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ABSTRACT

The present study addresses the modal analysisltiét@p beam with arbitrary number of
cracks by using the transfer matrix method and niedéing technique. First, there is conducted
general solution of free vibration problem for wnih beam element with arbitrary number of
cracks that allows one to simplify the transfer mwafor cracked multistep beam. The
transferring beam state needs to undertake ontheatsteps of beam but not through crack
positions. Such simplified the transfer matrix neettmakes straightforward to investigate effect
of cracks mutually with cross-section step in beamnatural frequencies. It is revealed that
step-down and step-up in beam could modify notablysitivity of natural frequencies to crack
so that the analysis provides useful indication dosick detection in multistep beam. The
proposed theory was validated by an experimenta study.

Keywords. stepped beam; cracked beam; modal analysisféramatrix method.

1. INTRODUCTION

Stepped beam structures have found widespreadcappfi in engineering fields such as
bridges, rotating machines, robotics and aerosgcetures. In the engineering application,
vibration of the structures is the problem of aaglimportance and it is studied in the enormous
literature. Sato [1] studied an interesting probtéat proposed to calculate natural frequency of
beam with a groove in dependence on size of thevgraUsing a model of stepped beam and
Transfer Matrix Method (TMM) combined with Finiteledinent Method (FEM) the author
demonstrated that (a) fundamental frequency ofsthecture increases with growing thickness
and reducing length of the mid-step; (b) the ma&pstould be modeled by a beam element,
therefore, the TMM is reliably applicable for themped beam if ratio of its length to the beam
thickness 1 = L,/h) is equal or greater than 4.0. Comparing with expental results the author
concluded that error of the TMM may be up to 20f%he ratio is less than 0.2. Latter, Jang and
Bert [2, 3] used the conventional technique focekiting natural frequencies of two-step beam
and shown that natural frequencies of the structmeedependent not only on the change in
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cross-section but also on the beam boundary conditNamely, stepping up (increasing height)
loads to increasing natural frequencies for anyndauy conditions except the clamped ends
beam and stepping down (decreasing height) redineesrequencies except the cantilevered
beam. The findings are important to show the dyonapnoperty of stepped beam and which
method could be useful for vibration analysis o¢ theam. Other methods such as Adomian
Decomposition Method (ADM) and Differential Quadnat Element Method (DEM) have been
developed in [4] and [5], respectively, for frebndtion analysis of multi-step beams. Cunha and
Junior [6] investigated effect of elastic boundarypports on natural frequencies and mode
shapes of multiple stepped beam. Kukla and Zamd¢@gkstudied effect of axial force on natural
frequencies and longitudinal or torsional vibratiasf stepped one-dimensional structures such
as bars or shafts were studied in [8] by usingriisted Transfer Function Method (DTFM).
Jaworski and Dowell [9] have compared differentotieéical methods and beam theories used
for free vibration analysis of multistep cantilevaam with experimental results. It was shown
by the authors that there is disaggreement betwheoretical and experimental results.
Wattanasakulpong and Charoensuk [10] studied apedeam made of functionally graded
material.

Vibration of stepped beam structures with crackseHzeen also intensively examined due
to that cracks are potential to reduce the serbitigaof a structure and in consequence may
lead to a serious accidence if it is not early cte: To detect cracks in a structure its vibration
analysis is crucially important. Nandwana and Mditi] have established frequency equation of
ann-step Euler-Bernoulli beam with single crack iroani of 4h+1) order determinant and used
for crack detection by natural frequencies. UsihgM, Tsai and Wang [12] obtained frequency
equation for cracked multistep Timoshenko beam uthmsimplified form of 4x4-dimention
determinant that simplifies significantly computati of the beam’s natural frequencies.
Maghsoodi et al. [13] have obtained an explicitrespion of natural frequencies through the
crack magnitudes for multistep Euler-Bernoulli betrat provide a system of linear algebraic
equations for crack detection from natural freqiescLi [14] was able to conduct a recurrent
relationship between vibration modes of adjaceapsstthat is straightforward to obtain an
explicit expression of frequency equation for npliéticracked and stepped beam. The TMM is
completely developed and used for solving bothféinevard and inverse problems for multistep
Euler-Bernoulli beam with arbitrary number of cradky Attar in [15]. However, in the latter
publication the transfer matrix is very complicateecause it should be assembled not only at
the steps of beam but also over the crack sections.

This paper presents the TMM developed for modalyaisof cracked multistep beam
based on an explicit expression for mode shapeuttipte cracked uniform beam element. This
enables to much simplify the transfer matrix of tipl¢ cracked multistep beam compared to
that was developed in [15] and it is validated byeaperimental study.

2. GENERAL SHAPE FUNCTION FOR MULTIPLE CRACKED BEAM ELEMENT

Consider a uniform beam element of lengthmaterial densityy); elasticity €) and shear
(G) modulus; section aréa=bxh and moment of inertid =bh® /12. Assume furthermore
that the beam is cracked at the positihs g, <...< g, <L and the cracks of depth,,...,a,
are modeled by equivalent springs of stiffndss,...,K,. The springs stiffness is calculated

from the crack depths using formulas given in AgienFor the beam element, free vibration is
governed by equation
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d*@(x)/dx, —A*¢(x) =0, 1" = pAw?® /| El, (2.1)
that is solved under the conditions at the crachtjpms
Ae; +0)=gle; -0) ;¢ (e; +0) =¢'(e; —0) = ' (e);¢"(e; +0) = ¢"(e; —0);
¢’(ej +O):¢’(ej _O)+yj¢"(ej)1 (2.2)
where yi = El /KJ- ,j =12,...,n called hereby magnitudes of the cracks. Introdycin

Krylov's functions
Lo;(X) = (coshix + cosAx)/2; Ly, (X) = (SinhAx —sinAx) /2;

2.3
Los(X) = (coshix — cosAx) /2; Ly, (X) = (sinhAx +sinAx) /2, (23)
that are all continuous particular solutions of Exj1), we can prove that the functions
n
L (X) = Lo (X) + 2. g K(x—e;),k = 1234, (2.4)
j=1
where
SP(x): x=0; i + Si
K (x) = (X): x S(x) = sinhAXx sm/lx’ 0=01,2.3 25)
0: x<0; 2A

p is derivative order and so-called damage parasgte, ] =12,....,nk = 1,234 are defined
as

j-1
Hg = VilLoc(e)) + 2 1 S'(ej —&), k= 1234, (2.6)
i=1
are solutions of Eq. (2.1) satisfying also condisi@2.2).

Since functions (2.3) and functio8(x) defined in (2.5) are continuous solutions of Eq.

(2.1), the functions (2.4) would satisfy also tlygi@ion except crack positions where they need
to satisfy conditions (2.2). Indeed, since

S(0)=S'(0)=S"(0)=0S (0)=1 (2.7)
one has got

L6, +0)= Loy (6, +0) + L4y S(e; ~8) = Loc(e; =0+ S Se, ~8) = L(e; ~0):
Lile, +0) = L (6 +0)+ L S'e; ) = Liy (6, ~0)+ £ty ST, ~8) = Li(e; -0):

Lie, +0)= Li(e; +0)+ L 4yS(E, 6) = Lic(e; =0+ T4 S'(e; ~8) = Lie, ~O);
Li(e, +0) = Liy (e, +0) + LAy S(e; ~6) = Lix(e; ~0)+ ZuySe; ~6) + 4 =

j-1
=L (e —0) +y;[Loc(e)) + X 14 S'(e; —&)] = L (e; —0) +y;Lc(e; —0).
i=1
Thus, general solution of Eq. (2.1) satisfying atods (2.2) can be found in the form

#AX) = CiL(X) + C,L, (x) + C5L5(X) + C,L,(X) (2.8)
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where functions L, (X),k = 1234are determined in (2.4)-(2.6) an€,,C,,C;,C, are

arbitrary constants would be found using boundaoypddions for the beam. Using the
expression (2.8) one is able to calculate displacemslope, moment and shear force
respectively as follows

W(X) = @x) = L1 (X)C; + L, (X)C, + L3(X)C3 + Ly (X)Cy;
O(x) = @ (x) = Li(X)Cy + Ly (X)C; + L3(X)C5 + L4 (X)Cy;
M (x) = El ¢"(x) = EIL!(X)C, + EIL(X)C, + EILY(X)C .+ EIL'(X)C ; (2.9)
Q(X) = El¢"(X) = EIL{(X)C, + EIL;,(X)C, + EILZ(X)C; + EIL;(X)C,.
that can be rewritten in the matrix form

{V(x¥} 4 H X & (2.10)
where vector§ V(x)} ={W(x),0(x),M (x),Q x)}" .{C} ={C,,C,,C;,C,} " and matrix
L. (X) L, () L3(x) L4 (%)
L Lo L LK
EIL/(X) EILA(x) EILL(X) EILI(X)|
EILY(X) EILN(X) EILX(X) EILI(X)

This representation (2.10) of beam state will bepleged below to develop the transfer
matrix method for multiple cracked stepped beam.

[H(X)] = (2.11)

3. TRANSFER MATRIX FOR STEPPED BEAM WITH MULTIPLE CRACKS

Let's consider now a stepped beam composed wfiform beam segments designated with
subscript j, j=1,2,...m. Namely, material and geometry constantg-tif beam segment are

denoted byEJ- v ,bj ,hj , LJ- . Suppose that each of the beam segments contaunstaer ;)
of cracks represented by its positieq ,i =1...,n; and magnitudey; = E;lI, / K, and a
crack of magnitudey; = E;I, / K, occurs at joint ofj¢1)-th and-th segments.

Introduce state vector fgith step asV; () ={Wj (X),0;(x),M; (x),Q; (x)}T defined in
(2.9) symbolized with subscript Therefore, continuity conditions at step joiate

W, (0)=W, (L,);0,,,(0)=0, (L)+a M, (L, )M, (0)=M, (,)Q,.,(0=0Q, ()

or
Vj+1(o): r(ﬁj )Vj (Lj)’j =12,..m (3.1)
whered; =y, / E;I, =1/K, and
1 0 0 O
ram=2 79 (3.2)
0010
0 0 01
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On the other hand, using representation (2.10)nineduced state vectdt/j (X) could be now
rewritten as

V,(x) =[H,(3]C, @3
where
Lz (%) Lj2(X) Ljs(x) Li4(X)
[H (0] = Li (%) Lj2 () Lis(X) Li4(X) (3.4)

Eil;L5i(X) E;lLi,(x) E;ILiz(x) E;lI;Lj,(X) '
E;l jL}"l(x) E;l jL}"z(x) E;l; L'j"3(x) E;l; L’j”4(x)
The shape functiorlsjk(x) defined in (2.4) where beam constants are replagethose with
subscriptj. Specifically, the frequency parametérdefined in (2.1) now is

— (2 1/4

It is easily to show that expression (3.2) yields

Vj(Lj):T(j)vj(o);T(j):Hj(Lj)HJTl(O)' (3.5)
So, combining the relationship (3.5) with (3.1) ferl, 2, ...,m one obtains finally
V(L) =[TH V(O)}; 3.8
[TI=[T(M (&) T(m-1)..rNa)T)]. (3.7)
Usually, conventional boundary conditions are esped by
BAV(0)} =0; B{ V,( L)} 9, (3.8)

where By, B, are matrices of2x 4 dimension. For instance, if both ends of the beam
clamped the boundary matrices get the form

10 0O 10 0O
B, = _ B, = _ .
01a O 01a O

with &, being magnitudes of possible cracks at the endpda@onsequently,

[B()]V,(0) =0, (3.9)

where
B(w) = Bo 3.10
(w)—[BLT}- (3.10)

Eq. (3.5) would have nontrivial solution with respeo V, (0) under the condition
D(w) =detB (w)]) =0, (3.11)

that is frequency equation desired for the stefymaon with cracks.

For instance, if the left end of beam is clamped e other one is free, i. e. the beam is
cantilevered, the boundary conditions are

W, 0)=0,0=M_(L,)=0Q,(L,)=0.
Therefore, the frequency equation (3.10) gets to be
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—_ T33 T34 _ —

DCF (w) =de T —T33T44—T4;I'34— 0, (3.12)
43 44

whereT, ,i,k = 1234 are elements of the total transfer matiiX flefined in (3.4). Similarly,

frequency equation of stepped FGM beam can bermutahas determinant of a 2x2 matrix for
other cases of boundary conditions such as simyppasts or clamped ends. Namely, for simply
supported beam with

Vvl(o) = Ml(o) =Wm(l-m) = |\/lm(l-m) = Ov

frequency equation is
_ T2 Tig|_ _ —
Dg(w) =de =TT, — T3, =0 . (3.13)
Tay Tay

For beam with clamped ends where

W (0) =0,(0) =W, (L,) =0,(L,) =0,
one has got

_ Tis Tia|_ _ -
Toz To

Solving the frequency equations gives rise natiseajuenciesa, ,k = 1,2.3...of the beam
that in turn allow one to find corresponding salatiof Eqg. (3.8) a¥, (0) = Dkvlwith an
arbitrary constanD, and normalized solutior\_/l. Afterward, mode shape corresponding to
natural frequencyy, is determined for every beam step as follows

D, (X) =W (x) = Dk{le(X)c_:jl + sz(X)c_:jz + Lj3(X)C_:j3 + |—J'4(X)C_:j4}w=wK ;

C, =[H, O T(-)T(i - 2. TRV, j =12,...m . (3.15)
The arbitrary constanb, is determined by a chosen normalized conditionef@mple,
r(rlzi_l)xfbjk (x) =1.

Thus, the free vibration problem for stepped beaith \inultiple cracks is completely
solved by the simplified transfer matrix method.

4. EXPERIMENTAL SETUP AND MODAL TESTING TECHNIQUE

In this section experimental modal analysis is agdished for the stepped beam with
clamped ends as shown in Fig. 1. Geometry and rakhfmrameters of the beam models are
given in Table 1E =210MPa;po= 785%g /m° y = 0..

Crack is produced by saw cut with very small wide aifferent depth 0 %, 10 %, 20 %,
30 % and 40 % beam thickness at fixed positionseam. Therefore, the saw-cut can be treated
as an approximate model of open transverse cragiribed in [16]. Three scenarios of cracked
beam are investigated: single crack at position#&4 double cracks at the positions 200 mm;
450 mm from the left end and triple cracks at pos# 200 mm, 450 mm, 800 mm from the left
end. In the first scenario, single crack of variaepth (10 — 40 %) is examined. The second
scenario is tested with various depth of craclatfirst span and the crack at intermediate span

603



Vu Thi An Ninh, Luu Quynh Huong, Tran Thanh Hai, Nguyen Tien Khiem

has fixed depth of 40 %. The last crack scenar@arisied out for the beam with three cracks of
equal depth 40 %.

A
\/
A
\/
A
\/

L1 L2 L3

L

- »

‘Figure 1. Model of stepped beam used in experimentation.

Table 1. Geometrical dimensions and material propertigsvofstep (three span) beam.

Geometrical Beam spans
parameters (mm) T span ¥ span Fspan
Wide, b 20 20 20
Height, h 15.4 7.5 15.4
Length,L 315 400 315
Total length 1230

Material propertiesE = 210MPa; p = 785%g/m®;v = 0.3

; L\ Autospectrum(Signal 2) - Input114:1 E]@ ‘
- i 3 (6B D0 Audospecnignal -l Cursar Values
3 (VERLOAD Working: Input: Input: FFT Analpeer — | Y=208A00m¥

! K= 480k

Status

\ YRGBT
/ ? huerages; 10
| LA L L S| Ot 95.49%

- - T T T T T T T 1
ca i e @ 0 100 200 00 400 500 &0 FLL 1]
[He (e 2

Figure 2. Measurement system PULSE 360.

Figure 3. Experimental model with measurement points.
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The PULSE B&K360 system, Fig. 2a, is employed fathgring and processing measured
data. An impact hammer (Fig. 3) is used for geivggadn excitation at position A denoted by
X(w) in the frequency domain and an accelerometer das bmployed for measuring response

(Y(w)) at the position B on the beam. Hence, the sigmatessor installed in the measurement
system provides Frequency Response Function (F&felen the positions A, B calculated as

,
H g (@) = SX—Y( ) ) 4.%)
S (@)
where S, (w), S, (w) are auto- and cross correlation functions respelgtiof the signals< and

Y. Magnitude of the function (4.1) is shown for arste in Fig. 2b. Multiple measurement of
FRF is performed for varying positions of excitatiand response and all the measured data
gathered should give rise the same modal paramaftégsting structure.

In the theory of structural vibrationwts shown that the FRF (4.1) can be expressed in
term of natural vibration modes as

n 9,(A¢(B)
H AB (a)) = Z 24 2 - . .
=), —w” +iad ]
where w,,{, are natural frequency and damping ratio respelgtiof mode’ and ¢ (A)-

normalized/ —th mode shape measured at position A. Moreover, asadfshe function (4.2) in
the frequency domain exhibited that in the casaréll damping and sparse distribution of
natural frequencies the frequency response funat@thes its local maximums at resonant

frequencies
@, =y -2212,0=123.. 3

The damping ratio is represented by sharpnes®aktonant peak that determined by

(4.2)

~

{, = (0,0, 20, (4.4)
where @,,, @, are two frequencies in both sides@fdefined by
H pg (@) = H pg (@01) = HAB(&)a)/\/E- (4.5)

So that natural frequencies are determined fronmtbasured data as

W =GR +212,0=123.. 5.

and results are given in Table 2 in comparison titghnumerically computed ones.

5.RESULTSAND DISCUSSION
5.1. Theoretical validation

Note that in the case of uncracked beam the transétrix method proposed in section 3
leads to its classical version. This can be vadiddirst by using the method for computing five

lowest eigenvaluesA, =\/pAaf/ El ,k=1,2,3,4, of a uniform beam with clamped ends.

Results of the computation compared to those obdaby the classical analytical method (see
Table 2) show that the transfer matrix method mllyean exact method equivalent to the
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analytical one. Moreover, natural frequencies ofiatact stepped beam calculated by the
classical transfer matrix method are given in tih&t fow of Table 3. The results compared to

those obtained by FEM and measured demonstrafachthat measured natural frequencies are
more closed (almost identical for three lower fremgies) to the analytical ones than FEM

results. This validates reliability of measuredadat

Table 2. Eigenvalues of uniform beam calculated by the Teiivhpared to analytical method [17].

Eigenvalues M Ao A3 A s
TMM 4.7300 7.8532 10.9956 14.1372 17.2788
Analytical 4.7300 7.8532 10.9956 14.1371 17.2787

5.2. Experimental validation

Table 3. Comparison of calculated and measured naturgliénecies of three-span stepped beam with
clamped ends.

Crack Natural frequencies (Hz)
scenarios 1 2 3 4 5
Intact TMM 73.2781 1445188 301.1640 529.0126  726.2999
beam Experiment 73.38 144.30 301.10 526.50 723.81
FEM 74.8296 146.6345 304.9121 530.7197  729.8934
Single TMM 72.4574 143.6455 294.4666 519.7713  721.3785
crack  Eyperiment 72.31 143.70 294.40 517.56 714.88
Double TMM 71.4113 143.0440 287.3652 491.1691  680.994
cracks  Experiment 71.63 143.70 290.90 493.06 689.81
Triple TMM 70.9058 142.6157 285.9632 482.6887  671.1254
cracks Eyperiment 71.06 142.90 287.50 480.06 674.69

Single crack at 450 mm; Double cracks at 200; 458 firiple cracks at 200; 450; 800 mm
from the left end of beam and all the cracks areopfal depth 40 %.

Measurements of natural frequencies have beenrpetbat 7 points (see Fig. 7) and
measured data are processed accordingly to theggmee presented in section 4.

In Table 3 there are depicted five lowest naturedifiencies calculated and measured for
three crack scenarios described in the last rotheftable. The results show that discrepancy
between calculated and measured natural frequerisiesithin 2 %. So the theoretical
development proposed above in the sections 2 asdhBis experimentally validated and it can
be surely used for analysis of crack effect on ratvequencies accomplished below.

5.3. Effect of crack position and depth
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For analysis of crack effect on natural frequenoiestepped beam two types of the beam
are investigated. The beam of first type called nistepped (B1S) is shown in Fig. 3 that was
examined also in the experiment. The other ondritagmediate span of thickness greater than
that of the end spans and this type is called eppstd beam (B2S). Both the types of stepped
beam investigated below are clamped at the endbarelthe following configurations:

BiS:L =L,=L,=Imp,=b,=b,= 0..Inh,=h,= 0.1 h,= 0.1®
B2S:L =L,=L,=Imp,=b,=b,= 0.Inh,=h,= 0.1 h,= 0.1B

First, ratios of three lowest natural frequenciemdked to intact) are computed for the
beams with single crack of different depth from%0Qo 40 % and position running from the left
to the right ends through the steps. Results apershn Fig. 4 where the frequency ratios of
beam B1 on the left and those of beam B2 on tha.rigbserving graphs presented in Fig. 4
allows one to make the following notations: (1) &likto the uniform beam, there exist positions
on the stepped beam crack occurred at which daeshaoge a certain natural frequency. Such
positions are called frequency node and they arengin Table 4 for uniform and stepped
beams. Obviously, natural frequency nodes areddcsymmetrically about the beam middle for
symmetric boundary conditions; (2) The frequendyosaundergo a jump when crack passing
beam steps (this means discontinuity of frequemeiation due to crack at beam steps). Expanse

of the jumps is different for various modes ani itertainly dependent on height of the steps;
(3) Natural frequencies, as well known, are monictidly decreasing with growing crack depth.

Table 4. Frequency nodes of five lowest modes for unifamd stepped beams.

MI\?ge Stepped beam;B Uniform beam B Stepped beam B

1 0.85-2.15 0.67-2.33 0.56-2.44

2 0.461.5 -2.54 04-15-2.6 0.38-1.5-2.62

3 0.3-1.16-1.84-2.7 0.28-1.07-1.93-2.72 0.27 - 020@6 - 2.73

4 0.24-0.941.5-2.06-2.76  0.22-0.831.5-2.17-2.76 0.21-0.76 4.5- 2.24-

2.79

5 0.2-0.75-1.26-1.74-2.25- 0.18-0.68-1.23-1.77-2.32- 0.17-0.65-1.16-1.84-2.35-

2.8 2.82 2.83

Total beam length L = By, Span length L= L, = L = 1 m; Steps at Inand 2m

5.1. Effect of beam steps and crack position

In this subsection, aimed to study effect of st@gdwupt change in beam height), two
uniform beams and two stepped beams (with changel &izes of cross section) of the
following geometry are investigated in additiorthe stepped beams considered in the previous
subsection.

BUL:L, =L,=L,=Imb,=b,=b,= 0.Inh,=h,=h,= 0.15n
BU2:L,=L,=L,=Im;b,=b,=b,=0..mh,=h,=h,= 0.16n
B3S:L,=L,=L,=Mmp,= 0.15h,= 0.h,= 0.1 h,= 0.16,= OH;= OnE
B4S:L,=L,=L,=Mmp,= 0.1b,= 0.1%,= Omh,= O.,= 0.15,= 040
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As the stepped beams B1S and B2S have uniform wtiskhbeams B3S, B4S are stepped
in both sizes of cross section (width and heighbe first three frequency ratios computed in
dependence on the crack position for the uniforthstapped beams are presented in Fig. 5.
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Figure 4. Effect of position and depth of crack on natdiratjuencies of beams B1 (left) and B2 (right).
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Figure 5. Effect of beam thickness variaton (steps) andicpmsition on natural frequencies.
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Comparing the ratios computed for beam BU1 and BIl#vs one to find that increasing
thickness of uniform beam makes all its naturabjfiencies more sensitive to crack. This
highlights the well-known fact that more stiff beasnmore sensitive to crack. However, the
increasing or decreasing thickness of only mid-sparstepped beam leads to diminish or
magnify the second frequency sensitivity to crackusred at the span. So, steps in beam
thickness may increase or decrease natural fregusemsitivity to crack in dependence on
where crack is located and which frequency is amred. Graphs given in Fig.5 show also that
frequency nodes of stepped-down beam (B1) aretduus the beam middle and the nodes are
pulled away from the middle for stepped-up beam)(Bvertheless, the steps do not shift the
node located at the beam middle and uniformly iaireg thickness of uniform beam does not
change the frequency nodes.

6. CONCLUSION

In the present paper a simplified version of tlaasfer matrix method has been developed
for modal analysis of multiple cracked stepped bémsed on an explicit expression of mode
shape of multiple cracked uniform beam element. Singplification consists of that the beam
state needs to be transferred only through stepeaf but not over the cracks as done in the
earlier publications.

An experimental modal analysis of cracked multiskgam has been carried out and
comparison of computed and measured natural freigenlemonstrated a good agreement of
the theory with experiment.

Using the simplified TMM it was found that likelg the uniform beam there exist on beam
positions crack appeared at which does not changertain natural frequency. Such critical
points on beam are called herein frequency noddstamas shown that step-down shifts the
nodes to the beam middle and step-up pulls thelmetbeam ends.

Finally, the performed modal analysis shows sigaiit influence of steps on the natural
frequency sensitivity to cracks and this is a usiefication for crack detection in stepped beam
by measurement of natural frequencies.

Acknowledgement. This work was completed with financial suppodnfr NAFOSTED of Vietnam under
Grant of number 107.01-2015.20.

APPENDI X

CALCULATION OF CRACK MAGNITUDE

The so-called crack magnitude introduced abovalsutated as [16]
Vo =Eol 1K, =6m-vi)hf,(alh); (A.1)
f,(2) = 2° (0.6272-1.0453% + 45948* - 9.97362° + 202948&"* - 33.03512° +
+47.1063%° - 40.75562" +1967°).
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