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ABSTRACT

In Cyber Physical Systems (CPSs), traditional security mechanisms such as

cryptography and access control are not enough to ensure the security of the system

since complex interactions between the cyber portion and physical portion happen fre-

quently. In particular, the physical infrastructure is inherently observable; aggregated

physical observations can lead to unintended cyber information leakage. Information

flow analysis, which aims to control the way information flows among different enti-

ties, is better suited for CPSs than the access control security mechanism. However,

quantifying information leakage in CPSs can be challenging due to the flow of implicit

information between the cyber portion, the physical portion, and the outside world.

Within algorithmic theory, the online problem considers inputs that arrive one by one

and deals with extracting the algorithmic solution through an advice tape without

knowing some parts of the input. This dissertation focuses on statistical methods to

quantify information leakage in CPSs due to algorithmic leakages, especially CPSs

that allocate constrained resources. The proposed framework is based on the advice

tape concept of algorithmically quantifying information leakage and statistical anal-

ysis. With aggregated physical observations, the amount of information leakage of

the constrained resource due to the cyber algorithm can be quantified through the

proposed algorithms. An electric smart grid has been used as an example to develop

confidence intervals of information leakage within a real CPS. The characteristic of the

physical system, which is represented as an invariant, is also considered and influences

the information quantification results. The impact of this work is that it allows the

user to express an observer’s uncertainty about a secret as a function of the revealed

part. Thus, it can be used as an algorithmic design in a CPS to allocate resources

while maximizing the uncertainty of the information flow to an observer.
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1. INTRODUCTION

Cyber Physical Systems (CPSs) consist of both distributed computations (as

a cyber portion) and physical entities that provide better utilization, control, and

performance [35] to the overall system. These systems operates by transmitting infor-

mation between the cyber components and the physical entities. Examples of CPSs

include water and gas distribution systems, power generation and distribution systems,

transportation systems, and advanced communication systems [69].

In addition to the extensive functional capabilities provided by CPSs, they pose

a series of new security challenges due to frequent complex interactions between the

cyber portion and physical portion. For example, failures and attacks occur on the

physical infrastructure, cyber attacks occur on the data management and communica-

tion protocol, and aggregated physical manifestations lead to unintended information

leaks. Information leakage can have significant consequences, ranging from violation

of confidentiality of process decision making [35] to loss of privacy, if the resource is

shared. Indirect information transmissions usually happen in covert channels [77] that

are not easy to detect.

Information flow properties, aiming at controlling the way information flows

among different entities, are more suitable for CPSs. Generally, they will generate a

binary solution for the system to indicate whether there is any information leakage

or not. On the other hand, it is quite common for a system to leak a small amount

of information through observability. The upcoming question is to quantify the infor-

mation leakage based on physical observations. In a resource-constrained CPS (one

in which a finite set of resources are allocated by the CPS to itself), these aggregated

observations from the physical system form incomplete information about sensitive

information, including the amount of the resource and the allocation. Different sub-

sets of observations give different levels of reduction to the uncertainty of sensitive

information.

1.1. CHALLENGES

The confidentiality violation describes unintended and unwanted information

disclosures between two domain user groups, namely, a High-level user and a Low-
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level user. A High-level user usually has a secret to preserve that a Low-level user

tries to obtain. Security considerations within a CPS include the interactions that

occur between cyber events and physically observable behaviors [65]. Different levels

of confidentiality violations are defined by the observer so that the information flow

can be analyzed completely. An observer who is outside a CPS can partially deduce

some information when exposed to an observable physical flow. An observer who is

inside a CPS, however, knows more about the system as the decisions in the cyber

domain are manifested on the physical domain. Furthermore, this observer can inflict

greater damage because he can manipulate the cyber processes.

Systems, in general, are not intended to be fully secure. A small amount of

information leakage is sometimes necessary. For example, a password checking system

provides a message when a password is entered incorrectly. Quantifying the system’s

information leakage can, however, be challenging. The information theory is often used

to calculate the leakage of secret information received by a program that produces a

public output [82], [81], [14], [61], [59], [20], [58].

A number of factors need to be considered when attempting to secure a CPS.

For example, the distribution of the secret information and properties of the problem

aid in revealing additional information. Consider a password that is stored in a k bit

variable. If it is assumed that a uniform probability distribution exists for the variable,

uncovering the password in a single check is quite difficult because the probability for

guessing correctly is 1
2k

. If the distribution of possible values is less uniform (some

values are more significant than others), uncovering the password in a single check

becomes much easier. Quantifying information leakage in CPSs can, however, be

challenging because information leakage can happen explicitly or implicitly in the

cyber portion and the physical portion.

1.2. CONTRIBUTIONS

Inspired by differential privacy [24], a collection of multiple, observable, physical

changes or states could help with the interpretation of sensitive cyber information.

This dissertation focuses on quantifying the information flow in CPSs from a security

perspective, especially CPSs that allocate constrained resources.

Theoretically, a preliminary model for observer to quantify the information leak-

age that uses an advice complexity analysis has been provided, and a method that
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can quantify the observer’s uncertainty about a secret has been illustrated. A gen-

eral framework is proposed, and algorithms are illustrated to obtain the quantified

information. Both are based on the advice tape concept of algorithmically quantify-

ing information and statistical analysis. An electric smart grid has been used as an

example to develop information leakage quantification within a real CPS. The charac-

teristic of the physical system, which is represented as an invariant, is also considered

and integrated in the result of the information quantification.

1.3. ORGANIZATION

This dissertation is organized as follows:

Section 2 presents backgrounds of security and related work on quantifying in-

formation flow.

Section 3 introduces the problem statement as well as preliminary results ana-

lyzing information leakage.

Section 4 discusses the experimental evidence gathered for the verification of the

preliminary result.

Section 5 presents a framework to analyze the information flow quantification

and the algorithms, in detail for the calculating leaked information with the increased

number of observations; results from case studies in a real CPS show the preference

of the specific distribution.

Section 6 illustrates the integration method of the proposed framework and al-

gorithm with the physical system by means of an invariant approach. Through con-

sidering the characteristics of the physical system as an invariant, the cyber algorithm

can be updated to generate more uncertainty to the observer in a real CPS.

Section 7 is the conclusion as well as the proposal for the future work.

Section 8 is a survey on Zero Knowledge Proof.
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2. RELATED WORK

Security has three principal categories: confidentiality, integrity and availabil-

ity. Confidentiality prohibits unauthorized reading information, availability prohibits

the unauthorized withholding of information and integrity prohibits the unauthorized

modification of information.

Standard security mechanisms include access control, firewalls, antivirus soft-

ware and encryption. Access control is an important part of the current security

infrastructure. It tries to define different security levels in the system. A High-level

user usually has a secret; while a Low-level user tries to acquire the secret. Access

control imposes restrictions to prevent secret information sending from the High-lever

user to the Low-level user. It was first formulated by Lampson and later refined by

Graham and Denning [62]. This model describes each individual machine in a system.

Each state in the system is a triple (S,O,M), where S is a set of subjects, O is a

set of objects. M is an access matrix which has one row for each subject and one

column for each object. A cell in M matrix contains the access right the subject has

for an object. Some famous traditional security model such as Bell-La Padula (BLP)

Model [10], Biba Model [11], Take-Grant [60] and HRU Model [47] apply an access

control based approach. They usually employ subject, object, rights and an access

control matrix and enforce security by specifying a particular rule.

However, it is not trivial to determine a system’s subjects, objects, read access

and write access from all aspects. Sometimes it is difficult to map an access control

model’s primitive to a computer system. And access control does not control how

the data is used after it is got read access. For example, consider a Trojan Horse, a

malicious program performing an internal attack on the system. It is insufficient to

stop the action of a Trojan Horse through an access control model. The malicious

user could easily bypass the access restriction by sending out a Trojan Horse program

to obtain the secret.

A firewall protects secret information by preventing its communication with out-

side. Antivirus softwares use some known patterns to detect malicious behavior in

the software. Encryption makes sure that only the communication end could access

the secret. However, those mechanisms do not provide end-to-end security concerning
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information flow inside a system [77]. For example, antivirus softwares offer very lim-

ited protection to new attacks and firewalls will permit some communication in both

directions if it is outside the scope of firewall mechanism. They are not adequate to

protect the security of the CPSs [69], neither.

Indirect information transmissions usually happen in covert channels in [77] that

are not easy to detect and usually reveal information from a High-level user to a

Low-level user. Information flow properties aim at controlling the way information

flows among different entities. The information flow based security is better suited

for the CPSs that has inherently observable changes between the cyber portion and

the physical portion. Thus, besides ensuring the accesses of subjects to objects, in-

formation flow rules have to be applied for the purpose of the confidentiality. Some

of the most prominent information flow properties are Noninterference, Noninference

and Nondeducibility.

2.1. INFORMATION FLOW SECURITY PROPERTIES

2.1.1. Noninterference Property. Noninterference was first proposed by

Goguen and Meseguer in [36], which attempted to capture the idea that a user in

a High-level should not interfere with a user in Low-level. Usually, the method for

showing noninterference holds is to demonstrate the Low-level user cannot observe

any differences between two executions that is different only in High-level inputs.

But noninterference is too strong to be satisfied in reality. Due to highly integrated

cyber and physical interactions in the CPSs, it is inevitable for the CPSs to leak

information [67].

The idea of indistinguishability is used to describe that there is no information

flow between two objects A and B [72]. Noninterference can be expressed that for any

pair of behaviors of the system that differ only in A’s behavior, B’s observations can-

not distinguish these two behaviors. Approximate noninterference in [72] is suggested

to relax noninterference within a threshold ε. It replaces notion of indistinguishability

with the idea of similarity and allows for some exactly quantified leakage of informa-

tion. The quantity measurement for the similarity is to calculate the supremum norm

over the difference of the probability distributions representing different observations.

In [34], Bisimulation Non Deducibility on Compositions (BNDC) is proposed

with the same idea of noninterference. In short, a system is BNDC if what a Low-
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level user sees of the system is not modified by composing any High-level process to

the system. Security Process Algebra (SPA) [76] is used to the express information

flow of the system and protocol.

2.1.2. Noninference Property. Noninference is equivalent to Noninterfer-

ence for deterministic system when the High-level output cannot be generated without

the High-level input [64]. Unlike noninterference, noninference is more general and can

be applied to nondeterministic systems.

2.1.3. Nondeducibility Property. Sutherland’s nondeducibility was based

on the idea that security is maintained if High-level and Low-level states are indepen-

dent in the sense that a Low-level user can never totally rule out any High-level state

based on his own local state [21].

In cryptography, Shannon’s probabilistic definition of secrecy is similar to Suther-

land’s nondeducibility. It requires High-level and Low-level events to be probabilisti-

cally independent. In another words, the Low-level’s posterior probability of a High-

level event should be the same as his prior probability of that event before interacting

with the system [21].

Nondeducibility on strategies was first introduced by [85] to deal with the prob-

lem of feedback. It observes that if a program is run multiple times and feedback

between runs is allowed to be seen, information can be leaked. In general, if the

system has the property of nondeducibility on strategies, there are no noiseless com-

munication channels between High-level input and Low-level output.

2.2. QUANTITATIVE INFORMATION FLOW

Because it is often not possible to achieve noninterference and some information

needs to be revealed, quantitative information flow is another direction [19]. There

are some fields that apply the theory of quantitative information flow to check the

confidentiality of sensitive information. In secure information flow analysis, the pro-

gram will be examined to see if a secret input is leaked when an attacker sees some

outputs of the program. In anonymity protocols, network traffic is checked to see if

an attacker could know who is communicating [81]. Side-channel attacks try to break

cryptography by taking advantage of information from an algorithm’s physical execu-

tion such as running time, cache behavior, power consumption and electromagnetic

radiation [59] [58]. Those information could be used to recover a secret from cryp-
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tographic algorithms. Using the process algebra CSP, information flow quantity has

been defined as the number of behaviors of High-level user that are distinguishable

from a Low-level user’s point of view [61].

2.2.1. Shannon Entropy Based Information Theory. The foundations of

quantitative information are information theoretic measures such as Shannon entropy

and mutual information. The basic scenario is a program or a protocol that receives

some High-level secret inputs and produces some public Low-level outputs. The attack

model is what an adversary will deduce about secret inputs if he sees the public

outputs.

Let X be a random variable whose value belongs to a set χ. The Shannon

entropy SE(X) is the expected number of bits required to transmit X optimally and

defined as the uncertainty about X:

SE(X) =
∑
x∈χ

P [X = x]log
1

P [X = x]
(1)

Given two jointly distributed random variables X and Y , the conditional entropy

SE(X|Y ) is defined as the uncertainty about X given Y :

SE(X|Y ) =
∑
y∈Y

P [Y = y]SE(X|Y = y) (2)

where

SE(X|Y = y) =
∑
x∈χ

P [X = x|Y = y]log
1

P [X = x|Y = y]
(3)

The mutual information I(X;Y ) is defined as the amount of information shared be-

tween X and Y :

I(X;Y ) = SE(X)− SE(X|Y ) (4)

In order to quantify information leakage, there is a statement describing:

Initial uncertainty = information leakage + remaining uncertainty

If we define H as secret input and L as public output, the entropy SE(H) is the

initial uncertainty about H and the conditional entropy SE(H|L) is the remaining
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uncertainty about H. After rearranging the statement, Information leakage = initial

uncertainty - remaining uncertainty = SE(H) - SE(H|L).

2.2.2. Min-entropy Based Information Theory. However, the Shannon

Entropy based method doesn’t support good security guarantees about the probability

that H could be guessed from an example [81]. Based on Rényi’s min-entropy, a

number of researchers have developed a min-entropy theory to quantify information

flow.

Min-entropy is based on a concept of vulnerability. Let X be a random variable

whose value belongs to a set χ. The vulnerability of X is the worst-case probability

that an adversary could guess the value of X in one try and is denoted as V (X):

V (X) = maxx∈χP [X = x] (5)

The min-entropy of X is proposed as measure of initial uncertainty and denoted as

SE∞(X):

SE∞(X) = log
1

V (X)
(6)

The conditional vulnerability V (X|Y ) is calculated given jointly distributed random

variables X and Y :

V (X|Y ) =
∑
y∈Y

P [Y = y]V (X|Y = y) (7)

where

V (X|Y = y) = maxx∈χP [X = x|Y = y] (8)

The conditional min-entropy SE∞(X|Y ) is proposed as the measure of remaining

uncertainty:

SE∞(X|Y ) = log
1

V (X|Y )
(9)

The min-entropy information leaked is calculated based on above definition: Informa-

tion leakage = initial uncertainty - remaining uncertainty = SE∞(X) - SE∞(X|Y ).
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There is another important concept in information theory named channel: a

channel represents relationships between systems inputs and outputs [82]. A channel

is a triple (S,O,CSO), where S is a finite set of secret input values, O is a finite set

of observable output values and CSO is an |S| × |O| matrix. CSO is called the channel

matrix where each cell CSO[s, o] represents the conditional probability of obtaining

output o given that the input is s.

The attack model is that an adversary A tries to find out the value of S through

observing O. In order to quantify the amount of information that flows from S to O,

it is natural to make a comparison of A’s uncertainty about S before and after seeing

the value of O. That is:

Information leakage = initial uncertainty - remaining uncertainty

The min-entropy leakage from S to O is denoted as LeakageSO:

LeakageSO = SE∞(S)− SE∞(S|O) (10)

The above approaches try to measure information flow through the reduction in un-

certainty about secret data. But this uncertainty-based measurement is inadequate

because accuracy isn’t taken into account [20]. The attacker’s probability distribution

over the secret is subjective and is regarded as a belief. Belief will change due to the

attacker’s observations of the execution of a program. This new metric measurement

for quantitative information flow is developed and applied in several examples.

2.2.3. Generalization of Min-entropy Leakage. The min-entropy leakage

measures the amount of information by which a channel increases the vulnerability of

a secret being guessed correctly in one try by an adversary. However, in reality, there

are some other scenarios that need considering. For example, what if the adversary

could make multiple guesses about the secret? Or what if the adversary guesses the

secret partially or approximately? In [17], a gain function g is proposed to model the

benefits that the adversary could gain by guessing a value close to the secret, guessing

a part of the secret, guessing a property of the secret, or guessing the secret within

some number of tries.

Assuming the adversary makes a guess w when the secret’s actual value is x,

then the gain function g(w, x) will model the benefits that the adversary gains from

this guess, ranging from 0 to 1. Given a gain function g, g-vulnerability is defined as
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the maximum expected gain over all guesses. The g− leakage is the generalization of

min-entropy leakage based on g-vulnerability.

Given a set χ of possible secret values and a finite, nonempty set W of allowable

guesses, a gain function is a function g: W × χ → [0, 1]. Usually, a gain function g

can be represented as a |W | × |χ| matrix G, where G[w, x] = g(w, x).

The prior g-vulnerability is derived from the definition of vulnerability to take

account of the gain function g and a prior distribution π on χ:

Vg(π) = maxw∈W
∑
x∈χ

π[x]g(w, x) (11)

The posterior g-vulnerability is based on gain function g, prior π and channel C:

Vg(π,C) =
∑
y∈Y

maxw∈Wπ[x]C[x, y]g(w, x) (12)

The g-entropy and g-leakage are defined in the same way as min-entropy and

min-leakage:

SEg(π) = log
1

Vg(π)
(13)

SEg(π,C) = log
1

vg(π,C)
(14)

Leakageg(π,C) = SEg(π)− SEg(π,C) = log
Vg(π,C)

Vg(π)
(15)

In [17], gain functions can be induced from metrics and distance functions. The

notion of distance measures the difference between the secrets in χ. The metric d on

χ, is a function: d : χ× χ→ [0,∞), satisfying the properties:

• Identity: d(x1, x2) = 0 iff x1 = x2

• Symmetry: d(x1, x2) = d(x2, x1)

• Triangle inequality: d(x1, x3) ≤ d(x1, x2) + d(x2, x3)

The normalized metric d, for example, is dividing all distances by the maximum value

of d. Even binary gain functions could be in various formula by considering different

choices of W. For example, W = {W,χ|W} is called a 2-block gain function by
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considering W as a property that the secret χ might satisfy W or might not satisfy

χ|W . Actually W could be any partition of χ into one or more disjoint blocks, the

attacker just needs to determine which block the secret belongs to. The partition gain

function is derived from dividing W into more than two blocks.

In [14], quantifying information flow is extended to use views, which in fact are

partitions of the secrets from the attacker’s perspective. Give a view and n independent

observations of the system, the probability that an attacker wrongly predicts the secret

is plotted. It shows that behavior of this error probability is a function of the number

of observations. In particular, as n→∞, the error probability decreases exponentially.

However, as the Shannon entropy only considers whole secret as input, it is not

appropriate for quantifying information leakage to the observability problem that con-

siders incremental observations of the secret [31]. Moreover, information theory based

methods do not address all aspects of the CPSs’ system background, in particular they

do not address the algorithmic aspects of CPS computation as well as the physical

characteristics. In a CPS, implicit information will happen in covert channel between

the interactions of the cyber component and physical component and aggregation of

physical observations would also leak certain amount of information in the cyber al-

gorithm. As a result, in a CPSs where heavy interactions happen between the cyber

part and the physical part, the information quantification method should be able to

be adjusted to be useful.

In [31], a method has been proposed to quantify information flow in a smart grid

applying advice complexity analysis for an abstract algorithm. In this dissertation,

a more general way has been proposed to quantify information flow in CPSs with

constrained resources. The algorithms are developed to quantify the information and

results are verified in the smart grid.
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3. THE UNCERTAINTY OF THE OBSERVABILITY PROBLEM

All the papers in the previous section try to quantify what the attacker will learn

about a secret through the output of the system based on information theory. They

only consider a secret as a whole that has a public distribution but not the incremental

observations of the secret as the input. What this dissertation focuses on is if an

observer has already seen a part of secret, how much does this part of secret reveal

the remaining part? Based on the revealed information, how to decide the remaining

information? There must be given some relationship between the revealed one with the

unrevealed one. If this relationship between the revealed part with the unrevealed one

is given by the observable physical system, it is possible to quantify information flow.

Exploring that relationship is the key to quantify information leakage. In particular,

as the observer sees more and more pieces of information, he will be able to quantify

the information leakage based on different relationships that are manifested from the

revealed part.

3.1. MODEL PROBLEM

FREEDM is a smart grid that uses intelligent transmission and distribution

networks to deliver electricity. Numerous vulnerabilities and challenges will arise as it

involves many factors such as the cyber part, the physical part, integration of cyber

and physical systems, and human behavior and commercial interests [57]. For example,

as the smart grid uses supervisory control and data acquisition (SCADA) systems to

obtain fine grained monitor data, the protection of electricity usage patterns for the

customers should be considered.

Distributed Grid Intelligence (DGI) is a collection of cyber processes in the smart

grid to perform intelligent and distributed computation and management. They im-

plement balancing power flow and optimal distribution of energy through a distributed

load balancing algorithm [3]. Each node in the smart grid consists of a Solid State

Transformer (SST), a Distributed Renewable Energy Resource (DRER), a Distributed

Energy Storage Device (DESD), and a LOAD which is the consumption of power at

the household. Each node computes its local SST that represents the amount of excess

or deficit generation. That is SST = LOAD − DRER.
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DGIs use the distributed load balancing algorithm in [3] to manage power in the

smart grid. Nodes in the system first form a group with a group leader based on a

leader election algorithm. In the load balancing algorithm, each node in the smart

grid will receive a Normal value from the group leader. The node will be classified

as Supply if its SST’s actual value is larger than the Normal value and as Demand if

its SST’s actual value is less than the Normal value. The nodes participating in the

load balancing algorithm communicate their SST changes with each other in order to

migrate power from a Supply node to a Demand node. The nodes normalize their

SST values and achieve a roughly balanced status after power migrations.

Each DGI maintains a Load Table as shown in Table 3.1, which stores informa-

tion of its local grid organization and information from other nodes in the system. A

node in the Supply state will advertise a draft request message to the Demand nodes

in its load table. On receiving the draft request from Supply node, the Demand node

responds with a message called draft age indicating request power. The Supply node

will select one Demand node based on the greedy algorithm to fractional knapsack

problem [3] and send out a draft select message to the Demand node. Upon receiving

the draft select message, the Demand node will initiate power migration by increasing

its local SST and send back an accept message to the Supply node. Then the Sup-

ply node will finish the power migration by decreasing its local SST. The algorithm

continues until all the nodes are in the Normal state. The following summarizes the

steps for power migration in the DGI and Figure 3.1 shows a sequence diagram of

the load balancing algorithm. The communications protocol between the Supply node

and the Demand node is shown in Table 3.2 and continues until all the nodes are in

the Normal state.

Table 3.1: Smart Grid Load Table: Power Management

Net DRER: Net DESD:
Net LOAD: SST Gateway:

Normal:
Node State
Node 1 Demand
Node 2 Supply

... ...
Node n Normal
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Table 3.2: Load Balance Algorithm for DGI

1. A node in the Supply state will advertise a draft request message to the Demand nodes in its
load table.
2. On receiving the draft request from Supply node, the Demand node responds with a message
called draft age indicating requested power.
3. The Supply node will select one Demand node based on the greedy solution to the knapsack
problem and send out a draft select message to the Demand node.
4. Upon receiving the draft select message, the Demand node will initiate power migration by
increasing its local SST and send back an accept message to the Supply node.
5. Then the Supply node will finish the power migration by decreasing its local SST.

Definition 3.1 (Knapsack problem). There are n kinds of items, 1 through n. Each

item i has a value vi and a weight wi. The maximum weight that a bag can carry is

W . Mathematically the knapsack problem can be formulated as:

• maximize
∑n

i=1 vixi

• subject to
∑n

i=1wixi ≤ W

The 0-1 knapsack problem requires each object must be either in the knapsack

completely or not at all, that is xi ∈ {0, 1}. The 0-1 knapsack problem is NP -hard [55]

and can be solved by the dynamic programming. The fractional knapsack would allow

partial usage of each object. The greedy algorithm is used to find an optimal solution

to the fractional knapsack problem. There is a greedy approach for the 0-1 knapsack

problem that can obtain an approximation solution to the optimal solution within

polynomial-time. The greedy approach will choose the items with better ratio of

value to weight and insert into the knapsack until it cannot fit any more whole items.

Next, the remaining items will be divided into smaller pieces. As the pieces become

infinitesimally small, the result approaches the optimal solution. If the size of pieces

is limited, the result is guaranteed to be within a bound of the optimal solution [3].

The subset-sum problem is a special case with wi = vi. It means choosing

a subset of the values so that the sum is as large as possible without exceeding a

bound. The subset-sum problem with each item’s value less than 1 is called the

simple knapsack problem in this paper.
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Supply Demand

Request

Response

Select

Accept

State Collection

Normal Normal

Knapsack Algo

Figure 3.1: Load Balance Algorithm

The secret in our problem is the constraint and solution of the knapsack problem,

which is applied in a load balancing algorithm to manage power in smart grid [3]. The

implicit information flow between the cyber part and the physical part, particularly

the aggregated physical observation under the process of a cyber algorithm, is the focus

of this dissertation. As shown in Figure 3.2, the observer could be an outsider An or
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be inside of the system as A1 or A2. What will be an outsider An or an insider A1 will

deduce about the secret in the system? Moreover, what will be the communication

between an insider A1 and A2 help them deduce about the secret in the system?

This section will analyze the information leakage based on the observer’s position

to the system and will especially focus on the situation that observers would commu-

nicate with each other. How does this confidentiality violation influence the whole

system? In particular, as more and more observed physical information is collected,

specific attention will try to quantify the information leakage of the secret.

DGI1

Demand

DGI3

Supply

DGI2

Demand

DGIn

Demand
…...

An

A2A1

Figure 3.2: FREEDM with Attackers A1, A2 and An

3.2. INFORMATION FLOW ANALYSIS THROUGH OBSERVABILITY

3.2.1. External Observer Obtaining One Reading. If no observer can

obtain the system’s readings, the system has zero knowledge leakage. But electric

power lines are physically visible and public; an observer could obtain a reading on

one line attached to a node. The information will be the power value transmitted to

the node. The system, thus, suffers from information leakage.

Suppose there are n demand values x1, x2, ..., xn; the number of possible supply

values will be 2n: X1, X2, ..., X2n . Assume a supply value is chosen under a uniform
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distribution, the probability for each value to be the supply value would be 1
2n

. The

Shannon Entropy of the system is:

SE(X) =
2n∑
i=1

P (X)log
1

P (X)
=

2n∑
i=1

1

2n
log2n = n (16)

If only one value xi is observed to the observer through the power line, the

number of possible values for the supply value is 2n−1. Because X is under a normal

distribution, SE(X|xi) can be obtained according to Shannon Entropy:

SE(X|xi) =
2n−1∑
i=1

1

2n−1
log2n−1 = n− 1 (17)

The information leakage is calculated as

I = SE(X)− SE(X|xi) = n− (n− 1) = 1 (18)

3.2.2. Multiple External Observers without DGI. More observers can

obtain more readings on the shared power bus. If two values xi and xj are revealed to

the observer, the number of possible values for the supply value is 2n−2. Assuming X

is under a normal distribution, SE(X|xi, xj) can be obtained according to Shannon’s

Entropy theory:

SE(X|xi, xj) =
2n−2∑
i=1

1

2n−2
log2n−2 = n− 2 (19)

The information leakage is calculated as

I = SE(X)− SE(X|xi, xj) = n− (n− 2) = 2 (20)

As the values are given to the observer one-by-one, the number of possible values

for the supply value is changed from 2n, 2n−1, 2n−2, until all of the values are revealed.

The information leakage increases geometrically as each value is revealed.

Given the assumption that the node has an integer value and each value is iden-

tical, two observations of information leakage and explanations are provided. Suppose

the total supply value is S, the number of demand nodes in the system is n, one
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demand node is observed with value A, and that x is the node with maximum value

among the remaining n − 1 nodes. Since the total number of demand nodes in the

system is less than n− 1, the following inequality must be satisfied.

x+ (x− 1) + (x− 2) + ...+ (x− (n− 2)) > S − A

(n− 1)x− (1 + 2 + ...+ (n− 2)) > S − A

(n− 1)x > S − A+
(n− 1)(n− 2)

2

x >
S − A
n− 1

+
n− 2

2

Thus,

S − A
n− 1

+
n− 2

2
< x < S − A (21)

Similarly, assuming y is the node with a minimum value among the remaining

n− 1 nodes, the following inequality should be satisfied.

y + (y + 1) + (y + 2) + ...+ (y + (n− 2)) < S − A

(n− 1)y + (1 + 2 + ...+ (n− 2)) < S − A

(n− 1)y < S − A− (n− 1)(n− 2)

2

y <
S − A
n− 1

− n− 2

2

Thus,

0 < y <
S − A
n− 1

− n− 2

2
(22)

Observation 3.1. An observed larger value as a part of solution to the 0-1 knapsack

problem increases the certainty of the maximum value and minimum value in the

remaining solution.

Suppose a node with value A is larger than a node with value B. xA and xB are

maximum value in the remaining solution if A and B are observed separately.
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S − A
n− 1

+
n− 2

2
< xA < S − A

S −B
n− 1

+
n− 2

2
< xB < S −B

The range(x) is defined as the upper bound of x minus the lower bound of x.

range(xA) = (S − A)− (
S − A
n− 1

+
n− 2

2
)

range(xB) = (S −B)− (
S −B
n− 1

+
n− 2

2
)

range(xA)− range(xB) = (B − A)
n− 2

n− 1
< 0

Because range(xA) is less than range(xB), the observer will have more certainty on

the maximum value in the remaining solution if A is observed.

Similarly, yA and yB are minimum nodes in the remaining solution if A and B

are observed separately.

0 < yA <
S − A
n− 1

− n− 2

2

range(yA) =
S − A
n− 1

− n− 2

2

0 < yB <
S −B
n− 1

− n− 2

2

range(yB) =
S −B
n− 1

− n− 2

2

range(yA)− range(yB) =
B − A
n− 1

< 0

Because range(xA) is less than range(xB), the observer will have more certainty on

the minimum value in the remaining solution if A is observed.

Observation 3.2. As more values are revealed as a part of solution to the 0-1 knapsack

problem, the observer will have more certainty on the range of the maximum value in

the remaining solution.
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Suppose the first node is observed as value A and x is the one with maximum

value among the remaining n− 1 nodes.

S − A
n− 1

+
n− 2

2
< x < S − A

If another node is observed as value A
′

and x
′

is the one with maximum value among

the remaining n− 2 nodes.

X − A− A′

n− 2
+
n− 3

2
< x

′
< X − A− A′

Both range(x) and range(x
′
) can now be obtained as follows:

range(x) = (S − A)− (
S − A
n− 1

+
n− 2

2
)

range(x
′
) = (S − A− A′)− (

S − A− A′

n− 2
+
n− 3

2
)

The difference between range(x) and range(x
′
) is calculated as

(
(S − A)(n− 2)

n− 1
− n− 1

2
)− (

(S − A− A′)(n− 3)

n− 2
− n− 2

2
)

= (S − A)
(n− 2)2 − (n− 1)(n− 3)

(n− 1)(n− 2)
+ A

′ n− 3

n− 2
− 1

2

=
(S − A)

(n− 1)(n− 2)
+ A

′ n− 3

n− 2
− 1

2
> 0

A similar result on the minimum value in the remaining solution cannot, however,

be obtained. Assume that y and y
′

are minimum values among the remaining n − 1

and n− 2 nodes, respectively.

0 < y <
S − A
n− 1

− n− 2

2
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0 < y
′
=
S − A− A′

n− 2
− n− 3

2

The difference between range(y) and range(y
′
) is calculated as

(
S − A
n− 1

− n− 2

2
)− (

S − A− A′

n− 2
− n− 3

2
)

=
A
′
(n− 1)− (X − A)

(n− 1)(n− 2)
+

1

2

The difference would be either positive or negative; the range of the minimum value

among the remaining nodes may not decrease.

Theorem 3.1. Assuming w is the constraint for the 0-1 knapsack problem with n

items, when value Ai for i ∈ {1, 2, · · · , t} is observed in the solution that contains t

items, the lower bound of the maximum value in the remaining solution becomes

w −
∑
Ai

n− t
+
n− t− 1

2

the upper bound of maximum value in the remaining solution is w −
∑
Ai; the upper

bound of minimum value in the remaining solution is

w −
∑
Ai

n− t
− n− t− 1

2

Proof. Assume x is the node with maximum value among the remaining n−t solutions,

y is the node with minimum value among the remaining n − t nodes. Because the

total number of demand nodes in the system is less than n− t, the following inequality

must be satisfied.

x+ (x− 1) + (x− 2) + ...+ (x− (n− t− 1)) > w −
∑

Ai

(n− t)x− (1 + 2 + ...+ (n− t− 1)) > w −
∑

Ai

(n− t)x > w −
∑

Ai +
(n− t)(n− t− 1)

2

x >
w −

∑
Ai

n− t
+
n− t− 1

2
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y + (y + 1) + (y + 2) + ...+ (y + (n− t− 1)) < w −
∑

Ai

(n− t)y + (1 + 2 + ...+ (n− t− 1)) < w −
∑

Ai

(n− t)y < w −
∑

Ai −
(n− t)(n− t− 1)

2

y <
w −

∑
Ai

n− t
− n− t− 1

2

The range of maximum value is: w −
∑
Ai > x > w−

∑
Ai

n−t + n−t−1
2

. The range of

minimum value is: y < w−
∑
Ai

n−t −
n−t−1

2
.

The above observations and theorem emperically indicate that the observer will

deduce more information in the remaining solution (e.g., the lower bound of the max-

imum value and the upper bound of the minimum value) as the observer obtains more

readings from the nodes. These larger readings will provide more certainty on the

lower bound of the maximum value and the upper bound of the minimum value in the

remaining solution than the smaller readings will provide.

3.3. ADVICE COMPLEXITY FOR ONLINE KNAPSACK

3.3.1. Online Problem. The online problem has input that arrives one by

one and deals with extracting the solution without knowing some parts of input. The

respective algorithms are called online algorithms. Unlike offline algorithms, in which

the input is known to the algorithm at the beginning of the computation, the input

will be received piece by piece in online algorithms. After receiving one piece of the

input, the algorithm has to make a decision on the solution and cannot reverse the

decision in the later phase. The algorithm for the online problem tries to generate

a solution with zero knowledge about some missing instances in the input. Many

problems such as routing, scheduling, or the paging problem are online problems [13].

3.3.2. Competitive Analysis. Competitive analysis is the standard method

to measure the quality of an online algorithm. The competitive ratio introduced

by Sleator and Tarjan in [80] is defined as the quality of the solution by the online

algorithm over the quality of an offline algorithm. For an online problem P , let’s

define that an optimal solution for a certain input I of P is OPT (I). A(I) denotes
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the solution computed by an online algorithm on input I in a sequential order. For an

online minimization problem, A is called c− competitive if there exists some constant

α > 0 such that, for any input sequence I, A(I) ≤ c · OPT (I) + α. For an online

maximization problem, A is called c− competitive if A(I) ≥ 1
c
·OPT (I)−α for some

constant α > 0. Usually, we consider strictly c− competitive in which α = 0.

Offline algorithms have more power than online algorithms. But online algo-

rithms have received more and more interest recently because they try to quantify

how much information about the forthcoming part of the unknown input is needed.

Researchers try to investigate what amount of information online algorithm really

lacks to obtain an optimal solution or achieve a specific competitive ratio [48].

3.3.3. Advice Complexity. It seems unfair to compare the offline algorithms

with the online algorithms since the offline algorithms have already known the whole

input. In order to investigate to what extent the solution quality of online algorithm

can be improved, the notion of advice complexity is introduced [22]. Advice complexity

of online problem is another quality measurement for the online problem by extracting

a given amount of information about the input. It is proposed as one of methods to

achieve a specific competitive ratio for the online problems [23].

In the model of advice complexity presented in Figure 3.3, an Oracle, which sees

the whole input and has unlimited computational power, would communicate with

the online algorithm passively. The oracle will write bitwise information about the

forthcoming input onto an advice tape, which will be read by the online algorithm in

a sequential order before reading any input x1, x2, · · · , xn. The competitive ratio will

be a result from the online algorithm computation over the optimal result from the

Oracle. The advice complexity is defined as the number of bits the online algorithm

reads from the advice tape.

Definition 3.2 (Online Algorithm with Advice [8]). Consider an input I of an on-

line maximization problem. An online algorithm A with advice computes the output

sequence Aφ = (y1, y2, ..., yn) such that yi is computed from φ, x1, x2, ..., xi and φ is the

content of the advice tape (such as an infinite binary sequence). The cost of the com-

puted output is denoted as cost(Aφ(I)). The online algorithm A is c-competitive with

advice complexity s(n) if there exists some α such that, for every n and for each I of

length at most n, there exists some φ such that cost(Aφ(I)) ≥ 1
c
cost(OPT (I))−α and
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Figure 3.3: Advice Complexity Model

at most the first s(n) bits of φ have been accessed during the computation of Aφ(I). If

A is c-competitive for α = 0, it is called strictly c-competitive.

The model of advice complexity for online problems describes how many bits of

advice about the unknown parts of the input are necessary and sufficient to achieve a

specific competitive ratio. It is obvious that advice tape with a linear number of advice

bits is necessary to achieve an optimal solution by indicating a solution bit to each

input. However, it is usually the case that few advice bits are sufficient to improve

the competitive ratio. In [9] [13], the knapsack problem, the paging problem, a job

shop scheduling problem and the problem of routing communication are examined.

The consistent features for those problems is that advice tape with O(logn) bits is

sufficiently improve the competitive ratio over the best deterministic algorithm.

3.3.4. Online Knapsack with Advice Complexity. In the online version

of the knapsack problem, the items arrive one after another and the algorithm has

to decide for each item whether it is in the solution or not. Those items cannot be

removed from the solution at a later stage.

Definition 3.3 (Online Knapsack Problem [8]). The online knapsack problem is the

following maximization problem. The input consists of a sequence of n items that are

tuples of weights and profits, S = {s1, s2, · · · , sn}, si = (wi, vi), where 0 < wi ≤ 1

and vi > 0 for i ∈ {1, 2, · · · , n}. A feasible solution is any subset S ′ of S such that
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∑
wi ≤ 1; the goal is to maximize

∑
vi for i ∈ S ′. the items are given an online

fashion. For each item, an online algorithm A must specify whether this item is part

of solution or not as soon as it is offered. In a simple online knapsack, each item’s

value vi is smaller than 1 and equals its weight wi.

Advice complexity of online knapsack problem has been analyzed thoroughly

in [8] The following theorems are all from [8]. First, it shows that it is impossible to

achieve a competitive solution without advice.

Theorem 3.2. No deterministic online algorithm for the simple knapsack problem(and,

thus, the general knapsack problem) without advice is competitive.

Then, the advice tape with a linear number of bits is necessary to compute an

optimal solution.

Theorem 3.3. There exists an optimal online algorithm A for the simple knapsack

problem using n bits of advice.

Theorem 3.4. Any online algorithm with advice for the simple knapsack problem

needs at least n− 1 bits to be optimal.

Furthermore, a competitive ratio of 2 is achievable with a single advice bit.

However, any further increase of the number of advice bits does not help until a

logarithmic number is reached.

Theorem 3.5. Let A be an online algorithm reading one bit of advice, which indicates

whether there exists an item s within the input that has a size larger than 1
2
. The online

algorithm A for simple knapsack problem is 2-competitive.

Theorem 3.6. Let b < blog(n− 1)c and let ε > 0. No online algorithm for simple

knapsack problem using b bits of advice is better than (2− ε)-competitive.

Theorem 3.7. Let ε > 0. There exists an online algorithm A with advice for the

simple knapsack problem that achieves a competitive ratio of (1 + ε) reading⌈
2ε+ 2

2

⌉
· dlogne+ 2 ·

⌈
log

2ε+ 2

ε

⌉
+ 2 · dlog dlognee+ 1

bits of advice.
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Proof. For a fixed constant ε > 0, let δ = ε
2+2·ε , which is verified in the end of the

proof. The first bit in the advice tape will indicate whether there is an item with size

larger than δ or not.

Suppose there does not exist any item with the size larger than δ, then the online

algorithm could pick the item greedily as each item is coming. The competitive ratio

will be calculated as 1
1−δ since the online algorithm will obtain at least 1− δ.

1

1− δ
= 1 +

δ

1− δ
= 1 +

ε

2 + ε
≤ 1 + ε

On the contrary, suppose there exists some items of size larger than δ. Since the

Oracle knows the whole input and has unlimited computational power, it can obtain

the optimal solution and divide it into two disjoint sets S1 and S2, where S1 denotes

the set of items with size > δ named heavy items and S2 contains items of size ≤ δ

named light items. Let s1 and s2 indicate total summation of items in S1 and S2

respectively and j represents the number of heavy items.

Since j · δ ≤ 1, j need
⌈
log 1

δ

⌉
bits to be encoded in the advice tape. The indexes

of all the heavy items will be written into the advice tape using j · dlogne bits. For

the purpose of being able to decode the advice string, the length dlogne has to be

included in the advice tape in some form using 2 ddlognee bits.

For the light items, the oracle could encode a number k on the advice tape, where

k is:

kδ ≤ s2 < (k + 1)δ

Since each item in S2 with size less than δ, their total summation is not smaller than

kδ − δ > s2 − 2δ. Therefore, the competitive ratio will be calculated as:

s1 + s2
s1 + s2 − 2δ

=
1

1− 2δ
= 1 +

2δ

1− 2δ
= 1 + ε

In summary, the advice tape which contains following three parts as shown in

Table 3.3 will satisfied the competitive ratio (1 + ε):

• The first bit indicates whether there exists any item within the input of size > δ.
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Table 3.3: Advice Tape for Simple Knapsack

First bit j Index 1 ... Index j sumlight

• The heavy item is recorded with an index and total number of heavy items.

• The light items are recorded with a lower bound summation.

It has also been shown that O(logn) bits (with a larger constant) are sufficient

to get arbitrarily close to an optimal solution for the general online knapsack problem.

Theorem 3.8. Let ε > 0. There exists an online algorithm A for knapsack that

achieves a competitive ratio of 1 + ε using at most O(logn) bits of advice.

The proof is omitted here and could be found in [8].
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4. PRELIMINARY EXPERIMENT RESULTS

In this section, an internal observer within DGI will be analyzed in FREEDM

when he observes more and more information. The information leakage model has been

generated using the advice tape concept. Quantitive information leakage is plotted

out through experiments.

4.1. INFORMATION LEAKAGE MODEL

The attack model is shown in Figure 4.1: the system is the Oracle which sees

all the SST values and applies a knapsack algorithm on them; the observer is the

online algorithm that tries to obtain the secret supply value and remaining solution.

Observing advice tape containing messages and the Load Table provided by DGI, the

observer tries to deduce the total supply value as his observations increase.

Observer

System

…...
Message, Load Table and power 

migration in the power line

Write 

1x 2x 3x nx

Read Make Decision

Figure 4.1: Advice Tape Modelfor DGI

The knapsack problem would either be the 0-1 knapsack or the fractional knap-

sack. The greedy algorithm will find the optimal solution to the fractional knapsack

by choosing nodes with the highest demand values and allow fractional power to be



29

satisfied; while the dynamic programming will find the optimal solution to the 0-1

knapsack by choosing nodes with sum of demand values equal to the supply value.

There also exists a greedy approach for the 0-1 knapsack that could obtain result

within a bound of optimal solution [3].

Lemma 4.1. Assuming that power migration is done by satisfying demands in one

round and the greedy approach cannot be used for the 0-1 knapsack, it is possible for

the observer to deduce what the problem is used within DGI.

Proof. Because the observer could see the results of the power transfer in the physical

power line, he could measure and compare it with the Load Table. The Load Table

in DGI displays power of all demand nodes. If the observer doesn’t see the select

messages for the local node, or if the Load Table doesn’t change at all in one power

migration cycle, it means that the solution of the cyber algorithm doesn’t contain the

local node. If this happens once that the observed power in the power line is less than

the demand value of local node, the problem will be the 0-1 knapsack rather than the

fractional knapsack.

For example, assume the observer (Node3) own a Load Table in Table 4.1 with

his local demand value equals to 20.

Table 4.1: Load Table of Node3

Node1 Demand(30)
Node2 Demand(10)
Node3 Demand(20)
Node4 Supply
Node5 Demand(5)

Assume the supply value is Node4 with value 45 not visible in the Load Table,

the 0-1 knapsack algorithm will choose Node1, Node2 and Node5, since L1+L2+L5 =

30+10+5 = 45. However, the greedy knapsack algorithm will choose Node1 and Node3

because it can satisfy Node3 partially. If the observer doesn’t see a select message or

any changes of Load Table in one state collection cycle, it means that Node3 isn’t in
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the solution. However, if the observer sees that the power line experienced 5 or 10

units of power transmission, it means that Node2 and Node5 are in the solution. Then

the observer will know the problem is the 0-1 knapsack because the greedy algorithm

for the fractional knapsack will choose the Node3 instead of Node2 and Node5.

Lemma 4.2. Within DGI, Shannon Entropy is not an appropriate measurement for

the information leakage as the it does not consider the ratio of revealed part over the

secret. The observer will deduce the lower bound ratio of revealed physical observations

over the secret.

Proof. In the previous two sections, Shannon Entropy is used to measure the informa-

tion leakage as the observer is outside the DGI. If xi is revealed as a solution among

x1, x2, ..., xn through physical observation, Shannon entropy is calculated as

SE(X|xi) =
∑ 1

2n−1
log2n−1 = n− 1 (23)

This means that a large observed value will lead to the same information uncertainty

as a small observed value. However, it is not appropriate to measure the information

uncertainty for the observers within DGI. Because the Load Table will display all

values from demand nodes, the supply value will be bounded by the sum of all demand

values. Thus, each individual physical observation in the power line will reveal a ratio

to the bounded supply value. A large observed value will have different ratio to the

supply value with a small observed value.

A function should be defined to measure the uncertainty of the information by

considering both the number of revealed items and the ratio of the revealed part over

the secret. The function is defined as F metric. The uncertainty of the information is

between 0 and 1. 0 means the observer knows nothing about the information while 1

means the observer knows all about the information. If there is no item revealed, the

uncertainty of the information is defined as 0. If there is at least one item revealed, the

uncertainty of the information would be calculated by the F metric in the following.

F =
2× h

t
× V

X
h
t

+ V
X

(24)
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h is the number of revealed items; t is the number of items in the optimal

solution; V is the value of revealed items; X is the value for the optimal solution. It

is straightforward to obtain that F = 1 when h = t and V = X.

Theorem 4.1. The solution to the 0-1 knapsack problem is related with a threshold

(δ) that differentiates the items in heavy or light in the solution. Table 4.3 shows that

the threshold (δ) can be used for information leakage analysis when observed item in

the solution increases.

Proof. Recall that advice tape has a fixed δ which will differentiate items in solution

into two part: heavy item is larger than δ and light item is smaller than δ. Let f

represent the flag for a heavy item and m represent the number of heavy items in the

advice tape. When the first bit f is revealed, Table 4.2 shows the boundary of X.

Table 4.2: First Bit

First Bit x1 x2 ... xn
0 xn

X
≤ δ ⇒ X ≥ xn

δ

1 xn
X
> δ ⇒ X < xn

δ

If the first bit and the number of heavy items are revealed as 1 and m, respec-

tively, the lower bound of X will be the sum of m smallest values in the Load Table,

and the upper bound will be the maximum value over δ :

x1 + x2 + ...+ xm < X <
xn
δ

(25)

As each heavy item is revealed, both the lower bound and the upper bound of X

are updated correspondingly. If only one item xi is revealed in advice tape as a heavy

item, then

x1 + x2 + ...+ xm−1 + xi < X <
xi
δ

(26)

If two items xi and xj are revealed as heavy items, then

x1 + x2 + ...+ xm−2 + xi + xj < X < min(
xi
δ
,
xj
δ

) (27)
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As more and more items are revealed, both the lower bound and the upper

bound of X are updated, the more the certainty of the constraint in the solution has.

Table 4.3 shows the boundary of X as the advice tape (with a fixed δ) is revealed bit

by bit.

Table 4.3: Information Leakage

Bit meaning Number of Bits in
Advice Tape

Boundary of X F Uncertainty

f 1 xn
δ
> X F >

2× 1
t
×δ

1
t
+δ

f,m < 1 +
⌈
log 1

δ

⌉
xn
δ
> X > x1 + x2 +

...+ xm

F >
2×m

t
×m×δ

1
t
+m×δ

f,m, h1 < 1+
⌈
log 1

δ

⌉
+dlogne hi

δ
> X > x1 + x2 +

...+ xm−1 + h1

F >
2×m

t
×h1
X

+(m−1)×δ
m
t
+
h1
X

+(m−1)×δ

f,m, h1, h2 < 1 +
⌈
log 1

δ

⌉
+

2 dlogne
min(h1

δ
, h2
δ

) > X >
x1 +x2 + ...+xm−2 +
h1 + h2

F >
2×m

t
×h1+h2

X
×(m−2)×δ

m
t
+
h1+h2
X

+(m−2)×δ

... ... ...

f,m, h1, ..., hm < 1 +
⌈
log 1

δ

⌉
+⌈

log 1
δ

⌉
dlogne

min(h1
δ
, h2
δ
, ..., hm

δ
) >

X > h1+h2+ ...+hm

F >
2×m

t
×h1+h2+...+hm

X
m
t
+
h1+h2+...+hm

X

Within DGI, the observer can use the Load Table to calculate the average value

among the demand nodes. A big observed power migration in the power line (larger

than the average value) indicates there is a heavy item in the solution; while a small

observed power migration in the power line (less than the average value) indicates there

is a light item in the solution. A selection of a DGI in the Load Balance algorithm

is an indication that the observed node is in the solution. The attacker can obtain

multiple readings from its neighbors. As the attacker observes more and more items,

the boundary of constraint will be calculated out by differentiating it as a heavy item

or a light item based on a δ.

4.2. EXPERIMENT RESULTS

The following example presents some results of quantifying the uncertainty of

information of the supply value (the constrained resource) from FREEDM.
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4.2.1. Case 1: Six Items as Solution to a Knapsack Problem. The

Load Table in DGI shows demand values 30, 60, 75, 200, 45, 20, 90, 120, 39, 47, 54,

108, 112 in the system with total summation 1000. Suppose the optimal solution for

supply value 422 is 45, 20, 90, 120, 39, 108.

For δ = 0.2, the heavy items are 90, 120, 108 because the threshold is 422×0.2 =

84.4. The total numbers of different sequences of items in the solution are 6! = 720.

The Figure 4.2 shows the uncertainty family curves for six items showing up in different

orders with a δ = 0.2. The uncertainty portion is the shaded area.

Figure 4.2: Uncertainty Portion with 6 items and δ = 0.2

For a δ = 0.08, the heavy items are 45, 39, 90, 120, 108 because the threshold is

422× 0.08 = 33.76. The Figure 4.3 shows the whole uncertainty family curves for six
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items showing up in different orders with a smaller δ = 0.08. The uncertainty portion

is the shaded area.

Figure 4.3: Uncertainty Portion with 6 items and δ = 0.08

The similarity of Figure 4.2 and Figure 4.3 shows that for a specific knapsack

problem different δ won’t make much change to the shape of the uncertainty portion

as long as the heavy part contains the item that is close to the threshold.

4.2.2. Case 2: Split the Light Items in Case 1 . The knapsack problem

has been kept the heavy items unchanged and split the light items to make bigger

differences between the heavy part and the light part.

Suppose the problem is 30, 60, 75, 200, 21, 14, 10, 9, 90, 120, 10, 17, 22, 47, 54,

108, 112 and the optimal solution for constraint 422 is 21, 14, 9, 11, 90, 120, 10, 17, 22, 108.

For those 10 items in the solution, the heavy items are 90, 108, 120 and the possible
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sequences of those 10 items are 10!. Partial sequences have been picked to show the

uncertainty curves for δ = 0.2 in Figure 4.4 and δ = 0.08 in Figure 4.5.

Figure 4.4: Uncertainty Portion with 10 Items and δ = 0.2 by Splitting the Light
Items

In Figure 4.5, the uncertainty portion that is the shaded area between the upper

bounds and the lower bounds is much bigger than those of the previous. The upper

bound of the constraint has not changed until the last item shows up. The difference

between Figure 4.4 and Figure 4.5 shows that given the total sum of all items in the

system is much larger than the individual item, a heavy part that is far from the the

threshold will lead to more uncertainty of the constraint.

4.2.3. Case 3: Split the Heavy Items in Case 1. If the heavy items

have been split into smaller and similar values: 30, 60, 75, 66, 44, 62, 26, 45, 12,

8, 42, 48, 73, 47, 55, 53, 39, 49, 54, 43, 69, the optimal solution for constraint 422
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Figure 4.5: Uncertainty Portion with 10 Items and δ = 0.08 by Splitting the Light
Items

is 45, 12, 8, 42, 48, 73, 47, 55, 53, 39. With a δ = 0.08 and threshold 33.67, the heavy

items are 45, 42, 48, 73, 47, 55, 53, 39. The uncertainty curves have been chosen from

10! sequences and shown in Figure 4.6.

The lines above 400 are the upper bounds of the constraint and the lines below

400 are the lower bounds. The uncertainty portion is the shade area between the upper

bounds and lower bounds. Because the heavy part contains items that are close to the

threshold, the uncertainty portion shows a similar shape as in Figure 4.2, Figure 4.3

and Figure 4.4.

By considering the ratio of revealed part over the constraint, the advice tape will

help to deduce some parts of the solution for 0-1 knapsack with special property. A

trapdoor knapsack [81] is a knapsack problem with input consisting of a sequence of

n items: {x1, x2, · · · , xn} and has a property that: xi >
∑j=1

i−1 xj.



37

Figure 4.6: Uncertainty Portion with 10 Items and δ = 0.08 by Splitting the Heavy
Items

Corollary 4.1. For a trapdoor knapsack, an observed heavy item will reveal extra

information about the solution.

Proof. If a heavy item A is revealed, the following inequality has to be satisfied:

A

X
> δ ⇒ X <

A

δ

The remaining solution will be revealed under a specific δ. To be more specific,

if δ ≥ 0.5, then X < 2A. Since each item in the Load Table has a property that

xi >
∑j=1

i−1 xj, the items after item A won’t be in the solution as shown in Table 4.4.

For example, if we have Table 4.5 as Load Table that satisfies the trapdoor

knapsack property, Node1 won’t belong to the solution as Node5 is known as a heavy



38

Table 4.4: Revealed Item and Deduced Solution

x1 x2 ... A ... xn
no advice 1

δ ≥ 0.5 and A belongs to heavy 1 0 0

item with δ ≥ 0.5. If Node5 is known as the heavy item in the solution with an

assumption that δ ≥ 0.5,

8

X
> δ ≥ 0.5⇒ X < 2 ∗ 8 = 16

therefore, Node1 won’t be in the solution because X < 16.

Table 4.5: Another Example of Load Table

Node1 Demand(16)
Node2 Demand(4)
Node3 Demand(2)
Node4 Supply
Node5 Demand(8)
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5. THE INFORMATION FLOW QUANTIFICATION FRAMEWORK

The above presented work is a preliminary result that observations in FREEDM

can lead to different levels of information leakage. Under this analysis, there are some

mitigation strategies that could reduce the information leakage as much as possible.

For example, the fractional knapsack is much more vulnerable than the 0-1 knapsack

assuming that greedy approximation approach is not used for the 0-1 knapsack. If the

greedy algorithm is deduced by the attacker through the observations, the attacker

can attack the system by sending out a large fake demand value that is guaranteed

to be the solution in the next power migration cycle. The experimental evidence in

the previous section also shows that there is a system configuration that makes the

observer won’t obtain much until in the very late phase that all items are observed

Figure 4.5. Empirically, Load Balance in FREEDM should pick heavier items and

lighter items with large differences as the solution to enlarge the uncertainty of the

information to the observer.

In this section, a framework for quantify information flow in constrained re-

source CPSs is proposed. Algorithms have been provided to calculate the quantified

information leakage as well as the maximal information leakge to a certain number

of observations. FREEDM has been used as an example for demonstrate usage of

this framework in a real CPS. Security strategy is confirmed through the experiment

results on different distributions of the heavy and light items [32].

5.1. CONFIDENCE INTERVAL

In statistics, both point estimation and interval estimation are the uses of the

sample data to estimate an unknown parameter. Point estimation uses the data to

calculate a single estimate of the variable. Interval estimation provides a range of

values that may contain the unknown variable. A confidence interval is an interval

estimation that contains the unknown variable with certain degree of confidence. It is

used as an estimator to measure the range for the unknown variable.

In general, a confidence interval of an unknown variable is: point estimate ±
reliability coefficient × standard error. Let Zα/2 be the value that cuts off an area

of α/2 in the upper tail of the standard normal distribution of the unknown variable
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x. Let x̄ be the mean value for the sampling observations, σ the deviation and n the

number of sampling observation. A 1− α confidence interval for the variable is:

(x̄− Zα/2
σ√
n
, x̄+ Zα/2

σ√
n

) (28)

The length of the confidence interval is defined as: 2× reliability coefficient ×
standard error, that is 2×Zα/2× σ√

n
. The margin error is defined as half of the length

of the confidence interval: reliability coefficient × standard error, that is Zα/2 × σ√
n
.

5.2. FRAMEWORK

The observation from the physical system will give the observer a feeling about

the constrained resource in the solution. The output of cyber algorithm and physical

observations will provide a certain number of samples to the constrained resource cal-

culated by applying advice tape analysis. Given the assumption that the constrained

resource has a public distribution, quantification information flow is accomplished by

calculating the confidence interval of the constrained resource.

The proposed framework is presented in Figure 5.1.

1O

2O

kO

Advice 
Tape

1S

2S

kS

Confidence 
Interval

Figure 5.1: Observation Based Information Leakage Analysis Framework
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The O1, O2, . . . , Ok represent multiple observations. Under the analysis of the

advice tape, each observation will represent an approximate sample S1, S2, . . . , Sk to

the constrained resource. Assuming the constrained resource has a known distribution,

different subsets of observations will generate different confidence intervals for the

constrained resource. Those ranges could be used as the mathematical way to measure

the information leakage of the observations in return.

Normal distributions are often used for real-valued random variables whose dis-

tribution is unknown. In this paper, it is assumed that the constrained resource (the

supply value) has a normal distribution with an unknown mean µ and a known or

unknown standard deviation σ in FREEDM. It tries to answer questions such as how

to quantify information leakage based on observations and what observations will give

the attacker most valuable information. To be more specific, in the load balance algo-

rithm in FREEDM, the output will be a Load Table that consists of all values from

demand nodes. Given that the constrained resource(the supply value) has a known

distribution, what sequences of the observed demand nodes combined with the Load

Table will lead to higher information leakage and how to quantify it?

The following will analyze the confidence interval for the unknown mean µ based

on the Load Table and the advice tape.

Based on an advice tape with threshold δ, if an item claims it’s a heavy item, it

will contribute an upper bound of the constrained resource.

H

C
> δ =⇒ C <

H

δ
(29)

If an item claims it’s a light item, it will contribute a lower bound of the constrained

resource.

L

C
≤ δ =⇒ C ≥ L

δ
(30)

Suppose the total number of items in the optimal solution is m. If the solution

items are showing one by one individually, the attacker will obtain m guessing values

C1, C2, ..., Cm based on the equation (29) and (30). The mean value among from those

m guessing values will be calculated by (31).
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C̄ =
C1 + C2 + ...+ Cm

m
(31)

A 1− α confidence interval for the supply value is:

(C̄ − Zα/2
σ√
m
, C̄ + Zα/2

σ√
m

) (32)

The margin error is Zα/2
σ√
m

.

To be specific, a 95% confidence interval for µ-the supply value is:

(C̄ − 1.96
σ√
m
, C̄ + 1.96

σ√
m

) (33)

The margin error is 2× 1.96 σ√
m

.

If the number of heavy items are known as h and all heavy items are shown indi-

vidually asH1, H2, ..., Hh, the attacker could obtain h by guessing numbers C1, C2, ..., Ch

and calculate the mean of observations.

C̄h =
C1 + C2 + ...+ Ch

h
(34)

Then, for a 95% confidence interval for µ, the supply value is:

(C̄h − 1.96
σ√
h
, C̄h + 1.96

σ√
h

) (35)

Similarly, if the number of light items are known as l and all light items are

shown individually as L1, L2, ..., Ll, the attacker could obtain l by guessing numbers

C1, C2, ..., Cl and calculate mean of the observations.

C̄l =
C1 + C2 + ...+ Cl

l
(36)

Then, for a 95% confidence interval for µ, the supply value is:

(C̄l − 1.96
σ√
l
, C̄l + 1.96

σ√
l
) (37)
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The above analysis is based on the assumption that the deviation σ is known to

the attacker. However, in reality, σ is usually unknown. Based on the value from the

Load Table and the advice tape, let s be the variance that could be calculated by

s2 =
1

m− 1

m∑
i=1

(Ci − C̄)2 (38)

Then the confidence intervals can be constructed based on the t-statistic, a con-

tinuous probability distribution to estimate the mean of a normally distributed pop-

ulation where the sample size is small and standard deviation is unknown.

T =
C̄ − µ
s/
√
m

(39)

Let tα/2(m−1) be the value that cuts off the upper area of α/2 in a t-distribution,

the confidence interval based on the t-distribution is:

(C̄ − tα/2(m− 1)
s√
m
, C̄ + tα/2(m− 1)

s√
m

) (40)

Observation 5.1. As the margin of error depends on the number of observations

and variance, the more values that are confirmed to be the solution, the narrower the

observed range of the constrained resource (the supply value) will be.

Proof. Given only one observation O1, it does not contribute to the confidence interval

analysis. Because it should be either the heavy item or the light item, it can lead

to either the upper bound of the constrained resource or the lower bound of the

constrained resource.

Given two observations O1 and O2, they will lead to the range R(O1, O2) of

the constrained resource if one belongs to heavy and one belongs to light. Based on

the range R(O1, O2), two samples C1, C2 ∈ R(O1, O2) could be guessed and used for

calculating mean value C and variance s.

Given three observations, O1, O2 and O3, the range of the constrained resource

will be R(Oi, Oj) - the minimum range among R(O1, O2), R(O2, O3) and R(O1, O3).

Based on the minimum range, three samples S1, S2, S3 ∈ R(Oi, Oj) could be guessed

and used for calculating mean value C ′ and variance s′. Since the range is smaller or
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equal to the range from the above two observations, the variance s′ will be smaller or

equal to s.

As observations have been revealed, s the variance will decrease or at least stay

the same according to above analysis. The margin of error is defined as Zα/2
s√
m

. As

m will be larger, the margin error will decrease. In other words, the range of the

constrained resource will be narrowed down as shown in Figure 5.2.
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Figure 5.2: Confidence Interval with Observations

Lemma 5.1. Under certain constrained resources and thresholds in the advice tape,

given the same number of revealed light items and heavy items, the confidence interval
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given by the light items will be larger than the confidence interval given by the heavy

items.

Proof. Suppose the revealed number of heavy items is k with values H1, H2, ..., Hk,

under threshold δ, the attacker will obtain the range for the constrained resource C

by satisfying the equation (41).

H1 +H2 + ...+Hk < C < min(
H1

δ
,
H2

δ
, ...,

Hk

δ
) (41)

Similarly, k revealed light items will have to satisfy the range for the constrained

resource C based on equation (42).

max(
L1

δ
,
L2

δ
, ...,

Lk
δ

) ≤ C (42)

Suppose C1, C2, ..., Ck are samples to C chosen from equation (41) and C ′1, C
′
2, ..., C

′
k

are samples to C chosen from equation (42). The sh and sl represent the variance for

heavy items and light items respectively.

The mean value is calculated from equation (43), sh from equation (44), sl from

equation (45)

C̄ =

∑k
i=1Ci +

∑k
i=1C

′
i

2 ∗ k
(43)

s2h =
1

k − 1

k∑
i=1

(Hi − C̄)2 (44)

s2l =
1

k − 1

k∑
i=1

(Li − C̄)2 (45)

Since each Li < Hi < C̄, the differences between Li with C̄ are much bigger.

Thus, sh will be less than sl.

According to equation (40), the confidence interval by k heavy revealed items is

less than k light items. In other words, the same number of heavy item will leak more

information than light items regarding the constrained resource.

In a CPS with constrained resources, the resource allocation is assumed to be

done by applying 0-1 knapsack algorithm. Given the advice tape to 0-1 knapsack
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problem, the threshold δ differentiates the normalized input items as either heavy

(> δ) or light (≤ δ). The observations O = O1, O2, ..., Ok from the physical devices

in CPSs will be divided into heavy parts H1, H2, ..., Hi and light parts L1, L2, ..., Lj

with i + j = k. The constrained resource C has been assumed a normal distribution

N(µ, δ2).

Theorem 5.1. Given any subsets of the entire observation H1, H2, ..., Hi, L1, L2, ..., Lj,

observed from the output of a cyber algorithm, the confidence interval (C̄ − tα/2(m −
1) s√

m
, C̄ + tα/2(m− 1) s√

m
) is calculated based on the t-statistic and represents the un-

certainty of the actual value of the constrained resource in the CPS. m is the number

of observed items.

Proof. According to equation (41) and (42), any subsets of the entire observation

gives range for the observer to obtain a range of the value of the constrained resource

C.

For any subsets observation H1, ..., Hu, L1, ..., Lv, the equation(46) has to be

satisfied.

max((
u∑
x=1

Hx +
v∑
y=1

Ly),max(
Ly
δ

)) < C < min(
Hx

δ
) (46)

The observer generates C1, C2, ..., Cu+v within the above range corresponding to

H1, ..., Hu, L1, ..., Lv. According to the mean value calculation, equation (38), and

equation (39), the confidence interval (C̄ − tα/2(m − 1) s√
m
, C̄ + tα/2(m − 1) s√

m
) is

obtained with m = u+ v.

By applying specific values from the system and comparing the range of the

confidence interval, the amount information leakage can be quantified in terms of the

observations.

5.3. CASE STUDY AND EVALUATION RESULTS IN FREEDM

The examples from [31] will be used for the case study here. Suppose the problem

is 30, 60, 75, 200, 21, 14, 10, 9, 90, 120, 10, 17, 22, 47, 54, 108, 112 and the optimal

solution for constraint 422 is 21, 14, 9, 11, 90, 120, 10, 17, 22, 108. For those 10 items in

the solution, the heavy items are 90, 108, 120 with δ = 0.2.
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5.3.1. Case 1: The Heavy Items are Seen Before the Light Items. For

the specific sequence of the observations, the Confidence Interval with Zα/2 = 1.96 has

shown in Table 5.1. Figure 5.3 shows the confidence interval with the corresponding

observations.

Table 5.1: Observations with Confidence Interval for Case 1

No. Observed Items Confidence Interval
1 90 N/A
2 90, 120 (129, 600)
3 90, 120, 21 (150, 553)
4 90, 120, 21, 108 (258, 540)
5 90, 120, 21, 108, 11 (269, 499)
6 90, 120, 21, 108, 11, 10 (279, 459)
7 90, 120, 21, 108, 11, 10, 14 (300, 458)
8 90, 120, 21, 108, 11, 10, 14, 17 (315, 441)
9 90, 120, 21, 108, 11, 10, 14, 17, 9 (403, 429)
10 90, 120, 21, 108, 11, 10, 14, 17, 9, 22 422

Figure 5.3: Observation to Confidence Interval for Case 1
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5.3.2. Case 2: The Light Items are Seen Before the Heavy Items. For

another sequence of the observations (the light items are seen first before the heavy

items), the Confidence Interval with Zα/2 = 1.96 has shown in Table 5.2. Figure 5.4

shows the confidence interval with the corresponding observations.

Table 5.2: Observations with Confidence Interval for Case 2

No. Observed Items Confidence Interval
1 11 N/A
2 11, 10 (55, 1000)
3 11, 10, 21 (109, 1000)
4 11, 10, 21, 14 (116, 1000)
5 11, 10, 21, 14, 17 (123, 1000)
6 11, 10, 21, 14, 17, 90 (184, 330)
7 11, 10, 21, 14, 17, 90, 22 (197, 317)
8 11, 10, 21, 14, 17, 90, 22, 9 (195, 305)
9 11, 10, 21, 14, 17, 90, 22, 9, 108 (300, 374)
10 11, 10, 21, 14, 17, 90, 22, 9, 108, 120 422

Figure 5.4: Observation to Confidence Interval for Case 2
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From Figure 5.3 and Figure 5.4, it is clear that observed heavy items will reduce

the confidence interval much more than the light items. That is, the observed heavy

items will help the attacker known much more sensitive information than the light

ones.

5.3.3. FREEDM Example and Evaluation Result. The implemented

algorithm in the DGI for the Supply Node to pick the Demand nodes is a greedy

knapsack. The greedy algorithm is used to approximate an optimal solution to the

knapsack problem.

In this experiment, as the Supply node has chosen the Demand nodes 21, 14,

9, 11, 90, 120, 10, 17, 22, 108 for power migration, it will do power migrations with

the Demand node 120 since it is the highest Demand node. Unit power migration is

transmitted in each power migration cycle. The Supply node will migrate 12 units of

power only for the Demand node 120 until 120−12 and 108 are both highest Demand

nodes. Then power migration will switch between two Demand nodes 120 and 80 until

120− 30, 108− 18 and 90 are the highest Demand nodes. So on and so forth, all the

Demand nodes will be satisfied as shown in Figure 5.5.
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unit power

unit power

unit power
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Load Table

Node State

Node1 Demand(108)
Node2 Demand(21)
Node3 Supply

... ...

Node5Node3 Node7 Node1

Demand

200

Node12

…

Figure 5.5: Power Migration in FREEDM for the Specific Example
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Based on advice tape analysis, the observer will be able to generate Confidence

Intervals for the constrained resource by counting the unit power migration in the

power line and see the Load Table. Table 5.3 and Figure 5.6 show the results based

on the experiment and analysis.

Table 5.3: Observations with Confidence Interval from FREEDM

Power Observed Items Confidence Interval
1-12 120 N/A
13-48 120, 108 (352, 540)
49-252 120, 108, 90 (409, 444)
253-256 120, 108, 90, 22 (366, 447)
257-276 120, 108, 90, 22, 21 (373, 433)
277-294 120, 108, 90, 22, 21, 17 (380, 422)
295-315 120, 108, 90, 22, 21, 17, 14 (397, 423)
316-323 120, 108, 90, 22, 21, 17, 14, 11 (408, 424)
324-332 120, 108, 90, 22, 21, 17, 14, 11, 10 (419, 431)
333-422 120, 108, 90, 22, 21, 17, 14, 11, 10, 9 422

Figure 5.6: Observation to Confidence Interval in FREEDM
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5.4. ALGORITHM

In constrained flow based CPS, if the values of all items are available just like

the Load Table, the information leakage can be quantified in Algorithm 1 represented

by the confidence interval using advice tape analysis as the observations are shown up.

The Algorithm 2 provides a way to calculate maximal confidence interval to a certain

number of observations based on Algorithm 1.

Theorem 5.2. The Algorithm 2 correctly calculates the maximal Confidence Interval

for a number of observations using a greedy method.

Proof. The correctness of this algorithm is proved by mathematical induction. The

greedy property is proved by contradiction.

For the base case, the number of observations are 2, there will be three scenarios:

• Both are light items: CI1 = ConfInteCalc(N, δ, V, Lu, Lu+1)

• One is light item; one is heavy item: CI2 = ConfInteCalc(N, δ, V, Lu, Hx)

• Both are heavy items: CI3 = ConfInteCalc(N, δ, V,Hx, Hx+1)

The maximal confidence interval for two observations is f(2) = max(CI1, CI2, CI3).

Assuming the maximal confidence interval for m − 1 observations is f(m − 1)

with the light items [Lu, Lw] and heavy items [Hx, Hy]. For the next observation (the

mth), it could be either a light item or a heavy item. To be more specific, it is before

Lu or after Lw if it is a light item; or it is before Hx or after Hy if it is a heavy item.

For case 1, there are two light items Lu−2, Lu−1 with Lu−2 < Lu−1 < Lu. Based

on the advice tape analysis, the lower boundary will be Lu−2

δ
< Lu−1

δ
. The sample will

be Cu−2 < Cu−1. Since the mean value C̄ is larger than the samples from the light

items, the invariance s2 = 1
m−1

∑m
i=1(Ci − C̄)2 will lead to su−2 > su−1. According to

the confidence interval equation (C̄ − tα/2(m − 1) s√
m
, C̄ + tα/2(m − 1) s√

m
), the Lu−2

will have larger confidence interval than the Lu−1. By choosing the Li that is most less

than the Lu as the next observation, CI1 = ConfInteCalc(N, δ, V, [Li, Lw], [Hx, Hy])

will be the maximal confidence interval as the next observed item is light before Lu.
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For case 2, there are two light items Lw+1, Lw+2 with Lw < Lw+1 < Lw+2. Based

on the advice tape analysis, the lower boundary will be Lw+1

δ
< Lw+2

δ
. The sample will

be Cw+1 < Cw+2. Since the mean value C̄ is larger than the samples from the light

items, the invariance s2 = 1
m−1

∑m
i=1(Ci − C̄)2 will lead to sw+1 > sw+2. According to

the confidence interval equation (C̄−tα/2(m−1) s√
m
, C̄+tα/2(m−1) s√

m
), the Lw+1 will

have larger confidence interval than the Lw+2. By choosing the Li that is next larger

than the Lw as the next observation, CI2 = ConfInteCalc(N, δ, V, [Lu, Li], [Hx, Hy])

will be the maximal confidence interval as the next observed item is light after Lw.

For case 3, there are two heavy items Hx−2, Hx−1 with Hx−2 < Hx−1 < Hx. Based

on the advice tape analysis, the upper boundary will be Hx−2

δ
< Hx−1

δ
. The sample

will be Cx−2 < Cx−1. Since the mean value C̄ is less than the samples from the heavy

items, the invariance s2 = 1
m−1

∑m
i=1(Ci − C̄)2 will lead to sx−2 < sx−1. According to

the confidence interval equation (C̄ − tα/2(m − 1) s√
m
, C̄ + tα/2(m − 1) s√

m
), the Hx−1

will have larger confidence interval than the Hx−2. By choosing the Hi that is next less

than the Hx as the next observation, CI3 = ConfInteCalc(N, δ, V, [Lu, Lw], [Hi, Hy])

will be the maximal confidence interval as the next observed item is heavy before Hx.

For case 4, there are two heavy items Hy+1, Hy+2 with Hy < Hy+1 < Hy+2. Based

on the advice tape analysis, the upper boundary will be Hy+1

δ
< Hy+2

δ
. The sample

will be Cy+1 < Cy+2. Since the mean value C̄ is less than the samples from the heavy

items, the invariance s2 = 1
m−1

∑m
i=1(Ci − C̄)2 will lead to sy+1 < sy+2. According to

the confidence interval equation (C̄−tα/2(m−1) s√
m
, C̄+tα/2(m−1) s√

m
), the Hy+2 will

have larger confidence interval than the Hy+1. By choosing the Hi that is most larger

than the Hy as the next observation, CI4 = ConfInteCalc(N, δ, V, [Lu, Lw], [Hx, Hi])

will be the maximal confidence interval as the next observed item is heavy after Hy.

In Lemma 5.1, it has already proved that under certain constrained resources

and thresholds in the advice tape, given the same number of revealed light items and

heavy items, the confidence interval given by the light items will be larger than the

confidence interval given by the heavy items. Based on this Lemma, this algorithm

can be proven to be a greedy solution by applying contradiction.

If only light items are observed to the attacker, suppose the algorithm has a

solution [Lu, Li] to generate the maximal confidence interval, while there is an optimal

solution assuming to have the maximal confidence interval with light items [Lu, Lj].

It is assumed that Li < Lj. Since the [Lu, Lj] has the larger confidence interval than
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[Lu, Li] based on the assumption, the variance su,j will be larger than su,i. The sample

from the light items are less than the mean value C̄ and s2 = 1
m−1

∑m
i=1(Ci − C̄)2.

Then Cu,j < Cu,i, thus
Lj
δ
< Li

δ
and Lj < Li, which is contradicted with the initial

assumption Li < Lj.

If light items and heavy items are observed to the attacker, suppose the algorithm

has a solution with light items [Lu, Lw] and heavy items [Hx, Hi], while there is an

optimal solution assuming to have the maximal confidence interval with light items

[Lu, Lw] and heavy items [Hx, Hi−1] and then Hj. It is assumed that Hi > Hj. Because

the optimal solution has the maximal confidence interval than the solution from the

algorithm, the variance su,j will be larger than su,i. The sample from the heavy items

are larger than the mean value and s2 = 1
m−1

∑m
i=1(Ci − C̄)2. Then Cu,j > Cu,i, thus

Hj
δ
> Hi

δ
and Hj > Hi, which is contradicted with the initial assumption Hi > Hj.

As the above four scenarios illustrate all the possible maximal confidence interval

for m observed items and greedy proporty has been proved through contradiction, the

f(m) = max(CI1, CI2, CI3, CI4) is the max confidence interval for m observations.

5.5. EXAMPLES BY APPLYING THE ALGORITHMS

This section will applying above two algorithms to obtain the maximal Confi-

dence Interval with corresponding number of observations. There are two different

distributions of the candidates to a 0-1 knapsack problem that will be considered. For

case 1, the heavy items are much larger than the light items with the satisfaction of

Heavy > Light
δ

. For case 2, the heavy items are similar to the light items with the

satisfaction of Heavy < Light
δ

.

5.5.1. Case 1:Heavy Items and Light Items Satisfy Heavy > Light

δ
.

Suppose the problem is 30, 60, 75, 200, 21, 14, 10, 9, 90, 120, 10, 17, 22, 47, 54, 108,

112 and the optimal solution for constraint 422 is 21, 14, 9, 11, 90, 120, 10, 17, 22,

108. For δ = 0.2, the heavy items will be 90, 120, 108 and the light items will be 21,

14, 9, 11, 17, 10, 22. The heavy items and light items are satisfying Heavy > Light
δ

.

Applying the Algorithm 1 and Algorithm 2, the maximal Confidence Interval to

each number of observations are shown in the Figure 5.7.
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Figure 5.7: Observation to Maximal Confidence Interval for Case 1

The observations corresponding to the maximal Confidence Interval are shown

in the Table 5.4.

5.5.2. Case 2:Heavy Items and Light Items Satisfy Heavy < Light

δ
.

Suppose the problem is 30, 60, 75, 200, 47, 54, 45, 20, 50, 40, 34, 53, 33, 39, 66, 42,

112 and the optimal solution for constraint 422 is 45, 20, 50, 40, 34, 53, 33, 39, 66, 42.

For δ = 0.1, the heavy items will be 45, 50, 53, 66 and the light items will be 20, 40,

34, 33, 39, 42. The heavy items and light items are satisfying Heavy < Light
δ

.

Applying the Algorithm 1 and Algorithm 2, the maximal Confidence Interval to

each number of observations are shown in the Figure 5.8.

The observations corresponding to the maximal Confidence Interval are shown

in the Table 5.5.

The above examples and results shows that nodes that share constraint resources

will show different information leakage patterns as partial have been observed. The

information leakage patterns that are defined by calculating the Confidence Interval

are depending on the value distribution of the nodes and the sequence of the observed
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Figure 5.8: Observation to Maximal Confidence Interval for Case 2

nodes. To be more specific, nodes that Heavy < Light
δ

will reveal less information

compared with nodes that Heavy > Light
δ

as the light items are observing first.

Considering the above conclusion, security strategies for power migration as the

0-1 simple knapsack is the algorithm could be proposed as choosing candidates nodes

with distribution of Heavy > Light
δ

instead of Heavy < Light
δ

, allowing power migration

first happening to satisfying the light items with chunk unit, and allowing unit power

migration to the heavy items in the later phase.
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Algorithm 1: Information Leakage Quatification with Advice Tape:
ConfInteCalc(N, δ, V , Vi or V1, V2, ..., Vk)

input : System N, δ, all nodes value V [N ], observed one node Vi or node
set V1, V2, ..., Vk

output: Confidence Interval to the input
Sheavy is the min Heap;
Slight is the max Heap;
SUM = V1 + V2 + ...+ VN ;
if n == 1 then

if Vi == S ∗ δ then
Max information leakage to the secret S = Vi

δ
;

else if Vi > S ∗ δ then
Sheavy.push(Vi);

else
Slight.push(Vi);

end

else
for j ← 1 to k do

partialSUM+ = Vj;
if Vi == S ∗ δ then

Max information leakage to the secret S = Vi
δ

;
else if Vj > S ∗ δ then

Sheavy.push(Vj);
else

Slight.push(Vj);
end

end

Secretupper ← MIN(
Sheavy .top()

δ
, SUM);

Secretlower ← MAX(
Slight.top()

δ
, partialSUM);

if heavymin >
lightmax

δ
then

Secretlower ← MAX(heavymin, Secretlower);
end
The boundary of the secret will be (Secretlower, Secretupper);
choose m samples C1, C2, ..., Cm from the boundary of the secret ;

calculate C̄ = C1+C2+...+Cm
m

;
claculate s2 = 1

m−1
∑m

i=1(Ci − C̄)2;

obtain confidence interval (C̄ − tα/2(m− 1) s√
m
, C̄ + tα/2(m− 1) s√

m
);

end
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Algorithm 2: Maximal Information Leakage with m corresponding ob-
servations: maxConfInte()

input : System N, δ, all nodes value V [N ]
output: Maximal Confidence Interval f(m) with Corresponding m

observations, light from Lu to Lw, heavy from Hx to Hy

for 2 observations do
/* both are light items */

O1 = (Lu, Lw);

BoundaryO1 = (MAX(Lu + Lv,
Lu
δ
, Lv
δ

), SUM);
CI1 = ConfInteCalc(N, δ, V, u, w) = (C̄ − Zα

2
× s√

2
, C̄ + Zα

2
× s√

2
);

/* one is light item and one is heavy item */

O2 = (Lu, Hx);

BoundaryO2 = (MAX(Lu +Hx,
Lu
δ

),MIN(Hx
δ
, SUM));

CI2 = ConfInteCalc(N, δ, V, u, x) = (C̄ ′ − Zα
2
× s′√

2
, C̄ ′ + Zα

2
× s′√

2
);

/* both are heavy items */

O3 = (Hx, Hy);

BoundaryO3 = ((Hx +Hy),MIN(Hx
δ
, Hy
δ

))

CI3 = ConfInteCalc(N, δ, V, x, y) = (C̄ ′′ − Zα
2
× s′′√

2
, C̄ ′′ + Zα

2
× s′′√

2
);

end
f(2) = max(CI1, CI2, CI3);
for i← 3 to m do

/* {Loop Invariant: f(i− 1) is the maximal confidence

interval for i− 1 observations} */

Case 1: Pick one observation that is most less than Lu;
/* {Li < lower bound of light item Lu of f(i− 1)} */

CI1 = ConfInteCalc(N, δ, V, [Li, Lw], [Hx, Hy]);
Case 2: Pick one observation that is next larger than Lw;
/* {Li > upper bound of light item Lw of f(i− 1)} */

CI2 = ConfInteCalc(N, δ, V, [Lu, Li], [Hx, Hy]);
Case 3: Pick one observation that is next less than Hx;
/* {Hi < lower bound of heavy item Hx of f(i− 1)} */

CI3 = ConfInteCalc(N, δ, V, [Lu, Lw], [Hi, Hy]);
Case 4: Pick one observation that is most larger than Hy;
/* {Hi > upper bound of heavy item Hy of f(i− 1)} */

CI4 = ConfInteCalc(N, δ, V, [Lu, Lw], [Hx, Hi]);
f(i) = max(CI1, CI2, CI3, CI4));
/* {f(i) is the maximal confidence interval for i

observations} */

end
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Table 5.4: Observations to Maximal Confidence Interval for Case 1

Num Observed Items Maximal Confidence Interval
1 N/A N/A
2 9, 10 (50, 1000)
3 9, 10, 11 (55, 938)
4 9, 10, 11, 14 (70, 981)
5 9, 10, 11, 14, 17 (85, 805)
6 9, 10, 11, 14, 17, 21 (168, 852)
7 9, 10, 11, 14, 17, 21, 22 (153, 771)
8 9, 10, 11, 14, 17, 21, 22, 120 (281, 523)
9 9, 10, 11, 14, 17, 21, 22, 120, 108 (379, 471)
10 11, 10, 21, 14, 17, 90, 22, 9, 108, 120 422

Table 5.5: Observations to Maximal Confidence Interval for Case 2

Num Observed Items Maximal Confidence Interval
1 N/A N/A
2 20, 33 (330, 1000)
3 20, 33, 34 (340, 942)
4 20, 33, 34, 39 (370, 960)
5 20, 33, 34, 39, 40 (369, 863)
6 20, 33, 34, 39, 40, 66 (391, 597)
7 20, 33, 34, 39, 40, 66, 53 (415, 493)
8 20, 33, 34, 39, 40, 66, 53, 50 (422, 468)
9 20, 33, 34, 39, 40, 66, 53, 50, 45 (412, 438)
10 45, 20, 50, 40, 34, 53, 33, 39, 66, 42 422
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6. INTEGRATING WITH PHYSICAL SYSTEM

Correctness, stability and safety are most important for the CPS systems and

the CPS must be able to maintain their physical properties. In computer science,

invariants [6] are logical statements that must remain true throughout a system’s

execution. In recent research, the invariant approach has been shown its effectiveness

in a smart grid CPS to ensure the system stability [71]. Through developing invariants

for each individual subsystem such as physical and network subsystems in a CPS and

regarding a unified invariant as a guard in the cyber algorithm, the CPS will be safe

and stable at system level. This section will analyze the influence of the physical

invariant to the Confidence Interval based quantification information flow approach

in FREEDM. Through updating the cyber algorithm, FREEDM could be both stable

and more secure.

6.1. INVARIANT FOR THREE NODES SWITCHED SYSTEM

Lyapunov function V (x) [18] is well known for stability analysis of an autonomous

continuous system. V (x) is defined as positive definite, radially unbounded and non-

increasing. The system is stable if its derivative is non-positive; the system is asymp-

totically stable if its derivative is strictly negative. A Lyapunov-like function [15]

works similarly but is more flexible since it doesn’t require its derivative to be nega-

tive. Multiple Lyapunov-like functions can be used for different operating modes. As

the cyber system evolves, the Lyapunov-like function is checked and its derivative is

monitored. As a Lyapunov or Lyapunov-like function captures the dynamics between

the switching instants, it can be developed as an invariant for the switched power sys-

tem. By checking the result of this invariant, the cyber portion can determine whether

or not to act at a switching time.

A simplified version of FREEDM was implemented with the physical systems

model simulated using PSCAD as shown in Figure 6.1. The system is comprised of

three converters (all in three phase) interconnected through lines of impedance and

eventually connected to a generator by a transformer. Among the three converters,

two converters inject power (source) into the grid and act as inverters. One converter

delivers power out of the grid (load), thereby acting as a rectifier [71].



60

SST3

SST1

SST2

Figure 6.1: Three Nodes Switched System Topology

In this switched system, a Lyapunov-like function is defined to composed of the

error in stored energy. The objective is to formulate an invariant that may be used

in the cyber analysis. If asymptotic stability is considered, Equation 47 is proposed

as the physical invariant for FREEDM [71]. ω is the grid frequency, ω0 is the nom-

inal frequency, D, k,m are const parameters, δK is the net imbalance in power (the

difference between the total generated power and the total load power) that will tend

to instability of the frequence.

{
IP1 : (ω − ω0)

2(Dω +m) + (ω − ω0)(kP
2) > δK(ω − ω0)

}
(47)

The cyber portion that runs Power Balance Algorithm must guard its changes

from causing instability in the physical system by checking IP1. In Figure 6.2a, knap-

sack based Power Balance Algorithm performs migrations at times 9 and 14 (upper

plot) eventually driving the system to instability (system frequency in the lower plot).

In Figure 6.2b, knapsack based Power Balance Algorithm prevent the migration at
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time 14 from occurring that would have driven the system unstable by checking the

physical invariant in the cyber algorithm.
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Figure 6.2: Simulated microgrid performance in response to two Power Balance Al-
gorithms. Case (a) indicates instability due to excessive power migrations, whereas
in case (b) the red arrow indicates that Power Balance Algorithm finally guards the
migration, preventing instability.

The above experimental result shows that the Lyapunov-like invariant could

restrict the behavior of the power system, hence, by doing so it changes the algorithm’s

behavior and make the system stable. The following section shows that the physical

invariant will influence the information leakage analysis in an available power system.

6.2. INVARIANT FOR TWO-GENERATORS SEVEN NODES SYSTEM

Power system correctness requires that no power lines are overloaded all the time.

On the other hand, if a transaction between entities result in one or more lines being

overloaded, system correctness won’t be preserved. The physical system is changed

with two generators in Figure 6.3.

The concept of Available Transfer Capability (ATC) has been used to ensure

appropriate power transactions in the past. ATC has the property that can be explored

to determine if the power change between potential entities would compromise the

system stability or not. The ATCs are proposed to act as line flow invariant to

monitor the system correctness in [33] and [70]. The invariant is formulated as the

proposed transaction should be less than the ATC for any two transacting parties.
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Figure 6.3: Two Generators Seven Nodes System Topology

The ATC is evaluated by realizing the new flow on the line connecting entities

i and j due to a transaction between buses m and n. The new flow on the line

connecting entities i and j is the sum of the original base flow of the line and the

change due to the new transaction between entities m and n. The maximum power

that can be transferred between any two transacting entities without overloading a

certain transmission line ij is defined as PNew
mn . Thus, the maximum power that can

be transferred between any two transacting entities m and n for any combination of

ij in the system can be evaluated. The minimum of these values gives the maximum

allowable transaction between any two sub-systems without overloading a line. This

can be mathematically represented as 48:
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{ATCmn = Min(PMax
ij,mn) ∀ ij} (48)

The ATCs for every pair of entities were computed in advances and then used

as a guard in the power migration algorithm. The cyber algorithm will be adapted by

adding an invariant check in step4 as shown in Table 6.1.

Table 6.1: Load Balance Algorithm for DGI with Invariant Check

1. A node in the Supply state will advertise a draft request message to the Demand nodes in its
load table.
2. On receiving the draft request from Supply node, the Demand node responds with a message
called draft age indicating requested power.
3. The Supply node will select one Demand node based on the greedy solution to the knapsack
problem.
4. The Supply node will check the invariant and send out a draft select message to the
Demand node if the invariant is true.
5. Upon receiving the draft select message, the Demand node will initiate power migration by
increasing its local SST and send back an accept message to the Supply node.
6. Then the Supply node will finish the power migration by decreasing its local SST.

The results in [33] and [70] shows that the line flow invariant was not only

successful in determining whether any line in the system could be overloaded due to

the next transaction, but also stop such a transaction for the system stability.

6.3. CONFIDENCE INTERVAL ANALYSIS WITH INTEGRATION OF

PHYSICAL SYSTEM INVARIANT

As the invariant indicates the characteristic of the physical system, it represents

the correctness requirements for the system. The above discussion shows that the

physical systems in the CPSs could be extracted an invariant that can be evaluated

to accommodate dynamic behavior and prevent unanticipated events. To be more

specific, the line flow invariant based on the ATC has been a logical guard integrated

in the cyber algorithm in FREEDM for the system correctness. This section will show

that the confidence interval will become less due to the physical constraint.
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Based on the results from the previous section, the items in the solution for the

knapsack problem that satisfy Heavy > Light
δ

will have more uncertainty than the

items that satisfy Heavy < Light
δ

as the observation is increasing. That is, for any

supply node, when choosing the demand nodes to migrate power, it will choose the

candidates that satisfy Heavy > Light
δ

and migrating the light demand first. The ATC

based line flow invariant indicates that the proposed transaction should be less than

the ATC for any two transacting parties in order to make sure the system is stable.

Observation 6.1. The ATC based line flow invariant that indicates a threshold trans-

action for the flow based CPSs does not increase the confidence interval for the ob-

server.

Proof. Assuming the invariant indicating the threshold transaction is less than the

heavy items but larger than the light items. If the observer see the transaction seems

stop in the middle, the observer will conclude that there will be at least one heavy

item that is larger than the invariant is in the solution. As the smallest heavy item

hs that is larger than the invariant will be picked for next observation, the variance

s2 will be smaller since the upper bound of the sample C is decided by hs
δ

. Thus, the

confidence interval will be smaller than any other heavy items larger than the hs for

the next observation.

Several knapsack problems have been conducted Confidence Interval analysis

without and with ATC. The results in Table 6.2 show that Confidence Interval is

decreased as the ATC is applied. The distribution of Heavy > Light
δ

produce much

more Confidence Interval decrease than the distribution of Heavy < Light
δ

. First

knapsack problem satisfying Heavy > Light
δ

is 30, 60, 75, 200, 21, 14, 10, 9, 90, 120,

10, 17, 22, 47, 54, 108, 112 with optimal solution for constraint 422 is 21, 14, 9, 11,

90, 120, 10, 17, 22, 108. Second knapsack problem satisfiying Heavy < Light
δ

is 47,

54, 45, 20, 50, 30, 60, 75, 111, 89, 40, 34, 53, 33, 39, 66, 42, 100, 12 and the optimal

solution for constraint 422 is 45, 20, 50, 40, 34, 53, 33, 39, 66, 42. Third knapsack

problem satisfying Heavy > Light
δ

is 7, 2, 12, 33, 59, 73, 14, 9, 6, 95, 70, 10, 4, 13, 3,

19, 82, 76, 135, 65, 46, 50 and optimal solution for constraint 422 is 7, 2, 12, 14, 9, 6,

95, 70, 76, 10, 4, 13, 3, 19, 82. Figure 6.4 shows the comparison of no ATC and ATC

guarded confidence interval analysis for No.1 knapsack problem in Table 6.2.
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Table 6.2: Results of Reduced Confidence Interval due to ATC

No. δ Heavy >
Light
δ

ATC Migration
Stop Index

Reduced Confidence
Interval

Reduced Per-
centages

1 0.2 Yes 60 8 [281, 523]→[352, 451] 60%
2 0.08 No 42 7 [415, 493]→[420, 438] 77%
3 0.15 Yes 60 12 [281, 734]→[348, 440] 77%
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Figure 6.4: Observation to Confidence Interval for (a) Line Overloading Case without
ATC (b) ATC Invariant Guarded Case

The cyber algorithm can make changes that will generate more uncertainty to

the observer as well as maintain the system correctness. The Power Balance algorithm

in FREEDM has been updated by comparing the candidate items with the computed

ATC in the physical system as follows:

• If the light items are less than the ATC, the light items will be kept in the

solution.

• If the heavy items are larger than the ATC, they cannot be migrated due to the

line overload and reduced confidence interval. As the heavy items are splitted

into smaller parts that are less than the ATC, system correctness is maintaind

as well as the confidence interval is increased.
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The following experimental results show that after considering the computed

ATC from the physical system, the confidence interval will decrease compared with

no ATC consideration in FREEDM. As the heavy items that are larger than the ATC

are splitted and the observer might regard a split item from a heavy item as a light

item, the uncertainty has increased. Suppose the optimal solution for constraint 422

is 7, 2, 12, 6, 8, 9, 11, 90, 120, 10, 4, 13, 3, 19, 108. For δ = 0.2, the heavy items will

be 90, 120, 108 and the light items will be 7, 2, 12, 6, 8, 9, 11, 10, 4, 13, 3, 19. The

heavy items and light items are satisfying Heavy > Light
δ

. The maximum confidence

interval will be Figure 6.5 with the line overloading happens in the physical system.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

n
fi

d
e

n
ce

 In
te

rv
al

 

Number of Observations 

Figure 6.5: Line Overloading Case Without ATC

In order to prevent the line overload, the algorithm will stop the power migration

if the ATC invariant is checked to be false. Assuming the ATC = 60, the observations



67

will stop after the light items have all shown up. Once the power migration stops,

the observer could conlcude that one from 90, 108, 120, 200 would be in the solution

since they are all larger than the ATC. The maximum confidence interval is shown in

Figure 6.6 with the power migration stop at 12 to prevent line overload.
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Figure 6.6: ATC Invariant Guarded Case

The heavy item 90, 120, 108 will need to be divided into small parts in order to

obtain the stability of the system. Supposing the 90 changes to 40, 50, 120 changes

to 40, 40, 40 and 108 changes to 50, 58. If the small parts of the heavy items in the

power line have been observed by the attacker and considered as the light items, the

maximal confidence interval will be Figure 6.7.
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Figure 6.7: ATC Invariant Guarded Case with Splitting

It is obvious from the above experiment that by considering the characteristics

of the physical system that is represented by the ATC invariant, the cyber algorithm

could be updated to bring more uncertainty to the observer.

Theorem 6.1. Without the ATC invariant, the power system will be overloaded. As

the ATC invariant is applied as a guard before each power migration, the observer will

get more certainty of the supply. If the heavy items are split to items that are less than

the ATC invariant, the algorithm can produce a larger Confidence Interval.

Proof. Suppose revealed heavy items are H1, H2, ..., Hi and revealed light numbers are

L1, L2, ..., Lj under threshold δ. Assuming there are k heavy items that are larger

than the ATC. In order to maintain the correctness of the physical system, those k

heavy items should be divided into pieces that are less than the ATC. Suppose those

k heavy items have been divided into k′ light items that are less than the ATC. Thus,
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k′ > k. Based on Lemma 5.1, given the same number of revealed light items and

heavy items, the confidence interval given by the light items will be larger than the

confidence interval given by the heavy items. After splitting k heavy items into k′ light

items, any k new light items from k′ items will generate larger Confidence Interval

than the k original heavy items. Thus more uncertainty will be given to the observer

through the splitting opration on the heavy items.
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7. CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS AND CONTRIBUTIONS

Traditional security mechanisms are not enough for the CPSs due to complicated

interactions that happen frequently between the cyber portion and physical portion.

Information flow based quantification that aims at control information from end to

end is necessary for security analysis in CPSs. The observability problem in CPSs is

defined as how to quantify the uncertainty to the observer as parts of the secret in the

system are showing up and aggregating.

Given the background of security and related work on quantifying information

flow, this dissertation first introduces the problem statement as well as preliminary

results analyzing information leakage. A framework to quantify information flow in

constrained resource CPSs is proposed. The assumption for the constrained resource

is that its distribution is known to the observer. Physical observations provide a range

of the constrained resource values, quantified by applying advice tape analysis. Quan-

tifying information is accomplished by calculating the confidence interval produced by

the observations. The algorithms are presented in details for the calculation of leaked

information with the increased number of observations; results from cases study show

the preference of the specific distribution.

Physical conservation is the natural law that exists in any CPSs. For example,

in any flow based CPS, the physical conservation states the balance between the in

and the out, the generation and the demand. Without physical invariant, the system

would have poor behavior that will lead to system unstable. Through developing an

invariant of the physical system to express the correctness of the system, it will make

sure that the system is stable. It will also lead to a way of updating the cyber algorithm

to obtain more uncertainty to the observer. This dissertation shows that the proposed

framework and algorithm are integrated with invariant approach that is effective in

ensuring the stability of the CPSs. By considering the characteristics of the physical

portion as an invariant, the proposed information quantification method would gen-

erate more appropriate Confidence Interval to the observer in a CPS. FREEDM has

been used as an example for demonstrate usage of this framework in a real CPS.



71

The key use of this result is that the algorithm can allocate power such that the

uncertainty of the supply value is maintained, this limiting an observer’s knowledge.

For example, in constrained flow based CPS such as FREEDM, the number of items

sharing the resource is very important. If the values of all items are available just like

the Load Table, the information leakage can be quantified using advice tape analysis.

If only one demand node exists, it will know the value of the constrained resource.

If more than two demand nodes exist, the constrained resource will be shared among

demand nodes. Both the number of demand nodes and the values of the demand nodes

impact the uncertainty. The given algorithms can calculate the maximized uncertainty

to the observer based on the aggregated observations.

7.2. FUTURE WORK

Future work can happen in many exciting directions. Some of the thoughts are

enumerated as follows.

One is to apply this work to trust management with a defined trust function

under the constrained resource system. How can observations through advice tape

analysis be used for trust evaluation in the constrained resource CPS? How does one

maximize uncertainty to an observer while maximizing trust among the demand and

supply nodes?

Another interesting investigation might be exploring advice tape generation

method for general online problems that only partial inputs are known to the public.

By knowing the compositions of the advice tape to the online problem, statistical

model such as confidence interval will work well in analyzing the information leakage

of the constrained resources as the secret input due to the aggregation of the observed

outputs.

The work in this dissertation would be a first step towards information flow

quantification considering the integrations of the cyber algorithm with the physical

constraint. By understanding the dynamics of CPSs and extracting the physical in-

variant that could express the physical law, information flow analysis would affect the

cyber algorithm and lead to a more secure way for the CPSs.
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8. ZERO KNOWLEDGE PROOFS

Zero Knowledge Proofs (ZKPs) are interactive protocols in which one party, named

the prover, can convince the other party, named the verifier, that some assertion is true

without revealing anything other than the fact that the assertion being proven is true.

This chapter is a survey on ZKPs including their background, important concepts,

applications for NP problems, and composition operations of ZKPs. The remarkable

property of being both convincing and yielding nothing except the assertion is indeed

valid makes ZKPs very powerful tools for the design of secure cryptographic protocols.

In this chapter, ZKPs are constructed for the exact cover and 0-1 simple knapsack

problem. It was explored for security protocol design for the CPSs, however, due to

the iterative property in nature of the existing ZKPs and multiple communication

rounds required, they are not appropriate security protocols for the CPSs in which

information exchanges are not iterative between the cyber parts and the physical parts.

This section is included as the ZKP for the knapsack is original work and published

in [30].

8.1. BACKGROUND AND MOTIVATION

In order to deal with the problem of distrustful parties convincing each other that

the message they are sending is indeed computed according to their predetermined pro-

cedure without yielding any secret knowledge, a number of privacy-preserving commu-

nication protocols have been proposed and designed, including for example, the fuzzy

vault scheme, k-anonymity, nondeducibility, ZKPs, and so on.

Shamir provided a scheme to share a secret in [78]. Rather than straightforward

encryption, the main idea is to divide data D into n pieces in such a way that D is

easily reconstructible from any k pieces, but even combining k-1 pieces won’t reveal

any information about D. This scheme is called a (k, n) threshold scheme. Threshold

schemes are ideally suited to applications in which a group of mutually suspicious

individuals with conflicting interests must cooperate.

The fuzzy vault is a novel cryptographic notion developed by A. Juels and M.

Sudan in [54], which can be considered as a form of error-tolerant encryption opera-

tion. In a fuzzy vault scheme, one party places a secret value k in a fuzzy vault and
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“locks” it using a set A of elements from some public universe U; the other party can

“unlock” the vault to get the secret value k using a set B of similar length only if A

and B overlap substantially. A fuzzy fault scheme can be constructed based on any

type of linear error-correcting code.

Another privacy-preserving framework for communication is called k-anonymity.

A data record is k-anonymous if and only if it is indistinguishable in its identifying

information from at least k specific records. k-anonymity provides a formal way of

preventing re-identification of data to fewer than a group of k data items. k-anonymity

provides a formal way of generalizing aggregated data without violating the privacy

[53].

Nondeducibility is a security model based on information theory, especially for

information sharing. The model states that information flows in a system from high-

level objects to low-level objects if and only if some possible assignment of values to

the low-level objects in the state is incompatible with a possible assignment of values

to the state’s high-level objects [63]. To be more specific, a system is considered

nondeducible secure if it is impossible for a low-level user, through observing visible

events, to deduce anything about the sequence of inputs made by a high-level user.

The notion of ZKPs, which is first introduced by Goldwasser, Micali and Rackoff

[45], is to obtain a system in which it is possible for a prover to convince a verifier of his

knowledge of an assertion without disclosing any information except the validity of his

assertion. ZKP study has become a very active research area because of its fascinating

nature of a seemingly contradictory definition; ZKPs have the remarkable property of

being both convincing and yielding nothing except that the assertion is indeed valid,

which makes them very powerful tools for the design of a secure cryptographic protocol

[42].

8.2. INTRODUCTION

8.2.1. Interactive Proof and Its Properties. Before presenting the

definition of ZKPs, we first introduce the notion of an overarching class, the interactive

proof.

Definition 8.1. (Interactive Proof [45]) An interactive proof system for a language L

is a pair of interactive Turing Machines, (P, V ) in which V , the verifier, executing a



74

probabilistic polynomial-time strategy and P , the prover, executing a computationally

unbounded strategy, satisfy two properties: completeness and soundness.

• Completeness can be expressed as:

Prob[(P, V )(x) = 1 | x ∈ L] ≥ 1− |x|−c (c > 0)

• Soundness can be expressed for every interactive Turing machine P ∗as:

Prob[(P ∗, V )(x) = 0 | x /∈ L] ≥ 1− |x|−c (c > 0)

Completeness means that the verifier accepts the proof if the statement or as-

sertion is true. In another words, an honest verifier will always be convinced of a

true statement by an honest prover. Soundness means if the fact is false, the veri-

fier rejects the proof, which indicates that a cheating prover can convince an honest

verifier that some false statement is actually true with only a small probability. Both

conditions allow a negligible error probability, which plays an important role in ZKPs

with a robust notion of rareness; a rare event should occur rarely even if we repeat

the experiment for a feasible number of times [38].

Proofs here do not represent the traditional mathematical concept of a proof.

Mathematical proofs are strict, using either self evident statements obtained or from

proofs established beforehand. Here, proofs are not a fixed and static object; they are

similar to the dynamic process used to establish the truth of a statement throughout

the exchange of information. Thus, they are considered to be probabilistic rather than

absolute. The class of problems having interactive proof systems is denoted as IP [38].

8.2.2. A Simple Example. “In cryptography, the zero-knowledge protocol

is an interactive method for one party to prove to another that a statement is true,

without revealing anything other than the veracity of the statement [42]”. Each party

in the protocol does a sequence of actions. While receiving a message from the other

party, it performs a private computation, then it sends a message to the other party.

Those actions will be repeated many rounds. Then the verifier either accepts or rejects

the prover’s proof.

A very simple example of a ZKP could be illustrated as a story of Ali Baba’s

Cave [2]. In this story Figure 8.1, Peggy (the prover) has uncovered the secret word



75

used to open a magic door in a cave. The cave is shaped like a circle, with the entrance

on one side and the magic door blocking the opposite side. Victor (the verifier) says

he’ll pay her for the secret, but not until he’s sure that she really knows it. Peggy says

she’ll tell him the secret, but not until she receives the money. They devise a scheme

by which Peggy can prove that she knows the word without telling it to Victor. Peggy

goes into a random branch of the cave without letting Victor knowing which branch

she chose. Standing at the entrance to the cave, Victor calls out a random branch

he wants Peggy to come out from. If Peggy indeed knows about the secret password,

she can obey every time. If she doesn’t know the secret password, she has a 50%

of initially fooling Victor. If Victor is happy with a 1 in 1024 chance that Peggy is

cheating, there will be 10 iterations since 1
210

= 1
1024

.

Figure 8.1: Ali Baba’s Cave

8.2.3. Computational Indistinguishability. “Effective similarity” is a

widely accepted notion in Modern Cryptography. If the differences between the ob-

jects can’t be observed through a feasible computation, then the two objects are

considered equivalent. In the definition of zero knowledge, it is impossible to tell the

differences among computationally indistinguishable objects. The notion of computa-

tional indistinguishability underlies the definition of general zero-knowledge [38].

For S ⊆ {0, 1}∗, the probability ensembles X = {Xα}α∈S and Y = {Yα}α∈S
containXα and Yα, which is a distribution that ranges over strings of length polynomial

in |α|. A polynomial-size circuit {Dn} means there exists a deterministic Turing

Machine which has a running time polynomial in n on the circuit. Pr [Dn (Xα) = 1]

denotes the probability that circuit Dn outputs 1 on input Xα.
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Definition 8.2. (Computational Indistinguishability [44], [86]) X = {Xα}α∈S and

Y = {Yα}α∈S are computationally indistinguishable if for every family of polynomial-

size circuits {Dn}, every polynomial p, and sufficiently large n and every α ∈ {0, 1}n∩
S,

|Pr [Dn (Xα) = 1] − Pr [Dn (Yα) = 1] | < 1

p(n)

where the probabilities are taken over the relevant distribution.

8.2.4. One-way Function. In general, Modern Cryptography is always

concerned with a question of whether one-way functions exist. One-way functions

provide us the equivalent of digital lockable boxes. They are functions that are easy to

evaluate but hard (on the average) to invert, which has an intractability characteristic.

Definition 8.3. (One-way Function [38]) A function f : {0, 1}∗ → {0, 1}∗ is called

one-way if the following two conditions hold:

1. Easy to evaluate: There exists a polynomial-time algorithm A such that A (x) =

f(x) for every x ∈ {0, 1}∗.

2. Hard to invert: For every family of polynomial-size circuits {Cn}, every polyno-

mial p, and all sufficiently large n,

Pr[Cn (f (x)) ∈ f−1 (f (x))] <
1

p(n)

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n.

Because the problem of factoring large integers is computationally intractable,

the function that takes as input two (equal length) primes and outputs their product

is widely believed to be a one-way function [53].

8.2.5. Simulation Paradigm. The simulation paradigm is another impor-

tant notion, which was first developed in the context of zero-knowledge, presented by

Goldwasser, Micali and Rackoff [45]. The crucial point is that for every algorithm that

represents the strategy of the verifier, there exists a simulator that can simulate the

entire interaction of the verifier and the honest prover without access to the prover’s

auxiliary information. It is an approach which makes the adversary gains nothing if
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whatever it can obtain by unrestricted adversarial behavior can be obtained within

essentially the same computational effort as the prover. In this way, the adversary

gains nothing.

A simulator is defined as a method or procedure that generates fake (generated

without the prover) views that are indistinguishable from a genuine (generated with

the prover) view of a proof [79]. To be more specific, whatever a verifier might

have learned from the interaction with the prover, he could have actually learned by

himself by running the simulator. Figure 8.2 illustrates the idea. The concept of a

simulator helps defining the zero knowledge property in another way, that is, a proof

of knowledge has the zero knowledge property if there exists a simulator for the proof.

Figure 8.2: Simulator

8.2.6. Definition of ZKP. Based on the above important concepts, ZKP

is defined as an interactive proof system with zero-knowledge. The zero-knowledge

property means no amount of knowledge should pass between the prover and verifier.

Definition 8.4. (Zero-knowledge [45]) An interactive strategy A is auxiliary-input

zero knowledge on inputs from the set S if, for every probabilistic polynomial-time (in-

teractive) strategy B∗ and every polynomial p, there exists a probabilistic polynomial-

time (non-interactive) algorithm C∗ such that the following two probability ensembles

are computationally indistinguishable [38]:
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1. {(A, B∗(z)) (x)}x∈S , z∈{0, 1}p(|x|)
def
= the output of B∗ when having auxiliary-

input z and interacting with A on common input x ∈ S; and

2. {C∗(x, z)}x∈S , z∈{0, 1}p(|x|)
def
= the output of C∗ on input x ∈ S, z ∈ {0, 1}p(|x|).

The first one represents an actual execution of an interactive protocol. The

second one represents the computation of a stand-alone procedure: the simulator does

not interact with anybody. The more basic definition of zero knowledge is obtained

by eliminating the auxiliary-input z from this definition. But almost all known ZKPs

are in fact auxiliary-input zero-knowledge.

Since whatever can be extracted from interaction with A on input x ∈ S can

also be extracted from x itself, nothing was gained by the interaction itself. Thus,

in the concept of ZKPs, the verifier does not obtain further information about the

assertion other than its validity. Furthermore, there is no degradation with repeated

usage of ZKPs, which means the number of iterations the protocol runs won’t change

the chances of success of obtaining the secret.

Zero knowledge is a security property which could protect the prover from leaking

unnecessary information to any verifier.

8.2.7. Witness Indistinguishability. The notion of witness indistinguisha-

bility (WI) was introduced by Feige and Shamir in [27], which means the view of any

verifier is “computationally independent” of the witness that is used by the honest

prover as auxiliary private input.

NP, that refers to “nondeterministic polynomial time”, is the set of all decision

problems for which the answer “yes” can be verified in polynomial time. Loosely

speaking, for any NP-relation, an argument system for the corresponding language

is called WI if no feasible verifier can distinguish the case in which the prover uses

one NP-witness to some input from the case in which the prover is using a different

NP-witness to the same input [38].

A witness is defined as a string w such that (x,w) ∈ R [5]. For a binary relation

R, L (R) is defined as

{x|∃ w s.t (x,w) ∈ R}
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Specifically, when proving that a string x is in L (R), the prover gets a witness w

such that (x,w) ∈ R. If the proof system is WI, then for any w, w′ such that

(x,w) ∈ R,(x,w′) ∈ R, and for any polynomial-size verifier, the view of the verifier

when interacting with the prover that uses w as auxiliary input is computationally

indistinguishable from its view when interacting with the prover that uses w′ as aux-

iliary input. The WI property is preserved under arbitrary composition of protocols

[27].

8.2.8. Honest Verifier VS General Cheating Verifier. The definition of

zero-knowledge refers to all feasible verifiers as either honest or cheating. Typically

the verifier is viewed as an adversary that is trying to cheat and attempt to gain

something by interacting with the prover. With respect to the honest verifier, it will

interact with the prover as expected, excepting that it may also maintain a record of

the entire interaction and output this record in the end [38].

8.2.9. Black-box Simulator VS Non-black-box Simulator. The defini-

tion of zero-knowledge requires that the interaction of the prover with any verifier is

computational indistinguishable with an ordinary probabilistic polynomial-time ma-

chine that interacts with no one.

Since whatever can be computed after interacting with a prover can be computed

on any random input by itself, the ZKP is computationally equivalent to a trusted

oracle. This is the notion of a black-box simulator. A black-box simulator is one that

can simulate the interaction of the prover with any such a verifier when given oracle

access to the strategy of that verifier. To be more specific, a black-box simulator

indicates that using any verifier as a black box, produces fake views that are indistin-

guishable from the verifier’s actual interaction with the prover [5]. Most of previous

zero-knowledge proofs or arguments are established using a black-box simulator.

But how can the simulator generate an interaction that is indistinguishable from

the actual interaction with the prover? First, the simulator has access to the verifier’s

random question transcript, which means it can actually determine the next question

that the verifier is going to ask. Second, the simulator has many ways to answer the

verifier’s questions. The technique is called rewinding which means if the simulator

fails to answer a question provided by the verifier, it simply rewinds the verifier back

and asks again [5]. However, when using the verifier’s strategy as a black-box, it is

hard for the simulator to take advantage of the knowledge of the verifier’s random
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question transcript. Therefore, there are restrictions and negative results while apply-

ing black-box simulator. In [40], Goldreich and Krawczyk has shown non-existence

of black-box 3-round ZKPs where a round defines number of steps in the protocol.

In order to overcome the restrictions of black-box simulators, non-black-box sim-

ulators were developed. The power of non-black-box simulators has been discovered

by Barak in [5]. Barak has shown how to construct non-black-box simulators and

obtained several results which are considered to be unachievable through a black-box

simulator. He presented a zero-knowledge argument system for NP with following

properties:

• It is the first zero-knowledge argument with a constant number of rounds and

negligible soundness error.

• It is an Arthur-Merlin (public coins) protocol. The Arthur-Merlin protocol,

introduced by Babai [4], is an interactive proof system in which the verifier’s

coin tosses are known to the prover too.

• It has a strict polynomial time simulator rather than expected polynomial time.

By taking advantage of the strategies of the verifier, since the knowledge of

the verifier is not an oracle in non-black-box simulator, Barak’s result calls for the

re-evaluation of many common beliefs, such as non-existence of (black-box) 3-round

ZKPs and impossibility of (black-box) constant-round concurrent zero-knowledge.

Barak’s construction uses the technique which was presented by Feige, Lapidot

and Shamir in [29]. Two phases in the FLS technique will be combined together to

obtain a ZKP. The first phase is called the generation phase, in which the prover and

verifier will generate a string. In the second phase, the prover proves to the verifier

that either the theorem is true or that the generated string satisfies some property.

The FLS technique is based on the notion of WI. Barak’s framework is described in [5]:

• Common Input: x and a language L, such that x ∈ L, n is security parameter

that makes sure this protocol remains zero-knowledge when executed up to n

times concurrently.

• Auxiliary input to prover: w - a witness to the fact that x ∈ L.



81

1. Phase1 : GenerationPhase. The prover and verifier engage in some protocol

whose output is a string τ .

2. Phase2 : WIProofPhase. The prover proves to the verifier using a WI argu-

ment that it knows either a string w such that (x,w) ∈ R or a string σ such that

(τ, σ) ∈ S. R and S are two statements based on language L that the prover

wants to convince to the verifier. R is a binary relation that (x,w) is tested.

L(R)
def
= {x|∃w s.t. (x, w) ∈ R}. It means that if x ∈ L(R) and w is a string

such that (x,w) ∈ R. then w is a witness for the fact that x ∈ L(R). S is a

binary relation that (τ, σ) is tested. L(S)
def
= {τ |∃σ s.t. (τ, σ) ∈ S}. Similarly,

it means that σ is a witness for the fact that τinL(S). More formally, the prover

proves to the verifier using a WI proof knowledge that it knows a witness to the

fact that (x, τ) ∈ L(S ′) where S ′ is defined so that (x, τ) ∈ L(S ′) if and only if

there exists w′ such that either (x,w′) ∈ R or (τ, w′) ∈ S.

8.2.10. Quality of ZKPs. The soundness condition is considered as a

“security” property because it protects the verifier from adversarial behavior by the

prover [84]. Usually, it has two commonly used versions:

• Statistical Soundness: If x /∈ L, then for all, even computationally unbounded,

strategies P ∗, V accepts in (P ∗, V )(x) with probability at most 1/3. This gives

rise to interactive proof systems.

• Computational Soundness: If x /∈ L, then for all polynomial-time strategies

P ∗, V accepts in (P ∗, V )(x) with probability at most 1/3. This gives rise to

interactive argument systems.

Zero knowledge is another “security” property, which protects the prover from

leaking unnecessary information to the verifier. It comes in three versions of ZKPs

based on three interpretations of “similarity”.

1. The perfect zero-knowledge notion was suggested by Brassard and Crepeau [72].

The prover is restricted to polynomial time, while the verifier may have unlimited

computing power. The computation simulating the actual interaction is identical

to the original one.
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2. Statistical zero-knowledge requires that the computation simulating the actual

interaction is statistically (e.g. in variation distance) close to the original one

(with negligible error - smaller than any polynomial fraction in the length of com-

mon input) [38]. What’s more, statistical zero-knowledge requires that the zero-

knowledge condition hold even for computationally unbounded verifier strategy

V ∗.

3. Computational (or rather general) zero-knowledge requires that the transcript

of the interaction is indistinguishable only under the computational complexity

assumption, which means that no polynomial-time algorithm can distinguish

the two distributions except with negligible probability. It only requires the

zero-knowledge condition hold for polynomial-time verifier strategy V ∗.

The following definitions are from [52]. Let (A, B) be an interactive protocol.

Let T, the transcript, be a random variable denoting the verifier view during the

protocol on input x. That is, T is the sequence of messages between the prover and

verifier under the sequences of coin tosses for A and B. The string h denotes any

private input that the verifier may have with the only restriction that its length is

bounded by a polynomial in the length of the common input. M(x, h) is distributed

over the coin tosses of M on inputs x and h.

1. (A, B) is perfect zero-knowledge for L if ∃ a probabilistic polynomial time Turing

machine M s.t. ∀x ∈ L, for all a > 0, for all strings h such that |h| < |x|a, the

random variable M(x, h) and T are identically distributed.

2. (A, B) is statistically zero-knowledge for L if ∃ a probabilistic polynomial time

Turing machine M s.t. ∀x ∈ L, for all a > 0, for all strings h such that

|h| < |x|a,for all constant c > 0 and sufficiently large |x|,

∑
α

|prob (M (x, h) = α)− prob(T = α)| < 1

|x|c

3. (A, B) is computationally zero-knowledge for L if ∃ probabilistic polynomial

time Turing machine M s.t. ∀ polynomial size circuit families C = C|x|, ∀
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constant a, d > 0, for all sufficiently large |x| s.t. x ∈ L, and for all strings h

such that |h| < |x|a,

prob
(
C|x| (α) = 1

∣∣ α random inM(x, h))−prob
(
C|x| (α) = 1

∣∣ α random in T ) <
1

|x|d

Based on the two security conditions - soundness and zero knowledge that ZKPs

has, we can obtain four kinds of ZKPs. They can be denoted as SZKP, CZKP, SZKA

and CZKA, in which the prefix of S indicates statistical and C indicates computational,

while the suffix of P indicates interactive proofs (statistical soundness) and A indicates

interactive arguments (computational soundness).

SZKPs are defined in the definition of zero-knowledge that the distribution en-

sembles are required to be statistically indistinguishable rather than computationally

indistinguishable. As far as security is concern, SZKPs are of course the most attrac-

tive because the following several reasons [38]:

• SZKPs offer information-theoretic security to both parties. CZKPs only offer

computational security to the prover, and SZKA only offer computional security

to the verifier. While SZKPs hold their security properties regardless of the

computational power of the verifier.

• SZKPs provide a clean model for the study of various questions regarding zero-

knowledge.

• SZKPs have some properties from a complexity theoretic point of view. It con-

tains a number of specific problems believed to be hard such as Graph Noni-

somorphism, Graph Isomorphism, Quadratic Residuosity, and Quadratic Non-

residuosity which are Karp-reducible and is closed under complementation.

Recalling the definition of zero-knowledge, it is a CZKP rather than a SZKP

because there do not exist commitment schemes that are simultaneously statistically

hiding and statistically binding, which will be discussed in the next section. Under

standard complexity assumptions, SZKA can also be constructed for every NP. The

intractability assumption used for constructing SZKA for NP seems stronger than

the assumption used for constructing CZKP for NP. Assuming both constructions

exist, which is more preferable is more or less depending on the application: is it
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more important to protect the prover’s secrets or to protect the verifier from being

convinced of false assertions?

8.3. NP PROBLEM AND ZKPS

Complexity theory has an intriguing property that if any NP-complete problem

has a polynomial-time solution, then every problem in NP has a polynomial-time

solution.

Definition 8.5. (The Class NP) NP is the class of decision problems X that admit

a proof system F ⊆ X ×Q, s.t. there exists a polynomial p(n) and a polynomial-time

algorithm A such that [79]:

1. ∀ x ∈ X ∃q ∈ Q s.t. (x, q) ∈ F and moreover, the size of q is at most p(n),

where n is the size of x.

2. For all pairs (x, q) , algorithm A can verify whether or not (x, q) ∈ F.

Definition 8.6. (Polynomial Reduction) Let A and B be two problems. We say that

A is polynomially Turing reducible to B if there exists an algorithm for solving A in

a time that would be polynomial if we could solve arbitrary instances of problem B at

unit cost [79].

Definition 8.7. (NP-complete Problem) A decision problem X is NP − complete if

X ∈ NP and for every problem Y ∈ NP , Y is polynomially Turing reducible to X

[79].

It is not yet known if there are efficient solutions (polynomial time) to these

problem in NP-complete. Classic examples of these problems include satisfying a

boolean formula, the traveling salesman problem, the knapsack problem and so on.

But the validity of a proposed solution is easily tested. For example, consider the

Hamiltonian Cycle Problem: it is hard to find an efficient algorithm to solve this

problem, but it is very easy to verify if a sequence of nodes is a Hamiltonian cycle.

Assuming the existence of secure encryption functions, it has been shown that

graph three-colorability, which is known as a NP-complete problem, has a ZKP [42].

Since any problem in NP can be reduced to graph three-colorability according to Karp

[56], it ensures that any language in NP has associated with a ZKP system.
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In the physical world, the secure encryption functions are represented by opaque,

lockable boxes which are usually assumed to be available for the prover, and only

the prover has the key. In order to implement the physical boxes algorithmically, a

cryptographic primitive named “commitment scheme” [39] will be used . In ZKPs,

the way of locking information is to “committing a secret bit” [87], which can be

implemented by using any one-way function (assumed to exist).

This commitment scheme describes a two-stage protocol between the prover and

the verifier [39]. In the first stage, the prover commits to a value b, which could be

digital analogies of sealed envelopes (or, letter, locked boxes). This means sending the

value to the verifier through binding some unique value without revealing the original

value to the verifier (as when getting a locked box). This property is called hiding.

The “hiding” property says that the verifier does not know anything about b during

the commit stage. Later on, the prover “decommits” or “reveals” this value to the

verifier. This means sending some auxiliary information that allows the verifier to

read the uniquely committed value (as when sending the key to the lock) in order

to assure that it is the original value. This property is called binding. The binding

property means that after the commit stage, there is at most one value that the verifier

can successfully open [83]. Hiding and binding can be statistical (holding against

computationally unbounded cheating strategies, except with negligible probability)

or computational (holding against polynomial-time cheating strategies, except with

negligible probability). It’s impossible to achieve statistical security for both hiding

and binding. But any one-way function could be used in the commitment scheme for

statistical hiding or statistical binding.

The widely accepted theorem on how to construct CZKPs system for any NP-set

was demonstrated by Goldreich, Micali and Wigderson [42]. And the first construction

of SZKA was given by Brassard, Chaum and Crepeau independently [7]. Feige,

Lapidot and Shamir designed a ZKP on identification schemes in [29]. Constant-

round ZKPs were first showed by Feige and Shamir in [28].

8.4. ZKPS APPLICATIONS

In this section, several problems are introduced with their ZKPs construction. To

provide a ZKP for a general NP statement, one can translate it into an instance of the

graph three-colorability problem using a Karp reduction [56]. Another way to provide
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ZKPs avoiding a Karp reduction is using the simulation method after exploiting the

properties of the specific NP-complete language.

8.4.1. ZKP for Graph Three-Colorability.

Definition 8.8. (Graph Three-Colorability) A graph G (V, E) is said to be three-

colorable if there exists a mapping φ : V → {1, 2, 3} (called a proper coloring) such

that every two adjacent vertexes are assigned different colors (i.e., each (u, v) ∈ E

satisfies φ (u) = φ(v)). Such a three-coloring induces a partition of the vertex set

of the graph to three independent sets. The language graph three-colorability, denoted

G3C, consists of the set of undirected graphs that are three-colorable.

Figure 8.3 is a Peterson graph [1] with three colored vertices (Red, Green and

Blue).

Figure 8.3: 3Colored Graph

Suppose graph G (V, E) is colored by φ (φ : V → {1, 2, 3}). Let n = |V | , m =

|E| and S3 = Sym{1, 2, 3}. Since the graph is (simple and) connected, n and m are

polynomially related (i.e., n− 1 ≤ m < n2/2).

Common input: A graph G (V, E)

The following four steps are executed m2 times, each time using independent

coin tosses [42].
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1. P: The prover chooses at random an assignment of three colors to the three

independent sets induced by φ, colors the graph using these three colors, and

places these colors in n locked boxes each bearing the number of the correspond-

ing vertex. More specifically, the prover chooses a permutation π ∈R S3, places

π (φ (i)) in a box marked i (∀ i ∈ V ), locks all boxes and sends them (without

the keys) to the verifier.

2. V: The verifier chooses at random an edge e ∈RE and sends it to the prover.

(Intuitively, the verifier asks to examine the colors of the endpoints of e ∈ E)

3. P: If e = (u, v) ∈ E, then the prover sends the keys of u and v. Otherwise, the

prover does nothing.

4. V: The verifier opens boxes u and v using the keys received and checks whether

they contain two different elements of {1, 2, 3}. If the keys do not match the

boxes, or the contents violates the condition then the verifier rejects and stops.

Otherwise, the verifier continues to the next iteration.

If the verifier has completed all m2 iterations then it accepts.

Figure 8.4 illustrates the ZKP for G3C.

Figure 8.4: ZKP for G3C
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This protocol constitutes a ZKP for G3C since it satisfies three properties.

• Completeness: If the graph is three-colorable, then any pair of boxes u and v

corresponding to some edge of the graph will certainly be colored differently.

Therefore, an honest verifier will complete all m2 iterations and accept with

probability 1.

• Soundness: If the graph is not three-colorable and the verifier follows the proto-

col, then no matter how the prover plays, at each round the verifier will reject

with probability at least 1
m

. The probability that the verifier will accept is

bounded by (1− 1
m

)
m2

≈ exp(−m).

• Zero-knowledge: The only information received by the verifier at each round is

a pair of different randomly selected elements of {1, 2, 3}. It is crucial that the

prover uses at each round an independently selected random permutation of the

colors. Thus, the names of three classes at one round are uncorrelated to the

names at another round.

8.4.2. ZKP for Feige-Fiat-Shamir Identification Scheme. The Feige-

Fiat-Shamir identification scheme is one of the classic authentication zero-knowledge

schemes [26]. The security of the Feige-Fiat-Shamir system is based on the fact

that it is difficult to extract square roots modulo large composite integers of unknown

factorization [79].

Initialization [68]:

1. A trusted center T selects and publishes an RSA(Ron Rivest, Adi Shamir and

Leonard Adleman)-like modulus n = pq, but keep the primes p and q secret.

2. The prover selects a secret s coprime to n, 1 ≤ s ≤ n−1, computes v = s2 mod n,

and registers v with T as her public key.

Identification Protocol [68]:

The following steps are executed t times, each time using independent random

coin tosses.

1. P: The prover choses a random r, 1 ≤ r ≤ n− 1 and sends x = r2 mod n to the

verifier.
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2. V: The verifier randomly selects a bit α ∈ {0, 1} and sends α to the prover.

3. P: The prover computes and sends to the verifier y, where y = r (if α = 0), or

y = rs mod n (if α = 1)

4. V: The verifier rejects if y = 0 or if y2 6= x · vαmod n.

Figure 8.5 illustrates the ZKP for Feige-Fiat-Shamir identification scheme.

Figure 8.5: ZKP for Feige-Fiat-Shamir Identification Scheme

If the verifier has completed all t iterations, then he accepts.

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.

• Completeness: Suppose the prover possesses the secret s. Then she can always

correctly provide the verifier with y = r or y = rs mod n upon request. There-

fore, an honest verifier will complete all t iterations and accept with probability

1.

• Soundness: Suppose the prover does not possess the secret s. Then, during any

given round, she can provide only one of y = r or y = rs mod n. Therefore,

an honest verifier will reject with probability 1
2

in each round, so the probability

the verifier will be fooled is 2−t.
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• Zero-knowledge: The only information revealed in each round is x = s2mod n,

and either y = r or y = rs mod n. Such pairs (x, y) could be simulated by choos-

ing y randomly, then define x = y2 or x = y2/v. Such pairs are computationally

indistinguishable from the interaction with the prover.

8.4.3. ZKP for Graph Isomorphism. The Graph Isomorphism (GI)

problem is basically asking the question: Given two graphs G0 and G1, is there a

bijection between their sets of nodes that preserves edges?

Definition 8.9. (Graph Isomorphism) Two graphs G (V,E) and G′ (V,E ′) are iso-

morphic if and only if there exists a permutation π ∈ S|V | (the symmetric group of |V |
elements) such that (u, v) ∈ E iff (π (u) , π (v)) ∈ E ′. We can write G′ = πG.

There is an isomorphism between two graphs in Figure 8.6. f(a) = 1, f(b) =

6, f(c) = 3, f(d) = 5, f(e) = 2, f(f) = 4

Figure 8.6: Graph Isomorphism

The language graph isomorphism (GI) consists of all the pairs of isomorphic

graphs.

Common Input: Two graphs G0(V, E) and G1 (V, E ′) . Let φ denote the iso-

morphism between G0 and G1, that is G1 = φG0.

The following steps are executed t times, each time using independent random

coin tosses [68].
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1. P: The prover generates a graph, H, which is a random isomorphic copy of G1.

This is done by selecting a permutation π ∈RS|V |, and computing H = πG1. The

prover sends the graph H to the verifier.

2. V: The verifier chooses at random α∈R {0, 1}, and sends α to the prover.

3. P: If α = 1, then the prover sends β = π to the verifier, else (α = 0) the prover

sends β = π · φ. Here, π · φ indicates the combination of π and φ.

4. V: If the permutation β received from the prover is not an isomorphism between

Gα and H (i.e., H 6= βGα), then the verifier stops and rejects; otherwise, he

continues.

Figure 8.7 illustrates the ZKP for graph isomorphism.

Figure 8.7: ZKP for Graph Isomorphism

If the verifier has completed t iterations of the above steps, then he accepts.

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.

• Completeness: If (G0, G1) ∈ GI, then the random isomorphic copy H of G1will

always be isomorphic to both G0 and G1. Therefore, an honest verifier will

complete all iterations and accept with probability 1.
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• Soundness: If (G0, G1) /∈ GI, then the random isomorphic copy H of G1 will

be isomorphic to only one of G0 or G1. Therefore, an honest verifier will reject

with probability 1
2

in each round.

• Zero-knowledge: The only information revealed in each round is either π or π ·φ
where π∈RS|V |. Due to the random selection of π, a simulator which computes a

random isomorphic copy of G0 or G1 or both is computationally indistinguishable

from interaction with the prover.

8.4.4. ZKP for Hamiltonian Cycle [12].

Definition 8.10. (Hamiltonian Cycle) Let G be a graph. A Hamiltonian Cycle in G

is a cycle that passes through all the nodes of G exactly once. The n nodes of G are

labeled N1, N2, . . . . . . Nn.

Figure 8.8 has a Hamiltonian Cycle labeled by the solid line.

Figure 8.8: Hamiltonian Cycle

The following protocol will be executed for k rounds.

1. P: The prover encrypts G with the boxes in secret by randomly mapping n

labeled nodes N1, N2, . . . . . . Nn 1-1 into n labeled boxes B1, B2, . . . . . . Bn in such

a way that each one of the n! permutations of the nodes into the boxes is equally
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probable. For every pair of boxes (Bi, Bj) prepare a box labeled Bij. This box is

to contain a 1 if the node placed in Bi is adjacent to the node in Bj; 0 otherwise.

All (n+ Cn
2 ) boxes are then to be locked and presented to the verifier.

2. V: Upon receiving (n+ Cn
2 ) boxes, the verifier has two choices:

• (α = 0) The verifier can request that the prover unlock all the boxes. In

this case, the verifier may check that the boxes contain a description of G.

(For example, if N1 is adjacent to both N2, N5 but no other nodes in G. If

N1 is in Bi, N2 in Bj, and N5 in Bk, then there should be a 1 in both Bij,

Bik, and a 0 in Bix for every other value of x)

• (α = 1) The verifier can request that the prover open exactly n boxes

Bij, Bjk, Bkl . . . . . . Bl′i, which can demonstrate that G contains a Hamilto-

nian Cycle if all these boxes all contain a 1. Since the Bi are not opened,

the sequence of node numbers defining the Hamiltonian Cycle in G is not

revealed.

3. P: The prover opens the appropriate boxes according to one of the two random

requests from the verifier (either the graph or the Hamiltonian Cycle)

4. V: The verifier accepts the proof if the prover complies and rejects otherwise.

Figure 8.9 illustrates the ZKP for Hamiltonian Cycle.

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.

• Completeness: If the prover knows the graph, G, contains a Hamiltonian Cycle,

he can successfully show the graph or cycle according to the requests from the

verifier. So the verifier will complete all k rounds and accept with probability 1.

• Soundness: If the graph doesn’t contain a Hamiltonian Cycle, the prover’s prob-

ability of convincing the verifier that he does know the graph contains a Hamil-

tonian Cycle is 1/2 in each round. His probability of convincing the verifier that

he does know are ≤ 1/2k when there are k rounds.

• Zero-knowledge: In each round, the verifier either obtains an encrypted graph

of G or a random n cycle. When the prover reveals all the boxes that describe
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Figure 8.9: ZKP for Hamiltonian Cycle

the G, it is only one of the n! random mappings of the n nodes of G into the n

labeled boxes. When the prover reveals the boxes containing a cycle, it is just a

random n cycle. Thus the verifier gets no useful information.

8.4.5. Another ZKP for Graph Three-Colorability [12]. The n nodes

of G are labeled N1, N2, . . . . . . Nn. Suppose the graph is colored with Red, White and

Blue. If node Ni is colored red, it is called NR
i .

1. P: The prover prepares 3n pairs of boxes 〈Bc
1, B1〉 , 〈Bc

2, B2〉 , . . . . . . 〈Bc
3n, B3n〉.

Without revealing to the verifier, the prover randomly maps 3n nodes

NR
1 , . . . . . . N

R
n , N

W
1 , . . . . . . NW

n , NB
1 , . . . . . . N

B
n 1-1 into the 3n pairs of boxes.

Each of the (3n)! permutations mapping the {Nx
i } on to the

〈
Bc
j , Bj

〉
is equally

probable. The prover puts x (the color) into Bc
j , and puts i (the node number)

into Bj. For every pair of number-containing boxes (Bi, Bj), prepare a box

labeled Bij. This box contains 1 if the node of G in Bi has the color Bc
i , the

node of G in Bj has the color Bc′
j , and if the node in Bi is adjacent in G to the

node in Bj and contains 0 otherwise. All boxes are then locked and presented

to the verifier.

2. V: Upon receiving (2 · 3n+ Cn
2 ) boxes, the verifier have two choices:
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(a) The verifier can request that the prover unlock all the boxes Bij and all

the numbers containing boxes Bi, but none of the colors containing Bc
i . In

this way, the prover reveals the graph G without revealing its coloring. The

verifier can check the boxes contain a correct description of G.

(b) The verifier can request that the prover open the 3n boxes {Bc
i } to reveal

the colors they contain, and then open just those boxes Bij such that Bc
i

contains the same color as Bc
j . The opened boxes Bij will all contain a

0 if and only if any 2 nodes that are colored the same are not adjacent

in the graph represented by the boxes. The verifier can check the correct

three-coloring.

3. P: The prover opens the appropriate boxes according to one of the two random

requests from the verifier (either all boxes without colors or adjacent vertices

with different colors)

4. V: The verifier accepts the proof if the prover complies and rejects otherwise.

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.

• Completeness: If the graph is three-colorable, those nodes that are colored the

same are not adjacent in graph. So the verifier will complete all rounds and

accept with probability 1

• Soundness: If the graph is not three-colorable, the prover’s probability of con-

vincing the verifier that he does know the graph is three colorable is 1
2

in each

round. His chance of convincing the verifier that he does know are ≤ 1/2k when

there are k rounds.

• Zero-knowledge: In each round, the verifier either obtains an encrypted graph

or boxes containing “0”. When the prover reveals all the boxes that describe

the graph, it is only one of the random mappings of the n nodes of graph into

n labeled boxes. When the prover reveals the boxes containing “0”, the verifier

gets no useful information without the corresponding numbers of nodes.

8.4.6. ZKP Sketch for SAT. The quadratic residuosity problem is the

question of distinguishing by calculating the quadratic residues modulo n, where n is



96

a composite number of two odd primes p and q. Under the assumption of quadratic

residuosity that two states are computational indistinguishable through the calculation

of the quadratic residues modulo n, a protocol for satisfiability (SAT) is suggested that

directly simulates a circuit that evaluates given instances of SAT [49].

The general technique in [72] is through the simulation of an arbitrary boolean

circuit without disclosing the inputs or any intermediary results. At the end of the

protocol, if the final output of the circuit is 1, then the circuit is satisfiable, but nothing

else.

Let u = b1, b2, . . . . . . bk be a k bit string of the prover. For each 1 ≤ i ≤ k, let

zi and z′i be the two encryptions of bi randomly chosen by the prover. It is easy for

the prover to convince the verifier that the k bit strings encrypted by z1, z2, . . . . . . zk

and z′1, z
′
2, . . . . . . z

′
k are identical without providing the verifier with any additional

information by the following string equality protocol.

Definition 8.11. (String Equality Protocol): For each i, 1 ≤ i ≤ k, the prover gives

the verifier some xi ∈ Z∗n(denoting the set of integers relatively prime to n between 1

and n− 1) so that ziz
′
i ≡ x2i (mod n).

Definition 8.12. (Boolean Computation Protocol): Consider any boolean function

B : {0, 1}t → {0, 1} agreed upon between the prover and the verifier, and any bits

b1, b2, . . . . . . bt only known to the prover. For 1 ≤ i ≤ t, let zi be an encryption of bi

known to the verifier. Let b = B (b1, b2, . . . . . . bt) . The prover produces an encryption

z for b and convinces the verifier that z encrypts the correct bit without giving the

verifier any information on the input bits b1, b2, . . . . . . bt nor on the result b.

A permuted truth table for the boolean function B is introduced here, which is

a binary string of length (t + 1)2t formed of 2t blocks of t + 1 bits. The last bit of

each block is the value of B on the other t bits of the block. Let s be the number of

permutations agreed upon between the prover and the verifier.

1. P: The prover randomly chooses s permuted truth tables for B and discloses

encryptions for each of them.

2. V: The verifier selects a random subset X ⊆ {1, 2, . . . . . . , s} and sends it to

prover as a challenge
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3. P: The prover chooses one of the following options based on the request from

the verifier.

• For each j ∈ X, the prover opens the entire encryption of the jth permuted

truth table.

• For each j /∈ X, the prover points to the appropriate block in the encryp-

tion of the jth permuted truth table and uses the following string equality

protocol to convince the verifier that z1, z2, . . . . . . ztz encrypts the same bit

string as this block.

4. V: The verifier makes the following verifications.

• The verifier checks if it is a valid truth table for B.

• The verifier checks if z1, z2, . . . . . . ztz encrypts the same bit string.

Figure 8.10 illustrates the ZKP for boolean computation.

Figure 8.10: ZKP for Boolean Computation

Based on the above discussions, a ZKP sketch has been designed for SAT.

f : {0, 1}k → {0, 1} is the function computed by some satisfiable boolean formula for
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which the prover knows that there is an assignment b1, b2, . . . . . . bk ∈ {0, 1} so that

f (b1, b2, . . . . . . bk) = 1. Assume the boolean formula is given using arbitrary unary

and binary boolean operators. The prover will produce encryptions z1, z2, . . . . . . zk of

b1, b2, . . . . . . bk. Then the prover will guide the verifier through the encrypted evalua-

tion of the formula, using the boolean computation protocol, one boolean operator at a

time. The result will be a z which is the encryption for the value of f (b1, b2, . . . . . . bk) .

Then the prover opens z and shows the verifier that it encrypts a 1.

8.4.7. ZKP for Circuit Computations. In [49], it is possible to directly

simulate the computation of any given computational device. Simulation is used to

separate the data encryption from the encryption of the device’s structural (or control)

information. It directly proves the result of the computation, avoiding the Karp

reduction from a specific NP-complete problem.

In the protocol, the essential idea is that the prover constructs and sends to the

verifier a copy of a simulation of the computing device. This copy should include

encoding of the possible input, intermediate results, and output data. In addition,

it includes encoding of structural information about the computing device. Upon

receiving the encoding information, the verifier chooses a bit α ∈ {0, 1} and sends it

back.

• With probability 1
2

the verifier decides to verify, that is to request that the

prover open all the encryptions in the copy. In this way, the verifier can check if

the construction is a legal one with the correct structural information.

• With probability 1
2

the verifier chooses to compute, in which case the prover

opens only the result of the computation. In order to prove the output presented

is in fact the computed result, the prover opens only parts that are involved

in the computation, while other information is left encrypted. The unopened

information appears random.

The process is repeated r times; each time the verifier either chooses to verify

or chooses to compute. If all verifications are successful, and all the computations

produce a connection to the same opened output, then the verifier accepts the result

of the computation.
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The prover uses an encryption procedure E and simulates the computation of

a circuit C in a minimum-knowledge fashion with the verifier. Let E(C) denote the

encryption.

1. P: The prover probabilistically encrypts C using an encryption procedure E.

Then the prover sends E(C) to the verifier.

2. V: The verifier chooses a bit α ∈ {0, 1} and sends it back.

3. P: The prover chooses one of the corresponding actions based on the requests

from the verifier.

• α = 0 {verify}: the prover opens all the encryptions of all gates in E(C)

and sends the cleartext circuit to the verifier

• α = 1 {compute}: the prover opens only the pointers of the specific com-

putation an sends the cleartexts of these pointers to the verifier including

the outputs

4. V: The verifier does the corresponding verifications.

• α = 0, the verifier verifies that C is properly encrypted;

• α = 1, the verifier verifies that the opened pointers lead from the (un-

opened) input entries to the output pointers.

Figure 8.11 illustrates the ZKP for circuit computation.

If all computations give the same value and all verifications are successful then

the verifier accepts. Otherwise, the verifier rejects.

8.4.8. ZKP for Exact Cover. The Exact Cover is defined in the following.

Definition 8.13. (Exact Cover): A set {ui, i = 1, 2, . . . . . . t}. A family {Sj} is a

subset of the set {ui, i = 1, 2, . . . . . . t}. Exact cover means there is a subfamily {Th} ⊆
{Sj} , such that sets Th are disjoint and

⋃
Th =

⋃
Sj = {ui, i = 1, 2, . . . . . . t}.

The following protocol will be executed for t rounds. The verifier uses a coin

toss in each round.

Let |Th| = m, |Sj| = n

1. P: The prover prepares the following four kinds of boxes:
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Figure 8.11: ZKP for Circuit Computation

• t labeled boxesB1, B2, . . . . . . Bt which will contain set {ui, i = 1, 2, . . . . . . t}
in a random order

• n labeled boxes A1, A2, . . . . . . An which will contain element in Sj

• n · t black boxes in a matrix as follows, if the set member in Bi is in the Sj

of Aj, then insert a 1; otherwise insert a 0.

B1 B2 B3 . . . . . . Bt

A1 1 0 0 . . . . . . 0

A2 0 0 1 . . . . . . 0

. . . 0 1 0 . . . . . . 0

. . . 0 0 0 . . . 1 0

An 1 0 0 . . . . . . 1

• For every two rows in matrix, a pair of boxes is prepared as < Index ∗
Index,Result >. The first box contains indexes of two rows. The second

box contains the product operation of any two row vectors (one is row

vector, another is the transpose of row vector). If the result of product

operation is 0, Result = 0; otherwise, Result = 1.
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2. V: Upon receiving (2 · t+ n · t+ 2 ·Cn
2 ) black boxes, the verifier has two choices:

• (α = 0) The verifier can ask to open all the boxes to verify if the description

of the problem is correct.

• (α = 1) The verifier asks the prover to open some pairs of boxes with Result

= 0. With the index showing in these boxes, the verifier also asks to open

the corresponding row in the matrix to check if
⋃
Th =

⋃
Sj = {ui, i =

1, 2, . . . . . . t}.)

3. P: The prover opens the appropriate boxes according to the two random requests

from the verifier (either all the boxes describing the exact cover problem or

disjoint solution sets).

4. V: The verifier accepts the proof if the prover complies and reject otherwise.

Figure 8.12 illustrates the ZKP for exact cover.

Figure 8.12: ZKP for Exact Cover

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.
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• Completeness: If the prover knows the exact cover, he can encrypt the correct

information in the matrix. So the verifier will complete all rounds and accept

with probability 1.

• Soundness: If the prover doesn’t know the exact cover, the prover’s chance of

convincing the verifier that he does know the exact cover is 1
2

in each round:

either the exact cover problem is correctly encrypted or there are disjoint solution

sets. His chance of convincing the verifier that he does know the exact cover are

≤ 1/2k when there are k rounds.

• Zero-knowledge: In each round, the verifier either obtains a random matrix with

“0” and “1” or obtains one element in set {Sj} which is known to the verifier

beforehand. Thus, there is no useful information transferred.

An example will be used to illustrate ZKP for exact cover , suppose: S =

{A,B,C,D,E, F}. {ui} = {1, 2, 3, 4, 5, 6, 7}. A = {1, 4, 7}, B = {1, 4}, C = {4, 5, 6}, D =

{3, 5, 6}, E = {2, 3, 5, 6}, F = {2, 7}.
In ZKP for exact cover, the prover will prepare seven black boxes namedB1, B2, ...B7,

which will contain elements in {ui} in a random order. Additional six black boxes

named A1, A2, ...A6 will be used to contain sets in {Si}. With Ai, Bi, the following

matrix will be prepared.

2 1 6 5 3 7 4

B1 B2 B3 B4 B5 B6 B7

S6 A1 1 0 0 0 0 1 0

S1 A2 0 1 0 0 0 1 1

S4 A3 0 0 1 1 1 0 0

S2 A4 0 1 0 0 0 0 1

S3 A5 0 0 1 1 0 0 1

S5 A6 1 0 1 1 1 0 0

The prover also prepares following pairs Table 8.1 of boxes which contain indexes

and result of * operation of any two rows:

The prover will send all of those black boxes to the verifier. Upon receiving

(2 · 7 + 6 · 7 + 2 · 15) = 86 black boxes, the verifier has two choices:
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Table 8.1: Black-Boxes for Index and Product Operation

1*2, 1 1*3, 0 1*4, 0 1*5, 1 1*6, 1
2*3, 0 2*4, 1 2*5, 1 2*6, 0 3*4, 0
3*5, 0 3*6, 1 4*5, 1 4*6, 0 5*6, 1

• The verifier asks the prover to open all black boxes to verify the boxes contain

the public exact cover problem.

• The verifier asks the prover to open some pair of boxes with Result = 0. The

prover will open (13, 0) and (34, 0). With index 1, 3 and 4, the verifier ask the

prover to open row 1, 3 and 4 in the matrix and check if elements in row 1, 3

and 4 are combined together covering all elements in the set {ui}

8.4.9. ZKP for 0-1 Knapsack. The 0-1 Knapsack is defined in the following.

Definition 8.14. (0-1 Knapsack): There are n kinds of items. Each kind of item i

has a value vi and a weight wi. The maximum weight that a bag can carry is W . The

0-1 knapsack algorithm determines the subsets of items which give maximum value

without exceeding the maximum weight of the bag. Mathematically, the 0-1 knapsack

problem can be formulated as:

• Maximize
∑n

i vi · xi with xi ∈ {0, 1}

• Subject to
∑n

i wi · xi ≤ W with xi ∈ {0, 1}

The simple case of the problem with the property that for each kind of item the

weight equals the value wi = vi is as follows.

The 0-1 simple knapsack problem is to find a binary n-vector x such that a given

W equals to w ·x. A supposed solution x is easily checked in at most n additions, but

finding a solution is believed belong to NPC. As n is larger than 100 or 200, the num-

ber of operations grows exponentially and computationally infeasible for exhaustive

trial and error search over all 2n possible x.

However, the degree of difficulty is crucially dependent on the choice of w. If w =

(1, 2, 4, ..., 2n), then solving for x is equivalent to finding the binary representation of

W . Generally, if for all i, wi >
∑i−1

j=1wj, then x is also easily found. xn = 1 if and only
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if W ≥ wn and for i = n− 1, n− 2, ..., 1, xi = 1 if and only if W −
∑n

j=i+1 xj ·wj ≥ wi.

A trapdoor knapsack is defined as one in which carefully choice of w as above. They

form a proper subset of all possible knapsacks and their solutions are not as difficult

as the hardest knapsacks in NP theory [66]. In this paper, we are not considering

trapdoor knapsacks.

According to the Karp’s reduction theorem, the ZKP for knapsack problem can

be generated in a similar way as the ZKP for exact cover problem.

The following protocol will be executed for t rounds. The verifier uses a coin

toss in each round.

1. P: The prover prepares the following four kinds of boxes:

• n labeled boxes B1, B2, . . . . . . Bn which will contain items w1, w2, . . . . . . , wn

in a random order

• m boxes S1, S2, . . . . . . Sm will contain some numbers which are summation

of random items from wi

• m · n black boxes in a matrix as follows, if the item Bi is included in sum

Si, then insert a 1; otherwise insert a 0.

B1 B2 B3 . . . . . . Bn

S1 1 0 0 . . . . . . 0

S2 0 0 1 . . . . . . 0

. . . 0 1 0 . . . . . . 0

. . . 0 0 0 . . . 1 0

Sm 1 0 0 . . . . . . 1

• For every two rows in matrix, a pair of boxes is prepared as < Index ∗
Index,Result >. The first box contains indexes of two rows. The second

box contains the product operation of any two rows vectors (one is row

vector, another is the transpose of row vector). If the result of product

operation is 0, Result = 0; otherwise, Result = 1.

2. V: Upon receiving (2 ·n+m ·n+2 ·Cm
2 ) black boxes, the verifier has two choices:

• (α = 0) The verifier asks the prover to open all the boxes to verify if they

are satisfied the original simple knapsack problem.
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• (α = 1) The verifier asks the prover to open a subset of the summation

boxes Si with
∑
Si = W . The verifier also asks to open all the pairs of

boxes to check if Result = 0 within the subset of Si.

3. P: The prover opens the appropriate boxes according to the two random requests

from the verifier (either all the boxes describing the knapsack problem or those

boxes where W is equal to some summation Si with Result = 0 for each pair).

4. V: The verifier accepts the proof if the prover complies and rejects otherwise.

Figure 8.13 illustrates the ZKP for 0-1 simple knapsack. If the verifier has

completed t iterations of the above steps, then he accepts.

Figure 8.13: ZKP for 0-1 Simple Knapsack

This protocol is a ZKP because it upholds the properties of completeness, sound-

ness and zero-knowledge.

• Completeness: If the prover knows the solution to the simple knapsack, he can

encrypt the correct information in all the boxes. So the verifier will complete all

rounds and accept with probability 1.
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• Soundness: If the prover doesn’t know the solution to the simple knapsack, the

prover’s chance of convincing the verifier that he does know the solution is 1
2

in

each round: either the simple knapsack problem or some summation equal to

constraint W . His chance of convincing the verifier that he does know the exact

cover are ≤ 1/2k when there are k rounds.

• Zero-knowledge: In each round, the verifier either obtains a random matrix

with “0” and “1” or obtains some random numbers. Thus, there is no useful

information transferred.

8.5. ADVANCED TOPICS IN COMPOSING ZKPS

8.5.1. Composing ZKPs. ZKPs have many applications in cryptographic

areas such as identity verification, authentication, key exchange and so on. Provided

that one-way functions exist, ZKPs can be used to force parties to behave according

to a predetermined protocol, such as multi-party secure computations [41]. The next

natural question is whether the zero-knowledge condition is preserved under a variety

of composition operations: sequential, parallel and concurrent. This question not

only belongs to the theoretical area, but is crucial to the application of ZKPs in the

cryptographic area. For example, we want to make sure the information obtained by

the verifier during the execution of a ZKP will not enable him to extract any additional

knowledge from subsequent executions of the same protocol.

For T ∈ {sequential, parallel, concurrent}, a protocol is T -zero-knowledge if it

is zero-knowledge under a composition of type T [38]. The definitions of T -zero-

knowledge are derived by considering that the verifiers can initiate a polynomial num-

ber of interactions with the prover using scheduling type T .

Protocol repetition, which repeats the basic protocol many times independently

and links them together, is mainly used for error reduction. Protocol composition is

different than protocol repetition; the prover is not assumed to coordinate its actions

between different executions of the protocol [75]. If the verifier has some misbehavior

in protocol repetition, the prover can refuse to continue execution. By contrast, in

protocol composition, the prover is still obilgated to continue interaction with other

executions of the protocol. The obvious way to perform repetition would be to execute

the basic protocol sequentially, but it suffers from a high round-complexity, resulting in
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a high number of message exchanges in the execution. Parallel repetition that conducts

the basic protocol in parallel is used as a way of decreasing the error probability while

maintaining the number of rounds of message.

1. In sequential composition, the ZKP is invoked (polynomially) many times, where

each invocation follows the termination of the previous one [38]. Assuming a ba-

sic ZKP contains four-round P1, V 1, P2, V 2 message passing, Figure 8.14 shows

the sequential composition. It is the most basic case of protocol composition.

Every protocol that is zero-knowledge is sequential-zero-knowledge, which means

zero-knowledge is closed under sequential composition.

2. In parallel composition, (polynomially) many instances of the ZKP are invoked

at the same time and proceed at the same pace [38]. Under the assumption of

a synchronous model of communication, the executions are totally synchronized

so that the ith messages in all instances are sent exactly at the same time.

As shown in Figure 8.15, assuming a basic ZKP contains four-round P1(i =

1), V 1(i = 2), P2(i = 3), V 2(i = 4) message passing, the ith message in all

ZKPs should be sent out at the same time.

Goldreich and Krawczyk in [40] presented a simple protocol that is zero-knowledge,

but is not closed under parallel composition. The example is described in Table

8.2:

The prover’s strategy is zero-knowledge because:

• If the verifier chooses 0, then it is infeasible for the verifier to guess a passing

pair (β, γ) since the α is randomly chosen by the prover. The verifier doesn’t

obtain anything from the interaction.

• If the verifier chooses 1, then it obtains a pair (β, f(αβ)). Since β is selected

by the prover, for any α, the value f(αβ)) is random to the verifier and

(β, f(αβ)) is indistinguishable from a uniformly selected pair of n-bit long

strings.

However, if the verifier conducts two concurrent executions with the prover, there

will be information leakage, illustrated in Table 8.3. In this case, the verifier

chooses 0 in one session and 1 in another session. Upon receiving the prover’s
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Figure 8.14: Sequential Composition of ZKP

Figure 8.15: Parallel Composition of ZKP
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Table 8.2: Protocol Not Closed Under Parallel Composition

Consider the prover holding a secret and a random function f : {0, 1}2n → {0, 1}n,
and willing to participate in the protocol. The verifier is supposed to send the prover
a binary value {0, 1}:

For choice 0, the prover uniformly selects α ∈ {0, 1}n, and sends it to the verifier
which is supposed to reply with a pair of n-bit long strings, denoted (β, γ). The prover
checks whether or not f(αβ) = γ. The input of f function, αβ, is the concatenation
operation of two n-bit string. If the equality is satisfied, the prover sends the verifier
the secret he has.

For choice 1, the verifier is supposed to uniformly select α ∈ {0, 1}n, and send it to
the prover, which selects uniformly β ∈ {0, 1}n, and replies with the pair (β, f(αβ)).

message α in the first session, the verifier sends α as its own message in the

second session and obtains a pair (β, f(αβ)) from the prover’s execution of the

second session. Then the verifier sends the pair (β, f(αβ)) to the first session of

the prover, which will satisfy the equation f(αβ) = γ and the verifier will obtain

the desired secret.

Table 8.3: Parallel Composition Leads to Information Leakage

V = 0 V = 1

P
α→ V

P
α← V

P
(β,f(αβ))→ V

P
(β,γ)← V

P
secret→ V (f(αβ) == γ)

Based on the above example, zero-knowledge is not closed under parallel com-

position in general [75]. However, assuming one-way functions exist, it has been
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proven that there exists zero-knowledge protocols for NP that are closed under

parallel composition and having a constant number of rounds [37]. Conceptu-

ally, the independently execution of one basic protocol will give no information

to other execution of basic protocol since the prover will respond independently

based on message from each execution.

Using a simulator is the technique to demonstrate the zero-knowledge property.

The idea behind it is that whatever the verifier might have learned from interact-

ing with the prover, the verifier could learn by himself by running the simulator.

The simulator has two advantages over the prover to compensate for not know-

ing the secret as the prover does [5]. The first advantage is that the simulator

knows and can determine the questions the verifier will ask. The second advan-

tage is that the simulator has many choices to answer the verifier’s questions.

After it fails to answer a question from the verifier, the simulator simply choose

not to output this interaction and goes back to some point to output only the

successful interaction. This process is called rewind which helps the simulator

to rewind back from the failure and try again. The black-box simulator, which

simulates the interacting of the prover with the verifier without access to the

strategy of that verifier, is used to demonstrate the zero-knowledge [37].

3. Concurrent composition is a more general protocol composition, which was first

considered by Dwork, Naor and Sahai [25]. Here (polynomially) many instances

of the protocol are invoked at an arbitrary time and proceed at an arbitrary pace

[38]. This allows one or multiple verifiers to engage in many proofs with the

prover and arbitrarily interleave the messages by running some of the protocols

ahead in order to gain information that will enable it to attack some of the

other protocols. Within each proof, the verifier must follow the proper order

of the steps. Among different proofs, the verifier can interleave arbitrarily. For

example, the verifier may execute the first step of proof 1, then execute all steps

of proof 2 in order to obtain some knowledge in advance to execute the remaining

steps in proof 1. Concurrent composition is shown in Figure 8.16.

There are two models of concurrent composition: a purely asynchronous model

and an asynchronous model with timing. The purely asynchronous model is a

simpler model and requires no assumptions about the underlying communication
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Figure 8.16: Concurrent Composition of ZKP

channels. While an asynchronous model with timing, each party is assumed to

hold a local clock such that the relative clock rates are bounded by an a priori

known constant.

The timing model assumes that each party holds a local clock such that the

relative clock rates are bounded by an a priori known constant [25]. There are

two constants involved in the timing assumption: ρ and ∆. ρ is a global time

bound on the relative rates of the local clock and is known to all parties. ∆ is

an upper bound on the message handling and delivery time. Under this timing

model, a constant-round concurrent ZKP can be constructed as shown in [25].

Some problems will arise if time-driven operations are considered. The use of

time-driven operations, such as timeout of incoming messages, receipt and delay

of outgoing messages, will slow down the execution of the protocol. However, in

the absence of more appealing alternatives, the use of this timing model still is

considered reasonable [38].

8.5.2. The Richardson-Kilian Concurrent ZKPs Protocol. Under

standard intractability assumptions, concurrent ZKPs exist for NP in a purely asyn-

chronous model by Richardson and Kilian (RK) [74]. In this model, a verifier is

allowed to run up to k interactive proofs with the prover. The RK protocol consists

of two stages: an O(k) preamble messages and a main body. The first stage is inde-

pendent of the common input, in which the verifier and the prover will be engaged

in O(k) message exchanges. First, the verifier commits to k random n-bit strings

v1, v2, ..., vk ∈ {0, 1}n, where n is the security parameter of the protocol that repre-

sents the number of concurrent executions and k is the parameter that determines the
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number of rounds. In the following k iterations between the prover and verifier, the

prover commits to a random n-bit string, pj, and the verifier decommits to the corre-

sponding vj. In the second stage, the prover provides proof either for the statement

is true or for some j ∈ {1, 2, ..., k} vj = pj. Table 8.4 illustrates two stages.

Table 8.4: RK Protocol

First Stage:
V → P : Commit to v1, v2, · · · , vk
For j = 1, 2, · · · , k
P → V : Commit to pj
V → P : Decommit to vj

Second Stage:
P ↔ V : Zero Knowledge Proof for statement is true or ∃j s.t. vj = pj

The technique used here is from WI in section 2.7: instead of proving a statement

T , the prover proves a weaker theorem T ∨W , where W is a statement that will fail

with extremely high probability [74]. In the actual interactions, there is little chance

for the prover to guess vj from the verifier. Thus, the prover has no choice but to

provide the proof for the statement T .

It is necessary to examine whether the zero-knowledge property is still preserved

in the protocol. Recall that in order to demonstrate the zero-knowledge property, a

simulator has to be generated that can simulate the views of every polynomial-time

adversary interacting with the prover. Under concurrent composition, the simulator’s

task becomes more complicated [75]. In the RK protocol, the preamble messages will

be used by the simulator to its advantage. Whenever the simulator may cause vj = pj

to happen for some j, it can simulate the rest of the protocol and provide a WI proof.

The larger the number of rounds in the preamble, the more resistant the result is to

concurrent attacks, and the easier the simulation task is. However, the number of

rounds in the protocol will also increase.

8.5.3. The Improved Concurrent ZKPs Protocol. Prabhakharan,

Rosen and Sahai (PRS) proposed a more sophisticated concurrent ZKP in [73] with
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O(α(n) · logn) rounds of iteration, where α(·) is any super-constant function such

as loglogn. The PRS protocol also consists of two stages, which is illustrated in

Table 8.5. In the first stage, the verifier will commit to a random n-bit string σ,

and to two sequences {σ0
i,j}ki,j=1, and {σ1

i,j}ki,j=1. Each of the sequences consists of

k2 random n-bit strings, such that for every i, j the value of σ0
i,j ⊕ σ1

i,j = σ. The

total number of committed strings in this step is 2 · k2 + 1. This is followed by k

iterations between the prover and the verifier. In the jth iteration, the prover will

send a random k-bit string, rj = r1,j, r2,j, ..., rk,j, and the verifier will decommit k

strings of σ
r1,j
1,j , σ

r2,j
2,j , ..., σ

rk,j
k,j . After first stage, the verifier has opened a total of k2

strings in the two sequences.

In the second stage, the prover and the verifier will engage in a three-round

protocol. After the prover commits secret values about the statement to the verifier,

the challenge question σ will be decommitted with all the σ, {σ1−ri,j
i,j }ki,j=1 that were

not revealed in the first stage. Upon checking that the strings satisfy the constraint

(σ0
i,j ⊕ σ1

i,j = σ), the prover decommits the corresponding value to the verifier.

Table 8.5: PRS Protocol

First Stage:
V → P : Commit to σ, {σ0

i,j}ki,j=1, {σ1
i,j}ki,j=1, for each i, j, σ0

i,j ⊕ σ1
i,j = σ.

For j = 1, 2, · · · , k:
P → V : Send k-bit string rj = r1,j, r2,j, ..., rk,j
V → P : Decommit k strings of σ

r1,j
1,j , σ

r2,j
2,j , ..., σ

rk,j
k,j

Second Stage:
P ⇒ V : Perform n independent copies of commitments of secrets

V ⇒ P : Decommit to σ and to {σ1−ri,j
i,j }ki,j=1

P ⇒ V : Answer according to the value of σ if σ0
i,j ⊕ σ1

i,j = σ is satisfied

Both the RK and the PRS protocol follows the same structure of adding a pream-

ble phase to the basic protocol. This phase is only used for sucessful simulation to

prove the zero-knowledge property. Applying this protocol, Blum’s Hamiltonian Cy-

cle concurrent zero-knowledge proof has been demonstrated. Thus, every language
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in NP has a concurrent zero-knowledge proof system. A concurrent ZKP for the 0-1

simple Knapsack of Table 8.6 that is shown in section 4.9, yields the PRS protocol in

Table 8.7.

Table 8.6: Basic ZKP for 0-1 Simple Knapsack

Common input: n items, each item i with weight wi and a weight constraint W .
P1: The prover prepares all the black boxes.
V1: Upon receiving (2 · n +m · n + 2 · Cm

2 ) black boxes, the verifier has two choices:
(α = 0) The verifier asks the prover to open all the boxes to verify if they satisfy the
original simple knapsack problem.
(α = 1) The verifier asks the prover to open a subset of the summation boxes Si with∑
Si = W . The verifier also asks to open all the pair of boxes to check if Result = 0

within the subset of Si.
P2: The prover opens the appropriate boxes according to the two random requests
from the verifier (either all the boxes describing the knapsack problem or whose boxes
where W is equal to some summation Si with unique item).
V2: The verifier accepts the proof if the prover complies and rejects otherwise.

A detailed description is given as follows. In the first stage, the verifier will

commit an n-bit random string σ and 2k2 n′-bit random strings as shown in Table 8.8

with the restriction that σ0
i,j ⊕ σ1

i,j = σ as shown in Table 8.9:

For the next 2k iterations, the verifier will decommit k strings in each iteration

to the prover as shown in Table 8.10:

In the second stage, the prover will make independent copies of P1 in Table 8.6

with n′ parallel verifiers. The verifier will decommit the σ and remaining k2 σ
1−ri,j
i,j to

the prover. The prover will execute n′ copies of P2 in Table 8.6 if the k2 strings in

the first stage and k2 strings in the second stage satisfy σ0
i,j ⊕ σ1

i,j = σ. The verifier

will accept only if all the conditions are satisfied.

In the actual execution of the protocol, since the prover does not know the value

of σ, the protocol would be a proof system for 0-1 simple knapsack with soundness

error 1
2n′

. The sole purpose of the first stage is to allow the simulator to know the

value of σ. As long as the simulator makes the verifier reveal both σ0
i,j and σ1

i,j for
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Table 8.7: PRS Concurrent ZKP for 0-1 Simple Knapsack

Common input: n items, each item i with weight wi and a weight constraint W .
A parameter k is used for determining the number of rounds and also works as the
security parameter that represents the number of concurrent executions.
First stage: 2k + 2 rounds interactions between the prover and the verifier (indepen-
dent of the knapsack problem)

Verifier’s preliminary step: the verifier selects and commits to an n′-bit string σ and
two sequences of n′-bit strings: {σ0

i,j}ki,j=1, {σ1
i,j}ki,j=1, for each i, j, σ0

i,j⊕σ1
i,j = σ. The

total committed strings are 2k2 + 1.
For j = 1, 2, · · · , k:
Prover’s jth step: Send k-bit string rj = r1,j, r2,j, ..., rk,j to the verifier
Verifier’s jth step: Decommit k strings of σ

r1,j
1,j , σ

r2,j
2,j , ..., σ

rk,j
k,j

Second stage: The prover and verifier engage in n′ parallel executions of Basic ZKP
for the 0-1 simple knapsack

P̂1: The prover will prepare boxes for n′ parallel independent executions, which means
there will be n′ · (2 ·n +m ·n + 2 ·Cm

2 ) black boxes. Each set of (2 ·n +m ·n + 2 ·Cm
2 )

black boxes is generated independently and contains the different commitment of the
same knapsack problem.

V̂ 1: The verifiers decommit to σ and remaining {σ1−ri,j
i,j }ki,j=1, which are not revealed

in the first stage.

P̂2: The prover checks that the verifier has properly decommitted to the value by
checking σ0

i,j ⊕ σ1
i,j = σ. Each bit in σ is the question from the verifier for each

execution. If so, the prover opens the appropriate boxes according to each bit value
of σ for each execution(either all the boxes within one set which describes the knapsack
problem correctly or under one set W is equal some summation of Si with unique
item) .

V̂ 2: The verifier conducts the verification of the prover’s proofs based on the result
of P̂2.

Table 8.8: 2k2 Randomly Generated Strings

σ0
1,1 σ0

1,2 ... σ0
1,k

σ0
2,1 σ0

2,2 ... σ0
2,k

... ... ... ...
σ0
k,1 σ0

k,2 ... σ0
k,k

σ1
1,1 σ1

1,2 ... σ1
1,k

σ1
2,1 σ1

2,2 ... σ1
2,k

... ... ... ...
σ1
k,1 σ1

k,2 ... σ1
k,k

Table 8.9: Constraints on Strings

σ0
1,1 ⊕ σ1

1,1 = σ σ0
1,2 ⊕ σ1

1,2 = σ ... σ0
1,k ⊕ σ1

1,k = σ

σ0
2,1 ⊕ σ1

2,1 = σ σ0
2,1 ⊕ σ1

2,2 = σ ... σ0
2,k ⊕ σ1

2,k = σ

... ... ... ...
σ0
k,1 ⊕ σ1

k,1 = σ σ0
k,2 ⊕ σ1

k,2 = σ ... σ0
k,k ⊕ σ1

k,k = σ
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Table 8.10: Preamble Messages

(P1): The prover will send a random k-bit string r1 = r1,1, r2,1..., rk,1
(V 1): The verifier will decommit σ

r1,1
1,1 , σ

r2,1
2,1 , ..., σ

rk,1
k,1

(P2): The prover will send a random k-bit string r2 = r1,2, r2,2..., rk,2
(V 2): The verifier will decommit σ

r1,2
1,2 , σ

r2,2
2,2 , ..., σ

rk,2
k,2

(...)
(Pk): The prover will send a random k-bit string rk = r1,k, r2,k..., rk,k
(V k): The verifier will decommit σ

r1,k
1,k , σ

r2,k
2,k , ..., σ

rk,k
k,k

some i, j, it can simulate the rest of the protocol by adjusting the P1 in Table 8.6

according to the value of σ = σ0
i,j ⊕ σ1

i,j.

8.5.4. Efficiency Considerations. Round-complexity is considered as a very

important complexity measure for cryptographic protocols. It indicates the number

of message exchanges taking place in the protocol. Typically, a constant number of

rounds will be a desirable result. Under the assumptions of the existence of one-way

functions, ZKPs can be constructed in constant number of rounds by Feigh and Shamir

[28], Brassard, Crepeau and Yung [16], and Goldreich and Kahan [39] [38].

In [39], Goldreich and Kahan presented how to reduce the error probability of

interactive proofs that having constant error probability without increasing the round-

complexity and while preserving their zero-knowledge property. They are SZKP whose

soundness condition requires that nobody, even with unbounded computational ability,

can fool the verifier into accept the false statements except with negligible probability.

Recall that commitment schemes are commonly used to construct ZKPs with two

phases. The first phase is called commit. The verifier will not know which value it is

if the prover commits a value. The second phase is called reveal. The prover will send

some auxiliary information that allows the verifier to reveal the uniquely committed

value in order to assure that it is the original value. Two properties named secrecy

and nonambiguity are involved [39]. Secrecy requires that at the end of the commit

phase, the verifier does not gain any information of the prover’s value. Nonambinguity

means that in the reveal phase, with the transcript of the interaction in the commit

phase, there exists only one value that the verifier may accept as a legal reveal of the

commitment.
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Two different commitment schemes have been presented to construct constant-

round ZKPs [39].

• Standard commitment scheme: the nonambiguity requirement is absolute (makes

no reference to the computational power of the adversary) whereas the secrecy

requirement is computational (refers only to probabilistic polynomial-time ad-

versaries).

• Perfect commitment schemes: the secrecy requirement is absolute, while the

nonambiguity requirement is computational.

Goldreich and Kahan presented how to construct constant-round zero knowledge

proofs for every set in NP, assuming the strong intractability assumptions (the exis-

tence of claw-free collections). The claw-free collection implies the existence of one-way

functions, but the converse might not be true. Generally, four steps are involved in

constructing a round-efficient ZKP [39]:

1. The verifier commits to a challenge. This is usually implemented by two rounds/messages.

2. The prover commits to a sequence of values.

3. The verifier decommits either properly or not.

4. Depending on the verifier’s proper decommitment, the prover decommits to the

corresponding values.

Based on this construction of constant-round ZKP for NP, Goldreich proved that

security will be preserved in the two extreme schedulings of concurrent executions [37]:

one is the case of parallel execution, and the other is of concurrent execution under the

timing model. The blackbox simulator technique is used for zero-knowledge property

verification.

8.5.5. Knowledge Complexity. Knowledge complexity is introduced by

Goldwasser, Micali and Rackoff [45] to measure the computational advantage ob-

tained by interaction. Anything obtained during the interaction will be considered

as knowledge. How to quantify the amount of knowledge obtained by interaction is

more challenging. One definitional approach is trying to bound the amount of knowl-

edge by the number of bits that are communicated in an alternative interaction that
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allows to simulate the original interaction. To be more concrete, one party is said

to yield at most k(|x|) bits of knowledge if the variation distance between interactive

proof system denoted as (P, V )(x) and a simulator denoted as is bounded above by

1− 2−k(|x|) + |x|−c. x is the input string. k(|x|) = log(|x|)
O(1)

[43].

8.5.6. Non-interactive Zero-Knowledge. The non-interactive zero-

knowledge proof system was defined by Blum, Feldman and Micali. It consists of

three entities: a prover, a verifier and a uniformly selected reference string. The ref-

erence string is not selected by either parties, but is selected by a trusted third party

[39]. The reference string is public to the prover as well as the verifier. The interaction

between the two parties is only a single message sent from the prover to the verifier.

Then it is left for the verifier to reach the final decision.

Non-interactive zero-knowledge proof systems have many applications such as

the construction of public-key encryption and signature schemes. What’s more, ZKP

can be derived by combining a secure coin-flipping protocol with a non-interactive

zero-knowledge proof system [39]. Thus, the round-complexity of this ZKP depends

on the round-complexity of the coin-flipping protocol and on whether it can be securely

performed in parallel many times.

8.6. CONCLUSION

This chapter presented a survey on ZKPs with backgrounds, important con-

cepts, existing applications for NP problems, composition operations and efficiency

considerations. It constructed ZKPs for two NP problems: exact cover and 0-1 simple

knapsack based on Blum’s protocol for Hamiltonicity. Applying the PRS protocol, a

concurrent ZKP for 0-1 simple knapsack is provided and explained in detail.

The notion of zero-knowledge originated with the efforts to formalize problems

during the design of cryptographic protocols. ZKPs have been shown in many ap-

plications of the cryptographic area such as identity verification, authentication, key

exchange and enforcing the honest behavior while maintaining privacy. In an authen-

tication system, one party wants to prove its identity to a second party via some secret

information but doesn’t want the second party to learn anything about this secret.

One of the classic authentications based on ZKPs is the Feige-Fiat-Shamir proof of

identity [26]. The discovery of ZKPs for all of NP has played an important role in

secure computation where several parties engage in a protocol to jointly compute a
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function on their private inputs in a way that no party learns anything other than the

output of the protocol. Since ZKPs can be viewed as a special case of secure two-party

computation, every party can use ZKPs to convince each other that it is following the

specific protocol without revealing its private input. This application was first devel-

oped by Goldreich, Micali and Wigderson in [42]. A general construction of a ZKP

for an NP relation, which makes a black-box use of a secure protocol for a related

multi-party functionality, was presented in [50].

ZKP can also be a good solution to some interesting problems. For example, in

[51], the author proposed a new ZKP of identity scheme based on visual cryptography,

visual zero knowledge proof of identity, that has been built with only Boolean OR

operations. In [46], the author introduced cryptographic and physical ZKPs systems

for solutions of Sudoku Puzzles, which are also known as NP problem.

Existing ZKPs are iterative in nature; their protocols require multiple communi-

cation rounds, making it not an appropriate security protocol for CPSs that informa-

tion exchanges frequently but not iteratively between the cyber parts and the physical

parts. Most of ZKPs are based on some complexity assumptions (e.g. the existence

of one-way function such as quadratic residuosity, factoring, discrete log, etc.). Re-

searchers still try to find a model in which ZKPs for all of NP could be obtained

without any assumptions. In secure computation, it is realized that the complexity

assumptions could be removed by working in a model with private communication

channels.

The further work of ZKPs could go between cryptography and complexity theory.

Non-black box ZKP has begun to inspire complexity theorists to reexamine whether

known limitations of black-box reduction can be bypassed with various types of non-

black box reductions. Another direction is to find common variants of ZKPs [84],

such as noninteractive zero knowledge, proofs and arguments of knowledge and witness

indistinguishable protocols.
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