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ABSTRACT

This thesis describes a set of tools that can be used for the rapid design of atom

interferometer schemes suitable for measuring Newton’s Universal Gravitation con-

stant also known as “Big G”. This tool set is especially applicable to Bose–Einstein–

condensed systems present in NASA’s Cold Atom Laboratory experiment to be de-

ployed to the International Space Station in 2017. These tools include a method of

approximating the solutions of the nonlinear Schrödinger or Gross–Pitaevskii equa-

tion (GPE) using the Lagrangian Variational Method. They also include a set of

software tools for translating the approximate solutions of the GPE into images of

the optical density into a format suitable for visualization with sterographic (3D)

movies played back through a virtual–reality headset.
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xiv



CHAPTER 1

INTRODUCTION

The Gravitational Constant, G, is featured in Newton’s Equation for the force of

gravitational attraction between two point masses.

F = G
m1m2

r2
, (1.1)

where, m1 and m2 are the masses of the two objects and r is the distance between two

objects. “Big G” is the proportionality constant between the gravity force and the

mass product over distance squared quantity and is one of the fundamental constants

of nature. The current value of G recommended by the Committee on Data for

Science and Technology, also known as CODATA, is [9]

G = 6.67408(±0.00031)× 10−11m3 kg−1 s−2, (1.2)

This value replaces the recommended values published in previous editions [8]. Also

quoted is the (one standard deviation) uncertainty in G. Unfortunately, the uncer-

tainty in the CODATA value has only been reduced by two orders–of–magnitude since

G was first measured 200 years ago by Henry Cavendish [1].

The value of G has been notoriously difficult to measure [14]. Among all of the

other recognized fundamental physical constants, it’s value is known with the least

precision. Table 1.1 presents a summary of measurements of Big G using the pub-

lished Recommended Values from the CODATA organization. In addition, Cavendish

measured the mean density of the Earth, from which Big G can be derived. Finally,

the result of a recent terrestrial Atom Interferometry experiment is presented; notice

this measurement is significantly different from the accepted measurements. For each

value, the standard deviation in the error of the last two digits of G is presented. No-

tice, from 1969 through 2014 the uncertainty has moved only a single decimal place.

Additionally, notice the swings of the uncertainty over time. Also, keep in mind



2

these are the recommended values from a detailed study covering many experimental

measurements over a long period of time.

Year G (scaled by 1011) Std. Dev. (scaled by 1011) Citation

1798 6.754 Cavendish (derived) [1]

1969 6.6732 0.00310 CODATA [2]

1973 6.6720 0.00410 CODATA [3]

1986 6.67259 0.00085 CODATA [4]

1998 6.673 0.00100 CODATA [5]

2002 6.6742 0.00100 CODATA [6]

2006 6.67428 0.00067 CODATA [7]

2010 6.67384 0.00080 CODATA [8]

2014 6.67408 0.00031 CODATA [9]

2014 6.67191 0.00099 Atom Interferometry [31]

Table 1.1: Summary of measurements of Big G (units of m3kg−1s−2) and one standard

deviation in error u.

1.1 Importance of Big G

Improving the uncertainty in the value of G has relevancy to many fields of study

and industry. In and of itself, increasing our collective knowledge of the universe is

a goal of basic scientific inquiry. Because the quantity is known to such a low degree

of certainty, establishing better certainty is an end unto itself.

Many celestial properties are dependent upon the precise value of G. Gravita-

tional force is one of the four fundamental forces of nature, which include the Strong

and Weak forces and the Electromagnetic force. Gravity is a comparatively weak

force, but it acts at long ranges and is attractive between all masses. Additionally,
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there is no known way to shield masses from gravitational attraction; in other words,

there is not a repulsive gravitational force. Both the Strong and Weak force have

ranges on the order of atomic nuclei and have attractive and repulsive effects. The

Electromagnetic force only affects matter capable of carrying an electric charge. Ad-

ditionally, the magnetic effects are attractive and repulsive and the electric effects

can cancel themselves out with positive and negative charges.

Therefore, at cosmological scales in which large quantities of mass are present,

the gravitational force is the dominant force affecting measurements of the movement

and evolution of celestial bodies. For example, improving the uncertainty in G directly

improves the accuracy of the measurements of the mass of the Earth and distance

between the Sun and Earth. Since the Earth is not a perfect sphere, measurement

of local gravity differences have important applications to mining, oceanography, and

extraterrestrial navigation (e.g. satellite mapping and satellite guidance). As another

example, a star’s radius is determined by a balance of its internal radiation pressure

pushing outward and the gravitation forces compressing its mass. The radius of a star

affects its luminosity and thus the ability to observe it. The rate of expansion of the

universe is dependent on G. Certainly, the recent LIGO [15] announcements detecting

gravity waves [16] will present opportunities that either improve our understanding

of G or are limited by the magnitude of it’s uncertainty.

While we have discussed gravity on the cosmological scale, it is also an important

contribution at the quantum scale. At small scales, the Planck units are useful to

quantify common measurements. Quantum effects within this scale are modeled as

continuous. However, below the Planck scale, quantum effects are indistinguishable

from background fluctuations, so the Planck scale provides important limits to our

reasoning about the quantum world. The Planck scale units for length, time, and

mass depend upon G, the Planck constant, ~, and the speed of light in a vacuum, C.
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Planck length =
~G
c3

1/2

≈ 1.6× 10−35m

Planck time =
~G
c5

1/2

≈ 5.4× 10−44s

Planck mass =
~c
G

1/2

≈ 2.2× 10−8kg.

Additionally, the Theory of General Relativity deals with gravity as a quantum

effect. Improvements in the uncertainty of G should provide improvements in the

study of General Relativity.

To conclude, G is an important quantity within the study of our physical world

across all scales of investigation from the smallest quantum effects to overarching

evolution of our universe. That G is so poorly defined affects our ability to distill

knowledge across the entire breadth of scientific inquiry.

1.2 Crisis in Measuring Big G

Prior to the publications of Cavendish [1], measurements of G involved use of the

Earth as a test mass. Gillies [14] notes many experiments involving the deflection of

taught lines in the presence of mountains. However, Cavendish used a torsion balance

to measure gravitational forces between test masses in a laboratory setting. His

specific innovation was to measure gravitational effects orthogonal to the acceleration

of gravity toward the earth. In doing so, he was able to remove the effects of the

Earth’s gravity and precisely measure the effects of gravitational attraction between

relatively small test masses. Cavendish was attempting to ascertain the density of

the Earth, but this afforded the estimation of G, upon which subsequent experiments

have sought to improve in accuracy.

Since Cavendish published in 1798, the accuracy of the value of G has improved

by only two orders of magnitude.
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The gravitational force is one of the weaker forces of nature. The electromagnetic

attraction between protons and neutrons is 1040 greater than their gravitational at-

traction. This makes it difficult to separate the effects of gravitational force from the

more dominant forces affecting small masses. Additionally, it is not possible to screen

the gravitation effects from matter surrounding an experiment. Third, G is not de-

pendent on any other physical constant, so it’s value cannot be estimated from other

observations. Finally, the experimental apparatus used to measure G is subjected to

measurement errors from non-gravitational forces that must be properly mitigated.

1.3 Techniques to Measure Big G

The torsion balance utilized by Cavendish was constructed utilizing two small masses

attached to a wooden rod and suspended from a thin rope. Much greater masses

were held near the small masses using a separate suspension system. The force of

gravitational attraction could be measured by the angle of deflection between the

starting position of the small masses and their final position as they rotated toward

the larger masses.

Gillies [14] and Quinn [30] describe multiple methods utilized to measure G sub-

sequent to Cavendish. At the heart of each experimental apparatus is an attempt to

influence a small mass using a larger mass. In general, either the deflection or rota-

tion of some component is observed to measure the force of gravitational attraction.

Gillies also discusses the physical limitations and sources of error within many such

systems.

In more recent times, atom interferometry [33] has promised to measure Big G

using unprecedented precision. In general, some property–like time of flight or de-

flection of the center of mass–of the motion of a gas of cold atoms is studied in the

presence of a Test Mass. The cold atom gas can be manipulated and measured using
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laser light. The atoms are manipulated in an isolated environment and their masses

and energy states are known in advance. Unfortunately, the experiments to date have

been disappointing. As recounted by Quinn, atom interferometry experiments to date

have yielded far greater ranges of uncertainty than prior experiments. However, the

Cold Atom Lab (CAL) [10] will be installed on the International Space Station (ISS)

in the near future. Among other features, the CAL can create Bose-Einstein Conden-

sates. With some modification, the CAL could be used as an atom interferometer and

measure Big G within the microgravity environment of the ISS. The CAL is expected

to maintain temperatures as low as one picoKelvin and run experiments for as long

as 20 seconds.

This work documents a proposed atom interferometry experiment that could be

feasible in the Cold Atom Laboratory environment to be installed in the International

Space Station. However, this work is not a detailed experimental design. Rather

the model being described is a tool set to evaluate the feasibility of creating atom

interferometry experiments in the CAL for the measurement of Big G. These tools can

help estimate the necessary mass and position of a Test Mass to create a measurable

influence on clouds of Bose-Einstein Condensates.

Chapter 2 will introduce Bose-Einstein Condensates upon which an atom inter-

ferometry experiment is to be based. Chapter 3 will describe the basics of a novel atom

interferometry experiment to measure Big G. Chapter 4 will develop the mathemati-

cal model for approximating and simulating this experiment. Chapter 5 will describe

one technique to visualize one interesting property of the simulated experiment.



CHAPTER 2

BACKGROUND

2.1 Bose-Einstein Condensation

In the theory of quantum mechanics, the state of a system of N particles is described

by a many–body wave function, Ψ(r1 σ1, . . . , rN σN , t). The many–body wave func-

tion depends, in general, on the space (r) and spin (σ) coordinates of each particle

and possibly the time, t. The “spin” of a particle is a characteristic that indicates

that a particle possesses an intrinsic magnetic dipole moment. That is, the particle

produces its own dipole magnetic field similar to that produced by a loop of current–

bearing wire. Just as the magnetic moment of a loop of wire can be related to the

orbital angular momentum of the charged particles circulating in the wire, the intrin-

sic magnetic moment of elementary particles is viewed as originating from an intrinsic

spin angular momentum of the particle.

In the quantum theory of angular momentum [17], the square of a particle’s an-

gular momentum can only take on the values j(j+1)~2 where the quantum number j

can only have either non–negative integer or half–integer values. Elementary particles

and aggregates of particles, such as atoms, can be classified into two types: fermions

and bosons. Fermions are particles, or aggregates of particles, with half-integer spin

while bosons have integer spin angular momentum. Systems of identical fermions

behave very differently from systems of identical bosons.

The many–body wave function describing a system of identical fermions must

obey the Pauli Exclusion Principle. This principle states that, if the coordinate

labels (i.e., space and spin) of any two particles are interchanged, the many–body

wave function must change its overall sign. The many–body wave function is anti–

symmetric under particle exchange. If the many–body wave function of a system of

N identical fermions can be written as the N–fold product of single–particle orbital
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functions, then the Pauli Principle can be restated that no two identical fermions can

occupy the same single–particle (which may include both space and spin variables)

quantum state. One familiar example of the effect of this principle is the way atoms

are denoted in the periodic table of the elements. The ground state of an atom in

the periodic table is denoted by its configuration. For example, the ground–state

configuration of carbon is written as 1s22s22p2. This notation means that the each

of the six electrons in the carbon atom is placed in a single–particle orbital, such

as ψ1s(r), with its spin–1/2 z projection either “spin–up” or “spin–down”. No two

carbon electrons occupy both the space orbital and spin state in the carbon ground

state so that 1s2 refers to two carbon electrons occupying the ψ1s(r) orbital, one with

spin–up and the other with spin–down.

The many–body wave function describing system of identical bosons must not

change sign when the space and spin labels of any pair of particles is interchanged.

The many–body wave function must be symmetric under particle exchange. In the

single–particle view where the many–body wave function is the N–fold product of

single–particle orbitals, there is no restriction on the number of bosonic particles that

can occupy the same single–particle state. In fact, as will become clear later, bosonic

particles in equilibrium prefer to occupy the same single–particle orbital since this is

an effective way to lower the total energy of the system.

Atoms are systems of electrons, protons, and neutrons that can exhibit, in ag-

gregate, either bosonic or fermionic character. Electrons, protons, and neutrons are,

themselves, fermions. A neutral atom will be either a boson or a fermion depend-

ing on whether the total number of electrons, protons, and neutrons is even or odd.

According the rules [17] for adding quantum angular momenta, the total angular

momentum of a system of two half–integer angular momenta has integer character.

Thus, if the total number of electrons, protons, and neutrons in an atom is even, the
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atom is a boson. If the total number is odd, the atom is a fermion.

For example, the lithium atom has two isotopes with large relative abundances:

6Li and 7Li. Lithium has atomic number Z = 3 which counts the number of protons

and the superscripted number is the nucleon number which counts the total number

of protons and neutrons. Thus neutral 6Li has three protons, three neutrons, and

three electons making a total of nine particles. This makes 6Li a fermionic atom. On

the other hand 7Li has one more neutron for a total of ten particles and so 7Li is a

boson.

A Bose–Einstein condensate or BEC is a system of N identical bosonic parti-

cles (either elementary or aggregate) where all of the particles occupy the same single–

particle orbital. Bose–Einstein condensates form an essential part of the explanation

of phenomena such as superfluidity (fluid flow without viscosity) and superconduc-

tivity (electric current flow without resistance) [26]. The case of superconductivity is

an interesting example. When certain metals are cooled below a critical temperature,

the process by which resistance–free flow of electric current arises is described micro-

scopically by the so–called Bardeen–Cooper–Schrieffer (BCS) theory [23]. In the BCS

theory, as the temperature falls, electrons form zero–momentum pairs called “Cooper

pairs”. This pair of electrons, viewed as a single particle acts like a boson. These

bosonic Cooper pairs then undergo Bose–Einstein condensation and so all of the pairs

behave identically and flow as a unit thus eliminating the electrical resistance. These

examples show how BEC is a general phenomenon that occurs in many different types

of systems.

Another system that can undergo Bose–Einstein condensation is a gas of identical

bosonic atoms. If the gas is cold enough and dense enough, then condensation can

occur. The general criterion for this to happen can be understood using the concept

of “matter waves”. The basic result of the theory of quantum mechanics is that
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matter, just like light, can have wave–like properties. This concept was introduced

in the 1924 PhD thesis of Louis Victor deBroglie. There deBroglie introduced the

concept of matter waves and suggested that the matter or deBroglie wavelength of a

“particle” could be written as λ = 2π~/p where ~ is Planck’s constant and p is the

magnitude of the particle’s momentum (mass times velocity).

Using this concept, Satyendranath Bose [24] and then Albert Einstein [25] sug-

gested in 1925 that particles in a gas could be cooled and confined to form a conden-

sate. The cooling lowers the average speed and thus the momentum of the particles

which in turn increases their matter wavelength. If these particles are simultaneously

confined, then the volume per particle decreases. Eventually the matter waves of

neighboring particles begin to overlap at which point the BEC phenomenon occurs

and the system falls into the BEC state where the matter–wave shapes of all the

particles is the same.

The first laboratory gaseous BEC of atoms was formed in 1995 by Eric Cornell

and Carl Weiman at JILA. JILA, formerly known as the Joint Institute for Laboratory

Astrophysics, is an institute run jointly by the University of Colorado at Boulder and

the National Institute of Standards and Technology (NIST). A a gas of rubidium

atoms (87Rb) was first trapped and cooled using laser beams and then transferred

to a magnetic trap. The gas was further cooled by a process known as evaporative

cooling, similar to cooling soup by blowing on it. When the gas was cold enough

(T ≈ 170 nK) and dense enough (ρ ≈ 1014 atoms/cm3), a BEC of about 2000 atoms

was formed. The 2001 Nobel Prize in Physics was awarded for this work and to

Wolfgang Ketterle at MIT for his demonstration of important properties of BECs.

BECs exhibit quantum properties on a macroscopic scale and are easy to control

and probe making them useful for studying a wide range of quantum phenomena. This

includes quantum interference between two condensates, which is a matter analogue
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to interference of light due to the particle-wave duality. Studies of superfluidity,

slowing of light pulses to very slow speeds, modeling black holes, and optical lattices of

overlapping laser light fields have all been enabled or enhanced by BEC research [26].

Studies of optical coherence and interaction have direct analogs in BECs [28], allowing

cross pollination of research between fields.

2.2 Mathematics of Quantum Mechanics

In the standard version of quantum mechanics, the state of a quantum system is

described by a square–integrable wave function [17]. A measurable quantity, A, is

represented by an operator, Â, that acts on members of the space of valid quantum

mechanical wave functions. These operators are required to be linear and hermitian

and to possess a complete set of eigenvectors.

Âψn = anψn, n = 1, 2, . . . (2.1)

The completeness property of the set of eigenvectors means that this set spans the

space of wave functions capable of representing a state of the system. The theory

predicts the outcomes of measurements by postulating that the only possible result of

a measurement is one of the eigenvalues of the operator associated with the quantity

measured. The hermiticity property of these operators guarantees that its eigenval-

ues will be real numbers. This is an important attribute of predicted measurement

outcomes. If the wave function of the system at the time of measurement is known,

the theory can also predict the probability of obtaining a particular eigenvalue, say

am, when A is measured.

Another postulate of the theory is that, immediately after the measurement

of the quantity A in which the outcome turns out to be eigenvalue am, the wave

function of the system is the associated eigenvector, ψm. This postulate provides the
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initial condition for the equation that governs the evolution of the system between

measurements.

The equation postulated by quantum mechanics to govern the system evolution

between measurements is the time–dependent Schrödinger equation (TDSE). For a

system of N identical particles, this equation can be written as

i~
∂

∂t
Ψ(r1, . . . , rN , t) = ĤMBΨ(r1, . . . , rN , t), (2.2)

where ĤMB is the operator that represents the total energy of the system and is called

the Hamiltonian. The Hamiltonian for many–body systems of N identical particles

that will be considered in this thesis takes the general form

ĤMB =
N∑
j=1

[
− ~2

2M
∇2
j + V (rj, t)

]
+
∑
j<k

Vint(rj, rk). (2.3)

The first term in the Hamiltonian is the sum over the kinetic energies of the individual

particles; the second term is the sum over the potential energies of the particles; and

the last term represents pairwise interactions and is a double sum over all pairs of par-

ticles with no self–interaction. In modeling interactions in Bose–Einstein–condensed

systems, only binary scattering of particles will be considered here.

The wave function solution of the many–body TDSE must also satisfy the nor-

malization condition:

〈Ψ|Ψ〉 ≡
∫

d3r1 . . .

∫
d3rNΨ∗(r1, . . . , rN , t)Ψ(r1, . . . , rN , t) = 1. (2.4)

Note that the above notation implies integration over all 3N–dimensional space and

that an asterisk superscript denotes complex conjugation in the physics literature.

This condition ensures that the sum of the predicted probabilities of outcomes of a

particular measurement will be unity.
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2.3 Modeling Bose-Einstein Condensates

The many–body TDSE stated above is a completely intractable mathematical prob-

lem to solve. The only way to make progress in modeling a gas of N identical bosonic

atoms is to resort to an approximation. One important method of approximating the

solution of the TDSE is called the Variational Method [17]. In this method a specific

form for the wave function solution of the many–body TDSE is assumed which con-

tains parameters that can be varied. This “trial” wave function is inserted into the

energy functional given by

E [Ψ] ≡
〈Ψ|

(
i~ ∂

∂t
− ĤMB

)
|Ψ〉

〈Ψ|Ψ〉
. (2.5)

The functional is minimized by demanding that the first variation vanish:

E[Ψ + δΨ]− E[Ψ] = 0. (2.6)

In order to carry out this procedure the scattering of pairs of atoms in the condensate

must be modeled and a trial wave function devised.

The atoms in a Bose–Einstein condensate interact by pairwise collisions. The

atoms participating in such a collision are both cold (i.e., slow–moving) and dilute

(i.e., always far apart). Under these circumstances the scattering process that occurs

can be described as a “contact interaction” in which the interaction potential is

modeled as a Dirac delta function of the positions of the scattering atoms. The

pairwise interaction potential appearing in ĤMB thus takes the form [28]

Vint(rj, rk) = g δ(rj − rk) (2.7)

where

g =
4π~2a

M
. (2.8)

HereM is the mass of a condensate atom and a is the scattering length. The scattering

length measures the strength of the atom–atom scattering in a cold, dilute gas of
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identical bosonic atoms. If a > 0, the atoms repel each other on average and, if a < 0,

atoms attract. More details on the binary scattering of atoms under these conditions

can be found in Ref. [26]. The delta–function interaction potential is a pseudo–

potential model that mimics the result that, for scattering of low–energy atoms that

never get close together, the characteristics of the scattering are independent of the

details of the true interaction.

With this form of the interaction potential, the many–body Hamiltonian reads

as follows.

ĤMB =
N∑
j=1

[
− ~2

2m
∇2
j + V (rj, t)

]
+ g

∑
j<k

δ(rj − rk) (2.9)

A BEC is a gas of identical bosonic atoms all of which are in the same single–

particle state. If we denote the wave function for this single–particle state as φ(r, t),

then a natural trial wave function for the BEC is the N–fold product of this wave

function evaluated at the location of each of the N atoms:

Ψ(r1, r2, · · · , rN , t) =
N∏
i=1

φ(ri, t). (2.10)

Where, in the variational method, φ(r, t) is allowed to vary arbitrarily except that

the many–body wave function must remain normalized. This places the following

condition on φ(r, t):

〈Ψ|Ψ〉 =

∫
d3r1 . . .

∫
d3rNΨ∗(r1, . . . , rN , t)Ψ(r1, . . . , rN , t)

=

∫
d3r1 . . .

∫
d3rN

(
N∏
i=1

φ(ri, t)

)∗( N∏
j=1

φ(rj, t)

)

=
N∏
j=1

(∫
d3rjφ

∗(rj, t)φ(rj, t)

)

=

(∫
d3r φ∗(r, t)φ(r, t)

)N
= 1,

=⇒
∫

d3r φ∗(r, t)φ(r, t) = 1. (2.11)
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Inserting this trial wave function into the energy functional, computing the first

variation and setting it to zero yields the nonlinear Schrödinger equation:

i~
∂

∂t
φ(r, t) = − ~2

2m
∇2φ(r, t) + Vtrap(r, t)φ(r, t) + g(N − 1) |φ(r, t)|2 φ(r, t). (2.12)

The details of this can be found abundantly in the literature and in textbooks [26, 28]

and so will not be reproduced here.

In most cases N � 1 so we approximate N − 1 ≈ N . This yields the Gross–

Pitaevskii (GP) equation :

i~
∂

∂t
φ(r, t) = − ~2

2m
∇2φ(r, t) + Vtrap(r, t)φ(r, t) + gN |φ(r, t)|2 φ(r, t) (2.13)

This is the basic theoretical tool that is used to analyze and predict the behavior of

gaseous Bose–Einstein condensates of atoms. It assumes that there are exactly N

atoms in the gas and that its temperature is absolute zero. Even though reaching

absolute zero is forbidden by the Third Law of Thermodynamics, most laboratory

BECs can created at temperatures < 100 nK (nano–Kelvin) which is usually a good

approximation.

2.4 Solving the Gross-Pitaevskii Equation

One method to numerically solve the Gross-Pitaevskii Equation (GPE) is to imple-

ment a split-step Crank-Nicolson method [11] and [19]. This is an example of a grid

method, which discretizes time and space to solve the GPE. This scheme splits the

Hamiltonian into derivative (Eq. 2.16) and non-derivative (Eq. 2.15) portions with

known initial conditions.

H = H1 +H2 +H3 +H4 (2.14)

H1 = Vtrap(r, t) + gN |φ(r, t)|2 (2.15)
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H2 = − ~2

2m

∂2

∂x

H3 = − ~2

2m

∂2

∂y

H3 = − ~2

2m

∂2

∂z
(2.16)

Using these split Hamiltonians we split the GPE into four equations.

i~
∂

∂t
φ(r, t) = H1φ(r, t) (2.17)

i~
∂

∂t
φ(r, t) = H2φ(r, t) (2.18)

i~
∂

∂t
φ(r, t) = H3φ(r, t) (2.19)

i~
∂

∂t
φ(r, t) = H4φ(r, t) (2.20)

We discretize our valuations over t using many steps of step size ∆. Thus, any

time step may be known as tn = t0 + n∆, where t0 is our initial time. We also must

know the initial condition φ(x, y, z, 0).

Given a time step n, we wish to solve for a new time step n+1. First, we find an

intermediate solution to Eq. 2.17 we label φn+ 1
2 . We label the operator responsible

for evolving the solution as Xnd, for ”non-derivative”.

φn+ 1
2 = Xnd(H1)φn ≡ e−i∆H1φn (2.21)

Next, we use the intermediate solution φn+ 1
2 as an initial solution in a Crank-

Nicolson step. We label the operator responsible for evolving the solution as XCN ,

for ”Crank-Nicolson”.

φn+1 = XCN(H4)XCN(H3)XCN(H2)φn+ 1
2 (2.22)

≡
(1− i∆H4/2

1 + i∆H4/2

)(1− i∆H3/2

1 + i∆H3/2

)(1− i∆H2/2

1 + i∆H2/2

)
φn+ 1

2 (2.23)
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Therefore, the final solution of the time propagation is the combination of Eqs.

2.21 and 2.23. This propagates the time from tn to tn+1.

φn+1 = XCN(H4)XCN(H3)XCN(H2)Xnd(H1)φn (2.24)

By allowing ∆ to remain very small, we preserve the normality of the wave

function if propagating in real valued time. The errors in the terms are proportional

to ∆2 and may be ignored. Finally, the non-linear term gN |φ(r, t)|2 is not present in

the Crank-Nicolson terms, which improves numeric stability and helps the solutions

to converge.

Next, the scheme must be applied over space. The space is discretized into a

grid along all space coordinates with step size h. The symmetry and dimensionality

of the trap potential term in the GPE determines the shape of the grid. We will defer

descriptions to the relevant literature [19] to discuss the different Crank-Nicolson

schemes that can be employed to evaluate the discretized space. The schemes are

typified by taking differences between the next time step and the intermediate time

step, solving to find an equation for the next time step, and solving over all points in

the discretized grid. The error of the full solution is second order in both the time

step, ∆, and the space step, h. If these values are very small, the error terms are

negligible.

2.5 Issues With Grid Methods

2.5.1 Require too much storage

We can demonstrate the computational requirements required to employ a grid method,

like the split-step Crank-Nicolson scheme, using published examples [20] investigat-

ing Bose-Einstein Condensates. The computational requirements to evaluate the wave
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function over a grid are typified by the following parameters.

1. A grid is established in three dimensions, with each grid position indexing a

spacial coordinate, rijk. The grid dimensions are Nx, Ny, Nz, representing the

total length in each spacial dimension. Thus, the total number of grid points is

Ntotal = NxNyNz.

2. The wave function is evaluated at each (x, y, z) point, yielding a complex num-

ber. On commodity computer hardware a complex number requires 16 bytes,

represented as a pair of 8 byte floating point values.

3. The wave function is evaluated over many small time steps Ttotal. In the example

work, about 1% of the total time steps are actually stored for further processing.

The published examples are typified by grids with dimensions Nx = 400, Ny =

400, and Nz = 200 for Ntotal = 32, 000, 000 points. Each of these grids require

16bytes × Ntotal = 512 MB to store just the wave function values. Retaining 100

of the calculated time steps requires ≈ 50 GB of wave function values to be stored.

Additional storage is required for other values derived from the wave function, such

as the density, velocity, or phase.

Current commodity storage hardware is easily capable of capturing several such

runs. However, increasing the grid size or number of time steps requires a far greater

increase in total storage. Finally, maintaining long term backups or archives of such

information is a challenge on commodity hardware.

Therefore, a technique is desired to capture more granular data with far less

storage demands.
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2.5.2 Require too much time

Each time step is required to be very small since the error terms are the square of

the step size. As described above, the resulting data from evaluating the spacial grid

at each time step is impractical to store for all time steps. The complete evaluation

requires on the order of days to complete, but only a small percentage of the total

evaluations are retained for further processing. Additionally, the time to write to

storage is a not-insignificant part of the total time for each evaluation.

Therefore, a technique is desired that requires less time to capture equivalent or

better time-series. It is also desirable to avoid evaluating data that is not stored for

further processing.



CHAPTER 3

ATOM INTERFEROMETRY

An interferometer is a device that uses the phenomenon of interference as a method

of measurement. An example of this is the celebrated Michelson interferometer [18]

used to measure the Earth’s velocity relative to the ether. In this device, a light beam

is split into two perpendicular pathways by a beam splitter and the two beams are

re–joined at another beam splitter. This produces two final beams each of which is

a superposition of beams that went via the two different pathways. Any difference

between the environments of the two pathways causes a relative phase shift between

the light beams. This gives rise to an interference pattern that can be used for

measurement.

The basic message of quantum mechanics is that matter, like light, can have

wave–like properties. Thus it is possible to make a matter–wave interferometer [33].

This is especially the case for systems of Bose–Einstein condensed atoms. Condensates

can be split, rejoined, and split again [12] and the final clouds will consist of parts

that traveled both pathways and can exhibit interference. In this chapter we describe

an atom–interferometric scheme suitable for a precision measurement of Big G in the

Cold Atom Laboratory aboard the International Space Station.

3.1 Proposed Atom Interferometer

Figure 3.1 displays the proposed sequence of events for a novel atom interferometer

based on a Bose-Einstein Condensate. The scheme involves several events to measure

Big G. For the sake of description, we’ll assume only two clouds are split from the

initial condensate. It is possible to create many clouds depending on the laser pulse

used to split the initial condensate and our mathematical model will include this

possibility.
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Figure 3.1: Sequence of events in proposed atom interferometer experiment. This

sequence is repeated many times with a Test Mass (not shown) and without.

1. Initial Condensate: Condensate at rest within a harmonic potential. The num-

ber of atoms, N , is assumed to be known as is the quantum state of the con-

densate.

2. Initial split: The condensate is split using a laser pulse. Two or more condensate

clouds move apart with velocity +v and −v. We assume the clouds have the

same number of atoms and do not interact.

3. Separation: The clouds are allowed to move further apart, being slowed by the

harmonic potential, which acts as a restoring force, pulling the clouds back

toward the center of the trap. The clouds should be allowed to separate until

they are stationary.

4. Evolution: The harmonic potential is turned off. This allows the clouds to evolve

independently for a period of time. The clouds are assumed to not interact at
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this distance.

5. Overlap: The harmonic potential is restored, pulling the clouds back to the center

of the trap where they encounter each other and overlap.

6. Final Split: The clouds are split again, which doubles the number of clouds from

the initial split. Half of the clouds remain overlapped near the center of the trap.

The other halves move apart as in the initial split.

7. Interference: Properties of the overlapped central clouds can be measured.

The sequence of events is repeated many times to average out the effects of

random errors. The average of the effects provides a baseline measurement for the

experiment. Next, we modify the experiment by adding a Test Mass. The range of

motion of the clouds with respect to the initial condensate should be much smaller

versus the distance to the Test Mass. The sequence of events is repeated again, many

times, to obtain an average measurement of perturbations due to the Test Mass.

The measurements with and without the Test Mass are compared to determine the

influence attributed to the force of gravitational attraction to the Test Mass.

The Test Mass will have an attractive effect on all clouds in the system, pulling

them towards the Test Mass. As gravitational force obeys an inverse square dis-

tance law, the clouds closer to the Test Mass will experience more attraction and

be perturbed to a greater degree. It is expected this difference in perturbation is ex-

pressed in properties of the system during the overlap of the clouds in the Interference

event. The overlap should appear different when comparing the properties with and

without a Test mass. The position of the Test Mass can be chosen to enhance the

non-symmetric effect.
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3.2 Measuring Big G

Recall Newton’s Equation for the Force of Gravity for this system,

FG = G
MTM M

|rTM − r|2
(3.1)

where MTM is the mass of the Test Mass and M is the mass of a condensate atom.

The positions rTM and r locate the center of mass of the Test Mass and an atom,

respectively. It is assumed that MTM � m and |rTM | � |r|. We also assume that

point masses are sufficient to model the clouds and the Test Mass. We also assume

that we can ignore the gravitational attraction between clouds. An FG force term is

required for each cloud created in the Initial Split and Final Split.

Big G should be derivable from measurements of properties of the of the over-

lapped clouds during the Interference event.

Center of Mass: When the clouds overlap, the center of mass for the overlapped

clouds should be deflected relative to the center of mass from the initial conden-

sate. This deflection should correspond to the force of gravitational attraction

experienced by the two clouds in the direction of the Test Mass.

Interference: Much like the double-slit experiment [34] reveals the particle-wave

duality of light, the overlapping clouds create matter wave interference patterns

from the differences in relative velocities.

In an actual experiment, these properties are measured by imaging the clouds.

Each image requires a new Bose-Einstein Condensate to be created and evolved

through the events of the Atom Interferometry experiment. Each image captures

the shadow from light being blocked by the condensate atoms; darker portions indi-

cate higher density. The light destroys the quantum system so a new condensate must

be created, evolved, and imaged for each time step being observed. It is expected
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that variations in MTM and rTM should yield variations in the images that can be

compared to measure the properties listed above. From these comparisons Big G can

be derived.

As an order-of-magnitude approximation, we can derive Big G from an estimate

of the Newtonian Equations of Motion. We assume the cloud centers move in one

dimension, x. We also assume that we can measure the difference in the cloud centers

during the Final Split with and without a Test Mass present. From Newton’s Second

Law, we know F = ma→ a = F
m

. By rearranging Eq. 3.1, we can find the acceleration

due to gravity. Additionally, we simplify the denominator by ignoring r as |rTM | �

|r|.

aG =
FG
M

= G
MTM

|rTM |2
(3.2)

We assume the time spent in the Evolution phase–in which the trap is turned

off–is much greater than the times spent with the trap turned on. The time spent

in the Evolution phase is labeled TD. During the Evolution phase the cloud centers

move towards the Test Mass, which should change the acceleration. However, the

change in acceleration due to this movement is small, so we assume the acceleration

is constant. From Newton’s Equations of Motion, we can determine the distance the

cloud centers should be moved based on the acceleration due to gravity and the time

spent in the Evolution phase. Specifically, we are estimating δx, the difference in the

final position of the cloud centers along x with and without the Test Mass.

δx =
1

2
aGT

2
D (3.3)

We can substitute Eq. 3.3 into Eq. 3.2 and solve for G.

G ≈ 2δx|rTM |2

MTMT 2
D

(3.4)
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This should provide an order-of-magnitude estimate for Big G based on mea-

suring the inputs and results of the Atom Interferometry simulation. This is not

a precision measurement. Specifically, we will estimate Big G using a simulation in

which Big G is an input parameter. Many assumptions are being made to simplify this

analysis and must be accounted for in a proper analysis. Additionally, this analysis

utilizes classical Newtonian physics while the system being simulated is quantum.

However, this analysis demonstrates that a visual inspection of the Final Split can

provide the necessary information to estimate Big G. Additionally, we demonstrate

the relationships that influence the design of a practical experiment: the Test Mass

mass and position, the fidelity of measuring the position of the cloud centers, and the

time span of the Evolution phase.

3.3 Parameter Estimation And Feasibility

In reality, we do not have a physical experiment with which to measure these effects.

Further, as explained in section 2.5, simulating the Atom Interferometry experiment

in great detail is expensive and time consuming. What is required is a means to

estimate the magnitudes of MTM and rTM required to produce measurable effects.

From Eq. 3.4 we see the magnitudes of these inputs determine the feasibility of the

Atom Interferometer experiment to be conducted in the Cold Atom Laboratory on

the International Space Station. If MTM is too massive, it is prohibitively expensive

to place the Test Mass in orbit as launch costs are on the order of $10,000 per

kilogram. Similarly, |rTM | is limited by where the experiment can be installed on the

ISS. Alternatively, we see that we can trade mass for time in the experiment. Thus,

being able to quickly simulate this experiment with variations in MTM and rTM is a

tool to study the feasibility of the experiment. More detailed simulations can provide

better estimates based on the initial feasibility results.
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The next chapter describes the mathematical model to rapidly simulate the Atom

Interferometer with approximate solutions to the Gross-Pitaevskii Equation 2.13. The

time-evolution of the model is derived using the Lagrangian Variational Method and a

trial wave function based on Gaussian distributions extended with linear and nonlin-

ear phase coefficients [22]. The phase coefficients are necessary to exhibit changes in

position over time due to changes in the velocity. This also satisfies the preservation

of probability current; probability cannot be created or destroyed over the course of

the experiment.

The ISS is not a stationary object relative to observers on Earth. As such, an

experiment aboard the station will exist in a rotational frame of reference. We extend

the GPE to include terms for the rotational frame as well as effects of a Test Mass.
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LVM EQUATIONS OF MOTION FOR THE GROSS–PITAEVSKII

EQUATION IN THE ROTATING FRAME

4.1 Derivation of the 3D, N–Gaussian–cloud Lagrangian

4.1.1 The Lagrangian Variational Method

The Lagrangian Variational Method (LVM) can approximate the solutions of the

time–dependent Gross–Pitaevskii equation [22] in the rotating frame. This equation

has the form [26]:

i~
∂

∂t
Φ(r, t) = − ~2

2M
∇2Φ(r, t) + Vtrap(r, t)Φ(r, t) + gN |Φ(r, t)|2 Φ(r, t)

+ i~Ω · (r×∇) Φ, (4.1)

where Ω is the angular velocity of the rotating frame.

The LVM is based on the fact that the GPE can be derived as the Euler–Lagrange

equation of motion produced by the following Lagrangian density:

L[Φ∗,Φ∗x,Φ
∗
y,Φ

∗
z,Φ

∗
t ] =

i~
2

(ΦΦ∗t − Φ∗Φt) +
~2

2M

(
Φ∗xΦx + Φ∗yΦy + Φ∗zΦz

)
+ V (r, t)ΦΦ∗ +

1

2
gN(Φ)2(Φ∗)2 + Φ

(
Ω · L̂

)
Φ∗, (4.2)

where L̂ is the angular momentum operator whose components are

L̂x =
~
i

(
y
∂

∂z
− z ∂

∂y

)
L̂y =

~
i

(
z
∂

∂x
− x ∂

∂z

)
L̂z =

~
i

(
x
∂

∂y
− y ∂

∂z

)
. (4.3)

This Lagrangian density along with the following Euler–Lagrange equation of

motion produces the GPE:

∂

∂t

(
∂L
∂Φ∗t

)
+

∂

∂x

(
∂L
∂Φ∗x

)
+

∂

∂y

(
∂L
∂Φ∗y

)
+

∂

∂z

(
∂L
∂Φ∗z

)
− ∂L
∂Φ∗

= 0 (4.4)
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where

Φt ≡
∂Φ

∂t
, . . . etc. (4.5)

The Lagrangian Variational Method consists of devising a trial wave function,

Φtrial(r, t) = Φtrial(q1(t), . . . , qn(t); r) (4.6)

where the {qi(t)}, i = 1, . . . , n are variational parameters that only depend on the

time, t. The equations of motion of these variational parameters are derived by

computing the ordinary Lagrangian:

L(q1(t), . . . , qn(t)) =

∫
d3rL[(Φtrial)∗, (Φtrial)∗x, (Φ

trial)∗y, (Φ
trial)∗z, (Φ

trial)∗t ] (4.7)

and then using the ordinary Euler–Lagrange equation,

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = 1, . . . , n (4.8)

4.1.2 Scaled units

We can simplify the above method by introducing a set of units appropriate to the

problem and a set of scaled variables (both independent and dependent). The scaled

variables are defined by first establishing a length unit, L0, and then defining energy

and time units as follows:

E0 ≡
~2

2ML2
0

and T0 ≡
~
E0

=
2ML2

0

~
. (4.9)

We then introduce scaled variables which are generally denoted by barred quantities.

These consist of scaled space and time coordinates:

x̄ ≡ x

L0

ȳ ≡ y

L0

z̄ ≡ z

L0

and t̄ ≡ t

T0

. (4.10)

We also introduce the scaled condensate wave function for the solution of the GPE:

Φ(r, t) = L
−3/2
0 Ψ(r̄, t̄). (4.11)
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We can express the original GPE in terms of scaled quantities and this can be done

for the Lagrangian density and its associated Euler–Lagrange equation as well.

In terms of scaled quantities, the GPE becomes:

i
∂Ψ

∂t̄
= −∇̄2Ψ + V̄ (r̄, t̄)Ψ + ḡN |Ψ|2 Ψ. (4.12)

where g ≡ ḡE0L
3
0 and V̄ (r̄, t̄) = V (r, t)/E0. The scaled Lagrangian density becomes

L̄
[
Ψ∗,Ψ∗x̄,Ψ

∗
ȳ,Ψ

∗
z̄

]
=

i

2
(ΨΨ∗t̄ −Ψ∗Ψt̄) + ∇̄Ψ∗ · ∇̄Ψ + V̄ (r̄, t̄)ΨΨ∗

+
1

2
ḡN (Ψ∗)2 (Ψ)2 + iΩ̄z

(
ȳΨΨ∗x − x̄ΨΨ∗y

)
(4.13)

and the scaled Euler–Lagrange equation is given by

∂

∂x̄

(
∂L̄
∂Ψ∗x̄

)
+

∂

∂ȳ

(
∂L̄
∂Ψ∗ȳ

)
+

∂

∂z̄

(
∂L̄
∂Ψ∗z̄

)
+
∂

∂t̄

(
∂L̄
∂Ψ∗t̄

)
− ∂L̄
∂Ψ∗

= 0. (4.14)

Next we turn to the 3D, Nc–Gaussian–cloud trial wave function.

4.1.3 The 3D, Nc–Gaussian–cloud trial wave function

In the 3D, Nc–gaussian–cloud model we take the trial wave function to be a sum of

Nc three–dimensional Gaussian clouds. The jth cloud has its own initial momentum,

k̄j and set of variational parameters.These parameters consist of the cartesian coor-

dinates of the cloud center: x̄j, ȳj, and z̄j; the widths along the x, y,and z directions:

w̄jx, w̄jy, and w̄jz; the linear phase coefficients along the x, y, and z directions: ᾱjx,

ᾱjy, and ᾱjz; and the quadratic phase coefficients along the x, y, and z directions:

β̄jx, β̄jy, and β̄jz. The jth cloud also has its own normalization coefficient, Aj, which

will be eliminated by fixing the number of atoms in each cloud.

The mathematical form (in scaled units) of the trial wave function is the follow-

ing:

Ψ(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj(t̄)e
fj(r̄,t̄)+ik̄j ·̄r (4.15)
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where

fj(r̄, t̄) = −(x̄− x̄j)2

2w̄2
jx

− (ȳ − ȳj)2

2w̄2
jy

− (z̄ − z̄j)2

2w̄2
jz

+ iᾱjxx̄+ iᾱjyȳ + iᾱjz z̄ + iβ̄jxx̄
2 + iβ̄jyȳ

2 + iβ̄jz z̄
2

=
∑

η=x,y,z

(
−(η̄ − η̄j)2

2w̄2
jη

+ iᾱjηη̄ + iβ̄jηη̄
2

)
(4.16)

We can write the trial wave function entirely in terms of coordinates as follows:

Ψ(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj(t̄) exp

{ ∑
η=x,y,z

(
−(η̄ − η̄j)2

2w̄2
jη

+ i
(
ᾱjη + k̄jη

)
η̄ + iβ̄jηη̄

2

)}

=
1√
Nc

Nc∑
j=1

Aj(t̄)
∏

η=x,y,z

exp

{
−(η̄ − η̄j)2

2w̄2
jη

+ i
(
ᾱjη + k̄jη

)
η̄ + iβ̄jηη̄

2

}

≡ 1√
Nc

Nc∑
j=1

Aj(t̄)
∏

η=x,y,z

efjη(η̄,t̄)+ik̄jη η̄

=
1√
Nc

Nc∑
j=1

Aj(t̄) exp

{ ∑
η=x,y,z

(
fjη(η̄, t̄) + ik̄jηη̄

)}
(4.17)

where

fjη(η̄, t̄) ≡ −
(η̄ − η̄j)2

2w̄2
jη

+ iᾱjηη̄ + iβ̄jηη̄
2. (4.18)

We can calculate the Lagrangian associated with this trial wave function by integrat-

ing L̄ over all space:

L̄
({

r̄j, w̄j, ᾱj, β̄j

}Nc
j=1

)
=

∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄ L̄
[
Ψ∗,Ψ∗x̄,Ψ

∗
ȳ,Ψ

∗
z̄

]
. (4.19)

The equation of motion for a given variational parameter, qj(t̄), is then given by the

ordinary Euler–Lagrange equation:

∂

∂t̄

(
∂L̄

∂q̇j

)
− ∂L̄

∂qj
= 0, j = 1, . . . , Nc. (4.20)

With these tools in hand we can now compute the Lagrangian.
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The rotating–frame Lagrangian has five terms and can be written as follows.

L̄ = L̄1 + L̄2 + L̄3 + L̄4 + L̄5 (4.21)

where

L̄1 ≡
i

2

∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄ (ΨΨ∗t̄ −Ψ∗Ψt̄)

L̄2 ≡
∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄ ∇̄Ψ∗ · ∇̄Ψ

L̄3 ≡
∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄ V̄ (r̄, t̄)ΨΨ∗

L̄4 ≡
1

2
ḡN

∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄ (Ψ∗)2 (Ψ)2

L̄5 ≡ iΩ̄z

∫ ∞
−∞

dx̄

∫ ∞
−∞

dȳ

∫ ∞
−∞

dz̄Ψ
(
ȳΨ∗x − x̄Ψ∗y

)
(4.22)

Next we derive, in turn, the value of each of these terms and then put together the

full Lagrangian.

4.1.4 Constraints on the trial wave function

Here we make several assumptions about the physical system which have material

effects on the values of the variational parameters. These are as follows:

1. We assume that each of the Nc clouds are moving at sufficiently different ve-

locities such that any integral of a quantity containing a factor like ei(k̄jη−k̄j′η)η̄

where j 6= j′ can be neglected. If the clouds move with sufficiently different

velocities, these factors will be rapidly oscillating and their integrals can be

neglected.

2. The Aj(t̄) are real for all j. This derives from the assumption that the system

is a single condensate and has an overall constant phase.
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3. The number of atoms in each cloud is fixed. Clouds do not exchange atoms. This

plus the normalization condition, fixes a relationship (derived below) between

Aj and the widths w̄jη where η = x, y, z.

We can use these assumptions plus the normalization condition on the trial wave

function to derive conditions that constrain the values of the Aj.

To find these conditions we require that the full trial wave function be normalized

to unity:

1 =

∫
d3r̄ |Ψ(r̄, t̄)|2

=

∫
d3r̄

(
1√
Nc

Nc∑
j=1

Aj(t̄) exp

{ ∑
η=x,y,z

(
fjη(η̄, t̄) + ik̄jηη̄

)})∗

×

(
1√
Nc

Nc∑
j′=1

Aj′(t̄) exp

{ ∑
η=x,y,z

(
fj′η(η̄, t̄) + ik̄j′ηη̄

)})
(4.23)

We can simplify the above integral by dropping all of the terms in the product Ψ∗Ψ

that contain rapidly oscillating exponentials such as ei(k̄jη−k̄j′η)η̄ where j 6= j′. In this

case our normalization condition simplifies to

1 =
1

Nc

∫
d3r̄

(
Nc∑
j=1

A2
j(t̄) exp

{ ∑
η=x,y,z

(
fjη(η̄, t̄) + f ∗jη(η̄, t̄)

)})

=
1

Nc

Nc∑
j=1

A2
j(t̄)

∫
d3r̄ exp

{ ∑
η=x,y,z

(
fjη(η̄, t̄) + f ∗jη(η̄, t̄)

)}

=
1

Nc

Nc∑
j=1

A2
j(t̄)

∫
d3r̄ exp

{ ∑
η=x,y,z

(
−(η̄ − η̄j)2

w̄2
jη

)}

=
1

Nc

Nc∑
j=1

A2
j(t̄)

∏
η=x,y,z

∫ ∞
−∞

dη̄ exp

{
−(η̄ − η̄j)2

w̄2
jη

}

=
1

Nc

Nc∑
j=1

A2
j(t̄)

∏
η=x,y,z

(
π1/2w̄jη

)
1 =

1

Nc

Nc∑
j=1

A2
j(t̄)

(
π3/2w̄jx(t̄)w̄jy(t̄)w̄jz(t̄)

)
(4.24)
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where the value of the integral above is derived in Appendix A Eq. (A.8).

This last expression is the condition for the trial wave function to be normalized.

However, our assumption that the number of atoms in each cloud is fixed adds a

further restriction to the above expression. That is that each cloud is individually

normalized. This gives, finally,

A2
j(t̄)π

3/2w̄jx(t̄)w̄jy(t̄)w̄jz(t̄) = 1, j = 1, . . . , Nc. (4.25)

These constraints together automatically satisfy Eq. (4.24) and enable the elimination

of all of the Aj in the final Lagrangian.

4.1.5 Derivation of L̄1

The L̄1 term of the Lagrangian has the form

L̄1 =

∫
d3r̄L̄1 =

i

2

∫
d3r̄ (Ψ(r̄, t̄)Ψ∗t̄ (r̄, t̄)−Ψ∗(r̄, t̄)Ψt̄(r̄, t̄)) (4.26)

In order to compute this integral is convenient to rewrite the integrand as follows:

L̄1 =
i

2
(Ψ(r̄, t̄)Ψ∗t̄ (r̄, t̄)−Ψ∗(r̄, t̄)Ψt̄(r̄, t̄)) = Im {Ψ∗(r̄, t̄)Ψt̄(r̄, t̄)} (4.27)

where Im(z) denotes the imaginary part of the complex number z. Thus we can now

write L̄1 as follows.

L̄1 = Im

{∫
d3r̄Ψ∗(r̄, t̄)Ψt̄(r̄, t̄)

}
=

∫
d3r̄ Im {Ψ∗(r̄, t̄)Ψt̄(r̄, t̄)} (4.28)

This form is more convenient for calculation.

To proceed, we next insert the trial wave function into Ψ∗Ψt̄. It will be efficient

first to calculate Ψt̄ using the following form of the trial wave function,

Ψ(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj(t̄)e
fj(r̄,t̄)+k̄j ·̄r. (4.29)
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It is easy to see that the partial time derivative of this is

Ψt̄(r̄, t̄) =
1√
Nc

Nc∑
j=1

(
Ȧj(t̄) + Aj(t̄)ḟj(r̄, t̄)

)
efj(r̄,t̄)+k̄j ·̄r, (4.30)

where the dot denotes partial differentiation with respect to t̄.

Next we multiply the above by Ψ∗ to get

Ψ∗Ψt̄ =

(
1√
Nc

Nc∑
j=1

Aj(t̄)e
fj(r̄,t̄)+k̄j ·̄r

)∗

×

(
1√
Nc

Nc∑
j′=1

(
Ȧj′(t̄) + Aj′(t̄)ḟj′(r̄, t̄)

)
efj′ (r̄,t̄)+k̄j′ ·̄r

)

≈ 1

Nc

Nc∑
j=1

(
Aj(t̄)Ȧj(t̄) + A2

j(t̄)ḟj(r̄, t̄)
)
efj(r̄,t̄)+f

∗
j (r̄,t̄) (4.31)

where in the second equality we have dropped terms that contained rapidly oscil-

lating exponentials (i.e., any terms where j 6= j′) as they would be negligible after

integration. We have also used the assumption that the Aj are real.

We next take the imaginary part of this last expression. In doing so it is impor-

tant to note that fj + f ∗j is real so that the exponential of this will also be real. Thus

we can see that, since the term in the above containing the factor AjȦj is real, it will

not contribute to the imaginary part. In fact the only factor in the above with an

imaginary part is ḟj. Thus, taking the imaginary part of Eq. (4.31) becomes

Im {Ψ∗Ψt̄} ≈
1

Nc

Nc∑
j=1

A2
j(t̄)Im

{
ḟj(r̄, t̄)

}
efj(r̄,t̄)+f

∗
j (r̄,t̄)

=
1

Nc

Nc∑
j=1

A2
j(t̄)

[ ∑
η=x,y,z

(
˙̄αjηη̄ + ˙̄βjηη̄

2
)]

exp

{ ∑
η′=x,y,z

(
−
(
η̄′ − η̄′j

)2

w̄2
jη′

)}

=
1

Nc

Nc∑
j=1

A2
j(t̄)

[ ∑
η=x,y,z

(
˙̄αjηη̄ + ˙̄βjηη̄

2
)] ∏

η′=x,y,z

exp

{
−
(
η̄′ − η̄′j

)2

w̄2
jη′

}
(4.32)

We now insert this expression into the integral for L̄1.

Inserting Eq. (4.32) into Eq. (4.28) we have

L̄1 =
1

Nc

Nc∑
j=1

A2
j(t̄)

∑
η=x,y,z

∫
d3r̄
(

˙̄αjηη̄ + ˙̄βjηη̄
2
) ∏
η′=x,y,z

exp

{
−
(
η̄′ − η̄′j

)2

w̄2
jη′

}
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=
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
1

π1/2w̄jη

)∫
d3r̄
(

˙̄αjηη̄ + ˙̄βjηη̄
2
)

exp

{
−(η̄ − η̄j)2

w̄2
jη

}
.

(4.33)

Note that each of the 3D integrals appearing in the sum over x, y, and z con-

sists of two dimensions (the one that is not η) whose single–variable integral is

that same as that found in the normalization integral while the integral over the

“η” dimension contains the factor (α̇jηη + β̇jηη
2). We have used the constraint

A2
j(π

1/2w̄jx)(π
1/2w̄jy)(π

1/2w̄jz) = 1 to rewrite the results of integration over the “non–

η” dimensions times the A2
j factor in terms of w̄jη.

The remaining integrals over η are evaluated in Appendix A and are given in

Eqs. (A.9) and (A.10). This gives us our final expression for L̄1:

L̄1 =
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
˙̄αjηη̄j + ˙̄βjη

(
η̄2
j +

1

2
w̄2
jη

))
(4.34)

Next we turn to the derivation of L̄2.

4.1.6 Derivation of L̄2

The expression for L̄2 is given by

L̄2 ≡
∫

d3r̄
∑

η=x,y,z

Ψ∗η̄Ψη̄ =
∑

η=x,y,z

∫
d3r̄Ψ∗η̄Ψη̄ (4.35)

To proceed we must calculate the space derivative of the trial wave function. It will

be most convenient to do this using the form

Ψ(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj(t̄) exp

{ ∑
η′=x,y,z

(
fjη′(η̄′, t̄) + ik̄jη′ η̄′

)}
(4.36)

where

fjη(η̄, t̄) = −(η̄ − η̄j)2

2w̄2
jη

+ i
(
ᾱjηη̄ + β̄jηη̄

2
)
≡ f

(r)
jη (η̄, t̄) + i f

(i)
jη (η̄, t̄). (4.37)
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In the above we have introduced the real and imaginary parts of fjη for later conve-

nience.

It is straightforward to compute the derivative of Ψ in this form, we obtain

Ψη̄(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj(t̄) exp

{ ∑
η′=x,y,z

(
fjη′(η̄′, t̄) + ik̄jη′ η̄′

)}

×

(
∂f

(r)
jη

∂η̄
+ i

(
∂f

(i)
jη

∂η̄
+ k̄jη

))
(4.38)

If we multiply the above by its complex conjugate and neglect the rapidly oscillating

terms we get

Ψ∗η̄Ψη̄ =
1

Nc

Nc∑
j=1

A2
j(t̄) exp

{ ∑
η′=x,y,z

(
f ∗jη′ + fjη′

)}

×

(∂f (r)
jη

∂η̄

)2

+

(
∂f

(i)
jη

∂η̄
+ k̄jη

)2


=
1

Nc

Nc∑
j=1

A2
j(t̄) exp

{
−
∑

η′=x,y,z

(
η′ − η′j

)2

w̄2
jη′

}

×

(
(η − ηj)2

w̄4
jη

+
(
ᾱjη + k̄jη + 2β̄jηη

)2

)
(4.39)

We now insert this form into Eq. (4.35):

L̄2 =
1

Nc

Nc∑
j=1

A2
j(t̄)

∑
η=x,y,z

∫
d3r̄ exp

{
−
∑

η′=x,y,z

(
η′ − η′j

)2

w̄2
jη′

}

×

(
(η − ηj)2

w̄4
jη

+
(
ᾱjη + k̄jη + 2β̄jηη

)2

)
(4.40)

Each term in the sum over η above contains a 3D integral. For each 3D integral, two

of the integrations are over coordinates that are not equal to η. These have the form

of integral J1 found in Appendix A and have the value of π1/2 × w̄. The remaining

integral is over the coordinate that is equal to the current value of η in the sum and

this integral has the extra factor shown above. We can use the constraint equations
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derived in Eqs. (4.25) to eliminate the product of A2
j with the value of the two non–η

integrals. Performing this elimination yields the following form for L̄2:

L̄2 =
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
1

π1/2w̄jη

)∫ ∞
−∞

dη exp

{
−(η − ηj)2

w̄2
jη

}

×

(
(η − ηj)2

w̄4
jη

+
(
ᾱjη + k̄jη + 2β̄jηη

)2

)
(4.41)

While it is possible to use the integrals derived in Appendix A, here it is a little easier

to perform the integration directly. To do this we let x = (η − ηj)/w̄jη and change

the integration variable to x in the integral below:

I ≡
∫ ∞
−∞

dη exp

{
−(η − ηj)2

w̄2
jη

}(
(η − ηj)2

w̄4
jη

+
(
ᾱjη + k̄jη + 2β̄jηη

)2

)

=

∫ ∞
−∞

w̄jη dx e
−x2
(
x2

w̄2
jη

+
(
ᾱjη + k̄jη + 2β̄jη (η̄j + w̄jηx)

)2
)

=

∫ ∞
−∞

w̄jη dx e
−x2
(( 1

w̄2
jη

+ 4β̄2
jηw̄

2
jη

)
x2

+ 4β̄jηw̄jη

(
ᾱjη + k̄jη + 2β̄jηη̄j

)
x+

(
ᾱjη + k̄jη + 2β̄jηη̄j

)2
)

=
(
π1/2w̄jη

)(1

2

( 1

w̄2
jη

+ 4β̄2
jηw̄

2
jη

)
+
(
ᾱjη + k̄jη + 2β̄jηη̄j

)2
)

(4.42)

Inserting this last expression in place of the integral in L̄2 we have the final expression

for L̄2:

L̄2 =
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
1

2w̄2
jη

+ 2β̄2
jηw̄

2
jη +

(
ᾱjη + k̄jη + 2β̄jηη̄j

)2
)
. (4.43)

Next we turn to the derivation of L̄3.

4.1.7 Derivation of L̄3

The expression for L̄3 is

L̄3 ≡
∫

d3r̄V̄trap(r̄, t̄)Ψ∗(r̄, t̄)Ψ(r̄, t̄) (4.44)
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z
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Figure 4.1: A test mass is located rTM and r denotes the point at which the gravita-

tional field of the test mass is evaluated.

The potential must be specified in order to compute this term.

Here we will take the potential to be the sum of the trap potential (assumed here

to be a 3D harmonic oscillator) plus the gravitational potential energy of point test

mass:

Vtrap(r) =
∑

η=x,y,z

1

2
Mω2

T,ηη
2 + Vgravity(r). (4.45)

The gravitational potential energy between a mass M at point r due to a test mass,

MTM , and located at rTM , as shown in Fig. 4.1, is given by

Vgravity(r) = −GMTMM

|r− rTM |
(4.46)

where G is the Newtonian Universal Gravitational Constant also known as “Big G”

and M is the mass of a condensate atom. We shall assume here that the test mass is

far away from the origin of coordinates compared to the location of the condensate.

That is, we assume that |rTM | � |r| and we can make a Taylor expansion of Vgravity(r)
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to second order around the origin:

Vgravity(r) ≈ −GMTMM

|rTM |
− GMTMM

2|rTM |3
(
|r|2 + 2|rTM |ûTM · r

)
, (4.47)

where

ûTM ≡
rTM
|rTM |

. (4.48)

The first term in Vgravity is a constant everywhere in space. Since only energy differ-

ences have physical meaning, we can adjust the origin of our energy scale so that this

term can be ignored. Thus we can write this approximate potential as

Vgravity(r) = −1

2
Mω2

TM

(
x2 + y2 + z2

)
+

1

2
Mω2

TM(2|rTM |) (uTM,xx+ uTM,yy + uTM,zz) (4.49)

where

ωTM ≡
(
GMTM

|r3
TM |

)1/2

. (4.50)

Thus the full potential is

Vtrap(r, t) =
∑

η=x,y,z

1

2
Mω2

T,ηη
2 −

∑
η=x,y,z

1

2
Mω2

TM

(
η2 + 2|rTM |uTM,ηη

)
, (4.51)

where ωT,η, η = x, y, z are the frequencies of the harmonic trap potential. The fre-

quency ωTM is the coefficient of the second–order approximation to the gravitational

potential energy produced by the test mass and the uTM,η are the components of the

unit vector that points from the origin towards the test mass location.

In scaled units this potential has the form

V̄ (r̄, t̄) =
∑

η=x,y,z

[
1

4

(
ω̄2
T,η − ω̄2

TM

)
η̄2 − 1

2
ω̄2
TM |r̄TM |uTM,ηη̄

]
. (4.52)

If we multiply Ψ by its complex conjugate and neglect the rapidly oscillating terms

(which will integrate to approximately zero anyway) we obtain

Ψ∗Ψ ≈ 1

Nc

Nc∑
j=1

A2
j(t̄) exp

{ ∑
η=x,y,z

(
fjη(η̄, t̄) + f ∗jη(η̄, t̄)

)}
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=
1

Nc

Nc∑
j=1

A2
j(t̄) exp

{
−
∑

η=x,y,z

(
(η̄ − η̄j)2

w̄2
jη

)}
(4.53)

With these expressions we can now calculate L̄3.

Inserting Eqs. (4.52) and (4.53) into Eq. (4.44) we have

L̄3 =

∫
d3r̄

(
1

Nc

Nc∑
j=1

A2
j(t̄) exp

{
−
∑

η′=x,y,z

((
η̄′ − η̄′j

)2

w̄2
jη′

)})

×

( ∑
η=x,y,z

[
1

4

(
ω̄2
T,η − ω̄2

TM

)
η̄2 − 1

2
ω̄2
TM |r̄TM |η̄

])

=
1

Nc

Nc∑
j=1

A2
j(t̄)

∑
η=x,y,z

1

4

(
ω̄2
T,η − ω̄2

TM

)
×

∫
d3r̄ η̄2 exp

{
−
∑

η′=x,y,z

((
η̄′ − η̄′j

)2

w̄2
jη′

)}

− 1

2Nc

Nc∑
j=1

A2
j(t̄)

∑
η=x,y,z

1

2
ω̄2
TM |r̄TM |uTM,η

×
∫

d3r̄ η̄ exp

{
−
∑

η′=x,y,z

((
η̄′ − η̄′j

)2

w̄2
jη′

)}
(4.54)

Now we can perform the integration over the two dimensions not equal to η in the

sum and use the constraint equations to eliminate A2
j . Doing this yields the final

expression for L̄3 is

L̄3 =
1

Nc

Nc∑
j=1

∑
η=x,y,z

{
1

4

(
ω̄2
T,η − ω̄2

TM

)(
η̄2
j +

1

2
w̄2
jη

)
− 1

2
ω̄2
TM |r̄TM |uTM,ηη̄j

}
(4.55)

Finally, we turn to L̄4.

4.1.8 Derivation of L̄4

The expression for L̄4 is

L̄4 ≡
1

2
ḡN

∫
d3r̄ |Ψ|4 (4.56)
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In order to perform this integral we must first calculate |Ψ|4. We can write this

quantity as follows:

|Ψ|4 =

[(
1√
Nc

Nc∑
j1=1

Aj1(t̄) exp

{ ∑
η1=x,y,z

(
fj1η1(η̄1, t̄) + ik̄j1η1 η̄1

)})∗

×

(
1√
Nc

Nc∑
j2=1

Aj2(t̄) exp

{ ∑
η2=x,y,z

(
fj2η2(η̄2, t̄) + ik̄j2η2 η̄2

)})]2

=
1

N2
c

[
Nc∑

j1,j2=1

Aj1Aj2 exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + i

(
k̄j2η − k̄j1η

)
η̄
)}]2

(4.57)

where we have dropped the display of the functional dependence of the Aj and fjη in

the last line to save space.

We can write the double sum inside the square brackets as a single sum where

j1 = j2 and the original double sum with the provision that j1 6= j2 and write out the

square:

|Ψ|4 =
1

N2
c

[
Nc∑
j1=1

A2
j1

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η

)}

+
Nc∑

j1,j2=1
j1 6=j2

Aj1Aj2 exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + i

(
k̄j2η − k̄j1η

)
η̄
)}]2

=
1

N2
c

[
Nc∑
j1=1

A2
j1

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η

)}

+
Nc∑

j1,j2=1
j1 6=j2

Aj1Aj2 exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + i

(
k̄j2η − k̄j1η

)
η̄
)}]

×

[
Nc∑
j′1=1

A2
j′1

exp

{ ∑
η′=x,y,z

(
f ∗j′1η′ + fj′1η′

)}

+
Nc∑

j′1,j
′
2=1

j′1 6=j′2

Aj′1Aj′2 exp

{ ∑
η′=x,y,z

(
f ∗j′1η′ + fj′2η′ + i

(
k̄j′2η′ − k̄j′1η′

)
η̄′
)}]
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≈ 1

N2
c

[(
Nc∑
j1=1

A2
j1

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η

)})

×

 Nc∑
j′1=1

A2
j′1

exp

{ ∑
η′=x,y,z

(
f ∗j′1η′ + fj′1η′

)}

+

 Nc∑
j1,j2=1
j1 6=j2

Aj1Aj2 exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + i

(
k̄j2η − k̄j1η

)
η̄
)}

×

 Nc∑
j′1,j
′
2=1

j′1 6=j′2

Aj′1Aj′2 exp

{ ∑
η′=x,y,z

(
f ∗j′1η′ + fj′2η′ + i

(
k̄j′2η′ − k̄j′1η′

)
η̄′
)}

]

(4.58)

When multiplying out the square we want to neglect terms that contain rapidly oscil-

lating exponentials. We cannot do this all in one step. The single sums definitely do

not contain exponentials but the double sums definitely do. Thus, a single–sum times

a double–sum will definitely have exponentials while a single–sum times a single–sum

definitely will not. Finally, the double–sum times the double–sum will have some

terms with exponentials and some not. Hence, in the above when we multiplied out

the square we kept the single–sum times the single–sum and the double–sum times

the double–sum and dropped the cross terms.

Now we can rewrite the above expression as follows:

|Ψ|4 ≈ 1

N2
c

[
Nc∑

j1,j2=1

A2
j1
A2
j2

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η + f ∗j2η + fj2η

)}
+

∑
j1,j2=1
j1 6=j2

∑
j′1,j
′
2=1

j′1 6=j′2

Aj1Aj2Aj′1Aj′2

× exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + f ∗j′1η + fj′2η + i

(
k̄j2η − k̄j1η + k̄j′2η − k̄j′1η

)
η̄
)}]
(4.59)

The second term above still has oscillating terms. We only want to keep the non–
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oscillating terms. The terms that don’t oscillate are those where j′1 = j2 and j′2 = j1

(since j1 = j2 and j′1 = j′2 are excluded already). Thus we can evaluate the primed

sums keeping only those terms where j′1 = j2 and j′2 = j1:

|Ψ|4 ≈ 1

N2
c

[
Nc∑

j1,j2=1

A2
j1
A2
j2

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η + f ∗j2η + fj2η

)}

+
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj2η + f ∗j2η + fj1η

)}]

(4.60)

The two double sums appearing in the expression above are the same with one excep-

tion: the second double sum requires j1 6= j2 while the first double sum has no such

restriction. We can write the first sum as two terms: a single sum where j1 = j2 and

a double sum where j1 6= j2. This second term will then be identical to the second

term in the original expression. Carrying out this procedure gives.

|Ψ|4 ≈ 1

N2
c

[
Nc∑
j1=1

A4
j1

exp

{ ∑
η=x,y,z

(
2f ∗j1η + 2fj1η

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{ ∑
η=x,y,z

(
f ∗j1η + fj1η + f ∗j2η + fj2η

)}]

(4.61)

We are now in a position to write |Ψ|4 in terms of coordinates. The result is

|Ψ|4 ≈ 1

N2
c

[
Nc∑
j1=1

A4
j1

exp

{
−
∑

η=x,y,z

(2 (η̄ − η̄j1)
2

w̄2
j1η

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{
−
∑

η=x,y,z

((η̄ − η̄j1)
2

w̄2
j1η

+
(η̄ − η̄j2)

2

w̄2
j2η

)}]

(4.62)

We now consider the exponent of the exponential appearing in the second term above.
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Consider the quantity

S (η̄j1 , w̄j1η, η̄j2 , w̄j2η; η̄) ≡ (η̄ − η̄j1)
2

w̄2
j1η

+
(η̄ − η̄j2)

2

w̄2
j2η

. (4.63)

We can rewrite this as

S (η̄j1 , w̄j1η, η̄j2 , w̄j2η; η̄) =
(η̄ − η̄j1j2)

2

w̄2
j1j2η

+
(η̄j1 − η̄j2)

2

w̄2
j1η

+ w̄2
j2η

(4.64)

where

η̄j1j2 ≡
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1

w̄2
j1η

+ w̄2
j2η

and w̄j1j2η ≡
w̄j1ηw̄j2η(

w̄2
j1η

+ w̄2
j2η

)1/2
(4.65)

We can show this by multiplying out the squares in the definition of S and completing

the square:

S (η̄) =
(η̄ − η̄j1)

2

w̄2
j1η

+
(η̄ − η̄j2)

2

w̄2
j2η

=
η̄2 − 2η̄j1 η̄ + η̄2

j1

w̄2
j1η

+
η̄2 − 2η̄j2 η̄ + η̄2

j2

w̄2
j2η

=

(
1

w̄2
j1η

+
1

w̄2
j2η

)
η̄2 − 2

(
η̄j1
w̄2
j1η

+
η̄j2
w̄2
j2η

)
η̄ +

(
η̄2
j1

w̄2
j1η

+
η̄2
j2

w̄2
j2η

)
=

(
w̄2
j1η

+ w̄2
j2η

w̄2
j1η
w̄2
j2η

)
η̄2 − 2

(
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1

w̄2
j1η
w̄2
j2η

)
η̄ +

(
w̄2
j1η
η̄2
j2

+ w̄2
j2η
η̄2
j1

w̄2
j1η
w̄2
j2η

)
≡ aη̄2 − 2bη̄ + c = a

(
η̄ − b

a

)2

+ c− b2

a
(4.66)

where we defined a, b, and c as

a ≡
w̄2
j1η

+ w̄2
j2η

w̄2
j1η
w̄2
j2η

, b ≡
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1

w̄2
j1η
w̄2
j2η

c ≡
w̄2
j1η
η̄2
j2

+ w̄2
j2η
η̄2
j1

w̄2
j1η
w̄2
j2η

. (4.67)

It is important to note that

b

a
=
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1

w̄2
j1η

+ w̄2
j2η

= η̄j1j2 and a =
1

w̄2
j1j2η

. (4.68)

These will be immediately useful.

With these definitions it is easy to see how the square is completed. Now we can

rewrite S by replacing the a, b, and c with their definitions:

S(η) = a

(
η̄ − b

a

)2

+ c− b2

a
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=
(η̄ − η̄j1j2)

2

w̄2
j1j2η

+
w̄2
j1η
η̄2
j2

+ w̄2
j2η
η̄2
j1

w̄2
j1η
w̄2
j2η

−
(
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1

w̄2
j1η
w̄2
j2η

)2

×
(

w̄2
j1η
w̄2
j2η

w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+

(
w̄2
j1η
η̄2
j2

+ w̄2
j2η
η̄2
j1

)
w̄2
j1η
w̄2
j2η

−
(
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1
)2

w̄2
j1η
w̄2
j2η

(
w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+

(
w̄2
j1η
η̄2
j2

+ w̄2
j2η
η̄2
j1

) (
w̄2
j1η

+ w̄2
j2η

)
−
(
w̄2
j1η
η̄j2 + w̄2

j2η
η̄j1
)2

w̄2
j1η
w̄2
j2η

(
w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+
w̄4
j1η
η̄2
j2

+ w̄2
j1η
w̄2
j2η
η̄2
j2

+ w̄2
j1η
w̄2
j2η
η̄2
j1

+ w̄4
j2η
η̄2
j1
− w̄4

j1η
η̄2
j2
− 2w̄2

j1η
w̄2
j2η
η̄j1 η̄j2 − w̄4

j2η
η̄2
j1

w̄2
j1η
w̄2
j2η

(
w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+
w̄2
j1η
w̄2
j2η
η̄2
j2

+ w̄2
j1η
w̄2
j2η
η̄2
j1
− 2w̄2

j1η
w̄2
j2η
η̄j1 η̄j2

w̄2
j1η
w̄2
j2η

(
w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+
w̄2
j1η
w̄2
j2η

(
η̄2
j2

+ η̄2
j1
− 2η̄j1 η̄j2

)
w̄2
j1η
w̄2
j2η

(
w̄2
j1η

+ w̄2
j2η

)
=

(η̄ − η̄j1j2)
2

w̄2
j1j2η

+

(
η̄2
j1
− 2η̄j1 η̄j2 + η̄2

j2

)
w̄2
j1η

+ w̄2
j2η

S (η̄) =
(η̄ − η̄j1j2)

2

w̄2
j1j2η

+
(η̄j1 − η̄j2)

2

w̄2
j1η

+ w̄2
j2η

(4.69)

Thus Eq. (4.69) is identical to Eq. (4.64). It’s like magic!

Using this magic formula we can rewrite |Ψ|4 so that the integrals will be easy.

We have

|Ψ|4 ≈ 1

N2
c

[
Nc∑
j1=1

A4
j1

exp

{
−
∑

η=x,y,z

(2 (η̄ − η̄j1)
2

w̄2
j1η

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{
−
∑

η=x,y,z

((η̄ − η̄j1)
2

w̄2
j1η

+
(η̄ − η̄j2)

2

w̄2
j2η

)}]

=
1

N2
c

[
Nc∑
j1=1

A4
j1

exp

{
−
∑

η=x,y,z

( (η̄ − η̄j1)
2(

w̄j1η/
√

2
)2

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{
−
∑

η=x,y,z

((η̄ − η̄j1j2)
2

w̄2
j1j2η

+
(η̄j1 − η̄j2)

2

w̄2
j1η

+ w̄2
j2η

)}]
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(4.70)

Now we are finally ready to calculate L̄4!

Inserting this form (Eq. (4.70)) into L̄4 we have

L̄4 =

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

A4
j1

∫
d3r̄ exp

{
−
∑

η=x,y,z

( (η̄ − η̄j1)
2(

w̄j1η/
√

2
)2

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

∫
d3r̄ exp

{
−
∑

η=x,y,z

((η̄ − η̄j1j2)
2

w̄2
j1j2η

+
(η̄j1 − η̄j2)

2

w̄2
j1η

+ w̄2
j2η

)}]

=

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

A4
j1

∫
d3r̄ exp

{
−
∑

η=x,y,z

( (η̄ − η̄j1)
2(

w̄j1η/
√

2
)2

)}

+ 2
∑
j1,j2=1
j1 6=j2

A2
j1
A2
j2

exp

{
−
∑

η=x,y,z

((η̄j1 − η̄j2)
2

w̄2
j1η

+ w̄2
j2η

)}

×
∫

d3r̄ exp

{
−
∑

η=x,y,z

((η̄ − η̄j1j2)
2

w̄2
j1j2η

)}]

=

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

(
1

π3/2w̄j1xw̄j1yw̄j1z

)2 ∫
d3r̄ exp

{
−
∑

η=x,y,z

( (η̄ − η̄j1)
2(

w̄j1η/
√

2
)2

)}

+ 2
∑
j1,j2=1
j1 6=j2

(
1

π3/2w̄j1xw̄j1yw̄j1z

)(
1

π3/2w̄j2xw̄j2yw̄j2z

)
exp

{
−
∑

η=x,y,z

((η̄j1 − η̄j2)
2

w̄2
j1η

+ w̄2
j2η

)}

×
∫

d3r̄ exp

{
−
∑

η=x,y,z

((η̄ − η̄j1j2)
2

w̄2
j1j2η

)}]
(4.71)

In the last step we used the constraint equations again. All that is left now is to

perform the integrations!

Finally we take the current form of L̄4 and do the integrals (very easy now since

we already did the hard work!):

L̄4 =

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

(
1

π3/2w̄j1xw̄j1yw̄j1z

)2 ∫
d3r̄ exp

{
−
∑

η=x,y,z

( (η̄ − η̄j1)
2(

w̄j1η/
√

2
)2

)}
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+ 2
∑
j1,j2=1
j1 6=j2

(
1

π3/2w̄j1xw̄j1yw̄j1z

)(
1

π3/2w̄j2xw̄j2yw̄j2z

)
exp

{
−
∑

η=x,y,z

((η̄j1 − η̄j2)
2

w̄2
j1η

+ w̄2
j2η

)}

×
∫

d3r̄ exp

{
−
∑

η=x,y,z

((η̄ − η̄j1j2)
2

w̄2
j1j2η

)}]

=

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

(
1

π3/2w̄j1xw̄j1yw̄j1z

)2((
π1/2

21/2
w̄j1x

)(
π1/2

21/2
w̄j1y

)(
π1/2

21/2
w̄j1z

))

+ 2
∑
j1,j2=1
j1 6=j2

(
1

π3/2w̄j1xw̄j1yw̄j1z

)(
1

π3/2w̄j2xw̄j2yw̄j2z

)
exp

{
−
∑

η=x,y,z

((η̄j1 − η̄j2)
2

w̄2
j1η

+ w̄2
j2η

)}

×
(
π1/2w̄j1j2x

) (
π1/2w̄j1j2y

) (
π1/2w̄j1j2y

) ]

=

(
1
2
ḡN
)

N2
c

[
Nc∑
j1=1

(
1

(2π)3/2w̄j1xw̄j1yw̄j1z

)
+ 2

∑
j1,j2=1
j1 6=j2

(
w̄j1j2x

π1/2w̄j1xw̄j2x

)(
w̄j1j2y

π1/2w̄j1yw̄j2y

)(
w̄j1j2z

π1/2w̄j1zw̄j2z

)

× exp

{
−
∑

η=x,y,z

((η̄j1 − η̄j2)
2

w̄2
j1η

+ w̄2
j2η

)}]

=

(
1
2
ḡN
)

(2π)3/2N2
c

[
Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)

+ 2× 23/2
∑
j1,j2=1
j1 6=j2

exp

{
−(x̄j1−x̄j2)

2

w̄2
j1x

+w̄2
j2x

}
(
w̄2
j1x

+ w̄2
j2x

)1/2

exp

{
−(ȳj1−ȳj2)

2

w̄2
j1y

+w̄2
j2y

}
(
w̄2
j1y

+ w̄2
j2y

)1/2

exp

{
−(z̄j1−z̄j2)

2

w̄2
j1z

+w̄2
j2z

}
(
w̄2
j1z

+ w̄2
j2z

)1/2

]

(4.72)

Thus our final expression for L̄4 becomes

L̄4 =

(
1
2
ḡN
)

(2π)3/2N2
c

 Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)
+ 25/2

Nc∑
j1,j2=1
j1 6=j2

∏
η=x,y,z

exp

{
−(η̄j1−η̄j2)

2

w̄2
j1η

+w̄2
j2η

}
(
w̄2
j1η

+ w̄2
j2η

)1/2



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4.1.9 Derivation of L̄5

The term L̄5 accounts for the possibility that the system is in a rotating frame. We

will assume here that the system only rotates around the z̄ axis. The L̄5 term of the

Lagrangian thus has the form

L̄5 = iΩ̄z

∫
d3r̄Ψ

(
ȳΨ∗x − x̄Ψ∗y

)
≡ iΩ̄z

(
L̄5y − L̄5x

)
(4.73)

It will be easy to evaluate this term if we note that L̄5y defined by

L̄5y =

∫
dr̄3 ΨȳΨ∗x (4.74)

can be turned L̄5x by interchanging x̄ and ȳ. Thus we need only evaluate L̄5y.

The integral can be done straightforwardly by first evaluating the first space

derivative of Ψ̄. This is most easily done by rewriting Ψ̄ as follows:

Ψ̄(r̄, t̄) =
1√
Nc

Nc∑
j=1

Aj exp

{ ∑
η′=x′,y′,z′

(
fjη′ + ik̄jη′ η̄

′)} (4.75)

where

fjη′ = −(η̄ − η̄j)2

2w̄2
jη

+ i
(
ᾱjηη̄ + β̄jηη̄

2
)
≡ f

(r)
jη + if

(i)
jη . (4.76)

With this form, we can express the derivative of Ψ as

Ψ̄η =
1√
Nc

Nc∑
j=1

Aj exp

{ ∑
η′=x′,y′,z′

(
fjη′ + ik̄jη′ η̄

′)}(−(η̄ − η̄j)
w̄2
jη

+ i
(
ᾱjη + 2β̄jηη̄ + k̄jη

))
(4.77)

Inserting this into Eq. 4.1.9 for the derivative of Ψ̄ and neglecting rapidly oscillating

terms, we finally obtain

iΩ̄zL̄5y =
1

Nc

Nc∑
j=1

Ω̄zȳj
(
ᾱjx + k̄jx + 2β̄jxx̄j

)
(4.78)

and so the final expression for L̄5 is

L̄5 =
1

Nc

Nc∑
j=1

Ω̄z

[
ȳj
(
ᾱjx + k̄jx + 2β̄jxx̄j

)
− x̄j

(
ᾱjy + k̄jy + 2β̄jyȳj

)]
(4.79)
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4.1.10 The final Lagrangian

Now that we have derived all five pieces of L̄ it is time to put it all together. We have

L̄ =
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
˙̄αjηη̄j + ˙̄βjη

(
η̄2
j +

1

2
w̄2
jη

))

+
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
1

2w̄2
jη

+ 2β̄2
jηw̄

2
jη +

(
ᾱjη + k̄jη + 2β̄jηη̄j

)2
)

+
1

Nc

Nc∑
j=1

∑
η=x,y,z

{
1

4

(
ω̄2
T,η − ω̄2

TM

)(
η̄2
j +

1

2
w̄2
jη

)
− 1

2
ω̄2
TM |r̄TM |uTM,ηη̄j

}

+

(
1
2
ḡN
)

(2π)3/2N2
c

 Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)
+ 25/2

Nc∑
j1,j2=1
j1 6=j2

∏
η=x,y,z

exp

{
−(η̄j1−η̄j2)

2

w̄2
j1η

+w̄2
j2η

}
(
w̄2
j1η

+ w̄2
j2η

)1/2




+
1

Nc

Nc∑
j=1

Ω̄z

[
ȳj
(
ᾱjx + k̄jx + 2β̄jxx̄j

)
− x̄j

(
ᾱjy + k̄jy + 2β̄jyȳj

)]
(4.80)

We can combine the first three sums into a single sum as follows:

L̄ =
1

Nc

Nc∑
j=1

∑
η=x,y,z

(
˙̄αjηη̄j + ˙̄βjη

(
η̄2
j +

1

2
w̄2
jη

)
+

1

2w̄2
jη

+ 2β̄2
jηw̄

2
jη

+
(
ᾱjη + k̄jη + 2β̄jηη̄j

)2

+
1

4

(
ω̄2
T,η − ω̄2

TM

)(
η̄2
j +

1

2
w̄2
jη

)
− 1

2
ω̄2
TM |r̄TM |uTM,ηη̄j

)

+

(
1
2
ḡN
)

(2π)3/2N2
c

 Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)
+ 25/2

Nc∑
j1,j2=1
j1 6=j2

∏
η=x,y,z

exp

{
−(η̄j1−η̄j2)

2

w̄2
j1η

+w̄2
j2η

}
(
w̄2
j1η

+ w̄2
j2η

)1/2




+
1

Nc

Nc∑
j=1

Ω̄z

[
ȳj
(
ᾱjx + k̄jx + 2β̄jxx̄j

)
− x̄j

(
ᾱjy + k̄jy + 2β̄jyȳj

)]
(4.81)

For purposes of deriving the equations of motion for the parameters we will write

our Lagrangian in the following form:

L̄ =
1

Nc

Nc∑
j′=1

∑
η′=x,y,z

(
˙̄αj′η′ η̄′j′ +

˙̄βj′η′

(
η̄′

2
j′ +

1

2
w̄2
j′η′

)
+

1

2w̄2
j′η′

+ 2β̄2
j′η′w̄

2
j′η′

+
(
ᾱj′η′ + k̄j′η′ + 2β̄j′η′ η̄′j′

)2

+
1

4

(
ω̄2
T,η′ − ω̄2

TM

)(
η̄′

2
j +

1

2
w̄2
jη′

)
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− 1

2
ω̄2
TM |r̄TM |uTM,η′ η̄′j

)
+ L̄4(η̄, w̄)

+
1

Nc

Nc∑
j=1

Ω̄z

[
ȳj
(
ᾱjx + k̄jx + 2β̄jxx̄j

)
− x̄j

(
ᾱjy + k̄jy + 2β̄jyȳj

)]
(4.82)

where

L̄4(η̄, w̄) =

(
1
2
ḡN
)

(2π)3/2N2
c

 Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)
+ 25/2

Nc∑
j1,j2=1
j1 6=j2

∏
η′=x,y,z

exp

{
−(η̄′j1−η̄

′
j2)

2

w̄2
j1η
′+w̄

2
j2η
′

}
(
w̄2
j1η′

+ w̄2
j2η′

)1/2


 .

(4.83)

It will turn out that the final equations of motion can be cast in terms of derivatives

of L̄4. We now turn to this derivation.

4.2 Derivation of the 3D, N–gaussian–cloud equations of motion

The final set of equations of motion for the parameters of the Nc–cloud, Gaussian

trial wave function divides naturallly into two parts: (1) an equation of motion for

the coordinates of the center of each cloud, and (2) an equation of motion for the

x,y, and z widths of each cloud. As we shall see, while each variational parameter,

qj, obeys an equation of motion set by the ordinary Euler–Lagrange equation:

d

dt̄

(
∂L̄

∂q̇j

)
− ∂L̄

∂qj
= 0, (4.84)

it will be possible to derive second–order differential equations for both the centers

and widths reminiscent of Newton’s Laws of Motion. In the full set of equations of

motion, only the centers and widths and their time derivatives need to be solved for.

All other parameters can be written in terms of these.

We begin with the derivation of the equations for the center coordinates of the

Gaussian clouds.
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4.2.1 Equations of motion for the cloud centers

To obtain the equations of motion (EOMs) for the cloud–center coordinates we need

the EOMs for the ᾱjη and the η̄j. We begin with the EOMs for the ᾱjη. The Euler–

Lagrange equation for these are

d

dt̄

(
∂L̄

∂ ˙̄αjη

)
− ∂L̄

∂ᾱjη
= 0, j = 1, . . . , Nc, η = x, y, z. (4.85)

We can compute the derivatives of L̄ using Eq. (4.82). The derivative of L̄ with

respect to ˙̄αjη is

∂L̄

∂ ˙̄αjη
=

1

Nc

ηj, j = 1, . . . , Nc η = x, y, z. (4.86)

The derivatives of L̄ with respect to ᾱjη are

∂L̄

∂ᾱjx
=

1

Nc

[
2ᾱjx + 2k̄jx + 4β̄jxx̄j + Ω̄zȳj

]
∂L̄

∂ᾱjy
=

1

Nc

[
2ᾱjy + 2k̄jy + 4β̄jyȳj − Ω̄zx̄j

]
∂L̄

∂ᾱjz
=

1

Nc

[
2ᾱjz + 2k̄jz + 4β̄jz z̄j

]
(4.87)

Thus the EOMs for the ᾱjη are

ẋj = 2ᾱjx + 2k̄jx + 4β̄jxx̄j + Ω̄zȳj

ẏj = 2ᾱjy + 2k̄jy + 4β̄jyȳj − Ω̄zx̄j

żj = 2ᾱjz + 2k̄jz + 4β̄jz z̄j (4.88)

To complete the derivation we need the EOMs associated with the η̄j.

The η̄j Euler–Lagrange EOMs read

d

dt̄

(
∂L̄

∂ ˙̄ηj

)
− ∂L̄

∂η̄j
= 0, j = 1, . . . , Nc, η = x, y, z. (4.89)

We can easily calculate the derivatives appearing above

∂L̄

∂ ˙̄ηj
= 0, j = 1, . . . , Nc η = x, y, z (4.90)
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and

∂L̄

∂x̄j
=

1

Nc

[
α̇jx + 2 ˙̄βjxx̄j + 2

(
ᾱjx + k̄jx + 2β̄jxx̄j

) (
2β̄jx

)
+

1

2

(
ω̄2
T,x − ω̄2

TM

)
x̄j −

1

2
ω̄2
TM |rTM |uTM,x +Nc

∂L̄4

∂x̄j
+ 2Ω̄z(β̄jx − β̄jy)ȳj

]
∂L̄

∂ȳj
=

1

Nc

[
α̇jy + 2 ˙̄βjyȳj + 2

(
ᾱjy + k̄jy + 2β̄jyȳj

) (
2β̄jy

)
+

1

2

(
ω̄2
T,y − ω̄2

TM

)
ȳj −

1

2
ω̄2
TM |rTM |uTM,y +Nc

∂L̄4

∂ȳj
+ 2Ω̄z(β̄jx − β̄jy)x̄j

]
∂L̄

∂z̄j
=

1

Nc

[
α̇jz + 2 ˙̄βjz z̄j + 2

(
ᾱjz + k̄jz + 2β̄jz z̄j

) (
2β̄jz

)
+

1

2

(
ω̄2
T,z − ω̄2

TM

)
z̄j −

1

2
ω̄2
TM |rTM |uTM,z +Nc

∂L̄4

∂z̄j

]
(4.91)

Thus the EOMs associated with the η̄j are

0 = α̇jx + 2 ˙̄βjxx̄j + 2
(
ᾱjx + k̄jx + 2β̄jxx̄j

) (
2β̄jx

)
+

1

2

(
ω̄2
T,x − ω̄2

TM

)
x̄j −

1

2
ω̄2
TM |rTM |uTM,x +Nc

∂L̄4

∂x̄j
+ 2Ω̄z(β̄jx − β̄jy)ȳj

0 = α̇jy + 2 ˙̄βjyȳj + 2
(
ᾱjy + k̄jy + 2β̄jyȳj

) (
2β̄jy

)
+

1

2

(
ω̄2
T,y − ω̄2

TM

)
ȳj −

1

2
ω̄2
TM |rTM |uTM,y +Nc

∂L̄4

∂ȳj
+ 2Ω̄z(β̄jx − β̄jy)x̄j

0 = α̇jz + 2 ˙̄βjz z̄j + 2
(
ᾱjz + k̄jz + 2β̄jz z̄j

) (
2β̄jz

)
+

1

2

(
ω̄2
T,z − ω̄2

TM

)
z̄j −

1

2
ω̄2
TM |rTM |uTM,z +Nc

∂L̄4

∂z̄j

(4.92)

We can simplify these equations by using Eqs. 4.88:
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2α̇jx + 4 ˙̄βjxx̄j + 4β̄jx ˙̄xj = −
(
ω̄2
T,x − ω̄2

TM

)
x̄j + ω̄2

TM |rTM |uTM,x − 2Nc
∂L̄4

∂x̄j
+ 4Ω̄zβ̄jyȳj

2α̇jy + 4 ˙̄βjyȳj + 4β̄jy ˙̄yj = −
(
ω̄2
T,y − ω̄2

TM

)
ȳj + ω̄2

TM |rTM |uTM,y − 2Nc
∂L̄4

∂ȳj
− 4Ω̄zβ̄jxx̄j

2α̇jz + 4 ˙̄βjz z̄j + 4β̄jz ˙̄zj = −
(
ω̄2
T,z − ω̄2

TM

)
z̄j + ω̄2

TM |rTM |uTM,z − 2Nc
∂L̄4

∂z̄j

(4.93)

To find the EOMs for the η̄j alone, we differentiate both sides of Eqs. (4.88):

ẍj = 2 ˙̄αjx + 4 ˙̄βjxx̄j + 4β̄jx ˙̄xj + Ω̄z ˙̄yj

ÿj = 2 ˙̄αjy + 4 ˙̄βjyȳj + 4β̄jy ˙̄yj − Ω̄z ˙̄xj

z̈j = 2 ˙̄αjz + 4 ˙̄βjz z̄j + 4β̄jz ˙̄zj (4.94)

Combining the above equations with Eqs. 4.93 yields the equations of motion for the

center coordinates and their derivatives.

¨̄xj − Ω̄z ˙̄yj = −
(
ω̄2
T,x − ω̄2

TM

)
x̄j + ω̄2

TM |rTM |uTM,x − 2Nc
∂L̄4

∂x̄j
+ 4Ω̄zβ̄jyȳj

¨̄yj + Ω̄z ˙̄xj = −
(
ω̄2
T,y − ω̄2

TM

)
ȳj + ω̄2

TM |rTM |uTM,y − 2Nc
∂L̄4

∂ȳj
− 4Ω̄zβ̄jxx̄j

¨̄zj = −
(
ω̄2
T,z − ω̄2

TM

)
z̄j + ω̄2

TM |rTM |uTM,z − 2Nc
∂L̄4

∂z̄j

(4.95)

These equations may be written in a form reminiscent of Newton’s 2nd Law of motion.

¨̄xj +
(
ω̄2
T,x − ω̄2

TM

)
x̄j = 4Ω̄zβ̄jyȳj + Ω̄z ˙̄yj + ω̄2

TM |rTM |uTM,x − 2Nc
∂L̄4

∂x̄j

¨̄yj +
(
ω̄2
T,y − ω̄2

TM

)
ȳj = −4Ω̄zβ̄jxx̄j − Ω̄z ˙̄xj + ω̄2

TM |rTM |uTM,y − 2Nc
∂L̄4

∂ȳj

¨̄zj +
(
ω̄2
T,z − ω̄2

TM

)
z̄j = ω̄2

TM |rTM |uTM,z − 2Nc
∂L̄4

∂z̄j

(4.96)

These are the final equations of motion for positions and velocities of the centers of

the Gaussian clouds. The derivative of L̄4 will be given in Appendix B. Note that
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these equations do not form a closed set since the L̄4 derivative also contains the

widths.

4.2.2 Equations of motion for the cloud widths

Next we turn to the EOMs for the cloud widths. We can also derive a second–order

EOM for the widths similar to that for the centers. To derive this equation we first

consider the EOMs associated with the β̄jη. The Euler–Lagrange equation for these

quanties is

d

dt̄

(
∂L̄

∂ ˙̄βjη

)
− ∂L̄

∂β̄jη
= 0, j = 1, . . . , Nc, η = x, y, z. (4.97)

The derivatives of L̄ appearing above are as follows. First we have the derivative with

respect to the ˙̄βjη:

∂L̄

∂ ˙̄βjη
=

1

Nc

[
η̄2
jη +

1

2
w̄2
jη

]
, (4.98)

and the derivative with respect to the β̄jη is

∂L̄

∂β̄jη
=

1

Nc

[
4β̄jηw̄

2
jη + 2

(
ᾱjη + k̄jη + 2β̄jηη̄j

)
(2η̄j)

]
. (4.99)

With these derivatives, the EOM associated with the β̄jη is

2η̄j ˙̄ηj + w̄jη ˙̄wjη = 4β̄jηw̄
2
jη +(4η̄j)

(
ᾱjη + k̄jη + 2β̄jηη̄j

)
+2 (δη,x − δη,y) Ω̄zx̄j ȳj (4.100)

where these equations hold for j = 1, . . . , Nc and η = x, y, z and δx,η is the Kronecker

delta.

We can simplify Eq. (4.100) by substituting the expression for ˙̄ηj from Eq. (4.88):

2η̄j
(
2ᾱjη + 2k̄jη + 4β̄jηη̄j

)
+ w̄jη ˙̄wjη = 4β̄jηw̄

2
jη + (4η̄j)

(
ᾱjη + k̄jη + 2β̄jηη̄j

)
(4.101)

Note that the first term on the left–hand–side (LHS) cancels the second term on the

right–hand–side (RHS). This leaves us with a particularly simple relationship between

β̄jη and w̄jη and ˙̄wjη which can be expressed this way

˙̄wjη = 4β̄jηw̄jη j = 1, . . . , Nc η = x, y, z (4.102)
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This equation will be key in deriving the equation for the widths. Note also that,

if the widths and their derivatives are solved for, then the values of the β̄jη can be

immediately calculated.

Next we need the EOM associated with the w̄jη. The Euler–Lagrange equation

is

d

dt̄

(
∂L̄

∂ ˙̄wjη

)
− ∂L̄

∂w̄jη
= 0, j = 1, . . . , Nc, η = x, y, z. (4.103)

The derivatives appearing here can be calculated as follows. The derivative with

respect to the ˙̄wjη is

∂L̄

∂ ˙̄wjη
= 0. (4.104)

The derivative with respect to the w̄jη is

∂L̄

∂w̄jη
=

1

Nc

[
˙̄βjηw̄jη −

1

w̄3
jη

+ 4β̄2
jηw̄jη +

1

4

(
ω̄2
T,η − ω̄2

TM+
)
w̄jη +Nc

∂L̄4

∂w̄jη

]
. (4.105)

Inserting these derivatives into the Euler–Lagrange equation can be written in this

form

˙̄βjηw̄jη + 4β̄2
jηw̄jη +

1

4

(
ω̄2
T,η − ω̄2

TM

)
w̄jη =

1

w̄3
jη

−Nc
∂L̄4

∂w̄jη
(4.106)

The first two terms of this equation can be related to the second derivative of the

w̄jη.

If we differentiate both sides of Eq. (4.102) we obtain

¨̄wjη = 4 ˙̄βjηw̄jη + 4β̄jη ˙̄wjη = 4 ˙̄βjηw̄jη + 16β̄2
jηw̄jη

1

4
¨̄wjη = ˙̄βjηw̄jη + 4β̄2

jηw̄jη (4.107)

where in the second equality on the first line we used the Eq. (4.102) to replace ˙̄wjη.

Note now that the RHS of the above equation is identical to the first two terms in

Eq. (4.106) and so these terms can be replaced with (1/4) ¨̄wjη. This yields the final

evolution equation for the widths:

¨̄wjη +
(
ω̄2
T,η − ω̄2

TM

)
w̄jη =

4

w̄3
jη

− 4Nc
∂L̄4

∂w̄jη
(4.108)
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where j = 1, . . . , Nc and η = x, y, z and the derivative of L̄4 will be given in Appendix

B. The equations of motion for the cloud widths are unaffected by the rotating–frame

terms. This is especially satisfying physically.

4.2.3 Full set of equations of motion

Now we are finally able to set out the full equations of motion for all of the variational

parameters. They consist of a pair of second–order ordinary differential equation for

the cloud centers and widths as well as expressions for the β̄jη and the ᾱjη in terms

of the centers, width and their first derivatives:

¨̄xj +
(
ω̄2
T,x − ω̄2

TM

)
x̄j = 4Ω̄zβ̄jyȳj + Ω̄z ˙̄yj + ω̄2

TM |rTM |uTM,x − 2Nc
∂L̄4

∂x̄j

¨̄yj +
(
ω̄2
T,y − ω̄2

TM

)
ȳj = −4Ω̄zβ̄jxx̄j − Ω̄z ˙̄xj + ω̄2

TM |rTM |uTM,y − 2Nc
∂L̄4

∂ȳj

¨̄zj +
(
ω̄2
T,z − ω̄2

TM

)
z̄j = ω̄2

TM |rTM |uTM,z − 2Nc
∂L̄4

∂z̄j

¨̄wjη +
(
ω̄2
T,η − ω̄2

TM

)
w̄jη =

4

w̄3
jη

− 4Nc
∂L̄4

∂w̄jη

˙̄wjη = 4β̄jηw̄jη

ᾱjη =
1

2
˙̄ηj − k̄jη − 2β̄jηη̄j

j = 1, . . . , Nc

η = x, y, z.

Recall that the k̄jη are assumed known and correspond to the components of the

initial velocities of the Nc clouds in the system. These equation can’t be solved with

specifying the initial conditions. We assume that these equations describe approxi-

mately the evolution of the condensate for the case where a condensate is formed and

then split into Nc equal–size clouds with known wave vectors. In this case the initial

positions of the cloud center are all the same and correspond to the location of the

original condensate. The initial velocities of the cloud centers are determined from
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the given wave vectors which are already explicitly included in the trial wave function

so that (in scaled units) we must have

˙̄ηj(0) = 2k̄jη. (4.109)

Now, since, from the above EOM for ᾱjη we see that

˙̄ηj(0) = 2ᾱjη(0) + 2k̄jη + 4β̄jη(0)η̄jη(0). (4.110)

Now we have

β̄jη(0) =
˙̄wjη(0)

w̄jη(0)
= 0 (4.111)

since we assume that, for a initially stationary condensate we will have ˙̄w(0) = 0. Thus

we must also have ᾱjη(0) = 0. The guiding principle is that the initial conditions for

the variational parameter, at the time the condensate is initially formed, are such that

the variational equations will be stationary (i.e. none of the parameter will varying

in time unless conditions changes). Thus, if we assume that the initial widths are

denoted by w̄jη(0) = w̄
(0)
jη , then the initial conditions for the variational parameters

at the time a condensate is newly formed are the following:

η̄j(0) = η̄
(0)
j

˙̄ηj(0) = 2k̄jη w̄jη(0) = w̄
(0)
jη

˙̄wjη(0) = 0 (4.112)

These initial conditions determine all of the others.

One final note regarding the initial widths. Since the variational widths should

remain stationary for an initially formed condensate, the initial widths, w̄
(0)
jη must

satisfy the width EOM with the time derivative term set to zero. That is

(
ω̄2
T,η − ω̄2

TM

)
w̄

(0)
jη =

4(
w̄

(0)
jη

)3 − 4Nc
∂L̄4

∂w̄jη
(w̄

(0)
jη ) (4.113)

for all j and η. It is usual to drop the term containing ω̄TM since it is small and

usually unknown.



CHAPTER 5

VISUALIZATION

5.1 Virtual Reality and Stereography

Visualizations of the simulation results summarize the properties and relationships

we wish to study in the raw data. In general, visualizations are projections of multi-

dimensional data onto a two dimensional plane. A specific summarization technique

must be defined to compose a useful visual result. In our case, the result we wish to

visualize is the optical density, which is described in detail below.

However, we are also able to choose the medium in which the visualization is

composed. For this work, we choose to display the optical density as a stereographic

projection viewed in a virtual reality headset. Stereographic projections of a common

subject are pairs of images rendered from slightly different vantage points. The vari-

ation in vantage points simulates the human perspective such that some details in

the subject occlude other details. Occlusion provides a sense of depth, enabling the

interpretation of how details of the subject are arranged in three dimension. In the

context of rendering optical density, it is hoped that adding depth enables features

such as fringes, holes, discontinuities, and boundaries to be more readily visible.

Virtual reality headsets, like the Oculus Rift [21] (see figure 5.1), are now gener-

ally available in consumer markets. The Oculus Rift headset includes a high defini-

tion screen, similar to a commodity cell phone or tablet screen. High index spherical

lenses aid in focusing the viewer’s vision and alleviating eye strain. Infrared LED

lights surrounding the headset enables tracking of the placement and orientation of

the headset relative to a camera placed in front of the user. The Oculus is not a

stand-alone system and requires a computer to render the visuals it will display.

The Oculus enables an individual to experience stereographic visualizations for

relatively low cost. The Oculus is also more portable than a 3D capable television
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Figure 5.1: Oculus Rift: a virtual reality headset.

or projection system. The headset tracking data can be used to pan and rotate

the viewpoint to locate interesting features of the visualized data. The work below

describes a near real time system to display stereographic movies that can be viewed

on a virtual reality headset. These efforts can be extended into a true real time

visualization capability that can take advantage of head tracking data. We describe

projections of optical density, but visualizations of phase and velocity fields are also

feasible.

5.2 Composing Scenes for Virtual Reality

In this chapter, we discuss how to create visualizations of the time-evolving Bose-

Einstein Condensate wave functions based on the LVM trial wave function and Equa-

tions of Motion from section 4.2.3. We consider how to calculate the optical density

in subsections 5.2.1 and 5.2.2, which is one property of interest. To do so, we must

consider how to determine which points to within the bounding volume are to be

used for each calculation. This is accomplished using a method known as ray casting,

described in subsections 5.2.4 and 5.2.5. Section 5.2.6 describe how to pick the rays
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being used to query the BEC volume. Next, we describe pairs of projection planes

used to create stereographic projections in subsection 5.2.6.

5.2.1 Calculating Optical Density

In chapter 4, we created a model of the time-evolution of Bose-Einstein Condensate

clouds in a harmonic potential. The wave function describes the state of the system.

One value of interest is the optical density, which is the portion of the probability

density,
∞∫
−∞

d3r |Ψ(r, t)|2, integrated along a vector passing through the condensate. In

a physical experiment, we can photograph a BEC; doing so destroys the condensate

so each photograph of a time-evolved system requires a separate condensate to be

formed and evolved. The light passing through the condensate forms a shadow,

which is captured with a camera. The value at each pixel of the camera sensor is the

optical density; see [20] for examples.

The Equations of Motion (EoM) are used to evolve the condensate clouds in

time. At each time step, the EoM are evaluated to generate the parameters for each

cloud position, width, and phase terms. From these terms, we can calculate the value

of the wave function all any position of interest within the bounding volume defined

for the condensate.

Contrast this with our discussion of the split-step Crank-Nicolson (CN) method

in section 2.4. In the CN method, we were required to store the evaluation of the

wave function on a 3-D grid and over time. There are generally tens or hundreds

of millions of grid points at each time step. We were also required to calculate very

fine-grained time steps just to store and process many fewer. However, the results

of the EoM mean we only store about a dozen values–per BEC cloud–at each time

step. Additionally, since the wave function can be evaluated in near real-time, it

does not have to be evaluated and stored. Additionally, since we can calculate the
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time-evolution to any desired time-step without intermediary calculations, we do not

have to sample fine-grained time steps as a matter of necessity.

5.2.2 Equation for Optical Density

n̂0

r0

rs = r0 + sn̂0

sn̂0

z

y

x

BEC Cloud

Figure 5.2: Defining a single ray cast through the cloud calculating each position rs

along the ray.

For the moment, we will assume that we may define a vector r which intersects

some portion of the condensate volume. We will define how to calculate useful r’s in

the subsections below.

In Figure 5.2, we show a condensate anchored in a Cartesian coordinate system
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with unit vectors ı̂, ̂, and k̂ in the x, y, and z axes. The vector r0 = x0̂ı + y0̂ + z0k̂,

rooted at the origin, defines a point in space from which we will observe the optical

density. From this point, the unit vector n̂0 defines rays that intersect the volume

containing the clouds. We are interested in equal spaced slices s along n̂0. Therefore,

any point along n̂0 can be defined as such.

r(s) = r0 + n̂0s (5.1)

= (x0 + n0xs)̂ı + (y0 + n0ys)̂ + (z0 + n0zs)k̂ (5.2)

= x(s) + y(s) + z(s) (5.3)

It is the vector r(s), over all s within the bounding volume, that defines the limits

of the integration for our optical density. The optical density, calculated along this

vector, is defined as

ρOD =

∞∫
−∞

ds |Ψ(r(s), t)|2 (5.4)

5.2.3 Scaled Units

As in Section 4.1.2, we scale the units to the small scale of a Bose-Einstein Condensate.

We must use the same value for the length scaling factor L0 to correctly interpret the

results of our LVM calculations.

For reference, a common scaling factor is L0 = 10−5m.

s ≡ L0 s̄ (5.5)

r0 ≡ L0 r̄0 (5.6)

r(s) ≡ L0 r̄(s) ≡ L0

(
x̄(s̄) + ȳ(s̄) + z̄(s̄)

)
(5.7)
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t ≡ T0 t̄ (5.8)

Ψ(r, t) ≡ L
−3/2
0 Ψ̄(r̄, t̄) (5.9)

ρOD(r(s), t) ≡ L−2
0 ρ̄O(r̄, t̄) (5.10)

≡
∞∫

−∞

ds̄ |Ψ̄(r̄0(s̄), t̄)|2 (5.11)

5.2.4 Integrating Optical Density

Referring to Figure 5.2, we must calculate the optical density by projecting a vector

through our condensate bounding volume and integrating the wave function. Our

wave function is the same trial wave function utilized for the LVM method (in scaled

units).

Ψ(r̄(s̄), t̄) =
1√
Nc

Nc∑
j=1

efj(r̄(s̄),t̄) + ik̄j ·r̄(s̄) (5.12)

where

fj(r̄(s̄), t̄) =
∑

η=x,y,z

(
−(η̄ − η̄j)2

2w̄2
jη

+ iᾱjηη̄ + iβ̄jηη̄
2

)
(5.13)

Recall, there may be j condensate clouds, η̄j is the position of a cloud center,

w̄jη is the width of a cloud, ᾱjη is the linear phase coefficient and β̄jη is the quadratic

phase coefficient, where η = x, y, z. All terms are in scaled units and are the results

of the LVM evaluation method. Each term is relevant to the current time step.

We substitute Eq. 5.12 into Eq. 5.11.

ρ̄OD =

∫ ∞
−∞

ds̄

(
1√
Nc

Nc∑
j1=1

efj1 (r̄(s̄),t̄) + ik̄j1 ·r̄(s̄)

)?(
1√
Nc

Nc∑
j2=1

efj2 (r̄(s̄),t̄) + ik̄j2 ·r̄(s̄)

)
(5.14)

=
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp
[
f ?j1(r̄(s̄), t̄) + fj2(r̄(s̄), t̄) + i (k̄j2 − k̄j1) · r̄(s̄)

]
(5.15)

Expanding r̄(s̄) with Eq 5.2 and expanding the exponential term with Eq. 5.13,
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=
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp

{ ∑
η=x,y,z

[
−

(η0 + n0η s̄− ηj2)2

2w2
j2η

+ i αj2η(η0 + n0η s̄) + i βj2η(η0 + n0η s̄)
2

−
(η0 + n0η s̄− ηj1)2

2w2
j1η

− i αj1η(η0 + n0η s̄) − i βj1η(η0 + n0η s̄)
2

+ (kj2η − kj1η)(η0 + n0η s̄)

]}
(5.16)

Grouping terms by multiples of s̄ and is̄

=
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp

{ ∑
η=x,y,z

[(
− 1

2w2
j2η

− 1

2w2
j1η

+ i (βj2η − βj1η
)
n2

0ηs̄
2

+

(
− (η0 − ηj2)

w2
j2η

− (η0 − ηj1)
w2
j1η

+ i (αj2η + 2βj2ηη0 + kj2η − αj1η − 2βj1ηη0 − kj1η)
)
n0ηs̄

+

(
− (η0 − ηj2)2

2w2
j2η

− (η0 − ηj1)2

2w2
j1η

+ i (αj2ηη0 + βj2ηη
2
0 + kj2ηη0 − αj1ηη0 − βj1ηη2

0 − kj1ηη0)

)]}
(5.17)

To analytically integrate Eq. 5.17, we will define the following.

aj1j2 =
∑

η=x,y,z

[
1

2w2
j1η

+
1

2w2
j2η

+ i (βj1η − βj2η)
]
n2

0η (5.18)

bj1j2 =
∑

η=x,y,z

[
(η0 − ηj1)
w2
j1η

+
(η0 − ηj2)
w2
j2η

+ i

(
(αj1η − αj2η) + 2(βj1η − βj2η)η0 + (kj1η − kj2η)

)]
n0η (5.19)

cj1j2 =
∑

η=x,y,z

[
(η0 − ηj1)2

2w2
j1η

+
(η0 − ηj2)2

2w2
j2η

+ i

(
(αj1η − αj2η)η0 + (kj1η − kj2η)η0 + (βj1η − βj2η)η2

0

)]
(5.20)

aj1j2 = a?j2j1 bj1j2 = b?j2j1 cj1j2 = c?j2j1 (5.21)
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ρ̄OD =
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp

[
−
(
aj1j2 s̄

2 + bj1j2 s̄+ cj1j2
)]

(5.22)

We can now complete the square.

aj1j2 s̄
2 + bj1j2 s̄+ cj1j2 = aj1j2

(
s̄+

bj1j2
2aj1j2

)2 −
(b2

j1j2
− 4aj1j2cj1j2
4aj1j2

)
(5.23)

Substituting Eq. 5.23 into Eq. 5.22 yields an integral we can solve with reference

to Eq. A.8.

ρ̄OD =
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp

{
− (aj1j2 s̄

2 + bj1j2 s̄
2 + cj1j2)

}
(5.24)

=
1

Nc

Nc∑
j1,j2=1

∫ ∞
−∞

ds̄ exp

{
− aj1j2

(
s̄+

bj1j2
2aj1j2

)2}
exp

{
b2
j1j2
− 4aj1j2cj1j2
4aj1j2

}
(5.25)

And we can solve this integral analytically.

ρ̄OD =
1

Nc

Nc∑
j1,j2=1

π
1
2 a
− 1

2
j1j2

exp

{
b2
j1j2

4 aj1j2
− cj1j2

}
(5.26)

Thus, the optical density along a ray projected from r̄0 along the n̂0 direction

is computed by Eq. 5.26. All of the variables are provided by solutions to the LVM

EoM or from the properties of the cast ray.

5.2.5 Intersecting the Volume

The optical density, Eq. 5.26, depends upon the values of the vectors used to deter-

mine the rays cast through the condensate volume. These vectors include the vector

from the origin to the center of the viewer’s eye, r̄(s̄), the unit vector from the eye to

the gaze point, n̂0, and the center of each cloud, x̄ĵı + ȳj ̂ + z̄jk̂, j = 1, 2, . . . Nc. As
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described by Eqs. 5.40 and 5.41 We are able to define rays that are rooted in a plane

surrounding the eye position or some distance Dpp along û0 between the eye and the

gaze point.

The condensate clouds reside within a volume of space which is undefined by these

equations. The intersection of the volume by projections along the gaze vector n̂0 is

assumed based on the construction of eye point and gaze point. In other words, there

is no term used to define an intersection with the bounding volume. Additionally,

there is no term that in which such intersections influence the calculation of the optical

density. In many graphical rendering systems it is useful to define a bounding volume,

which could limit the total distance along a ray that is integrated. These limits would

be input to the integral for the optical density as minimum and maximum values of

the s̄ variable. However, such limits are not required to evaluate Eq. 5.26.

Additionally, the condensate clouds, as constructed with the LVM wave function

and Equations of Motion, are not defined within an explicit bounding volume. For

certain, the integration of the wave function should be invalid at some distance from

the condensate clouds, but we assume that this distance is much farther than the

volume in which the clouds evolve over the total time of the simulation. Therefore,

the positions of the eye and gaze point are assumed to be localized the volume for

which the LVM wave function and Equations of Motion are valid. No other viewpoint

is of value.

Under these assumptions, no bounding volume is required to be explicitly defined

to integrate the optical density, which is a summation over sample points. Other

calculations–such as the velocity field–may necessitate a bounding volume. Such

calculations uniquely process each sample point within the condensate clouds; in other

words, something more complicated than a summation over the sample points. In such

cases, a bounding volume is appropriate to limit the total number of computations.



67

Lr
Rr

Gr

right−eye
projection plane

left−eye
projection plane

Dpp

x

z

condensate

ray cast

x

y

Figure 5.3: Projecting rays into a sample to build a stereographic image.

Alternatively, a pair of view frustum planes [32] may be utilized as in many other

three dimensional rendering systems.

5.2.6 Stereographic Projections

We have described integration of the optical density along a vector from the eye

position to a gaze point which passes through the condensate clouds. To compose an

image, we require at least one vector per pixel. Further, a stereographic rendering

requires two images.

Figure 5.3 extends the notions developed in Section 5.2.2 to capture a pair of

images. The concepts are the same, but we now add a pair of gaze vectors: rL for the

left-eye viewpoint and rR for the right-eye viewpoint. The vector rEE is the eye-to-eye

vector from the left-eye to the right-eye. This vector controls the placement of the
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eyes relative to each other and the amount of stereographic separation experienced

by a viewer.

Additionally, we have to alternate our render between three coordinate systems.

First, we have the coordinates of the wave function, centered at the origin of the axes

in Figure 5.3. In the equations below, vectors represented in these coordinates have

a (wf) superscript applied.

r
(wf)
L = x

(wf)
L ı̂ + y

(wf)
L ̂ + z

(wf)
L k̂ (5.27)

r
(wf)
R = x

(wf)
R ı̂ + y

(wf)
R ̂ + z

(wf)
R k̂ (5.28)

r
(wf)
G = x

(wf)
G ı̂ + y

(wf)
G ̂ + z

(wf)
G k̂ (5.29)

û
(wf)
L =

r
(wf)
G − r

(wf)
L

|r(wf)
G − r

(wf)
L |

Left eye to gaze point. (5.30)

û
(wf)
R =

r
(wf)
G − r

(wf)
R

|r(wf)
G − r

(wf)
R |

Right eye to gaze point. (5.31)

r
(wf)
EE = r

(wf)
R − r

(wf)
L Left eye to Right eye. (5.32)

x̂(wf) = ı̂ ŷ(wf) = ̂ ẑ(wf) = k̂ (5.33)

ẑ
(wf)
L = û

(wf)
L (5.34)

ŷ
(wf)
L =

r
(wf)
EE × û

(wf)
L

|r(wf)
EE × û

(wf)
L |

(5.35)

x̂
(wf)
L = ẑ

(wf)
L × ŷ

(wf)
L (5.36)

ẑ
(wf)
R = û

(wf)
R (5.37)

ŷ
(wf)
R =

r
(wf)
EE × û

(wf)
R

|r(wf)
EE × û

(wf)
R |

(5.38)

x̂
(wf)
L = ẑ

(wf)
R × ŷ

(wf)
R (5.39)

The optical density at any point on the Left or Right projection planes is thus

calculated by the ray For each image we define a grid of pixels centered around the
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rL and rR gaze vectors. We label these vectors with L and R and the subscript grid.

We can convert their positions into wave function coordinates with the following

equations.

r
(wf)
L (i, j) = r

(wf)
L + Dppû

(wf)
L + xL,grid(i)x̂

(wf)
L + yL,grid(j)ŷ

(wf)
L (5.40)

r
(wf)
R (i, j) = r

(wf)
R + Dppû

(wf)
R + xL,grid(i)x̂

(wf)
R + yL,grid(j)ŷ

(wf)
R (5.41)

for all i and j along the grid.

We can now render the optical density of the condensate clouds as two images.

For each pair of images we define our eye positions, gaze point, and number and

spacing of pixels. The results of solving the LVM Equations of Motion are input into

the rendering equations, resulting in a value for the optical density along each ray for

each eye.

5.3 Final Composition

This optical density values are input into a 2D plotting program to render a frame,

mapping values to colors that summarize the optical density. This process is repeated,

creating images for both the right and left eye across all time steps. The images are

stored as Portable Network Graphics (PNG) [29] files to reduce artifacts from color

space compression that result from lossy image formats such as JPEG [27].

Next, all of the images are processed into a video which stitches the right and left

eye images from each time step into a side-by-side frame. The video is rendered with

high-quality settings to reduce visual artifacts from compression while maintaining a

manageable file size.

Finally, the video can be viewed using video playback software. Some software

can read a video of side-by-side Left and Right views and display it on the Oculus Rift.
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In this manner, 3-D stereographic videos of time-evolving Bose-Einstein Condensates

may be viewed.

5.4 Summarized Procedure

The steps described above can be repeated via the following generalized procedure.

This procedure is repeated at least twice. First, the evolution from the Initial Split

until the clouds overlap for the Final Split is rendered. The Final Split doubles the

number of clouds, so a modified program is utilized to render the time evolution of

the Final Split. The same procedure is repeated with the modified programs.

This procedure is near-real-time and can be expected to take several minutes

to complete. Compared to the alternative scheme described in Section 2.5.2, it is of

sufficiently small time frame to be of use. However, there is potential to optimize the

procedure for real-time rendering. This would enable playback of the simulation on

a virtual reality headset, like the Oculus Rift, and use head tracking to control the

viewpoint. These extensions are not described in this thesis.

• Run the 3D LVM program to get a solution file and the input file to go with it.

• Configure and run the ”oculus lvm movie” program. This creates a collection

of left-eye and right-eye optical density data files: l000, l001, . . . , r000, r001,

. . . .

• Run Gnu Plot with the command file ”png movie.gnu”. This yields a collection

of left-eye and right-eye images: l000.png, l001.png, . . . , r000.png, r001.png,

. . . .

• Run the ”trim oculus frames.sh” script. This crops all of the images to a uni-

form size and removes the white space surrounding the image.
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• Run script ”make oculus movie.sh” which uses the program ”avconv” (a variant

of ”ffmpeg”) to stitch the individual images into a trio of video files: (1) left-eye

movie, (2) right-eye movie, and (3) side-by-side to view on the oculus.

5.5 Example Visualizations

Shown below are visualizations of the optical density from a simulation of the Atom

Interferometry experiment. Two examples are show: one without a Test Mass as a

control and a second with an exaggerated Test Mass. The tools developed to render

this simulation are intended to explore the design parameters for future high-fidelity

simulations using computationally expensive tools. The simulation and visualization

tools cannot estimate the value of Big G.

5.5.1 Simulation Parameters

Variables that can be adjusted via this tool include the following.

• MTM the mass of the Test Mass.

• rTM the location of the Test Mass relative to the center of the initial condensate

cloud.

• ωT,x, ωT,x, and ωT,x, the frequencies of the harmonic trap. A higher frequency

corresponds to a trap that squeezes the condensate tighter. The trap is not

required to be spherical.

• g, the coefficient representing the scattering length (distance of interaction be-

tween atoms in a cloud). This can be used adjust the interaction between atoms

to model specific situations. For instance, setting g = 0 removes all affects of

repulsion between the atoms. This is also modified to model different species

of atoms in the condensate.
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• N , the number of atoms in the initial condensate.

• Nc, the number of clouds created from the initial split.

• G, the Gravitational Constant, which can be modified to test the sensitivity of

the simulation to different measurements of Big G. Again, this simulation and

visualization tool box do not provide a detailed estimate of Big G.

5.5.2 Visualization Parameters

Each frame-pair visualizes the optical density of the evolving system from the left-eye

and right-eye perspectives. In addition to the physical parameters for the simulation,

the parameters determining the visualization results can be adjusted. For each eye

position in the frame-pairs, the following parameters can be adjusted to influence the

final images.

• Resolution in the x− and y−directions. These determine the number of pixels

represented in each direction in the final frames. These need not be symmetric

as it can be advantageous to increase the resolution in one direction, but save

computational using a lower resolution in the other direction.

• Spacing between the center of each pixel. This determines the field of view for

the frame. Having a lower spacing provides a finer view of over a smaller area.

A larger spacing provides less detail of the area, but more area can be captured..

• Number of frames to render or time step size between frames. These adjust the

total number of frames necessary to be rendered.

• rL and rR, positions of the rendering planes from the origin of the condensate

clouds.
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• Dpp, distance from the eyeball position to the rendering planes.

• rEE, distance between each eye, which can be adjusted to increase the stereo-

scopic separation.

The total computation necessary to render each frame is directly proportional

to the number of total pixels to be rendered. These parameters allow the user to

trade visual fidelity and time to render. Course renders at relatively large distances

give good overviews of the total expansion as the system evolves. Granular renders

at close distances enhance the details of the Final Split.

5.5.3 Parameters of Examples

In the examples below, the Test Mass is large, MTM = 105 kg, and quite close,

|rTM |2 = 10−2 m = 1 cm. These values were chosen to exaggerate the effects of Big

G in the Final Split so they are visually apparent. This is sufficient to demonstrate

the utility of the simulation and visualization tools. There are N = 105 atoms in the

Initial Condensate. The interaction coefficient is given by Eq. 2.8, g = 4π~2a
M

, where

a is the scattering length. The scattering length for 87Rb is ≈ 0.529 × 10−8 meters.

In scaled units this value is ḡ ≈ 0.0133.

Figure 5.4 displays the dimensions of the Initial Split images in Figures 5.6 and

5.7. The events from the Initial Split through Overlap are simulated across 500 ms.

This is divided as 50 ms for the Initial Split and Separation phases, 400 ms for the

Evolution phase, and 50 ms for the Overlap phase. The LVM solver samples these

events across 50000 time steps, each of which is δt = 10−5 s = 10µs. From the LVM

samples, 100 samples are rendered to represent the optical density. The viewpoint of

these renderings is 100Lo = 1mm, along the z-axis.

Figure 5.4 displays the dimensions of the Final Split images in Figure 5.8. Note
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Figure 5.4: Dimensions and sample resolutions of the images in Figures 5.6 and 5.7.

that the vertical resolution is much lower than the horizontal resolution. More res-

olution is required to clearly define the interference fringes, which run vertically.

Additionally, these images are much closer to the condensate than the Initial Split

images. The Final Split is sampled by the LVM solver over 10−3 s = 10 ms, split into

50000 time steps, each of which is δt = 5 × 10−8 s = 50 ns. From the LVM samples,

100 samples are rendered to represent the optical density.

All images are colored to help accentuate the solutions to the wave function–

the number of atoms–at each point. Dark red indicates high optical densities, with

descending values ordered as the spectrum of white light: bright red, orange, yellow,

green, and bright blue. Dark blue indicates zero.

Additional runs of the simulation over a variety of inputs will be necessary to

develop an intuition regarding the physical constraints of the Atom Interferometer.
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Figure 5.5: Dimensions and sample resolutions of the images in Figure 5.8.
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This thesis does not present those results; it is left for future endeavors.

5.5.4 Initial Split Without Test Mass

Figure 5.6 displays a series of time steps in the Atom Interferometry simulation fol-

lowing the Initial Split event. No Test Mass is present. The optical density of the

Atom Interferometer is visualized as it evolves between the Initial Split and Final

Split events. The initial condensate, not shown, is compressed by the harmonic trap

and is too small to be seen from this viewpoint and with this resolution. The same

is true as the clouds overlap for the Final Split event.

Notice the cloud widths increase as they move from the origin in the presence of

the same trap that confined the initial condensate to a much smaller volume. After

the Initial Split the clouds are less dense; each cloud contains half as many atoms

as the initial condensate. Consequently, the reduced density enables the condensate

atoms to repel each other into a larger volume.

5.5.5 Initial Split With Test Mass

Figure 5.7 displays a series of time steps in the Atom Interferometry simulation in

which a Test Mass present. The Test Mass, not shown, is to the right of the system

along the x-axis. All other parameters are the same as described in sections 5.5.3 and

5.5.4.

Compared with the visualizations in Figure 5.6 several differences can be noted.

First, the images 5.7.(f) through (j) clearly show the condensate clouds shifting to the

right while the harmonic trap is turned off. Compare these to the equivalent images

in Figure 5.6. It is clear that this is a result of the Test Mass. This effect is also

noticeable by comparing 5.7.(e) with 5.7.(j).
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(k) (l) (m) (n)

(f) (i) (j)

(a) (c) (d) (e)(b)

(g) (h)

(o)

Figure 5.6: Initial Split of condensate without a Test Mass. Images (a) to (e): Clouds

separating under the harmonic trap. Time steps 1, 3, 5, 7, and 9. Images (f) to (j):

Clouds evolving with the harmonic trap turned off. Time steps 25, 41, 57, 73, and

90. Images (k) to (o): The harmonic trap is restored and the clouds return to the

center to overlap for the Final split. Time steps 91, 93, 95, 97, and 99. Total elapsed

time as shown is 198 ms.
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(a) (c) (d) (e)(b)

(g) (h)

(o)

Figure 5.7: Initial Split of condensate with a Test Mass of 105 kg. Images (a) to (e):

Clouds separating under the harmonic trap. Time steps 1, 3, 5, 7, and 9. Images (f)

to (j): Clouds evolving with the harmonic trap turned off. Notice the clouds moving

to the right relative to their positions in (e) or in 5.6.(e). Time steps 25, 41, 57, 73,

and 90. Images (k) to (o): The harmonic trap is restored and the clouds return to

the center to overlap for the Final split. Time steps 91, 93, 95, 97, and 99. Total

elapsed time as shown is 198 ms.
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5.5.6 Final Split

(a)

(b)

Figure 5.8: Comparison of the Final Split without a Test Mass (a) and with a Test

Mass (b).

Figure 5.8 compares several time steps in the evolution of the Final Split. Each

image is captured from the same vantage point and centered at the origin of Initial

Condensate.

Recall, the pair of clouds created in the Initial Split may have a relative velocity

as they overlap in the Final Split. During the Final Split, the clouds are doubled into

two pairs of clouds. Two of the clouds separate from the center in the −x and +x

directions. These clouds posses double the relative velocity gained by the Initial Split

clouds. The remaining clouds have nearly zero relative velocity and overlap near the

origin of the Initial Condensate.

Series (a) demonstrates the Final Split without a Test Mass present. You can

clearly see two clouds separating and moving away from the center. Additionally, as

the center evolves, three interference fringes form. The two outer fringes represent

the relative velocity induced by the repulsion between the clouds as they are split

and overlap. This was actual not expected a priori, but the effect is confirmed by
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removing the repulsion effects (setting g = 0), which eliminates the outer fringes.

Series (b) demonstrates the Final Split with a Test Mass present to the far right

of the system. Compared to series (a), the clouds are shifted to the right as they

overlap. Again, two of the Final Split clouds can be seen moving away from the

center. Initially, the center displays three fringes, similar to series (a). However, four

fringes are evident by the fourth image; the outer pair of fringes are very faint. The

two fringes in the center are of approximately equal density.

5.5.7 Estimating Big G

Our input values are MTM = 105 kg, |rTM |2 = 0.1 m, and TD = 0.4 s. From the

images in Figure 5.8, we estimate the center of mass in series (b) has shifted relative

to series (a), δx ≈ 1Lo = 10−5 m. Recall our approximation for Big G, Eq. 3.4.

G ≈ 2 δx |rTM |2

MTMT 2
D

≈ 2 (10−5 m)(0.1 m)2

(105 kg)(0.4 s)2
(5.42)

≈ 1.25× 10−11 m3kg−1s−2 (5.43)

This approximation preserves the order-of-magnitude of the current recommended

value of Big G [9]. As expected the simulation cannot provide a precise estimate for

Big G. Additionally, this estimated value utilizes an approximation that is also unable

to precisely determine G. However, these approximations do show the relationships

between the experimental parameters and the relative effects of varying them.
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CONCLUSION

This thesis has presented a mathematical model to simulate an Atom Interferometry

experiment for measuring the Gravitational Constant, Big G. The results of the

simulation can be visualized and displayed on a virtual reality headset, like the Oculus

Rift. The simulation approximates solutions to the Gross-Pitaevskii Equation using

Gaussian distributions containing phase coefficients. The Equations of Motion for

the simulated system are found using the Lagrangian Variational Method.

The simulation is not a precise experiment. It cannot measure the value of Big

G, but it can approximate the sensitivity of the input conditions (Section 5.5.1) for

the Atom Interferometry scheme. Specifically, as described in Section 3.1, an initial

condensate is split into multiple clouds that move apart. The simulation can estimate

the separation of the cloud centers. The simulation can also estimate the expansion

of the cloud widths as the force applied by the harmonic trap is decreased.

The examples visualized in Sections 5.5.4 and 5.5.5 are possible by studying

simulations with infeasible results. Specifically, an ifeasible result would preclude the

experiment from being placed inside a future revision of the Cold Atom Laboratory

[10] to fly aboard the International Space Station. For example, the widths of the

clouds cannot overlap the experimental area. This was corrected by increasing the

trap strength and providing a larger initial velocity during the Initial Split. This

forced the cloud widths to remain smaller. Additionally, allowing the Evolution event

to run for too long a time enabled the widths to expand unreasonably. Also not shown

are examples in which the cloud centers moved far beyond the range available in a

realistic experimental setting. Thus, varying the input parameters enables a study of

design parameters to be included in a higher-fidelity experiment at a later time.

Interference fringes are simulated, representing differences in relative velocity in
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the clouds as they overlap in the Final Split. In a precise experiment, the interference

fringes and the shift in the center of mass of the overlapped clouds are used to measure

Big G. However, in this simulation, they are useful to confirm that different input

values produce shifts in the overlapped cloud centers and changes to the interference

pattern. Specifically, as presented in Section 5.5.6, we can see the effects from both

the repulsion between condensate clouds and a Test Mass represented in the number

and amplitude of the interference fringes. We can also observe a shift in the cloud

centers toward the Test Mass.

Finally, the tools as presented enable one to create videos of the time-evolution

of the Atom Interferometer system. These cannot be presented in print form, but

they are available to interested parties. Additionally, these videos can be displayed

in stereographic 3D via a virtual reality headset.

6.1 Comparison to Grid Methods

The LVM method to simulate the Atom Interferometer provides a massive reduction in

computer storage and time. Though this method is an approximation, the reduction

in computing resources makes it feasible to simulate the Atom Interferometer in the

first place.

We defined the simulation parameters in Section 5.5.3; the LVM solver produces

50000 time steps, each of which represents a solution–a wave function–of the GPE.

Each cloud requires 12 parameters to be fully specified, each in three dimensions:

position, velocity, width, and the change over time of the width. On commodity

computer processors each parameter is represented by an 8 byte floating point number.

During the Initial Split two clouds are created, which requires storage of 96 bytes per

wave function. The total storage to quantify the 50000 wave functions of the Initial

Split are stored in 5× 105timesteps× 96bytes = 48MB.
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As described in Section 2.5, a single wave function evaluated on a low-resolution

grid requires on the order of 50 GB to store. Comparing the storage requirements

of a grid method with the LVM solution, this is a savings in storage on the order of

1010bytes/102bytes = 108 per wave function.

Additionally, the LVM solutions are the input parameters of Gaussian functions

that can be sampled at any resolution of interest. Grid methods are limited to the size

of the grid, which cannot be increased without expanding the storage requirements.

In particular, the Final Step visualizations were rendered at a resolution of 5 samples

per µm. The Initial Split images represent the condensate clouds expanding across

a distance of 1000µm. Thus, to maintain the same fine resolution within the Final

Split images across the entire simulation, a grid of 50003 = 75 billion positions is

required. This is three orders of magnitude the number of grid points required–1000

times the storage and time–to render the condensates discussed in Section 2.5.

Time is also a limited commodity. The LVM solver is able to produce 50000

wave functions within several seconds. Additionally, rendering the frames from these

solutions can be completed within a few minutes. Comparatively, the Crank-Nicolson

solutions from Section 2.4 require hours to produce single wave functions at limited

resolutions.

6.2 Future Work

The examples presented in Section 5.5 are exaggerated with an infeasibly massive Test

Mass. This was chosen to clearly demonstrate the simulation model and provide useful

feedback. As such, these examples are limited in their applicability to determine the

feasibility of the Atom Interferometer. The attempt to characterize the sensitivity

of the input parameters remains as a future endeavor. The results of such work will

influence the design of a high-fidelity simulation, leading to a feasibility study of the
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Atom Interferometer.

Next, only the optical density is discussed as a quality of interest. Other qualities

like the phase value and velocity field are of interest in building intuition for more

detailed experiments. The optical density is a scalar value whose rendering equations

(see Section 5.2.4) have an algebraic representation. A field value, like velocity, re-

quires additional work to calculate and render. There is no universally agreed upon

rendering methodology to display field values, so much work is required to define a

visual representation that is useful.

It is hoped that these tools will continue to be useful and the Atom Interferometer

can be characterized successfully.
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Appendix A

SOME USEFUL GAUSSIAN INTEGRALS

This appendix derives some Gaussian integrals useful in the derivation presented in

the main body of the text. Consider the following class of Gaussian integrals:

Jk(η0, w0) ≡
∫ ∞
−∞

ηke−(η−η0)2/w2
0 dη, k = 0, 1, 2, . . . (A.1)

we can evaluate this class of integrals by changing the variable of integration:

x ≡ η − η0

w0

, η = η0 + w0x, dη = w0dx. (A.2)

Expressed in terms of this new integration variable, the integral now has the form

Jk(η0, w0) =

∫ ∞
−∞

(η0 + w0x)k e−x
2

w0dx. (A.3)

We now use the binomial theorem to express the factor (η0 + w0x)k as a series of

powers of x:

(η0 + w0x)k =
k∑
s=0

(
k

s

)
ηk−s0 (w0x)s . (A.4)

Inserting this into the integral in Eq. (A.3) gives

Jk(η0, w0) = w0

k∑
s=0

(
k

s

)
ηk−s0 ws0

∫ ∞
−∞

xse−x
2

dx. (A.5)

The integral now appearing in the sum above is well–known (after all, integration is

the art of transforming the integral until you can look it up!). We have

∫ ∞
−∞

xse−x
2

dx =

 0 s = odd integer(
s!

(s/2)!

)
π1/2

2s
s = even integer

 (A.6)

Using this result we can write a final expression for the integrals:

Jk (η0, w0) =
(
w0π

1/2
) [k/2]∑
m=0

(
k

2m

)
ηk−2m

0

(w0

2

)2m (2m)!

m!
. (A.7)
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Where the upper limit of the sum, [k/2], is the greatest integer less than or equal to

k/2.

In the derivation of the final Lagrangian in the main body of this document,

integrals of this type are found repeatedly. However, only for k = 0, 1, 2. Thus we

present the values of these integrals for convenient reference:

J0 (η0, w0) =

∫ ∞
−∞

e−(η−η0)2/w2
0 dη =

(
w0π

1/2
)

(A.8)

J1 (η0, w0) =

∫ ∞
−∞

η e−(η−η0)2/w2
0 dη =

(
w0π

1/2
)
η0 (A.9)

J2 (η0, w0) =

∫ ∞
−∞

η2e−(η−η0)2/w2
0 dη =

(
w0π

1/2
)(

η2
0 +

1

2
w2

0

)
(A.10)



Appendix B

DERIVATIVES OF L̄4

In this appendix we will give the derivatives of L̄4, the Lagrangian term corresponding

to the interactions between particles. This term has the form:

L̄4(η̄, w̄) =

(
1
2
ḡN
)

(2π)3/2N2
c

 Nc∑
j1=1

(
1

w̄j1xw̄j1yw̄j1z

)
+ 25/2

Nc∑
j1,j2=1
j1 6=j2

∏
η′=x,y,z

exp

{
−(η̄′j1−η̄

′
j2)

2

w̄2
j1η
′+w̄

2
j2η
′

}
(
w̄2
j1η′

+ w̄2
j2η′

)1/2


 .

(B.1)

This quantity depends on the center coordinates and widths of the Gaussian clouds

in the trial wave functions. The two categories of derivatives of L̄4 that appear in the

LVM equations of motion are with respect to these two variables. We state each of

these derivatives of L̄4, obtained by direct differentiation, in turn below.

The derivative with respect to center coordinate ηj is given by

∂L̄4

∂η̄j
= − 4ḡN

(π)3/2N2
c

Nc∑
j1=1
j1 6=j

(η̄j − η̄j1)
w̄2
jη + w̄2

j1η

 ∏
η′=x,y,z

exp

{
−(η̄′j−η̄′j1)

2

w̄2
jη′+w̄

2
j1η
′

}
(
w̄2
jη′ + w̄2

j1η′

)1/2

 . (B.2)

The derivative with respect to the width w̄jη has the form

∂L̄4

∂w̄jη
=

1
2
ḡN

(2π)3/2N2
c

[
− 1

w̄jxw̄jyw̄jzw̄jη

+ 27/2

Nc∑
j1=1
j1 6=j

(
w̄jη

[
2 (η̄j − η̄j1)

2 −
(
w̄2
jη + w̄2

j1η

)](
w̄2
jη + w̄2

j1η

)2

) ∏
η′=x,y,z

exp

{
−(η̄′j−η̄′j1)

2

w̄2
jη′+w̄

2
j1η
′

}
(
w̄2
jη′ + w̄2

j1η′

)1/2

]
.

(B.3)
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