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ABSTRACT 

The mechanisms of rifting have been intensively investigated using geological 

and geophysical techniques beneath mature rift zones. However, current understanding 

on the earliest stages of rifting is seriously limited. Here we employ recently archived 

data from 17 broadband seismic stations traversing northern Botswana to conduct the first 

shear wave splitting and mantle transition zone (MTZ) studies within the Okavango Rift 

Zone (ORZ). The ORZ is an incipient continental rift situated at the terminal of the 

southwestern branch of the East African Rift System. The resulting normal MTZ 

thickness and consistently rift-parallel fast polarizations imply an absence of significant 

thermal anomalies in the upper mantle, ruling out the role of mantle plumes in the 

initiation of the ORZ. The observed anisotropy beneath the ORZ and adjacent areas is 

mainly attributed to the relative movement between the lithosphere and asthenosphere 

with regional contributions from fabrics in the lithosphere and flow deflection by the 

bottom of the lithosphere. Our observations imply that the initiation and development of 

the ORZ can be initiated following a passive mode from the consequences of relative 

movements between the South African block and the rest of the African plate along a 

zone of lithospheric weakness between the Congo and Kalahari cratons.  

In addition, an approach was developed to effectively remove the near surface 

reverberations in the resulting receiver functions, decipher the P-to-S converted phases 

associated with the Moho discontinuity, and thus resolve sub-sediment crustal structure 

beneath stations sitting on a low-velocity sedimentary layer. 
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SECTION 

1. INTRODUCTION 

Rifting of continental lithosphere plays a significant role in the development of 

continents and the birth of ocean basins. The mechanisms of rifting can be generally 

divided into active and passive. In the either passive or active scenario, mantle upwelling 

and melting are all observed at the last stage of rifting (Sengor and Burke, 1978; White 

and McKenzie, 1989). Thus, it is difficult to distinguish the driving forces of rifting based 

on the studies from mature rift zones such as Afar Depression, Main Ethiopia Rift, which 

have been intensively investigated by previous projects. In this study, we conduct the first 

teleseismic study on the incipient Okavango rift zone (ORZ), intending to decipher the 

rifting mechanisms at its early stage.  

The dissertation is mainly composed of three parts. The first part demonstrates the 

studies of mantle transition zone (MTZ). The resulting normal MTZ thickness and 

shallower than normal MTZ discontinuities depths imply the absence of significant 

thermal anomalies possible existing in the upper mantle beneath the ORZ. 

Shear wave splitting analysis is discussed in the second part. The resulting 

dominant rift parallel fast orientations rule out the existence of upper mantle plume and 

small-scale convection. The observed seismic anisotropy is possibly induced by the 

relative movement between the lithosphere and asthenosphere. Based on the analysis of 

mantle transition zone and shear wave splitting, the Okavango rift can be initiated by 

intra-plate relative motions of continental blocks along zones of weakness produced by 

ancient tectonic events.  
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The third part shows our self-developed technique that can significantly remove 

the reverberations caused by the surface low-velocity sedimentary layer, decipher the 

masked P-to-S converted phases generated from the Moho discontinuity in the resulting 

receiver functions, and is tested to be an efficient tool in resolving the sedimentary and 

sub-sediment crustal thickness and Vp/Vs.  
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PAPER 

I. NO THERMAL ANOMALIES IN THE MANTLE TRANSITION ZONE 

BENEATH AN INCIPIENT CONTINENTAL RIFT: EVIDENCE 

FROM THE FIRST RECEIVER FUNCTION STUDY ACROSS THE 

OKAVANGO RIFT ZONE, BOTSWANA 

Abstract 

The Okavango Rift Zone (ORZ) of northern Botswana is an incipient continental 

rift situated within the Neoproterozoic Damara belt between the Congo Craton to the 

northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status 

beneath the ORZ are poorly known, mostly due to a complete paucity of broadband 

seismic stations in the area. As a component of an interdisciplinary project funded by the 

United States National Science Foundation, a broadband seismic array was deployed over 

a 2-year period between mid-2012 and mid-2014 along a profile 750 km in length. Using 

P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km 

discontinuities (d410 and d660) bordering the mantle transition zone (MTZ) are imaged 

for the first time. When a standard Earth model is used for the stacking of RFs, the 

apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km 

shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave travel-

time residuals obtained by this study and lithospheric thickness estimated by previous 

studies, we conclude that the apparent shallowing is the result of a 100-150 km difference 

in the thickness of the lithosphere between the two cratons. Relative to the adjacent 

tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities 

or in teleseismic P- and S-wave travel-time residuals are found beneath the ORZ. These 
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observations imply an absence of significant thermal anomalies in the MTZ and in the 

upper mantle beneath the incipient rift, ruling out the role of mantle plumes in the 

initiation of the ORZ. We propose that the initiation and development of the ORZ were 

the consequences of relative movements between the South African block and the rest of 

the African plate along a zone of lithospheric weakness between the Congo and Kalahari 

cratons. An area of thinner-than-normal MTZ is found at the SW corner of the study area. 

This anomaly, if confirmed by future studies, could suggest significant transferring of 

heat from the lower to the upper mantle. 

1. Introduction 

The mechanisms controlling the initiation and development of continental rifting 

can be generally categorized into active and passive processes, wherein the principle 

distinction depends upon the driving forces that promote lithospheric extension (Sengor 

and Burke, 1978). Active rifting is broadly induced by a hot, actively upwelling 

asthenosphere followed by extensive magmatic diking and regional uplift, while passive 

rifting demonstrates crustal extension ambiguously accompanied by volcanism or uplift, 

and is commonly caused by far-field plate driving forces (Sengor and Burke, 1978; White 

and McKenzie, 1989). Observations on the state of rifting and the geodynamic controls 

governing their evolution were primarily obtained, however, from relatively mature rift 

zones such as the Main Ethiopian and Kenyan Rifts of the northernmost East African Rift 

System (EARS). Meanwhile, the characterization of the initiation and early-stage 

evolution of continental rifting, exemplified by the southern and southwestern EARS rift 
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segments such as the Malawi (Ebinger et al., 1984) and Okavango rift zones, is largely 

underdeveloped. 

 
Figure 1. A topographic relief map of the study area showing the SAFARI (red triangles) 

and SASE (white triangles) seismic stations used in the study. Crosses are ray-piercing 

points above the depth of 535 km. Red lines show active faults (Kinabo et al., 2008) and 

yellow lines delineate boundaries of major tectonic units modified from Hanson (2003) 

and McCourt et al. (2013). CC: Congo Craton, DB: Damara Belt, KC: Kaapvaal Craton, 

LP: Limpopo Belt, MB: Magondi Belt, ORZ: Okavango Rift Zone, RP: Rehoboth 

Province, ZC: Zimbabwe Craton. The fan-shaped area is the Okavango Delta. The inset is 

an azimuthal equidistant projection map centered at the study area, showing the 

distribution of earthquakes (red dots) used for the receiver function study.  

The Okavango Rift Zone (ORZ), located in northern Botswana, is believed to be 

an incipient rift at the terminus of the southwestern branch of the EARS (Reeves, 1972; 

Modisi et al., 2000). The ORZ is mainly situated within the Neoproterozoic Damara belt 
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and the reworked Paleo-Mesoproterozoic crust of the Rehoboth Province, and develops 

as a transition zone between the Neoproterozoic Congo Craton to the northwest and the 

composite Archean Kalahari Craton (which, in the study area, includes the Kaapvaal and 

Zimbabwe cratons and the Limpopo belt) to the east-southeast (Hanson, 2003; Kinabo et 

al., 2008; Begg et al., 2009) (Figure 1). The Damara Belt is a Pan-African suture formed 

during East and West Gondwanaland collision, or is a collapsed intracontinental basin 

(Stern, 1994). It is a major zone of lithospheric weakness in southern Africa, extending 

from Namibia on the southwestern African coast northeastward into Zambia (Begg et al., 

2009). 

Surface geological observations and crustal geophysical studies indicate that the 

ORZ is in its earliest recognizable stage of development, with initiation of rifting 

estimated to be between 40 and 27 ka (Modisi et al., 2000; Kinabo et al., 2008; 

Miensopust et al., 2011; Bufford et al., 2012). Due to a complete paucity of broadband 

seismic stations in the vicinity of the ORZ, the structure and thermal state of the upper 

mantle and the mantle transition zone (MTZ) have not been investigated with sufficient 

spatial resolution beneath the incipient rift. 

Numerous previous studies suggest that the MTZ, which is confined by seismic 

discontinuities at approximate depths of 410 km and 660 km (hereafter referred to as 

d410 and d660, respectively), is sensitive to variations in mantle composition and 

temperature in the vicinity of the discontinuities. Relatively colder and warmer regions 

are expected to have thicker and thinner MTZ, respectively, due to their characteristic 

Clapeyron slopes (positive for d410 and negative for d660) (Bina and Helffrich, 1994). 

The presence of water in the MTZ can have the same effect as decreasing temperature 
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and will subsequently thicken the MTZ (Litasov et al., 2005). Hence, variations in MTZ 

thickness and depths of the MTZ discontinuities can behave as a proxy with which to 

detect the existence of thermal anomalies and help distinguish the mode of rifting. Such a 

tool has been applied to other regions of continental rifting. For instance, the Baikal rift 

was found to have a cold MTZ based on an observed uplifted d410 (Liu and Gao, 2006), 

and studies in the Rio Grande rift suggested the lack of a large-scale thermal anomaly in 

the MTZ (Wilson et al., 2005; Gao and Liu, 2014a). Beneath the Kenya and Tanzania 

segments of the EARS, receiver function (RF) studies revealed a thin MTZ, which was 

interpreted to be associated with the African superplume (Huerta et al., 2009; Mulibo and 

Nyblade, 2013). In contrast, beneath southern Africa, Gao et al. (2002) observed a normal 

MTZ thickness and concluded that the African Superplume, if it exists, is constrained in 

the lower mantle beneath the study area. This conclusion is supported by the seismic 

tomography study of James et al. (2001). The present study represents the first 

seismological investigations of the upper mantle and mantle transition zone beneath the 

ORZ using broadband seismic data recorded in the vicinity of the rift.  

2. Data and Methods 

In the summer of 2012, a total of 17 broadband seismic stations were deployed in 

northern and central Botswana along a NW-SE profile with an average station spacing of 

72±34 kilometers (Figure 1), as part of the Seismic Arrays for African Rift Initiation 

(SAFARI) project (Gao et al., 2013; Yu et al., 2013). The 17 SAFARI broadband stations, 

which were equipped with Quanterra Q330 digitizers and Guralp CMG-3T 120 s sensors, 

recorded continuously with a sampling rate of 50 Hz until the summer of 2014. 
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Additionally, data from 5 broad-band seismic stations from the 1997-99 Southern African 

Seismic Experiment (SASE) (Gao et al., 2002) are used to enhance coverage and 

resolution of our data set (Figure 1). Data from events in the epicentral distance range of 

30 to 100∘ are selected with a cut-off magnitude of 𝑀𝑐  as defined by 𝑀𝑐 = 5.2 +

∆−30.0

180.0−30.0
− 𝐷/700.0, where ∆ is the epicentral distance in degree and 𝐷  is the focal 

depth in km (Liu and Gao, 2010). Such an empirical formula was designed to balance the 

quantity and quality of the data to be processed.  

2.1 Receiver Function Stacking 

The original seismograms are windowed 20 s before and 260 s after the first P 

arrival and are bandpass filtered with a four-pole, two-pass filter in the frequency range 

of 0.02-0.2 Hz. The filtered seismograms with signal-to-noise ratios (SNR) exceeding 4 

on the vertical component are converted into radial RFs using the procedure of Ammon 

(1991). A set of exponential functions are adopted to minimize the degenerating effects 

of the PP arrivals on the RFs (Gao and Liu, 2014b). The resulting RFs are subsequently 

subjected to a SNR-based procedure to select the high quality RFs (see Gao and Liu, 

2014a for more information about the specific definition of the SNR and details of the 

procedure). A total of 1064 high-quality RFs from 22 seismic stations and 159 

teleseismic events are obtained (Figure 1).  

The geographic coordinates of the ray-piercing points for each of the selected RFs 

are computed at approximately the middle of the MTZ (535 km) using the IASP91 Earth 

model. Based on the locations of the ray-piercing points, we group the RFs into circles 

with a radius of 1∘. The circles are aligned along the latitudinal and longitudinal lines 

with a separation of one geographic degree between adjacent circles. The RFs in a given 
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circle are then moveout corrected and stacked for the depth range of 350-700 km with a 

vertical resolution of 1 km, under a non-plane wave assumption (Gao and Liu, 2014b). 

Because a 1-D Earth model is used for the migration and stacking of the RFs, the 

observed MTZ discontinuity depths are apparent rather than true depths. The stacked 

depth series are visually checked to ensure quality. A bootstrap resampling approach with 

50 resampling iterations (Efron and Tibshirani, 1986) is applied to obtain the mean and 

standard deviation (SD) of the MTZ discontinuity depths (Liu et al., 2003).  

 
Figure 2. Example depth series from stacking of RFs in radius=1∘ circles along E-W (left) 

and N-S (right) profiles (see Figure 4a for locations). The thick red lines show the mean 

depth series averaged over all the 50 bootstrap iterations, and the bordering thin black 

lines show the mean ± the standard deviation. The circles with error bars are the average 

depths of the d410 and d660. The number on the top of each trace represents the number 

of RFs in the circle.  
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Figure 2 shows examples of resulting depth series along two profiles. Note that 

the existence of lateral variations in the velocity structure can reduce the stacking 

amplitude and broaden the peak at the estimated MTZ discontinuity depths (Mohamed et 

al., 2014). In addition, the stacking results near the edges of the study area are not as 

reliable as those in the interior due to the lower number of RFs.  

2.2 Travel-Time Residuals 

Both thermal anomalies in the vicinity of and velocity undulations above the MTZ 

discontinuities can lead to observed variations in the depths of the discontinuities. In 

order to provide constraints on the interpretation of the resulting MTZ discontinuity 

depths, we also measured P- and S-wave travel-time residuals. P- and S-wave arrivals 

relative to the IASP91 Earth model are manually picked on the vertical and transverse 

components, respectively, and the mean residual from the event is removed to obtain 

relative travel-time residuals. Events recorded by less than 5 stations are not used.  

We use the following equation to correct for travel-times due to variations in 

station elevation  

 𝛿𝑡𝑖𝑗
𝑐 = 𝛿𝑡𝑖𝑗 −

ℎ𝑖

𝑣×𝑐𝑜𝑠 (𝑎𝑠𝑖𝑛(𝑅𝑖𝑗×𝑣))
                                           (1) 

where ℎ𝑖  is the elevation (in km) for the 𝑖 th station, 𝛿𝑡𝑖𝑗  is the original residual (in 

seconds) observed at the 𝑖th station from the 𝑗th event, 𝑅𝑖𝑗 is the ray parameter (in s/km), 

and 𝑣 is the average velocity (in km/s) in the layer above sea-level. In this study we use 

5.5 km/s for P-wave, and 5.5/√3 km/s for S-wave velocities.  
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3. Results 

3.1 Apparent Discontinuity Depths and MTZ Thickness 

A total of 53 circles with clearly observable d410 or d660 arrivals are obtained 

from our data set. Amongst these circles, 53 of them possess identifiable d410 arrivals 

and 50 have reliable d660 arrivals. All of the 53 depth series plotted along 9 latitudinal 

lines (from 16∘S to 24∘S with an increment of 1∘) are shown in Figure 3. To produce 

spatially continuous images for the observed depths and MTZ thickness, we fit the 

observations using a continuous curvature surface gridding algorithm, with a tension 

factor of 0.5 (Smith and Wessel, 1990) (Figure 4). For the majority of the study area, the 

SD of the resulting MTZ thickness is less than 5 km (Figure 4d).  

The mean apparent depth of d410 for the entire study area is 398±6 km, that of 

d660 is 646±7 km, and the average MTZ thickness is 248±6 km which is almost identical 

to the normal thickness of 250 km in the IASP91 Earth model. The apparent depths of 

both d410 and d660 decrease systematically toward the southeast, from approximately 

410 km and 660 km beneath the NW end to 395 km and 645 km near the SE extreme of 

the study area (Figure 4). The depths beneath the former area (Congo Craton) are 

identical to those in the IASP91 Earth model, and those beneath the latter (Kalahari 

Craton in southern Botswana) are about 15 km shallower, an observation that is 

consistent with the study of Gao et al. (2002) for southern Botswana.  
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Figure 3.. Same as the previous figure but for all the 9 latitudinal profiles. 

The results show that, relative to the immediate adjacent areas, the ORZ displays 

no observable anomalies in either the apparent depths of the discontinuities or the 

resulting MTZ thickness. An area of anomalously thin MTZ is observed on the SW 

corner of the study area, approximately centered at (22∘E, 22∘S). The anomaly is caused 

by both a depressed d410 and an uplifted d660, relative to the immediate surrounding 
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areas (Figure 2). This anomaly, if confirmed, could suggest significant transferring of 

heat from the lower to the upper mantle beneath western Botswana. Unfortunately, this 

area is located on the edge of the region sampled by a limited number of RFs (Figure 1). 

Obviously, additional broadband stations need to be deployed in western Botswana and 

perhaps eastern Namibia in order to test the existence of such a potentially important 

feature, which, if confirmed, could have important implications about heat transfer from 

the lower to the upper mantle. Such a transfer might be related to the African superplume, 

which is thought to be confined in the lower mantle beneath southern Africa (James et al., 

2001; Gao et al., 2002).  

3.2 Body-Wave Travel-Time Residuals 

We have hand-picked 1832 P- and 1356 S-wave residuals from 172 teleseismic 

events. The residuals are displayed using different approaches. In Figures 5a and 5b, 

station averages with standard deviations are displayed along a profile orthogonal to the 

strike of the ORZ. Such an approach implies that the anomalies in the residuals originate 

near the surface, which is unlikely. To more reasonably represent the observations, the 

residuals from individual station-event pairs are displayed at the ray-piercing point at the 

depth of 100 km, which is approximately the center of the lithosphere in the study area 

(Muller et al., 2009). The residuals are then projected to a NW-SE oriented profile 

(Figures 5a and 5b), and are also plotted as images (Figures 5c and 5d).  

Both the P- and S-wave travel-time residuals decrease toward the SE. The 

spatially-averaged residuals have a peak-to-peak magnitude of about 0.6 s for P- and 1.8 s 

for S-waves (Figure 5). The SE boundary of the ORZ marks the NW end of a linear 

increase of the travel-time residuals (especially for S-waves). Nevertheless, significant 
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travel-time delays are not observed in the ORZ, which is in sharp contrast with other 

continental rift zones. For instance, across the Baikal rift zone, which was similarly 

developed along the edge of a stable craton (the Siberia Craton), a P-wave travel-time 

delay as large as 1 s relative to surrounding areas was observed (Gao et al., 2003).  

 
Figure 4. (a) Smoothed spatial distribution of resulting d410 depth; (b) Same as (a) but 

for d660; (c) MTZ thickness; and (d) Standard deviations of the MTZ thickness 

measurements. Circles indicate the center of circular areas with high-quality 

measurements. Note that in (a)-(c), only measurements that are 5 or more km different 

from the corresponding global average are colored. Profiles A-A' and B-B' in (a) indicate 

the location of the cross-sections shown in Figure 2.  
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Figure 5. Teleseismic P- and S-wave travel-time residuals displayed above the ray-

piercing points at 100 km depth. (a) P-wave residuals projected on to the profile shown in 

(c). Dots are individual event values, and circles with error bars are station-averaged 

values. (b) Same as (a) but for S-wave residuals. (c) Spatial distribution of P-wave 

residuals. (d) Spatial distribution of S-wave residuals. 

4. Discussion 

4.1 Causes of the Apparent MTZ Depth Variations 

To the first-order, the apparent depths of the d410 and d660 (Figure 4) as well as 

the P- and S-wave travel-time residuals (Figure 5) decrease from the Congo to the 
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Kalahari cratons. The fact that the MTZ thickness remains the same throughout most of 

the study area suggests that the apparent variations of the observed depths are mainly 

caused by lateral velocity variations in the upper mantle, probably by variations in the 

thickness of the lithosphere. In the following we attempt to test this hypothesis by using 

the observations obtained in this study and lithospheric thickness estimated from previous 

studies (James et al., 2001; Muller et al., 2009).  

As discussed above, relative to the Congo craton, both the d410 and d660 beneath 

the Kalahari Craton are uplifted by about 15 km. Under the assumption that this apparent 

uplift is purely caused by velocity anomalies, we estimate that a 15 km uplift corresponds 

to a Vp anomaly of +1.2% in the depth range of 0-410 km using the approach of Gao and 

Liu (2014b). If the anomalous zone is limited in a 100 km thick layer, the required 

anomaly is about 5%, and this value reduces to about 3% if the thickness is 150 km. In 

addition, the velocity anomalies resulting in a 15 km apparent uplift of both the d410 and 

d660 can produce a P-wave travel-time residual of about -0.6 s, which is almost exactly 

what was observed (Figure 5). To estimate the predicted S-wave travel-time residual 

using the apparent depression of the discontinuities, the 𝛾  value, which is the ratio 

between S- and P-wave relative velocity anomalies, i.e., 𝛾 = 𝑑𝑙𝑛(𝑉𝑆)/𝑑𝑙𝑛(𝑉𝑃) , is 

required. Under the assumption of 𝛾 = 1.7 which is the same as that found for the stable 

central and eastern United States (Gao and Liu, 2014a), the predicted S-wave travel-time 

residual is -1.8 s which is once again consistent with the observed value (Figure 5).  

We next explore the possibility that the observed velocity anomalies originate 

from lateral variations of lithospheric thickness beneath the study area. Seismic 

tomography studies indicated that the Kalahari cratonic root extends to at least 250 km 
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and perhaps as deep as 300 km (James et al., 2001). On the other hand, Muller et al. 

(2009) found that the lithospheric thickness in the vicinity of the Damara belt in the ORZ 

to be approximately 160 km. These studies suggest that beneath the Kalahari Craton, the 

lithosphere is approximately 100-150 km thicker than that beneath the northwestern part 

of the study area. If we assume that this 100-150 km excessive lithospheric thickness is 

solely responsible for the observed 15 km apparent uplift of the MTZ discontinuities and 

variations in travel-time residuals, the required P-wave velocity contrast is 3-5% between 

the lithosphere and the asthenosphere. Velocity contrasts of similar magnitude are 

commonly found in numerous previous seismic tomography and receiver function studies 

(e.g., Gao et al., 2003; Rychert et al., 2007).  

4.2 Implications for Rifting Mechanisms 

The observed normal MTZ thickness, lack of significant travel-time residuals, and 

absence of elevated mantle conductivity (Khoza et al., 2013) associated with the incipient 

ORZ suggest the absence of high-temperature anomalies in both the MTZ and the upper 

mantle, ruling out contributions of one or more mantle plumes in rift initiation and 

favoring a “passive” origin.  

A recent geodetic study (Malservisi et al., 2013) suggested that with respect to the 

African continent, the rigid South African block rotates clockwise, probably along the 

Damara belt. Such differential movements between relatively rigid tectonic blocks can 

rupture the pre-existing weak zones along edges of the blocks. The fractures can then 

propagate downward through the lithosphere without mantle upwelling anomalies, and 

rifting processes continue as long as the regional dominant stresses are extensional. A 

likely environment for reactivation of shear zones adjacent to the ORZ is the 
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transcontinental Mwembeshi dislocation zone which experiences left-lateral transtension 

as the consequence of differential extension between Nubia and Somalia (Daly et al., 

1989). The Mwembeshi shear zone, which intersects the Luangwa and Malawi rift zones 

farther to the northeast of the ORZ, has been suggested to exert geometrical control on 

rift basin development within the EARS (Versfelt and Rosendahl, 1989). Similar 

lithospheric-scale Proterozoic suture shear zones have been cited as a possible origin for 

the Kenya Rift (Birt et al., 1997). Differential movements between tectonic blocks in a 

relatively stable tectonic plate can originate from many factors, such as differences in the 

direction and/or strength of mantle flow (either as driving or resistant forces), uneven 

distribution of ridge push and slab pull forces across the plate, spatially varying far-field 

stress from continental collision, and non-uniform influence of mantle upwelling or down 

welling (Doglioni, 1993). We speculate that for the ORZ, variations of lithospheric 

thickness combined with the presence of previously ruptured lithosphere give rise to one 

or more of the above heterogeneities, leading to rift initiation. This model could explain 

why most of the world's continental rifts developed along the edges of cratonic blocks, 

where rapid changes of lithospheric thickness are commonly found (Keller et al., 1991).  

5. Conclusion 

This first receiver function study of mantle transition zone discontinuities even 

conducted in the vicinity of the incipient ORZ reveals a normal MTZ temperature 

beneath most of the study area. The apparently shallower-than-normal MTZ 

discontinuities observed beneath the Kalahari Craton can be explained by the existence of 

a lithosphere that is 100-150 km thicker than that beneath the Congo Craton and the 



 

 

19 

Damara belt. In addition, the ORZ is not associated with significant delays in teleseismic 

P- and S-wave travel-time residuals, implying the absence of significant mantle 

anomalies beneath the ORZ. These observations are inconsistent with the existence of 

mantle plumes or a broadly upwarped asthenosphere beneath the study area. Instead, they 

provide unprecedented supporting evidence for a model of rift initiation involving 

lithospheric fracturing due to differential movements between tectonic blocks along pre-

existing zones of weakness such as edges of cratonic blocks.  
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II. SEISMIC ANISOTROPY BENEATH THE INCIPIENT OKAVANGO 

RIFT: IMPLICATIONS FOR RIFTING INITIATION 

Abstract 

This study represents the first shear-wave splitting investigation of the Okavango 

rift zone (ORZ), an incipient continental rift belonging to the East African rift system in 

northern Botswana. Analysis of broadband seismic data recorded along a 750 km long 

profile of 22 stations traversing the ORZ and adjacent Congo and Kalahari cratons and 

several Precambrian orogenic zones reveals dominantly NE-SW fast orientations, which 

are parallel to both the absolute plate motion direction (based on the NUVEL-1A model) 

and the trend of most tectonic boundaries, including that of the ORZ. Spatial coherence 

analysis of the splitting parameters and correspondence between the observed fast 

orientations and the trend of tectonic features indicate that the main source of observed 

anisotropy is most likely in the upper asthenosphere, probably due to simple shear 

associated with the relative movement of the lithosphere against the asthenosphere. The 

presence of consistently rift-parallel fast orientations and normal splitting times in the 

ORZ and most parts of southern Africa implies that neither an upper mantle plume nor 

small-scale convection is the dominant source for rift initiation and development. Our 

preferred model of continental rupture involves intra-plate relative movement of 

continental blocks along zones of weakness produced by ancient tectonic events. 

1. Introduction 

Continental rifting constitutes the transition from stable continental lithosphere 

into an ocean basin. Numerous studies suggested that continental rifting is either induced 
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by active mantle upwelling associated with deep mantle plumes (active rifting), or by 

horizontal motion of plates and their interaction along plate boundaries (passive rifting; 

Sengor and Burke, 1978; Hill, 1991). These contrasting models of continental rupture are 

primarily assembled from observations of mature rift zones. In contrast, knowledge of 

rifting mechanisms and the associated characteristic lithospheric and asthenospheric 

structure and dynamics beneath incipient rift zones, such as the Okavango rift zone (ORZ) 

in northern Botswana, is severely limited. 

The ORZ (Fig. 1) is one of the youngest continental rifts in the world with an 

estimated initiation of surface rupture between 120 and 40 ka (Kinabo et al., 2008; 

Leseane et al., 2015) and thus is an ideal locale to study the characteristics of earliest-

stage rifting mechanisms. Situated at the southwestern terminal of the East African rift 

system (EARS), the ORZ is superimposed upon the Neoproterozoic Damara and 

Rehoboth orogenic belts (McCourt et al., 2013), which are bounded toward the northwest 

and southeast by the Congo and Kalahari cratons, respectively (Begg et al., 2009). The 

latter is a composite terrane composed largely of the Archean Kaapvaal and Zimbabwe 

cratons and the Archean Limpopo belt. It is encircled by the Paleo- to Mesoproterozoic 

Namaqua-Natal belt to the south and the Paleoproterozoic Magondi belt and Rehoboth 

province toward the west (McCourt et al., 2013) (Fig. 1). 

While the crustal and mantle structure and dynamics of the Kalahari craton and 

the mature sections of the EARS have been extensively studied through numerous 

projects over the past 40 years, the ORZ has not been investigated using robust structural 

seismological techniques. One such technique is shear-wave splitting (SWS) analysis. It 

has long been recognized that near-vertically incident shear waves propagating in a 
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transversely isotropic medium split into two waves with orthogonal polarization 

orientations (Crampin, 1981). SWS analysis is commonly employed to quantify in-situ 

lithospheric and asthenospheric seismic anisotropy (e.g., Silver and Chan, 1991). It uses 

P-to-S converted phases at the core-mantle boundary, including PKS, SKKS, and SKS 

(which are collectively called XKS), to obtain the two splitting parameters, including the 

polarization orientation of the fast component (fast orientation or θ), and the splitting 

time between the fast and slow components (splitting time or δt). The former is an 

indicator of the orientation of the anisotropic structure, and the latter measures the 

strength of anisotropy integrated over the whole raypath from the core-mantle boundary 

to the recording station. 

Seismological and petrophysical studies (e.g., Silver, 1996; Gung et al., 2003) 

have indicated that the dominant contribution to splitting parameters lies primarily within 

the upper mantle. Several mechanisms have been postulated to produce observed 

tectonic-scale observable anisotropy. Based upon the strong correlation between splitting 

parameters and surficial geologic features, seismic anisotropy has been proposed to exist 

in the lithosphere due to fabrics generated by vertically-coherent lithospheric deformation 

(Silver, 1996; Silver et al., 2001), or lithosphere-scale magmatic dikes (Gao et al., 1997; 

Kendall et al., 2006). Alternatively, seismic anisotropy may be induced by present-day 

upper-mantle flow either as a consequence of simple shear between the rigid lithosphere 

and mobile asthenosphere, which in turn would produce anisotropy parallel to the 

absolute plate motion (APM), if the direction of the shear is the same as the APM 

direction (e.g., Vinnik et al., 1996; Barruol and Ismail, 2001; Gao et al., 2010; Lemnifi et 

al., 2015), or by small-scale mantle convection (e.g., Gao et al., 1994; Koch et al., 2012). 
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Figure 1. A topographic map of southern Africa showing the major tectonic provinces 

and station-averaged shear wave splitting measurements from this (blue dots and red bars) 

and previous (black triangles and bars) studies (Vinnik et al., 1996; Barruol and Ismail, 

2001; Silver et al., 2001). Black circles represent null measurements. The Okavango rift 

zone is highlighted by the grey infilled area. Green arrows represent the APM direction 

based on the NUVEL-1A model (DeMets et al., 1994). Major tectonic boundaries are 

plotted as white lines modified from McCourt et al. (2013). LB: Limpopo belt. Note that 

the Kaapvaal and Zimbabwe cratons and the Limpopo belt are components of the 

Kalahari craton. The inset shows the location of southern Africa indicated by the red 

rectangle and the blue lines represent the rift axes of the East African rift system. 

SWS studies have been widely conducted in numerous regions of continental 

rifting affinities. Consistently rift-parallel fast orientations and splitting times 

substantially larger than the global average of 1.0 s (Silver, 1996) were obtained for the 

Afar and Main Ethiopian (Gashawbeza et al., 2004; Kendall et al., 2006; Gao et al., 2010), 
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eastern African (Bagley and Nyblade, 2013), Rio Grande (Sandvol et al., 1992; Liu et al., 

2009, 2014; Refayee et al., 2014; Yang et al., 2014), and Baikal (Gao et al., 1997) rifts. 

Such rift-parallel anisotropy has been attributed to a number of mechanisms, including 

rift-parallel mantle flow (Sandvol et al., 1992; Gao et al., 2010; Bagley and Nyblade, 

2013), lithospheric fabrics formed by past tectonic events (Gashawbeza et al., 2004), and 

rift-parallel lithospheric dikes (Gao et al., 1997; Kendall et al., 2006). Rift-orthogonal 

anisotropy observed in the flanking area of the Baikal rift was hypothesized as reflecting 

the horizontal branches of a small-scale mantle convection system (Gao et al., 1994; 

1997). 

In general, most modern continental rift zones are associated with rift-parallel fast 

orientations. Major exceptions to this observation include the Baikal rift zone and the Red 

Sea which has partially transitioned into an oceanic spreading center. Recent SWS 

studies (Elsheikh et al., 2014; Lemnifi et al., 2015) in northern Africa and Arabia 

revealed N-S fast orientations on both sides of the Red Sea, which has a nearly NW-SE 

strike. Such N-S orientated anisotropy observed in northern Africa and Arabia was 

proposed to be the result of simple shear developed in the boundary layer between the 

lithosphere and the asthenosphere formed by long-term northward motion of the African 

plate relative to the asthenosphere (Elsheikh et al., 2014; Lemnifi et al., 2015). 

Splitting measurements are absent in the vicinity of the ORZ due to the heretofore 

paucity of broadband seismic data. Previous measurements in southern Africa were 

concentrated on the Kaapvaal and Zimbabwe cratons and the Limpopo belt (Fig. 1). An 

investigation by Vinnik et al. (1996) at 7 stations on the Kaapvaal craton revealed NE-

SW oriented fast orientations, which are parallel to the APM direction of Africa since 
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Jurassic computed based on the NUVEL-1A model (DeMets et al., 1994), and were 

therefore interpreted to be the result of APM induced asthenospheric flow. Subsequently, 

Silver et al. (2001) used a much larger data set recorded at 79 sites in southern Africa and 

proposed that the observed anisotropy is the result of vertically-coherent lithospheric 

deformation. Surface-wave studies beneath southern Africa suggested that azimuthal 

anisotropy varies with depth, implying the presence of anisotropy both in the lithosphere 

and asthenosphere (Adam and Lebedev, 2012). 

This study is part of a multi-disciplinary investigation of the incipient segments of 

the EARS (Gao et al., 2013). Our main objective is to present results from the first 

examination of mantle anisotropy using SWS in the vicinity of the ORZ in order to 

provide constraints on models of rift initiation and anisotropy formation. In doing so, we 

explore possible relationships between the observed anisotropy with predicted directions 

of rifting-related mantle flow, the direction of present-day plate motion, and the dominant 

trend of Precambrian tectonic boundaries. 

2. Data and Methods 

The broadband seismic data used in the study were recorded by 17 Seismic 

Arrays for African Rift Initiation (SAFARI) stations that we installed and operated for a 

two-year period starting from the summer of 2012 (Gao et al., 2013). Data recorded by 

five stations belonging to the 1997-99 Southern African Seismic Experiment (SASE; 

Silver et al., 2001) situated immediately within our study area are also used. One of the 

SAFARI stations, B1665, is located about 1 km away from SASE station SA65 (Fig. 2). 

The total length of the profile is about 750 km (Figs. 1 and 2). XKS waveforms were 
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requested from the Incorporated Research Institutions for Seismology (IRIS) Data 

Management Center (DMC). The epicentral distance range for PKS, SKKS, and SKS is 

120-180∘, 95-180∘ and 84-180∘, respectively (Liu and Gao, 2013). We apply a cutoff 

magnitude of 5.6 for events shallower than 100 km while allow for magnitudes from 

deeper events as low as 5.5 for the purpose of taking advantage of sharper waveforms. 

To identify and correct for possible sensor misorientation, we apply the technique 

developed by Niu and Li (2011) to minimize the P-wave energy on the transverse 

component. We begin by manually picking the first arrival of the direct P-phase on the 

vertical component for events recorded by no fewer than 5 stations. The optimal 

orientation of the N-S component corresponding to the minimum P-wave energy on the 

transverse component is found using a grid-search algorithm, and is subsequently used to 

correct for station orientation prior to SWS analysis. 

SWS parameters were calculated using the procedure of Liu and Gao (2013) 

which was based on the method of minimization of transverse energy (Silver and Chan, 

1991). The seismograms were first windowed to include the theoretical arrival of the 

individual XKS phases and then enhanced by applying a band-pass filter with corner 

frequencies of 0.04-0.5 Hz. All the SWS measurements were visually verified and, if 

necessary, various adjustments were applied to the beginning and end times of the XKS 

window, quality ranking, and/or band-pass filtering frequencies to ensure reliability (Liu 

and Gao, 2013). 

Following the evaluation criteria of Liu et al. (2008), we ranked well-defined 

splitting measurements as either A (outstanding) or B (good) for use in the following 

SWS analyses. We also analyzed the data set for null measurements, which are 
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characterized by a lack of observable energy on the transverse component concurrent 

with a strong XKS arrival on the radial component. Situations wherein the backazimuth 

(BAZ) is parallel or perpendicular to the fast orientation, or the sub-station crust and 

mantle are isotropic, can all result in null measurements (Silver and Chan, 1991; Liu and 

Gao, 2013). As shown in Fig. 2, well-defined splitting parameters were observed at all 

stations in the study area, suggesting the existence of pervasive anisotropy. Consequently, 

null measurements will not be discussed below. 

3. Results 

3.1 Sensor orientation correction 

Table 1 shows the optimal orientation of the N-S component of the 3-component 

sensor for each of the 22 stations. The magnitude of the orientation ranges from -16 to 5∘ 

clockwise from the north, with a simple mean of -3±1∘. The overwhelmingly negative 

values of the resulting orientation were most likely the consequences of inadequate 

correction of the declination of the geomagnetic field, which is about -9∘ in the study area. 

After the application of station orientation correction, the quality of the resulting 

SWS measurements at stations with misoriented sensors is noticeably improved. Fig. 3 

shows an example of the improvement for station B07DX. When the uncorrected data are 

used for SWS analysis, remaining XKS energy on the corrected transverse seismogram is 

observable, and the match between the fast and slow components is poor and is 

accompanied by weak linearity of the corrected particle motion (Fig. 3a). All of these 

features are indicators of sensor misorientation, as discussed in Liu et al. (2008). The post 

orientation correction measurement is substantially improved in terms of the removal of 
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transverse energy, the matching of the fast and slow waveforms, and the linearity of the 

particle motions (Fig. 3b). 

Table 1. Resulting orientation of the N-S component 

Station AZ No. 

Name Lat. Lon. 

  

 

deg. deg. deg. events 

B01KR -22.238 26.718 -1 102 

B02LT -21.393 25.581 2 125 

B03SL -21.121 24.764 -6 135 

B04KH -20.474 24.514 -2 125 

B05MO -20.218 24.132 -6 131 

B06OR -19.901 23.527 -10 155 

B07DX -20.549 22.749 -11 115 

B08TS -20.164 22.459 0 84 

B09NK -19.663 22.194 -16 114 

B10PP -18.913 22.543 5 118 

B11ET -19.016 22.316 -1 112 

B12SS -18.746 22.197 3 108 

B13NX -18.579 21.994 4 100 

B14MH -18.295 21.792 -4 117 

B15MW -19.631 23.827 -9 97 

B1665 -22.825 27.229 -4 130 

B17CI -19.294 22.909 -13 50 

SA64 -22.969 26.202 3 34 

SA65 -22.818 27.222 2 39 

SA66 -21.900 26.373 -3 38 

SA67 -21.886 27.274 -1 35 

SA70 -21.088 26.335 -4 41 
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Figure 2. Cross-section and map views of the resulting splitting parameters. (a) Fast 

orientations projected to the thick dashed profile in (c). Blue bars represent the station-

averaged values of the fast orientation while the red bars indicate each individual 

measurement. RP: Rehoboth province; MB: Magondi belt. (b) Same as (a) but for 

splitting times. (c) Individual splitting parameters (red) plotted at the 200 km depth ray-

piercing points, and station-averaged parameters (blue) plotted at the location of the 

stations. Grey lines delineate the tectonic provinces, and thin dashed lines within the 

ORZ area show active faults (Kinabo et al., 2008). SAFARI stations are shown as blue 

dots and SASE ones as black triangles. The inset in the upper-right corner displays the 

location of the study area while the one in the lower-left corner shows the distribution of 

earthquakes (red circles) used in the study. The green star near the SE border of the ORZ 

marks origin point (zero distance) in (a) and (b). 
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Figure 3. An SKKS measurement from station B07DX (at which the N-S component has 

an orientation of -11∘) calculated using (A) the original and (B) station-orientation 

corrected dataset, respectively. (Top) Original and corrected XKS radial and transverse 

component seismograms. (Middle) Pre- and post-correction fast and slow waveforms and 

particle motion patterns. (Bottom) Contour maps of transverse component energy. The 

red dot on the contour map indicates the optimal splitting parameters. 
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3.2 Spatial distribution of XKS splitting parameters 

A total of 223 pairs of Quality A or B splitting parameters were obtained at the 22 

stations, including 73 PKS, 58 SKKS, and 92 SKS measurements from a total of 91 

teleseismic events (Fig. 2c). Examples for each of the three XKS phases are demonstrated 

in Fig. 4. No systematic azimuthal variations of the splitting parameters are observed (Fig. 

5), suggesting that a single layer of anisotropy with a horizontal axis of symmetry is 

sufficient to explain the observed SWS parameters (Silver and Savage, 1994). The fast 

orientations are dominantly NE-SW with an average value of 37.5±20.6∘ (Figs. 1 and 2, 

Table 2), which is consistent with the APM direction of the African plate in the study 

area based on the NUVEL-1A model (DeMets et al., 1994). The mean splitting time is 

1.09±0.34 s and is comparable with the global average of 1.0 s for continents (Silver, 

1996), but is larger than the 0.62±0.02 s observed at the 59 non-null SASE stations 

(Silver et al., 2001). Under the assumption of a 4% anisotropy (Mainprice et al., 2000), 

the thickness of the anisotropy layer that produces the observed anisotropy is about 120 

km on average. 

Based on the location of the tectonic boundaries (Begg et al., 2009; McCourt et al., 

2013) and the characteristics of the observed splitting parameters, we divide the 

measurements into 4 groups (Fig. 2a). The 8 measurements in Area A (Figs. 5a and 5b) 

have the surface projection of their ray-piercing points (calculated at the depth of 200 km) 

on the Congo craton. The mean splitting parameters are 51.4±26.1∘ for θ, and 1.05±0.30 s 

for δt. The 47 Area B measurements are in the ORZ, with corresponding mean splitting 

parameters of 30.5±19.4∘ and 1.13±0.30 s (Figs. 5c and 5d). Area C includes 86 

measurements in the Magondi belt and the southern half of the Rehoboth Province (Figs. 
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5e and 5f). The mean splitting parameters are 27.5±17.4∘ and 1.12±0.39 s. The most 

significant spatial variation of the splitting parameters in the entire study is found near the 

SE end of Area C (Fig. 2a). Area D belongs to the Kalahari craton (mostly the Limpopo 

belt). It has 82 measurements (Figs. 5g and 5h) and the mean splitting parameters are 

50.78±15.3∘ and 1.03±0.41 s. 

Table 2. Station-averaged splitting parameters 

Station θ δt No. 

Name Lat. Lon. 

       

 

deg. deg. deg. s events 

B01KR -22.238 26.718 42 ± 14 1.13 ± 0.4 15 

B02LT -21.393 25.581 52 ± 11 1.06 ± 0.2 19 

B03SL -21.121 24.764 22 ± 14 1.04 ± 0.3 21 

B04KH -20.474 24.514 20 ± 10 1.31 ± 0.5 31 

B05MO -20.218 24.132 22 ± 14 0.87 ± 0.3 16 

B06OR -19.901 23.527 37 ± 14 1.19 ± 0.3 15 

B07DX -20.549 22.749 55 ± 14 1.09 ± 0.3 8 

B08TS -20.164 22.459 57 ± 13 1.34 ± 0.3 7 

B09NK -19.663 22.194 30 ± 9 1.15 ± 0.3 3 

B10PP -18.913 22.543 24 ± 12 1.19 ± 0.4 11 

B11ET -19.016 22.316 17 ± 15 0.94 ± 0.2 4 

B12SS -18.746 22.197 78 ± 8 0.99 ± 0.4 4 

B13NX -18.579 21.994 44 ± 18 1 ± 0.6 3 

B14MH -18.295 21.792 15 ± 15 0.65 ± 0.2 1 

B15MW -19.631 23.827 26 ± 15 1.11 ± 0.2 11 

B1665 -22.825 27.229 51 ± 22 0.73 ± 0.3 7 

B17CI -19.294 22.909 22 ± 13 0.9 ± 0.2 6 

SA64 -22.969 26.202 56 ± 17 0.85 ± 0.4 3 

SA65 -22.818 27.222 45 ± 15 1.02 ± 0.3 5 

SA66 -21.900 26.373 61 ± 12 1.09 ± 0.2 10 

SA67 -21.886 27.274 59 ± 7 0.99 ± 0.2 6 

SA70 -21.088 26.335 48 ± 13 1.13 ± 0.3 17 
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3.3 Relationship with SWS studies from adjacent areas 

All of the previous studies in adjacent areas reported their results in the form of 

station-averaged parameters, which are largely consistent with those obtained at 22 

stations measured by this study (Fig. 1). Barruol and Ismail (2001) used African IRIS and 

Geoscope permanent stations to investigate upper mantle anisotropy, including station 

TSUM in Namibia near the southern border of the Congo craton as well as station LSZ in 

Zambia northeast of the ORZ (Fig. 1). Both LSZ and TSUM display SWS parameters 

consistent with our findings, i.e., a nearly NE-SW fast orientation (16∘ and 31∘, 

respectively) and small splitting time (0.73 s and 0.43 s, respectively) without evidence of 

azimuthal variations. Similarly, relatively small splitting times are observed for the 

SAFARI stations near the Congo craton (e.g., B14MH and B13NX) while relatively 

larger splitting times are reported for stations within the ORZ (about 1.13 s on average). 

Among the 17 SAFARI stations, three (B01KR, B02LT, and B1665) are within 

the study area of the SASE project (Silver et al., 2001). The resulting SWS parameters 

from the three SAFARI stations are remarkably consistent with those from the five SASE 

stations along the profile (Silver et al., 2001). The average fast orientation and splitting 

time of the five SASE stations are 53.4±14.6∘ and 1.07±0.25 s, while those of the three 

SAFARI stations are 48.2±15.7∘ and 1.03±0.35 s. The individual SWS measurements 

demonstrating an approximate E-W fast orientation are similar with the station-averaged 

SWS measurements obtained by Silver et al. (2001) from other SASE stations within the 

Limpopo belt (Figs. 1 and 2). 
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Figure 4. Same as Fig. 3 but for examples of each of the XKS phases (PKS, SKKS and 

SKS) used in the study recorded by 3 different stations. The waveforms have been 

corrected for station mis-orientation. 

4. Discussion 

4.1 Estimating the depth of anisotropy 

The epicentral distance of the SKS, SKKS, and PKS arrivals used in the study is 

equal to or greater than 84∘, 95∘, and 120∘, respectively. For SKS, this corresponds to a 

ray parameter of 6.532 s/degree or smaller, and an angle of incidence of smaller than 16∘ 

at 200 km depth measured from the vertical. Similarly, the maximum angle of incidence 
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at 200 km depth for the SKKS and PKS phases is about 18∘ and 5∘, respectively. 

Therefore, the XKS phases arrive at a steep angle of incidence and thus have an excellent 

lateral but poor vertical resolution, resulting in uncertainties and debates in the tectonic 

interpretations of the observed SWS measurements. 

A technique commonly employed to estimate anisotropy depth is the intersecting 

Fresnel-zone approach (Alsina and Snieder, 1995) which is based on the analysis of the 

size for the first Fresnel zones of close-proximity XKS raypaths. However, such a 

technique is limited to the case wherein significant lateral variations in seismic anisotropy 

exist between nearby stations, or when a station samples two regions with different 

splitting parameters (see Lemnifi et al., 2015 for an example in Libya). 

In this study, we apply a more generalized and quantitative extension of the 

intersecting Fresnel zone approach based on the spatial coherency of splitting parameters 

(Liu and Gao, 2011). This technique employs the idea that the observed splitting 

parameters will reach the highest spatial coherency if the assumed anisotropy depth is 

correct. Several conditions must be satisfied prior to applying this technique, the first of 

which is the compilation of a high-quality data set of individual (rather than station-

averaged) splitting parameters, and the other is that there must exist a significant but 

smooth spatial variation in the splitting parameters which should simultaneously signify a 

single layer of anisotropy (Liu and Gao, 2011). We find that the observed SWS 

measurements in Area C possess significant spatial variations (Fig. 2a) and satisfy the 

other conditions mentioned above, and can be used to estimate the depth of anisotropy. 
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Figure 5. Azimuthal variations of resulting fast orientations (left panels) and splitting 

times (right panels) for (a, b) Area A, (c, d) Area B, (e, f) Area C, and (g, h) Area D 

measurements. Blue squares, black triangles and red circles represent PKS, SKKS, and 

SKS phases, respectively. The dashed lines show the situation when the BAZ equals θ or 

θ+90∘, i.e., along the lines null measurements are expected (and this is why there are no 

well-defined measurements along the lines). 
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Figure 6. Anisotropy analysis for the SWS measurements in Area C based on the spatial 

coherence technique (Liu and Gao, 2011), resulting in an optimal depth of anisotropy 

between 240-280 km. 

The optimal anisotropy depth is searched in the range of 0 to 350 km at an 

interval of 5 km. It corresponds to the minimum spatial variation factor (Fv), which is 

defined in Eqs. 4-7 in Liu and Gao (2011). The block size (𝑑𝑥) used to calculate the Fv 
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should be given a proper value due to the fact that smaller 𝑑𝑥 will bring unstable Fv 

depth variations and uncertainties, while larger 𝑑𝑥 leads to a broadened Fv curve and 

reduces the peak-to-peak amplitude (Liu and Gao, 2011). In this study, experimental 

values of 𝑑𝑥 from 0.16∘ to 0.28∘ with an interval of 0.02∘ have been employed to generate 

the Fv curves (Fig. 6). 

The resulting Fv curves suggest that the optimal depth of the center of the 

anisotropic layer is between about 240 to 280 km, which is similar to the lithospheric 

thickness based on the tomography results for southern Africa (James et al., 2001). 

Beneath the vicinity of the ORZ, magnetotelluric studies suggested a lithospheric 

thickness of about 180 km (Miensopust et al., 2011). Thus it can be safely concluded that 

the anisotropy originates primarily from the upper asthenosphere beneath the ORZ, which 

is similar to the conclusion proposed by Vinnik et al. (1996) for the Kaapvaal craton. It 

must be mentioned, however, that due to a lack of spatial variations of the splitting 

parameters in Areas A, B, and D, the depth of the source of the observed anisotropy 

cannot be estimated beneath these areas; however, as discussed below, although 

lithospheric contributions cannot be completely ruled out, the observations can best be 

explained if they have an asthenospheric origin. 

4.2 Constraints on rifting mechanisms 

The similarity between the APM direction and the trend of most of the tectonic 

boundaries in the study area makes it difficult to distinguish a lithospheric origin from an 

asthenospheric one. In addition to the results of depth estimation, which favors an upper 

asthenospheric origin, another piece of evidence arguing against a dominantly 
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lithospheric origin can be found along the boundary between the Zimbabwe craton and 

the Limpopo belt (Fig. 2), where all the fast orientations are almost orthogonal (rather 

than parallel, as expected for a lithospheric origin) to this major tectonic boundary. 

Additionally, the ORZ, which is characterized by a relatively thin lithosphere compared 

to the adjacent cratonic terranes based upon magnetotelluric and tomographic studies 

(James et al., 2001; Miensopust et al., 2011), exhibits slightly larger splitting times than 

the Kalahari craton. One would expect to observe smaller splitting times in regions with 

thin lithosphere if the anisotropy is the result of uniform strain pervading the continental 

lithosphere (Silver and Chan, 1991). This interpretation is also consistent with the fact 

that the SASE stations (Silver et al., 2001), most of which overly the thicker lithosphere 

of the Kalahari craton, show smaller splitting times with a mean value of 0.62±0.02 s 

(and about 1/4 of the stations show no splitting) relative to the SAFARI stations 

(1.09±0.34 s). 

In the following, we examine a number of possible geodynamic models for the 

initiation and development of continental rifting, under the assumption that the observed 

anisotropy primarily reflects simple shear in an approximately 120 km thick layer in the 

upper-most asthenosphere. 

4.2.1 Active rifting 

Active rifting models (e.g., Sengor and Burke, 1978) advocate the dominant role 

of mantle flow, presumably associated with a mantle plume, on continental breakup. For 

a stationary lithosphere relative to the asthenosphere, the horizontal component of the 
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flow system is expected to have a pattern that is radiating away from the center of the 

plume, and for a moving lithosphere, a parabolic pattern is predicted (Karato et al., 2008). 

The existence of such a plume beneath the ORZ is possible, due to the fact that 

the ORZ is developing directly above the proposed African superplume (Ritsema et al., 

1998). The expected radiating or parabolic pattern of the fast orientations, however, is not 

observed beneath the ORZ or in southern Africa (Fig. 1), leading to doubts about the 

existence of an active mantle plume beneath the area. Such a conclusion is consistent 

with the observations of normal mantle transition zone thickness using the same dataset 

(Yu et al., in review). 

4.2.2 Edge-driven mantle convection 

The thin lithosphere beneath the ORZ relative to the Congo craton could induce a 

small-scale mantle convection system due to lateral temperature variations (King and 

Anderson, 1998). This mechanism has been used to explain the formation of zones of 

continental extension such as the Cameroon volcanic line (Koch et al., 2012). If this 

process contributes significantly to the observed anisotropy, the fast orientations in the 

vicinity of the ORZ should be mostly orthogonal to the trend of the rift. We observed 

dominantly rift-parallel fast orientations and thus conclude that edge-driven small-scale 

convection is not the source of the observed anisotropy. 

4.2.3 Rifting induced by intra-plate relative motion 

The ORZ is developing primarily within the Damara orogenic belt between the 

Archean Congo and Kalahari cratons. The consistently NE-SW fast orientations are 
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largely in agreement with those observed in surrounding areas. Though the African plate 

has a general northeastward motion based on the NUVEL-1A model (DeMets et al., 

1994), it has been suggested that South Africa is currently rotating clockwise relative to 

the Nubian plate, probably along the Damara belt (Malservisi et al., 2013). 

Numerical modeling shows that topography of the lithosphere-asthenosphere 

boundary exerts a strong control on the direction and magnitude of stress transfer from 

the asthenosphere to the lithosphere (O'Neill et al., 2010). In addition, increased plate-

mantle coupling beneath thick continental lithosphere may increase plate-driving forces, 

surface deformation, and mantle-derived lithospheric stresses in these regions (Conrad 

and Lithgow-Bertelloni, 2006). Therefore, contrasts in lithospheric thickness between the 

Congo craton, the ancient orogenic belts, and the Kalahari craton can possibly lead to 

differential basal drag forces beneath different areas, leading to spatially-varying plate 

motion velocities. The relative movements between the Archean cratons could rupture 

ancient zones of lithospheric weakness such as the Damara belt and exert a trans-

tensional force upon the lithosphere, resulting in the initiation of continental rifting. 

This model suggests a passive role of mantle flow in the initiation and 

development of the ORZ. Given the consistency between the APM and the fast 

orientations revealed by this and previous studies (Fig. 1), we propose that simple shear 

in the direction of the APM developed in the upper asthenosphere contributes the bulk of 

the observed anisotropy. Deviations of the fast orientation observed in Area C can be 

explained as the modulation of flow by the topography of the bottom of the lithosphere, 

as proposed for North America (Fouch et al., 2000; Refayee et al., 2014) and northern 

Africa (Miller et al., 2013; Lemnifi et al., 2015). The model is consistent with surface 
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wave studies which demonstrate the existence of asthenospheric plate-parallel 

polarization of azimuthal anisotropy beneath southern Africa (Adam and Lebedev, 2012), 

and with findings from a joint inversion of P-wave receiver functions and SWS 

waveforms (Vinnik et al., 2012). 

Finally, this study provides additional constraints on the APM direction of the 

African plate. Mostly due to the fact that Africa is a slow-moving plate, the APM 

direction varies dramatically among different models (e.g., DeMets et al., 1994; Gripp 

and Gordon, 2002; Kreemer, 2009; Altamimi et al., 2011). The consistently NE-SW fast 

orientations across the study area and most of southern Africa place more weight on 

models with a NE APM direction for southern Africa. 

5. Conclusion 

In this study, we employed recently archived broadband seismic data in the 

vicinity of the ORZ to conduct the first SWS investigation of the incipient rift. The 

resulting mantle anisotropy shows a dominantly NE-SW orientation which is parallel to 

the African APM. Although significant contributions from the lithosphere to the observed 

anisotropy cannot be completely ruled out, spatial coherency analysis of the splitting 

parameters and correspondence with geological features suggest that the center of the 

approximately 120 km thick anisotropic layer is located between the depth of 240 and 

280 km, implying an asthenospheric origin of anisotropy, probably as the result of simple 

shear in the boundary layer between the lithosphere and the asthenosphere. Comparison 

of the resulting SWS measurements with predicted mantle flow directions originating 

from an active mantle plume or edge-driven small-scale mantle convection suggests that 
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neither is operating beneath the incipient rift. The measurements advocate a new model 

of continental rifting, in which differential basal drag applied to cratonic blocks results in 

relative intra-plate movements and leads to rifting along ancient orogenic zones, which 

are areas of mechanical weakness.  
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III. DETERMINING CRUSTAL STRUCTURE BENEATH SEISMIC 

STATIONS OVERLYING A LOW-VELOCITY SEDIMENTARY 

LAYER USING RECEIVER FUNCTIONS 

Abstract 

The receiver function (RF) technique has been widely applied to investigate 

crustal and mantle layered structures using P-to-S converted (Ps) phases from velocity 

discontinuities. However, the presence of low-velocity (relative to that of the bedrock) 

sediments can give rise to strong reverberations in the resulting RFs, frequently masking 

the Ps phases from crustal and mantle boundaries. Such reverberations are caused by P-

to-S conversions and their multiples associated with the strong impedance contrast across 

the bottom of the low-velocity sedimentary layer. Here, we propose and test an approach 

to effectively remove the near surface reverberations and decipher the Ps phases 

associated with the Moho discontinuity. Auto-correlation is first applied on the observed 

RFs to determine the strength and two-way travel-time of the reverberations, which are 

then used to construct a resonance-removal filter in the frequency domain to remove or 

significantly reduce the reverberations. The filtered RFs are time-corrected to eliminate 

the delay effects of the sedimentary layer and applied to estimate the sub-sediment crustal 

thickness and Vp/Vs using a H-k stacking procedure. The resulting sub-sediment crustal 

parameters (thickness and Vp/Vs) are subsequently used to determine the thickness and 

Vp/Vs of the sedimentary layer, using a revised version of the H-k stacking procedure. 

Testing using both synthetic and real data suggests that this computationally inexpensive 

technique is efficient in resolving sub-sediment crustal properties beneath stations sitting 
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on a low-velocity sedimentary layer, and can also satisfactorily determine the thickness 

and Vp/Vs of the sedimentary layer. 

1. Introduction 

P-to-S converted phases and their multiples (hereafter collectively called the Ps 

phases) related to the Moho including PmS, PPmS, and PSmS (Figure 1) have been 

widely employed to image crustal thickness and Vp/Vs beneath a recording site using the 

receiver function (RF) technique (Langston, 1979; Owens et al., 1984; Ammon, 1991; 

Zandt and Ammon, 1995; Zhu and Kanamori, 2000). However, the existence of a low-

velocity sedimentary layer poses significant problems to successfully apply the RF 

technique (Zelt and Ellis, 1999). The large acoustic impedance (product of velocity and 

density) contrast between the low-velocity sedimentary layer and the crystalline crust can 

give rise to strong P-to-S wave conversions and near surface reverberations, significantly 

masking the Ps phases associated with the Moho (Langston, 2011). Consequently, the 

conventional H-k (crustal thickness-Vp/Vs) stacking technique (Zhu and Kanamori, 2000) 

usually leads to erroneous results. Yeck et al. (2013) estimated that a deep basin could 

contribute to an error of more than 10 km in the resulting crustal thickness if the 

sedimentary effects are not correctly accounted for. 

A variety of teleseismic techniques have been proposed and developed for the 

purpose of determining both the sedimentary and crustal structures. Forward modeling 

was conducted to obtain sedimentary and crustal S-wave velocity models by iteratively 

fitting the synthetics to the observed RFs (Sheehan et al., 1995; Zelt and Ellis, 1999; 

Clitheroe et al., 2000; Anandakrishnan and Winberry, 2004; Mandal, 2006; He et al., 
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2012), but the strong near surface reverberations on the resulting radial RFs make it 

difficult to reliably determine the best fitting synthetics (Clitheroe et al., 2000). Langston 

(2011) used the bed-rock structure of stations close to the sedimentary area as priori 

crustal parameters to isolate the up-going S-wave field from the total teleseismic response 

of the P-wave for stations within the sedimentary basin, using the theory of wave-field 

continuation and decomposition (Thorwart and Dahm, 2005; Bostock and Trehu, 2012). 

Recently, Tao et al. (2014) improved the technique of Langston (2011) by minimizing the 

up-going S-wave energy without the need for the reference stations. The computationally 

intensive approach of wave-field continuation and decomposition is effective in obtaining 

reliable crustal parameters beneath sedimentary basins, under the condition when the 

densities and P-wave velocities of the involved layers (sediment, crust and mantle) are 

known. Yeck et al. (2013) proposed a sequential two-layer H-k stacking method to 

determine the sedimentary and crustal structures. This technique works the best when the 

Moho Ps phases are not entirely masked by the sedimentary reverberations (Yeck et al., 

2013). In addition, some recent studies attempted to reduce the influence of the 

sedimentary layer by applying band-pass or band-rejection filters (Leahy et al., 2012; 

Reed et al., 2014), but it is sometimes subjective to decide the optimal frequency bands 

and the removal of the sedimentary effects is frequently incomplete.  

Although reverberations associated with a low-velocity sedimentary layer can 

partially or totally mask the Moho Ps phases, as described below, we find that they can be 

effectively removed or significantly reduced by applying a resonance-removal filter. The 

parameters needed to construct the filter are taken directly from the observed RFs. The 

filtered RFs are then utilized to obtain sub-sediment crustal thickness and Vp/Vs, and are 
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subsequently used to obtain the thickness and Vp/Vs of the sedimentary layer. Similarly 

to the standard H-k stacking technique (Zhu and Kanamori, 2000), the approach requires 

P-wave velocities but not the densities of the involved layers. 

 

Figure 1. Schematic diagrams showing the main Ps phases (left columns) and their 

reverberations in the sedimentary layer (right columns). 
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2. Methods 

2.1 Receiver Function 

Teleseismic waves travel through the interior of the Earth and are recorded by 

seismic stations at the surface. The conversion from compressional to shear waves occurs 

when P-waves encounter an acoustic impedance interface within the Earth. The recorded 

seismic waveforms are the combined results of the source time function, travel path, and 

local structure (Burdick and Langston, 1977; Langston, 1979). Due to the steep angle of 

incidence of teleseismic waves near the surface, most of the shear wave energy is 

recorded in the radial component while the vertical component is predominantly occupied 

by the compressional wave. The Ps phases can be source-normalized by deconvolving the 

vertical component from the corresponding section of the radial component (Ammon, 

1991). The resulting time series reflect the relative responses of the Earth structure near 

the receiver and are named as receiver functions (Langston, 1979). The receiver functions 

used in the study were generated by employing the water-level deconvolution technique 

(Ammon, 1991), which is a division in the frequency domain, with a water-level of 0.05 

and a Gaussian width factor of 5.0. 

The Ps phases in the resulting RFs can be expressed as (Ammon, 1991) 

𝐹(𝑡) = 𝐴𝑠𝛿(𝑡 − 𝑡𝑠)                                                  (1) 

Where 𝛿(𝑡 − 𝑡𝑠)  is a Dirac delta function, and 𝐴𝑠  and 𝑡𝑠  represent the 

corresponding amplitudes and time delays, respectively, of the P s phases (including 

direct conversions such as PmS and multiples such as PPmS and PSmS, see Figure 1). 

The reference time (𝑡 = 0)  corresponds to the arrival time of the direct P−wave. A 
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popularly used procedure for crustal studies using RFs is H−k stacking, in which the 

radial RFs are moveout-corrected and stacked along the travel time curves of the Moho 

Ps phases at each candidate pair of 𝐻  (thickness) and 𝑘  (Vp/Vs) in a grid-search 

procedure (Chevrot and Van der Hilst, 2000; Zhu and Kanamori, 2000; Nair et al., 2006; 

Bashir et al., 2011). The maximum stacking amplitude corresponds to the optimal crustal 

thickness and Vp/Vs. 

2.2 Effects of a Low-velocity Sedimentary Layer 

It has long been recognized that a low-velocity sedimentary layer of a few km or 

thinner (Figure 1) can result in prominent high-amplitude, low-frequency reverberations. 

Relative to RFs recorded by stations on bedrock, the width of the first P arrival is 

broadened and its amplitude is decreased (Zelt and Ellis, 1999). On the RFs, the 

amplitude of the first Ps phase from the bottom of the sedimentary layer (hereafter named 

PbS phase, with one S−wave leg in the sedimentary layer, see Figure 1a) can become so 

high that the direct P-wave is usually completely masked. Such RFs are characterized by 

a delayed first peak corresponding to the arrival of the PbS (Yeck et al., 2013) (Figure 2a).  

The large impedance contrasts across the bottom of the sedimentary layer and that 

from the free surface create strong reverberations in the form of multiples. Similar to 

multiples created in a water-layer (e.g., Equation 18 in Stoffa et al., 1974), for a model 

with a low-velocity sedimentary layer (Figure 1), the primary and multiples of the 

converted shear-waves (Figure 1) can be expressed as 

𝐻(𝑡) = ∑ (−𝑟0)𝑛 × 𝐹(𝑡 − 𝑛 × ∆𝑡)∞
𝑛=0                                         (2) 
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Where 𝑛 is the index of the 𝑛th reverberation of the converted shear phases, 𝑟0 is the 

strength (proportional to the reflection coefficient at the bottom of the sedimentary layer) 

of the near surface reverberations, ∆𝑡 is the two-way travel-time for the reverberations of 

the converted waves in the sedimentary layer, and 𝐹(𝑡) is the RF without the influence of 

the sedimentary layer (Equation 1). Note that for 𝑛 = 0, 𝐻(𝑡) equals 𝐹(𝑡) and represents 

the primary arrivals; and for 𝑛 = 1 (the first reverberation), the arrivals have a negative 

polarity (due to the reflection from the free surface) and a delay time of ∆𝑡 relative to the 

direct phase. Due to the steep incident angle of PbS and the large acoustic impedance 

contrast across the bottom of the sedimentary layer, the dominant energy in the RFs is the 

reverberations of PbS, followed by those of PmS, PPmS, and PSmS in the sedimentary 

layer (Figure 1). Synthetic tests show that PPbS and PSbS and their reverberations are 

much weaker than the corresponding PbS phases, mostly because of the near-vertical 

raypaths associated with the small sedimentary velocities, and the consequent 

inefficiency in producing converted S-waves. 

In the frequency domain, Equation 2 can be expressed as 

𝐻(𝑖𝜔) = 𝐹(𝑖𝜔) ∑ (−𝑟0)𝑛 × 𝑒−𝑖𝜔𝑛∆𝑡∞
𝑛=0 ,                            (3) 

Where 𝑖 is the complex symbol, and ∑ (−𝑟0)𝑛 × 𝑒−𝑖𝜔𝑛∆𝑡∞
𝑛=0  is a geometric series that can 

be simplified as (1 + 𝑟0𝑒−𝑖𝜔∆𝑡)−1. Thus 𝐹(𝑡) can be obtained in the frequency domain 

using 

𝐹(𝑖𝜔) =  𝐻(𝑖𝜔)(1 + 𝑟0𝑒−𝑖𝜔∆𝑡),                                      (4) 

𝐹(𝑖𝜔)  is the RF in the frequency domain after the removal of the sedimentary 

reverberations. Using the above equation, near surface reverberations can be eliminated 
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from the observed RF spectrum (𝐻(𝑖𝜔)) by designing a resonance-removal filter of the 

form (1 + 𝑟0𝑒−𝑖𝜔∆𝑡). An example of such a filter in both the frequency and time domains 

is shown in Figure 2. Such a filter has been widely applied in petroleum exploration to 

quantify and remove multiples especially those associated with a surface water layer 

(Stoffa et al., 1974; Yilmaz, 2001). 

The strength of the reverberations (𝑟0 ) required by the filter can be directly 

measured from the original RFs (Figure 2a) as the ratio between the amplitude of the first 

trough and that of the first peak, and the two-way travel-time (∆𝑡) can be measured using 

the time separation between the first peak and first trough. However, as routinely used in 

exploration seismology (e.g. Yilmaz, 2001), they can be more reliably determined from 

the normalized auto-correlation function (Figure 2b), which has a unity amplitude (and 

thus the ratio is equivalent to the amplitude of the first trough on the auto-correlation 

function) and is centered at 𝑡 = 0 (and thus the time separation is the same as the time of 

the first trough). Due to varying angle of incidence of different RFs, in reality these two 

parameters are calculated for each of the RFs. Obviously, this procedure is applicable for 

reverberations with a single dominant frequency. After the removal of the reverberations, 

PbS and the Moho Ps phases show up clearly in the filtered RFs (Figure 2e). The direct P 

phase, which arrives at 𝑡 = 0, is weaker than PbS and can barely be seen unless the 

frequency of the wavelet is unrealistically high. 
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Figure 2. (a) Synthetic RF. Note that the first peak is delayed by about 1 s and represents 

the P-to-S converted phase from the bottom of the sedimentary layer. (b) Auto-

correlation of the RF shown in (a). ∆𝑡 and 𝑟0are the two-way travel-time and strength of 

the sedimentary reverberations, respectively. (c) Frequency domain plot of a resonance-

removal filter with 𝑟0=0.8 and ∆𝑡=2.0 s. (d) Same as (c) but in the time domain. (e) 

Resulting RF after applying the resonance-removal filter. 
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2.3 Determination of Sub-sediment Crustal Thickness and Vp/Vs 

The H-k stacking method (Zhu and Kanamori, 2000) can then be employed to 

estimate crustal thickness and Vp/Vs using the filtered RFs. However, due to the delay 

effects of the sedimentary layer, the conventional H-k stacking technique would result in 

a larger than real crustal thickness if time delays associated with the sedimentary layer 

are not corrected (Yeck et al., 2013). Here we use the arrival time of the PbS phase and 

the two way travel-time of the reverberations to time-correct the filtered RFs. The sub-

sediment crustal thickness and Vp/Vs can be obtained by applying a time-corrected H− k 

stacking formula of the form 

𝐴(𝐻𝑖 , 𝑘𝑗) = ∑ 𝜔1 × 𝑆𝑚 (𝑡1
(𝑖,𝑗)

+ 𝛿𝑡𝑚) + 𝜔2 × 𝑆𝑚 (𝑡2
(𝑖,𝑗)

+ ∆𝑡𝑚 − 𝛿𝑡𝑚) − 𝜔3 ×𝑁
𝑚=1

𝑆𝑚 (𝑡3
(𝑖,𝑗)

+ ∆𝑡𝑚)     (5)  

Where 𝑖  and 𝑗  are indexes for the candidate sub-sediment crustal thickness (𝐻𝑖 ) and 

Vp/Vs ( 𝑘𝑗 ) respectively; 𝐴(𝐻𝑖 , 𝑘𝑗)  is the stacking amplitude corresponding to the 

candidate pair of 𝐻𝑖 and 𝑘𝑗; 𝑁 is the number of RFs participated in the stacking; 𝑆𝑚(𝑡) is 

the amplitude of the point on the 𝑚th RF at time 𝑡 after the direct P-wave; 𝜔1, 𝜔2 and 𝜔3 

are weighting factors that satisfy 𝜔1 + 𝜔2 + 𝜔3 = 1 (Zhu and Kanamori, 2000) for PmS, 

PPmS, and PSmS (Figure 1), respectively; 𝛿𝑡𝑚 is the time delay (relative to the direct P-

wave) of the PbS phase on the 𝑚 th RF; ∆𝑡𝑚  is the two-way travel-time of the 

reverberations obtained from auto-correlation of the 𝑚th RF; and 𝑡1
(𝑖,𝑗)

, 𝑡2
(𝑖,𝑗)

 and 𝑡3
(𝑖,𝑗)

 

correspond to the theoretical moveout of PmS, PPmS and PSmS phases in the sub-
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sediment crust. The optimal pair of 𝐻𝑖 and 𝑘𝑗 corresponds to the maximum amplitude of 

𝐴(𝐻𝑖 , 𝑘𝑗). 

To better understand the time terms in Equation (5), let us consider a hypothetical 

situation of vertical incidence, for which the delay time of the PbS phase, 𝛿𝑡 =
𝐻𝑑

𝑉𝑠
–

𝐻𝑑

𝑉𝑝
, 

and the reverberation period or two-way travel-time of PbS, ∆𝑡 = 2
𝐻𝑑

𝑉s
, where 𝐻𝑑 is the 

thickness of the sedimentary layer. The PmS phase travels through the sedimentary layer 

once as an S−wave (Figure 1c) and thus the S− and P−wave differential time after 

traveling through the sedimentary layer is 
𝐻𝑑

𝑉𝑠
−

𝐻𝑑

𝑉𝑝
 which is 𝛿𝑡. The PPmS phase, on the 

other hand, has two P− legs and an S− leg in the sedimentary layer, and thus the S− and 

P−wave differential travel time is 
𝐻𝑑

𝑉𝑠
+ 2

𝐻𝑑

𝑉𝑝
−

𝐻𝑑

𝑉𝑝
 which happens to be ∆𝑡 − 𝛿𝑡. Finally, 

the PSmS phase has two S−legs and one P− leg in the sedimentary layer, and thus the 

differential time is ∆𝑡. After the removal of the travel-times associated with the low-

velocity sedimentary layer, the station is virtually downward projected to the bottom of 

the sedimentary layer. Consequently, the optimal thickness and Vp/Vs of the sub-

sediment crust are determined. 

2.4 Determination of Sedimentary Thickness and Vp/Vs 

We next propose a procedure to grid-search for the optimal thickness and Vp/Vs 

of the sedimentary layer using the resulting sub-sediment crustal thickness and Vp/Vs. 

The phases that we use for this task are PbS, PPmS, and PSmS (note that the last two are 

not PPbS and PSbS which are too weak to be used, as discussed above). At first glance, it 

seems that PPmS and PSmS are associated with the Moho and not the sedimentary layer. 



 

 

55 

However, because they travel through both the sub-sediment crustal and the sedimentary 

layers, their arrival times are functions of the thickness and Vp/Vs of both layers, as 

quantified in Equations 7-9. 

The grid-search is conducted using 

𝐴(𝐻𝑖 , 𝑘𝑗) = ∑ 𝜔4 × 𝑆𝑚 (𝑡4
(𝑖,𝑗)

) + 𝜔2 × 𝑆𝑚 (𝑡2
(𝑖,𝑗)

) − 𝜔3 × 𝑆𝑚 (𝑡3
(𝑖,𝑗)

)𝑛
𝑚=1        (6) 

Where 𝐻𝑖 and 𝑘𝑗 indicate a pair of candidate sedimentary thickness and Vp/Vs; 𝜔4, 𝜔2 

and 𝜔3 are the weighting factors for PbS, PPmS and PSmS, respectively; and 𝑡4
(𝑖,𝑗)

, 𝑡2
(𝑖,𝑗)

 

and 𝑡3
(𝑖,𝑗)

 are the moveout of PbS, PPmS and PSmS phases through the sedimentary and 

sub-sediment crustal layers calculated using the following equations 

𝑡4
(𝑖,𝑗)

= ∫ (√(
𝑉𝑝(𝑧)

𝑘𝑗
)

−2

− 𝑝2 − √(𝑉𝑝(𝑧))
−2

− 𝑝2)𝑑𝑧
0

−𝐻𝑖
                     (7) 

𝑡2
(𝑖,𝑗)

= ∫ (√(
𝑉𝑝(𝑧)

𝑘𝑗
)

−2

− 𝑝2 + √(𝑉𝑝(𝑧))
−2

− 𝑝2)𝑑𝑧 + ∫ (√(
𝑉𝑝(𝑧)

𝑘𝑐
)

−2

− 𝑝2 +
−𝐻𝑖

−(𝐻𝑖+𝐻𝑐)

0

−𝐻𝑖

√(𝑉𝑝(𝑧))
−2

− 𝑝2)𝑑𝑧     (8) 

t2
(i,j)

= ∫ 2√(
Vp(z)

kj
)

−2

− p2dz + ∫ 2√(
Vp(z)

kc
)

−2

− p2dz
−Hi

−(Hi+Hc)

0

−Hi
             (9) 

Where i and j are indexes corresponding to the candidate sedimentary thickness (Hi) and 

Vp/Vs (kj); Vp(z) is the P wave velocity at depth 𝑧; p is the ray parameter; Hc and kc are 
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the sub-sediment crustal thickness and Vp/Vs, respectively, obtained from applying 

Equation 5. 

In order to distinguish the above two kinds of H − k stacking procedures 

(Equations 5 and 6), in the following we refer the grid-search procedure (Equation 5) to 

image the subsediment crustal structure as (H − k)c  stacking, and that for the 

sedimentary structure (Equation 6) as (H − k)d stacking.  

3. Synthetic Experiment 

To test the above technique, we generate synthetic RFs using a reflectivity-based 

method (Randall, 1994) with a Gaussian wavelet of the form exp (−4t2). The station is in 

a sedimentary basin, and the ith hypothetical event has an epicentral distance of 30+i 

degrees where i = 0, ⋯ 60. Synthetic RFs are generated using the following parameters: 

for the sedimentary layer, the thickness, Vp, Vs, Vp/Vs, and density are 0.7 km, 2.1 km/s, 

0.7 km/s, 3.0, and 1970 kg/m3 , respectively; for the sub-sediment crustal layer, the 

corresponding values are 35 km, 6.1 km/s, 3.49 km/s, 1.75, and 2700 kg/m3; and for the 

mantle, they are ∞, 8.0 km/s, 4.5 km/s, 1.78, and 3300 kg/m3. On the synthetic RFs, the 

Moho Ps phases are completely masked by the strong near surface reverberations (Figure 

3a). H− k stacking without considering the sedimentary effects results in incorrect crustal 

thickness and Vp/Vs (Figure 3c). After applying the resonance-removal filter, PbS and 

the Moho Ps phases are well recovered (Figure 3d). 

The weighting factors in Equations 5 and 6 are selected to maximize the 

resolution of the resulting optimal thickness and Vp/Vs values, and are dependent on the 

relative amplitude of the phases involved and the rate of moveout with respect to the 
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epicentral distance. For investigating the sub-sediment crustal structure, they are set as 

ω1 = 0.5, ω2 = 0.4 and ω3 = 0.1, and those for imaging the sedimentary structure, the 

selected values are ω4 = 0.05, ω2 = 0.7 and ω3 = 0.25. Ten bootstrap iterations are 

used to evaluate the standard deviations of the observed sedimentary and sub-sediment 

crustal parameters (Efron and Tibshirani, 1986; Press et al., 1992; Liu and Gao, 2010). 

The (H − k)c stacking technique is then applied on the filtered RFs to search for 

the optimal sub-sediment crustal thickness (in the range of 20-55 km with an interval of 

0.1 km) and Vp/Vs (in the range of 1.65-1.95 with an interval of 0.01). The resulting 

subsediment crustal thickness is 35.0 km and the Vp/Vs is 1.78 (Figure 3e), which are 

nearly identical to the input parameters (35.0 km and 1.75) used to generate the RFs. 

Similarly, the optimal sedimentary layer thickness and Vp/Vs are searched using the 

(H − k)d stacking procedure in the depth range of 0-4 km with an interval of 0.05 km, 

and in the Vp/Vs range of 1.50-5.00 with an interval of 0.01. The results are 0.70 km and 

2.95, respectively (Figure 3f), which are almost the same as the input parameters of 0.7 

km and 3.0. We next use noisy synthetic RFs to further test the techniques. Figure 4 

shows results for a model in which the RFs are contaminated by random noise with a 

peak amplitude of 15% relative to the amplitude of the first peak. H − k stacking using 

the original RFs fails to obtain the correct results (Figure 4c). After applying the 

resonance-removal filter, the resulting H and Vp/Vs for the sub-sediment crust (35.8 km 

and 1.74) and the low-velocity sedimentary layer (0.55 km and 3.68) are similar to the 

parameters used to generate the noisy RFs (Figures 4e and 4f). 
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Figure 3. (a) Synthetic RFs plotted against epicentral distance. The red trace is the result 

of simple time domain summation (without moveout correction) of the individual traces. 

(b) Auto-correlations of each RFs in (a) against epicentral distance. (c) Contour of 

stacking energy from H − k stacking using the RFs shown in (a). (d) Resulting RFs after 

the application of resonance-removal filters. (e) Contour of stacking energy from 

(H − k)c stacking using the filtered RFs shown in (d). (f) Same as (e) but for (H − k)d 

stacking. 
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Figure 4. Same as Figure 3 but for a model with 15% random noise added in the RFs. 

4. Testing Using Real Data 

Our reverberation-removal technique is further tested using RFs recorded by two 

broadband seismic stations. Station F22A is located in the Powder River Basin, northern 

Wyoming (USA) and has been studied by Yeck et al. (2013) using the sequential H−k 

stacking method, and station NE68 is situated in the Songliao Basin, northeast China and 

has been investigated by Tao et al. (2014) based on the theory of wavefield continuation 
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and decomposition. The stations were selected because they were used for testing 

different sediment-removal techniques and also have independent estimates of crustal 

thickness from active-source seismic experiments. 

 

Figure 5. Same as the previous figure but for real data recorded by USArray station 

F22A located in the Powder River Basin, Wyoming. 

Three component data from the stations were requested from the Incorporated 

Research Institutions for Seismology (IRIS) Data Management Center (DMC). 
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Earthquakes with epicentral distances in the range of 30~90°, and with a magnitude of 

Mc or greater were used in the study, where Mc is defined as 5.2 + (∆ − 30.0)/(180.0 −

30.0) − D/700.0, in which ∆ is the epicentral distance in degree, and D is the focal depth 

in km (Liu and Gao, 2010). The seismograms were windowed at 20 s before and 260 s 

after the predicted direct P−wave arrival calculated using the IASP91 Earth model. A 

band-pass filter in the frequency range of 0.04− 0.8 Hz was applied to enhance the 

signals. An event was not used if the radial component has a signal to noise ratio (SNR) 

below 4.0. The selected seismograms were converted to radial RFs using the procedure of 

Ammon (1991), and an SNR-based procedure was applied to reject low-quality RFs. 

Detailed information about the seismogram and RF selection procedures including the 

definition of the SNRs can be found in Gao and Liu (2014b). 

4.1 Station F22A 

For station F22A, we use the same P−wave velocities for the sedimentary and 

subsediment crustal layers as those used in Yeck et al. (2013), which are 3.6 km/s and 6.7 

km/s, respectively. The sedimentary Vp was taken from well logs (Moore, 1985) and the 

sub-sediment crustal Vp was obtained from nearby active source seismic studies (Snelson 

et al., 1998). On the original RFs (Figure 5a), there is a strong arrival at about 5 s with an 

amplitude of about 50% of that of the first peak. In addition, there is a strong trough 

between this arrival and the first peak. Both arrivals and the well-defined trough on the 

auto-correlation functions (Figure 5b) indicate the existence of a low-velocity 

sedimentary layer. After applying the resonance-removal filter to the original 89 RFs 

(Figure 5a), the Moho Ps phases are well revealed (Figure 5d). Obviously, the strong 
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amplitude at ∼5 s on the original RFs (Figure 5a) are caused by the accidental 

simultaneous arrival of the PmS and the first positive pulse of the reverberation of the 

PbS phase.  

Application of the (H − k)c stacking procedure leads to a sub-sedimentary crustal 

thickness of 40.7±0.2 km and a Vp/Vs of 1.73±0.01 (Figure 5e), which are comparable 

with the values of 40.5±0.6 km and 1.77±0.01 obtained by Yeck et al. (2013). The 

obtained subsediment crustal thickness is also consistent with that from active source 

seismic studies (Snelson et al., 1998), which reported a value of about 40 km. The 

resulting sedimentary thickness and Vp/Vs are 1.5±0.07 km and 3.13±0.14, respectively 

(Figure 5f), which are similar to the results of 2.1±0.08 km and 2.54±0.07 reported by 

Yeck et al. (2013). The slight mismatch between our results and those obtained by Yeck 

et al. (2013) could be resulted from different approaches and parameters used for data 

selection, processing, and RF stacking. 

4.2 Station NE68 

Station NE68 has 362 high-quality RFs with significantly better-developed 

reverberations than F22A. On the original RFs, the Moho Ps phases are completely 

masked by the strong near surface reverberations (Figure 6a). Following Tao et al. (2014), 

we use an average P−wave velocities of 2.1 km/s for the sedimentary layer and 6.4 km/s 

for the sub-sediment crust. After applying the resonance-removal filter, the near surface 

reverberations are effectively suppressed, and consequently the Moho Ps phases are 

clearly observed (Figures 6d). Results from (H − k)c stacking using the filtered RFs are 

almost identical to those obtained by Tao et al. (2014), who reported a sub-sediment 
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crustal thickness of 35.0 km and Vp/Vs of 1.730, and our (H − k)d  stacking yields 

35.2 ± 0.2 km and 1.74 ± 0.01 (Figure 6e), respectively. Similarly, the resulting 

sedimentary thickness and Vp/Vs using (H − k)d  stacking are 0.35 ± 0.00 km and 

4.61±0.02 (Figure 6f), which are consistent with those obtained by Tao et al. (2014) 

(0.31 km and 4.118). The observed thickness of the low-velocity sedimentary layer also 

agrees well with results from an active source seismic experiment (Feng et al., 2010). 

 

Figure 6. Same as the previous figure but for station NE68 in the Songliao Basin, 

northeast China. 
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5. Discussion and Conclusion 

The resulting high Vp/Vs values for stations NE68 and F22A can be caused by a 

poorly consolidated sedimentary layer. Very high Vp/Vs of such a layer has been 

observed elsewhere. For instance, beneath the Horn River Basin in Northeast British 

Columbia, Canada, well-logging and active-source seismic data revealed high Vp/Vs 

values ranging from about 2.5 to 5.5 in the top 500 m of the basin (see Figures 4 and 5 in 

Zuleta-Tobon, 2012). Laboratory experiments (Prasad et al., 2004) indicate that Vp/Vs 

values are related to water content, amount of clay minerals, and the overlying pressure. 

The high sedimentary Vp/Vs values observed at stations NE68 and F22A suggest water 

saturation, high clay content, and perhaps low overlying pressure in the Songliao and 

Powder River Basins. 

The strong reverberations in the radial RFs caused by a low-velocity sedimentary 

layer can be effectively removed by applying the resonance-removal filter to decipher the 

Ps phases associated with the Moho and the P-to-S converted phase from the bottom of 

the sedimentary layer. Tests using synthetic and real data indicate that the proposed 

technique can efficiently obtain the thickness and Vp/Vs of both the sedimentary layer 

and the sub-sediment crust with high reliability. Contrary to most other techniques, which 

favor the absence or weak sedimentary reverberations, the proposed technique leads to 

more accurately determined results with stronger reverberations, thanks to the better-

defined parameters needed by the resonance-removal filter associated with stronger 

reverberations. Also, the technique is computationally inexpensive and thus can be 

applied to large data sets such as those recorded by the USArray. 
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Obviously, the existence of strong reverberations of at least a couple of cycles is 

needed in order for the proposed technique to be applied successfully. Testing using data 

from numerous stations suggests that as long as the RFs have reverberations with a 

dominant frequency, the technique can successfully remove the reverberations. Such 

reverberations cannot be generated if the sedimentary layer is thinner than about 1/4 of 

the wavelength of the PbS phase. If we assume a sedimentary S−wave velocity of 0.33 

km/s and a period of 3 s, the required minimum thickness is about 0.25 km. On the other 

hand, if the sedimentary layer is too thick (e.g., thicker than 5-8 km, depending on the 

attenuation factor), the reverberations decay rapidly with time, leading to poorly defined 

resonance-removal filters. A thick sedimentary layer is characterized by RFs with 

abnormally low frequencies and a large delay of the PbS phase. Another potential 

problem for a very thick sedimentary layer is that the impedance contrast across the basin 

bottom may be too small (due to gravitational compaction) to generate significant 

reverberations. Furthermore, the technique is not expected to perform well if there are 

strong interfaces inside the sedimentary layer. Such interfaces produce complicated 

interactions between the reverberations in two or more layers, and modifications to 

Equation 2 and other steps of the technique are needed to account for such scenario. 

Finally, cautions must be taken for stations near the edge of sedimentary basins or in 

areas with significant undulations of the basin bottom. Due to the rapid lateral variation 

in the thickness of the sedimentary layer, the two-way travel-time of the reverberations 

could be dependent on the arriving direction of the seismic waves. In such a case the 

above technique can be applied to events from narrow azimuthal bands. 
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SECTION 

2. CONCLUSIONS 

In this study, the recently archived broadband seismic data in the vicinity of the 

ORZ were employed to conduct the first receiver function study of mantle transition zone 

discontinuities and SWS investigation of the incipient rift. The apparently shallower-

than-normal MTZ discontinuities observed beneath the Kalahari Craton can be explained 

by the existence of a lithosphere that is 100-150 km thicker than that beneath the Congo 

Craton and the Damara belt. The resulting mantle anisotropy shows a dominantly NE-SW 

orientation which is parallel to the African APM. Although significant contributions from 

the lithosphere to the observed anisotropy cannot be completely ruled out, spatial 

coherency analysis of the splitting parameters and correspondence with geological 

features suggest that the center of the approximately 120 km thick anisotropic layer is 

located between the depth of 240 and 280 km, implying an asthenospheric origin of 

anisotropy, probably as the result of simple shear in the boundary layer between the 

lithosphere and the asthenosphere (Fig. 2.1). Comparison of the resulting SWS 

measurements with predicted mantle flow directions originating from an active mantle 

plume or edge-driven small-scale mantle convection suggests that neither is operating 

beneath the incipient rift, which is supported by the absence of significant delays in 

teleseismic P- and S-wave travel-time residuals beneath the ORZ. A new model of 

continental rifting was proposed, in which differential basal drag applied to cratonic 

blocks results in relative intra-plate movements and leads to rifting along ancient 

orogenic zones, which are areas of mechanical weakness. The ORZ is possibly initiated 
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by the relative movements between Congo and Kalahari cratons along the weak zones of 

Damara belts.  

 

Figure 2.1 Schematic cross sections of (a) traversing and (b) along the Okavango Rift 

zone demonstrating the mechanism of shearing between the lithosphere and 

asthenosphere. The white arrows in (a) indicate the opening of the ORZ and the circles 

filled with pluses represent the flowing direction of going inside. The white arrows in (b) 

are corresponding to the direction of the mantle flow and their lengths are proportional to 

the strength of the anisotropy. 

The strong reverberations in the radial RFs caused by a low-velocity sedimentary 

layer can be effectively removed by applying the resonance-removal filter to decipher the 

Ps phases associated with the Moho and the P-to-S converted phase from the bottom of 

the sedimentary layer. Tests using synthetic and real data indicate that the proposed 

technique can efficiently obtain the thickness and Vp/Vs of both the sedimentary layer 

and the sub-sediment crust with high reliability. Contrary to most other techniques, which 

favor the absence or weak sedimentary reverberations, the proposed technique leads to 

more accurately determined results with stronger reverberations, thanks to the better-

defined parameters needed by the resonance-removal filter associated with stronger 

reverberations. Also, the technique is computationally inexpensive and thus can be 

applied to large data sets such as those recorded by the USArray.  
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APPENDIX 

Individual shear wave splitting measurements for the 22 stations used in this day 

Station Phase SWS parameters Event Rank 

Name Lat. Long.  θ 
STD 

θ 
δt 

STD 

δt 
BAZ Lat. Long. 

Dept

h  

B01KRx_XK -22.24 26.72 SKS 31 1.5 1.4 0.17 44.0 49.8 145.1 583 A 

B01KRx_XK -22.24 26.72 SKS 30 18 0.85 0.35 91.8 2.2 126.8 91 B 

B01KRx_XK -22.24 26.72 SKS 49 6 1.75 0.38 348.7 71.4 -10.6 14 B 

B01KRx_XK -22.24 26.72 SKS 49 6.5 0.7 0.1 266.8 1.9 -76.4 170 B 

B01KRx_XK -22.24 26.72 SKS 59 4.5 1 0.12 269.8 5.8 -78.2 12 B 

B01KRx_XK -22.24 26.72 SKS 38 15.5 0.9 0.3 280.4 10.9 -62.3 63 B 

B01KRx_XK -22.24 26.72 SKS 77 5.5 0.85 0.15 286.4 19.0 -66.8 20 B 

B01KRx_XK -22.24 26.72 SKS 17 9.5 1.1 0.22 248.9 -20.0 -70.8 3 B 

B02LTx_XK -21.39 25.58 SKS 55 14 1.1 0.38 83.8 10.8 126.6 28 B 

B02LTx_XK -21.39 25.58 SKS 52 8 1.25 0.25 99.2 -4.5 129.1 10 B 

B02LTx_XK -21.39 25.58 SKS 62 2.5 1.25 0.15 85.1 9.2 126.2 37 B 

B02LTx_XK -21.39 25.58 SKS 63 4 0.9 0.1 101.4 -6.5 129.8 155 A 

B02LTx_XK -21.39 25.58 SKS 52 18.5 0.8 0.5 93.4 0.6 126.2 30 B 

B02LTx_XK -21.39 25.58 SKS 50 6.5 0.75 0.1 266.3 1.1 -77.4 145 A 

B02LTx_XK -21.39 25.58 SKS 53 5 1.05 0.15 81.2 18.7 145.3 602 A 

B02LTx_XK -21.39 25.58 SKS 70 13.5 1.1 0.38 110.0 -6.0 149.7 62 B 

B02LTx_XK -21.39 25.58 SKS 59 15 0.85 0.25 101.6 -7.4 128.2 112 B 

B03SLx_XK -21.12 24.76 SKS 16 6 0.9 0.15 43.3 49.8 145.1 583 B 

B03SLx_XK -21.12 24.76 SKS 27 4.5 1.05 0.15 51.8 42.7 131.1 562 A 

B03SLx_XK -21.12 24.76 SKS 57 12 0.9 0.32 81.3 18.7 145.3 602 B 

B03SLx_XK -21.12 24.76 SKS 31 5 1.15 0.22 54.4 34.5 104.2 10 B 

B03SLx_XK -21.12 24.76 SKS 175 5 1.45 0.35 249.5 -20.0 -70.8 3 B 

B03SLx_XK -21.12 24.76 SKS 14 5.5 0.75 0.1 149.9 -24.6 179.1 527 B 

B04KHx_XK -20.47 24.51 SKS 33 12 0.65 0.17 89.5 4.2 124.5 326 B 
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B04KHx_XK -20.47 24.51 SKS 172 13.5 0.8 0.25 240.9 -29.1 -71.2 63 B 

B04KHx_XK -20.47 24.51 SKS 25 2.5 1.6 0.12 51.6 42.7 131.1 562 B 

B04KHx_XK -20.47 24.51 SKS 40 5 1.2 0.18 80.9 18.7 145.3 602 B 

B04KHx_XK -20.47 24.51 SKS 21 8 0.65 0.1 156.1 -41.7 174.4 14 B 

B04KHx_XK -20.47 24.51 SKS 18 7 1.45 0.22 54.5 34.5 104.2 10 B 

B04KHx_XK -20.47 24.51 SKS 176 7.5 1.85 0.33 56.4 30.0 98.0 6 B 

B04KHx_XK -20.47 24.51 SKS 22 6 1.45 0.22 66.7 29.9 138.8 402 B 

B04KHx_XK -20.47 24.51 SKS 12 10.5 1.4 0.32 249.6 -20.0 -70.8 3 B 

B04KHx_XK -20.47 24.51 SKS 17 9.5 1 0.22 149.9 -24.6 179.1 527 B 

B05MOx_XK -20.22 24.13 SKS 2 13 1.2 0.43 259.2 -8.4 -74.3 145 B 

B05MOx_XK -20.22 24.13 SKS 45 16.5 0.55 0.22 85.3 9.2 126.2 37 B 

B05MOx_XK -20.22 24.13 SKS 25 15 1.15 0.48 51.5 42.7 131.1 562 A 

B05MOx_XK -20.22 24.13 SKS 30 5 1.3 0.23 58.0 30.3 102.9 14 B 

B05MOx_XK -20.22 24.13 SKS 30 7.5 1.25 0.3 54.6 34.5 104.2 10 B 

B05MOx_XK -20.22 24.13 SKS 47 6.5 1.45 0.22 274.5 11.6 -85.9 135 B 

B06ORx_XK -19.9 23.53 SKS 72 4 1.6 0.33 92.5 2.2 126.8 91 B 

B06ORx_XK -19.9 23.53 SKS 43 15 0.6 0.17 89.7 4.2 124.5 326 B 

B06ORx_XK -19.9 23.53 SKS 56 17 0.85 0.35 258.8 -8.9 -75.1 129 B 

B06ORx_XK -19.9 23.53 SKS 27 4 1 0.15 51.4 42.7 131.1 562 A 

B06ORx_XK -19.9 23.53 SKS 38 9.5 1.15 0.45 54.8 34.5 104.2 10 B 

B06ORx_XK -19.9 23.53 SKS 34 6 1.4 0.4 287.8 19.0 -66.8 20 B 

B07DXx_XK -20.55 22.75 SKS 76 16 0.7 0.18 102.3 -6.5 129.8 155 B 

B07DXx_XK -20.55 22.75 SKS 61 12.5 0.9 0.32 81.4 18.7 145.3 602 B 

B08TSx_XK -20.16 22.46 SKS 27 8 1.05 0.45 102.4 -6.5 129.8 155 B 

B10PPx_XK -18.91 22.54 SKS 26 2.5 1.6 0.2 41.9 49.8 145.1 583 B 

B10PPx_XK -18.91 22.54 SKS 36 16 1.1 0.43 56.6 37.9 143.9 31 B 

B10PPx_XK -18.91 22.54 SKS 17 8 0.9 0.15 51.1 42.7 131.1 562 A 

B11ETx_XK -19.02 22.32 SKS 12 11 1.05 0.25 56.6 37.9 143.9 31 B 

B11ETx_XK -19.02 22.32 SKS 176 15.5 0.9 0.32 66.1 29.9 138.8 402 B 
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B11ETx_XK -19.02 22.32 SKS 38 14.5 1.15 0.4 282.0 10.9 -62.3 63 B 

B12SSx_XK -18.75 22.2 SKS 76 15 0.75 0.3 288.3 19.0 -66.8 20 B 

B13NXx_XK -18.58 21.99 SKS 61 18.5 0.8 0.33 260.3 -5.4 -81.9 10 B 

B15MWx_XK -19.63 23.83 SKS 26 6.5 1.4 0.58 42.5 49.8 145.1 583 B 

B15MWx_XK -19.63 23.83 SKS 50 16 0.6 0.22 101.7 -6.5 129.8 155 A 

B15MWx_XK -19.63 23.83 SKS 28 8 1 0.25 51.3 42.7 131.1 562 A 

B15MWx_XK -19.63 23.83 SKS 55 6 1.4 0.3 80.5 18.7 145.3 602 B 

B17CIx_XK -19.29 22.91 SKS 43 5 0.9 0.12 259.7 -8.4 -74.3 145 A 

B17CIx_XK -19.29 22.91 SKS 22 11 0.55 0.15 259.0 -8.9 -75.1 129 A 

B17CIx_XK -19.29 22.91 SKS 1 6 1 0.2 54.9 34.5 104.2 10 B 

SA64xx_XA -22.97 26.2 SKS 60 18.5 0.75 0.48 279.8 10.6 -63.5 19 B 

SA64xx_XA -22.97 26.2 SKS 75 2 1.3 0.15 268.9 3.9 -75.8 198 A 

SA64xx_XA -22.97 26.2 SKS 33 16.5 0.5 0.17 255.5 -13.7 -68.8 586 B 

SA65xx_XA -22.82 27.22 SKS 31 7.5 1.2 0.32 136.4 -20.4 169.3 57 B 

SA65xx_XA -22.82 27.22 SKS 76 3 1.25 0.3 268.5 3.9 -75.8 198 A 

SA65xx_XA -22.82 27.22 SKS 40 5 1.15 0.18 94.4 -3.8 119.7 33 B 

SA66xx_XA -21.90 26.37 SKS 65 18.5 1.2 0.47 279.9 10.6 -63.5 19 B 

SA66xx_XA -21.90 26.37 SKS 71 3 1.3 0.2 269.1 3.9 -75.8 198 A 

SA66xx_XA -21.90 26.37 SKS 60 17 1.15 0.48 261.0 -4.4 -76.7 112 B 

SA66xx_XA -21.90 26.37 SKS 62 3.5 1 0.2 255.4 -13.7 -68.8 586 B 

SA66xx_XA -21.90 26.37 SKS 67 9 1.05 0.28 269.1 3.9 -75.8 177 B 

SA66xx_XA -21.90 26.37 SKS 82 13.5 0.85 0.28 108.3 -5.5 147.9 179 B 

SA66xx_XA -21.90 26.37 SKS 46 16 0.9 0.28 74.6 23.9 141.9 95 B 

SA67xx_XA -21.89 27.27 SKS 69 3.5 1.3 0.15 279.5 10.6 -63.5 19 B 

SA67xx_XA -21.89 27.27 SKS 61 12 0.85 0.22 268.7 3.9 -75.8 198 A 

SA67xx_XA -21.89 27.27 SKS 55 5 1.25 0.25 255.1 -13.7 -68.8 586 B 

SA67xx_XA -21.89 27.27 SKS 66 9.5 1 0.23 268.8 3.9 -75.8 177 B 

SA67xx_XA -21.89 27.27 SKS 60 11.5 0.85 0.25 273.8 14.4 -91.5 33 B 

SA70xx_XA -21.09 26.34 SKS 34 11 1 0.25 82.4 10.2 121.7 33 B 
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SA70xx_XA -21.09 26.34 SKS 45 2.5 1.15 0.15 153.7 -32.1 179.8 332 A 

SA70xx_XA -21.09 26.34 SKS 58 3 1.1 0.1 269.3 3.9 -75.8 198 A 

SA70xx_XA -21.09 26.34 SKS 59 11.5 1 0.25 175.2 -63.1 -164.3 10 B 

SA70xx_XA -21.09 26.34 SKS 49 7 1.45 0.27 84.1 9.8 125.8 105 B 

SA70xx_XA -21.09 26.34 SKS 57 12.5 0.85 0.25 261.2 -4.4 -76.7 112 B 

SA70xx_XA -21.09 26.34 SKS 36 11 1.05 0.3 91.1 1.2 122.5 24 B 

SA70xx_XA -21.09 26.34 SKS 53 12 1.3 0.5 255.4 -13.7 -68.8 586 A 

SA70xx_XA -21.09 26.34 SKS 69 4 1.05 0.2 269.3 3.9 -75.8 177 B 

SA70xx_XA -21.09 26.34 SKS 74 12 0.8 0.17 108.0 -5.5 147.9 179 B 

SA70xx_XA -21.09 26.34 SKS 44 8.5 0.8 0.2 74.1 23.9 141.9 95 B 

B01KRx_XK -22.24 26.72 PKS 33 1 1.8 0.17 43.1 49.3 155.4 29 B 

B01KRx_XK -22.24 26.72 PKS 21 1 1.9 0.13 34.2 54.7 162.3 43 B 

B01KRx_XK -22.24 26.72 PKS 49 11.5 0.6 0.13 274.1 17.2 -100.7 17 A 

B02LTx_XK -21.39 25.58 PKS 57 12.5 1 0.3 25.8 51.6 -178.3 16 B 

B02LTx_XK -21.39 25.58 PKS 40 12 0.95 0.27 276.6 18.3 -100.4 53 B 

B02LTx_XK -21.39 25.58 PKS 49 3 1.15 0.2 125.7 -10.9 166.0 21 B 

B02LTx_XK -21.39 25.58 PKS 49 9.5 0.7 0.13 275.3 17.4 -101.0 24 B 

B03SLx_XK -21.12 24.76 PKS 12 3.5 0.9 0.1 42.0 49.3 155.4 29 B 

B03SLx_XK -21.12 24.76 PKS 19 5 0.9 0.18 39.3 50.9 157.3 41 B 

B03SLx_XK -21.12 24.76 PKS 10 11.5 0.95 0.28 39.2 50.9 157.5 41 B 

B03SLx_XK -21.12 24.76 PKS 19 7 0.9 0.2 39.2 50.9 157.4 29 A 

B03SLx_XK -21.12 24.76 PKS 17 7 1.5 0.4 40.4 50.1 157.2 18 B 

B03SLx_XK -21.12 24.76 PKS 1 14.5 0.75 0.28 36.7 52.2 160.2 18 B 

B03SLx_XK -21.12 24.76 PKS 19 1 0.9 0.07 39.2 52.2 151.5 623 A 

B03SLx_XK -21.12 24.76 PKS 20 1.5 0.9 0.1 37.7 53.2 152.8 580 A 

B03SLx_XK -21.12 24.76 PKS 15 5 0.75 0.15 32.9 54.7 162.3 43 A 

B03SLx_XK -21.12 24.76 PKS 31 3 1.25 0.25 133.2 -14.7 169.8 638 B 

B04KHx_XK -20.47 24.51 PKS 11 15 0.85 0.32 130.8 -14.7 167.3 160 B 

B04KHx_XK -20.47 24.51 PKS 23 2.5 1.65 0.2 41.5 49.3 155.4 29 A 
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B04KHx_XK -20.47 24.51 PKS 14 6.5 0.7 0.12 130.4 -14.3 167.3 188 A 

B04KHx_XK -20.47 24.51 PKS 24 2 1.6 0.17 38.8 50.9 157.3 41 A 

B04KHx_XK -20.47 24.51 PKS 16 2.5 2.05 0.23 38.8 50.9 157.5 41 B 

B04KHx_XK -20.47 24.51 PKS 21 1.5 1.7 0.13 38.8 50.9 157.4 29 A 

B04KHx_XK -20.47 24.51 PKS 11 7.5 1.05 0.27 80.9 18.7 145.3 602 B 

B04KHx_XK -20.47 24.51 PKS 28 3.5 1 0.1 152.9 -23.0 -177.1 171 A 

B04KHx_XK -20.47 24.51 PKS 26 6.5 1.6 0.25 152.8 -20.6 -175.8 149 B 

B04KHx_XK -20.47 24.51 PKS 18 1.5 1.6 0.1 38.8 52.2 151.5 623 A 

B04KHx_XK -20.47 24.51 PKS 18 2.5 1.65 0.17 37.3 53.2 152.8 580 A 

B04KHx_XK -20.47 24.51 PKS 23 2 1.9 0.22 32.4 54.7 162.3 43 B 

B04KHx_XK -20.47 24.51 PKS 28 6 0.9 0.2 329.5 49.8 -127.4 11 B 

B05MOx_XK -20.22 24.13 PKS 12 3 0.85 0.08 41.2 49.3 155.4 29 A 

B05MOx_XK -20.22 24.13 PKS 16 11.5 0.75 0.2 38.6 50.9 157.3 41 B 

B05MOx_XK -20.22 24.13 PKS 22 9 0.6 0.17 38.5 50.9 157.4 29 B 

B05MOx_XK -20.22 24.13 PKS 6 14 0.65 0.18 153.2 -23.0 -177.1 171 B 

B05MOx_XK -20.22 24.13 PKS 18 9.5 0.75 0.18 156.4 -24.3 -174.9 10 B 

B05MOx_XK -20.22 24.13 PKS 15 2 0.65 0.07 38.6 52.2 151.5 623 A 

B05MOx_XK -20.22 24.13 PKS 21 6.5 0.6 0.2 37.1 53.2 152.8 580 B 

B06ORx_XK -19.9 23.53 PKS 27 1.5 1.4 0.23 38.1 50.9 157.4 29 B 

B06ORx_XK -19.9 23.53 PKS 22 7 1.55 0.32 137.3 -19.1 169.5 280 B 

B06ORx_XK -19.9 23.53 PKS 21 2 1.15 0.13 38.3 52.2 151.5 623 A 

B06ORx_XK -19.9 23.53 PKS 24 5 1.3 0.45 36.8 53.2 152.8 580 B 

B07DXx_XK -20.55 22.75 PKS 63 6.5 1.25 0.33 132.3 -14.7 167.3 160 B 

B07DXx_XK -20.55 22.75 PKS 52 2.5 1.3 0.25 132.0 -14.3 167.3 188 B 

B07DXx_XK -20.55 22.75 PKS 56 5 1.45 0.38 127.5 -10.6 166.4 9 B 

B07DXx_XK -20.55 22.75 PKS 52 4 1.5 0.48 131.5 -13.9 167.2 187 B 

B08TSx_XK -20.16 22.46 PKS 57 2 1.75 0.25 132.4 -14.7 167.3 160 B 

B08TSx_XK -20.16 22.46 PKS 66 8 1.25 0.33 129.5 -12.5 166.5 27 B 

B08TSx_XK -20.16 22.46 PKS 57 2.5 1.2 0.17 132.0 -14.3 167.3 188 A 
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B08TSx_XK -20.16 22.46 PKS 63 3 1.35 0.18 129.1 -12.1 166.5 112 B 

B10PPx_XK -18.91 22.54 PKS 17 7 1.05 0.2 40.0 49.3 155.4 29 A 

B10PPx_XK -18.91 22.54 PKS 14 4 1.5 0.25 34.4 52.4 160.4 14 B 

B10PPx_XK -18.91 22.54 PKS 25 3 1.85 0.38 37.6 52.2 151.5 623 A 

B10PPx_XK -18.91 22.54 PKS 49 10 1 0.25 113.7 -6.4 154.9 35 B 

B10PPx_XK -18.91 22.54 PKS 36 15 0.8 0.33 155.5 -24.0 -176.7 64 B 

B12SSx_XK -18.75 22.2 PKS 87 6.5 1.35 0.23 27.0 57.6 163.2 10 B 

B12SSx_XK -18.75 22.2 PKS 65 10.5 1.3 0.55 41.8 49.8 145.1 583 B 

B12SSx_XK -18.75 22.2 PKS 86 9 0.55 0.1 126.5 -11.7 164.9 8 B 

B13NXx_XK -18.58 21.99 PKS 51 3 1.7 0.28 34.2 52.2 160.2 18 B 

B14MHx_XK -18.3 21.79 PKS 15 15.5 0.65 0.2 126.5 -11.7 164.9 8 B 

B15MWx_XK -19.63 23.83 PKS 8 6.5 1.4 0.23 40.5 49.4 156.1 10 B 

B15MWx_XK -19.63 23.83 PKS 21 3.5 1.15 0.18 40.8 49.3 155.4 29 A 

B15MWx_XK -19.63 23.83 PKS 21 8 1 0.35 38.1 50.9 157.3 41 B 

B15MWx_XK -19.63 23.83 PKS 16 6 1 0.23 38.1 50.9 157.4 29 B 

B15MWx_XK -19.63 23.83 PKS 15 6.5 1.1 0.3 35.3 52.4 160.4 14 B 

B15MWx_XK -19.63 23.83 PKS 11 3 0.95 0.1 38.3 52.2 151.5 623 A 

B1665x_XK -22.82 27.23 PKS 13 20.5 0.35 0.18 40.6 52.2 151.5 623 B 

B1665x_XK -22.82 27.23 PKS 28 5 0.65 0.22 39.1 53.2 152.8 580 B 

B1665x_XK -22.82 27.23 PKS 73 9 0.7 0.18 273.4 17.2 -100.7 17 B 

B17CIx_XK -19.29 22.91 PKS 15 6.5 0.9 0.2 40.3 49.3 155.4 29 B 

SA66xx_XA -21.9 26.37 PKS 72 4 1.15 0.15 276.1 18.7 -101.6 70 B 

SA67xx_XA -21.89 27.27 PKS 45 9 0.7 0.12 275.8 18.7 -101.6 70 A 

SA70xx_XA -21.09 26.34 PKS 61 4 0.9 0.1 276.8 18.7 -101.6 70 A 

SA70xx_XA -21.09 26.34 PKS 41 6 1.15 0.33 150.9 -22.1 -176.8 167 B 

B01KRx_XK -22.24 26.72 SKK 44 13.5 0.65 0.2 91.8 2.2 126.8 91 B 

B01KRx_XK -22.24 26.72 SKK 41 6.5 1 0.12 273.2 14.0 -91.9 24 B 

B01KRx_XK -22.24 26.72 SKK 44 5.5 1.4 0.33 58.5 37.9 143.9 31 B 

B01KRx_XK -22.24 26.72 SKK 56 16 1 0.43 79.5 20.8 146.8 9 B 
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B02LTx_XK -21.39 25.58 SKK 31 18.5 0.95 0.4 274.1 14.0 -91.9 24 B 

B02LTx_XK -21.39 25.58 SKK 62 7 0.95 0.15 108.2 -7.2 144.0 10 B 

B02LTx_XK -21.39 25.58 SKK 18 10 1 0.25 47.2 46.2 150.8 112 B 

B02LTx_XK -21.39 25.58 SKK 57 1.5 1.5 0.08 81.2 18.7 145.3 602 A 

B02LTx_XK -21.39 25.58 SKK 52 8.5 1.25 0.28 79.2 20.8 146.8 9 B 

B02LTx_XK -21.39 25.58 SKK 54 4.5 1.65 0.55 132.6 -14.7 169.8 638 B 

B03SLx_XK -21.12 24.76 SKK 26 4.5 0.85 0.15 43.3 49.8 145.1 583 A 

B03SLx_XK -21.12 24.76 SKK 35 7.5 1.5 0.38 57.9 37.9 143.9 31 B 

B03SLx_XK -21.12 24.76 SKK 55 4 0.95 0.15 81.3 18.7 145.3 602 A 

B03SLx_XK -21.12 24.76 SKK 24 5.5 1.1 0.28 37.7 53.2 152.8 580 B 

B03SLx_XK -21.12 24.76 SKK 43 6.5 1.6 0.33 67.6 27.4 127.4 119 A 

B04KHx_XK -20.47 24.51 SKK 27 2.5 1.45 0.18 42.9 49.8 145.1 583 A 

B04KHx_XK -20.47 24.51 SKK 41 5 2.1 0.47 57.5 37.9 143.9 31 B 

B04KHx_XK -20.47 24.51 SKK 35 5 0.8 0.08 80.9 18.7 145.3 602 A 

B04KHx_XK -20.47 24.51 SKK 15 7 0.8 0.12 152.9 -23.0 -177.1 171 B 

B04KHx_XK -20.47 24.51 SKK 22 2.5 1.95 0.15 37.3 53.2 152.8 580 B 

B04KHx_XK -20.47 24.51 SKK 35 10 1.55 0.5 67.4 27.4 127.4 119 B 

B04KHx_XK -20.47 24.51 SKK 12 4 0.75 0.08 149.9 -24.6 179.1 527 A 

B04KHx_XK -20.47 24.51 SKK 8 10 1 0.28 149.9 -25.8 178.2 634 A 

B05MOx_XK -20.22 24.13 SKK 2 18.5 0.4 0.25 42.8 49.8 145.1 583 B 

B05MOx_XK -20.22 24.13 SKK 29 9 0.65 0.12 80.8 18.7 145.3 602 A 

B05MOx_XK -20.22 24.13 SKK 48 10.5 1.05 0.27 110.1 -6.0 149.7 62 B 

B06ORx_XK -19.90 23.53 SKK 53 8 1.2 0.27 80.7 18.7 145.3 602 A 

B06ORx_XK -19.90 23.53 SKK 47 4 1.3 0.23 153.7 -23.0 -177.1 171 B 

B06ORx_XK -19.90 23.53 SKK 41 13 1.15 0.33 78.6 20.8 146.8 9 B 

B06ORx_XK -19.90 23.53 SKK 42 4 1.2 0.25 150.7 -24.6 179.1 527 A 

B06ORx_XK -19.90 23.53 SKK 27 11.5 1 0.25 150.6 -25.8 178.2 634 B 

B07DXx_XK -20.55 22.75 SKK 55 21.5 0.6 0.28 81.4 18.7 145.3 602 B 

B07DXx_XK -20.55 22.75 SKK 22 8 1.05 0.2 67.8 27.4 127.4 119 B 
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B08TSx_XK -20.16 22.46 SKK 53 12.5 1 0.35 111.0 -6.0 149.7 62 B 

B08TSx_XK -20.16 22.46 SKK 72 1 1.8 0.15 151.9 -24.6 179.1 527 A 

B09NKx_XK -19.66 22.19 SKK 21 9.5 1.1 0.3 155.1 -23.0 -177.2 155 B 

B09NKx_XK -19.66 22.19 SKK 44 13 1.45 0.52 67.6 27.4 127.4 119 B 

B09NKx_XK -19.66 22.19 SKK 27 11 0.9 0.22 156.7 -20.8 -174.7 45 B 

B10PPx_XK -18.91 22.54 SKK 27 8.5 1.15 0.38 41.9 49.8 145.1 583 B 

B10PPx_XK -18.91 22.54 SKK 18 7 0.7 0.13 80.3 18.7 145.3 602 A 

B10PPx_XK -18.91 22.54 SKK 2 5 1.4 0.28 67.2 27.4 127.4 119 B 

B11ETx_XK -19.02 22.32 SKK 24 10.5 0.65 0.15 67.3 27.4 127.4 119 B 

B13NXx_XK -18.58 21.99 SKK 18 12.5 0.5 0.18 80.1 18.7 145.3 602 B 

B15MWx_XK -19.63 23.83 SKK 42 4.5 1.15 0.12 80.5 18.7 145.3 602 A 

B1665x_XK -22.82 27.23 SKK 39 9 0.75 0.1 272.7 14.0 -91.9 24 B 

B1665x_XK -22.82 27.23 SKK 63 17 0.55 0.22 81.7 18.7 145.3 602 B 

B1665x_XK -22.82 27.23 SKK 69 8.5 0.85 0.2 113.4 -6.6 155.1 56 B 

B1665x_XK -22.82 27.23 SKK 67 2 1.25 0.35 148.2 -24.6 179.1 527 B 

B17CIx_XK -19.29 22.91 SKK 23 6 1 0.22 42.2 49.8 145.1 583 B 

B17CIx_XK -19.29 22.91 SKK 31 9 1.05 0.27 56.8 37.9 143.9 31 B 

SA65xx_XA -22.82 27.22 SKK 41 17 0.5 0.28 74.9 23.9 141.9 95 B 

SA65xx_XA -22.82 27.22 SKK 46 10.5 1 0.25 273.2 14.4 -91.5 33 B 

SA66xx_XA -21.90 26.37 SKK 44 11.5 1 0.3 66.0 31.2 140.5 86 B 

SA66xx_XA -21.90 26.37 SKK 42 7 1.25 0.22 74.6 23.9 141.9 95 B 

SA70xx_XA -21.09 26.34 SKK 46 3 1.25 0.23 153.7 -32.1 179.8 332 B 

SA70xx_XA -21.09 26.34 SKK 29 5 1.7 0.25 65.5 31.2 140.5 86 B 

SA70xx_XA -21.09 26.34 SKK 24 10 1.3 0.3 74.1 23.9 141.9 95 B 

SA70xx_XA -21.09 26.34 SKK 41 3.5 1.4 0.28 146.9 -22.5 179.1 611 B 
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