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ABSTRACT

Carbon nanotubes-based hybrid and composite materials, recently, are a hot topic in
research about advanced materials. Nanotubes are functionalized and hybridized with both
organic and inorganic compounds for designed applications. Hybrid materials can be fabricated
by direct or in-direct method. Some investigations about electrical, optical and photocatalytic
properties of hybrid materials would be discussed.
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1. INTRODUCTION

Since discovered by lijima in 1991 [1], carbon nanotubes (CNTs), due to its outstanding
electrical, mechanical properties, are one of the most attractive nanostructure materials in recent
decades. Because of the limit of technology, CNT-based electronic devices, however, is only
fabricated and tested in laboratory. To make the most of CNTs’ outstanding properties for real
applications, recently, researchers have given lot efforts to study CNT-based hybrid materials for
real applications such as energy storage, supercapacitor, biosensor, gas sensor, cooling
material... [2 - 20]. The CNTs-based hybrid material, for a designed application, was
synthesized by corresponding method with the suitable functional material. This paper will give
an overview of recent reports on developing CNTs-based hybrid materials.

2. CNT-BASED HYBRID MATERIALS
2.1. CNT-based hybrid materials: recent researches and potential applications

In studying about hybrid materials, researchers hope to combine the advantages of different
components and widen the potential applications of materials. CNTs walls are inert with
chemical reaction, so it is very hard to use in chemical or bio-application. To use CNTs in bio-
application, ligands or functional organic agents were attached or covered on CNTs wall. These
hybrid materials have both the large surface area, high conductivity of CNTs and the selectivity


https://core.ac.uk/display/229064961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nguyen Cong Tu, Nguyen Huu Lam

of organic agents. Recently, A.L. Yost et al. functionalized CNT with organic ligands in
microfluidic platform to selectively detect expected organic compound [2]. Using the
conductivity and high efficiency of absorbing light of CNTs, Strano et al. combined MWCNT

Figure 1. SEM image of foliate-like graphenated CNT [14] (Reprinted from [14] with permission of
Cambridge University Press. Copyright © 2012 Cambridge University Press).

Also to use up the outstanding electric properties of CNT in energy storage application or
supercapacitor, CNT is modified with graphene which has larger surface areca and the same
crystal structure with CNTs [12-16]. Figure 1 shows the foliate-like graphenated CNT, which
was developed by C.B. Parker et al. to improve the operation of CNT-based capacitor [14].
Using the similar structure, Chen et al. aimed to enhance the performance of CNT-based electric
and optoelectronic devices [15]. In these structures, researchers combined the high mobility of
carriers in CNT with the high density of carrier in graphene’s edge.
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Figure 2. A diagram noble metal-decorated CNTs-based gas sensor device (left) and FESEM image of
CNT layer coated with 4 nm Ag (right).

CNTs not only are modified with graphene which has similar structure with CNTs, but also

are made composite with different nanostructures of metal [21 - 28], metal oxide semiconductor
[29 - 36, 39 - 54], and pure/compound semiconductor [37, 38]. The remarkable advantage of
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CNT-based materials is mostly showed in gas sensor application, photocatalytic activity. In
Figure 2, there is a simple configuration of gas sensor using noble metal-coated CNT and the
FESEM image of CNT layer coated with 4 nm Ag. By using Ag or Pt nanoparticles, N.H. Lam
et al. clearly improved the NH3 sensitivity of gas sensor (Figure 3) [27]. The similar results are
observed in researches using the hybrid materials of CNT and metal oxide semiconductor
nanostructures. N. V. Hieu et al. combined multi-walled CNTs (MWCNTs) with SnO, and ZnO
nanostructures which showed the gas sensitivity at high temperature 500 °C [36].

10 T T T T T T
=m=Pristine CNTs
9 [=@#=CNT-Ag 2 nm b
sl CNT-Ag 4 nm 1
=w=CNT-Pt 2 nm
—_ Tk CNT-Pt 4 nm 4
2
3 6 4
g 5 = .—__"..-—-. -
o af — !
<
® 3t ./'/ ]
2 o
- / =-____-: -
1| f e ]
0 f'lf PR [P WS ISR RR R U R
0 10 20 30 40 50 60 70 80

NH; concentration (ppm)

Figure 3. Comparison of responses of pristine CNT-, CNT/Pt- and CNT/Ag- based sensors under NH; gas
concentration ranging from 0-70 ppm [27].

To utilize CNT for optical, electrical applications, CNTs have been mostly hybridised with
nanostructures of semiconductor oxides, especially wide bandgap semiconductor oxides such as
ZnO [31, 33, 39, 40], TiO2 [41 - 48], WOs [48 - 54], SnO, [32, 36]... The wide bandgap
semiconductor oxides such as ZnO (3.37 eV), TiO, (3.2-3.4 eV), WO3 (2.4 - 3.2 eV) have been
studied for a long time because of their distinguish properties, and their high potential in
electronics, gas sensor, environmental controlling and recently in electrochromic applications
[55 - 62]. ZnO, TiO,, and WO;, due to the lack of oxygen atom, are natural n-type
semiconductors. In combination with CNT, they are hoping to create p-n junctions between CNT
and semiconductor oxides.

Figure 4. Schematic of a proposed model for SWCNT-enhanced photocatalysis of TiO2 [43] (Reprinted
with permission from [43]. Copyright © 2008 American Chemical Society).
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Moreover, ZnO, TiO,, and WO; are wide bandgap semiconductors with the bandgaps are
closed to near UV range (~ 360 nm, 385 nm, 480 nm, respectively). Recently, the photocatalytic
activities of TiO2, WO3 were investigated in degradation measurements with methylene blue
and phenol with UV light. To enhance the photocatalytic activity of TiO, and WOs;, researchers
combined them with CNTs [43-48]. Figures 4 illustrates the interaction between CNT and
nanostructure of semiconductor oxides - TiO, in enhancement of photocatalytic activities. In this
combination, researchers also hope to use the high efficiency of absorbing light of CNT to create
photocatalytic materials which work properly with visible light.

2.1. Synthesis CNT-based hybrid materials

To synthesize CNT-based hybrid materials, there are two main methods. The 1st method is
to mix the component with CNT in solution, then deposit the solution on substrate or
interdigitated electrodes — the indirect method [19 - 26, 29 - 31]. In the 2nd method — direct
method, CNT scaffold/net is grown on substrate, then functional component is deposited directly
on as-grown CNT scaffold/net [27, 31 - 35, 39, 41]. J.M. Tulliani et al. used both two methods
and concluded that the gas sensitivity of ZnO/CNT hybrid materials fabricated by 1st method is
lower than the one fabricated by 2nd method. Moreover, with the 1st method, it is very hard to
make the sustainable contact between hybrid material and substrate [31].

2.2. Characterizing CNT-based hybrid materials

In studying about CNT-based hybrid materials, questions about the role of each component
and the interaction between components are still not answered clearly. To get more knowledge
about these problems, some efforts have been made. Some groups used the XPS measurement
[15, 31, 41], others used Raman microscopy [15, 18, 21, 29] to get the information from hybrid
materials. M. Baro et al. used Raman spectroscopy to evaluate the effect of different
nanoparticles on MWCNT [21]. In Figure 5, there are Raman spectra of pristine MWCNT and
different metal/alloy/metal oxide semiconductor nanoparticles — coated MWCNTSs. The ratio
Ip/Ig of coated MWCNTs is higher than pristine MWCNT (Ip: the intensity of signal from dis-
ordered carbon; Ig: The intensity of signal from graphitic carbon). It is explained by the contact
between nanoparticles and CNTs. These contacts act as defects on CNTs’ walls, which results to
increase the ratio of Ip/Ig.

To investigate the electric properties of hybrid materials, researchers used the impedance
spectroscopy to evaluate the role of each component and effect of the interactions between
components in hybrid materials [15, 34]. E. Llobet et al. built the equivalent circuit and measure
the impedance spectrum of simple configuration sensor using plasma-treated MWCNTSs. The
resistance and capacitor of plasma-treated MWCNTSs are used to examine the sensitivity of
sensor with volatile organic compound [34].
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Figure 5. The Raman spectra of pure MWCNTs and different metal-, alloy-, metal oxide semiconductor-
decorated MWCNTs [21]. (Reproduced from [21] with permission of The Royal Society of Chemistry).
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Figure 6. DRS patterns of MWCNT, TiO,, and MWCNT-TiO, with different MW CNT content. (a) TiO,;
(b) 1.25 wt%,; (¢) 2.5 wt%; (d) 5 wt%; (e) 10 wt%,; (f) 20 wt%; (g) MWCNT. (Reproduced from [63] with
permission of Hindawi Publishing Corporation. Copyright © 2014 Ke Dai et al.).

The optical properties of CNT-based hybrid materials are also investigated [5, 15, 28, 33,
35, 41]. P.V. Kamat et al. measured the photoluminescence spectra and the time-integrated
photoluminescence intensity of ZnO nanoparticles in solution with different CNT concentrations
[33]. P.V. Kamat et al. observed that PL intensity of ZnO nanoparticles (NPs) and
relaxation/emission time decreases when CNT concentration increases. These phenomena are
explained by the contacts between nanoparticles and CNT. These contacts act as bridge to
transfer carriers from nanoparticles to CNT. When ZnO NPs are excited by suitable light,
electron-hole pairs are created in NPs. If there is no contact with CNT, the electron-hole will
recombine in very short time and emit photons (radiative recombination). But because of the
contact, carriers can transfer easily from NPs to CNTs and do not participate the radiative
recombination. It means that the contact acts as a non-radiative recombination channel. When
the concentration of CNTs increases, the number of contacts increases and, then, increases the
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contribution of non-radiative recombination and increase the number of channels participating
recombination process (both radiative and non-radiative). It causes the less radiative
recombination (lower PL intensity), and shorter life time of carriers (shorter relaxation or decay
time). This mechanism also explained the increase of the Diffuse Reflectance Spectra (DRS)
with the concentration of MWCNT concentration as shown in Figure 6.

4. CONCLUSIONS

In conclusion, the CNTs-based hybrid materials are very attractive and promising topic. By
functionalized with different materials: organic, metal, semiconductor, polymer... the potential
application of CNTs was widened. The large surface area of CNTs is used in biotechnology; the
high mobility of carriers is used in supercapacitors; the high efficiency of light absorbing was
used in photosynthesis and photocatalytic... There is still plenty work for researchers to develop
applications of CNTs.
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TOM TAT

BAI BAO TONG QUAN: VAT LIEU LAI HOA DUA TREN NEN ONG NANO CACBON

Nguyén Cong T, Nguyén Hitu LAm

Vién Vit Iy ky thudt, Trieong Pai hoc Bach khoa Ha Néi, S6 1, Pai Co Viét, Ha Néi

Email: tu.nguyencong@hust.edu.vn

Vit liéu lai hoa va vat liéu composit dua trén nén dng nand cacbon dang 1a mot hudng

nghién ctru thu hit duoc nhidu sy quan tim ciia cac nha khoa hoc trén thé gisi. Ong nané cac
bon dugc chirc nang hda hay dugc lai hoa véi ca cac hop chat hitu co va vo co cho céac img dung
khac nhau. Vit liéu lai hoa c6 thé dugc tong hop bang phuong phap truc tiép hay gian tiép. Mot
s6 nghién ctru vé tinh chét dién, tinh chat quang va tinh chat quang xuc tac cua vat liéu lai hoa s&
duoc thao luan trong bai bao.

Tir khéa: CNT, vat lidu lai hoa, ban dan 6xit kim loai.
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