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CHAPTER 1

INTRODUCTION

The Schrödinger equation, known for its applications within the field of quantum mechan-

ics, has many forms due to the potential of the original equation. We show here the general

linear case 
i∂tu−∆xu+V (x)u = 0, (x, t) ∈ Rn×R,

u(x,0) = u0(x)
. (1.1)

The equation V (x) is known as the potential and is the source of variation for Schrödinger

equations. If the potential is equal to zero, then it becomes the free-particle equation
i∂tu−∆xu = 0 (x, t) ∈ Rn×R

u(x,0) = u0(x)

which can be solved through separation of variables. In fact, the one dimensional solution,

u(x, t)=Ceiλ 2t−iλx, is fairly straight forward. Now we choose the inverse-square multiplied

by a constant as our potential.
i∂tu−∆xu+ a

|x|2 u = 0, (x, t) ∈ Rn×R,

u(x,0) = u0(x),
(1.2)

where a > −(n−2)2

4 . The function u0(x) is the initial condition of (1.2), ∆x is the Laplacian

operator with respect to x, and ∂tu is the first derivative of u with respect to time. The

third piece of the function, a
|x|2 , is the only portion that is open to change without leav-

ing the structure of a Schrödinger equation. Figuring out solutions to various Schrödinger

equations with different potentials, or determining restrictions on those solutions, is en-

lightening. In [2], Miao, Zheng and Zhang determined maximal solutions for Schrödinger

equations in the form of

u(x, t) =
∞

∑
k=0

d(k)

∑
l=1

Yk,l(θ)
∫

∞

0
(rρ)−

n−2
2 Jν(k)(rρ)eitρ2

b0
k,l(ρ)ρ

n−1dρ. (1.3)
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We will use a basis constructed from [2] to attempt work towards a solution of the

two dimensional Schrödinger equation with several different potentials. The different po-

tentials include a constant potential a, a
|x|2+ε , a

|x|2−ε , where a is still a positive real number,

ε is between 0 and 1 and m is an integer and finally a complex potential of the form aeiφ

|x|2

where a > 0 and −π < φ < π . To find their solutions, Miao, Zheng and Zhang used a

coordinate transform, the Hankel transform and ordinary differential equation methods[2].

The coordinate transform relies on spherical harmonics and in essence takes x and replaces

it with rθ , where r ∈R+ and θ ∈ Sn−1(R). This alteration opens the door, and we can find

a series representation of the initial condition

u0(x) =
∞

∑
k=0

δk

∑
l=0

α
0
k,l(r)Yk,l(θ), (1.4)

where α0
k,l(r) is a radial function, and Yk,l(θ) is a spherical harmonic function that is or-

thogonal to any other Yj,m(θ) as long as both k 6= j and l 6= m. Equation (1.4), through

separation of variables, becomes

u(x, t) =
∞

∑
k=0

δk

∑
l=0

αk,l(r, t)Yk,l(θ). (1.5)

In both equations, δk =
2k+n−2

k

(n+k−3
k−1

)
and it can also be observed that for n = 2, δk is a

constant equal to 2 and thus independent of k.
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CHAPTER 2

BESSEL FUNCTIONS AND THE HANKEL TRANSFORM

2.1 PROPERTIES OF THE BESSEL FUNCTIONS

In order to discuss Bessel functions, we must first discuss the Gamma function. The

Gamma function is defined as the following integral [6]

Γ(r) =
∫

∞

0
e−ttr−1dt r > 0. (2.1)

We can consider it to be related to the factorial function because it also has a property

similar to factorials [6],

rΓ(r) = Γ(r+1). (2.2)

The primary use for the Gamma function in this thesis will be as part of the Bessel functions

of the first kind, which are solutions of the following partial differential equation

1
z

∂

∂ z
z
∂u
∂ z

+

(
1− w2

z2

)
u = 0. (2.3)

Proposition 2.1. The solution to the Bessel equation

1
z

∂

∂ z
z
∂u
∂ z

+

(
1− w2

z2

)
u = 0

is

Jw(z) =
∞

∑
j=0

(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w
(2.4)

where w is a real number and is known as the order of the function [1].

Proof. We begin by expanding the equation into

∂ 2u
∂ z2 +

1
z

∂u
∂ z

+

(
1− w2

z2

)
u = 0, (2.5)

and multiplying by z2

z2 ∂ 2u
∂ z2 + z

∂u
∂ z

+
(
z2−w2)u = 0. (2.6)
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We now proceed by using the method of Fröbenious and assume that the solution is of the

form

u = zw
∞

∑
k=0

ckzk. (2.7)

We assume that ck ∈ R and c0 6= 0. Now we determine the following using this series;

z
∂u
∂ z

=wzw
∞

∑
k=0

ckzk + zw
∞

∑
k=0

kckzk, (2.8)

z2 ∂ 2u
∂ z2 =w(w−1)zw

∞

∑
k=0

ckzk +2wzw
∞

∑
k=0

kckzk + zw
∞

∑
k=0

k(k−1)ckzk, (2.9)

z2u =zw
∞

∑
k=2

ck−2zk, (2.10)

assuming that c−2 = c−1 = 0. Next we collect it all into (2.6),

0 =w(w−1)zw
∞

∑
k=0

ckzk +2wzw
∞

∑
k=0

kckzk + zw
∞

∑
k=0

k(k−1)ckzk +wzw
∞

∑
k=0

ckzk

+ zw
∞

∑
k=0

kckzk + zw
∞

∑
k=2

ck−2zk−w2zw
∞

∑
k=0

ckzk (2.11)

=zw
∞

∑
k=0

[
w(w−1)ck +2wkck + k(k−1)ck +wck + kck + ck−2−w2ck

]
zk (2.12)

=zw
∞

∑
k=0

[
w2ck−wck +2wkck + k2ck− kck +wck + kck + ck−2−w2ck

]
zk (2.13)

=zw
∞

∑
k=0

[
2wkck + k2ck + ck−2

]
zk (2.14)

Then we compare coeficients and see,

0 =2wkck + k2ck + ck−2. (2.15)

Next, we can show that,

0 =− ck−2

2wk+ k2 , (2.16)
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for every k except when k = 0 and assuming that −2w 6∈ N. We now recall that c−1 = 0

and see that thus through recursion c2k−1 = 0 for all k. Thus all that’s left is to choose the

value for c0, which we will do later. We assume that −w 6∈ N to show that

c2k =−
c2k−2

4k(w+ k)
, (2.17)

and after applying some induction we find,

c2k =
c0(−1)k

4kk!(w+ k)(w+ k−1) · · ·(w+2)(w+1)
. (2.18)

This allows us to rewrite Equation (2.7),

u =zw
∞

∑
k=0

c0(−1)k

4kk!(w+ k)(w+ k−1) · · ·(w+2)(w+1)
z2k. (2.19)

Now we choose c0 to be 1
2ww! . This leads to

u =
( z

2

)w ∞

∑
k=0

(−1)k

k!(w+ k)!

( z
2

)2k
, (2.20)

or, if w is not a nonnegative integer, to

u =
( z

2

)w ∞

∑
k=0

(−1)k

k!Γ(w+ k+1)

( z
2

)2k
. (2.21)

Bessel functions of the first kind can also be described using an integral [6],

Jw(z) =
1

2π

∫
π

−π

eizsin(θ)−iwθ dθ (2.22)

Beyond this, there are a few properties that can be found for Bessel functions of the first

kind. We will propose them as propositions and then prove their validity. The first can be

discovered after careful manipulation of the series representation.

Proposition 2.2. Jw(z) = z
2w(Jw−1(z)+ Jw+1(z))
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Proof. Beginning from the right hand side, we replace Jw−1(z) with it’s series representa-

tion

Jw−1(z)+ Jw+1(z) =
∞

∑
j=0

(−1) j

j!Γ(w+ j)

( z
2

)2 j+w−1
+ Jw+1(z). (2.23)

Next we multiply, inside the sum, by w+ j in both the numerator and the denominator

Jw−1(z)+ Jw+1(z) =
∞

∑
j=0

(w+ j)(−1) j

j!Γ(w+ j)(w+ j)

( z
2

)2 j+w−1
+ Jw+1(z). (2.24)

By (2.2), Γ(w+ j) absorbs w+ j and becomes Γ(w+ j+1), so

Jw−1(z)+ Jw+1(z) =
∞

∑
j=0

(w+ j)(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1
+ Jw+1(z). (2.25)

We expand the summation, splitting over the addition of w+ j, we get

Jw−1(z)+ Jw+1(z) =
∞

∑
j=0

w(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1

+
∞

∑
j=0

j(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1
+ Jw+1(z). (2.26)

We extract 2w
z out of the first summation, so

Jw−1(z)+ Jw+1(z) =
2w
z

∞

∑
j=0

(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w

+
∞

∑
j=1

j(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1
+ Jw+1(z). (2.27)

We replace the first term by a Bessel function of z with order w. In the second term, we set

the stage to change the index of the summation as

Jw−1(z)+ Jw+1(z) =
2w
z

Jw(z)−
∞

∑
j=1

(−1) j−1

( j−1)!Γ(w+[ j−1]+2)

( z
2

)2[ j−1]+w+1
+ Jw+1(z)

(2.28)
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Now we change the index of the middle term using l = j−1 and get the following results

Jw−1(z)+ Jw+1(z) =
2w
z

Jw(z)−
∞

∑
l=0

(−1)l

l!Γ(w+ l +2)

( z
2

)2l+w+1
+ Jw+1(z) (2.29)

The middle term can now be replaced with a Bessel function of z with order w+1, so

Jw−1(z)+ Jw+1(z) =
2w
z

Jw(z)− Jw+1(z)+ Jw+1(z) =
2w
z

Jw(z) (2.30)

Thus we have the following identity

Jw(z) =
z

2w
(Jw−1(z)+ Jw+1(z)). (2.31)

The next properties deal with the derivatives of the Bessel function. We begin by

showing the function in series form.

Proposition 2.3.

1. J′w(z) =
Jw−1(z)−Jw+1(z)

2

2. J′w(z) =
w
z Jw(z)− Jw+1(z)

3. J′w(z) = Jw−1(z)− w
z Jw(z)

Proof.

To prove (1), we know

J′w(z) =
d
dz

∞

∑
j=0

(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w
. (2.32)

We then apply the derivative with respect to z,

J′w(z) =
∞

∑
j=0

(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1 2 j+w
2

. (2.33)



14

Then the function is separated by addition, so

J′w(z) =
∞

∑
j=0

[
(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1 j+w
2

+
(−1) j

j!Γ(w+ j+1)

( z
2

)2 j+w−1 j
2

]
.

(2.34)

Using (2.2) on the first term and canceling a j from the factorial of the second, which in

turn causes the sum of the second term to start from 1,

J′w(z) =
1
2

[
∞

∑
j=0

(−1) j

j!(w+ j)Γ(w+ j)

( z
2

)2 j+w−1
( j+w)+

∞

∑
j=1

(−1) j

( j−1)!Γ(w+ j+1)

( z
2

)2 j+w−1
]
.

(2.35)

We cancel the j+w portions of the first term and take note of w− 1. In the second term,

we prepare to shift the sum from starting at one to starting at zero through factoring and

adding zero where necessary, so

J′w(z) =
1
2

[
∞

∑
j=0

(−1) j

j!Γ([w−1]+ j+1)

( z
2

)2 j+[w−1]
−

∞

∑
j=1

(−1) j−1

( j−1)!Γ(w+[ j−1]+2)

( z
2

)2[ j−1]+w+1
]
.

(2.36)

We reconstitute the first term into a Bessel function of z with order w− 1 and adjust the

second term with a l = j−1 while also taking note of w+1 to get

J′w(z) =
1
2

[
Jw−1(z)−

∞

∑
l=0

(−1)l

l!Γ([w+1]+ l +1)

( z
2

)2l+[w+1]
]
. (2.37)

Finally we reconstitute the second term into a Bessel function of z with order w+1,

J′w(z) =
Jw−1(z)− Jw+1(z)

2
. (2.38)

Now through (2.31) and what was just shown, we can achieve the two further forms for the

first derivative. We know from (2.31) that

Jw(z) =
z

2w
(Jw−1 + Jw+1). (2.39)
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We can then see that

Jw−1(z) =
z

2w
Jw− Jw+1. (2.40)

and

Jw+1(z) =
2w
z

Jw− Jw−1, (2.41)

Substituting (2.40) into (2.38), we get

J′w(z) =
1
2

[(
2w
z

Jw− Jw+1

)
− Jw+1

]
, (2.42)

J′w(z) =
1
2

[
2w
z

Jw−2Jw+1

]
, (2.43)

J′w(z) =
w
z

Jw− Jw+1. (2.44)

Thus we have shown (2). Substituting (2.41) into (2.38), we get

J′w(z) =
1
2

[
Jw−1−

(
2w
z

Jw− Jw−1

)]
, (2.45)

J′w(z) =
1
2

[
2Jw−1−

2w
z

Jw

]
, (2.46)

J′w(z) = Jw−1−
w
z

Jw. (2.47)

Normally the pattern of the first part of Proposition 2.3 is followed, as repeated appli-

cations easily build into the following form for higher Bessel derivatives.

Proposition 2.4. J(i)w (z) = 1
2i ∑

i
n=0(−1)nJw−i+2n(z)

( i
n

)
where i ∈N, and

( i
n

)
is the nth term

of the ith row of Pascal’s triangle.

Proof. The case i = 1 was already shown in Proposition 2.3. We shall assume this is true



16

up to i = k−1. For i = k,(
d
dz

)k

Jw(z) =
(

d
dz

)k−1(Jw−1(z)− Jw+1(z)
2

)
(2.48)

=

(
d
dz

)k−1(Jw−1(z)
2

− Jw+1(z)
2

)
(2.49)

=
1
2

(
d
dz

)k−1

Jw−1(z)−
1
2

(
d
dz

)k−1

Jw+1(z) (2.50)

=
1
2

(
1

2k−1

k−1

∑
n=0

(−1)nJw−k+2n(z)
(

k−1
n

)
− 1

2k−1

k−1

∑
n=0

(−1)nJw−k+2n+2(z)
(

k−1
n

))
(2.51)

=
1
2k

(
k−1

∑
n=0

(−1)nJw−k+2n(z)
(

k−1
n

)
−

k−1

∑
n=0

(−1)nJw−k+2(n+1)(z)
(

k−1
n

))
(2.52)

=
1
2k

(
k−1

∑
n=0

(−1)nJw−k+2n(z)
(

k−1
n

)
+

k

∑
n=1

(−1)nJw−k+2n(z)
(

k−1
n−1

))
(2.53)

=
1
2k

k

∑
n=0

(−1)nJw−k+2n(z)
((

k−1
n

)
+

(
k−1
n−1

))
(2.54)

=
1
2k

k

∑
n=0

(−1)nJw−k+2n(z)
(

k
n

)
. (2.55)

Instead of using Proposition 2.3, we construct an equivalent form of the second deriva-

tive of the Bessel function using Proposition 2.3 as appropriate to ensure that it requires
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only Jw(z) and Jw+1(z):

J′′w(z) =
(

w
z

Jw(z)− Jw+1(z)
)′

=
w
z

J′w(z)−
w
z2 Jw(z)− J′w+1(z)

=
w
z

(
w
z

Jw(z)− Jw+1(z)
)
− w

z2 Jw(z)−
(

Jw(z)−
w+1

z
Jw+1(z)

)
=

w2

z2 Jw(z)−
w
z

Jw+1(z)−
w
z2 Jw(z)− Jw(z)+

w+1
z

Jw+1(z)

=
w2

z2 Jw(z)−
w
z2 Jw(z)− Jw(z)+

1
z

Jw+1(z)

=

(
w2−w− z2

z2

)
Jw(z)+

1
z

Jw+1(z). (2.56)

2.2 THE HANKEL TRANSFORM

The Hankel transform uses Bessel functions to transform from one coordinate system to

another. It is defined in the following manner [2] for f (x) : Rn → R, |x| = r, x
|x| = θ ,

|ξ |= ρ , and ξ

|ξ | = φ ,

Hw[ f (x)](ξ ) =
∫

∞

0
(rρ)−

n−2
2 Jw(rρ) f (rφ)rn−1dr. (2.57)

The inverse transform of the Hankel transform is just the Hankel transform again but instead

of starting from x, we use ξ :

Hw[F ] =
∫

∞

0
(rρ)−

n−2
2 Jw(rρ)F(ρθ)ρn−1dρ. (2.58)

According to Baruch, the real part of the order, w, must be greater than −1 for the inverse

transform to exist [3]. When we apply the condition that n = 2 as well as assume that f (x)

is a radial function or a function that only depends on the magnitude of x, (2.57) and (2.58)

become

Hw[ f (r)](ρ) =
∫

∞

0
Jw(rρ) f (r)rdr = F(ρ), (2.59)

Hw[F(ρ)](r) =
∫

∞

0
Jw(rρ)F(ρ)ρdρ = f (r). (2.60)
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An alternative definition of the Hankel transformation is as follows,

Haw[g(r)](ρ) =
∫

∞

0
Jw(rρ)g(r)(rρ)

1
2 dr = G(ρ), (2.61)

Haw[G(ρ)](ξ ) =
∫

∞

0
Jw(rρ)G(ρ)(rρ)

1
2 dρ = g(r). (2.62)

This alternative is the same if f (r)r
1
2 = g(r) and F(ρ)ρ

1
2 = G(ρ).

There is a property of the Hankel transform which involves (3.29), the polar form of

the Laplacian. First we must assume that f (x) is a function in L2(R+) and also a radial

function. Then we proceed by defining an operator that is connected to (3.29)

Aν =− ∂ 2

∂ r2 −
1
r

∂

∂ r
+

ν2

r2 (2.63)

Proposition 2.5. HνAν f (ξ ) = |ξ |2 ·Hν f (ξ )

Proof.

[HνAν f ] (ξ ) =
∫

∞

0
(Aν f (r))Jν(r|ξ |)rdr

Replace Aν ,

[HνAν f ] (ξ ) =
∫

∞

0
Jν(r|ξ |)r

(
− f ′′(r)− f ′(r)

r
+

ν2 f (r)
r2

)
dr. (2.64)

By integration by parts on r f ′′(r)Jν(r|ξ |), we obtain

[HνAν f ] (ξ ) =
[
−d f (r)

dr
Jν(r|ξ |)r

]∞

0
+
∫

∞

0

(
f ′(r)

(
Jν(r|ξ |)+ r|ξ |J′ν(r|ξ |)

)
− rJν(r|ξ |)

(
f ′(r)

r
+

ν2 f (r)
r2

))
dr

=

[
−d f (r)

dr
Jν(r|ξ |)r

]∞

0
+
∫

∞

0

(
f ′(r)r|ξ |J′ν(r|ξ |)+

ν2 f (r)
r

Jν(r|ξ |)
)

dr.

(2.65)
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Now we apply integration by parts on r f ′(r)J′ν(r|ξ |),

[HνAν f ] (ξ ) =
[

r|ξ | f (r)J′ν(r|ξ |)− r
d f (r)

dr
Jν(r|ξ |)

]∞

0

+
∫

∞

0

(
−|ξ | f (r)

(
J′ν(r|ξ |)+ r|ξ |J′′ν (r|ξ |)

)
+

ν2 f (r)
r

Jν(r|ξ |)
)

dr

(2.66)

=

[
r|ξ | f (r)J′ν(r|ξ |)− r

d f (r)
dr

Jν(r|ξ |)
]∞

0

+
∫

∞

0
f (r)r

(
−|ξ |2J′′ν (r|ξ |)−

|ξ |
r

J′ν(r|ξ |)+
ν2

r2 Jν(r|ξ |)
)

dr. (2.67)

The first terms vanish and we are left with only the integral,

[HνAν f ] (ξ ) =
∫

∞

0
f (r)r

(
−|ξ |2J′′ν (r|ξ |)−

|ξ |
r

J′ν(r|ξ |)+
ν2

r2 Jν(r|ξ |)
)

dr. (2.68)

According to our earlier work, we can replace the first and second Bessel function deriva-

tives and arrive at

[HνAν f ] (ξ ) =
∫

∞

0
f (r)r

(
−|ξ |2

(
ν2−ν− (r|ξ |)2

(r|ξ |)2 Jν(r|ξ |)+
Jν+1(r|ξ |)

r|ξ |

)
−|ξ |

r

(
ν

r|ξ |
Jν(r|ξ |)− Jν+1(r|ξ |)

)
+

ν2

r2 Jν(r|ξ |)
)

dr.

(2.69)

After multiplying everything through we get the following

[HνAν f ] (ξ ) =
∫

∞

0
f (r)r

(
−ν2

r2 Jν(r|ξ |)+
ν

r2 Jν(r|ξ |)+ |ξ |2Jν(r|ξ |)

−|ξ |
r

Jν+1(r|ξ |)−
ν

r2 Jν(r|ξ |)+
|ξ |
r

Jν+1(r|ξ |)+
ν2

r2 Jν(r|ξ |)
)

dr.

(2.70)

With simple cancellations we finally arrive at a final statement which can be restated as a

Hankel transformation with a multiplier

[HνAν f ] (ξ ) =
∫

∞

0
f (r)r|ξ |2Jν(r|ξ |)dr = |ξ |2 ·Hν f (ξ ). (2.71)
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Thus we have shown the following property

HνAν f (ξ ) = |ξ |2 ·Hν f (ξ ). (2.72)
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CHAPTER 3

FOURIER SERIES AND POLAR COORDINATES

3.1 ORTHOGONALITY OF SINE AND COSINE FUNCTIONS

Two functions, f (x) and g(x), are orthogonal on a interval (a,b) if
∫ b

a f (x)g(x)dx = 0

[5]. The interval can be of any length and is not necessarily finite. There can also be a

weight w(x) is structured to cause
∫ b

a f 2(x)w(x)dx = 1. A sequence of functions that are

collectively orthogonal to each other can be arranged as { fn}∞
n=0.

Proposition 3.1. fk(θ) = sin(kθ) and gk(θ) = cos(kθ) are orthogonal to each other and

to any other fm or gm.

Proof. We start by assuming that m 6= k and both are nonzero integers as the cases when

m, k or both are zero are trivial. Choosing to work through cosine first, We begin with a

product-to-sum trigonometric identity

∫ 2π

0
cos(mx)cos(kx)dx =

∫ 2π

0

1
2
[cos((m− k)x)+ cos((m+ k)x)]dx. (3.1)

Then integrate

∫ 2π

0
cos(mx)cos(kx)dx =

1
2

∫ 2π

0
(cos((m− k)x)+ cos((m+ k)x))dx

=
1
2

[
sin((m− k)x)

m− k
+

sin((m+ k)x)
m+ k

]2π

0
= 0. (3.2)

As both m and k are nonzero and not equivalent, no denominator is zero also because the

sine of an even multiple of π is always zero the result is zero. If we decide that m = k and

still nonzero, we get the following after starting from the end of (3.1).

1
2

∫ 2π

0
(cos((m−m)x)+cos((m+m)x))dx=

1
2

∫ 2π

0
1+cos(2mx)dx=

1
2

[
x+

1
2m

sin(2mx)
]2π

0
= π.

(3.3)
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All together we see that

∫ 2π

0
cos(kx)cos(mx)dx =


2π, k = m = 0,

π, k = m 6= 0,

0, k 6= m.

(3.4)

The results for the orthogonality of the sine function are similar:

∫ 2π

0
sin(mx)sin(kx)dx =


π, m = k 6= 0,

0, m 6= k or m = k = 0.
(3.5)

Finally, we check the result of multiplying cosine and sine together while still assuming

that m and k are not equal integers. Beginning with a product-to-sum identity,

∫ 2π

0
cos(mx)sin(kx)dx =

1
2

∫ 2π

0
(sin((k+m)x)+ sin((k−m)x))dx (3.6)

=
1
2

[
−cos((k+m)x)

k+m
− cos((k−m)x)

k−m

]2π

0

=
1
2

[
−cos((k+m)2π)

k+m
− cos((k−m)2π)

k−m

]
− 1

2

[
−cos(0)

k+m
− cos(0)

k−m

]
=

1
2

[
− 1

k+m
− 1

k−m

]
+

1
2

[
1

k+m
+

1
k−m

]
= 0. (3.7)

Returning to (3.6), we proceed again but this time with the assumption that m = k 6= 0:

∫ 2π

0
cos(mx)sin(mx)dx =

1
2

∫ 2π

0
(sin((m+m)x)+ sin((m−m)x))dx (3.8)

=
1
2

∫ 2π

0
sin(2mx)dx (3.9)

=
1
2

[
−cos(2mx)

2m

]2π

0
=

1
2

[
−1
2m

+
1

2m

]
= 0 (3.10)

Now we see that no matter what index, sine and cosine are always orthogonal to each other
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in the same interval. In total the result

∫ 2π

0
cos(kx)cos(mx)dx =


2π, k = m = 0,

π, k = m 6= 0,

0, k 6= m,

(3.11)

∫ 2π

0
sin(mx)sin(kx)dx =


π, m = k 6= 0,

0, m 6= k or m = k = 0,
(3.12)

∫ 2π

0
cos(kx)sin(mx)dx = 0. (3.13)

Therefore, we define a group of functions { fn(z)}∞
n=0 such that

fn(z) =


cos(n

2z), n ∈ 2Z,

sin(n−1
2 z), n ∈ 2Z+1.

(3.14)

This group is an orthogonal group and can also be defined by adding a second index, m,

that is either 1 or 2. Now,

fn,m(z) =


cos(nz), m = 1,

sin(nz), m = 2.
(3.15)

3.2 POLAR TRANSFORMATION

Shifting from the Cartesian coordinate construction into the polar coordinate construction

is fairly straight forward. The radius, r, is simply the 2-norm of any vector and the angle, θ ,

is a value ranging from [0,2π) which corresponds to a specific unit vector. With these ideas,

it is a simple task to setup each substitution. Note that the expression for θ is conditional
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based on the sign of both y and x:

x = r cos(θ), y = r sin(θ), r =
√

x2 + y2,

θ =


arctan

( y
x

)
, y > 0,x > 0,

π + arctan
( y

x

)
, x < 0,

2π + arctan
( y

x

)
, x > 0,y < 0.

(3.16)

Using the equations listed in (3.16) we construct the derivatives of r and θ with respect to

x first:

∂ r
∂x

=
∂

∂x

√
x2 + y2 =

x√
x2 + y2

=
r cos(θ)

r
= cos(θ),

∂θ

∂x
=

∂

∂x
tan−1

(y
x

)
=

y
x2 + y2 =−sin(θ)

r
.

(3.17)

Similar to (3.17), we find the same pair of derivatives with respect to y this time:

∂ r
∂y

=
∂

∂y

√
x2 + y2 =

y√
x2 + y2

=
r sin(θ)

r
= sin(θ),

∂θ

∂y
=

∂

∂y
tan−1

(y
x

)
=

x
x2 + y2 =

cos(θ)
r

.

(3.18)

Next we start from the conclusions of (3.17) and find the second derivatives with respect to

x as

∂ 2r
∂x2 =

∂

∂x
cos(θ) =−sin(θ)

∂θ

∂x
=

sin2(θ)

r
,

∂ 2θ

∂x2 =
∂

∂x
−sin(θ)

r
=

cos(θ)∂θ

∂x r+ sin(θ) ∂ r
∂x

r2 = 2
cos(θ)sin(θ)

r2 .

(3.19)

The last step of setting up begins from (3.18) and we find the second derivatives with

respect to y:

∂ 2r
∂y2 =

∂

∂y
sin(θ) = cos(θ)

∂θ

∂y
=

cos2(θ)

r
,

∂ 2θ

∂y2 =
∂

∂y
cos(θ)

r
=
−sin(θ)∂θ

∂y r− cos(θ)∂ r
∂y

r2 =−2
cos(θ)sin(θ)

r2 .

(3.20)
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Because of (3.16) we know that we can change an equation from being expressed in the

Cartesian coordinate system to the polar coordinate system. We shall indicate this as fol-

lows

u(x,y) = v(r,θ). (3.21)

3.3 LAPLACIAN IN POLAR COORDINATES

The Laplacian of a function, also know as the divergence of the gradient, is easily repre-

sented in Cartesian coordinates as the sum of the second derivatives with respect to each

coordinate. We use our new representation of u(x,y) that we showed in (3.21) then we can

replace it in the expanded Cartesian Laplacian:

∇
2u(x,y) =

∂ 2u
∂x2 +

∂ 2u
∂y2 =

∂ 2v
∂x2 +

∂ 2v
∂y2 . (3.22)

Obviously derivatives with respect to x and y on a function of r and θ is not the best way

of expressing the Laplacian. Thus we use (3.16) and treat v(r,θ) as v(r(x,y),θ(x,y)) and

then use chain rule as

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂

∂x

(
∂v
∂ r

∂ r
∂x

+
∂v
∂θ

∂θ

∂x

)
+

∂

∂y

(
∂v
∂ r

∂ r
∂y

+
∂v
∂θ

∂θ

∂y

)
. (3.23)

Expanding according to the product rule of derivatives,

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂

∂x

(
∂v
∂ r

)
∂ r
∂x

+
∂v
∂ r

∂

∂x

(
∂ r
∂x

)
+

∂

∂x

(
∂v
∂θ

)
∂θ

∂x
+

∂v
∂θ

∂

∂x

(
∂θ

∂x

)
+

∂

∂y

(
∂v
∂ r

)
∂ r
∂y

+
∂v
∂ r

∂

∂y

(
∂ r
∂y

)
+

∂

∂y

(
∂v
∂θ

)
∂θ

∂y
+

∂v
∂θ

∂

∂y

(
∂θ

∂y

)
.

(3.24)
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Note that ∂

∂x or ∂

∂y will only apply to the expression in parentheses follows it. Upon apply-

ing those partial derivatives, we get

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

(
∂ 2v
∂ r2

∂ r
∂x

+
∂ 2v

∂θ∂ r
∂θ

∂x

)
∂ r
∂x

+
∂v
∂ r

∂ 2r
∂x2 +

(
∂ 2v

∂ r∂θ

∂ r
∂x

+
∂ 2v
∂θ 2

∂θ

∂x

)
∂θ

∂x

+
∂v
∂θ

∂ 2θ

∂x2 +

(
∂ 2v
∂ 2r

∂ r
∂y

+
∂ 2v

∂θ∂ r
∂θ

∂y

)
∂ r
∂y

+
∂v
∂ r

∂ 2r
∂y2

+

(
∂ 2v

∂ r∂θ

∂ r
∂y

+
∂ 2v
∂θ 2

∂θ

∂y

)
∂θ

∂y
+

∂v
∂θ

∂ 2θ

∂y2 . (3.25)

After factoring out the partial derivatives of v, there is

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂ 2v
∂ r2

((
∂ r
∂x

)2

+

(
∂ r
∂y

)2
)
+

∂v
∂ r

(
∂ 2r
∂x2 +

∂ 2r
∂y2

)
+2

∂ 2v
∂θ∂ r

(
∂θ

∂x
∂ r
∂x

+
∂θ

∂y
∂ r
∂y

)
+

∂v
∂θ

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
+

∂ 2v
∂θ 2

((
∂θ

∂x

)2

+

(
∂θ

∂y

)2
)
. (3.26)

Substituting (3.17), (3.18), (3.19) and (3.20) in where they show up, (3.26) becomes

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂ 2v
∂ r2

(
cos2(θ)+ sin2(θ)

)
+

∂v
∂ r

(
sin2(θ)

r
+

cos2(θ)

r

)
+2

∂ 2v
∂θ∂ r

(
−sin(θ)cos(θ)

r
+

sin(θ)cos(θ)
r

)
+

∂v
∂θ

(
2cos(θ)sin(θ)

r2 − 2sin(θ)cos(θ)
r2

)
+

∂ 2v
∂θ 2

((
sin(θ)

r

)2

+

(
cos(θ)

r

)2
)
. (3.27)

After adding it all up and factoring out the inverse powers of r, we get

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂ 2v
∂ r2

(
cos2(θ)+ sin2(θ)

)
+

1
r

∂v
∂ r

(
sin2(θ)r+ cos2(θ)

)
+

1
r2

∂ 2v
∂θ 2

(
sin2(θ)+ cos2(θ)

)
. (3.28)

As sin2(θ)+ cos2(θ) = 1 this reduces to

∂

∂x

(
∂v
∂x

)
+

∂

∂y

(
∂v
∂y

)
=

∂ 2v
∂ r2 +

1
r

∂v
∂ r

+
1
r2

∂ 2v
∂θ 2 . (3.29)
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Thus we now have the expression of the polar coordinate type Laplacian.
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CHAPTER 4

APPLICATION

4.1 ORIGINATING IDEA

In [2], they were searching for a maximal solution estimate to a specific Schrödinger po-

tential equation. However, in the process they demonstrated how to find a general solution,

a process we will follow and change with the additional detail of n = 2.

Proposition 4.1. The solution to
i∂tu−∆u+ a

|x|2 u = 0, a > 0

u(x,0) = f (x),
(4.1)

is

v(r,θ , t) = Hν

[
eitρ2

Hνa0
0,1

]
+

∞

∑
k=1

(
Hν

[
eitρ2

Hνa0
k,1

]
cos(kθ)+Hν

[
eitρ2

Hνa0
k,2

]
sin(kθ)

)
,

(4.2)

where ν =
√

k2 +a.

Proof. Miao, Zhang and Zheng used spherical harmonics to write

f (x) =
∞

∑
k=0

2

∑
l=1

a0
k,l(r)Yk,l(θ)

= a0
0,1(r)+

∞

∑
k=1

[
a0

k,1(r)cos(kθ)+a0
k,2(r)sin(kθ)

] (4.3)

where the second line is our adaption through Fourier series since we are working in 2

dimensions. They also set a > (n−2)2

4 Then we run (4.1) through (3.16), the coordinate

transform into polar coordinates,
i∂tv−∂rrv− 1

r ∂rv− 1
r2 ∂θθ v+ a

r2 v = 0,

v(r,θ ,0) = g(r,θ).
(4.4)
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As it follows from (4.3)

g(r,θ) =
∞

∑
k=0

2

∑
l=1

a0
k,l(r)Yk,l(θ)

= a0
0.1(r)+

∞

∑
k=1

(
a0

k,1(r)cos(kθ)+a0
k,2(r)sin(kθ)

)
.

(4.5)

Through the orthogonality of the sine and cosine, we find

a0
k,l(r) =Ck,l

∫ 2π

0
g(r,θ)Yk,l(θ)dθ

=



1
2π

∫ 2π

0 g(r,θ)dθ , l = 1,k = 0,

1
π

∫ 2π

0 g(r,θ)cos(kθ)dθ , l = 1,k > 0,

1
π

∫ 2π

0 g(r,θ)sin(kθ)dθ , l = 2.

(4.6)

Though separation of variables, we construct the following from (4.5)

v(r,θ , t) =
∞

∑
k=0

2

∑
l=1

vk,l(r, t)Yk,l(θ)

= v0.1(r, t)+
∞

∑
k=1

(
vk,1(r, t)cos(kθ)+ vk,2(r, t)sin(kθ)

)
,

(4.7)

where vk,l(r, t) is given by
i∂tvk,l−∂rrvk,l− 1

r ∂rvk,l +
k2+a

r2 vk,l = 0,

vk,l(r,0) = a0
k,l(r),

(4.8)

and was found by utilizing the orthogonality of sine and cosine. Let ν =
√

k2 +a. Then we

see 
i∂tvk,l +Aνvk,l = 0,

vk,l(r,0) = a0
k,l(r).

(4.9)

Normally the Hankel transform changes both r and θ however because vk,l is a radial

equation, we can drop the angular portion of the transform and only focus on the radial

distance, ρ . Let v̂k,l = Hνvk,l(ρ, t) and apply Hν on (4.9)
i∂t v̂k,l +Hν

[
Aνvk,l

]
= 0,

v̂k,l(ρ,0) = Hνa0
k,l(ρ).

(4.10)
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We see that now would be a good time to use Proposition 2.5, however we first assume that

vk,l(r, t) ∈ L2 and then apply Proposition 2.5 to get
i∂t v̂k,l +ρ2v̂k,l = 0,

v̂k,l(ξ , t) = Hνa0
k,l(ρ).

(4.11)

Solving the ODE presented in (4.11),

i∂t v̂k,l(ρ, t) =−ρ
2v̂k,l(ρ, t) (4.12)

∂t v̂k,l(ρ, t) = iρ2v̂k,l(ρ, t) (4.13)∫
∂t v̂k,l(ρ, t)dt =

∫
iρ2v̂k,l(ρ, t)dt (4.14)

v̂k,l(ρ, t) =
∫

iρ2v̂k,l(ρ, t)dt (4.15)

v̂k,l(ρ, t) = Bk,l(ρ)eiρ2t . (4.16)

Once we use the initial condition from (4.11) we have our solution for v̂k,l(ρ, t)

v̂k,l(ξ , t) = eitρ2
[
Hνa0

k,l

]
(ρ). (4.17)

We then reverse the transformation to find vk,l(r, t)

vk,l(r, t) = Hν

[
eitρ2

Hνa0
k,l

]
=
∫

∞

0
ρJν(rρ)eitρ2

[
Hνa0

k,l

]
(ρ)dρ

=
∫

∞

0
ρJν(rρ)eitρ2

(∫
∞

0
rJν(rρ)a0

k,l(r)dr
)

dρ

=
∫

∞

0
ρJν(rρ)eitρ2

(∫
∞

0
rJν(rρ)

(
Ck,l

∫ 2π

0
g(r,θ)Yk,l(θ)dθ

)
dr
)

dρ

=



∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
2π

∫ 2π

0 g(r,θ)dθ

)
dr
)

dρ, l = 1,k = 0,∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
π

∫ 2π

0 g(r,θ)cos(kθ)dθ

)
dr
)

dρ, l = 1,k > 0,∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
π

∫ 2π

0 g(r,θ)sin(kθ)dθ

)
dr
)

dρ, l = 2.

(4.18)
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Thus,

v(r,θ , t) = Hν

[
eitρ2

Hνa0
0,1

]
+

∞

∑
k=1

(
Hν

[
eitρ2

Hνa0
k,1

]
cos(kθ)+Hν

[
eitρ2

Hνa0
k,2

]
sin(kθ)

)
(4.19)

is the solution.

4.2 CONSTANT POTENTIAL

Before any unique potentials, we first observe the constant potential. There are two notable

changes to the solution of Proposition 4.1. The first is the multipication of eiat on every-

thing. The second is that the order of the Hankel transforms is now k instead of
√

k2 +a.

Proposition 4.2. The solution to
i∂tu−∆u+au = 0,

u(x,0) = f (x),
(4.20)

is

v(r,θ , t)= eaitHk

[
eiρ2tHka0

0,1

]
+eait

∞

∑
k=1

(
Hk

[
eitρ2

Hka0
k,1

]
cos(kθ)+Hk

[
eitρ2

Hka0
k,2

]
sin(kθ)

)
.

(4.21)

Proof. The proof is similar to the proof for Proposition 4.1.

4.3 INVERSE POWER POTENTIAL

4.3.1 r−2−ε

We set up an equation similar to before with one difference
i∂tu−∆u+ a

r2+ε u, (x, t) ∈ R2×R+,a > 0,1 > ε > 0,

u(x,0) = f (x),
(4.22)
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and that difference is the potential. Instead of a simple inverse-square potential, there is

something more. Because of this and the fact that ε is not an integer, we simply call it

an inverse-power potential. We then use the same beginning steps that we used to prove

Proposition 4.1 and arrive at
i∂tvk,l−∂rrvk,l− 1

r ∂rvk,l +
k2

r2 vk,l +
a

r2+ε vk,l = 0, (r, t) ∈ R+×R+,a > 0,1 > ε > 0,

vk,l(r,0) = a0
k,l(r).

(4.23)

From here we tried a few different ways that would all use the Hankel transform.

Attempt: Aν

For the first attempt we chose to try and use Aν like we did for (4.9). However to do so,

requires that we add zero
i∂tvk,l−∂rrvk,l− 1

r ∂rvk,l +
k2

r2 vk,l +
a

r2+ε vk,l +
a
r2 vk,l− a

r2 vk,l = 0,

vk,l(r,0) = a0
k,l(r).

(4.24)

Now we can replace the requisite parts with Aν
i∂tvk,l +Aνvk,l +

a
r2+ε vk,l− a

r2 vk,l = 0,

vk,l(r,0) = a0
k,l(r),

(4.25)

and then rearranging the last two terms into one term
i∂tvk,l +Aνvk,l +

a(1−rε )
r2+ε vk,l = 0,

vk,l(r,0) = a0
k,l(r).

(4.26)

Now we apply the Hankel transform use (2.5). Call v̂k,l = Hνvk,l then
i∂t v̂k,l +ρ2v̂k,l +Hν

[
a(1−rε )

r2+ε vk,l

]
= 0,

v̂k,l(ρ,0) = Hνa0
k,l(ρ).

(4.27)
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All that we need is some substitution that will easily replace Hν

[
a(1−rε )

r2+ε vk,l

]
with some

function with v̂k,l in it rather than the mess. So, let us focus on that piece. First we note

that the constant a can be extracted:

Hν

[
a(1− rε)

r2+ε
vk,l

]
= aHν

[
1− rε

r2+ε
vk,l

]
. (4.28)

With the constant out of the way, we can begin dissecting the expression

Hν

[
1− rε

r2+ε
vk,l

]
=
∫

∞

0
Jν(rρ)

1− rε

r2+ε
vk,l(r, t)rdr, (4.29)

using integration by parts, with u = Jν(rρ)vk,l(r, t),

Hν

[
1− rε

r2+ε
vk,l

]
=

[(
rε −1

εrε
+ ln

(
1
x

))
vk,l(r, t)Jν(rρ)

]∞

0

−
∫

∞

0

(
rε −1

εrε
+ ln

(
1
x

))(
∂vk,l(r, t)

∂ r
Jν(rρ)+ vk,l(ρ, t)

∂Jν(rρ)

∂ r

)
dr.

(4.30)

This shows us that this result will not get simpler as we try to go further. This is before we

consider that the first portion in brackets will not simplify to zero or a constant.

Attempt: Hk

This time we try with ν = k instead of ν =
√

k2 +a. Thus (4.23) becomes
i∂tvk,l +Akvk,l +

a
r2+ε vk,l = 0,

vk,l(r,0) = a0
k,l(r).

(4.31)

Then based on Proposition 2.5, when we apply a Hankel transform of order k to 4.31 we

get 
i∂t
∼
vk,l +ρ2∼vk,l +Hk

[
a

r2+ε vk,l

]
= 0,

∼
vk,l(ρ,0) = Hka0

k,l(ρ),

(4.32)
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where
∼
vk,l = Hkvk,l . Focusing on the relatively unchanged portion of 4.32, we again can

extract the constant:

Hk

(
avk,l(r, t)

r2+ε

)
(ξ ) = aHk

(
vk,l(r, t)

r2+ε

)
(ξ ). (4.33)

We can begin to break it down by definition,

Hk

(
vk,l(r, t)

r2+ε

)
(ξ ) =

∫
∞

0

vk,l(r, t)
r2+ε

Jk(r|ξ |)rdr =
∫

∞

0

vk,l(r, t)Jk(r|ξ |)
r1+ε

dr, (4.34)

using integration by parts, with dv = dr
r1+ε ,

Hk

(
vk,l(r, t)

r2+ε

)
(ξ ) =

[
−1
εrε

Jk(rρ)vk,l(r, t)
]∞

0
+
∫

∞

0

1
εrε

(
ρJ′k(rρ)vk,l(r, t)+ Jk(rρ)

∂vk,l

∂ r
(r, t)

)
dr,

(4.35)

and again using integration by parts, with dv = dr
εrε

Hk

(
vk,l(r, t)

r2+ε

)
(ξ ) =

[
−1
εrε

Jk(rρ)vk,l(r, t)+
r1−ε

ε(1− ε)
(ρJ′k(rρ)vk,l(r, t)+ Jk(rρ)

∂vk,l

∂ r
(r, t))

]∞

0

−
∫

∞

0

r1−ε

ε(1− ε)
(ρ2J′′k (rρ)vk,l(r, t)+2ρJ′k(rρ)

∂vk,l

∂ r
(r, t)+ Jk(rρ)

∂ 2vk,l

∂ r2 (r, t))dr.

(4.36)

The second half of the portion to be evaluated contains r in the numerator as well as the L2

function vk,l , thus it cancels out. We are left with

=

[
−1
εrε

Jk(rρ)vk,l(r, t)
]∞

0
−
∫

∞

0

r1−ε

ε(1− ε)

(
ρ

2J′′k (rρ)vk,l(r, t)

+2ρJ′k(rρ)
∂vk,l

∂ r
(r, t)+ Jk(rρ)

∂ 2vk,l

∂ r2 (r, t)
)

dr (4.37)

and again we see that the answer cannot be found directly.

4.3.2 r−2+ε

We decide to move along to finding a solution for the second inverse power potential,
i∂tu−∆u+ a

r2−ε u, (x, t) ∈ R2×R+,a > 0,1 > ε > 0,

u(x,0) = f (x).
(4.38)
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Instead of adding epsilon, we now subtract it. We then use the same beginning steps that

we used to show Equation 4.23 and arrive at
i∂tvk,l−∂rrvk,l− 1

r ∂rvk,l +
k2

r2 vk,l +
a

r2−ε vk,l = 0, (r, t) ∈ R+×R+,a > 0,1 > ε > 0,

vk,l(r,0) = a0
k,l(r).

(4.39)

Because of how it played earlier, we shall use Hk, rather than Hν , and reveal, by Proposition

2.5, 
i∂t
∼
vk,l +ρ2∼vk,l +aHk

[
1

r2−ε vk,l

]
= 0,

∼
vk,l(ρ,0) = Hka0

k,l(ρ),

(4.40)

where
∼
vk,l = Hkvk,l . As before we again focus on finding a substitution for Hk

[
1

r2−ε vk,l

]
.

Hk

[
1

r2−ε
vk,l

]
=
∫

∞

0

1
r1−ε

vk,l(r, t)Jk(rρ)dr. (4.41)

Using integration by parts, with u = vk,l(r, t)Jk(rρ),

Hk

[
1

r2−ε
vk,l

]
=

[
rε

ε
vk,l(r, t)Jk(rρ)

]∞

0
−
∫

∞

0

rε

ε

(
∂vk,l

∂ r
(r, t)Jk(rρ)+ρvk,l(r, t)J′k(rρ)

)
dr.

(4.42)

Unlike before, the first term will evaluate to zero,

Hk

[
1

r2−ε
vk,l

]
=−

∫
∞

0

rε

ε

(
∂vk,l

∂ r
(r, t)Jk(rρ)+ρvk,l(r, t)J′k(rρ)

)
dr, (4.43)

so we try another round of integration by parts with dv = rε

ε
dr:

Hk

[
1

r2−ε
vk,l

]
=−

[
rε

ε

(
∂vk,l

∂ r
(r, t)Jk(rρ)+ρvk,l(r, t)J′k(rρ)

)]
+
∫

∞

0

rε+1

ε2 + ε

(
∂ 2vk,l

∂ r2 (r, t)Jk(rρ)+2ρ
∂vk,l

∂ r
(r, t)J′k(rρ)+ρ

2vk,l(r, t)J′′k (rρ)

)
dr.

(4.44)
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Again the first part cancels to zero

Hk

[
1

r2−ε
vk,l

]
=
∫

∞

0

rε+1

ε2 + ε

(
∂ 2vk,l

∂ r2 (r, t)Jk(rρ)+2ρ
∂vk,l

∂ r
(r, t)J′k(rρ)+ρ

2vk,l(r, t)J′′k (rρ)

)
dr,

(4.45)

even if the rest will not simplify.

4.3.3 POSSIBLE REPLACEMENTS

As mentioned in Chapter 2, there are two forms of the Hankel transform. The tables of

integral transforms collected in the Bateman Manuscript Project use the form shown in

Equations (2.61) and (2.62) when covering Hankel transforms. In order to accurately utilize

the information of that source, we must either change which Hankel transform pattern we

have been using or alter the transformations to align with our work. Since altering the

transformations means we can keep the same notation as before, that is the path we shall

tread. The listing that is going to be used is the eighth general formula and has a condition

that must be met first. The transform begins from

f (r)r−µ , (4.46)

and with the condition that

Reν +1 > Reµ > 0,

or that the real part of ν , the order of the transformation, plus one is greater than the real

part of µ . Applying Ha or the alternate Hankel Transform the result, as seen in the Bateman

integral tables, is

21−µ [Γ(µ)]−1
ρ

1
2−ν ×

∫
ρ

0
η

ν−µ+ 1
2 (ρ2−η

2)µ−1g(η ;ν−µ)dη , (4.47)

where g(ρ;ν) = Haν [ f (r)] [8]. As we have shown, for the potentials a
r−2±ε , finding solu-

tions is a little tricky because of the method we have chosen to attempt to follow. However
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we now have a possible way of evaluating the third term that would not simplify or reduce

earlier. To begin we must first make sure that we do the appropriate substitutions. First we

need

f (r, t) = vk,l(r, t)r
1
2 , (4.48)

along with

g(ρ, t;k) = Hak[ f (r, t)](ρ, t) = ρ
1
2 Hk[vk,l(r, t)](ρ, t). (4.49)

Finally we need the correct setup

ρ
1
2 Hk

[
vk,l(r, t)

r2∓ε

]
= Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
, (4.50)

or else we would not be approaching the structure properly. Now, we see that,

f (r, t)r−µ = vk,l(r, t)r
1
2 r−µ = vk,lr

1
2 r−2∓ε (4.51)

Thus we see that µ = 2± ε and due to the condition of the formula, the following cases

occur:

k 2+ ε 2− ε

0 Condition Failed Condition Failed

1 Condition Failed Condition Met

2≥ Condition Met Condition Met

As can be seen, there is no representation for k = 0 either way. Even so, it does give a

representation for all of the k orders of 2 and beyond. Now we use Equation (4.47),

Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
=21−(2±ε)[Γ(2± ε)]−1

ρ
1
2−k×

∫
ρ

0
η

k−(2±ε)+ 1
2 (ρ2−η

2)2±ε−1g(η , t;k− (2± ε))dη ,

and multiply the negative signs throughout,

Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
=2−1∓ε [Γ(2± ε)]−1

ρ
1
2−k×

∫
ρ

0
η

k− 3
2∓ε(ρ2−η

2)1±εg(η , t;k−2∓ ε)dη .
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Next we replace g with the alternate Hankel transform,

Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
=2−1∓ε [Γ(2± ε)]−1

ρ
1
2−k×

∫
ρ

0
η

k− 3
2∓ε(ρ2−η

2)1±εHak−2∓ε

[
vk,lr

1
2

]
(η , t)dη .

Then replace the alternate transform with regular transform,

Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
=2−1∓ε [Γ(2± ε)]−1

ρ
1
2−k×

∫
ρ

0
η

k− 3
2∓ε(ρ2−η

2)1±εHk−2∓ε

[
vk,l
]
(η , t)η

1
2 dη ,

and combine the powers of η ,

Hak

[
r

1
2

vk,l(r, t)
r2∓ε

]
=2−1∓ε [Γ(2± ε)]−1

ρ
1
2−k×

∫
ρ

0
η

k−1∓ε(ρ2−η
2)1±εHk−2∓ε

[
vk,l
]
(η , t)dη ,

and finally remove one ρ
1
2 to find the result for the transform to get

Hk

[
vk,l(r, t)

r2∓ε

]
=

2−1∓ε

ρkΓ(2± ε)
×
∫

ρ

0
η

k−1∓ε(ρ2−η
2)1±εHk−2∓ε

[
vk,l
]
(η , t)dη .

(4.52)

Now we have a replacement for Hk

[
vk,l(r,t)

r2∓ε

]
. However, we were trying to solve

i∂tHk
[
vk,l
]
+ρ

2Hk
[
vk,l
]
+aHk

[
vk,l(r, t)

r2∓ε

]
= 0 (4.53)

through replacing the final term. We can replace that term now, however the replacement

makes it apparent that using the Hankel transform to find a solution of an inverse power

potential is not quite possible at the current time.

4.4 COMPLEX POTENTIAL

This is the last potential that was examined.
i∂tu−∆u+ aeiφ

r2 u = 0, a > 0,−π < φ < π,

u(x,0) = f (x).
(4.54)
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The restrictions on a and φ are because a and φ are later used to define ν and these restric-

tions will keep the real part of ν greater than 0. The reason we choose to keep the real part

of the order greater than zero is because it follows along with the paper by Miao, Zhang

and Zheng in which they keep a > 0 for simplicity even though they could have said to

let a > −1
2 [2]. As ν will be a complex number, thus leading to a complex order Hankel

transformation, we can refer to Baruch’s paper and see that we are also have −1
2 as our

boundary, but only for the real portion of the order. A second restriction that we will hold

to is to only use the primary root of a complex number, this will also keep the real part of

ν greater than zero. We proceed like when the potential was just a
r2 .

Proposition 4.3. The solution to
i∂tu−∆u+ aeiφ

|x|2 u = 0, a > 0,−π < φ < π,

u(x,0) = f (x),
(4.55)

is

v(r,θ , t) = Hν

[
eitρ2

Hνa0
0,1

]
+

∞

∑
k=1

(
Hν

[
eitρ2

Hνa0
k,1

]
cos(kθ)+Hν

[
eitρ2

Hνa0
k,2

]
sin(kθ)

)
,

(4.56)

where ν =
√

k2 +aeiφ

Proof. As we mentioned, we start with;

f (x) = a0
0,1(r)+

∞

∑
k=1

[
a0

k,1(r)cos(kθ)+a0
k,2(r)sin(kθ)

]
. (4.57)

Then we run (4.55) through (3.16), the coordinate transform into polar coordinates,
i∂tv−∂rrv− 1

r ∂rv− 1
r2 ∂θθ v+ aeiφ

r2 v = 0,

v(r,θ ,0) = g(r,θ).
(4.58)

As it follows from (4.57)

g(r,θ) = a0
0.1(r)+

∞

∑
k=1

(
a0

k,1(r)cos(kθ)+a0
k,2(r)sin(kθ)

)
. (4.59)
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Through the orthogonality of the sine and cosine, we find

a0
k,l(r) =Ck,l

∫ 2π

0
g(r,θ)Yk,l(θ)dθ

=



1
2π

∫ 2π

0 g(r,θ)dθ , l = 1,k = 0,

1
π

∫ 2π

0 g(r,θ)cos(kθ)dθ , l = 1,k > 0,

1
π

∫ 2π

0 g(r,θ)sin(kθ)dθ , l = 2.

(4.60)

Though separation of variables, we construct the following from (4.59)

v(r,θ , t) =
∞

∑
k=0

2

∑
l=1

vk,l(r, t)Yk,l(θ)

= v0.1(r, t)+
∞

∑
k=1

(
vk,1(r, t)cos(kθ)+ vk,2(r, t)sin(kθ)

)
,

(4.61)

where vk,l(r, t) is given by
i∂tvk,l−∂rrvk,l− 1

r ∂rvk,l +
k2+aeiφ

r2 vk,l = 0,

vk,l(r,0) = a0
k,l(r),

(4.62)

and was found by utilizing the orthogonality of sine and cosine. Let ν =
√

k2 +aeiφ . Then

we see 
i∂tvk,l +Aνvk,l = 0,

vk,l(r,0) = a0
k,l(r).

(4.63)

Normally the Hankel transform changes both r and θ however because vk,l is a radial

equation, we can drop the angular portion of the transform and only focus on the radial

distance, ρ . Let v̂k,l = Hνvk,l(ρ, t) and apply Hν on (4.63)
i∂t v̂k,l +Hν

[
Aνvk,l

]
= 0,

v̂k,l(ρ,0) = Hνa0
k,l(ρ).

(4.64)

We see that now would be a good time to use Proposition 2.5, however we first assume that
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vk,l(r, t) ∈ L2 and then apply Proposition 2.5 to get
i∂t v̂k,l +ρ2v̂k,l = 0,

v̂k,l(ξ , t) = Hνa0
k,l(ρ).

(4.65)

Solving the ODE presented in (4.65),

i∂t v̂k,l(ρ, t) =−ρ
2v̂k,l(ρ, t) (4.66)

∂t v̂k,l(ρ, t) = iρ2v̂k,l(ρ, t) (4.67)∫
∂t v̂k,l(ρ, t)dt =

∫
iρ2v̂k,l(ρ, t)dt (4.68)

v̂k,l(ρ, t) =
∫

iρ2v̂k,l(ρ, t)dt (4.69)

v̂k,l(ρ, t) = Bk,l(ρ)eiρ2t . (4.70)

Once we use the initial condition from (4.65) we have our solution for v̂k,l(ρ, t)

v̂k,l(ξ , t) = eitρ2
[
Hνa0

k,l

]
(ρ). (4.71)

We then reverse the transformation to find vk,l(r, t)

vk,l(r, t) = Hν

[
eitρ2

Hνa0
k,l

]
=
∫

∞

0
ρJν(rρ)eitρ2

[
Hνa0

k,l

]
(ρ)dρ

=
∫

∞

0
ρJν(rρ)eitρ2

(∫
∞

0
rJν(rρ)a0

k,l(r)dr
)

dρ

=
∫

∞

0
ρJν(rρ)eitρ2

(∫
∞

0
rJν(rρ)

(
Ck,l

∫ 2π

0
g(r,θ)Yk,l(θ)dθ

)
dr
)

dρ

=



∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
2π

∫ 2π

0 g(r,θ)dθ

)
dr
)

dρ, l = 1,k = 0,∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
π

∫ 2π

0 g(r,θ)cos(kθ)dθ

)
dr
)

dρ, l = 1,k > 0,∫
∞

0 ρJν(rρ)eitρ2
(∫

∞

0 rJν(rρ)
(

1
π

∫ 2π

0 g(r,θ)sin(kθ)dθ

)
dr
)

dρ, l = 2.

(4.72)
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Thus,

v(r,θ , t) = Hν

[
eitρ2

Hνa0
0,1

]
+

∞

∑
k=1

(
Hν

[
eitρ2

Hνa0
k,1

]
cos(kθ)+Hν

[
eitρ2

Hνa0
k,2

]
sin(kθ)

)
(4.73)

is the solution.
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