
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2010

Graphical Indices and their Applications
Daniel Gray

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation
Gray, Daniel, "Graphical Indices and their Applications" (2010). Electronic Theses and
Dissertations. 659.
https://digitalcommons.georgiasouthern.edu/etd/659

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229065231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/659?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Version: April 21, 2010

GRAPHICAL INDICES AND THEIR APPLICATIONS

by

DANIEL GRAY

(Under the Direction of Dr. Hua Wang)

ABSTRACT

The biochemical community has been using graphical (topological, chemical) indices

in the study of Quantitative Structure-Activity Relationships (QSAR) and Quanti-

tative Structure-Property Relationships (QSPR), as they have been shown to have

strong correlations with the chemical properties of certain chemical compounds (i.e.

boiling point, surface area, etc.). We examine some of these chemical indices and

closely related pure graph theoretical indices: the Randić index, the Wiener index,

the degree distance, and the number of subtrees. We find which structure will maxi-

mize the Randić index of a class of graphs known as cacti, and we find a functional

relationship between the Wiener index and the degree distance for several types of

graphs. We also develop an algorithm to find the structure that maximizes the num-

ber of subtrees of trees, a characterization of the second maximal tree may also follow

as an immediate result of this algorithm.

Key Words : Trees, subtrees, cacti, Randić index, Wiener index, degree distance

2010 Mathematics Subject Classification: 05C05, 05C35, 05C38, 05C90

GRAPHICAL INDICES AND THEIR APPLICATIONS

by

DANIEL GRAY

B.S. in Mathematics at Augusta State

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in

Partial Fulfillment of the Requirement for the Degree

MASTER OF SCIENCE

IN APPLIED MATHEMATICS

STATESBORO, GEORGIA

2010

c©2010

Daniel Gray

All Rights Reserved

iii

GRAPHICAL INDICES AND THEIR APPLICATIONS

by

DANIEL GRAY

Major Professor: Dr. Hua Wang

Committee: Dr. Goran Lesaja

Dr. Yan Wu

Electronic Version Approved:

May 2010

iv

ACKNOWLEDGMENTS

I wish to acknowledge Dr. Hua Wang for his exceptional aid and skill in helping

me to prepare this document, and for the knowledge imparted unto me through his

advisement. I also wish to acknowledge the staff and faculty of the math department

that I have had the pleasure of meeting, working with, or being a student of.

In particular, I would like to thank Dr. Martha Abell for the financial support I

received for travel to many of the conferences I attended during my graduate studies

at Georgia Southern University, and the other members of my thesis committee, Dr.

Goran Lesaja and Dr. Yan Wu, for helping me to improve this document as much

as possible despite their very busy schedules. Of the many talented students in the

department, thanks to Chason Smith, James Bland, and Jason Brandies for the tips

and tricks of Latex, Beamer, and Tikz.

Finally, I am grateful to my family for supporting me in all of my academic

endeavors.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

LIST OF FIGURES . ix

CHAPTER

1 Introduction and Terminology . 1

1.1 Randić index . 2

1.2 Wiener index and degree distance 3

1.3 Subtrees of trees . 4

2 Randić index and extremal cacti 6

2.1 The structures of extremal cacti in G(n, r, s) 7

2.1.1 Case I . 8

2.1.2 Case II . 11

2.2 Calculating wα(G(n, r, s)) and applications 14

2.2.1 The case α = 1 . 15

2.2.2 The extremal cacti . 16

vi

3 Wiener index vs. degree distance 18

3.1 Preliminaries and Trees . 19

3.2 Cycles and Unicyclic graphs 21

3.2.1 Cycles . 22

3.2.2 Unicyclic graphs . 24

3.3 General cacti . 27

3.3.1 On e(G) . 27

3.3.2 Bounds and extremal cacti 28

4 Algorithms on switching components in trees 31

4.1 Phase I of the switching algorithm 35

4.2 Phase II of the switching algorithm 41

4.3 Phase III of the switching algorithm 46

4.4 The complete switching algorithm 49

5 Maximizing the number of subtrees of a tree with given degree
sequence . 52

5.1 Introduction . 52

vii

5.2 Maximal tree . 54

5.3 Second maximal tree . 55

5.4 Conjectures and future work 58

6 Conclusions . 59

6.1 On the Randić index and extremal cacti 59

6.2 The degree distance v.s. the Wiener index 59

6.3 Algorithms on switching components in trees 60

6.4 Maximizing the number of subtrees 60

REFERENCES . 61

viii

LIST OF FIGURES

Figure Page

1.1 Obtaining the molecular graph of a chemical compound. 2

2.1 An example of G(11, 3, 3) . 6

2.2 The cacti G (on the left) and H (on the right). 8

2.3 The cacti G (on the left) and H (on the right). 11

3.1 Distance between z and x is counted exactly twice. 21

3.2 Cycle of length 2m. 23

3.3 Two paths of equal length between vk−1 and v` on C8. 24

3.4 Unicyclic graph, λ = 10. 25

3.5 A star-shaped cactus with center u. 28

3.6 Moving Xy to w. 29

3.7 Appending y to w. 29

4.1 A path between two leaf vertices, v1 and v2. 31

ix

4.2 X≤i is everything to the left of xixi+1 ∈ E(G). 32

4.3 Example of a component switch. 33

4.4 Example of a tail switch. 34

4.5 When p = d(xk) < d(yk) = q. 34

4.6 G, before switching, and H, after switching. 35

4.7 Re-labelling of path after Phase I Switching Algorithm. 39

4.8 Tree leading to a contradiction. 40

4.9 Example depicting the conditions of Lemma 4.2.2. 42

4.10 Example depicting conditions of Lemma 4.2.3. 44

4.11 Path of length 2n− 1 after Phase II switching algorithm. 47

5.1 A greedy tree . 52

x

CHAPTER 1

INTRODUCTION AND TERMINOLOGY

All graphs in this thesis are finite, simple, and undirected. The order of a graph,

G, is the number of vertices in its vertex set, V (G). The size of G is the number of

edges in its edge set, E(G). If two vertices share an edge then they are adjacent ; we

also say that the vertices are incident with the edge. The degree of a vertex, dG(v)

where v ∈ V (G), is the number of edges that vertex is incident with (i.e. the number

of vertices it is adjacent to). A tree, T , is a connected, acyclic (no cycles) graph. A

cactus, G is a graph wherein no two cycles can share a common edge.

A graphical index is a numerical value which describes the topology of a graph.

The numerical value can depend on the degrees of the vertices, distance between

vertices, or any combination of characteristics of a graph.

The structure of a chemical compound is usually modeled as a polygonal shape,

which is often called the molecular graph of this compound. To obtain the molecular

graph of a chemical compound, remove all hydrogen atoms and let each of the remain-

ing atoms be a vertex in the graph. We draw an edge between two vertices if their

corresponding atoms are bonded in the chemical compound (See Figure 1.1). The

biochemical community has been using graphical indices in the study of Quantita-

tive Structure-Activity Relationships (QSAR) and Quantitative Structure-Property

Relationships (QSPR), as they have been shown to have strong correlations with the

chemical properties of certain chemical compounds (i.e. boiling point, surface area,

etc.).

In this thesis, we explore the relationship between some of these graphical in-

dices, as well as characterize the structures which achieve the extremal values with

2

CH

H

H

C

CH H

H

C

H

H H

C

H

H

C

H

C

H

H H

C

H

H

C H

CH H

H

CH H

H

⇓

Figure 1.1: Obtaining the molecular graph of a chemical compound.

respect to these graphical indices. The research presented here has led to three seper-

ate manuscripts, [9] has been published, [10] has been submitted, and [11] is to be

submitted in the near future.

1.1 Randić index

In a graph G, let d(v) denote the degree of the vertex v in G. The Randić index of G

is

wα(G) =
∑

uv∈E(G)

(d(u)d(v))α

where E(G) is the edge set of G and α 6= 0. This index is named after Milan

Randić, who introduced w−1(G) and w−1/2(G) in [22]. The Randić index, also called

the connectivity index, has been vigorously studied in recent years (see [4] and the

3

reference there for detail). In pure graph theory, for a tree, T , w1(T) is also called

the weight of T and has been well studied.

Being one of the most important topological indices in bio-chemistry, the bounds

of the value of the Randić index are studied for general graphs [1], [18], for trees in

general [20], trees with restricted degrees [23] and trees with given degree sequence

[3], [28]. See [16] for a survey of the extremal structures for the Randić index for

graphs under various restrictions.

In Chapter 2, we study the structure that maximizes the Randić index for α ∈

(0, 1] and minimizes the Randić index for α ∈ [−1, 0), which leads to a formula to

easily calculate the Randić index of extremal cacti. These results have formed an

accepted article [9].

1.2 Wiener index and degree distance

The Wiener index of a graph G is the sum of the distances between all pairs of

vertices, denoted by

W (G) =
1

2

n∑
i=1

n∑
j=1

Li,j

where Li,j is the distance between two vertices vi, vj ∈ V (G) := {v1, v2, . . . , vn}. The

Wiener index, W (G), was introduced by and named after H. Wiener [30] and is one

of the most classic and well-studied concepts in the study of QSAR/QSPR.

Dobrynin and Kochetova [6] introduced the degree distance as a ‘degree analogue

of the Wiener index’, which is defined by

D′(G) =
1

2

n∑
i=1

n∑
j=1

((di + dj)Li,j) (1.1)

4

where di is the degree of the vertex vi. Upon realizing that the distance matrix L is

symmetric, we can rewrite the equation into a more convenient form,

D′(G) =
n∑
i=1

n∑
j=1

(diLi,j) . (1.2)

We will use the second equation for the degree distance throughout this thesis.

In Chapter 3, we derive a functional relationship between D′(G) and W (G) for

various kinds of graphs by introducing an error term e(G). We provide exact equations

to calculate e(G) for the different graphs and we study the bounds of e(G) to obtain

simplified formulas. A manuscript containing these results has been submitted [10].

1.3 Subtrees of trees

Let G be a tree, the number of subtrees of G is denoted by f(G) (i.e. the number

of possible induced substructures of G). In pure graph theory, subtrees of trees has

been extensively studied.

The relationship between the total number of subtrees and the Wiener Index

is of particular importance. It is known that among binary trees of the same size,

the extremal one that minimizes the Wiener Index is exactly the one that maximizes

the number of subtrees, and vice versa. In [25], it is proven that the same kind

of extremal trees, ones that minimize the Wiener Index and maximize the number

of subtrees among binary trees of the same size, also maximize the number of leaf-

containing subtrees, where a leaf containing subtree is a subtree of a tree T that

contains leaf vertices (i.e. vertices of degree 1) of T .

It is also known that among all trees of the same size and same maximum degree,

the structure that minimizes the Wiener index will maximize the number of subtrees.

5

See [8, 13, 14].

The number of subtrees of binary trees and the Wiener Index are studied in [24],

but a counterexample shows that no functional relation exists between them.

In Chapter 4, we construct algorithms to find the properties that a maximal tree

must possess, and in Chapter 5, we use these algorithms to prove that the tree that

has these properties is unique, thus proving that the tree obtained from the algorithm

is the maximal tree. We then prove several lemmas in order to characterize the second

maximal tree. These results are from a work in progress [11].

CHAPTER 2

RANDIĆ INDEX AND EXTREMAL CACTI

Let us recall the definition of the Randić index of a graph G. It is defined as

wα(G) =
∑

uv∈E(G)

(d(u)d(v))α,

where d(u) denotes the degree of a vertex u, E(G) denotes the edge set of G, and

α ∈ [−1, 0)
⋃

(0, 1].

A cut vertex is a vertex whose removal will disconnect the graph (i.e. there exists

a pair of vertices with no path between them). A block is a maximal biconnected (no

cut vertices) subgraph of a graph. A graph is called a cactus if each block is either

an edge or a cycle. Throughout this thesis, let G(n, r, s) denote the set of all cacti

with n vertices, r ‘edge-blocks’ and s ‘cycle-blocks’, let G(n, r, s) denote all cacti in

G(n, r, s) with only one cut vertex (the vertex shared by all blocks). Given a cactus

in G(n, r, s), the edges incident to leaves (vertices of degree 1) are called pendant

edges. The vertex shared by all blocks is called the center of G and is denoted by v

in Fig. 2.1.

v

Figure 2.1: An example of G(11, 3, 3)

Because of the appearance of cactus graphs in various molecular structures, the

Randić index of cacti has been studied recently. In [19], a sharp lower bound on the

7

Randić index of cacti with given number of cycles is provided. In [17], a sharp lower

bound of w−1/2(G) is provided for cacti with given number of vertices and pendant

edges. A natural project is to consider the extremal problems for the generalized

Randić index, which seems to be much more difficult because of the infinite possi-

bilities of α. In this chapter, we provide, in Section 2.1, a result on the structure of

extremal cacti (Theorem 2.1.1). This result is of general interest in addition to its

role in this work.

Furthermore, another case is considered in Section 2.2, where we propose the

conjecture that an extremal cactus in G(n, r, s) must be in G(n, r, s). A simple formula

of wα(G) for graphs inG(n, r, s) follows in Section 2.3, which leads to a straightforward

characterization of extremal cacti with various restrictions for the weight of a graph.

2.1 The structures of extremal cacti in G(n, r, s)

For convenience we focus on the extremal cactus in G(n, r, s) that maximizes wα(G)

for positive α; the case for cacti that minimize wα(G) with negative α is similar. We

call this cactus optimal.

To show that the optimal cacti must be in G(n, r, s), assume the contrary: the

optimal cactus has at least two cut vertices. There are two cases to consider:

Case I: there are two cut vertices connected by a cut edge;

Case II: there are two cut vertices lying on a cycle.

8

2.1.1 Case I

First we show the following result that prevents ‘Case I’ from an optimal cacti:

Theorem 2.1.1. An optimal cactus in G(n, r, s) contains no cut edge unless it is a

pendant edge.

Proof. Assume otherwise; let uw be such a cut edge. Let U and W be the components

that contain u and w respectively after the removal of the edges on all the paths

connecting u and w (Fig. 2.2).

Without loss of generality, assume d(u) ≥ d(w) and let H be the cactus obtained

from G by ‘moving’ W from w to u (Fig. 2.2). Obviously {n, r, s} stays the same

before and after this operation. We will show that wα(H) > wα(G) by studying

the terms (d(v1)d(v2))
α for all the edges xy incident with u or w. For other edges

(d(v1)d(v2))
α will not change.

G
u w

U W =⇒

H
u w

U

W

Figure 2.2: The cacti G (on the left) and H (on the right).

For the simplification of notations, we introduce the following:

i) d′(u) (d′(w)): the degree of u (w) in U (W), noticing that d(u) − d′(u) = 1

(d(w)− d′(w) = 1);

ii) A (B): the sum of the αth powers of the degrees of vertices adjacent to u (w)

9

in U (W) (notice that A ≥ d′(u) = d(u)− 1 and B ≥ d′(w) = d(w)− 1).

We have

ωα(H)− ωα(G)

= (A+B + 1)(d(u) + d(w)− 1)α

−A(d(u))α −B(d(w))α − (d(u)d(w))α

= A((d(u) + d(w)− 1)α − d(u)α)

+B((d(u) + d(w)− 1)α − d(w)α)− (d(u)d(w))α.

Notice that (d(u) + d(w)− 1)α − d(u)α > 0 and (d(u) + d(w)− 1)α − d(w)α > 0, and

recall that A ≥ d(u)− 1 and B ≥ d(w)− 1. We obtain,

ωα(H)− ωα(G)

≥ (d(u)− 1)((d(u) + d(w)− 1)α − d(u)α)

+(d(w)− 1)((d(u) + d(w)− 1)α − d(w)α)− (d(u)d(w))α

≥ (d(u) + d(w)− 1)(d(u) + d(w)− 1)α

−(d(u)− 1)(d(u))α − (d(w)− 1)(d(w))α − (d(u)d(w))α.

For simplicity we now let x = d(u) and y = d(w). Thus,

ωα(H)− ωα(G)

≥ (x+ y − 1)(x+ y − 1)α − (x− 1)xα − (y − 1)yα − (xy)α.

With the restriction d(u) = x ≥ y = d(w), we obtain

ωα(H)− ωα(G)

≥ (x+ y − 1)(x+ y − 1)α − (x+ y − 2)xα − (xy)α := f(α).

It is easily verified that f(0) = 0 and f(1) = xy − (x + y − 1) > 0 for x and

y greater than 2 (since the degrees of u and w are at least 2). Rewrite f(α) in the

following way,

f(α) = (x+ y − 1)(x+ y − 1)α(1− C(α)−D(α)), (2.1)

10

where C(α) = (x+y−2)xα
(x+y−1)(x+y−1)α and D(α) = (xy)α

(x+y−1)(x+y−1)α .

If we can show that C(α) + D(α) ≤ 1 on α ∈ [0, 1] then we are done. Consider

the derivative of C(α) +D(α), we have

d
dα

(C(α) +D(α))

=
xα(x+y−2)ln(x

x+y−1
)

(x+y−1)(x+y−1)α +
(xy)αln(xy

x+y−1
)

(x+y−1)(x+y−1)α

=
−xα(x+y−2)ln(x+y−1

x
)+(xy)αln(xy

x+y−1
)

(x+y−1)(x+y−1)α

(2.2)

Clearly, the denominator in (2.2) is always positive. We seek to find an interval where

d
dα

(C(α) +D(α)) is negative (i.e. when the numerator of (2.2) is negative). This will

happen if and only if

(xy)αln(xy
x+y−1)

(x+ y − 1)(x+ y − 1)α
<
xα(x+ y − 2)ln(x+y−1

x
)

(x+ y − 1)(x+ y − 1)α
(2.3)

which is equivalent to

α <
ln(

(x+y−2)ln(x+y−1
x

)

ln(xy
x+y−1

)
)

ln(y)
:= α0.

Then, for α < α0 the derivative of C(α) + D(α) is strictly negative, and for α ≥ α0

the derivative is nonnegative. Recall that f(0) = 0 and f(1) > 0, which implies that

1 = C(0) +D(0) and 1 > C(1) +D(1); thus, C(0) +D(0) > C(1) +D(1). Then the

derivative is negative somewhere in the interval from 0 to 1. Therefore, C(α) +D(α)

is monotonically decreasing on the interval α ∈ [0, α0) and is nondecreasing on the

interval α ∈ [α0, 1]. Hence, there can be no α ∈ [0, 1] such that C(α) + D(α) > 1.

This proves that ωα(H)− ωα(G) ≥ f(α) > 0 on (0, 1].

11

2.1.2 Case II

Using similar notations as in Section 2.1, assume now that u and w are cut vertices

of G lying on the same cycle. Then, let H (H′) be obtained from G by moving the

component W (U)to u (w). See Fig. 2.3 below.

u w

vu vw
. . .Vu

U W

Vw
G

=⇒
u w

vu vw
. . .Vu

U

W

Vw
H

Figure 2.3: The cacti G (on the left) and H (on the right).

We now compare wα(G) with wα(H) and wα(H ′). Let x = d(u), y = d(w),

vx = d(vu) and vy = d(vw). Then A ≥ x − 2 and B ≥ y − 2. Without loss of

generality, let u be the vertex with the largest degree. Then

wα(H)− wα(G)

= (A+B + (vx)
α)(x+ y − 2)α + (2vy)

α + (2(x+ y − 2))α

−(A+ (vx)
α)xα − (B + (vy)

α)yα − (xy)α

= A((x+ y − 2)α − xα) +B((x+ y − 2)α − yα)− (xy)α

+(vx)
α((x+ y − 2)α − xα)− (vy)

α(yα − 2) + (2(x+ y − 2))α.

Recall the restrictions A ≥ x− 2 and B ≥ y − 2, and suppose vx ≥ vy. We obtain

wα(H)− wα(G)

≥ (x− 2)((x+ y − 2)α − xα) + (y − 2)((x+ y − 2)α − yα)− (xy)α

+vαx ((x+ y − 2)α − xα)− vαy (yα − 2α) + (2(x+ y − 2))α

≥ (x+ y − 4)(x+ y − 2)α − (x− 2)xα − (y − 2)yα − (xy)α

+(2(x+ y − 2))α + vα((x+ y − 2)α + 2α − xα − yα),

12

where v = vx. Similarly,

ωα(H ′)− ωα(G)

= (A+B + (vy)
α)(x+ y − 2)α + (2vx)

α + (2(x+ y − 2))α

−(A+ (vx)
α)xα − (B + (vy)

α)yα − (xy)α

= A((x+ y − 2)α − xα) +B((x+ y − 2)α − yα)− (xy)α

+(vy)
α((x+ y − 2)α − yα)− (vy)

α(xα − 2α) + (2(x+ y − 2))α.

This time suppose vy ≥ vx. Then,

ωα(H ′)− ωα(G)

≥ (x− 2)((x+ y − 2)α − xα) + (y − 2)((x+ y − 2)α − yα)− (xy)α

+vαy ((x+ y − 2)α − yα)− vαx (xα − 2α) + (2(x+ y − 2))α

≥ (x+ y − 4)(x+ y − 2)α − (x− 2)xα − (y − 2)yα − (xy)α

+(2(x+ y − 2))α + vα((x+ y − 2)α + 2α − xα − yα),

where v = vy.

Hence, from both cases we have either ωα(H)−ωα(G) or ωα(H ′)−ωα(G) at least

as large as

(x+ y − 4)(x+ y − 2)α − (x− 2)xα − (y − 2)yα − (xy)α

+ (2(x+ y − 2))α + vα((x+ y − 2)α + 2α − xα − yα).
(2.4)

If one can show that (2.4) is positive for α ∈ [0, 1], then we will have ωα(H) >

ωα(G) or ωα(H ′) > ωα(G). Notice that the last term in (2.4) is always negative for

α ∈ (0, 1). When v = x, i.e. the worst case scenario, we can reduce the formula to a

function of only three variables x,y, and α.

This leads to the following seemingly simple conjecture, the verification of which

is deceptively difficult:

13

Conjecture 2.1.2. The function

(x+ y − 4)(x+ y − 2)α − (x− 2)xα − (y − 2)yα − (xy)α

+ (2(x+ y − 2))α + xα((x+ y − 2)α + 2α − xα − yα).

is always positive for α ∈ (0, 1] and integers x ≥ y ≥ 3.

Of course, with Theorem 2.1.1, Conjecture 2.1.2 implies the aforementioned con-

jecture:

Conjecture 2.1.3. If a cactus G ∈ G(n, r, s) is extremal, i.e. maximizes the Randić

index for positive α or minimizes the Randić index for negative α, then G ∈ G(n, r, s).

Remark: Notice that the approach introduced in this section and the formula in Con-

jecture 2.1.2 make it fairly straightforward to prove Conjecture 2.1.3. For instance,

below is a list of 3d-plots of (2.4) with v = x and α = 1
4
, 1

2
, 3

4
, and 1, respectively,

agreeing with our conjecture.

14

α = 1
4

α = 1
2

α = 3
4

α = 1

2.2 Calculating wα(G(n, r, s)) and applications

Recall that wα(G) =
∑

uv∈E(G)(d(u)d(v))α. We consider (d(u)d(v))α for each edge in

a cactus G(n, r, s) (Fig. 2.1). We observe the following:

1. the degree of the center is d(v) = r + 2s;

2. for each of the r pendant edges, we have (r + 2s)α ;

3. for each of the other 2s edges incident with the center, we have (2(r + 2s))α;

4. there are n− r − s− 1 edges left, for each of them we have ((2)(2))α.

15

Combining these observations, we obtain

wα(G(n, r, s))

= r(r + 2s)α + 2s(2(r + 2s))α + (n− r − s− 1)4α

= (n− 1)4α + r((r + 2s)α − 4α) + s(2(2(r + 2s))α − 4α)

= N +R + S

, (2.5)

where N = (n− 1)4α, R = r((r + 2s)α − 4α) and S = s(2(2(r + 2s))α − 4α).

2.2.1 The case α = 1

We restrict our attention to the weight in the remainder of this section, where we

make the application of the approach discussed in section 2 explicit in the case α = 1.

Theorem 2.1.1 implies the following corollary.

Corollary 2.2.1. The cactus that maximizes the weight in G(n, r, s) has no cut edge

unless it is a pendant edge.

Also, let α = 1 and v = vx = vy in (2.4), we have

(x+ y − 2)(x+ y − 2)− (x+ y − 4)x− xy + 0

= x2 + 2xy + y2 − 4x− 4y + 4− x2 − xy + 4x− xy

= y2 − 4y + 4

which is positive for y ≥ 3. Therefore, at least one of w1(H) and w1(H
′) is larger

than w1(G) in section 2.2, thus by contradiction, we have the following lemma.

Lemma 2.2.2. The cactus that maximizes the weight in G(n, r, s) can not have two

cut vertices lying on the same cycle.

16

Note: The case that two cut vertices lie on the same cycle but are not adjacent can

be proved in exactly the same way, and we skip it here.

From Corollary 2.2.1 and Lemma 2.2.2, we get

Theorem 2.2.3. The cactus that maximizes the weight in G(n, r, s) must be in

G(n, r, s).

2.2.2 The extremal cacti

Based on the results in Sections 2.1.1 and 2.1.2, we discuss the extremal cacti under

various restrictions. We restrict our attention to cacti with fixed n and r + 2s ≥ 5.

In the case r + 2s ≤ 4, the cacti are very small and the argument is trivial. We also

assume that α = 1.

I) Cacti with given r:

In this case we have n vertices and r pendant edges (leaf vertices). From (2.5)

we see that the weight is maximized when s is maximized. The number of cycles is

maximized if every cycle is of minimum length. There are at least 3 edges, and thus

3 vertices (one of which will always be the center), in every cycle. Thus, we divide

all vertices which are not the center and are not leaf vertices into groups of two.

I-a) general case:

If n− r− 1 is even, then s is maximized when we have n−r−1
2

cycles of length 3.

If n− r − 1 is odd, then s is maximized when we have n−r−4
2

cycles of length 3, and

one cycle of length 4.

I-b) with given minimum cycle length d:

17

In this case s is maximized when we have
⌊
n−r−d
d−1

⌋
cycles of length d, and one

extra cycle with remaining vertices (there are several possibilities here, we present a

simple one). Recall that bxc = n ∈ Z is the the closest integer to x ∈ R such that

x > n.

I-c) with given maximum cycle length d:

In this case, the result stays the same as in the general case.

II) Cacti with given s:

In this case we have n vertices and s cycles. From (2.5) we see that the weight is

maximized when r is maximized. The number of pendant edges is maximized when

every cycle is of minimum length. It is a well known result that the number of edges

in a cactus is n + s − 1. The number of pendant edges is the total number of edges

minus the number of edges lying in a cycle.

II-a) general case:

In this case, r is maximized when we have all s cycles being of length 3. Thus,

r = n− 2s− 1.

II-b) with given minimum cycle length d

In this case, r is maximized when we have all s cycles being of minimum length

d, i.e. r = n− s(d− 1)− 1.

II-c) with given maximum cycle length d

In this case, the result stays the same as in the general case.

CHAPTER 3

WIENER INDEX VS. DEGREE DISTANCE

The Wiener index of a graph G is the sum of the distances between all pairs of

vertices, denoted by

W (G) =
1

2

n∑
i=1

n∑
j=1

Li,j

where Li,j is the distance between two vertices vi, vj ∈ V (G) := {v1, v2, . . . , vn}. The

degree distance of a graph G, introduced as a degree analogue of the Wiener index

[6], is denoted by

D′(G) =
1

2

n∑
i=1

n∑
j=1

((di + dj)Li,j) =
n∑
i=1

n∑
j=1

(diLi,j) , (3.1)

where di and dj are the degrees of vi and vj.

In the past two decades, the properties of W (G) and D′(G) of various types

of graphs have been studied extensively. See for instance [2, 5, 7, 8, 21, 26, 27]

and the references therein. In many cases, the extremal values of the Wiener index

and teh degree distance are achieved by the same structures. This is not a surprise

considering the similarity in their definitions. Hence, it is natural to consider the

correlation between W (G) and D′(G). An elegant result for trees was achieved in

[12] and independently in [15], and is stated in the theorem below.

Theorem 3.0.4. D′(T) = 4W (T)− n(n− 1) for a tree T with n vertices.

For completeness we present a short proof in the next section, which also serves

as a starting point for similar study of other graphs in this chapter.

19

3.1 Preliminaries and Trees

We first provide a simple observation.

Lemma 3.1.1. Given a graph G, the following equation holds:

D′(G) = 4W (G)− 2n|E(G)|+ n(n− 1) + e(G),

where e(G) =
n∑
i=1

(
n∑
j=1
j 6=i

(di − 1)(Li,j + 1) + di)− 2W (G) is considered an ‘error term’.

Proof. From (3.1) we have

D′(G) =
n∑
i=1

n∑
j=1

(
(di − 1)(Li,j + 1) + Li,j − di + 1

)
=

n∑
i=1

n∑
j=1

(
(di − 1)(Li,j + 1)

)
+

n∑
i=1

n∑
j=1

Li,j −
n∑
i=1

n∑
j=1

di +
n∑
i=1

n∑
j=1

1

=
n∑
i=1

n∑
j=1

(
(di − 1)(Li,j + 1)

)
+ 2W (G)− 2n|E(G)|+ n2 (3.2)

where (di − 1)(Li,j + 1) counts the distances between all neighbors of vi with vj

(neglecting the one lying on the shortest path between vi and vj), except when i = j.

In the case when i = j, (di − 1)(Li,i + 1) = di − 1 undercounts by 1 the number of

vertices distance 1 away from vi; to compensate for the undercounting, we rewrite

(3.2) as

D′(G) =
n∑
i=1

(n∑
j=1
j 6=i

((di − 1)(Li,j + 1)) + di − 1
)

+ 2W (G)− 2n|E(G)|+ n2

=
n∑
i=1

(n∑
j=1
j 6=i

((di − 1)(Li,j + 1)) + di

)
+ 2W (G)− 2n|E(G)|+ n(n− 1).

Then, for any two vertices x and y (x 6= y) in V (G), the sum

n∑
i=1

(n∑
j=1
j 6=i

(di − 1)(Li,j + 1) + di

)
=

n∑
i=1

(n∑
j=1
j 6=i

(di − 1)(Li,j + 1)
)

+
n∑
i=1

di (3.3)

20

counts the distance between x and y once when vi is a neighbor of x on the path

between x and y and vj = y, and once when vi is a neighbor of y on the path between

x and y and vj = x. When di is summed over all i we get twice the number of edges,

which double counts all pairs of vertices distance 1 apart. Hence, we can write

e(G) :=
n∑
i=1

(n∑
j=1
j 6=i

(di − 1)(Li,j + 1) + di

)
− 2W (G)

Remark 3.1.2. Through out this chapter, we will focus on the distances that are

counted more than twice in (3.3), the sum of which gives us e(G).

Remark 3.1.3. Note that the sum of distances of pairs of adjacent vertices are

counted exactly twice by
n∑
i=1

di. So from now on we only need to consider the dis-

tances between non-adjacent vertices.

In the case of trees, we will show that the distance between every pair of vertices

is counted exactly twice in (3.3), or equivalently, e(G) = 0.

Proof. (of Theorem 3.0.4)

To see that (3.3) counts the distance between every pair of vertices twice, let x,

y, z, and w in V (T) be arranged as in Fig. 3.1. Note that z and x are not adjacent

or identical.

Then the distance between z and x is counted once when vi = w and vj = x,

another time when vj = z and vi = y. Notice that w (y) is the only neighbor of z (x)

on the path between z and x.

Since T is a tree, there is a unique path between z and x. Then for any other

21

z

...

w
. . .

y x

...

Figure 3.1: Distance between z and x is counted exactly twice.

combination of vi and vj, (di−1)(Li,j + 1) does not count the distance between z and

x. Hence, the distance between z and x is counted exactly twice.

Thus, (3.3) is exactly 2W (T) and

D′(T) =
n∑
i=1

(
n∑
j=1
j 6=i

(di − 1)(Li,j + 1) + di) + 2W (T)− 2n|E(T)|+ n(n− 1)

= 2W (T) + 2W (T)− 2n(n− 1) + n(n− 1)

= 4W (T)− n(n− 1)

3.2 Cycles and Unicyclic graphs

In the following two sections, we extend this result to cycles and unicyclic graphs,

and more generally to cacti. The ‘error term’ e(G) enables us to present the general

formula in a ‘neat’ manner that leads to its explicit form. Furthermore, we explore

the bounds of the error term.

A cactus is a connected graph G where any two cycles share at most one vertex.

Trees, cycles, and unicyclic graphs are all special cases of cacti. Let s be the number

22

of cycles in G. Clearly, s = 1 in cycles and unicyclic graphs.

In the next section, we discuss the simple cases of cycles and unicyclic graphs.

3.2.1 Cycles

For cycles, the following is easily verified from the definition.

Theorem 3.2.1. for a cycle Cn on n vertices we have,

D′(Cn) = 4W (Cn) = 4W (Cn)− n(n+ 1) + e(Cn),

where e(Cn) = n(n+ 1).

Proof. First notice that |E(Cn)| = n, from Lemma 3.1.1 we have

D′(G) =
n∑
i=1

(
n∑
j=1
j 6=i

(di − 1)(Li,j + 1) + di) + 2W (G)− n(n+ 1)

= 4W (G)− n(n+ 1) + e(G) (3.4)

For e(G), we only show the case for even n, the other case is similar.

Suppose G = C2m is a cycle of even length 2m. Label the vertices on the cycle

in a clockwise fashion as in Fig. 3.2, with 1 ≤ i < j ≤ 2m and v0 := v2m, v2m+1 := v1

respectively.

The maximum distance between two vertices on a cycle of length 2m is m. Note

that there are two paths between two vertices in a cycle.

Suppose 2 ≤ `−k ≤ m−2, which implies Lk+1,`+2 = Lk,`+1 = Lk−1,` ≤ m−1.

There is a unique shortest path between v` and any of vk−1, vk, or vk+1, namely the

23

vi−2

vi−1

vi

vi+1

vi+2

. . .
vj−2

vj−1

vj

vj+1

vj+2

. . .

Figure 3.2: Cycle of length 2m.

path going clockwise along the cycle. Since vk+1 (v`−1) is the only neighbor of vk (v`)

on the aforementioned path, (di − 1)(Li,j + 1) counts the distance between vk and v`

if and only if i = k + 1 and j = ` or j = k and i = ` − 1. Hence, Lk,` is counted

exactly twice. The case for `− k ≥ m+ 2 is similar.

If `− k = m− 1 (Fig. 3.3), the distance between vk and v` is counted once when

i = k+ 1 and j = ` and again when j = k and i = `− 1. Similarly for `− k = m+ 1.

Furthermore, when `−k = m+1, (dk+1−1)(Lk+1,`+1) incorrectly counts the distance

between vk and v` as being Lk,`+1 +1 = m+1. Similarly, (dk−1−1)(Lk−1,`+1) counts

the distance between vk and v` incorrectly as being m+ 1 when `−k = m−1. Hence

each case contributes m(m + 1) as i goes from 1 to m, for a total contribution of

2m(m+ 1) to e(G).

Similarly, when `− k = m, there is an extra value of 2m2 contributed to e(G).

Altogether, e(G) = 2m(m+ 1) + 2m2 = n(n+ 1). From (3.4) we have

D′(G) = 4W (G)− n(n+ 1) + n(n+ 1) = 4W (G).

Note that this can be easily verified from the definition of the degree distance. Since

24

vk−1

vk

vk+1

v`−1 v`

v`+1

Figure 3.3: Two paths of equal length between vk−1 and v` on C8.

all vertices on a cycle have degree two, we have

D′(G) =
1

2

n∑
i=1

n∑
j=1

(di + dj)Li,j =
1

2

n∑
i=1

n∑
j=1

(2 + 2)Li,j = 2
n∑
i=1

n∑
j=1

Li,j = 4W (G).

3.2.2 Unicyclic graphs

For unicyclic graphs, we prove the following theorem.

Theorem 3.2.2. For a unicyclic graph G on n vertices, we have

D′(G) = 4W (G)− n(n+ 1) + e(G),

with 2(n− λ) + n(λ+ 1) ≤ e(G) ≤ (n− λ+ 1)2 + nλ+ λ− 1 where λ is the length of

the unique cycle.

Proof. The formula for D′(G) follows immediately since |E(G)| = |V (G)| = n.

We first establish a formula for e(G). Let x1, x2, . . . , xλ be the vertices on the

cycle labeled in a clockwise fashion as in Fig. 3.4, and let X1, X2, . . . , Xλ be the

25

x1

X1

x2

X2

x3

X3

x4

X4
x5

X5

x6

X6

x7

X7

x8

X8

x9

X9 x10

X10

Figure 3.4: Unicyclic graph, λ = 10.

corresponding components after removing all edges on the cycle. Note that Xk is a

tree for k = 1, 2, . . . , λ.

First notice that the distances between any two vertices in Xk are counted exactly

twice since Xk is a tree, for k = 1, 2, . . . , λ. Suppose that vi ∈ Xk and vj ∈ X`, and

1 ≤ k < ` ≤ λ. For vi 6= xk, the shortest paths between vj and all but one neighbors

of vi must contain the path from vi to vj. Then the distance between vj and all

neighbors of vi not on the path between vj and vi is counted exactly twice.

Let λ be even (the case for odd λ is similar). Suppose further that vi = xk

and vj ∈ X`. If ` − k ≤ λ
2
− 2 or ` − k ≥ λ

2
+ 2, then the shortest paths between

vj and all but one neighbors of xk must contain the path from xk to vj. Then the

distance between vj and any vertex adjacent to xk not on the path between vj and

xk is counted exactly twice.

When ` − k = λ
2
− 1, the distance between vj and any neighbor of xk in V (Xk)

26

will be counted twice as discussed above. However, the distance between xk−1 and vj

is given by

1 + L(xk, vj) = 1 + L(xk, x`) + L(x`, vj) =
λ

2
+ L(x`, vj)

where L(v, u) is the distance between v and u. Note that this distance is also counted

for the case `−k′ = λ
2

+ 1. Hence, it is overcounted once for every vj ∈ V (X`). Thus,

the total contribution to e(G) as ` ranges from 1 to λ is

λ∑
`=1

∑
v∈V (X`)

(
λ

2
+ L(x`, v)) = n(

λ

2
) +

λ∑
`=1

∑
v∈V (X`)

L(x`, v).

When ` − k = λ
2
, the distance between xk−1 or xk+1 and vj ∈ V (X`) is miscounted

once as λ
2

+ 1 + L(x`, v). The contribution to e(G) is given by

λ∑
`=1

∑
v∈V (X`)

(
λ

2
+ 1 + L(x`, v)) = n(

λ

2
+ 1) +

λ∑
`=1

∑
v∈V (X`)

L(x`, v).

Hence,

e(G) = 2
λ∑
`=1

∑
v∈V (X`)

L(x`, v) + n(λ+ 1) = 2
λ∑
`=1

D` + n(λ+ 1).

Here D` =
∑

v∈V (X`)

L(x`, v) is often referred to as the distance function of x` in X`.

Next we analyze the value e(G). It is known that, with given number of vertices,

D` is minimized by the center of a star and maximized by one end of a path. Hence,

we have

|V (X`)| − 1 ≤ D` ≤
1

2
|V (X`)|(|V (X`)| − 1).

One can easily see from (3.2.2) that the value of e(G) is only changed when the values

of D` change, for ` = 1 to λ, since both the number of vertices and the cycle length

are constant. Then by minimizing D` for all ` we achieve a lower bound for e(G) by

making all vertices which do not lie on a cycle adjacent to x` for some 1 ≤ ` ≤ λ.

27

Similarly, one can show e(G) is maximized when one component contains a pendant

path and the other components are empty. Thus, we have

2
λ∑
`=1

(|V (X`)| − 1) + n(λ+ 1) ≤ e(G) ≤
λ∑
`=1

(
|V (X`)|(|V (Xl)| − 1)

)
+ n(λ+ 1),

implying that

2(n− λ) + n(λ+ 1) ≤ e(G) ≤ (n− λ+ 1)2 + nλ+ λ− 1.

3.3 General cacti

Let G be a cactus with s cycles and r edges not on any cycle. Label the cycles cα for

α = 1, 2, . . . , s, let λα be the length of cα and xα` be a vertex on cα with component

Xα
` for ` = 1, 2, . . . , λα. Define the distance function of xα` by Dα

` =
∑
v∈Xα

`

L(xα` , v).

Since |E(G)| = n+ s− 1, we immediately have

D′(G) = 4W (G)− n(n+ 2s− 1) + e(G).

Now we start by providing a formula for e(G) for general cacti, then we develop the

bounds of e(G).

3.3.1 On e(G)

As was the case for the unicyclic graph, for every cycle in G we have a contribution

of 2
λα∑
`=1

∑
v∈V (Xα

`)

L(xα` , vj) + n(λα + 1) to e(G). An explicit formula for e(G) is given

28

by

e(G) =
s∑

α=1

(
2

λα∑
`=1

Dα
` + n(λα + 1)

)
= 2

s∑
α=1

λα∑
`=1

Dα
` + n

s∑
α=1

(λα + 1)

= 2
s∑

α=1

λα∑
`=1

Dα
` + n(n− r + 2s− 1). (3.5)

3.3.2 Bounds and extremal cacti

We claim that, with given n, s, r and cycle lengths, the star-shaped cactus (a cactus

that has only one cut vertex as its center, see Fig. 3.5) minimizes e(G).

u

Figure 3.5: A star-shaped cactus with center u.

Proposition 3.3.1. Given a cactus G with order n, s cycles, r edges and any vertex

w ∈ V (G), there exists a star-shaped cactus with the same parameters and cycle

lengths with center u, such that
∑

v∈V (S) L(v, u) ≤
∑

v∈V (G) L(v, w).

Alternatively, we could state the proposition above in the following way: For a

cycle of length λα in a cactus G with the vertices on the cycle labeled xα1 to xαλ as

before, Dα
` is minimized when Xα

` is a star-shaped cactus. We skip the proof here, but

one can easily see the idea from Fig. 3.6 and Fig. 3.7. Notice that either operation

29

from G to H will reduce
∑

v∈V (G) L(v, w) unless we have a star-shaped cactus with

center u = w.

rrr
r rr r

r r
r r r

r
r
r rw

y

G

=⇒@
@

�
�

�
�
@
@

�
�@
@

@
@�
�
�
� @

@
@
@ �

�
rrr

r r
r rr rr

rr r
r r

r rw
y

H

@
@
�
�

�
�
@
@

@
@

�
�

�
�
@
@

�
�@
@

@
@�
�

Figure 3.6: Moving Xy to w.

rr r r rrr
r

rr
r rr r

w

y

G

=⇒
�� @@

@@

��

rr
r

r r rrr
r

rr
r rr

w

y

H

�� @@

@@

��

A
A
A

Figure 3.7: Appending y to w.

From the proposition, it follows that when G is a star-shaped cactus, e(G) is

minimized. The proof is omitted. Then for every cycle, Dα
` = 0 for all but one x`.

Consequently,

e(G) = 2
s∑

α=1

λα∑
`=1

Dα
` + n(n− r + 2s− 1)

≥ 2
s∑

α=1

(
r +

⌊
λα
2

⌋⌊
λα + 1

2

⌋)
+ n(n− r + 2s− 1)

= 2
s∑

α=1

(⌊λα
2

⌋⌊
λα + 1

2

⌋)
+ 2rs+ n(n− r + 2s− 1).

30

Remark: Of course, if one does not specify the cycle lengths, then certain bounds,

like the unicyclic case, can be achieved. Also, it is interesting to see that e(G) is

minimized by a star-shaped cactus, which minimizes a number of graphical indices

including W (G) ([21]) among cacti with given parameters.

CHAPTER 4

ALGORITHMS ON SWITCHING COMPONENTS IN TREES

A tree T = (V,E) is a connected, acyclic graph having vertex set V (T) and edge set

E(T). Recall that for u ∈ V (T), dT (u) = degreeT (u) denotes the degree of vertex u.

For two vertices u, v ∈ V (T), we denote the unique path which starts at u and ends

at v as PT (u, v). The distance, dT (u, v), between u and v is then the number of edges

in PT (u, v). If we let

gT (u) =
∑

v∈V (T)

dT (u, v), (4.1)

with dT (u, u) = 0, then the Wiener Index, σ(T), is given by

σ(T) =
1

2

∑
u∈V (T)

gT (u). (4.2)

We denote a tree T rooted at r ∈ V (T) as (T, r). Let hT (u) = dT (r, u) be the height

of u in (T, r). If hT (u) < hT (v) then we say u is an ancestor of v or v is a descendant

of u. If hT (u) = hT (v) − 1 for two vertices u and v, then we say u is the parent of

v and v is the child of u. When two vertices share the same parent we call them

siblings.

X`

. . .

X2 X1 Y1 Y2

. . .

Ym

v1 x` x2 x1 y1 y2 ym v2

Figure 4.1: A path between two leaf vertices, v1 and v2.

We say a vertex, v, is a leaf vertex if d(v) = 1. Suppose that v1x1x2x3 . . . xnv2

is a path in T from a leaf vertex, v1, to another leaf vertex, v2. After the removal of

all edges on the path there are still connected components left, each containing one

of x1, x2, . . . , xn. Label these components as X1, X2, . . . , Xn, respectively. Note that

32

the component of a leaf vertex contains only the leaf vertex. Figure 4.1 shows the

labelling of the vertices and components. Also, let X≤i be the subtree consisting of

all components Xj, all vertices xj, and all edges xjxj−1, where j ≤ i (as depicted in

Figure 4.2); and let X≥i be the subtree consisting of all components Xj, all vertices

xj, and all edges xjxj+1, where j ≥ i.

Xi Xi+1 X≤i Xi+1

v1
. . .

xi xi+1

. . .
v2

=⇒
xi xi+1

. . .
v2

Figure 4.2: X≤i is everything to the left of xixi+1 ∈ E(G).

Suppose G is a tree. The number of subtrees of G is denoted by f(G), and is equal

to the number of possible connected structures that can be formed from the vertices

and edges of G. Let fGxi(Xi) be the number of subtrees in the component Xi which

contain the vertex xi for i = 1, 2, . . . , n. Similarly, fGxi−1
(X≤i−1) and fGxi+1

(X≥i+1) are

the number of subtrees in X≤i−1 containing xi−1 and the number of subtrees in X≥i+1

containing xi+1.

The degree sequence of a graph is the multiset containing the degrees of all

non-leaf vertices in descending order. The following result was proven in [29]:

Theorem 4.0.2. Given the degree sequence and the number of vertices, the greedy

tree minimizes the Wiener Index.

Details of a greedy tree can be found in Chapter 5. We use an approach similar

to the one used in [29] to develop an algorithm to find the maximal tree wherein every

step in the algorithm leads to an increase in the number of subtrees. In Chapter 5

we use this algorithm to find the maximal tree and second maximal tree.

33

Definition 4.0.3. Suppose we have a path in a tree G between two leaf vertices,

v1x1x2 . . . xnv2, as in Figure 4.1. A ‘component-switch’, SGv1,v2(Xi, Xj), of two com-

ponents Xi and Xj is done by removing all edges with vertices in Xi adjacent to xi

and drawing an edge from each of those vertices to xj, and removing all edges with

vertices in Xj adjacent to xj and drawing an edge from each of those vertices to xi.

Thus, Xj is now the component of xi and Xi is the component of xj.

X1 Xi Xj Xn

v1 x1
. . .

xi
. . .

xj
. . .

xn v2

X1 Xj Xi Xn

v1 x1
. . .

xi
. . .

xj
. . .

xn v2

Figure 4.3: Example of a component switch.

Definition 4.0.4. Suppose we have a path in a tree G between two leaf vertices,

v1x1x2 . . . xnv2. A ‘tail-switch’, SGv1,v2(X≤i, X≥j), of two tails X≤i and X≥j (where

i < j) is done by removing all edges with vertices in X≤i adjacent to xi and drawing

an edge from each of those vertices to xj, and removing all edges with vertices in X≥j

adjacent to xj and drawing an edge from each of those vertices to xi.

Definition 4.0.5. Suppose that p = dG(xk) < dG(yk) = q in Figure 4.5. Without

loss of generality, let the Yk,i components for i = 1 to q be ordered from smallest to

largest by the number of subtrees. In this situation we have Y G
k = Y ′k

⋃
Y ′′k . Then,

letting H be the tree obtained by moving Y ′′k to xk, we will have dH(xk) = q and

dH(yk) = p. We will refer to the operation described above as a ‘degree-switch’,

denoted by H = SGv1,v2(∅xk , Y
′′
k) := RG

v1,v2
(xk, yk).

34

X≤i X≥j

xi
. . .

xj

X≤j X≥i

xi
. . .

xj

Figure 4.4: Example of a tail switch.

. . .
xk

. . .
yk

. . .

Yk,1

. . .

Yk,p Yk,p+1

. . .

Yk,q

XG
k

Y ′k Y ′′k

Figure 4.5: When p = d(xk) < d(yk) = q.

Consequently any subtree in Xi which previously contained xi will now contain

xj, and any subtree in Xj which previously contained xj will now contain xi. Note

that the positions of xi and xj on the path do not change.

Definition 4.0.6. Let G be a tree. Let S1 be a switching on a path in the tree G, and

denote the resulting tree as G1. Now perform a second switching, S2, with respect to

a path (possibly a different path than for S1) in G1, and call the resulting graph G2.

If we have m such switchings, then we say S1S2 . . . Sm is a ‘chain of switchings’ of

length m from G to Gm.

Remark 4.0.7. A chain of switchings may not be unique, that is there may exist

more than one chain of switchings to get from a tree G to a tree Gm.

35

4.1 Phase I of the switching algorithm

For convenience we introduce the following notations:

fGxk(Xk) = CG
k fGxk(X≤k) = CG

≤k fGxk(X≥k) = CG
≥k

Lemma 4.1.1. Suppose we have CG
≤k−1 < CG

≥k+2. If CG
k > CG

k+1 then switching Xk

and Xk+1 will result in an increase in the number of subtrees.

X≤k−1

Xk Xk+1

X≥k+2
xk−1 xk xk+1 xk+2

X≤k−1

Xk+1 Xk

X≥k+2
xk−1 xk xk+1 xk+2

Figure 4.6: G, before switching, and H, after switching.

Proof. Let G denote the tree prior to switching and H the tree after switching, as in

Figure 4.6. When switching two components, Xk and Xk+1, the only subtrees that

will affect the change in the total number of subtrees are those which have at least

one branch in Xk or Xk+1 and at least one branch in X≤k−1 or X≥k+2 (we can form a

bijection between all other subtrees in G with all other subtrees in H). All such trees

contain either xk or xk+1. Then the change in the number of subtrees is the number of

subtrees which contain xk or xk+1 in H minus the number of subtrees which contain

xk or xk+1 in G.

In G, the number of subtrees containing vertex xk can be counted as follows:

36

1. consider the number of subtrees in the tail X≤k which contain xk, given by

CG
k (1 + CG

≤k−1) where 1 counts the edge xkxk−1 and CG
≤k−1 is the number of

subtrees in X≤k−1 containing xk−1;

2. consider the number of subtrees containing the edge xkxk+1 and the number of

subtrees in the tail X≥k+1 containing xk+1, given by 1 + C≥k+1 = 1 + Ck+1(1 +

C≥k+2);

3. the number of subtrees in G containing xk is given by the product of the two

terms,

fxk(G) = CG
k (1 + CG

≤k−1)(1 + Ck+1(1 + C≥k+2)).

The number of subtrees containing xk+1 is found similarly, and is given by

fxk+1
(G) = CG

k+1(1 + CG
≥k+2)(1 + CG

k (1 + CG
≤k−1)).

In H, the number of subtrees containing xk is counted identically, but reversing

the roles of Ck and Ck+1 since they have been switched in G. Hence,

fxk(H) = CG
k+1(1 + CG

≤k−1)(1 + Ck(1 + C≥k+2)),

and

fxk+1
(H) = CG

k (1 + CG
≥k+2)(1 + CG

k+1(1 + CG
≤k−1)).

37

Consequently, we have

f(H)− f(G)

= CG
k+1(1 + CG

≤k−1)(1 + CG
k (1 + CG

≥k+2))

+CG
k (1 + CG

≥k+2)(1 + CG
k+1(1 + CG

≤k−1))

−CG
k (1 + CG

≤k−1)(1 + CG
k+1(1 + CG

≥k+2))

−CG
k+1(1 + CG

≥k+2)(1 + CG
k (1 + CG

≤k−1))

= (CG
k − CG

k+1)((1 + CG
≥k+2)− (1 + CG

≤k−1))

= (CG
k − CG

k+1)(C
G
≥k+2 − CG

≤k−1)

> 0

Notice that the number of subtrees containing both xk and xk+1 does not change

from G to H. In future proofs we ignore such subtrees, considering only the subtrees

containing exactly 1 of the vertices.

The following algorithm is based on the bubblesort algorithm, which sorts an

array of numbers from smallest to largest or vice versa. Here we apply it to the

switching of components on a path between two leaf vertices in G. Let C≤0 = C≥n = 1

refer to the number of nonempty subtrees in the components of our two leaf vertices,

v1 and v2, in the following algorithm.

Algorithm 4.1.2. (Phase I Switching Algorithm). Suppose G is a tree. Let

v1, v2 ∈ V (G) be leaf vertices. Let Label 1 be the labelling of the path from v1 to v2

denoted by v1x1x2 . . . xnv2, and let Label 2 be a re-labelling of the path from v2 to v1

given by v2x1x2 . . . xnv1. Then x1 is adjacent to v1 and xn is adjacent to v2 in Label

38

1 and x1 is adjacent to v2 and xn is adjacent to v1 in Label 2. H = PG
1 (v1, v2) is given

below.

H = (∅, ∅) {Empty graph}

m = 0

G0 = G

while H 6= Gm do

k = 1

H = Gm {Terminate program if no change in Gm}

Label xi’s according to Label 1.

while CGm
≤k−1 < CGm

≥k+2 do

if CGm
k > CGm

k+1 {Conditions of Lemma 4.6} then

m = m+ 1 {Update only if an increase will occur}

Gm = SGm−1
v1,v2

(Xk, Xk+1) {Increases # of subtrees}

k = k + 1

else

k = k + 1

end if

end while

k = 1

Relabel xi’s according to Label 2. {Repeat for Label 2}

while CGm
≤k−1 < CGm

≥k+2 do

if CGm
k > CGm

k+1 then

m = m+ 1

Gm = SGm−1
v2,v1

(Xk, Xk+1)

k = k + 1

39

else

k = k + 1

end if

end while

end while

In the algorithm, Gm updates only if there is an increase in the number of

subtrees from Gm−1 to Gm. There are a finite number of possible arrangements of the

components on the path, and if f(Gm) = f(Gm−k) for k > 0, then f(Gm−k) < f(Gm)

leads to a contradiction. Thus, the algorithm must terminate at some point.

X4 X3 X2 X1 Y1 Y2 Y3

. . .
x4 x3 x2 x1 y1 y2 y3

. . .

Figure 4.7: Re-labelling of path after Phase I Switching Algorithm.

In the graph G described by Figure 4.8, let

fGxk(Xk) = CG
k ,

fGyk(Yk) = DG
k ,

fGuk(Uk) = Ek,

fGxk−1
(X≤k−1 ∪ U≥1 ∪ Y≥1) = CG

≤k−1(1 + EG
≥1(1 +DG

≥1)),

fGyk−1
(Y≤k−1 ∪ U≤l ∪X≥1) = DG

≤k−1(1 + EG
≤l(1 + CG

≥1)),

fGxk+1
(X≥k+1) = CG

≥k+1,

fGyk+1
(Y≥k+1) = DG

≥k+1.

40

Corollary 4.1.3. Let G be a tree with a path from leaf vertex v1 to leaf vertex v2

that has been sorted by the Phase I Switching Algorithm. Let x1 be the vertex on the

path with the largest component, and label the rest of the vertices as in Figure 4.7,

(without loss of generality, let y1 and x2 be labelled so that D1 ≥ C2). Then

CG
1 ≥ CG

2 ≥ . . . and DG
1 ≥ DG

2 ≥

Proof. The proof is by contradiction. Suppose that the path cannot be labelled in

such a way. We know that the Phase I Switching Algorithm partially sorts both ends

of the path so that, after re-labelling according to Figure 4.8, CG
1 ≥ CG

2 ≥ . . . and

DG
1 ≥ DG

2 ≥ . . ., with EG
1 ≤ CG

1 and EG
` ≤ DG

1 where l ≥ 1 (otherwise, relabel so

that U1 is X1 or U` is Y1).

X2 X1 U1 U` Y1 Y2

. . .
x2 x1 u1

. . .
u` y2 y3

. . .

Figure 4.8: Tree leading to a contradiction.

Suppose l ≥ 2. For the algorithm not to have switched X1 and U1, it must be true

that CG
≥2 ≥ EG

≥2(1 + D≥1). Similarly, for Y1 and U` we have DG
≥2 ≥ EG

≤`−1(1 + C≥1).

Note that EG
≤`−1(1 + C≥1) > CG

≥2 and EG
≥2(1 +D≥1) > DG

≥2. Then we have

DG
≥2 ≥ EG

≤`−1(1 + C≥1) > CG
≥2 and

CG
≥2 ≥ EG

≥2(1 +D≥1) > DG
≥2,

which is a contradiction. For the case when ` = 1, replace EG
≤`−1(1 + C≥1) with CG

≥1

and EG
≥2(1 +D≥1) with DG

≥1, and the argument still holds.

41

4.2 Phase II of the switching algorithm

Although it does not involve the switching of components, we introduce Lemma 4.2.1

here to simplify the proofs of the other lemmas in this section. For the lemmas that

follow, suppose that our path is labelled as in Figure 4.7.

Lemma 4.2.1. Suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ CG

k−1 ≥ DG
k−1. Let

C = CG
k−1 + CG

k−1C
G
k−2 + . . .+ CG

k−1 . . . C
G
1 + CG

k−1 . . . C
G
1 D

G
1

+CG
k−1 . . . C

G
1 D

G
1 . . . D

G
k−1,

and

D = DG
k−1 +DG

k−1D
G
k−2 + . . .+DG

k−1 . . . D
G
1 +DG

k−1 . . . D
G
1 C

G
1

+DG
k−1 . . . D

G
1 C

G
1 . . . C

G
k−1.

Then C ≥ D. Similarly, suppose CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ CG

k−1 ≥ DG
k−1 ≥ CG

k . Let

C ′ = CG
k + CG

k C
G
k−1 + . . .+ CG

k . . . C
G
1 + CG

k . . . C
G
1 D

G
1

+CG
k . . . C

G
1 D

G
1 . . . D

G
k−1,

and

D′ = DG
k−1 +DG

k−1D
G
k−2 + . . .+DG

k−1 . . . D
G
1 +DG

k−1 . . . D
G
1 C

G
1

+Dk−1 . . . D
G
1 C

G
1 . . . C

G
k .

Then D′ ≥ C ′.

Proof. Suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ CG

k−1 ≥ DG
k−1. For j = 1, 2, . . . k−1,

clearly we have Ck−1 . . . Ck−j ≥ Dk−1 . . . Dk−j. Let j ≤ k − 1.

CG
k−1 . . . C

G
1 D

G
1 . . . D

G
j −DG

k−1 . . . D
G
1 C

G
1 . . . C

G
j

= CG
1 . . . C

G
j D

G
1 . . . D

G
j (CG

j+1 . . . C
G
k−1 −DG

j+1 . . . D
G
k−1)

≥ 0.

42

This implies C ≥ D. The other case, D′ ≥ C ′, can be shown similarly.

Lemma 4.2.2. Suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ CG

k−1 ≥ DG
k−1 for some k.

If DG
≥k > CG

≥k then switching DG
≥k and CG

≥k will result in in an increase in the number

of subtrees. Likewise, suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ DG

k−1 ≥ CG
k . If

CG
≥k+1 > DG

≥k, then switching CG
≥k+1 and DG

≥k will result in an increase in the number

of subtrees.

X≥3 X2 X1 Y1 Y2 Y≥3

x3 x2 x1 y1 y2 y3

Figure 4.9: Example depicting the conditions of Lemma 4.2.2.

Proof. Suppose we have the first case, with G being the tree prior to switching and H

the tree after switching. Let G ∼ X≥k be the subtree of G that excludes all subtrees

with branches in X≥k. The number of subtrees in G that contain xk and do not

contain yk is found as follows:

1. the number of subtrees in the tail X≥k is by definition C≥k;

2. the number of subtrees in {xkxk − 1}
⋃
X≤k−1

⋃
Y≥1 ∼ Y≥k is given by

fxk({xkxk − 1}
⋃

X≤k−1
⋃

Y≥1 ∼ Y≥k)

= 1 + CG
≤k−1(1 +D1(1 +D2(. . . (1 +Dk−1))))

= 1 + C;

43

3. finally, multiply the two terms together to obtain,

fxk(G ∼ Y≥k) = C≥k(1 + C).

Similarly, one can find

fyk(G ∼ X≥k) = D≥k(1 +D).

In H, simply reverse the roles of C≥k and D≥k. Hence,

fxk(H ∼ Y≥k) = D≥k(1 + C),

fyk(H ∼ X≥k) = C≥k(1 +D).

We now compute f(H)− f(G),

f(H)− f(G)

= DG
≥k(1 + C) + CG

≥k(1 +D)− CG
≥k(1 + C)−DG

≥k(1 +D)

= (DG
≥k − CG

≥k)(C −D) + 0

≥ 0.

Notice f(H)− f(G) > 0 if Cj > Dj for some 1 ≤ j ≤ k − 1. The other case can

be shown similarly.

Lemma 4.2.3. Suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ DG

2 ≥ . . . ≥ DG
k−1 ≥ CG

k and

CG
≥k+1 ≥ DG

≥k+1. If DG
k > CG

k then switching DG
k and CG

k will result in an increase

in the number of subtrees. Likewise, suppose we have CG
1 ≥ DG

1 ≥ CG
2 ≥ DG

2 ≥ . . . ≥

CG
k ≥ DG

k and DG
≥k+1 ≥ CG

≥k+2 for some k. If CG
k+1 > DG

k then switching CG
k and DG

k

will result in an increase in the number of subtrees.

44

X≥3 X2 X1 Y1 Y2 Y≥3

x3 x2 x1 y1 y2 y3

Figure 4.10: Example depicting conditions of Lemma 4.2.3.

Proof. Suppose we have the first case. Let G be the graph before switching Xk and

Yk and we let H be the tree after switching. We now consider the difference in the

number of subtrees. The following are obtained as before (excluding the subtrees

containing both xk and yk),

fxk(G ∼ Y≥k) = CG
k (1 + CG

≥k+1)(1 + C),

fyk(G ∼ X≥k) = DG
k (1 +DG

≥k+1)(1 +D),

fxk(H ∼ Y≥k) = DG
k (1 + CG

≥k+1)(1 + C),

fyk(H ∼ X≥k) = CG
k (1 +DG

≥k+1)(1 +D).

Hence,

f(H)− f(G)

= DG
k (1 + CG

≥k+1)(1 + C) + CG
k (1 +DG

≥k+1)(1 +D)

−CG
k (1 + CG

≥k+1)(1 + C)−DG
k (1 +DG

≥k+1)(1 +D)

= (DG
k − CG

k)[(1 + C≥k+1)(1 + C)− (1 +DG
≥k+1)(1 +D)]

≥ 0.

Notice f(H)− f(G) > 0 if Cj > Dj for some 1 ≤ j ≤ k − 1. The other case can

be shown similarly.

We now apply Lemmas 4.2.2 and 4.2.3 to formulate a new algorithm, combining

45

component-switches and tail-switches to sort a path. The algorithm will terminate

if the number of non-empty subtrees in both tails are equal to 1, indicating that the

tails contain only the endpoints of the path.

Algorithm 4.2.4. (Phase II Switching Algorithm). Suppose G is a tree. Let

v1, v2 ∈ V (G) be leaf vertices. Choose x1 to be the vertex whose component has the

largest number of subtrees. If the two vertices adjacent to x1 have an equal number of

subtrees in their components, without loss of generality let y1 be the vertex closest to

v1 and x2 be the other vertex, otherwise let y1 be the vertex with the larger number of

subtrees in its component. Label the other vertices according to Figure 4.7. Then H =

PG
2 (v1, v2) is given below.

H = (∅, ∅)

m = 0

Gm = G

k = 1

while CGm
≥k+1 6= 1 OR DGm

≥k+1 6= 1 {Terminate program if leaf vertex} do

if CGm
k < DGm

k {Conditions of Lemma 4.2.3} then

if CGm
≥k+1 < DGm

≥k+1 {Conditions of Lemma 4.2.2} then

m = m+ 1

Gm = SGm−1
v1,v2

(X≥k, Y≥k)

else

m = m+ 1

Gm = SGm−1
v1,v2

(Xk, Yk)

end if

end if

if DGm
k < CGm

k+1 {Repeat for yk and xk+1} then

46

if DGm
≥k+1 < CGm

≥k+2 then

m = m+ 1

Gm = SGm−1
v1,v2

(Y≥k, X≥k+1)

else

m = m+ 1

Gm = SGm−1
v1,v2

(Yk, Dk+1)

end if

end if

k = k + 1

end while

H = Gm

After the Phase II Switching Algorithm has finished, the path from v1 to v2 is

labelled in such a way that

CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ CG

n ≥ DG
n

and CG
≥1 ≥ DG

≥1 ≥ CG
≥2 ≥ . . . ≥ CG

≥n ≥ DG
≥n

for a path of odd length, 2n− 1, and

CG
1 ≥ DG

1 ≥ CG
2 ≥ . . . ≥ DG

n ≥ CG
n+1

and CG
≥1 ≥ DG

≥1 ≥ CG
≥2 ≥ . . . ≥ DG

≥n ≥ CG
≥n+1

for a path of even length, 2n.

4.3 Phase III of the switching algorithm

The final phase of the switching algorithm uses degree-switches to sort the degrees of

the vertices on the path..

47

Xn

. . .

X2 X1 Y1 Y2

. . .

Yn

v1 xn x2 x1 y1 y2 yn v2

Figure 4.11: Path of length 2n− 1 after Phase II switching algorithm.

Lemma 4.3.1. Let G be a tree, with a path from leaf vertex v1 to leaf vertex v2 that

has been sorted by the Phase I and Phase II Switching Algorithms. For k = 1, 2, . . . , n,

if d(xk) < d(yk) then performing an degree-switch, as described by Definition 4.0.5,

will result in an increase in the number of subtrees. Similarly, if d(yk) < d(xk+1) then

an degree-switch with X ′′k+1 will result in an increase in the number of subtrees, where

X ′′k+1 is defined in the same way as Y ′′k (See Figure 4.5).

Proof. We show only the case where d(xk) < d(yk), the other case follows similarly.

Let H be the tree after moving Y ′′k to xk. Also, let D′k = fyk(Y
′
k) and D′′k = fyk(Y

′′
k).

Notice that DG
k = D′kD

′′
k . The following are found as before,

fxk(G ∼ Y≥k) = CG
k (1 + CG

≥k+1)(1 + C),

fyk(G ∼ X≥k) = D′kD
′′
k(1 +DG

≥k+1)(1 +D),

fxk(H ∼ Y≥k) = CG
k D

′′
k(1 + CG

≥k+1)(1 + C),

fyk(H ∼ X≥k) = D′k(1 +DG
≥k+1)(1 +D).

Hence,

f(H)− f(G)

= CG
k D

′′
k(1 + CG

≥k+1)(1 + C) +D′k(1 +DG
≥k+1)(1 +D)

−CG
k (1 + CG

≥k+1)(1 + C)−D′kD′′k(1 +DG
≥k+1)(1 +D)

= (D′′k − 1)(CG
k −D′k)[(1 + CG

≥k+1)(1 + C)− (1 +DG
≥k+1)(1 +D)]

≥ 0.

48

Notice f(H)− f(G) > 0 if Cj > Dj for any 1 ≤ j ≤ n and if D′′k contains more

than one vertex.

The following algorithm applies Lemma 4.3.1. Notice that the algorithm termi-

nates after any degree-switch. This is because the conditions for an increase in the

number of subtrees as a result of a degree-switch requires the CG
k and DG

k components

to be ordered according to Figure 4.11, which is no longer certain after D′′k has been

moved to xk. Then the path must be resorted by the Phase I and II algorithms after

every degree switch.

Algorithm 4.3.2. (Phase III Switching Algorithm) Let G be a tree, with a path

from leaf vertex v1 to leaf vertex v2 that has been sorted by the Phase I and Phase II

Switching Algorithms. Then H = PG
3 (v1, v2) is given below.

for i = 1 to n do

if d(xi) < d(yi) then

H = RG
v1,v2

(xi, yi)

break {Terminate algorithm}

end if

if d(yi) < d(xi+1) then

H = RG
v1,v2

(yi, xi+1)

break {Terminate algorithm}

end if

end for

49

4.4 The complete switching algorithm

We now introduce our final algorithm which encompasses all three phases discussed

above, wherein every step of the algorithm increases the number of subtrees.

Algorithm 4.4.1. (Switching Algorithm) Let G be a tree with leaf vertices v1, v2, . . . , vl.

Then H = SA(G) is given below.

H = (∅, ∅)

J = G

m = 0

Gm = 0

while H 6= J {Terminate when every path is sorted} do

H = J

J = (∅, ∅)

for i = 1 to l do

for j = 1 to l do

while J 6= Gm{Terminate when path is sorted} do

J = Gm

Gm = PGm
1 (vi, vj) {Phase I}

Gm = PGm
2 (vi, vj) {Phase II}

m = m+ 1

Gm = P
Gm−1

3 (vi, vj) {Phase III}

end while

end for

end for

end while

50

Remark 4.4.2. Suppose H = SA(G), where G is a tree with given degree sequence.

Then for any path in H from one leaf vertex to another leaf vertex, we can label the

vertices on the path according to Figure 4.11. On such paths we have,

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ CH

n ≥ DH
n ,

CH
≥1 ≥ DH

≥1 ≥ CH
≥2 ≥ . . . ≥ CH

≥n ≥ DH
≥n,

and d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(xn) ≥ d(yn).

for paths of odd length 2n− 1, and

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ DH

n ≥ CH
n+1,

CH
≥1 ≥ DH

≥1 ≥ CH
≥2 ≥ . . . ≥ DH

≥n ≥ CH
≥n+1,

and d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(yn) ≥ d(xn+1).

for paths of even length 2n.

We introduce the following conjecture here:

Conjecture 4.4.3. Suppose that H is a tree such that for any path between leaf

vertices we have

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ CH

n ≥ DH
n

for a path of odd length 2n− 1, and

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ DH

n ≥ CH
n+1

for a path of even length 2n. Then we must have that

d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(xn) ≥ d(yn)

for the path of odd length, and

d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(yn) ≥ d(xn+1)

51

.

The proof of this conjecture would make the Phase III algorithm unnecessary

because every path between leaf vertices would already be sorted.

CHAPTER 5

MAXIMIZING THE NUMBER OF SUBTREES OF A TREE WITH

GIVEN DEGREE SEQUENCE

5.1 Introduction

Suppose we have a tree with given degree sequence. A greedy tree can be constructed,

as was listed in [29], in the following way:

Definition 5.1.1. Suppose the degrees of the non-leaf vertices are given, the greedy

tree is achieved by the following ‘greedy algorithm’:

i) Label the vertex with the largest degree as v (the root);

ii)Label the children of v as v1, v2, . . ., assign the largest degrees available to them

such that d(v1) ≥ d(v2) ≥ . . . ;

iii) Label the children of v1 as v11, v12, . . . such that d(v11) ≥ d(v12) ≥ . . . then do

the same for v2, v3, . . . respectively;

iv) Repeat (iii) for all the newly labelled vertices, always start with the children

of the labelled vertex with largest degree whose neighbors are not labelled yet.

Fig. 5.1 shows a greedy tree with degree sequence {4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2}.

r rrHHHH���� r rr
@@

HH
HH

��
�� r r r r rr r rrr

�� @@�� @@��

HH
HH

��
�� r rr r rr r rrr

@@�� @@�� @@��

HHHH

����

r
HHH

HHH

���
���

hhhhhhhhhhhhhhhhh

(((((((((((((((((

v

v4 v3 v2 v1

v42 v41 v32 v31 v23 v22 v21 v13 v12 v11

Figure 5.1: A greedy tree

The lemma below, found in [29], follows immediately from the definition of the

53

greedy tree.

Lemma 5.1.2. A rooted tree T with a given degree sequence is a greedy tree if:

i) the root v has the largest degree;

ii) the heights of any two leaves differ by at most 1;

iii) for any two vertices u and w, if hT (w) < hT (v), then d(w) ≤ d(u);

iv) for any two vertices u and w of the same height, d(u) > d(w)⇒ d(u′) ≥ d(w′)

for any successors u′ of u and w′ of w that are of the same height;

v) for any two vertices u and w of the same height, d(u) > d(w)⇒ d(u′) ≥ d(w′)

and d(u′′) ≥ d(w′′) for any siblings u′ of u and w′ of w or successors u′′ of u′ and w′′

of w′ of the same height.

From the Switching Algorithm developed in Chapter 4, Algorithm 4.4.1, we know

that the maximal tree has the following three properties for any path from one leaf

vertex to another:

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ CH

n ≥ DH
n ,

CH
≥1 ≥ DH

≥1 ≥ CH
≥2 ≥ . . . ≥ CH

≥n ≥ DH
≥n,

and d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(xn) ≥ d(yn).

for paths of odd length 2n− 1, and

CH
1 ≥ DH

1 ≥ CH
2 ≥ . . . ≥ DH

n ≥ CH
n+1,

CH
≥1 ≥ DH

≥1 ≥ CH
≥2 ≥ . . . ≥ DH

≥n ≥ CH
≥n+1,

and d(x1) ≥ d(y1) ≥ d(x2) ≥ . . . ≥ d(yn) ≥ d(xn+1).

54

for paths of even length 2n. Using these properties we find the maximal and second

maximal structures with respect to the number of subtrees.

5.2 Maximal tree

Theorem 5.2.1. Given the degree sequence and the number of vertices, the greedy

tree maximizes the number of subtrees for a tree with given degree sequence.

Proof. The optimal tree must possess the properties given by the Switching Algo-

rithm. We show that such a tree satisfies the properties of the greedy tree listed in

Lemma 5.1.2. The diametral path of maximal tree G is the path of greatest length

in G. If there are multiple paths having the greatest length, choose the path so that

C1 and C≥1 is at least as big on that path as any other path.

PROPERTIES (i) and (ii). Consider the diametral path, from leaf vertex v1

to v2 in G and label the vertices such that C1 ≥ D1 ≥ C2 ≥ . . . ≥ Cn ≥ Dn for a

path of odd length or C1 ≥ D1 ≥ C2 ≥ . . . ≥ Dn ≥ Cn+1 for a path of even length.

Suppose d(x1) = m, and that we label the children of x1 as x1,1, . . . , x1,m, with v1 in

the tail of x1,1 = x2 and v2 in the tail of x1,2 = y1. For the remainder of this case,

suppose that the path is of odd length. The other case is similar.

Now consider a path from v1 to another leaf vertex in the tail of x1,2 (if there

is not another leaf vertex in x1,2 choose the tail of x1,3, and so on). We know that

the length of this new path must be less than or equal to the length of the diametral

path. Recall that d(x1) ≥ d(x2) ≥ . . . ≥ d(xn). If we label the remaining vertices

on the path x1,2 = u1, u2, . . . uk, we must have n − 1 ≤ k ≤ n. Otherwise we would

not have d(x1) ≥ d(u1) ≥ d(x2) ≥ . . . ≥ d(un−1) ≥ d(xn) or d(x1) ≥ d(u1) ≥ d(x2) ≥

55

. . . ≥ d(xn) ≥ d(un), which must be true of every path between leaf vertices for the

optimal tree.

Repeating this argument for paths between v1 and any other leaf vertex not in

the tail of x1,1 gives us that for all leaf vertices, vi, not in the tail of x1,1, the length

of the path from v1 to vi is equal to 2n− 1 or 2n− 2. By a similar argument one also

gets that the path between vi and all leaf vertices in the tail of x1,1 must have length

equal to 2n− 1 or 2n− 2. Thus, if we root G at x1, we must have that d(x1) has the

largest degree and that the heights of all leaf vertices differ by at most 1.

PROPERTIES (iii), (iv), and (v). Consider a path from any leaf vertex

vi to any other leaf vertex vj. Suppose that u,w ∈ V (G) lie on the path, and

that h(u) < h(w). Then if z is the closest common ancestor of u and w, we have

that u is closer to z than w is to z. We can label the path such that z = x1 and

d(x′1) ≥ d(y1)
′ ≥ d(x′2) . . ., and thus d(z, u) < d(z, w) =⇒ d(u) > d(w).

For u and w the same height, with d(u) > d(w), suppose z is the closest common

ancestor. For any path between leaf vertices containing u and w, we can label the

path such that d(x′1) ≥ d(y1)
′ ≥ d(x′2) Thus, we have u = x′i, w = y′i, and for any

successor u′ of u and successor w′ of w having the same height, the d(u′) ≥ d(w′).

5.3 Second maximal tree

We now know that the structure of the tree produced by the switching algorithm is

a greedy tree. The greedy tree is the unique structure that maximizes the number

of subtrees of a tree, thus we now know that the algorithm always converges to the

56

maximal tree. The following corollary then follows immediately from Theorem 4.4.1.

Corollary 5.3.1. Starting with the optimal tree, any tree with the same degree se-

quence can be achieved in a finite number of switchings wherein every switching leads

to a decrease in the optimal tree.

Proof. Let G be the optimal tree and H be the tree we wish to obtain. Then G =

SA(H) is a chain of switchings from H to G wherein every switch leads to an increase

in the number of subtrees. By reversing the order of the chain of switchings we obtain

a new chain of switchings from G to H wherein every switch leads to a decrease in

the number of subtrees.

Corollary 5.3.2. Let G be the optimal tree. The n-th maximal tree can be achieved

with at most n− 1 switches from the maximal tree.

Proof. Let H be the n-th maximal tree. There exists a chain of switchings of length

m to get from H to G wherein every switch leads to a tree with a greater number of

subtrees than the previous tree. Then if m > n− 1, there exists at least n trees with

a greater number of of subtrees than H, which contradicts our assumption that H is

the n-th optimal tree.

Hence, we now know that the second maximal tree is exactly one switch away

from the maximal tree. The switch could be a component switch, tail switch, or an

degree-switch.

57

Lemma 5.3.3. Let G be the maximal tree. For any component switch or degree-

switch outlined by Phase I, II, or III of the Switching Algorithm, there exists a tail

switch which produces a decrease in the number of subtrees at least as small as that

of the component switch or degree-switch, i.e. the tree produced by the tail switch has

at least as many subtrees as either of the trees produced by a component switch or

degree-switch.

Proof. CASE 1. Suppose we have the situation outlined in Lemma 4.1.1. In the

maximal tree we have Xk < Xk+1 and we wish to switch them to make a decrease

in the number of subtrees. Notice that switching the components is the same as

switching the tails in that scenario, as desired.

CASE 2. Suppose that we have the situation outlined in Lemma 4.2.3. In the

maximal tree we have Xk ≥ Yk and we wish to switch them to make a decrease in the

number of subtrees. If Xk = Yk, then switching them will result in no change, thus,

assume Xk > Yk. Notice that the branches that make up Xk and Yk are actually tails

of paths between different pairs of leaf vertices. Recall that d(xk) ≥ d(yk). Hence,

if Xk has only one branch, this forces Yk to have only one branch as well. Thus,

switching Xk and Yk is effectively a tail switch and we are done.

Assume now that Xk has more than one branch. Because G is a greedy tree,

every branch in Xk has at least as many subtrees as the branch with the most subtrees

in Yk. Then switch the smallest branch in Xk with the largest branch in Yk. One can

easily find, using similar methods used in the proofs of Lemmas 4.1.1, 4.2.3, and 4.3.1,

that such a tree has more subtrees than the tree produced by switching Xk and Yk.

The same can be shown for the switching of Yk with Xk+1.

58

CASE 3. Suppose we have the situation outlined in Lemma 4.3.1, with d(xk) >

d(yk) (d(yk) > d(xk+1)). Similar to the proof for CASE 2, one can show that

switching the smallest branch of Xk (Yk) with the largest branch of Yk (Xk+1) will

result in a smaller decrease than swapping the degrees ofXk and Yk (Yk andXk+1).

As a consequence of Lemma 5.3.3, we have that the second maximal tree is the

maximum of all trees that are one tail switch away from the optimal tree.

5.4 Conjectures and future work

The following conjectures would help to reduce the number of tail switches we must

check in order to find the second maximal tree.

Conjecture 5.4.1. Suppose k ≥ 2, and that switching C≥k and D≥k decreases the

number of subtrees. Then switching D≥k and C≥k+1 or C≥k+1 and D≥k+1 will produce

a smaller decrease.

Conjecture 5.4.2. The second optimal tree is obtained by a tail switch within the

two levels of greatest height in the optimal tree.

CHAPTER 6

CONCLUSIONS

6.1 On the Randić index and extremal cacti

We make a modest progress on generalizing the results on extremal cacti for the

Randić index by showing that the extremal cacti have no cut edge unless it is a pen-

dant edge. This result leads to the other case that is based on a plausible conjecture,

and is proven for several specific α. The conjecture might be an interesting problem

in the research of analytic number theory or differential equations. The approaches

discussed can be easily employed to study the same problem for any specific value of

α. In particular the case α = 1 is presented and variations of this problem can be

easily developed.

6.2 The degree distance v.s. the Wiener index

We considered the correlation between the degree distance and the Wiener index of

several graphs. In particular, a nice formula with an error term is presented for cycles,

unicyclic graphs, and cacti in general. We also analyzed this error term for unicyclic

graphs and cacti, providing sharp bounds and the extremal cacti that achieve these

bounds. Interestingly some of these extremal structures coincide with the ones that

provide extremal values of some other graphical indices. A potential next step is

to extend this result to hexagon systems and conformational changes of molecular

graphs.

60

6.3 Algorithms on switching components in trees

A switching algorithm is developed, wherein every step in the algorithm is shown to

increase the number of subtrees. The final result of this algorithm is a characterization

of the maximal tree. In Chapter 5, the algorithm is used to find the unique tree that

maximizes the number of subtrees among all trees with the given degree sequence.

The algorithm itself is not very efficient. To potentially increase the efficiency of

the algorithm, a conjecture is introduced which would make the third phase of the

algorithm unnecessary.

6.4 Maximizing the number of subtrees

Using the algorithm developed in Chapter 4, we find that the tree resulting from the

switching algorithm is the unique structure that maximizes the number of subtrees.

Several lemmas are then presented and proven, and two conjectures are introduced,

to characterize the second maximal tree.

61

REFERENCES

[1] Bollobás, B., Erdos, P., Graphs of extremal weights, Ars Combin. 50 (1998),
225–233.

[2] Dankelmann, P., Gutman, I., Mukwembi, S., Swart, H.C., On the degree distance
of a graph, Discrete Appl. Math. 157 (2009), 2773–2777.

[3] Delorme, C., Favaron, O., Rautenbach, D., Closed formulas for the numbers of
small independent sets and matchings and an extremal problem for trees, Discrete
Applied Math. 130 (2003), 503–512.

[4] Delorme, C., Favaron, O., Rautenbach, D., On the Randić index, Discrete Math.
257 (2002), 29–38.

[5] Dobrynin, A.A., Entringer, R., Gutman, I., Wiener index of trees: theory and
applications, Acta Appl. Math. 66 (2001), 211–249.

[6] Dobrynin, A.A., Kochetova, A.A., Degree distance of a graph: a degree analogue
of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994), 1082–1086.

[7] Du, Z., Zhou, B., Minimum Wiener Indices of Trees and Unicyclic Graphs of
Given Matching Number, MATCH., 63 (1) (2010), 101–112.

[8] Fischermann, M., Hoffmann, A., Rautenbach, D., Székely, L.A., Volkmann, L.,
Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (1–3)
(2002), 127–137.

[9] Gray, D., Wang, H., On the Randić index and extremal cacti, To appear in
Congressus Numerantium.

[10] Gray, D., Wang, H., The degree distance v.s. the Wiener index. Submitted.

[11] Gray, D., Wang, H., Maximum number of subtrees for a tree with given degree
sequence, In preparation.

62

[12] Gutman, I., Selected properties of the Schultz molecular topological index, J.
Chem. Inf. Comput. Sci., 34 (1994), 1087–1089.

[13] Jelen, F., Triesch, E., Superdominance order and distance of trees with bounded
maximum degree, Discrete Appl. Math. 125 (2-3), 225–233.

[14] Kirk, R., Wang, H., Largest number of subtrees of trees with given maximum
degree, SIAM Journal on Discrete Mathematics 22 (3) (2008), 985–999.

[15] Klein, D.J., Mihalić, Z., Plavšić, D., Trinajstić, N., Molecular topological index:
A relation with the Wiener index, J. Chem. Inf. Comput. Sci., 32 (1992), 304–
305.

[16] Li, X., Shi, Y., A Survey on the Randić index, Match 59 (2008), 127-156.

[17] Lin, A., Luo, R., Zha, X., A sharp lower bound of the Randić index of cacti with
r pendants, Discrete Applied Mathematics 156 (2008), 1725–1735.

[18] Lu, M., Liu, H., Tian, F., The connectivity index, MATCH Commun Math.
Comput. Chem. 51 (2004), 149–154.

[19] Lu, M., Zhang, L., Tian, F., On the Randić index of cacti, MATCH Commun
Math. Comput. Chem. 56 (2006), 551–556.

[20] Liu, H., Lu, M., Tian, F., Trees of extremal connectivity index, Discrete Applied
Math. 154 (2006), 106–119.

[21] Liu, H., Lu M., A Unified Approach to Cacti for Different Indices, MATCH., 58
(2007), 193–204.

[22] Randić, M., On characterization of molecular branching, J. Am. Chem. Soc. 97
(1975) 6609–6615.

[23] Rautenbach, D., A note on trees of maximum weight and restricted degrees,
Discrete Math. 271 (2003), 335–342.

[24] Szeḱely, L.A., Wang, H., On subtrees of trees, Adv. Appl. Math. 34 (2005),
138–155.

63

[25] Szeḱely, L.A., Wang, H., Binary trees with the largest number of subtrees with
at least one leaf, Congressus Numerantium 177 (2005), 147–169.

[26] Tomescu, A.I., Properties of connected graphs having minimum degree distance,
Discrete Appl. Math. 309 (2009), 2745–2748.

[27] Tomescu, A.I., Unicyclic and bicyclic graphs having minimum degree distance,
Discrete Appl. Math. 156 (2008), 125–130.

[28] Wang, H., Extremal trees with given degree sequence for the Randić index,
Discrete Mathematics 308 (2008), 3407–3411.

[29] Wang, H., The extremal values of the Wiener index of a tree with given degree
sequence, Discrete Applied Mathematics 156 (2008), 2647-2654.

[30] Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem.
Soc. 69 (1947), 17–20.

	Graphical Indices and their Applications
	Recommended Citation

	tmp.1375238371.pdf.LRcCe

