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ABSTRACT 

In this study, gallium and hydrogen co-doped ZnO (HGZO) thin films were investigated. 

The films were deposited by sputtering from Ga-doped ZnO (GZO) ceramic target in hydrogen 

and argon plasma. The as-deposited HGZO films possess enhanced electron mobility of 48.6 

cm
2
/Vs as compared to that of 39.4 cm

2
/Vs of GZO films, sputtered from the same target. 

Because of insignificant variation in crystallinity, this improvement is attributed to roles of 

hydrogen in crystalline lattice structure of the films. X-ray photoelectron spectroscopy (XPS) is 

employed as an essential technique for quantitative analyses and chemical binding states of films 

constituent elements. The roles of hydrogen are clarified through the binding states of Zn 2p, O 

1s and Ga 3d. Obtained results suggest that the films are deposited more effectively in hydrogen 

plasma. Some point defects such as oxygen vacancies (VO), dangling bonds can be passivated in 

form of H+VO HO and O–H bonds. As a result, the reduction of scattering centers is indicated 

as a reason for the mobility improvement of the HGZO films. 

Keywords: ZnO thin films, high electron mobility, XPS, chemical binding states, passivation. 

1. INTRODUCTION 

Over the past years, Ga-doped ZnO (GZO) thin films as a class of transparent conducting 

oxide (TCO) have attracted much attention in the world. It is proved to be a potential 

replacement for Sn-doped In2O3 (ITO) in photovoltaic and optoelectronic devices [1, 2]. The 

nature of interesting characteristics of GZO films comes from the bonding distance with O (1.92 

) and ionic radius (0.62 ) of Ga  are similar to those of Zn (1.97  and 0.74 ), respectively 

[3]. This facilitates the Zn
2+

 substitution of Ga
3+

 and reduces structural lattice distortion. By 

selecting a reasonable doping ratio, the GZO films can achieve the order of 10
-4

 Ωcm in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229064498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

A.T.T. Pham, D.V. Hoang, T.H. Nguyen, N.B.T. Le, T.B. Phan, V.C. Tran 
 

 

94 

resistivity and more than 80 % in visible light transmittance as reported in some papers [4–7]. In 

these papers, however, the low resistivity is mainly contributed by high carrier concentration 

(~10
21

 cm
-3

). This induces decreased transmittance in the near-IR region due to free-carrier 

absorption. Consequently, high electron mobility is more effective than high carrier 

concentration in expanding high transmittance from the visible to near-IR regions and reducing 

resistivity. 

Hydrogen (H) capability in improving electron mobility in ZnO-based films such as H-

doped ZnO (HZO), H and Al co-doped ZnO (HAZO) has been reported [8, 9]. Also, the 

combination of H and Ga dopants in ZnO (HGZO) films is expected to produce better 

optoelectronic properties than HZO and HAZO films. A large number of studies on H-related 

ZnO films have been carried out to understand roles of hydrogen. The presence of hydrogen and 

its impacts on films are displayed via analytic techniques, such as X-ray diffraction (XRD) [8, 

10, 11]; morphology analysis [12–14], secondary ion mass spectroscopy (SIMS) [8, 15]; Fourier 

transform infrared (FT-IR) [16–18]; Raman spectroscopy [16, 19]. In literature, however, X-ray 

photoelectron spectroscopy (XPS), a strong and effective technique to provide information of 

chemical binding states, has been limitedly used to demonstrate the roles of hydrogen in HGZO 

films, especially in characterization of high electron mobility. 

In this work, therefore, a comparison of electrical properties of GZO films deposited in 

hydrogen and argon plasma with those prepared in pure Ar is carried out. In which, the feature 

of high electron mobility of HGZO films is emphasized. The XPS technique for studying 

contribution of hydrogen in this feature of HGZO films is also discussed.  

2. MATERIALS AND METHODS 

The home-made GZO sputtering target containing 0.5 wt.% Ga2O3 and 99.5 wt.% ZnO 

(99.99 % all in purity, Merck, Germany) was fabricated by high-temperature sintering method. 

The target was employed to deposit GZO thin films on glass substrate in pure Ar ambient by DC 

magnetron sputtering (Leybold UNIVEX 450). To prepare HGZO thin films, small amount of 

hydrogen gas was introduced into sputtering atmosphere while other deposition parameters were 

constant. The substrate temperature and sputtering power were maintained at 200
o
C and 60 W, 

respectively, during deposition. 

The films were checked by using a Stylus profilometer (Veeco DEKTAK 6M) to determine 

thickness (~1300 nm). To clarify the role of hydrogen in HGZO films, composition ratios and 

chemical binding states of Zn, O and Ga elements were analyzed by X-ray photoelectron 

spectroscopy (XPS, Thermo Scientific ESCALAB 250, at the Instrumentation Center – National 

Taiwan University) with Al Kα (1486.6 eV) radiation as X-ray source. The carrier concentration, 

mobility and resistivity of the films were obtained from Hall effect-based measurement (Ecopia 

HMS 3000). A X-ray diffraction system (XRD, Bruker D8 ADVANCE) was used to verify 

crystalline structure of the films. 

3. RESULTS AND DISCUSSION 

3.1.  Electrical characterization 

The typical electrical parameters of GZO and HGZO thin films determined from Hall 

measurement at room temperature are summarized in Table 1. The HGZO films (5.6×10
-4

 Ωcm) 
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have lower resistivity as compared to GZO films (10.6×10
-4

 Ωcm). It is evidently due to both 

carrier concentration and mobility. 

Table 1.  Carrier concentration (n), mobility (µ), resistivity (ρ) and sheet resistance (RS) of GZO                      

and HGZO thin films. 

Thin films n (×10
20

 cm
-3

) µ (cm
2
/Vs) ρ (×10

-4
 Ωcm) RS (Ω/sq.) 

GZO 1.5 39.0 10.6 7.5 

HGZO 2.3 48.6 5.6 4.2 

Firstly, the carrier concentration of HGZO films (2.3×10
20

 cm
-3

) is higher than that of GZO 

films (1.5×10
20

 cm
-3

). It suggests hydrogen as a source contributing electrons for conduction. 

This is good agreement with formation capability of hydrogen shallow donor states (~0.03 – 0.1 

eV under conduction band) [20, 21]. It is well-known that free electrons in n-type TCO films 

come from intrinsic and extrinsic sources. Normally, the former including native defects (Zni, 

VZn, Oi, VO, …) provides carrier concentration in order of 10
18

 cm
-3

 corresponding to resistivity 

in order of 10
-3

 Ωcm in pure ZnO films. In this work, the latter consist of defects relating to 

hydrogen and gallium. Among them, hydrogen donors only induce the minimum resistivity in 

order of 10
-2

 Ωcm [22]. Thus, electrons are not only from the intrinsic and hydrogen donors, but 

also come from another source (gallium donors). Although using the same sputtering target, the 

gallium ratio in GZO and HGZO films may be different. This will be discussed in detail below. 

Secondly, the mobility of HGZO films is 48.6 cm
2
/Vs that is higher than that of GZO films 

(39 cm
2
/Vs) by 25 %. It is well-known that electron mobility in n-type TCO films depends on 

the scattering mechanisms mainly induced by lattice vibration, grain boundaries and defects. 

Because the obtained films have carrier concentration in order of 10
20

 cm
-3

 which is much higher 

than that (10
16

 cm
-3

) of ZnO single crystals [23], the phonon scattering is not significant. 

Besides, the carrier concentration of the highly degenerated GZO and HGZO films is also higher 

than 10
18

 cm
-3

, so the grain boundary scattering is not dominant [8]. Thus, the remaining 

dominant mechanism is ionized impurities scattering which can be strongly influenced by 

hydrogen. Typically, hydrogen passivation can decrease dangling bonds, electron traps and 

defects in ZnO-based films [10, 13, 16, 24]. This results in reduction of scattering centers and 

enhancing the mobility. However, it is necessary to consider more analyses for how hydrogen 

passivates defects in the HGZO films. 

3.2. Crystalline structure 

Table 2.  Crystallographic information of GZO and HGZO thin films. 

To examine the presence of hydrogen and its effects on crystallization of the films, XRD 

spectroscopy was taken at room temperature and displayed in Figure 1. 

Thin films  2 position 

(deg.) 

FWHM (deg.) Average crystal size 

(nm) 

GZO  34.47 0.2033 ~40 

HGZO  34.41 0.2570 ~30 
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Figure 1.  XRD patterns of GZO and HGZO thin films. 

Figure 1 shows the hexagonal wurtzite-structural characterization of ZnO-based films with 

(002) plane-oriented growth along c-axis and perpendicular to the substrate. No additional peaks 

relating to gallium and hydrogen phases are observed. From the XRD spectra, the typically 

crystallographic parameters of the films are listed in Table 2. 

It is seen that the 2-position of (002) peak of HGZO films (34.41
o
) is smaller than that of 

GZO films (34.47
o
). This suggests the insertion of hydrogen into bond-centered sites of Zn–O 

and/or Ga–O. The similar results were also reported in the literature [8, 10, 16]. Besides, the 

FWHM increases with hydrogen introduction. Large FWHM means the reduction of crystallite 

dimension [8]. Average crystal size of HGZO films is ~30 nm, smaller than that of GZO films 

(~40 nm), which are estimated by using Debye-Scherrer’s formula. Although the HGZO films 

possess small average crystal size, their (002)-peak diffraction intensity are very high as 

compared to that of GZO films. It suggests a better intra-crystalline quality (inside grains) of 

HGZO films with less traps and scattering centers than that of GZO films, which results in high 

mobility.  

3.3.  X-ray photoelectron analysis 

 

Figure 2.  XPS survey spectra of GZO and HGZO films. 
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As mentioned above, the differences in the properties between the GZO and HGZO films 

can be induced by hydrogen. For further information, the composition and chemical binding 

states of constituent elements in the films were determined by XPS spectra, as shown in Figure 

2.  

The positions of all peaks in the XPS spectra are aligned with C 1s state (284.4 eV). Note 

that hydrogen cannot be identified by XPS method due to the small size and simple electronic 

configuration of hydrogen atom [25]. The hydrogen contribution is therefore considered through 

binding states of other elements, such as Zn 2p, Ga 3d and O 1s. 

   

Figure 3.  XPS spectra of Zn 2p and Ga 3d core-level states of GZO and HGZO films. 

Figure 3 exhibits the XPS spectra of Zn 2p and Ga 3d core-level states with double peak 

characterization of GZO and HGZO thin films. For the Zn 2p state, the GZO films show two 

peaks located at 1024 eV (Zn 2p3/2) and 1047 eV (Zn 2p1/2). The energy separation is 23 eV for 

ZnO-based films, which is in line with the other reports [26, 27]. However, there is a small 

variation in binding energy of Zn 2p states of HGZO films. Correspondingly, the peaks situate at 

1024.2 eV and 1047.2 eV, which means a 0.2 eV shift toward higher binding energy as 

compared to GZO films. It can be attributed to the presence of Zn-H bonds in HGZO films [8]. 

For the Ga 3d state, it cannot be observed in GZO films, which may be due to the very small Ga 

content in the films. On the other hand, the broad Ga 3d peak can be deconvoluted into two sub-

peaks which are assigned to the Ga 3d5/2 and Ga 3d3/2 states, respectively by using Gauss-

Lorentz mixed function [28]. The evolution of Ga 3d peaks suggests the significant increase of 

Ga content in the HGZO films which is estimated in Table 3. 

Table 3.  The Ga 3d core-level data of GZO and HGZO films.  

It is seen that the XPS Ga 3d peak of HGZO films is overlapped by two components 

located at 19.1 eV (Ga 3d5/2) and 21.3 eV (Ga 3d3/2). It indicates that Ga ions exist with the 

valence of +3 in the films. The ratio of Ga content also increases in HGZO films as compared to 

GZO films. This suggests more effective film-deposition in the hydrogen plasma. Akazawa 

Thin films States  Binding energy 

(eV) 

FWHM 

(eV) 

Atomic ratios 

(at.%) 

GZO –  – – Very small 

HGZO 
Ga 3d5/2  19.1 2.95 

2.68 ± 0.01 
Ga 3d3/2  21.3 2.63 
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reported that a Ga
3+

 and a H
+
 ions can replace two Zn

2+
 ions easily to maintain charge neutrality 

[22]. Thus, hydrogen is believed as a factor which facilitates Ga
3+

 to substitute Zn
2+

 sites in the 

films. 

 

Figure 4.  XPS spectra of O 1s core-level state and its deconvolution of GZO and HGZO films. 

Figure 4 illustrates XPS spectra of O 1s core-level states of GZO and HGZO thin films. It 

is clearly seen that the shape of O 1s peaks is asymmetric. Similarly to the Ga 3d state, the peaks 

of O 1s state are deconvoluted into three components which situate at ~531 eV, ~532 eV and 

~533 eV (notate as OI, OII and OIII respectively). It is well suitable with the analyses of O 1s 

state in the other studies of ZnO-based films [26, 29]. Among them, the OI and OII peaks relate 

to O
2-

 ionic bonds. The OI characterizes for the O
2-

 binding at lattice points of hexagonal-

wurtzite ZnO, whereas OII are in oxygen-deficient regions (oxygen vacancies – VO). The OIII 

with the highest energy is referred to Zn
2+

 binding to hydroxyl group (–OH). The variation in 

intensity of these components is evaluated through relative intensity ratios as shown in Table 4. 

Table 4.  The O 1s core-level data of GZO and HGZO films. 

Thin films 
Binding energy (eV)  Relative intensity ratio 

OI OII OIII  OII / OI OIII / OI 

GZO 531.1 532.2 533.3  0.91 0.77 

HGZO 531.2 531.9 533.0  0.87 0.79 

The variation of ratio OII/OI is considered as a result of the modification of VO 

concentration in the films. The ratio decreases from 0.91 (GZO) to 0.87 (HGZO), which means 

the reduction of VO concentration with hydrogen introduction. It can be explained by hydrogen 

trapped at VO sites as defect formation reaction: H
+
 + VO  HO

+
 [8], where HO is substitutional 

hydrogen and also contributes electron to conduction band. Besides, the ratio OIII/OI increases 

from 0.77 (GZO) to 0.79 (HGZO), which means the increase of –OH group attached to the 

cations (Zn, Ga).  

Consequently, the above XPS analyses show the evidences of defects variation in the 

HGZO films. The analysis of Ga 3d state shows the better deposition of HGZO films than GZO 

films due to hydrogen plasma. This enhances substituted Ga
3+

 and reduces probability of 

interstitial Ga
3+

. The analysis of O 1s state indicates the decrease of VO-related defects. 

Furthermore, the increase of –OH and –H binding to Zn (and/or Ga) suggests the passivation of 

dangling bonds in the films and on the film’s surface, which are interpreted from the Zn 2p and 
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O 1s states. All these things reduce the scattering centers, improve intra-crystalline quality, 

which leads to enhance electron mobility in the HGZO films. 

4. CONCLUSIONS 

In this study, the gallium and hydrogen co-doped ZnO (HGZO) thin films were fabricated 

successfully by using DC magnetron sputtering method. The films obtain high electron mobility 

of 48.6 cm
2
/Vs, which is due to intra-crystallinity improvement. It is attributed to the reduction 

of scattering centers, which is suggested by the XRD, especially XPS techniques. Through the 

XPS analyses, some roles of hydrogen in improving mobility can be realized, such as: (i) 

increasing substituted Ga
3+

 in the films by the charge neutral mechanism, (ii) reducing VO-

related defects by capturing H
+
 to form the HO donor, and (iii) passivating dangling bonds by 

creating the –OH bonds. However, it is still necessary to carry out further studies for more 

evidences. 
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