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ABSTRACT

In the analysis of most statistically designed experiments, it is common to assume

equal variances along with the assumptions that the sample measurements are in-

dependent and normally distributed. Under these three assumptions, a likelihood

ratio test is used to test for the difference in population means. Typically, the as-

sumption of independence can be justified based on the sampling method used by

the researcher. The likelihood ratio test is robust to the assumption of normality.

However, the equality of variances is often difficult to justify. It has been found that

the assumption of equal variances cannot be made even after transforming the data.

Our interest is to develop a method for comparing k population means assuming the

data are independent and normally distributed but without assuming equal variances.

This is the Behrens-Fisher problem for k = 2. We propose a method that uses the

exact distribution of the likelihood ratio (test) statistic. The data is used to estimate

this exact distribution to obtain an estimated critical value or an estimated p-value.

Key Words : ANOVA, fixed effects one-way design, likelihood ratio test, orthogonal

designs, statistically designed experiments
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CHAPTER 1

INTRODUCTION

1.1 Model and Statistical Hypotheses

It is often the interest of researchers to compare two (k = 2) or more (k > 2)

population means. For example, when one is comparing the means of the k levels of a

one factor, fixed effects statistically designed experiment. To make these comparisons,

the researcher is allowed to sample from the populations and observe the measurement

Y on each individual in the samples. The measurement Yij to be taken on the jth

individual from Population i is assumed to have a normal distribution with mean µi

and variance σ2
i , for j = 1, . . . , ni with ni ≥ 2, i = 1, . . . , k with k ≥ 2. Also, it is

assumed that the Yij’s are independent. We will refer to this model as the independent

normal model.

With the assumption of equal variances (σ2
1 = . . . = σ2

k = σ2), a method known

as “analysis of variance (ANOVA)” is used to analyze these data. The ANOVA

test of the null hypothesis H0 : µ1 = . . . = µk against the alternative hypothesis

Ha :∼ (µ1 = . . . = µk) is a likelihood ratio test. In the derivation of the likelihood

ratio test statistic, it is observed that

∑k

i=1

∑ni

j=1

(
Yij − Y ..

)2
=
∑k

i=1

∑ni

j=1

(
Yij − Y i.

)2
+
∑k

i=1
ni
(
Y i. − Y ..

)2
,

where

Y i. =
1

ni

∑ni

j=1
Yij, Y .. =

1

m

∑k

i=1

∑ni

j=1
Yij, and m = n1 + . . .+ nK .

for i = 1, . . . , k. One form for the decision rule for the likelihood ratio test of size α

rejects H0 in favor of Ha if

V =

∑k
i=1 ni

(
Y i. − Y ..

)2
/ (k − 1)∑k

i=1

∑ni
j=1

(
Yij − Y i.

)2
/ (m− k)

≥ Fk−1,m−k,α,



2

where Fk−1,m−k,α is the 100 (1− α)th quantile of an F -distribution with k − 1 nu-

merator and m − k denominator degrees of freedom. We will discuss this statistical

procedure in Chapter 4.

A question that arises is “how robust is this test to the model assumptions of

independence, normal, and equal variances?” Various authors, as will be discussed

in the next section, have shown that the likelihood ratio test is not robust to the

assumption of equal variances. In Chapter 5, we address this problem by deriving the

exact distribution of V under the independent normal model with not assumption

about the equality of the variances. It is shown that the distribution of V under the

null hypothesis of equal means depends on the unknown population variances through

the parameters

λ2
1 =

σ2
1

σ2
k

, . . . , λ2
k−1 =

σ2
k−1

σ2
k

.

In the case in which k = 2, Welch (1938) developed a test based on an approxi-

mation of the distribution of the statistic

T =
Y 1. − Y 2.√

1
n1(n1−1)

∑n1

j=1

(
Y1j − Y 1.

)2
+ 1

n2(n2−1)

∑n2

j=1

(
Y2j − Y 2.

)2
.

He approximated the distribution of T with a noncentral t-distribution in which the

degrees of freedom is a function of the ratio λ2 = σ2
1/σ

2
2 and the sample sizes. The

approximate test was then estimated by estimating λ2 with

λ̂2 =
1

n1−1

∑n1

j=1

(
Y1j − Y 1.

)2

1
n2−1

∑n2

j=1

(
Y2j − Y 2.

)2 .

Champ and Hu (2010) derived the exact distribution of T whose null distribution de-

pends only on the parameter λ2 and developed a test that estimates the test based on

the exact null distribution of T under the independent normal model. This estimate

of the exact test was demonstrated by them to perform better the approximate/esti-

mate test of Welch (1938). In Chapter 5, we extend Champ and Hu (2010) method

to the case in which k > 2.
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1.2 Literature Review

Scheffee (1959) observed that the level of significance of the test may be significantly

different from α if the assumption of equal variances does not hold. Thus, the F-

test can result in an increase of the Type I error when the assumption of equal

variances is violated. This creates problem in biomedical experiments, where usually

large samples are not used. In such experiments each data point can be vital and

expensive (Ananda & Weerahandi, 1997).

To avoid such problems, Welch (1951) developed a test that works well under

heteroscedasticity, especially when the sample sizes are large. His method involved

approximating the distribution of the likelihood ratio test statistic with a chi-square

random variable, divided by its corresponding degrees of freedom. Then, the p-value

is approximated based on the approximate distribution when the null hypothesis

is true. Scott and Smith (1971) developed a test based on redefining the sample

standard deviations. Under the null hypothesis, their test statistic follows a Chi-

Square distribution. Further, Brown and Forsythe (1974) developed another test

that utilizes a new test statistic that follows a central F distribution when the null

hypothesis is true. Bishop and Dudewicz (1981), then, developed a test based on a

two-stage sampling procedure. To improve on these exact tests, Rice and Gains (1989)

extended the argument given by Barnard (1984) for comparing two population means

to obtain an exact solution to the one-way ANOVA problem with unequal variances.

Several other methods have been proposed using simulation. Krutchkoff (1988),

for example, provided a simulation-based method of obtaining an approximate so-

lution that works fairly well even with small sample sizes. There are several tests

done in the literature that provide approximate tests, such as Chen and Chen, 1998;

Chen, 2001; Tsui and Weerahandi, 1989; Krishnamoorthy et al., 2006; Xu and Wang,

2007a, 2007b. Krishnamoorthy et al. (2006) developed an approximate test based
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on parametric bootstrapping. Weerahandi (1995a) developed a generalized p-value

based on a generalized F-test to solve such problems with no adverse effect on the

size of the test.

Yiğit and Gokpinar (2010) showed using Monte Carlo simulations that Welch’s

test, Weerahandi’s generalized F-test, and Krishnamoorthy et. al ’s test appear to be

more powerful than other tests in most cases.

1.3 Overview of Proposed Research

In this thesis, we derive a closed-form expressions for the probability density function

of a linear combination of non-central chi-squares each with one degree of freedom,

of a linear combination of central chi-squares, and of their ratio mutliplied by a

certain constant. Furthermore, we look at the case in which variances are equal as

a potential guide to our reseach. Laslty, we derive the distributions of SSE, SSTR,

and the likelihood ratio test statistic Q under the independent normal model when

the variances are not assumed equal.



CHAPTER 2

SOME USEFUL MATRIX RESULTS

2.1 Introduction

In the study of the general linear model, vector and matrix notation are indispensable

tools. In this chapter, some matrix results are given that are not typically found in

the literature that are useful in finding the distribution of various quadratic forms.

2.2 Quadratic Forms

For the vector yp×1 and the matrix Ap×p, the scalar value yTAy is referred to as a

quadratic form. For example, the variance S2 of a sample of measurements Y1, . . . , Yn

can be expressed as a quadratic form. The sample variance is defined by

S2 =
1

n− 1

∑n

i=1

(
Yi − Y

)2
,

where Y = 1
n

∑n
i=1 Yi. Observe that we can write

S2 =
1

n− 1



Y1 − Y

Y2 − Y
...

Yn − Y



T 

Y1 − Y

Y2 − Y
...

Yn − Y


.

Next we observe that

Y1 − Y

Y2 − Y
...

Yn − Y


=



n−1
n
− 1
n

. . . − 1
n

− 1
n

n−1
n

. . . − 1
n

...
...

. . .
...

− 1
n
− 1
n

. . . n−1
n





Y1

Y2

...

Yn


.
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Note that 

n−1
n
− 1
n

. . . − 1
n

− 1
n

n−1
n

. . . − 1
n

...
...

. . .
...

− 1
n
− 1
n

. . . n−1
n


= I− 1

n
J

is symmetrix and idempotent. Hence we see that

S2 =
1

n− 1
YT

(
I− 1

n
J

)
Y,

where I is the n× n identity matrix, J the n× n matrix of ones, and

Y = [Y1, . . . , Yn]T .

It is interesting to look at the following factorization of the matrix I − 1
n
J. We

can write

I− 1

n
J =

n− 1

n



1 − 1
n−1

. . . − 1
n−1

− 1
n−1

1 . . . − 1
n−1

...
...

. . .
...

− 1
n−1

− 1
n−1

. . . 1


The following theorem will be useful in examining further this quadratic form.

Therorem 2.1: For any positive real number ρ,

1 ρ . . . ρ

ρ 1 . . . ρ

...
...

. . .
...

ρ ρ . . . 1



n×n

= VCVT,

where the (i, j)th element of V is given by

vij =



√
j(j+1)

j(j+1)
, i ≤ j;

− j
√
j(j+1)

j(j+1)
, i = j + 1 < n;

0, otherwise.
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and C = Diagonal (1− ρ, . . . , 1− ρ, 1 + (n− 1) ρ). Further V is a normalized or-

thogonal matrix.

Proof of Theorem 2.1: The proof of this theorem can be found in Champ and

Rigdon (2007).�

It follows from Theorem 2.1 that

I− 1

n
J =

n− 1

n
VCVT,

where

C = Diagonal

(
n

n− 1
, . . . ,

n

n− 1
, 0

)
=

n

n− 1
Diagonal (1, . . . , 1, 0)

=
n

n− 1
H

with H = Diagonal (1, . . . , 1, 0). Thus,

I− 1

n
J =

n− 1

n
V

(
n

n− 1
H

)
VT = VHVT.

Further, observe that H is symmetric and idempotent. Thus, we can write

S2 =
1

n− 1
YT

(
VHVT

)
Y =

1

n− 1

[
HVTY

]T [
HVTY

]
.

Theorem 2.2: If n1, . . . , nk are integers each greater than or equal to 1 with at least

one greater than or equal to 2 and m = n1 + . . . + nk, then the eigenvalues of the

matrix

I− 1

m
N1/2JN1/2

are 0 and 1 with 1 having multiplicity k − 1, where I is a k × k identity matrix,

N = Diagonal (n1, . . . , nk), and J is a k× k matrix of ones. Further, the rank of this

matrix is k − 1.
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Proof of Theorem 2.2: Let λ be an eigenvalue of the matrix I − 1
m

N1/2JN1/2. It

follows that the characteristic polynomial g (λ) can be expressed as

g (λ) =

∣∣∣∣I− 1

m
N1/2JN1/2 − λI

∣∣∣∣ = (−1)k λ (1− λ)k−1 .

Thus, the eigenvalues are 0 and 1 with 1 having multiplicity k − 1. This also shows

that the rank of I− 1
m

N1/2JN1/2 is k − 1. �

Theorem 2.3: Suppose n1, . . . , nk are integers each greater than or equal to 1 with

at least one greater than or equal to 2 and m = n1 + . . .+ nk, then we have

I− 1

m
N1/2JN1/2 = VHVT,

where I is a k×k diagonal matrix, N = Diagonal (n1, . . . , nk), and J is a k×k matrix

of ones, the orthonormal eigenvectors v1, . . . ,vk are the columns of V with the first

k−1 vectors associated with the k−1 eigenvalues of 1 of the matrix I− 1
m

N1/2JN1/2

and the eigenvector vk associated with the eigenvalue 0.

Proof of Theorem 2.3: The proof of this theorem can be found in Champ and

Jones-Farmer (2007).�

Theorem 2.4: If Σ = Diagonal (σ2
1, . . . , σ

2
k), I is a k × k identity matrix, N =

Diagonal (n1, . . . , nk), and J is a k×k matrix of ones with n1, . . . , nk positive integers

with at least one greater than or equal to 2, m = n1 + . . . + nk, and σ2
i > 0 for

i = 1, . . . , k − 1, then the matrix

Σ1/2

(
I− 1

m
N1/2JN1/2

)
Σ1/2 = VCVT,

is of rank k−1, where the diagonal elements of C = Diagonal (ξ1, . . . , ξk−1, 0) are the

eigenvalues with ξi > 0 of the matrix and V = [v1, . . . ,vk]
T is the matrix in which

the column vectors are the associated orthonormal eigenvectors. Further, we have

C1/2VTN1/2Σ−1/21 = 0,



9

where 0 and 1 are k × 1 vectors of zeros and ones, respectively.

Proof of Theorem 2.4: Since the matrix I − 1
m

N1/2JN1/2 is a real symmetric

matrix of rank k − 1 and Σ is of rank k, then Σ1/2
(
I− 1

m
N1/2JN1/2

)
Σ1/2 has

rank k − 1. Thus, the matrix Σ1/2
(
I− 1

m
N1/2JN1/2

)
Σ1/2 has k − 1 positive real

eigenvalues ξ1, . . . , ξk−1 and one zero eigenvalue. It follows that we can express

Σ1/2
(
I− 1

m
N1/2JN1/2

)
Σ1/2 as VCVT. It is convenient in what follows to define

C−1/2 = Diagonal
(
ξ
−1/2
1 , . . . , ξ

−1/2
k−1 , 0

)
. Note that

C−1/2C1/2 = Diagonal (1, . . . , 1, 0) = H and HC1/2 = C1/2.

Using the results in Dillies and Lakuriqi (2014), we can write

C1/2VTN1/2Σ−1/21 = HC1/2VTN1/2Σ−1/21

=
(
C−1/2VTVC1/2

) (
C1/2VTN1/2Σ−1/21

)
= C−1/2VT

(
VCVTN1/2Σ−1/21

)
= C−1/2VT

(
Σ1/2

(
I− 1

m
N1/2JN1/2

)
Σ1/2

)
N1/2Σ−1/21

= C−1/2VTΣ1/2N−1/2N1/2

(
I− 1

m
N1/2JN1/2

)
Σ1/2Σ−1/2N1/21

= C−1/2VTΣ1/2

(
N1− 1

m
NJN1

)
= C−1/2VTΣ1/2 (N1−N1)

= 0.�

As discussed in Champ and Jones-Farmer (2007), it is convenient to define the

p× p matrix B by

B =
1

d (δ1 + d)
(δ + de1) (δ + de1)T − I,

where δ = P−1
0 (µ− µ0), δ1 is the first component of the vector δ, d2 = δTδ =

(µ− µ0)T Σ−1
0 (µ− µ0), and e1 is a p × 1 vector with first coordinate one and the
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remaining coordinates zero. It is easy to show that the matrix B is an orthogonal

matrix that transforms δ into

Bδ = [d, 0, . . . , 0]T = de1.



CHAPTER 3

SOME DISTRIBUTIONAL RESULTS

3.1 Introduction

In the analysis of various designed experiments, the distribution of linear combinations

of central and noncentral chi square random variables are of interest as well as the ratio

of two such linear combinations. We will examine the distributions of the following

linear combination of independent central chi square random variables, the linear

combination of independent noncentral chi square random variables each with one

degree of freedom, and the ratio of these linear combinations. The linear combinations

and ratio are expressed symbolically as

(1)
∑s

i=1
aiχ

2
νi

; (2)
∑t

i=1
ciχ

2
1,τ2i

; and (3)
∑t

i=1
ciχ

2
1,τ2i

/
(∑s

i=1
aiχ

2
νi

)
.

In the next section, we derive a closed form expression for (1). This is followed by

two section in which we give closed form expressions for (2) and (3).

3.2 Joint Distribution of the Sample Mean and Variance

A proof is given in Bain and Engelhart (1991) that the sample mean and variance

are independent under the independent normal model. Further, they show that the

sample mean has a normal distribution and the distribution of the sample variance is

the same as the distribution of a given constant times a chi square random variable.

In particular, if Y1, . . . , Yn is a random sample from a N (µ, σ2) distribution, then

Y ∼ N
(
µ, σ2/n

)
and

(n− 1)S2

σ2
∼ χ2

n−1.
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3.3 Linear Combination of Central Chi Squares

First, we recall the form of the probability density function fX (x) of a central chi

square distribution with ν degrees of freedom. We have

fX (x) =
xν/2−1e−x/2

Γ
(
ν
2

)
2ν/2

I(0,∞) (x) ,

where IA (x) = 1 if x ∈ A and zero otherwise. The mean and variance are, respec-

tively,

µX = ν and σ2
X = 2ν.

The moment generating function MGFX (t) of the distribution of X is

MGFX (t) =

(
1

1− 2t

)ν/2
.

See Bain and Engelhardt (1991) for more details about the chi square distribution.

Theorem 3.1: If X1 ∼ χ2
ν1
, . . . , Xm ∼ χ2

νm are independent random variables with

ν1, . . . , νm positive integers, then

X1 + . . .+Xm ∼ χ2
ν , with ν = ν1 + . . .+ νm.

Proof of Theorem 3.1: Bain and Engelhardt (1991) give a proof of this theorem

using the moment generating function method.�

Theorem 3.2: If Xi ∼ χ2
νi

are independent random variables for i = 1, · · · , k,

and ai are distinct positive real numbers, then the probability density function of

U = a1X1 + a2X2 + · · ·+ akXk is given by

fU (u) =
∑∞

r1=0
· · ·
∑∞

rk−1=0
ξr1,...,rk−1

fχ2
ν1+...+νk+2r1+...+2rk−1

(
a−1
k u
)
a−1
k

=
∑

r
ξrfχ2

νr

(
a−1
k u
)
a−1
k
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where

∑
r

=
∑∞

r1=0
· · ·
∑∞

rk−1=0
; r = [r1, . . . , rk−1]T ;

νr = ν1 + . . .+ νk + 2r1 + . . .+ 2rk−1; r0 = 0; and

ξr = ξr1,...,rk−1

=
(−1)r1+...+rk−1

(∏k−1
i=1 (ai+1 − ai)ri

)
a

(ν1+...+νk−1+2r1+...+2rk−2)/2
k

a
(ν1+2r1)/2
1

(∏k−1
i=2 a

(νi+2ri+2ri−1)/2
i

)(∏k−1
i=1 ri!

)
×

∏k−1
i=1 Γ

(
ν1+...+νi+2r1+...+2ri

2

)
Γ
(
ν1
2

)∏k−1
i=2 Γ

(ν1+...+νi+2r1+...+2ri−1

2

) .

Proof of Theorem 3.2: Let Xi ∼ χ2
νi

be independent random variables and ai be

distinct positive real values for i = 1, · · · , k. Consider the one-to-one transformation

Ui =
∑i

j=1
ajXj

for i = 1,. . . , k. Then, we can write the inverse transformation and the Jacobian as

X1 = a−1
1 U1 and Xi = a−1

i (Ui − Ui−1) with J =
k∏
j=1

a−1
j ,

for i = 2, . . . , k. For ui > 0 (i = 2, . . . , k), the joint distribution function of U =
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[U1, U2, · · · , Uk]T can be expressed as

fU(u) = fX1(a
−1
1 u1)(

k∏
i=2

fXi(a
−1
i (ui − ui−1)))(

k∏
i=1

a−1
i )

=
(a−1

1 u1)ν1/2−1e−a
−1
1 u1/2(

∏k
i=1 a

−1
i )

2(ν1+···+νk)/2(
∏k

i=1 Γ(νi
2

))

×
k∏
i=2

(a−1
i (ui − ui−1))νi/2−1e−a

−1
i (ui−ui−1)/2)

=
u1

ν1/2(
∏k

i=2(ui − ui−1))νi/2−1)

(
∏k

i=1 a
νi/2
i )(

∏k
i=1 Γ(νi

2
))2(ν1+···+νk)/2

× e−a
−1
1 u1/2(

k∏
i=2

e−a
−1
i (ui−ui−1)/2)

=
(
∏k

i=2(ui−1

ui
)(ν1+···+νi−1)/2−1(1− ui−1

ui
)νi/2−1u−1

i )u
(ν1+···+νk)/2−1
k

(
∏k

i=1 a
νi/2
i )(

∏k
i=1 Γ(νi

2
))2(ν1+···+νk)/2

× e−a
−1
k uk/2(

k−1∏
i=1

e−ui(a
−1
i −a

−1
i+1)/2)

Using Maclaurin series expansion, we have:

k−1∏
i=1

e−ui(a
−1
i −a

−1
i+1)/2 =

k−1∏
i=1

∞∑
ri=0

(−1)riurii (a−1
i − a−1

i+1)ri

2ri ri!

Thus, we obtain

fU(u) =
∞∑
r1=0

· · ·
∞∑

rk−1=0

(−1)r1+···+rk−1(
∏k−1

i=1 (a−1
i − a−1

i+1)ri)

(
∏k−1

i=1 ri!)(
∏k

i=1 a
νi/2
i )(

∏k
i=1 Γ(νi

2
))

× e−a
−1
k uk/2 u

(ν1+···+νk+2r1+···+2rk−1)/2−1
k

2(ν1+···+νk+2r1+···+2rk−1)/2

× (
k∏
i=2

(
ui−1

ui
)(ν1+···+νi−1+2r1+···+2ri−1)/2−1(1− ui−1

ui
)νi/2−1u−1

i )

Since ∫ ui

0

(
ui−1

ui
)c−1(1− ui−1

ui
)d−1u−1

i dui−1 =
Γ(c)Γ(d)

Γ(c+ d)
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we can write the marginal distribution fU(u) = fUk(uk) as

fU(u) =

∫ uk

0

· · ·
∫ u2

0

fU(u) du1du2 · · · duk−1

=
∞∑
r1=0

· · ·
∞∑

rk−1=0

(−1)r1+···+rk−1(
∏k−1

i=1 (a−1
i − a−1

i+1)ri)

(
∏k−1

i=1 ri!)(
∏k

i=1 a
νi/2
i )(

∏k
i=1 Γ(νi

2
))

× e−a
−1
k uk/2 (a−1

k uk)
(ν1+···+νk+2r1+···+2rk−1)/2−1

2(ν1+···+νk+2r1+···+2rk−1)/2

× a(ν1+···+νk+2r1+···+2rk−1)/2−1
k

×
k∏
i=2

Γ(ν1+···+νi−1+2r1+···+2ri−1

2
)Γ(νi

2
)

Γ(ν1+···+νi+2r1+···+2ri−1

2
)

Notice that

k∏
i=2

Γ(
ν1 + · · ·+ νi−1 + 2r1 + · · ·+ 2ri−1

2
)

=
k−1∏
i=1

Γ(
ν1 + · · ·+ νi + 2r1 + · · ·+ 2ri

2
)

and that
k−1∏
i=1

(a−1
i − a−1

i+1)ri =

∏k−1
i=1 (ai+1 − ai)ri∏k−1
i=1 (aiai+1)ri

.

Also,

(
k∏
i=1

a
νi/2
i )(

k−1∏
i=1

(aiai+1)ri) = a
(ν1+2r1)/2
1 a

(νk+2rk−1)/2
k (

k−1∏
i=2

a
(νi+2ri−1+2ri)/2
i ).

Thus, we obtain

fU(uk) =
∞∑
r1=0

· · ·
∞∑

rk−1=0

(−1)r1+···+rk−1(
∏k−1

i=1 (ai+1 − ai)ri)
a

(ν1+2r1)/2
1 (

∏k−1
i=2 a

(νi+2ri−1+2ri)/2
i )(

∏k−1
i=1 ri!)Γ(ν1

2
)

×
∏k−1

i=1 Γ(ν1+···+νi+2r1+···+2ri
2

)∏k−1
i=2 Γ(ν1+···+νi+2r1+···+2ri−1

2
)
a

(ν1+···+νk−1+2r1+···+2rk−2)/2−1
k

× e−a
−1
k uk/2 (a−1

k uk)
(ν1+···+νk+2r1+···+2rk−1)/2−1

Γ(ν1+···+νk+2r1+···2rk−1

2
)2(ν1+···+νk+2r1+···+2rk−1)/2

.

The results follow.�
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Figure 3.1: Graph of f2χ2
3+4χ2

6
(u)

Consider the cases in which k = 2 and k = 3. For k = 2 with ν1 = 3, ν2 = 6,

a1 = 2, and a2 = 4, the probability density function describing the distribution of

U = 2χ2
3 + 4χ2

6

is given by

fU (u) =

(
4

2

)3/2∑∞

r=0

(−1)r Γ
(

3+2r
2

)
4Γ
(

3
2

)
r!

fχ2
9+2r

(
4−1u

)
.

The graph of fU (u) is given in Figure 3.1.

For k = 3 with ν1 = 3, ν2 = 6, ν3 = 7, a1 = 2, a2 = 4, and a3 = 5. The

probability density function describing the distribution of

U = 2χ2
3 + 4χ2

6 + 5χ2
7

is given by

fU (u) =
∑∞

r=0

∑∞

t=0

(−1)r+t
(

1
4

)r ( 1
20

)t
Γ
(

3+2r
2

)
Γ
(

9+2r+2t
2

)
5(7+2r+2t)/2

215/2r!t!Γ
(

3
2

)
Γ
(

9+2r
2

) fχ2
16+2r+2t

(
5−1u

)
The graph of this density is given in Figure 3.2.
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Figure 3.2: Graph of f2χ2
3+4χ2

6+5χ2
7
(u)

3.4 Linear Combination of Noncentral Chi Squares Each with One

Degree of Freedom

In this section, we look at the probability distribution function of a non-central chi-

square and some of its properties. We also derive a closed form expression for the

probability distribution function describing the distribution of a linear combination

of non-central chi-squares, each with one degree of freedom. Several approximations

to this distribution have been done in the literature (Press 1966, Davis 1977).

Theorem 3.3: If Z has a standard normal distribution and τ is a real number, then

the probability density function describing the distribution of

W = (Z + τ)2
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is

fW (w) = e−τ
2/2
∑∞

r=0

θr,τ2Γ
(

1+2r
2

)
2r

√
π (2r)!

fχ2
1+2r

(w)

= e−τ
2/2

(
fχ2

1
(w) +

∑∞

r=1

(τ 2)
r

Γ
(

1+2r
2

)
2r

√
π (2r)!

fχ2
1+2r

(w)

)
,

where

θr,τ2 =

 1, if r = 0;

(τ 2)
r

, if r > 0.

Proof of Theorem 3.3: The cumulative distribution function describing the distri-

bution of W for is given by

FW (w) = P
(
(Z + τ)2 ≤ w

)
= P

(
−
√
w − τ ≤ Z ≤

√
w − τ

)
I(0,∞) (w)

=
[
Φ
(√

w − τ
)
− Φ

(
−
√
w − τ

)]
I(0,∞) (w) ,

where Φ (z) is the cumulative distribution function of a standard normal distribution.

It follows that the probability density function describing the distribution of W is

fW (w) =

[
1

2
w−1/2φ

(√
w − τ

)
+

1

2
w−1/2φ

(
−
√
w − τ

)]
I(0,∞) (w)

=

[
1

2
√

2π
w−1/2e−(

√
w−τ)

2
/2 +

1

2
√

2π
w−1/2e−(−

√
w−τ)

2
/2

]
I(0,∞) (w)

=
e−τ

2/2

2
√

2π
w−1/2e−w/2

(
eτ
√
w + e−τ

√
w
)
I(0,∞) (w) ,

where φ (z) is the probability density function of a standard normal distribution.

Next we observe that

eτ
√
w + e−τ

√
w =

∑∞

r=0

τ rwr/2

r!
+
∑∞

r=0

(−1)r τ rwr/2

r!

=
∑∞

r=0
(1 + (−1)r)

τ rwr/2

r!

= 2
∑∞

r=0

(τ 2)
r
wr

(2r)!
.
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Hence, we have

fW (w) =
e−τ

2/2

2
√

2π
w−1/2e−w/2

(
2
∑∞

r=0

(τ 2)
r
wr

(2r)!

)
I(0,∞) (w)

= e−τ
2/2
∑∞

r=0

(τ 2)
r

√
2π (2r)!

w(2r−1)/2e−w/2I(0,∞) (w)

= e−τ
2/2
∑∞

r=0

(τ 2)
r

√
2π (2r)!

w(1+2r)/2−1e−w/2I(0,∞) (w)

= e−τ
2/2
∑∞

r=0

(τ 2)
r

Γ
(

1+2r
2

)
2(1+2r)/2

√
2π (2r)!

× 1

Γ
(

1+2r
2

)
2(1+2r)/2

w(1+2r)/2−1e−w/2I(0,∞) (w)

= e−τ
2/2
∑∞

r=0

(τ 2)
r

Γ
(

1+2r
2

)
2(1+2r)/2

√
2π (2r)!

fχ2
1+2r

(w)

= e−τ
2/2
∑∞

r=0

(τ 2)
r

Γ
(

1+2r
2

)
2r

√
π (2r)!

fχ2
1+2r

(w) .�

The random variable W is said to have a noncentral chi square distribution with

1 degree of freedom and noncentrality parameter τ 2 or more compactly stated as

W ∼ χ2
1,τ2 .

Theorem 3.4: If W ∼ χ2
α,τ2 , then the moment generating function of the distribu-

tion of W is

MGFW (t) = (1− 2t)−α/2 e−τ
2t/(1−2t)

for t ∈ (−1/2, 1/2).

Proof of Theorem 3.4: The proof of this theorem can be found in Tanizaki (2004).�

Theorem 3.5: If Z1, . . . , Zν are ν independent random variables each having a stan-

dard normal distribution and τ1, . . . , τν are real numbers, then the distribution of

W = (Z1 + τ1)2 + . . .+ (Zν + τν)
2

is a noncentral chi square distribution with ν degrees of freedom and noncentrality

parameter

τ 2 = τ 2
1 + . . .+ τ 2

ν .
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Proof of Theorem 3.5: The moment generating function of W is

MGFW (t) =
∏ν

i=1
MGF(Zi+τi)

2 (t) =
∏ν

i=1
(1− 2t)−1/2 e−τ

2t/(1−2t)

= (1− 2t)−ν/2 e−(τ21 +···+τ2ν)t/(1−2t).

This the moment generating function of a noncentral chi square distribution with ν

degrees of freedom and noncentral parameter τ 2
1 + · · ·+ τ 2

ν .�

Theorem 3.6: If W1 ∼ χ2
1,τ21

, . . . ,Wη ∼ χ2
1,τ2η

are stochasticly independent noncentral

chi square random variables each with one degree of freedom and c1, . . . , cη are distinct

positive real numbers for η ≥ 2, then the probability density function describing the

distribution of

W = c1W1+, . . .+ cηWη ∼ c1χ
2
1,τ21

+ . . .+ cηχ
2
1,τ2η

is for w > 0 given by

fW (w) =
∑∞

t1=0
· · ·
∑∞

tη=0

∑∞

s1=0
· · ·
∑∞

sη−1=0
ζt1,...,tη ,s1,...,sη−1

× fχ2
ν+2t1+...+2tη+2s1+...+2sη−1

(
c−1
η w

)
c−1
η

=
∑

t,s
ζt,sfχ2

νt,s

(
c−1
η w

)
c−1
η ,

for w > 0 and fW (w) = 0 otherwise, where

ζt,s = ζt1,··· ,tη ,s1,··· ,sη−1 =
(
∏η

i=1 θti,τ2i )(−1)s1+···+sη−12t1+···+tηe−(τ21 +···+τ2η )/2

c
(1+2t1+2s1)/2
1 (

√
π)η(

∏η
i=1 2ti!)(

∏η−1
i=1 si!)

× (
∏η−1

i=1 (ci+1 − ci)si) c
(η−1+2t1+···+2tη−1+2s1+···+2sη−2)/2
η

(
∏η−1

i=2 c
1+2ti+2si−1+2si
i )

×
(
∏η−1

i=1 Γ( i+2t1+···+2ti+2s1+···+2si
2

))(
∏η

i=2 Γ(1+2ti
2

))

(
∏η−1

i=2 Γ( i+2t1+···+2ti+2s1+···+2si−1

2
))

;

θti,τ2i =

 1, if ti = 0;

(τ 2
i )
ti , if ti > 0.

; and t = (t1, . . . , tη) and s = (s1, . . . , sη−1) .
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Proof of Theorem 3.6: Let Wi ∼ χ2
1,τ2i

be independent random variables and ci be

positive real values for i = 1, · · · , η. Consider the one-to-one transformation

Wi =
∑i

j=1
cjXj

for i = 1,. . . , η. Note that W = Wη. Then, we can write the inverse transformation

and the Jacobian as

X1 = c−1
1 W1 and Xi = c−1

i (Wi −Wi−1) with J =

η∏
j=1

c−1
j ,

for i = 2, . . . , η. For wi > 0 (i = 1, . . . , η), the joint distribution function of W =

[W1,W2, · · · ,Wη]
T can be expressed as

fW(w) = fX1(c
−1
1 w1)(

η∏
i=2

fXi(c
−1
i (wi − wi−1)))(

η∏
i=1

c−1
i )

= e−τ
2
1 /2
∑∞

t1=0

θt1,τ21 Γ
(

1+2t1
2

)
2t1(c−1

1 w1)(1+2t1)/2−1e−c
−1
1 w1/2

√
π (2t1)!Γ

(
1+2t1

2

)
2(1+2t1)/2

×
η∏
i=2

∑∞

ti=0

θti,τ2i Γ
(

1+2ti
2

)
2ti(c−1

i (wi − wi−1))(1+2ti)/2−1

(2ti)!Γ
(

1+2ti
2

)
2(1+2ti)/2

×
η∏
i=2

e−τ
2
i /2e−c

−1
i (wi−wi−1)/2

(
√
π)i

×
η∏
i=1

c−1
i

=
∞∑
t1=0

· · ·
∞∑
tη=0

(
∏η

i=1 θti,τ2i )w
(1+2t1)/2−1
1 (

∏η
i=2(wi − wi−1)(1+2ti)/2−1)

2η/2(
√
π)η(

∏η
i=1(2ti)!)(

∏η
i=1 c

(1+2ti)/2
i )

× e−(τ21 +···+τ2η )/2e−c
−1
η wη(

η−1∏
i=1

e−wi(c
−1
i −c

−1
i+1)/2)

=
∞∑
t1=0

· · ·
∞∑
tη=0

(
∏η

i=1 θti,τ2i )e−(τ21 +···+τ2η )/2e−c
−1
η wη

2η/2(
√
π)η(

∏η
i=1(2ti)!)(

∏η
i=1 c

(1+2ti)/2
i )

× (

η∏
i=2

(
wi−1

wi
)(i−1+2t1+···+2ti−1)/2−1(1− wi−1

wi
)(1+2ti)/2−1w−1

i )

× (

η−1∏
i=1

e−wi(c
−1
i −c

−1
i+1)/2)w(η+2t1+···+2tη)/2−1

η .

Using Maclaurin series expansion, we have:
η−1∏
i=1

e−wi(c
−1
i −c

−1
i+1)/2 =

η−1∏
i=1

∞∑
si=0

(−1)siwsii (c−1
i − c−1

i+1)si

2si si!
.
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Hence,

fW(w) =
∞∑
t1=0

· · ·
∞∑
tη=0

∞∑
s1=0

· · ·
∞∑

sη−1=0

(
∏η

i=1 θti,τ2i )e−(τ21 +···+τ2η )/2(−1)s1+···+sη−1

(
√
π)η(

∏η
i=1(2ti)!)(

∏η
i=1 c

(1+2ti)/2
i )

×
e−c

−1
η wη/2(

∏η−1
i=1 (c−1

i − c−1
i+1)si)w

(η+2t1+···+2tη+2s1+···+2sη−1)/2−1
η

(
∏η−1

i=1 si!) 2(η+2s1+···+2sη−1)/2

× (

η∏
i=2

(
wi−1

wi
)(i−1+2t1+···+2ti−1+2s1+···+2si−1)/2−1(1− wi−1

wi
)(1+2ti)/2−1w−1

i ).

Since ∫ wi

0

(
wi−1

wi
)a−1(1− wi−1

wi
)b−1w−1

i dwi−1 =
Γ(a)Γ(b)

Γ(a+ b)
,

we can write the marginal distribution of Wη as

fWη(wη) =

∫ wη

0

· · ·
∫ w2

0

fW(w) dw1dw2 · · · dwη−1

=
∞∑
t1=0

· · ·
∞∑
tη=0

∞∑
s1=0

· · ·
∞∑

sη−1=0

(
∏η

i=1 θti,τ2i )e−(τ21 +···+τ2η )/2(−1)s1+···+sη−1

(
√
π)η(

∏η
i=1(2ti)!)

×
e−c

−1
η wη/2(

∏η−1
i=1 (c−1

i − c−1
i+1)si) (c−1

η wη)
(η+2t1+···+2tη+2s1+···+2sη−1)/2−1

(
∏η

i=1 c
(1+2ti)/2
i )(

∏η−1
i=1 si!)

× 2t1+···+tηc
(η+2t1+···+2tη+2s1+···+2sη−1)/2−1
η

2(η+2t1+···+2tη+2s1+···+2sη−1)/2

×
η∏
i=2

Γ( i−1+2t1+···+2ti−1+2s1+···+2si−1

2
)Γ(1+2ti

2
)

Γ( i+2t1+···+2ti+2s1+···+2si−1

2
)

.

Notice that

η∏
i=2

Γ(
i− 1 + 2t1 + · · ·+ 2ti−1 + 2s1 + · · ·+ 2si−1

2
)

=

η−1∏
i=1

Γ(
i+ t1 + · · ·+ ti + 2s1 + · · ·+ 2si

2
)

and that
η−1∏
i=1

(c−1
i − c−1

i+1)si =

∏η−1
i=1 (ci+1 − ci)si∏η−1
i=1 (cici+1)si

.
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Also,

(

η∏
i=1

c
(1+2ti)/2
i )(

η−1∏
i=1

(cici+1)si)

= c
(1+2t1+2s1)/2
1 c(1+2tη+2sη−1)/2

η (

η−1∏
i=2

c
(1+2ti+2si−1+2si)/2
i ).

Hence, the marginal distribution fW (w) becomes

fW (w) =
∞∑
t1=0

· · ·
∞∑
tη=0

∞∑
s1=0

· · ·
∞∑

sη−1=0

(
∏η

i=1 θti,τ2i )e−(τ21 +···+τ2η )/2(−1)s1+···+sη−1

(
√
π)η(

∏η
i=1(2ti)!)(

∏η−1
i=1 si!)

× 2t1+···+tη(
∏η−1

i=1 (ci+1 − ci)si) c
(η−1+2t1+···+2tη−1+2s1+···+2sη−2)/2−1
η

c
(1+2t1+2s1)/2
1 (

∏η−1
i=2 c

(1+2ti+2si−1+2si)/2
i )

×
(
∏η−1

i=1 Γ( i+2t1+···+2ti+2s1+···+2si
2

))(
∏η

i=2 Γ(1+2ti
2

))

(
∏η−1

i=2 Γ( i+2t1+···+2ti+2s1+···+2si−1

2
))

×
e−c

−1
η wη/2 (c−1

η wη)
(η+2t1+···+2tη+2s1+···+2sη−1)/2−1

2(η+2t1+···+2tη+2s1+···+2sη−1)/2Γ(η+2t1+···+2tη+2s1+···+2sη−1

2
)
.

The results follow.�

3.5 Ratio of a Linear Combination of Noncentral Chi Square and

Central Chi Square Random Variables

It is useful to examine the distribution of a constant times the ratio of W and U .

The probability density function describing the distribution of this ratio is given in

the following theorem.

Theorem 3.7: Let Xi ∼ χ2
νi

are independent random variables for i = 1, · · · , k,

and ai are distinct positive real numbers, and let U = a1X1 + a2X2 + · · · + akXk.

Let W1 ∼ χ2
1,τ21

, . . . ,Wk ∼ χ2
1,τ2η

be stochasticly independent noncentral chi square

random variables each with one degree of freedom and c1, . . . , cη are distinct positive

real numbers for η ≥ 2, and let W = c1W1+, . . . + cηWη. Then for positive real

numbers dw and du the distribution of

Q =
du
dw

W

U
=
W/dw
U/du
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is given by

fQ (q) =
∑

t,s

∑
r

ζt,sξr

(
akdw
cηdu

)νt,s/2
Γ
(νt,s+νr

2

)
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

) (
1 + akdw

cηdu
q
)(νt,s+νr)/2

where
∑

t,s,
∑

r, νt,s, νr, ζt,s, and ξr are defined as in theorems 3.2 and 3.6.

Proof of Theorem 3.7:

The distributions of U and W are given in theorems 3.2 and 3.6 as

fU (u) =
∑

r
ξrfχ2

νr

(
a−1
k u
)
a−1
k and fW (w) =

∑
t,s
ζt,sfχ2

νt,s

(
c−1
η w

)
c−1
η .

Define

Q =
W/dw
U/du

and Q2 = U/du

W = dwQQ2 and U = duQ2 and J = dwduq2

fQ,Q2 (q, q2) = fW (dwqq2) fU (duq2) dwduq2

=
∑

t,s

∑
r
ζt,sξrfχ2

νt,s

(
c−1
η dwqq2

)
fχ2

νr

(
a−1
k duq2

)
× c−1

η a−1
k dwduq2

=
∑

t,s

∑
r
ζt,sξr

(
c−1
η dwqq2

)νt,s/2−1
e−(c−1

η dwqq2)/2

Γ
(νt,s

2

)
2νt,s/2

×
(
a−1
k duq2

)νr/2−1
e−(a−1

k duq2)/2

Γ
(
νr
2

)
2νr/2

c−1
η a−1

k dwduq2

=
∑

t,s

∑
r

ζt,sξr
(
c−1
η dw

)νt,s/2 (a−1
k du

)νr/2
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

)
2(νt,s+νr)/2

(
a−1
k du + c−1

η dwq
)(νt,s+νr)/2

×
((
a−1
k du + c−1

η dwq
)
q2

)(νt,s+νr)/2−1

× e−(a−1
k du+c−1

η dwq)q2/2 (a−1
k du + c−1

η dwq
)
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It follows that

fQ (q) =

∫ ∞
0

fQ,Q2 (q, q2) dq2

=
∑

t,s

∑
r

ζt,sξr
(
c−1
η dw

)νt,s/2 (a−1
k du

)νr/2
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

)
2(νt,s+νr)/2

(
a−1
k du + c−1

η dwq
)(νt,s+νr)/2

×
∫ ∞

0

((
a−1
k du + c−1

η dwq
)
q2

)(νt,s+νr)/2−1

× e−(a−1
k du+c−1

η dwq)q2/2 (a−1
k du + c−1

η dwq
)
dq2

=
∑

t,s

∑
r

ζt,sξr
(
c−1
η dw

)νt,s/2 (a−1
k du

)νr/2
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

)
2(νt,s+νr)/2

(
a−1
k du + c−1

η dwq
)(νt,s+νr)/2

× Γ

(
νt,s + νr

2

)
2(νt,s+νr)/2

=
∑

t,s

∑
r

ζt,sξr
(
c−1
η dw

)νt,s/2 (a−1
k du

)νr/2
Γ
(νt,s+νr

2

)
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

) (
a−1
k du + c−1

η dwq
)(νt,s+νr)/2

=
∑

t,s

∑
r

ζt,sξr

(
akdw
cηdu

)νt,s/2
Γ
(νt,s+νr

2

)
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

) (
1 + akdw

cηdu
q
)(νt,s+νr)/2

.�

3.6 Conclusion

Some distributional results were given. A closed form expression was derived for a

linear combination of (central) chi square variates. Also, a closed form expression was

derived for a linear combination of noncentral chi square variates each with one degree

of freedom. In both cases, the resulting forms of the probability density functions are

convex convolutions of probability density functions of central chi squares. This was

followed by a closed form expression for the probability density function describing

the distribution of a constant times the ratio of a linear combination of noncentral chi

square variates each with one degree of freedom and a linear combination of central

chi squares.



CHAPTER 4

ANALYSIS ASSUMING EQUAL VARIANCES

4.1 Model

It is often of interest to compare the means of more than two populations. This occurs

in the design of experiments when the research wishes to investigate the effect of one

factor on a response variable in which the factor has more than two levels. The levels

of this factor that are of interest to the researcher may be considered to be fixed or

a sample from the possible values of the factor. We are interested in this thesis in

examining the case in which (1) the researcher is interested in comparing the means

of k fixed populations or (2) a designed experiment with one factor in which the k

levels of the factor are fixed.

A commonly used statistical method for comparing these means is known as the

ANalysis Of VAriance (ANOVA). However, this method was constructed by making

three assumptions about the data. The firstly of these assumes that the response

variables Yi,j to be taken on the jth individual from the ith population are uncor-

related. Secondly, it is assumed that Yi,j ∼ N (µi, σ
2
i ). These first two assumptions

imply that the Yi,j’s are independent. Thirdly, it is assumed that the k population

variances are equal. That is,

σ2
1 = . . . = σ2

k = σ2.

As has been demonstrated by Brown and Forsythe (1974), the size of the test is

“markedly” different than the desired size. As stated by Rice and Gains (), an

ANOVA analysis of the data is most affected when the variances are unequal.

In this chapter, we derive the mathematical properties of the ANOVA procedure

under the previously mentioned assumptions. While these results are derived in the

literature, we will use this chapter as an outline for our method for comparing k
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means without the assumption of equal variances.

4.2 Sources of Variability

The method used to analyze the data begins by examining the statistic

SST =
∑k

i=1

∑ni

j=1

(
Yi,j − Y ..

)2

that is a measure of the variability in the responses. The statistic SST is referred to

as sum of squares total. This variability can be partitioned as SST = SSE+SSTR,

where

SSE =
∑k

i=1

∑ni

j=1

(
Yij − Y i.

)2
and SSTR =

∑k

i=1

∑ni

j=1

(
Y i. − Y ..

)2
.

The statistics SSE and SSTR are commonly referred to as the sum of squares error

and the sum of squares treatment, respectively.

Observe that we can write the SSTR as

SSTR =
∑k

i=1

∑ni

j=1

(
Y i. − Y ..

)2
=
∑k

i=1
ni
(
Y i. − Y ..

)2

=



√
n1

(
Y 1. − Y ..

)
√
n2

(
Y 2. − Y ..

)
...

√
nk
(
Y k. − Y ..

)



T 

√
n1

(
Y 1. − Y ..

)
√
n2

(
Y 2. − Y ..

)
...

√
nk
(
Y k. − Y ..

)


.

It is not difficult to show that

SSTR =
(
N1/2Y

)T(
I− 1

m
N1/2JN1/2

)(
N1/2Y

)
,

where I is a k × k identity matrix, J is a k × k matrix of ones, m = n1 + . . . + nk,

N = Diagonal (n1, . . . , nk); and

Y =
[
Y 1., . . . , Y k.

]T
.
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As one can see, this is the quadratic form of SSTR. It was shown in Chapter 2 that

the k×k matrix I− 1
m

N1/2JN1/2 has k−1 eigenvalues that are one and one eigenvalue

that is zero. Further, it was shown that the matrix can be expressed as

I− 1

m
N1/2JN1/2 = VHVT,

where the k× k matrix H has ones in the first k− 1 diagonal components and zeroes

elsewhere, and the first k − 1 columns of the k × k matrix V are the normalized

eigenvectors associated with the k − 1 eigenvalues of 1 and the k column is the

normalized eigenvector associated with the eigenvalue of zero. It is not difficult to

show that H is idempotent.

We can now write

SSTR =
(
N1/2Y

)T
VHVT

(
N1/2Y

)
=
[
HVT

(
N1/2Y

)]T [
HVT

(
N1/2Y

)]
.

Further, we can express N1/2Y as

N1/2Y = σ



Y 1.−µ1
σ/
√
n1

+
√
n1

µ1
σ

Y 2.−µ2
σ/
√
n2

+
√
n2

µ2
σ

...

Y k.−µk
σ/
√
nk

+
√
nk

µk
σ


= σ



Z1 +
√
n1δ1

Z2 +
√
n2δ2

...

Zk +
√
nkδk


= σ

(
Z + N1/2δ

)
,

where Zi =
(
Y i. − µi

)
/
(
σ/
√
n1

)
∼ N (0, 1), δi = µi/σ,

Z = [Z1., . . . , Zk.]
T and δ = [δ1., . . . , δk.]

T .

It is not difficult to see that Zi’s are independent. It follows that

SSTR = σ2
[
HVT

(
Z + N1/2δ

)]T [
HVT

(
σ
(
Z + N1/2δ

))]
= σ2

[(
HVTZ + HVTN1/2δ

)]T [(
HVTZ + HVTN1/2δ

)]
.

The random vector

Z∗ = HVTZ =
[
Z∗1., . . . , Z

∗
k−1., 0

]T ∼ Nk (0,H) .
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Hence, the first k − 1 components of Z∗ are independent standard normal random

variables. Letting

τ = HVTN1/2δ,

we have

SSTR = σ2 (Z∗ + τ)T (Z∗ + τ) = σ2
∑k−1

i=1
(Z∗i. + τi)

2 .

Applying Theorem 3.5 in Chapter 3, we have

SSTR ∼ σ2χ2
k−1,τ2 ,

where

τ 2 =
∑k−1

i=1
τ 2
i = τTτ =

(
HVTN1/2δ

)T (
HVTN1/2δ

)
=
(
N1/2δ

)T(
I− 1

m
N1/2JN1/2

)(
N1/2δ

)
=
∑k

i=1
ni
(
δi − δ

)2
=
∑k

i=1

ni (µi − µ)2

σ2
,

where

δ =
1

m

∑k

i=1
niδi =

1

m

∑k

i=1
niµi/σ = µ/σ.

Further, we observe that

SSE =
∑k

i=1

∑ni

j=1

(
Yij − Y i.

)2

=
k∑
i=1

(ni − 1) s2
i

=
k∑
i=1

σ2 (ni − 1) s2
i

σ2
.

Thus,

SSE

σ2
∼

k∑
i=1

χ2
ni−1 ∼ χ2

m−k
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4.3 The Classical F test

In the previous section, we have derived the distribution of SSTR/σ2and SSE/σ2.

It is important to note that SSE and SSTR are independent. Thus,

Q =
SSTR/(k − 1)

SSE/(m− k)
∼
χ2
k−1,τ2/(k − 1)

χ2
m−k/(m− k)

.

The F distribution is a ratio of two independent Chi-squares, each divided by its

degrees of freedom (Bain and Engelhardt 1991). Thus, Q ∼ Fk−1,m−k,τ2 . Under the

null hypothesis when all the population means are equal, the non-centrality parameter

τ 2 becomes zero. Thus, the distribution of Q becomes a central F distribution with

k− 1 and m− k degrees of freedom. Therefore, p-value = P (Fk−1,m−k ≥ qobs), where

qobs is the observed value of the ratio Q. The null hypothesis is rejected when p-value

is less than some significance level α.



CHAPTER 5

ANALYSIS WITH NO ASSUMPTION OF THE EQUALITY OF

VARIANCES

5.1 Introduction

In this chapter, we use the methods and theorems provided in chapters 2 through 4

to derive the distribution of the likelihood ratio test statistic under the independent

normal model without the assumption of equal population variances.

5.2 Distribution of SSE with No Assumption about the Variances

Theorem 5.1: Under the independent normal model with no assumption of equality

of the population variances,

SSE/σ2
k ∼

∑k

i=1
λ2
iχ

2
ni−1,

where λ2
i = σ2

i /σ
2
k.

Proof of Theorem 5.1:

SSE =
∑k

i=1

∑ni

j=1

(
Yij − Y i.

)2
=
∑k

i=1
(ni − 1) s2

i

=
∑k

i=1
σ2
i

(ni − 1)S2
i

σ2
i

∼
∑k

i=1
σ2
i χ

2
ni−1,

since (ni − 1)S2
i /σ

2
i ∼ χ2

ni−1 for i = 1, . . . , k. By dividing SSE by σ2
k, the results

follows.�

The following theorem gives a closed form expression for the probability density

function describing the distribution of SSE/σ2
k.

Theorem 5.2: Under the independent normal model with no assumption about the

population variances with distinct values of λ2
i = σ2

i /σ
2
k for i = 1, . . . , k,

fSSE/σ2
k

(u) =
∑∞

r1=0
· · ·
∑∞

rk−1=0
ξr1,...,rk−1

fχ2
n1+...+nk−k+2r1+...+2rk−1

(u) ,
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where

ξr1,...,rk−1
=

(−1)r1+...+rk−1

(∏k−1
i=1

(
λ2
i+1 − λ2

i

)ri)
λν1+2r1

1

(∏k−1
i=2 λ

ni−1+2ri+2ri−1

i

)(∏k−1
i=1 ri!

)
×

∏k−1
i=1 Γ

(
n1+...+ni−i+2r1+...+2ri

2

)
Γ
(
n1−1

2

)∏k−1
i=2 Γ

(
n1+...+ni−i+2r1+...+2ri−1

2

)
with λ2

i = σ2
i /σ

2
k.

Proof of Theorem 5.2: Subsituting ai by λ2
i and νi = ni − 1 (i = 1, . . . , k) in

Theorem 3.2 gives the result.�

5.3 Distribution of SSTR

Theorem 5.3: Under the independent normal model and no assumption about the

population variances,

SSTR/σ2
k ∼


∑k−1

i=1 γi (χ
2
1)i , if H0 holds;∑k−1

i=1 ciχ
2
1,∆2

i
, if Ha holds.

,

where ∆i =
∑k

j=1 vjiµj
√
nj/σj, γi = ciσ

2
k, ci are the eigenvalues and vi are the or-

thonormal eigenvectors of the matrix Λ
(
I− 1

m
N1/2JN1/2

)
Λ with Λ =Diagonal(λ1, . . . , λk−1, 1)

and λi = σi/σk for i = 1, ..., k.

Proof of Theorem 5.3:

SSTR =
∑k

i=1

∑ni

j=1

(
Y i. − Y ..

)2
=
∑k

i=1
ni
(
Y i. − Y ..

)2

=



√
n1

(
Y 1. − Y ..

)
√
n2

(
Y 2. − Y ..

)
...

√
nk
(
Y k. − Y ..

)



T 

√
n1

(
Y 1. − Y ..

)
√
n2

(
Y 2. − Y ..

)
...

√
nk
(
Y k. − Y ..

)


=
(
N1/2Y

)T(
I− 1

m
N1/2JN1/2

)(
N1/2Y

)
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N1/2Y =



√
n1Y 1.

√
n2Y 2.

...

√
nkY k.


=



σ1

(
Y 1.−µ1
σ1/
√
n1

+
√
n1

µ1
σ1

)
σ2

(
Y 2.−µ2
σ2/
√
n2

+
√
n2

µ2
σ2

)
...

σk

(
Y k.−µk
σk/
√
nk

+
√
nk

µk
σk

)



=



σ1

(
Z1 +

√
n1

µ1
σ1

)
σ2

(
Z2 +

√
n2

µ2
σ2

)
...

σk

(
Zk +

√
nk

µk
σk

)


= Σ1/2

(
Z + N1/2Σ−1/2µ

)
It follows that

SSTR =
(
Σ1/2

(
Z + N1/2Σ−1/2µ

))T(
I− 1

m
N1/2JN1/2

)(
Σ1/2

(
Z + N1/2Σ−1/2µ

))
=
(
Z + N1/2Σ−1/2µ

)T [
Σ1/2

(
I− 1

m
N1/2JN1/2

)
Σ1/2

] (
Z + N1/2Σ−1/2µ

)
.

Then,

SSTR

σ2
k

=
(
Z + N1/2Σ−1/2µ

)T [
Λ

(
I− 1

m
N1/2JN1/2

)
Λ

] (
Z + N1/2Σ−1/2µ

)
where Λ = diagonal(λ1, . . . , λk−1, 1) with λ2

i = σ2
i /σ

2
k.

Using Theorem 2.4, Λ
(
I− 1

m
N1/2JN1/2

)
Λ = VCVT, with C = Diagonal (c1, . . . , ck−1, 0).

The diagonal elements of C are the eigenvalues with corresponding column vectors

of V the normalized orthogonal eigenvectors of the matrix Λ
(
I− 1

m
N1/2JN1/2

)
Λ.

We can now write SSTR/σ2
k as

SSTR

σ2
k

=
(
Z + N1/2Σ−1/2µ

)T [
VCVT

] (
Z + N1/2Σ−1/2µ

)
=
[
C1/2VTZ + C1/2VTN1/2Σ−1/2µ

]T [
C1/2VTZ + C1/2VTN1/2Σ−1/2µ

]
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With Z∗ = VTZ, observe that

C1/2VTZ = C1/2Z∗ =
[
c

1/2
1 Z∗1 , . . . , c

1/2
k−1Z

∗
k−1, 0

]T
where Z∗ ∼ Nk (0, I). For convenience, we define

δ = N1/2Σ−1/2µ and ∆ = VTN1/2Σ−1/2µ = VTδ.

For clarity, we observed that

SSTR

σ2
k

=



√
c1 (Z∗1 + ∆1)

...

√
ck−1

(
Z∗k−1 + ∆k−1

)
0



T 

√
c1 (Z∗1 + ∆1)

...

√
ck−1

(
Z∗k−1 + ∆k−1

)
0


with ∆i =

∑k
j=1 vjiµj

√
nj/σj (i = 1, . . . , k), where vji is the jth element of the

eigenvector vi.. It then follows that

SSTR

σ2
k

=
∑k−1

i=1
ci (Z

∗
i + ∆i)

2 .

As has been shown,

(Z∗i + ∆i)
2 ∼ χ2

1,∆2
i
.

Hence,

SSTR

σ2
k

∼
∑k−1

i=1
ciχ

2
1,∆2

i
.

The null hypothesis of equal means can be expressed as

H0 : µ = µ1,

where µ is an unknown constant and 1 is a k × 1 vector of ones. Note that

Σ1/2

(
I− 1

m
N1/2JN1/2

)
Σ1/2 = VDVT,
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where D = Diagonal (γ1, . . . , γk−1, 0) with γi = ciσ
2
k. Using the results of Theorem

2.4, we see that

D1/2VTN1/2Σ−1/2µ = µD1/2VTN1/2Σ−1/21 = 0.

Thus, we can write

SSTR

σ2
k

=
(
D1/2VTZ

)T (
D1/2VTZ

)
=
∑k−1

i=1
γi
(
χ2

1

)
i
.�

We can also note from the previous theorem that∑k−1

i=1
ci∆

2
i =

(
C1/2∆

)T (
C1/2∆

)
=
(
C1/2VTN1/2Σ−1/2µ

)T (
C1/2VTN1/2Σ−1/2µ

)
=
(
C1/2VTΣ−1/2N1/2µ

)T (
C1/2VTΣ−1/2N1/2µ

)
=
(
N1/2µ

)T (
C1/2VTΣ−1/2

)T (
C1/2VTΣ−1/2

) (
N1/2µ

)
=
(
N1/2µ

)T (
Σ−1/2

(
VCVT

)
Σ−1/2

) (
N1/2µ

)
=
(
N1/2µ

)T(
Σ−1/2

(
Σ1/2

(
I− 1

n
N1/2JN−1/2

)
Σ1/2

)
Σ−1/2

)(
N1/2µ

)
=
(
N1/2µ

)T(
I− 1

n
N1/2JN−1/2

)(
N1/2µ

)
=
∑k

i=1
ni (µi − µ)2 ,

where

µ =
1

m

∑k

i=1
niµi.

5.4 Distribution of the Likelihood Ratio Test Statistic

In this section, we derive the distribution of the likelihood ratio test statistic under

the null and alternative hypotheses.

Theorem 5.4: Under the independent normal model and no assumption about the

variances, the distribution of

Q =
MSTR

MSE
=
SSTR/(k − 1)

SSE/(m− k)
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is given by

fQ (q) =
∑

t,s

∑
r

ζt,sξr

(
k−1

ck−1(m−k)

)νt,s/2
Γ
(νt,s+νr

2

)
qνt,s/2−1

Γ
(νt,s

2

)
Γ
(
νr
2

) (
1 + k−1

ck−1(m−k)
q
)(νt,s+νr)/2

,

where MSTR = SSTR/ (k − 1), MSE = SSE/ (m− k), and

∑
t,s

=
∑∞

t1=0
· · ·
∑∞

tk−1=0

∑∞

s1=0
· · ·
∑∞

sk−2=0
;∑

r
=
∑∞

r1=0
· · ·
∑∞

rk−1=0
;

νt,s = k − 1 + 2t1 + . . .+ 2tk−1 + 2s1 + . . .+ 2sk−2;

νr = n1 + . . .+ nk + 2r1 + . . .+ 2rk−1 − k;

ξr =
(−1)r1+...+rk−1

(∏k−1
i=1

(
λ2
i+1 − λ2

i

)ri)
λ

(n1−1+2r1)
1

(∏k−1
i=2 λ

(ni−1+2ri+2ri−1)
i

)(∏k−1
i=1 ri!

)
×

∏k−1
i=1 Γ

(
n1+...+ni+2r1+...+2ri−i

2

)
Γ
(
n1−1

2

)∏k−1
i=2 Γ

(
n1+...+ni+2r1+...+2ri−1−i

2

) ;

ζt,s =
(
∏k−1

i=1 θti,∆2
i
)(−1)s1+···+sk−22t1+···+tk−1e−(∆2

1+···+∆2
k−1)/2

c
(1+2t1+2s1)/2
1 (

√
π)k−1(

∏k−1
i=1 2ti!)(

∏k−2
i=1 si!)

×
(
∏k−2

i=1 (ci+1 − ci)si) c(k−2+2t1+···+2tk−2+2s1+···+2sk−3)/2
k−1

(
∏k−2

i=2 c
1+2ti+2si−1+2si
i )

×
(
∏k−2

i=1 Γ( i+2t1+···+2ti+2s1+···+2si
2

))(
∏k−1

i=2 Γ(1+2ti
2

))

(
∏k−1

i=2 Γ( i+2t1+···+2ti+2s1+···+2si−1

2
))

; and

θti,∆2
i

=

 1, if ti = 0;

(∆2
i )
ti , if ti > 0.

.

Proof Theorem 5.4: Using Theorems 3.2, 3.6, 3.7, 5.2 and 5.3, and subtituting νi

by ni − 1, ai by λ2
i , τ by ∆, and η by k − 1, give the result. �

Corollary 5.4.1: The cumulative distribution function describing the distribution
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of Q is given as

FQ (q) =

∫ q

0

fQ (x) dx

=
∑

t,s

∑
r

ζt,sξr

(
k−1

ck−1(m−k)

)νt,s/2
Γ
(νt,s+νr

2

)
Γ
(νt,s

2

)
Γ
(
νr
2

)
×
∫ q

0

xνt,s/2−1(
1 + k−1

ck−1(m−k)
x
)(νt,s+νr)/2

dx.

Proof of Corollary 5.4.1: The proof is straight forward.

Theorem 5.5: Under the independent normal model and no assumption about the

variances, and under the null hypothesis that the population means are equal, the

probability distribution function describing the distribution of

Q =
MSTR

MSE
=
SSTR/(k − 1)

SSE/(m− k)

is given by

fQ (q) =
∑

s

∑
r

ζsξr

(
k−1

γk−1(m−k)

)νs/2
Γ
(
νs+νr

2

)
qνs/2−1

Γ
(
νs
2

)
Γ
(
νr
2

) (
1 + k−1

γk−1(m−k)
q
)(νs+νr)/2

,
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where MSTR = SSTR/ (k − 1), MSE = SSE/ (m− k), and∑
s

=
∑∞

s1=0
· · ·
∑∞

sk−2=0
;∑

r
=
∑∞

r1=0
· · ·
∑∞

rk−1=0
;

νs = k − 1 + 2s1 + . . .+ 2sk−2;

νr = n1 + . . .+ nk + 2r1 + . . .+ 2rk−1 − k;

ξr =
(−1)r1+...+rk−1

(∏k−1
i=1

(
λ2
i+1 − λ2

i

)ri)
λn1−1+2r1

1

(∏k−1
i=2 λ

ni−1+2ri+2ri−1

i

)(∏k−1
i=1 ri!

)
×

∏k−1
i=1 Γ

(
n1+...+ni+2r1+...+2ri−i

2

)
Γ
(
n1−1

2

)∏k−1
i=2 Γ

(
n1+...+ni+2r1+...+2ri−1−i

2

) ;

ζs =
(−1)s1+···+sk−2(

∏k−2
i=1 (γi+1 − γi)si)γ(k−2+2s1+···+2sk−3)/2

k−1

γ
(1+2s1)/2
1 (

∏k−2
i=1 si!)(

∏k−2
i=1 γ

1+2si−1+2si
i )

×
∏k−2

i=1 Γ( i+2s1+···+2si
2

)

Γ(1
2
)
(∏k−2

i=2 Γ( i+2s1+···+2si−1

2
)
) .

Proof Theorem 5.5: Using the same procedure as in Theorems 3.7, and using

Theorems 5.3, we get the result. �

Corollary 5.5.1: Under the null hypothesis that the population means are equal,

the cumulative distribution function describing the distribution of Q is given as

FQ (q) =

∫ q

0

fQ (x) dx

=
∑

s

∑
r

ζsξr

(
k−1

γk−1(m−k)

)νs/2
Γ
(
νs+νr

2

)
Γ
(
νs
2

)
Γ
(
νr
2

)
×
∫ q

0

xνs/2−1(
1 + k−1

γk−1(m−k)
x
)(νs+νr)/2

dx.

Proof of Corollary 5.5.1: The proof is straight forward.

The value of FQ (q) for a given value of q must be obtained numerically as would

determining the 100 (1− α)th percentile of the distribution of Q. Under the hypoth-

esis that the population means are equal (null hypothesis), this could only be done
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for given values of λ2
1 = σ2

1/σ
2
k, . . . , λ

2
k−1 = σ2

k−1/σ
2
k. On the other hand, the null

distribution of Q can be estimated using the data (see Welch (1938)). For example,

one could estimate the paramter λ2
i = σ2

i /σ
2
k by estimating the population variance

σ2
i with the sample variance S2

i for i = 1, . . . , k. One could then obtain an estimate

of the 100 (1− α)th percentile of the distribution of Q as well as an estimate of the

p-value of the test for the equality of means.

5.5 Conclusion

Closed form expressions were given for the probability density function describing the

distribution of SSTR/σ2
k and SSE/σ2

k under the independent normal model with no

assumption about the equality of the variances. Further, closed form expressions for

the probability density and cumulative distribution functions describing the distribu-

tion of the likelihood ratio test statistic MSTR/MSE were derived.



CHAPTER 6

CONCLUSION

6.1 General Conclusions

To conclude, closed form expressions for the probability density function and the

cumulative distribution function describing the distribution of the likelihood ratio

test statistic, under the independent normal model with no assumption of equality

of population variances, are derived. However, values of FQ (q) for given values of q

must be obtained numerically as would determining critical values. An estimate of

the p-value of the test for the equality of the population means must also be obtained

numerically based on the exact distribution of the likelihood ratio test statistic.

6.2 Areas for Further Research

We intend to develop a MATLAB program that computes an estimate of the 100(1−

α)th percentile of the distribution of Q under the null hypothesis, as well as an

estimate of the p-value of the test for the equality of means. Furthermore, we intend

to compare our test to other tests found in the literature. This method can also be

extended to comparing levels of more than one factor. Furthermore, further research

can be made when the population means are ordered or when two population variances

are the same.
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