reppy, J.H.,

"SYNED — A Language-Based Editor for an Interactive Programming Environment",

Digest of Papers Spring COMPCON 83, 1983, pp. 406-10.

26. Garlan, D.B., and Miller, P.L., "GNOME: An Introductory Programming Environment

Based on a Family of Structure Editors", ACM Software Eng. Notes, 1984, Vol. 9, No. 3,

pp. 65-72.

27. Goodwin, L., and Sanati, M., "Learning Computer Programming Through Dynamic

Representation of Computer Functioning: evaluation of a new learning package for

Pascal", Int. J. Man-Machine Studies, 1986, Vol. 25, pp. 327-341.

28. Habermann, A.N., and Notkin, D., "Gandalf: Software Development Environments",

IEEE Trans, on SE, 1986, Vol. SE-12, No. 12, pp. 1117-1127.

29. Harandi, M.T., and Young, F.H., "Template Based Specification and Design", IEEE,

Third International Workshop on Software Specification and Design, 1985, pp. 94-97.

30. Hausen, H.L., and Mullerburg, M., "Architecture of Software Systems in the Context of

Software Engineering Environments', Proceedings of the 6th ACM European Regional

Conference, 1981, pp. 147-57.

31. Horgan, J.R., and Moore, D.J., "Techniques for Improving Language Based Editors",

ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 7-14.

74

32. Hunter, R.B., "A System for Writing Pascal Programs Interactively", SIGPLAN Notices,

1984, Vol. 19, No. 1, pp. 46-56.

33. Jensen, K., and Wirth, N., Pascal User Manual and Report, Springer-Verlag, 2nd Edition,

1978

34. Jensen, R.W., and Tonies, C.C., Software Engineering, Prentice-Hall, Inc., 1979.

35. Jonsson, D., "Pancode and Boxcharts: Structured Programming Revised", SIGPLAN

Notices, 1987, Vol. 22, No. 8, pp. 89-98.

36. Kaiser, G., and Feiler, P.H., 'An Architecture for Intelligent Assistance in Software

Development", Proceedings of the 9th International Conf. on Software Eng., 1987, pp.

180-8.

37. Kemighan, B.W., and Ritchie, M.D., The C Programming Language, Prentice-Hall, Inc.,

1978.

38. Kramer, B., and Schmidt, HAV., 'Interactive Software Development by Stepwise

Formalisation", Proceedings of the 6th ACM European Regional Conference, 1981, pp.

134-43.

39. Latour, L.J., "A Programming Environment for Learning SEE: A Student's Educational

Environment", IEEE, Ada Application and Environment Conference, 1986, pp. 127-134.

40. Leer, V., 'Top-down development using a program design language", IBM SYST J, 1976,

No. 2, pp. 155-170.

41. Lewis, J.W., 'Beyond ALBE/P: Language Neutral Form", 5th International Conference

of Software Eng., 1981, pp. 422-9.

42. Madhauji, N.H., and Choudhury, S., 'Beyond a Program Synthesizer", IEEE, Third

International Workshop on Software Specification and Design, 1985, pp. 143-6.

75

43. Mander, K.C., "The Software Developer's Note Pad", IEEE, Third International

Workshop on Software Specification and Design, 1985, pp. 147-50.

44. Marcus, M., and Sattley K., "DAPSE: A Distributed Ada Programming Support

Environment", IEEE Ada Application and Environments Conference, 1986, pp. 115-25.

45. Mora, R.M., and Feiler, P.H., "An Incremental Programming Environment", IEEE trans.

on SE, 1981, Vol. SE-7, No.5, pp. 472-482.

46. Morris, J.M., and Schwartz, M.D., "The design of a language-directed editor for

block-structured languages", SIGPLAN Notices, 1981, Vol. 16, No. 6, pp. 228-33.

47. Muldner, T., "A CAI Implementation of Pascal", SIGPLAN Notices, 1985, Vol. 20, No.

4, pp. 88-95.

48. Nagl, M., "An Incremental Programming Support Environment", Computer Physics

Communications 38, 1985, pp. 245-276.

49. Nakajima, R., Yuasa, T., and Kojima, K., "The Programming System- A Support System

for Hierarchical and Modular Programming", Proceedings of the IFIP Congress, 1980, pp.

299-304.

50. Osterweil, L., "Software Environment Research: Directions for the Next Five Years",

IEEE, Computer, April 1981, pp. 35-43.

51. Ottenstein, K J., and Ottenstein, L.M., "The Program Dependence Graph in a Software

Development Environment", SIGPLAN Notices, Vol. 19, No. 5, 1984, pp. 177-184.

52. Parker, J., 'Towards More Intelligent Programming Environments", ACM SIGSQFT SE

Notes, 1985, Vol. 10, No. 3, pp. 28-32.

53. Reiss, S.P., 'Graphical Program Development with PECAN Program", ACM Software

Eng. Notes, 1984, Vol. 9 , No. 3, pp. 30-41.

76

54. Reps, T., "Static-Semantic Analysis in Language-Based Editors", Digest of Papers Spring

COMPCON 83, 1983, pp. 411-14.

55. Reps, T., and Teitelbaum T., "The Synthesizer Generator", SIGPLAN Notices, Vol. 19,

No. 5, 1984, pp. 42-8.

56. Rising, L., "A Syntax-Directed Editor, World-Builder and Simulator for the Language of

Karel the Robot", SIGPLAN Notices, 1984, Vol. 19, No. 11, pp. 18-21.

57. Robillard, P.N., "A Software Tool and a Schematic Notation that Improve the Use of

Programming Languages", SOFTFAIR II, 1985, pp. 149-58.

58. Robillard, P.N., "Schematic Pseudocode for Program Constructs ant Its Computer

Automaton by Schemacode", ACM Communications, 1986, Vol. 29, No. 11, pp. 1072-89.

59. Ross, G., "Integral C-A Practical Programming Environment", SIGPLAN Notices, 1987,

Vol. 22, No. 1, pp. 42-48.

60. Rubin, L.F., "Syntax-Directed Pretty Printing: A First Step Towards a Syntax-Directed

Editor", CQMPSAC 81, 1981, pp. 418-27.

61. Shapiro, E., Collins, G., Johnson, L., and Ruttenberg, J., "PASES: a Programming

Environment for PASCAL", SIGPLAN Notices, Vol. 16, No. 8, 1981, pp. 50-7.

62. Standish, T.A., and Taylor, R.N., "Arcturus: A Prototype Advanced Ada Programming

Environment", ACM Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 57-64.

63. Steensgaard-Madson, 'Module Trees and Software Design", IEEE, Third International

Workshop on Software Specification and Design, 1985, pp. 216-17.

64. Steier, D., and Kant, E., 'Symbolic Execution as an Aid for Algorithm Design", IEEE,

Third International Workshop on Software Specification and Design, 1985, pp. 218-222.

77

65. Swinehard, D., Zellweger, P., Beach, R., and Hugmann, R., "A Structural View of the

Cedar Programming Environment', ACM Transactions on Programming and Systems,

1986, Vol. 8, No. 4, pp. 419-90.

66. Taylor, R.N., Clarke, L., Osterweil, LJ., Wileden, J.C., and Young, M., 'Arcadia: A

Software Development Environment Research Project', IEEE, Ada Application and

Environment Conference, 1986, pp. 137-49.

67. Teitelbaum, T., and Reps, T., 'The Cornell program synthesizer: a syntax-directed

programming environment', Comm. ACM, 1981, Vol. 24, No. 9, pp. 563-573.

68. Templeton, B., and Gardner, J. 'The ALICE Programming Education System",

ECOO/AEDS Conference Proceedings on "Computer Knows no Borders', 1985, pp. 85-8.

69. Tomek, I., Muldner, T., and Khan, S., 'PMS - A Program to Make Learning Pascal

Easier", Comput. Educ. 1985, Vol. 9, No. 4, pp. 205-211.

70. Waters, R.C., "The Programmer's Apprentice: Knowledge Based Program Editing", IEEE

Trans, on SE, 1982, Vol. SE-8, No.l, pp. 1-12.

71. Waters, R.C., 'Program Editors Should Not Abandon Text Oriented Commands", pp.

39-46. SIGPLAN Notices, Vol. 17, No. 7, 1982, pp. 39-46.

72. Whitelaw, MAV., 'Some Ramifications of the Exit Statement in Loop Control",

SIGPLAN Notices, 1985, Vol. 20, No. 8, pp. 99-106.

73. Wilcox, T.R., Davis, A.M., and Tindall, M.H., "The design and implementation of a table

driven, interactive diagnostic programming system.', Comm. ACM, 1976, Vol. 19, No. 11,

pp. 609-616.

74. Zavodnik, R J., and Middleton, M.D., "YALE the Design of Yet Another Language-Base

Editor", SIGPLAN Notices, 1986, Vol. 21, No. 6, pp. 70-77.

75. Zelkowitz, M.V., 'A Small Contribution to Editing with a Syntax Directed Editor", ACM

Software Eng. Notes, 1984, Vol. 9, No. 3, pp. 1-6.

78

76. Zhoholev, E.A., 'Syntax Directed Program Construction', Trans in: Program, and

Coinput. Software (USA), 1979, Vol. 5, No. 6, pp. 373-7.

77. Unix User's Manual, Reference Guide, 4.2 Berkeley Software Distribution, Virtual

VAX-11 Version, March 1984.

78. Unix Programmer's Manual, Reference Guide, 4.2 Berkeley Software Distribution, Virtual

VAX-11 Version, March 1984.

79

VITA

Nurcan Coskun was born on September 17, 1957 in Malatya, Turkey. She received her

elementary, junior high, and high school education in Ankara, Turkey. She received a Bachelor

of Science degree in Industrial Engineering from Middle East Technical University (METU) -

Ankara, Turkey in November 1979.

She enrolled in the Graduate School of the University of Missouri-Rolla in May 1982 and

received a Master of Science degree in Computer Science in May 1983.

80

APPENDIX A

GRAMMAR

The following table summarizes the meta symbols that are used in the grammar.

Meta Symbol Meaning

is defined as

< > nonterminal symbol

{ } repeated item

[] optional item

* including the empty element (0 or more)

+ not including the empty element (1 or more)

C an element of the set of all existing characters or symbols

1 or

inc increments the indentation level of the following production

dec decrements the indentation level of the following production

eol starts a new line with the current indentation.

81

< program > :: = Main Program : [< text > 3 [eol inc < refinement >]

< procedure > : = id procedure : [< text > J [eol inc < refinement > J

< comment > = comsym <text> [col inc < refinement >]
< text > = C

< refinement > — { < statement > col}+
< statement > = < comment > | < IF > | < WHILE > | < UNTIL > | < FOR >

< asg > | < procedure call > | < return >
< IF> : = IF < expression > eol inc

< refinement > [dec < elsepart >]
< elsepart > : = ELSE eol inc < refinement > |

ELSE IF < expression > eol inc
< refinement > [dec < elsepart >]

< WHILE > : = WHILE < expression > eol inc < refinement >
< asg > = < variable > assignop < expression >
< UNTIL > : = REPEAT eol inc < refinement >

dec UNTIL < expression >
< FOR > = FOR id assignop <lb> TO <ub> BY <inc> eol inc

< refinement >
<lb > = < simple expression >
< ub > = < simple expression >
<inc > : — < simple expression >

< RETURN > : = retum([< expression >])

< procedure call > : = id([< expression-list >])
< expression-list > : = < expression > | < expression-list > , < expression >
< expression > : = < simple expression > |

< simple expression > relop < simple expression >
< simple expression > : = <term> | <sign> <term > |

< simple expression > addop < term >
< term > : = < factor > | <term> mulop < factor >
< factor > : = < variable > | < procedure call > | num |

< expression > | not < factor >

< sign > : = + |-

< variable > : = < entire variable > | < component variable >
< entire variable > : = < var identifier >

82

< var identifier > = id

< component var > = < indexed variable > | < field designator >

< indexed variable > = < array variable > [< expression-list >]

< array variable > = < variable >

< field designer > = < record variable >. < field identifier >

< record variable > = < variable >

< field identifier > = id

83

Lexical Conventions

1) Terminal id for identifiers matches a letter followed by letters or digits

letter ::= A|B|...|Z|a|b|...|z

digit ::= 0| 11---J9

id :: = letter (letter(digit)*

Only the first eight characters of the identifiers has been used to distinguish between the

identifiers.

2) Terminal num matches unsigned integers

num :: = digit (digit)'

3) The relation operators (relop's) are:

' = and

4) The addop's are ' + and 'or'.

5) The mulop's are '/', 'div', 'mod', and 'and'.

6) The lexeme for the token assignop is : ' < -' .

7) The comment symbol, comsym, is : '- ' .

84

APPENDIX B

USER MANUAL

Welcome View

The IPE-PC is loaded in UNIX under VAX 11/780. It can be invoked by entering "pgnT

command. The Welcome View welcomes the user to the environment. Available commands and

their functions are:

(e) Starts an edit session.

First, the system will ask the name of the program. At this point, the user has to

enter a program name. If the program exists its internal representation is constructed

out of the external representation. Otherwise, a new program structure is

constructed. Once the internal representation is built the procedure view comes to

the screen.

(d) Brings the directory view to the screen.

(q) Leaves the environment.

(H) Displays help information for the Welcome View.

85

The commands that are used often has only one character long name. Names were

chosen according to the name of the corresponding template. For example 'w '/u ', and T

commands are used for the while, until and for loop templates respectively. Less frequent

commands are two character long. Two character commands are grouped (i.e. members of the

same group start with the same character and second character reminds the specifics of the

corresponding command). For example, in the 'vt' command, first character V shows that this

command belongs to view group and second character 't' stands for type. When the first

character of a two character command is typed, menu window displays the members of that

group to remind the user of the exact name.

(s) Creates a statement following the current statement.

(S) Creates a statement preceding the current statement.

(w) Expands the current statement as a WHILE loop.

(u) Expands the current statement as an UNTIL loop.

(f) Expands the current statement as a FOR loop.

(i) If the cursor is on a < statement > template, it is expanded as an IF statement.

If the cursor is on < var > , < expression > , < lb > , < ub > , and < inc >

placeholders, they are expanded by inserting text. When text is inserted < Del > and

< Bs > keys on the keyboard can be used to move the cursor left. < Return >

shows the end of insertion.

(E) Adds an ELSE IF part to an existing IF statement.

(e) Adds an ELSE part to an existing IF statement.

(c) Expands the current statement as a comment statement.

(a) Expands the current statement as an assignment statement.

(p) Expands, the current statement as a procedure call.

(d) Deletes the current Statement and its refinement.

(r) If the cursor is on a comment, a refinement step is created.

If the cursor is on a < statement > template, it is expanded as a return statement.

Algorithm View Commands

86

(j) Expands(joins) a < statement > template by using a clip as follows :

First, it asks for the name of program segment. The tree for that segment is

constructed from its external representation and it is inserted to the current position,

(n) Moves the cursor to the beginning of a template following the current line.

(b) Moves the cursor to the beginning of a template preceding the current line.

(h) Moves the cursor to the beginning of a placeholder at the right of the current

cursor position.

(g) Moves the cursor to the beginning of a placeholder/template at the left of the

current cursor position.

(t) It is used to start a text mode for the modification of an already inserted text.

Available commands in the text mode are:

(n) Moves the cursor to the beginning of a next line, if the text is

longer than one line.

(b) Moves the cursor to the beginning of a preceding line, if the text

is longer than one line.

(h) Moves the cursor one character position to the left.

(g) Moves the cursor one character position to the right.

(i) Inserts a new text starting at the current cursor position.

(d) Deletes the current character.

(?) Displays the rest of the menu options in the text editor view.

Since the menu window consists of only one line, it is impossible to

display all of the menu items and their short descriptions in one line. By

using this command the rest of the menu items are displayed in the

menu window. This command is available in every view.

(q) Ends the text mode.

(H) Displays help information about the text mode.

(x) Starts single-step execution of the program.

(q) Brings the procedure view to the screen.

(?) Displays the rest of the menu options in the Algorithm View.

(H) Displays help information for the Algorithm View.

87

(.p) Moves the cursor to the parent.

(.s) Moves the cursor to the sibling.

(.e) Takes the cursor to the next statement with an error.

(mp) Deletes the current statement and its refinement and constructs a procedure out of

this deleted segment. The user has to enter a valid procedure name following this

command.

(md) Deletes the current statement and its refinement as a clip. The system asks a clip

name and saves the segment with that name.

(me) Copies the current statement and its refinement as a clip.

(mr) Deletes the refinement of the current statement as a clip.

(op) Produces Pascal code for the current program.

(ol) Produces a listing file for the current program.

(oi) Sends the interactive input and output file to the printer.

(w) Brings the variable view of the current procedure/main program.

(vt) Brings the type window to the screen.

(va) Brings the algorithm view of an existing procedure. The user has to enter a valid

procedure name following this command.

(vc) Brings the clip view.

88

(d) Deletes an existing program from the directory. (Name of the program has to be

entered by the user following this command).

(c) Copies an existing program to a new file. Names of the existing program and

new program are entered by user in a conversational style.

(q) Brings the welcome view to the screen.

(H) Displays help information for the Directory View.

Directory View Commands

Clip View Commands

This view displays the names of the program segments, clips, to the user.

(d) Deletes an existing clip.

(s) Shows the contents of a clip by bringing the Display View to the screen,

(q) Brings the Algorithm View.

(H) Displays help information for the Clip View.

Clip Display View Commands

(p) If the segment is too long to be displayed on 20 lines available in the window,

the rest of the program can be displayed by using this command.

(q) Takes the user to the Clip View.

89

In the single stepping execution mode there are three possible commands:

(Return) Moves the cursor to the next executable statement. The value of the interpreted

expression is displayed in the message window.

(v) Brings the Execution View which displays the contents of the variables in the

current scope.

(i) Displays the contents of the interactive I/O file.

(t) Switches to the tracing mode execution.

The available operations in this mode are:

(+) Speeds up the execution.

(-) Slows down the execution.

(Return) Switches back to the single-stepping mode execution.

(q) Takes the user to the Algorithm View.

(H) Displays help information for the Execution View.

Execution View Commands

It is used to insert/modify variable declarations of the current procedure.

Symbol Table View Commands

90

(n)

(b)

(g)

(h)

(v)

(V)

(d)

(i)

(I)

(R)

(C)

(B)

(O)

(L)

(G)

(P)

(t)

(q)

(H)

Moves the cursor to the beginning of the next declaration.

Moves the cursor to the beginning of the preceding declaration.

Moves the cursor right on the current declaration.

Moves the cursor left on the current declaration.

Inserts a new variable definition after the current position.

Inserts a new variable definition before the current position.

Deletes the current variable definition.

Expands the current placeholder by inserting a text.

If the current placeholder is < type > , it is expanded as 'int'.

If the current placeholder is < kind > , it is expanded as 'input'.

If the current placeholder is < type > , it is expanded as 'real'.

If the current placeholder is < type > , it is expanded as 'char'.

If the current placeholder is < type > , it is expanded as 13001'.

If the current placeholder is < kind > , it is expanded as 'output'.

If the current placeholder is < k ind> , it is expanded as local'.

If the current placeholder is < kind > , it is expanded as 'global'.

If the current placeholder is < kind > , it is expanded as 'proc'.

Brings the Type View to the screen.

Ends the Variable View and returns to the point of invocation.

Displays help information for the Variable View.

91

(t) Brings the Type View to the screen.

(v) Brings the Variable View for the current procedure.

(a) Brings the Algorithm view to the screen for a procedure/main program

pointed by the cursor.

(n) Moves the cursor to the next procedure name in the window.

(d) Removes the existing procedure.

(c) Copies an existing procedure to build a new one.

(u) Changes(updates) the name of an existing procedure.

(m) Moves the existing procedure to the end of the procedure list.

(i) Displays the interface information for a specified procedure.

(q) Ends the Procedure View and returns the Welcome View.

(H) Displays help information for the Procedure View.

Procedure View Commands

92

(a) Expands the current type description placeholder as an array definition.

(s) Expands the current type description placeholder as a structure definition.

(n) Moves the cursor to the beginning of the next type definition.

(b) Moves the cursor to the beginning of the preceding type definition.

(g) Moves the cursor right on the screen.

(h) Moves the cursor left on the screen.

(t) Inserts a new type definition after the current position.

(T) Inserts a new type definition before the current position.

(f) Creates a new field for the current record following the current field position.

(F) Creates a new field for the current record preceding the current field position,

(d) If the cursor is at a field definition; it deletes that field from the structure.

If the cursor is at the first line of a type definition, it deletes that type def..

(i) Expands the current placeholder by starting an insert operation.

(I) If the current placeholder is < type > , it is expanded as 'int'.

(R) If the current placeholder is < type > , it is expanded as 'real'.

(C) If the current placeholder is < type > , it is expanded as 'char'.

(B) If the current placeholder is < type > , it is expanded as 1)001'.

(q) Ends the type view and returns to the invocation point.

(H) Displays help information for the Type View.

Type View Commands

93

APPENDIX C

IPE-PC LISTING FILES

This appendix includes the listing file produced for an example program.

94

sort .listing:

Type Definitions :

< type id > < type decription > < comment >

arrtype array [10]

of int < comment >

Main Program :

Variable Declarations :

< identifier > < type > <kind> < comment >

main int proc < comment >

sorttype int local < comment >

select int proc < comment >

location int local < comment >

bubble 1 int proc < comment >

qsort int proc < comment >

bubble2 int proc < comment >

I int local < comment >

binarysr int proc < comment >

N int local < comment >

DATA arrtype local < comment >

inssort int proc < comment >

test int local used to test binary search

95

Algorithm:

-This pgm implement various sort procedures

-read the size of data

read(N)

-read N integers to sort

I <- 1

WHILE I < = N

read(DATA[I])

I < - 1 + 1

-read a flag to choose one of the sort algorithms

read(sorttype)

-sort DATA by using the sort algorithm identified by the flag

IF sorttype = 0

select(N,DATA)

ELSE

IF sorttype = 1

qsort(N,l,DATA)

ELSE

IF sorttype = 2

bubblel(N.DATA)

ELSE

IF sorttype = 3

bubble2(N,DATA)

ELSE

inssort(N,DATA)

-check if it is sorted

I <- 1

WHILE I < = N

write(DATAJIJ)

96

I < - 1 + 1

-Test binary search procedure

read(test)

binarysr(N,test,DATA,location)

write(location)

Procedure swap:

Variable Declarations :

97

< identifier > < type > <kind> < comment >

swap int proc < comment >

MINDEX int input < comment >

I int input < comment >

DATA arrtype output < comment >

temp int local < comment >

Algorithm:

-swaps the contents of I,and MINDEX positions in DATA array

temp < - DATA[I]

DATA[I] < - DATAfMINDEX]

DATAfMINDEXj <-tem p

98

Procedure select:

Variable Declarations :

< identifier > < type > <kind> < comment >

select int proc < comment >

N int input < comment >

DATA arrtype output < comment >

swap int proc < comment >

MINDEX int local < comment >

I int local < comment >

J int local < comment >

Algorithm:

-Sorts array DATA from index 1 through N in order of increasing value

I <- 1

-Loop through whole array

WHILE I < = N

-Initilize

MINDEX <- I

J < - 1 + 1

-Find index of minimum unsorted element

WHILE J < = N

IF DATA[J] < DATA[MINDEX]

MINDEX < - J

J < - J + l

-Swap first unsorted element with minimum unsorted element

IF MINDEX < > I

swap(MINDEX,I,DATA)

99

I < - 1 + 1

100

Procedure binarysr:

Variable Declarations :

< identifier > < type > < kind > < comment >

binarysr int proc binary search routine

num int input < comment >

keyval int input < comment >

DATA arrtype input < comment >

location int output < comment >

last int local the last position

found boolean local < comment >

first int local < comment >

midpoint int local < comment >

Algorithm:

-This procedure does a binary search for the record containing TceyvaT.

If it is found, its index is returned in location' if not, 0 is

returned

-Initialize

found < - false

first < - 1

last < - num

-Search until element found or there are no more elements

WHILE ((first < = last) and (not found))

-Compare middle element in search area to the key value

midpoint < - (first + last) div 2

IF DATA[midpoint] = keyval

found < - true

101

ELSE

-Move first half indexes to cut search area in half

IF DATAfmidpointJ > keyval

last < - midpoint - 1

ELSE

first < - midpoint + 1

-Sets value of location'

IF found

location < - midpoint

ELSE

location < - 0

102

Procedure inssort:

Variable Declarations :

< identifier > < type > <kind> < comment >

inssort int proc < comment >

N int input < comment >

DATA arrtype output < comment >

swap int proc < comment >

placefou boolean local < comment >

I int local < comment >

J int local < comment >

Algorithm:

-Sorts the DATA array by using the insertion sort algorithm,it calls

the swap proc when it is necessary

I <- 2

WHILE I < = N

-Put DATA[I] in its proper place relative to DATA[1]..DATA[I-1]

placefou < - false

J < - I

WHILE ((J > 1) and (not placefou))

IF DATA[J] < DATA[J - 1]

-swap and decrement J

swap(J ,(J-1), DAT A)

J < - J - 1

ELSE

placefou < - true

103

I <- I + 1

104

Procedure split:

Variable Declarations :

< identifier > <type> <kind> < comment >

split int proc < comment >

last int input < comment >

first int input < comment >

split 1 int output < comment >

split2 int output < comment >

DATA arrtype output < comment >

left int local < comment >

more boolean local < comment >

right int local < comment >

swap int proc < comment >

V int local < comment >

Algorithm:

-Chooses a splitting value V and arranges DATA so that

DATAffirst]..DATA[sp lit2] < = V and DATA[splitl + lJ..DATA[last] > V

-Let V be the middle value

V < - DATA[(first + last) div 2]

right < - first

left < - last

-Rearrange the array

more < - true

WHILE more

WHILE DATA[right] < V

right < - right + 1

105

WHILE DATA[left] > V

left < - left - 1

IF right < = left

swap(left,right,DAT A)

right < - right + 1

left < - left - 1

more < - right < = left

-Set up split 1 and split2

split 1 < - right

split2 < - left

Procedure qsort:

Variable Declarations :

106

< identifier > < type > <kind> < comment >

qsort int proc < comment >

last int input < comment >

first int input < comment >

DATA arrtype output < comment >

split 1 int local < comment >

split2 int local < comment >

split int proc < comment >

Algorithm:

-A recursive procedure for Quicksort

IF first < last

-call split to find split value V and rearrange the DATA array

accordingly

split(last,first,split 1,split2.DATA) .

IF split 1 < last

qsort(last,split 1 .DATA)

IF first < split2

qsort(split2,first,DATA)

107

Procedure bubble 1:

Variable Declarations :

< identifier > < type > <kind> < comment >

bubble l int proc < comment >

N int input < comment >

DATA arrtype output < comment >

swap int proc < comment >

I int local < comment >

J int local < comment >

Algorithm:

-Sorts DATA from index 1 through N in ascending order

I <- 1

WHILE I < N

-Bubble up the smallest unsorted value

J < - N

WHILE J > I

-If the bottom value is smaller than its predecssor, swap them

IF DATA[J] < DATA[J - 1]

swap(J, J - 1, DATA)

J < - J - 1

I <- I + 1

108

Procedure bubble2:

Variable Declarations :

< identifier > < type > <kind> < comment >

bubble2 int proc < comment >

N int input < comment >

DATA arrtype output < comment >

swap int proc < comment >

swapped boolean local < comment >

I int local < comment >

J int local < comment >

Algorithm:

-Sorts DATA from index 1 through N in ascending order; stopssorting

when the array is sorted

I <- 1

swapped < - true

-Loop through array; stop when sorted. The array is sorted when there

are no values swapped in the inner loop

WHILE (I < N) and swapped

-Initialize

J <- N

swapped < - false

-Bubble up the smallest unsorted value

WHILE J > I

-If the bottom value is smaller than its predecessor, swap

them. Note that the swap took place by setting boolean

flag swapped.

109

IF DATA[J| < DATA[J - 1]

swapped < - true

swap(J, J - 1, DATA)

J < - J - 1

I < - I + 1

110

APPENDIX D

PASCAL PROGRAMS

This appendix includes Pascal translation of the example program given in Appendix C.

This Pascal program is generated by the environment.

11]

program sort (input, output) ;

type arrtype = array (0..10J of integer ;

var sorttype : integer ;

location : integer ;

I : integer ;

N : integer ;

DATA : arrtype ;

test : integer ;

{ }

procedure swap(MINDEX : integer ; I : integer ; var DATA : arrtype) ;

var temp : integer ;

begin

(swaps the contents of I,and MINDEX positions in DATA array}

temp := DATAfI] ;

DATA[I] := DATAJMINDEX] ;

DATA[MINDEXJ := temp

end ;

}

112

I : integer ;

J : integer ;

begin

{Sorts array DATA from index 1 through N in order of increasing value}

I := 1 ;

{Loop through whole array}

while I < = N do begin

{Initilize}

MINDEX := I ;

J := 1+ 1 ;

{Find index of minimum unsorted element}

while J < = N do begin

if DATA[J] < DATA(MINDEX) then begin

MINDEX := J

end ;

J := J + l

end ;

{Swap first unsorted element with minimum unsorted element}

if MINDEX < > I then begin

swap(MINDEX,I,DATA)

end ;

I := 1+1

end

procedure select(N : integer ; var DATA : arrtype) ;

var MINDEX : integer ;

end ;

}

procedure binarysr(num integer ; keyval : integer ; DATA : arrtype;

var location : integer) ;

var last : integer ;

found : boolean ;

first : integer ;

midpoint : integer ;

begin

{This procedure does a binary search for the record containing 'keyval'.

If it is found, its index is returned in location' if not, 0 is

returned)

(Initialize)

found : = false ;

first := 1 ;

last := num ;

(Search until element found or there are no more elements)

while ((first < = last) and (not found)) do begin

(Compare middle element in search area to the key value)

midpoint : = (first + last) div 2 ;

if DATA[midpoint] = keyval then begin

found :== true

end

else begin

(Move first half indexes to cut search area in half)

if DATA[midpoint] > keyval then begin

last : - midpoint - 1

end

else begjn

first := midpoint + 1

114

end ;

end ;

(Sets value of location'}

if found then begin

location : = midpoint

end

else begin

location := 0

end ;

end ;

{ }

115

I : integer ;

J : integer ;

begin

{Sorts the DATA array by using the insertion sort algorithm,it calls the

swap proc when it is necessary}

I := 2 ;

while I < = N do begin

{Put DATA[I] in its proper place relative to DATA[1]..DATA[I-1]}

placefou : = false ;

J : = I ;

while ((J > 1) and (not placefou)) do begin

if DATA[J] < DATA[J - 1) then begin

{swap and decrement J}

swap(J,(J-l),DATA) ;

J := J - 1

end

else begin

placefou : = true

end ;

end ;

I : = I + 1

end

procedure inssort(N : integer ; var DATA : arrtype) ;

var placefou : boolean ;

end ;

{...... }

116

procedure split(last : integer ; first : integer ;

var split 1 : integer ;

var split2 : integer ; var DATA : arrtype) ;

var left : integer ;

more : boolean ;

right : integer ;

V : integer ;

begin

{Chooses a splitting value V and arranges DATA so that

DATAJfirst]..DATA[split2] < = V and DATA[splitl + l]..DATA[lastj > V)

(Let V be the middle value)

V := DATA[(first + last) div 2] ;

right : = first ;

left : = last ;

(Rearrange the array)

more : = true ;

while more do begin

while DATA[right] < V do begin

right := right + 1

end ;

while DATA{left] > V do begin

left : = left - 1

end ;

if right < = left then begin

swap(left,right,DATA) ;

right := right + 1 ;

left := left - 1

end ;

more : = right < = left

117

end ;

(Set up split 1 and split2}

split 1 := right ;

split2 : = left

end ;

{.. }

procedure qsort(last: integer ; first: integer; var DATA : arrtype);

var split 1 : integer ;

split2 : integer ;

begin

{A recursive procedure for Quicksort}

if first < last then begin

(call split to find split value V and rearrange the DATA array

accordingly}

split(last,first,split 1 ,split2,DATA) ;

if split 1 < last then begin

qsort(last,split 1 .DATA)

end ;

if first < split2 then begin

qsort (split 2 .first, DATA)

end

end

end ;

{ }

118

J : integer ;

begin

{Sorts DATA from index 1 through N in ascending order}

I := 1 ;

while I < N do begin

(Bubble up the smallest unsorted value}

J := N ;

while J > I do begin

(If the bottom value is smaller than its predecssor, swap them}

if DATA[J] < DATA[J - 1] then begin

swap(J, J - 1, DATA)

end ;

J : = J - 1

end ;

I := I + 1

end

procedure bubble 1(N : integer ; var DATA : arrtype) ;

var I : integer ;

end ;

{ - - }

119

I : integer ;

J : integer ;

begin

{Sorts DATA from index 1 through N in ascending order; stopssorting when

the array is sorted}

I : = 1 ;

swapped : — true ;

{Loop through array; stop when sorted. The array is sorted when there

are no values swapped in the inner loop}

while (I < N) and swapped do begin

{Initialize}

J := N ;

swapped := false ;

{Bubble up the smallest unsorted value}

while J > I do begin

{If the bottom value is smaller than its predecessor, swap

them. Note that the swap took place by setting boolean

flag swapped.}

if DATA[J] < DATA[J - 1] then begin

swapped := true ;

swap(J, J - 1, DATA)

end ;

J := J - 1

end ;

I := I + 1

procedure bubble2(N : integer ; var DATA : arrtype) ;

var swapped : boolean ;

120

end

end ;

{ }

121

begin

{This pgm implement various sort procedures}

(read the size of data}

read(N) ;

(read N integers to sort}

I : = 1 ;

while I < = N do begin

read(DATA[I]) ;

I : = 1+1

end ;

(read a flag to choose one of the sort algorithms}

read(sorttype) ;

(sort DATA by using the sort algorithm identified by the flag}

if sorttype = 0 then begin

select(N,DATA)

end

else begin

if sorttype = 1 then begin

qsort(N,l,DATA)

end

else begin

if sorttype = 2 then begin

bubble 1(N,DATA)

end

else begin

if sorttype = 3 then begin

bubble2(N, DAT A)

end

else begin

inssort(N,DATA)

122

end ;

end ;

end ;

end ;

{check if it is sorted}

I : = 1 ;

while I < = N do begin

write(DATA[I]) ;

I : = 1+1

end ;

{Test binary search procedure}

read(test) ;

binarysr(N,test,DATA,location) ;

write(location)

end.

123

APPENDIX E

EXTERNAL REPRESENTATION

This appendix includes the external representation of the example program given in

Appendix C. Each program is represented by using three files. The file with 'typ' type contains

the external representation of the user defined data types. The file with 'sym' type contains the

external representation of the variable declarations. The file with 'tree' type contains the

external representation of the algorithm parts of the main program and procedures.

124

TYPE FILE :

For each data type definition the following information is printed:

• an integer that shows the start of a definition,

• the name of the user defined data type,

• an integer that shows if the data type is an array or a structure

definition,

• the number of lines necessary to print this type definition

in the type view.

• a flag that shows if this type definition has a comment, and

the comment if it exists,

• If the data type is array, then print the dimension and type

information for the array elements.

If the data type for the array elements is also aggregate

print its name.

• if the data type is structure, print the field name and type

information for each field. Use integer codes to show the

beginning and the end of the field definitions.

Print an integer code to show the end of the type definitions when

the whole type list is printed.

sort.typ file for the sort program:

58

arrtype

461 2 57

10

41

38

125

SYMBOL FILE :

For each symbol in the symbol table the following information is printed:

• a code that shows the symbol type,

• a code that shows the symbol kind,

• a flag that shows if the symbol has a comment,

• the symbol identifier,

• the comment if it exists,

• if the data type is aggregate, the name of the user defined data type.

Print an integer code to show the end of the file when all the symbols are printed.

sort.sym file for the sort program:

41 44 57

main

41 51 57

sorttype

41 44 57

select

41 51 57

location

41 44 57

bubble 1

41 44 57

qsort

41 44 57

bubble2

41 51 57

I

126

41 44 57

binarysr

41 51 57

N

411 51 57

DATA

arrtype

41 44 57

inssort

41 51 56

test

used to test binary search

58

41 53 57

MINDEX

41 53 57

I

411 54 57

DATA

arrtype

41 44 57

swap

41 51 57

temp

58

41 53 57

N

411 54 57

DATA

arrtype

127

41 44 57

select

41 44 57

swap

41 51 57

MINDEX

41 51 57

I

41 51 57

J

58

41 53 57

num

41 53 57

keyval

411 53 57

DATA

arrtype

41 54 57

location

41 44 56

binarysr

binary search routine

41 51 56

last

the last position

46 51 57

found

41 51 57

first

128

41 51 57

midpoint

58

41 53 57

N

411 54 57

DATA

arrtype

41 44 57

inssort

41 44 57

swap

46 51 57

placefou

41 51 57

I

41 51 57

J

58

41 53 57

last

41 53 57

first

41 54 57

split 1

41 54 57

split2

411 54 57

DATA

arrtype

129

41 44 57

split

41 51 57

left

46 51 57

more

41 51 57

right

41 44 57

swap

41 51 57

V

58

41 53 57

last

41 53 57

first

411 54 57

DATA

arrtype

41 44 57

qsort

41 51 57

split 1

41 51 57

split2

41 44 57

split

58

130

41 53 57

N

411 54 57

DATA

arrtype

41 44 57

bubble 1

41 44 57

swap

41 51 57

1

41 51 57

J

58

41 53 57

N

411 54 57

DATA

arrtype

41 44 57

bubble2

41 44 57

swap

46 51 57

swapped

4] 51 57

I

41 51 57

J

58

131

TREE FILE :

During the preorder traversal of the abstract syntax tree, print the following information

for each node:

• an integer code to show the beginning of a node information.

• the node type, the length of the string in the information field

of the node, the contents of the information field.

• if the node has a child, then print an integer code to show the

beginning of the child information.

• if the node does not have a child, then if it has a sibling, print an

integer code to show the beginning of the sibling information.

• if the node has neither a child nor a sibling, print an integer code

to show the end of the children information for the parent.

Print an integer code to show the end of the abstract tree information for the main

program or a procedure. The abstract tree information for a procedure starts with its name

followed by the node information for each node in the tree.

sort.tree file for the sort program:

37

34

37

34

37

34

37

36

36

0 42 This pgm implement various sort procedures

1 21 read the size of data

1 0

77 7 read(N)

35

37 2 23 read N integers to sort

34

37 1 0

34

37 6 1 I

34

37 7 1 I

36

36

35

37 2 0

34

37 3 6 I < = N

34

37 1 0

34

37 77 13 read(DATA[I])

36

35

37 2 0

34

37 6 1 I

34

37 7 3 1+ 1

36

36

36

36

36

132

35

37 2 48 read a flag to choose one of the sort algorithms

34

37 1 0

34

37 77 14 read(sorttype)

36

36

35

37 2 60 sort DATA by using the sort algorithm identified by the flag

34

37 1 0

34

37 4 12 sorttype = 0

34

37 1 0

34

37 77 14 select(N.DATA)

36

36

35

37 5 0

34

37 1 0

34

37 4 12 sorttype = 1

34

37 1 0

34

37 77 15 q so r t(N ,l,D A T A)

133

36

134

36

35

37 5 0

34

37 1 0

34

37 4 12 sorttype = 2

34

37 1 0

34

37 77 15 bubblel(N,DATA)

36

36

35

37 5 0

34

37 1 0

34

37 4 12 sorttype = 3

34

37 1 0

34

37 77 15 bubble2(N,DATA)

36

36

35

37 5 0

34

37 1 0

34

135

37 77 15 inssort(N,DATA)

36

36

36

36

36

36

36

36

36

36

35

37 2 21 check if it is sorted

34

37 1 0

34

37 6 1 I

34

37 7 1 1

36

36

35

37 2 0

34

37 3 6 I < = N

34

37 1 0

34

37 77 14 w rite(D A T A (ll)

36

136

37 2 0

34

37 6 1 I

35

34

37 7 3 1+ 1

36

36

36

36

36

35

37 2 28 Test binary search procedure

34

37 1 0

34

37 77 10 read(test)

36

35

37 2 0

34

37 77 30 binarysr(N,test,DATA,location)

36

35

37 2 0

34

37 77 15 write(location)

36

36

36

137

38

39

swap

37 66 58 swaps the contents of I,and MINDEX positions in DATA array

34

37 1 0

34

37 6 4 temp

34

37 7 7 DATA[I]

36

36

35

37 2 0

34

37 6 7 DATA[I]

34

37 7 12 DATA[MINDEXJ

36

36

35

37 2 0

34

37 6 12 DATA(MINDEX]

34

37 7 4 temp

36

36

36

38

138

39

select

37

34

37

34

37

34

37

36

36

35

37

34

37

34

37

34

37

34

37

34

37

34

37

36

36

35

66 68 Sorts array DATA from index 1 through N in order of increasing

value

1 0

6 1 I

7 1 1

2 24 Loop through whole array

1 0

3 6 I < = N

1 9 Initilize

1 0

6 6 MINDEX

7 1 I

37 2 0

139

34

37 6

34

37 7

36

36

36

35

37 2

34

37 1

34

37 3

34

37 1

34

37 4

34

37 1

34

37 6

34

37 7

36

36

36

36

35

37 2

1 J

3 1+ 1

38 Find index of minimum unsorted element

0

6 J < = N

0

22 DATAfJj < DATAjMINDEX]

0

6 MINDEX

1 J

0

34

140

37 6 1 J

34

37 7 3 1 + 1

36

36

36

36

36

35

37 2 57 Swap first unsorted element with minimum unsorted element

34

37 1 0

34

37 4 11 MINDEX < > I

34

37 1 0

34

37 77 19 swap(MINDEX,I,DATA)

36

36

36

35

37 2 0

34

37 6 1 I

34

37 7 3 1+1

36

36

36

141

36

36

36

38

39

36

binarysr

37 66 145 This procedure does a binary search for the record containing

'keyval'. If it is found, its index is returned in locatio

34

37 1

34

37 1

34

37 6

34

37 7

36

36

35

37 2

34

37 6

34

37 7

36

36

35

37 2

10 Initialize

0

5 found

5 false

0

5 first

1 1

0

34

142

37 6

34

37 7

36

36

36

35

37 2

34

37 1

34

37 3

34

37 1

34

37 1

34

37 6

34

37 7

36

36

35

37 2

34

37 4

34

37 1

34

4 last

3 num

56 Search until element found or there are no more elements

0

33 ((first < = last) and (not found))

54 Compare middle element in search area to the key value

0

8 midpoint

20 (first + last) div 2

0

23 DATA[midpointj = keyval

0

37 6 5 found

143

34

37 7

36

36

36

35

37 5

34

37 1

34

37 1

34

37 4

34

37 1

34

37 6

34

37 7

36

36

36

35

37 5

34

37 1

34

37 6

34

4 true

0

50 Move first half indexes to cut search area in half

0

23 DATA[midpoint] > keyval

0

4 last

12 midpoint - 1

0

0

5 first

37 7 12 m idpoint + 1

144

36

36

36

36

36

36

36

36

36

36

35

37 2 24 Sets value of location'

34

37 1 0

34

37 4 5 found

34

37 1 0

34

37 6 8 location

34

37 7 8 midpoint

36

36

36

35

37 5 0

34

36

37 1 0

145

37 7 1 0

36

34

37 6 8 location

34

36

36

36

36

36

38

39

inssort

37 66 102 Sorts the DATA array by using the insertion sort algorithm,

it calls the swap proc when it is necessary

34

37 1 0

34

37 6 1 I

34

37 7 1 2

36

36

35

37 2 0

34

37 3 6 I < = N

34

37 1 62 Put DATAJI] in its proper place relative to DATAjl)..DATA(I-l)

34

146

37 6 8 placefou

34

37 7 5 false

36

36

35

37 2 0

34

37 6 1 I

34

37 7 1 I

36

36

35

37 2 0

34

37 3 29 ((J > 1) and (not placefou))

34

37 1 0

34

37 4 21 DATA[J] < DATA[J - 1]

34

37 1 20 swap and decrement J

34

37 1 0

34

37 I 0

34

37 77 18 swap(J,(J- 1),D A T A)

36

35

37 2 0

34

37 6 1 .

34

37 7 5.

36

36

36

36

35

37 5 0

34

37 1 0

34

37 6 8

34

37 7 4

36

36

36

36

36

36

36

35

37 2 0

34

37 6 l

34

147

148

37 7 5 I + 1

36

36

36

36

36

38

39

split

37 66 124 Chooses a splitting value V and arranges DATA so that

DATA[first]..DATA[split2] < = V and DATA[splitl+ l]..DATA[last]

34

37 1 25 Let V be the middle value

34

37 1 0

34

37 6 1 V

34

37 7 26 DATA[(first + last) div 2]

36

36

35

37 2 0

34

37'6 5 right

34

37 7 5 first

36

36

35

149

37 2

34

37 6

34

37 7

36

36

36

35

37 2

34

37 1

34

37 6

34

37 7

36

36

35

37 2

34

37 3

34

37 1

34

37 3

34

37 1

34

4 left

0

4 last

19 Rearrange the array

0

4 more

4 true

0

4 more

0

15 DATA(right) < V

0

37 6 5 right

ISO

34

37 7 9 right + 1

36

36

36

36

35

37 2 0

34

37 3 14 DATA[left] > V

34

37 1 0

34

37 6 4 left

34

37 7 8 left - 1

36

36

36

36

35

37 2 0

34

37 4 13 right < = left

34

37 1 0

34

37 77 21 swap(left,right,DATA)

36

35

37 6 5 right

34

37 7 9 right + 1

36

36

35

37 2 0

34

37 6 4 left

34

37 7 8 left - 1

36

36

36

36

35

37 2 0

34

37 6 4 more

34

37 7 13 right < = left

36

36

36

36

36

37 2 0

34

151

35

37 2 24 Set up split 1 and split2

152

34

37 1 0

34

37 6 6 split 1

34

37 7 5 right

36

36

35

37 2 0

34

37 6 6 split2

34

37 7 4 left

36

36

36

36

38

39

qsort

37 66 35 A recursive procedure for Quicksort

34

37 1 0

34

37 4 12 first < last

34

37 1 73 call split to find split value V and rearrange the DATA array

accordingly

34

153

37 1 0

34

37 77 36 split(last,first,split 1,split2.DATA)

36

36

35

37 2 0

34

37 4 13 split 1 < last

34

37 1 0

34

37 77 23 qsort(last,splitl,DATA)

36

36

36

35

37 2 0

34

37 4 14 first < split2

34

37 1 0

34

37 77 24 qsort(split2,first,DATA)

36

36

36

36

36

36

154

38

39

bubble 1

37 66 52 Sorts DATA from index 1 through N in ascending order

34

37 1 0

34

37 6 1 I

34

37 7 1 1

36

36

35

37 2 0

34

37 3 5 I < N

34

37 1 37 Bubble up the smallest unsorted value

34

37 1 0

34

37 6 1 J

34

37 7 1 N

36

36

35

37 2 0

34

37 3 5 J > I

155

37 1 0

34

37 4 21 DATA1JJ < DATA[J - 1)

34

37 1 0

34

37 77 20 swap(J, J - 1, DATA)

36

36

36

36

35

37 2 0

34

376 I J

34

37 7 5 J - 1

36

36

36

36

36

35

37 2 0

34

34

37 1 61 If the bottom value is smaller than its predecssor, swap them

34

376 1 I

34

156

37 7 5 I + 1

36

36

36

36

36

38

39

bubble2

37 66 91 Sorts DATA from index 1 through N in ascending order;

stops sorting when the array is sorted

34

37 1

34

37 6

34

37 7

36

36

35

37 2

34

37 6

34

37 7

36

36

35

37 2

0

1 I

1 1

0

7 swapped

4 true

108 Loop through array; stop when sorted. The array is sorted when

there are no values swapped in the inner loop

157

34

37 1

34

37 3

34

37 1

34

37 1

34

37 6

34

37 7

36

36

35

37 2

34

37 6

34

37 7

36

36

36

35

37 2

34

37 1

34

37 3

0

19 (I < N) and swapped

10 Initialize

0

1 J

1 N

0

7 swapped

5 false

37 Bubble up the smallest unsorted value

0

5 J > I

34

158

34

37

34

37

34

37

34

37

34

37

36

36

35

37

34

37

36

36

36

36

35

37

34

37

34

37

36

37 1 126 If the bottom value is smaller than its predecessor, swap them.

Note that the swap took place by setting boolean flag swap

1 0

4 21 DATA[J] < DATA[J - 1]

1 0

6 7 swapped

7 4 true

2 0

77 20 swap(J, J - 1, DATA)

2 0

6 1 J

7 5 J - 1

36

36

36

36

35

37

34

37

34

37

36

36

36

36

36

36

38

38

159

160

APPENDIX F

INTERACTIVE INPUT - OUTPUT FILE

This appendix includes the contents of an interactive I/O file which is produced during the

execution the sort program given in the Appendix C.

161

Enter an integer value for variable 'N' = = > 10

Enter an integer value for variable 'DATA[1J' = = > 6

Enter an integer value for variable 'DATA[2j' = = > 1

Enter an integer value for variable 'DATA[3]' = = > 3

Enter an integer value for variable 'DATA[4J' = = > 4

Enter an integer value for variable 'DATA[5J' = = > 11

Enter an integer value for variable 'DATA[6]' = = > 25

Enter an integer value for variable 'DATA[7j' = = > 5

Enter an integer value for variable 'DATA[8]' = = > 30

Enter an integer value for variable 'DATA(9]' = = > 40

Enter an integer value for variable 'DATAJ10]' = = > 33

Enter an integer value for variable 'sorttype' = = > 0

DATA[1] = = > 1

DATA[2] = = > 3

DATA[3] = = > 4

DATA[4] = = > 5

DATA[5] = = > 6

DATA[6] = = > 11

DATA[7] = = > 25

DATA[8] = = > 30

DATA[9] = = > 33

DATA[10] = = > 40

Enter an integer value for variable 'test' = = > 11

location = = > 6

	An integrated programming environment for pseudo-code development, IPE-PC
	Recommended Citation

	tmp.1633961067.pdf.NyB6t

