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ABSTRACT 

The present study addresses the modal analysis of multistep beam with arbitrary number of 
cracks by using the transfer matrix method and modal testing technique. First, there is conducted 
general solution of free vibration problem for uniform beam element with arbitrary number of 
cracks that allows one to simplify the transfer matrix for cracked multistep beam. The 
transferring beam state needs to undertake only at the steps of beam but not through crack 
positions. Such simplified the transfer matrix method makes straightforward to investigate effect 
of cracks mutually with cross-section step in beam on natural frequencies. It is revealed that 
step-down and step-up in beam could modify notably sensitivity of natural frequencies to crack 
so that the analysis provides useful indication for crack detection in multistep beam. The 
proposed theory was validated by an experimental case study. 

Keywords: stepped beam; cracked beam; modal analysis; transfer matrix method. 

1. INTRODUCTION 

Stepped beam structures have found widespread application in engineering fields such as 
bridges, rotating machines, robotics and aerospace structures. In the engineering application, 
vibration of the structures is the problem of a great importance and it is studied in the enormous 
literature. Sato [1] studied an interesting problem that proposed to calculate natural frequency of 
beam with a groove in dependence on size of the groove. Using a model of stepped beam and 
Transfer Matrix Method (TMM) combined with Finite Element Method (FEM) the author 
demonstrated that (a) fundamental frequency of the structure increases with growing thickness 
and reducing length of the mid-step; (b) the mid-step could be modeled by a beam element, 
therefore, the TMM is reliably applicable for the stepped beam if ratio of its length to the beam 
thickness (r = L2/h) is equal or greater than 4.0. Comparing with experimental results the author 
concluded that error of the TMM may be up to 20 % if the ratio is less than 0.2. Latter, Jang and 
Bert [2, 3] used the conventional technique for calculating natural frequencies of two-step beam 
and shown that natural frequencies of the structure are dependent not only on the change in 
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cross-section but also on the beam boundary conditions. Namely, stepping up (increasing height) 
loads to increasing natural frequencies for any boundary conditions except the clamped ends 
beam and stepping down (decreasing height) reduces the frequencies except the cantilevered 
beam. The findings are important to show the dynamic property of stepped beam and which 
method could be useful for vibration analysis of the beam. Other methods such as Adomian 
Decomposition Method (ADM) and Differential Quadrature Element Method (DEM) have been 
developed in [4] and [5], respectively, for free vibration analysis of multi-step beams. Cunha and 
Junior [6] investigated effect of elastic boundary supports on natural frequencies and mode 
shapes of multiple stepped beam. Kukla and Zamojska [7] studied effect of axial force on natural 
frequencies and longitudinal or torsional vibrations of stepped one-dimensional structures such 
as bars or shafts were studied in [8] by using Distributed Transfer Function Method (DTFM). 
Jaworski and Dowell [9] have compared different theoretical methods and beam theories used 
for free vibration analysis of multistep cantilever beam with experimental results. It was shown 
by the authors that there is disaggreement between theoretical and experimental results. 
Wattanasakulpong and Charoensuk [10] studied one-step beam made of functionally graded 
material. 

Vibration of stepped beam structures with cracks have been also intensively examined due 
to that cracks are potential to reduce the serviceability of a structure and in consequence may 
lead to a serious accidence if it is not early detected. To detect cracks in a structure its vibration 
analysis is crucially important. Nandwana and Maiti [11] have established frequency equation of 
an n-step Euler-Bernoulli beam with single crack in a form of 4(n+1) order determinant and used 
for crack detection by natural frequencies. Using TMM, Tsai and Wang [12] obtained frequency 
equation for cracked multistep Timoshenko beam in much simplified form of 4x4-dimention 
determinant that simplifies significantly computation of the beam’s natural frequencies. 
Maghsoodi et al. [13] have obtained an explicit expression of natural frequencies through the 
crack magnitudes for multistep Euler-Bernoulli beam that provide a system of linear algebraic 
equations for crack detection from natural frequencies. Li [14] was able to conduct a recurrent 
relationship between vibration modes of adjacent steps that is straightforward to obtain an 
explicit expression of frequency equation for multiple cracked and stepped beam. The TMM is 
completely developed and used for solving both the forward and inverse problems for multistep 
Euler-Bernoulli beam with arbitrary number of cracks by Attar in [15]. However, in the latter 
publication the transfer matrix is very complicated because it should be assembled not only at 
the steps of beam but also over the crack sections. 

This paper presents the TMM developed for modal analysis of cracked multistep beam 
based on an explicit expression for mode shape of multiple cracked uniform beam element. This 
enables to much simplify the transfer matrix of multiple cracked multistep beam compared to 
that was developed in [15] and it is validated by an experimental study. 

2. GENERAL SHAPE FUNCTION FOR MULTIPLE CRACKED BEAM ELEMENT 

Consider a uniform beam element of length L; material density (ρ); elasticity (E) and shear 

(G) modulus; section area hbA ×=  and moment of inertia 12/3bhI = . Assume furthermore 
that the beam is cracked at the positions Lee n <<<< ...0 1 and the cracks of depth naa ,...,1  

are modeled by equivalent springs of stiffness nKK ,...,1 . The springs stiffness is calculated 

from the crack depths using formulas given in Appendix. For the beam element, free vibration is 
governed by equation 
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4 4 4 2
4( ) / ( ) 0, / ,d x dx x A EIϕ λ ϕ λ ρ ω− = =                              (2.1) 

that is solved under the conditions at the crack positions 
)0()0( −=+ jj ee φφ ; )0()0();()0()0( −′′′=+′′′′′=−′′=+′′ jjjjj eeeee φφφφφ ; 

( 0) ( 0) ( ) ,j j j je e eϕ ϕ γ ϕ′ ′ ′′+ = − +                                           (2.2) 

where  njKEI jj ,...,2,1,/ ==γ  called hereby magnitudes of the cracks. Introducing 

Krylov’s functions 
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that are all continuous particular solutions of Eq. (2.1), we can prove that the functions 
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p  is derivative order and so-called damage parameters 4,3,2,1;,...,2,1, == knjkjµ  are defined 

as 
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are solutions of Eq. (2.1) satisfying also conditions (2.2).  

Since functions (2.3) and function )(xS  defined in (2.5) are continuous solutions of Eq. 
(2.1), the functions (2.4) would satisfy also the equation except crack positions where they need 
to satisfy conditions (2.2). Indeed, since  

(0) (0) (0) 0; (0) 1,S S S S′′ ′′′ ′= = = =                                          (2.7) 
one has got 
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Thus, general solution of Eq. (2.1) satisfying conditions (2.2) can be found in the form 

)()()()()( 44332211 xLCxLCxLCxLCx +++=φ                                    (2.8) 
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where functions 4,3,2,1),( =kxLk are determined in (2.4)-(2.6) and 4321 ,,, CCCC  are 

arbitrary constants would be found using boundary conditions for the beam. Using the 
expression (2.8) one is able to calculate displacement, slope, moment and shear force 
respectively as follows 

44332211 )()()()()()( CxLCxLCxLCxLxxW +++=≡ φ ; 

44332211 )()()()()()( CxLCxLCxLCxLxx ′+′+′+′=′≡Θ φ ; 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( ) ;M x EI x EIL x C EIL x C EIL x C EIL x Cϕ′′ ′′ ′′ ′′ ′′≡ = + + +               (2.9) 

443322111 )()()()()()( CxLEICxLEICxLEICxLEIxEIxQ ′′′+′′′+′′′+′′′=′′′≡ φ . 

that can be rewritten in the matrix form 
{ ( )} [ ( )] { },x x= ⋅V H C                                                    (2.10) 

where vectors TxQxMxxWx )}(),(),(),({)}({ Θ=V , TCCCC },,,{}{ 4321=C and matrix 
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This representation (2.10) of beam state will be employed below to develop the transfer 
matrix method for multiple cracked stepped beam. 

3. TRANSFER MATRIX FOR STEPPED BEAM WITH MULTIPLE CRACKS 

Let’s consider now a stepped beam composed of m uniform beam segments designated with  
subscript  j,  j=1,2,…,m. Namely, material and geometry constants of j-th beam segment are 
denoted by jjjjj LhbE ,,,,ρ . Suppose that each of the beam segments contains a number ( jn ) 

of cracks represented by its position jji nie ,...,1, =  and magnitude /ji j j jiE I Kγ =  and a 

crack of magnitude /j j j jE I Kα =  occurs at joint of (j+1)-th and j-th segments. 

Introduce state vector for j-th step as { }T
jjjjj xQxMxxWx )(),(),(),()( Θ=V  defined in 

(2.9) symbolized with subscript j.  Therefore, continuity conditions at step joints are 

1 1 1 1(0) ( ); (0) ( ) ( ); (0) ( ); (0) ( )j j j j j j j j j j j j j j jW W L L M L M M L Q Q Lα+ + + += Θ = Θ + = =
 

or  

1(0) ( ) ( ), 1,2,..., ,j j j jL j mα+ = Γ =V V                                         (3.1) 

where / 1 /j j j j jE I Kα γ= =  and 
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On the other hand, using representation (2.10) the introduced state vector )(xjV could be now 

rewritten as 
( ) [ ( )] ,j j jx x=V H C                                                    (3.3) 

where  
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The shape functions )(xL jk defined in (2.4) where beam constants are replaced by those with 

subscript  j. Specifically, the frequency parameter λ  defined in (2.1) now is 
4/12 )/( jjjjjj IEhbρωλ = . 

It is easily to show that expression (3.2) yields 

( ) ( ) (0)j j jL j=V T V ; 1( ) ( ) (0)j j jj L −=T H H .                               (3.5) 

So, combining the relationship (3.5) with (3.1) for j =1, 2, …, m one obtains finally 

1( ) [ ]{ (0)};m mL =V T V                                                   (3.6) 

1 1[ ] [ ( ) ( ) ( 1)... ( ) (1)]mm mα α−= Γ − ΓT T T T .                                    (3.7) 

Usually, conventional boundary conditions are expressed by  

0 1 L{ (0)} 0; { ( )} 0,m mL= =B V B V                                         (3.8) 

where 0, LB B are matrices of 2 4×  dimension. For instance, if both ends of the beam are 

clamped the boundary matrices get the form 

0
0

1 0 0 0 1 0 0 0
;

0 1 0 0 1 0L
Lα α

   
= =   

  
B B . 

with  0, Lα α being magnitudes of possible cracks at the end clamps. Consequently,  

1[ ( )] (0) 0,ω =B V                                                             (3.9) 

where  
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0)(ω .                                                             (3.10) 

Eq. (3.5) would have nontrivial solution with respect to )0(1V  under the condition 

( ) det[ ( )]) 0,D ω ω≡ =B                                                     (3.11) 

that is frequency equation desired for the stepped beam with cracks. 
For instance, if the left end of beam is clamped and the other one is free, i. e. the beam is 

cantilevered, the boundary conditions are 

0)()()0()0( 11 ===Θ= mmmm LQLMW . 

Therefore, the frequency equation (3.10) gets to be 
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                                 (3.12) 

where 4,3,2,1,, =kiTik  are elements of the total transfer matrix [T] defined in (3.4). Similarly, 

frequency equation of stepped FGM beam can be obtained as determinant of a 2x2 matrix for 
other cases of boundary conditions such as simple supports or clamped ends. Namely, for simply 
supported beam with 

0)()()0()0( 11 ==== mmmm LMLWMW , 

frequency equation is 

0det)( 14323412
3432

1412 =−=







≡ TTTT

TT

TT
DSS ω  .                                 (3.13) 

For beam with clamped ends where  
0)()()0()0( 11 =Θ==Θ= mmmm LLWW , 

one has got 

 0det)( 14232413
2423

1413 =−=







≡ TTTT

TT

TT
DCC ω .                                   (3.14) 

Solving the frequency equations gives rise natural frequencies ,...3,2,1, =kkω of the beam 

that in turn allow one to find corresponding solution of Eq. (3.8) as 11 )0( VV kD= with an 

arbitrary constant Dk and normalized solution 1V . Afterward, mode shape corresponding to 

natural frequency kω  is determined for every beam step as follows 

kjjjjjjjjkjkjk CxLCxLCxLCxLDxWx ωω=+++== })()()()({)()( 44332211Φ ; 

})]{1()...2()1([)]0([ 1
1 VTTTHC −−= − jjjj , mj ,...,2,1=  .                           (3.15) 

The arbitrary constant kD is determined by a chosen normalized condition, for example, 

1)(max
),(

=xjk
jx
Φ . 

Thus, the free vibration problem for stepped beam with multiple cracks is completely 
solved by the simplified transfer matrix method.  

4. EXPERIMENTAL SETUP AND MODAL TESTING TECHNIQUE 

In this section experimental modal analysis is accomplished for the stepped beam with 
clamped ends as shown in Fig. 1. Geometry and material parameters of the beam models are 
given in Table 1. 3210 ; 7855 / ; 0.3E MPa kg mρ ν= = = . 

Crack is produced by saw cut with very small wide and different depth 0 %, 10 %, 20 %,  
30 % and 40 % beam thickness at fixed positions on beam. Therefore, the saw-cut can be treated 
as an approximate model of open transverse crack described in [16]. Three scenarios of cracked 
beam are investigated: single crack at position 450 mm; double cracks at the positions 200 mm; 
450 mm from the left end and triple cracks at positions 200 mm, 450 mm, 800 mm from the left 
end. In the first scenario, single crack of various depth (10 – 40 %) is examined. The second 
scenario is tested with various depth of crack at the first span and the crack at intermediate span 
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has fixed depth of 40 %. The last crack scenario is carried out for the beam with three cracks of 
equal depth 40 %.  

 

 

 

 

 

Figure 1. Model of stepped beam used in experimentation. 

Table 1. Geometrical dimensions and material properties of two-step (three span) beam. 

Geometrical 
parameters (mm) 

Beam spans 

1st span 2nd span 3rd span 

Wide, b 20 20 20 

Height, h 15.4 7.5 15.4 

Length, L 315 400 315 

Total length 1230 

Material properties 3.0;/7855;210 3 === νρ mkgMPaE  

   

Figure 2. Measurement system PULSE 360. 

 

 
Figure 3. Experimental model with measurement points. 

1 2 3 4 5 6 7 

L1 L2 L3 
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The PULSE B&K360 system, Fig. 2a, is employed for gathering and processing measured 
data. An impact hammer (Fig. 3) is used for generating an excitation at position A denoted by 

)(ωX  in the frequency domain and an accelerometer has been employed for measuring response 
( )(ωY ) at the position B on the beam. Hence, the signal processor installed in the measurement 
system provides Frequency Response Function (FRF) between the positions A, B calculated as 

( )
( ) ,

( )
XY

AB
XX

S
H

S

ωω
ω

=                                                   (4.1) 

where )(),( ωω XYXX SS are auto- and cross correlation functions respectively of the signals X and 
Y. Magnitude of the function (4.1) is shown for instance in Fig. 2b. Multiple measurement of 
FRF is performed for varying positions of excitation and response and all the measured data 
gathered should give rise the same modal parameters of testing structure.                                                              

         In the theory of structural vibration, it was shown that the FRF (4.1) can be expressed in 
term of natural vibration modes as 

∑
= +−

=
n

AB
i

BA
H

1
22 ][

)()(
)(

ℓ
ℓℓ

ℓℓ

ωζωω
φφ

ω .                                                    (4.2) 

where 
ℓℓ

ζω ,  are natural frequency and damping ratio respectively of modeℓ  and )(A
ℓ

φ - 
normalized th−ℓ mode shape measured at position A. Moreover, analysis of the function (4.2) in 
the frequency domain exhibited that in the case of small damping and sparse distribution of 
natural frequencies the frequency response function reaches its local maximums at resonant 
frequencies  

...3,2,1,2/ˆ 22 =−= ℓ
ℓℓℓ

ζωω                                                  (4.3) 

The damping ratio is represented by sharpness of the resonant peak that determined by 

 2 1
ˆ ˆ( ) / 2 ,ζ ω ω ω= −
ℓ ℓ ℓ ℓ

                                                      (4.4) 

where 12 ,
ℓℓ

ωω are two frequencies in both sides of 
ℓ

ω̂ defined by 

2/)ˆ()()( 11 ℓℓℓ
ωωω ABABAB HHH == .                                           (4.5) 

So that natural frequencies are determined from the measured data as 

...3,2,1,2/ˆˆ 22 =+=∗
ℓ

ℓℓℓ
ζωω                                                 (4.6) 

and results are given in Table 2 in comparison with the numerically computed ones. 

5. RESULTS AND DISCUSSION 

5.1. Theoretical validation 

Note that in the case of uncracked beam the transfer matrix method proposed in section 3 
leads to its classical version. This can be validated first by using the method for computing five 

lowest eigenvalues ( 24 / , 1,2,3,4,5k kA EI kλ ρ ω= = ) of a uniform beam with clamped ends. 

Results of the computation compared to those obtained by the classical analytical method (see 
Table 2) show that the transfer matrix method is really an exact method equivalent to the 
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analytical one. Moreover, natural frequencies of an intact stepped beam calculated by the 
classical transfer matrix method are given in the first row of Table 3. The results compared to 
those obtained by FEM and measured demonstrate the fact that measured natural frequencies are 
more closed (almost identical for three lower frequencies) to the analytical ones than FEM 
results. This validates reliability of measured data.  

Table 2. Eigenvalues of uniform beam calculated by the TMM compared to analytical method [17]. 

Eigenvalues λ1  λ2 λ3 λ4 λ5 

TMM 4.7300 7.8532 10.9956 14.1372 17.2788 

Analytical 4.7300 7.8532 10.9956 14.1371 17.2787 

5.2. Experimental validation 

Table 3. Comparison of calculated and measured natural frequencies of three-span stepped beam with 
clamped ends. 

Crack 
scenarios 

 Natural frequencies (Hz) 

1 2 3 4 5 

Intact 
beam 

TMM 73.2781 144.5188 301.1640 529.0126 726.2999 

Experiment 73.38 144.30 301.10 526.50 723.81 

FEM 74.8296 146.6345 304.9121 530.7197 729.8934 

Single 
crack 

TMM 72.4574 143.6455 294.4666 519.7713 721.3785 

Experiment 72.31 143.70 294.40 517.56 714.88 

Double 
cracks 

TMM 71.4113 143.0440 287.3652 491.1691 680.994 

Experiment 71.63 143.70 290.90 493.06 689.81 

Triple 
cracks 

TMM 70.9058 142.6157 285.9632 482.6887 671.1254 

Experiment 71.06 142.90 287.50 480.06 674.69 

Single crack at 450 mm; Double cracks at 200; 450 mm; Triple cracks at 200; 450; 800 mm 
from the left end of beam and all the cracks are of equal depth 40 %. 

Measurements of natural frequencies have been performed at 7 points (see Fig. 7) and 
measured data are processed accordingly to that procedure presented in section 4. 

In Table 3 there are depicted five lowest natural frequencies calculated and measured for 
three crack scenarios described in the last row of the table. The results show that discrepancy 
between calculated and measured natural frequencies is within 2 %. So the theoretical 
development proposed above in the sections 2 and 3 is thus experimentally validated and it can 
be surely used for analysis of crack effect on natural frequencies accomplished below. 

5.3. Effect of crack position and depth 
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For analysis of crack effect on natural frequencies of stepped beam two types of the beam 
are investigated. The beam of first type called down-stepped (B1S) is shown in Fig. 3 that was 
examined also in the experiment. The other one has intermediate span of thickness greater than 
that of the end spans and this type is called up-stepped beam (B2S). Both the types of stepped 
beam investigated below are clamped at the ends and have the following configurations: 

1 2 3 1 2 3 1 3 2

1 2 3 1 2 3 1 3 2

B1S: 1 ; 0.1 ; 0.15 ; 0.10 ;

B2S: 1 ; 0.1 ; 0.10 ; 0.15 .

L L L m b b b m h h m h m

L L L m b b b m h h m h m

= = = = = = = = =
= = = = = = = = =

 

First, ratios of three lowest natural frequencies (cracked to intact) are computed for the 
beams with single crack of different depth from 10 % to 40 % and position running from the left 
to the right ends through the steps. Results are shown in Fig. 4 where the frequency ratios of 
beam B1 on the left and those of beam B2 on the right. Observing graphs presented in Fig. 4 
allows one to make the following notations: (1) Likely to the uniform beam, there exist positions 
on the stepped beam crack occurred at which does not change a certain natural frequency. Such 
positions are called frequency node and they are given in Table 4 for uniform and stepped 
beams. Obviously, natural frequency nodes are located symmetrically about the beam middle for 
symmetric boundary conditions; (2) The frequency ratios undergo a jump when crack passing 
beam steps (this means discontinuity of frequency variation due to crack at beam steps). Expanse 
of the jumps is different for various modes and it is certainly dependent on height of the steps; 
(3) Natural frequencies, as well known, are monotonically decreasing with growing crack depth. 

Table 4. Frequency nodes of five lowest modes for uniform and stepped beams. 

Mode 
No 

Stepped beam B1 Uniform beam B0 Stepped beam B2 

1 0.85-2.15 0.67-2.33 0.56-2.44 
2 0.46-1.5 -2.54 0.4 - 1.5 - 2.6 0.38 - 1.5 - 2.62 
3 0.3-1.16-1.84-2.7 0.28-1.07-1.93-2.72 0.27 - 0.94 -2.06 - 2.73 
4 0.24-0.94-1.5-2.06-2.76 0.22-0.83-1.5-2.17-2.76 0.21- 0.76 - 1.5 - 2.24-

2.79 
5 0.2-0.75-1.26-1.74-2.25-

2.8 
0.18-0.68-1.23-1.77-2.32-

2.82 
0.17-0.65-1.16-1.84-2.35-

2.83 
Total beam length L = 3 m; Span length L1 = L2 = L3 = 1 m; Steps at 1 m and 2 m 

 

5.1. Effect of beam steps and crack position 

In this subsection, aimed to study effect of steps (abrupt change in beam height), two 
uniform beams and two stepped beams (with changed both sizes of cross section) of the 
following geometry are investigated in addition to the stepped beams considered in the previous 
subsection. 
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As the stepped beams B1S and B2S have uniform width, the beams B3S, B4S are stepped 
in both sizes of cross section (width and height). The first three frequency ratios computed in 
dependence on the crack position for the uniform and stepped beams are presented in Fig. 5.  
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Figure 4. Effect of position and depth of crack on natural frequencies of beams B1 (left) and B2 (right). 
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Figure 5. Effect of beam thickness variaton (steps) and crack position on natural frequencies. 
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Comparing the ratios computed for beam BU1 and BU2 allows one to find that increasing 
thickness of uniform beam makes all its natural frequencies more sensitive to crack. This 
highlights the well-known fact that more stiff beam is more sensitive to crack. However, the 
increasing or decreasing thickness of only mid-span in stepped beam leads to diminish or 
magnify the second frequency sensitivity to crack occurred at the span. So, steps in beam 
thickness may increase or decrease natural frequency sensitivity to crack in dependence on 
where crack is located and which frequency is considered.  Graphs given in Fig.5 show also that 
frequency nodes of stepped-down beam (B1) are thrusted to the beam middle and the nodes are 
pulled away from the middle for stepped-up beam (B2). Nevertheless, the steps do not shift the 
node located at the beam middle and uniformly increasing thickness of uniform beam does not 
change the frequency nodes. 

6. CONCLUSION 

In the present paper a simplified version of the transfer matrix method has been developed 
for modal analysis of multiple cracked stepped beam based on an explicit expression of mode 
shape of multiple cracked uniform beam element. The simplification consists of that the beam 
state needs to be transferred only through steps of beam but not over the cracks as done in the 
earlier publications. 

An experimental modal analysis of cracked multistep beam has been carried out and 
comparison of computed and measured natural frequencies demonstrated a good agreement of 
the theory with experiment. 

Using the simplified TMM it was found that likely to the uniform beam there exist on beam 
positions crack appeared at which does not change a certain natural frequency. Such critical 
points on beam are called herein frequency nodes and it was shown that step-down shifts the 
nodes to the beam middle and step-up pulls them to the beam ends. 

Finally, the performed modal analysis shows significant influence of steps on the natural 
frequency sensitivity to cracks and this is a useful indication for crack detection in stepped beam 
by measurement of natural frequencies. 

Acknowledgement. This work was completed with financial support from NAFOSTED of Vietnam under 
Grant of number 107.01-2015.20. 

APPENDIX  

CALCULATION OF CRACK MAGNITUDE 

The so-called crack magnitude introduced above is calculated as [16] 
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