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ANALYSIS AND DESIGN OF ONE- AND TWO-SIDED CUSUM CHARTS WITH

KNOWN AND ESTIMATED PARAMETERS

by

Martin Xavier Dunbar

(Under the Direction of Charles W. Champ)

ABSTRACT

The integral equation and Markov chain methods for analyzing the performances

of one- and two-sided CUSUM X charts with known and estimated in-control process

parameters are studied. Some new integral equations for analyzing the two-sided

CUSUM X are derived. These methods provide us with ways to approximate the

run length distribution of the chart. Since parameters of the run length distribution

are commonly used measures of the performance of a control chart, it is important

to choose an accurate approximation method. We develop some new Markov chain

approximations using methods similar to the methods for approximating a solution

to integral equations that describe the run length distribution.
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Chapter 1

INTRODUCTION

The Shewhart X (with runs rules), cumulative sum (CUSUM), and exponen-

tially weighted moving average (EWMA) charts are well know methods used by prac-

titioners as aids in monitoring for a change in the mean of the distribution of a

quality measurement. There are three methods that are commonly used to evaluate

the run length performance of these charts: simulation, Markov chain, and integral

equation approaches. Champ (1986) and Champ and Woodall (1987) showed how

the Shewhart X chart with supplementary runs rules can be represented as a Markov

chain. Page (1954) introduced one- and two-sided CUSUM X charts in which he

used an integral equation approach to study the average run length (ARL) of the

the one-sided charts. Brook and Evans (1972) gave a method for obtaining a Markov

chain approximation to the CUSUM chart. The EWMA chart was introduced by

Roberts (1959). A Markov chain approximation was used by Lucas and Saccucci

(1990) to analyze the performance of this chart. Crowder (1987) gave some integral

equations that are useful for evaluating the properties of the run length distribution

of the EWMA chart using integral equations. Champ, Rigdon, and Scharnagl (2001)

show how various integral equations are derived that are useful in control chart per-

formance analysis. It is shown by Champ and Rigdon (1991) under what conditions

the Markov chain approximation of Brook and Evans (1972) and integral equation

methods are equivalent.

We will study the one- and two-sided CUSUM X charts of Page (1954) and the

two-sided CUSUMX chart of Crosier (1986). Using the method presented in Champ,

Rigdon, and Scharnagl (2001), we derive integral equations useful in analyzing the

run length distribution of the two-sided CUSUM X chart of Crosier (1986). It is

shown that if a certain method is used to approximate the solutions to these integral

equations gives the same results as the Markov chain method used by Crosier (1986).

The Markov chain approximation of the two-sided CUSUM X chart of Page (1954)

1
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is derived using the method presented in Woodall (1984) and implement this method

in FORTRAN. A parameters estimated version of the two-sided CUSUM X chart of

Crosier (1986) is presented.



Chapter 2

MODELING AND SAMPLING PROCEDURE

2.1 Introduction

Typically, statistical methods are designed for a given data model and sampling

procedure. Control charts are no exception. The independent normal model is the

most commonly assumed model with samples being collected periodically the most

commonly assumed sampling procedure. Using a model for the data does not imply

that the data follows this model nor is this of concern. The importance is how well the

procedure performs for the practitioner. There are two ways to examine a statistical

method�s performance. One way is to design the method under one model and then

study the robustness of the method under other models. Selecting the model under

which the method is designed and the models to examine the robustness is part of

the di¢ culty in studying the performance of the method. The second way to study

the performance of a procedure is in actual practice. The acceptance of the Shewhart

control chart is due in large part to how it has been perceived to perform in practice.

When the quality measurement is a continuous measurement, the independent normal

model for the design of the charts has produced charts that work exceptionally well

in practice. This also holds for other control charts.

In this chapter, we will examine the independent normal model. It is not our

intent to study the robustness of control charts. The sampling method under which

we study our methods assumes the practitioner obtains information about the process

in the form of the quality meausurements on independent random samples of size n

taken periodically from the output of the process. A question often asked by the

practitioner is what should be the value of n and in some cases how many samples

should be taken? These questions will not be studied in this thesis, but we will

provided results that will be useful in answering these questions.

Other sampling methods, include among others; those that vary the sample size,

those that vary the sampling intervals, and those that may only look at part of the

3



4

sample in order to make a decision about the process. Charts that used these sampling

methods are referred to as variable sampling size (VSS), variable sampling interval

(VSI), and multiple sampling control charts, respectively. For each of these charts,

sample data is used to decide on the sample size, the interval, and how much of the

sample to measure. In general, when data is used to determine what chart will be

used at the next sampling stage to aid the practitioner in making a decision about

the quality of the process, these charts are referred to as adaptive control charts.

2.2 Meaning of In- and Out-of-Control

In the �rst phase (Phase I) of the process, it is of interest to bring the process into

a state of statistical in-control. Shewhart (1931) describes two causes of variability,

�natural�and �assignable.�Natural causes of variability are inherent in the process

and cannot be removed. A process that is operating with only natural causes of

variability can only be improved by redesigning the process. Assignable causes of

variability can be removed and when removed, the quality of the outputted items

is improved. A process that is operating with only natural causes of variability is

said to be in a state of statistical in-control and we will simply say the process is

in-control. When an assignable cause(s) is present, we will classify the process as

being out-of-control. For the normal model, we assume that the process is in-control

when � = �0 and � = �0 for �xed values �0 and �0. It will be convenient to consider

the parameters � = (�� �0) =�0 and � = �=�0. Writing � = �0+��0, we see that � is

the number of in-control standard deviation �0 that � has shifted from �0. Observing

that � = ��0, we see that � is the proportion of �0 that the standard deviation � has

shifted from �0. It is easy to see that the process is in-control if � = 0 and � = 1. It is

our interest to study CUSUM charting procedures that are used in the second phase

(Phase II) of the process. In this phase, it is assumed the process is in-control and it is

desirable to monitor the process to detect a change from in-control to out-of-control.
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2.3 Sampling Method

The random sample is the most commonly used sampling method. Under the

assumption that the process is producing items in which the quality measurements are

independent, if one further assumes that these quality measurements are identically

distributed, then the quality measurements on any n items are independent and

identically distributed (iid). To obtain information about the quality of the process,

we will periodically select n items from the output of the process and take the quality

measurement X on each. The measurements on the n individuals in the tth sample

will be denoted by Xt;1; : : : ; Xt;n. Periodic here may indicate the number of items

produced or the time between samples is constant.

Other sampling methods discussed in the literature vary the sample size, the

number of items or time between samples, or the rule used by the chart to signal.

Champ (1986) stated �It is generally the case that one set of rules is selected and only

this set is used. The quality of the product may be more appropriately monitored if

periodically the runs rules are changed. This can be done by applying less stringent

rules if, after a �xed number of observations, the process appears to be in control. It

may also be the case that, if the process reaches a point where it appears to be going

out-of-control more often between process corrections, more stringent rules may need

to be applied.�

2.4 Independent Normal Model

The most widely assumed process model is the independent normal model. Under

this model, the distribution of the quality measurement X is a normal distribution

with mean � and standard deviation �. Further, the quality measurements on any

two items of output are assumed to be independent. We can express the probability

density function (pdf) fX (x) and the cumulative distribution function (cdf) FX (x)
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as

fX (x) =
1

�
�

�
x� �
�

�
and FX (x) = �

�
x� �
�

�
;

where

� (z) =
1p
2�
e�z

2=2 and � (z) =
Z z

�1
� (u) du.

The functions � (z) and � (z) are, respectively, the pdf and cdf of a random variable

Z that has a (standard) normal distribution with mean 0 and variance 1.

2.5 Estimating the Process Mean

We assume Phase I data will be available that is believed to be from an in-control

process in the form of m independent random samples each of size n. The measures-

ments on these sampled items will be represented by fXi;1; : : : ; Xi;ng, i = 1; : : : ;m

and used to estimate the in-control mean �0 and in-control standard deviation �0.

When n = 1, we will express Xi;j as Xi. The most common used estimator for �0 is

b�0 = X =
1

mn

Xm

i=1

Xn

j=1
Xi;j =

1

m

Xm

i=1
X i:

For the case in which n = 1, we have that X i = X. The random variable X is

sometimes referred to as the grand mean. Under the independent normal model, one

can show that X has a normal distribution with mean �0 and standard deviation

�0=
p
mn. It will be convenient to denote the standardized value of X by

Z0 =
X � �0
�0=
p
mn

:

Under the independent normal model, the random variable Z0 has a standard normal

distribution. The statistic X will be used in this thesis to estimate �0.

Various linear combinations of the sample data or their order statistics have been

suggested as estimators for the mean (see David (1981)). The sample mean is one

example. Others include the sample median, the trimmed means, and average of the

smallest and largest of the sample. In general, an estimator b�0 for �0 is expressed as
b�0 = 1

m

Xm

i=1
b�i;0, with b�i;0 =Xn

j=1
aj:nXi;j:n
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where Xi;1:n; : : : ; Xi;n:n represent the order statistics of the sample data Xi;1; : : : ; Xi;n.

For the sample mean, aj:n = 1=n for all values of i. To obtain the sample median, one

sets an=2:n = an=2+1:n = 1=2 and ai:n is zero otherwise for an even sample size. For n

odd, one choses a(n+1)=2:n = 1 and aj:n = 0 otherwise. An example of a (weighted)

trimmed mean is

b�i;0 = X i;T rimmed =
Xn�1

j=2
aj:nXi;j:n:

The average of the smallest and largest sets a1:n = an:n = 1=2 with aj:n = 0 for

j = 2; : : : ; n� 1.

The criteria used to select the estimator b�0 is often based on the estimator having
certain distributional proporties, as well as, nonstatistical reasons such as easy of use

and interpretation. Distributional properties that are typically considered are (1)

unbiasedness, (2) precision, and (3) robustness. For example, choosing the aj:n�s such

that Xn

j=1
aj:n = 1 and

Xn

j=1
aj:nE (Zi;j:n) = 0

yields unbiased estimators b�i;0 and b�0 of �0, where Zi;j:n is the standardized form of

Xi;j:n.One choice is to set aj:n = 1=n for j = 1; : : : ; n.

2.6 Estimating the Process Standard Deviation

Several estimators for �0 have been discussed in the literature. In the quality

control, literature, the most commonly used estimators for �0 are functions of the

sample range R and the sample standard deviation S. The sample range is de�ned

by

Ri = Xi;n:n �Xi;1:n:

We see that

Ri = (�+ �Zi;n:n)� (�+ �Zi;1:n) = � (Zi;n:n � Zi;1:n) :

The statisics Zi;n:n � Zi;1:n is called the standardized range. The mean and standard

deviation of its distribution are expressed by d2 = d2 (n) and d3 = d3 (n), respectively,
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which are functions of the sample size n. Under the independent normal model, the

mean �R and standard deviation �R of the distribution of the sample range R are

�R = d2� and �R = d3�:

The values of d2 = d2 (n) and d3 = d3 (n) are tabled in Harter (1961). Dividing Ri by

d2 yields an unbiased estimator of �0. The standard deviation of Ri=d2 is (d3=d2)�0.

One commonly used pooled unbiased estimator of �0 based on the sample ranges is

R=d2, where

R =
1

m

Xm

i=1
Ri:

The standard deviation of R=d2 is given by

�R=d2 =
1p
m

d3
d2
�0:

The sample standard deviation Si is de�ned by

Si =

r
1

n� 1
Xn

j=1

�
Xi;j �X i

�2
:

The mean and standard deviation of the distribution of the sample standard deviation

are

�S = c4�0 and �S =
q
1� c24�0, with c4 = c4 (n) =

p
2�
�
n
2

�
p
n� 1�

�
n�1
2

� :
It is easy to see that Si=c4 is an unbiased estimator of �0 having standard deviation

�Si=c4 =

s
1� c24
c24

�0:

A pooled unbiased estimator of �0 based on the sample standard deviations is S=c4,

where

S =
1

m

Xm

i=1
Si:

The standard deviation of this estimator is

�S=c4 =
1p
m

s
1� c24
c24

�0:
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A pooled unbiased estimator of �0 based on the sample variances is Sp=c4;m, where

S2p =
1

m

Xm

i=1
S2i and c4;m = c4 (m (n� 1)) =

p
2�
�
m(n�1)+1

2

�
p
m (n� 1)�

�
m(n�1)

2

� .
Under the independent normal model, the random variable m (n� 1)S2p=�20 has a

chi square distribution with m (n� 1) degrees of freedom. It then follows that the

variance of this estimator is given by

�V0=c4;m =

s
1� c24;m
c24;m

�0:

It can be demonstrated that

�2S2p=c4;m � �
2
S=c4

� �2
R=d2

:

Further, each of the estimators R, S, and V are stochastically independent of the

sample mean X as well as the grand mean X. The estimator Sp=c4;m will be used in

this thesis to provide unbiased estimates of �0.

Linear estimators of �0 have the form

b�i;0 =Xn

j=1
bj:nXi;j:n

with pooled estimator

b�0 = 1

m

Xm

i=1
b�i;0:

One can obtain unbiased estimators b�i;0 and b�0 by selecting the bj:n�s such that
Xn

j=1
bj:n = 0 and

Xn

j=1
bj:nE (Zi;j:n) = 1.

One choice is to set

bj:n =
E (Zi;j:n)Pn

j=1 [E (Zi;j:n)]
2 :

Little information is available in the literature about the distributions of these esti-

mators of �0.
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2.7 Conclusion

The model and sampling method for the process data were discussed. The mean-

ings of in- and out-of-control processes were de�ned in terms of the model and a

reparameterization of the model. Various methods from the literature were discussed

for estimating the parameters of the model. In this thesis, the estimators X and

Sp=c4;m will be used as estimators for �0 and �0, respectively. The distributions of

these estimators for the in-control mean and standard deviation were given. These

results will be useful in analyzing the run length distribution of the CUSUM X charts

with estimated parameters.



Chapter 3

CUSUM CHARTS FOR MONITORING THE PROCESS MEAN

3.1 Introduction

Various CUSUM charts have been introduced in the literature beginning with Page

(1954). In this chapter, we will discuss the one- and two-sided CUSUM X charts of

Page (1954) and the two-sided CUSUM X chart of Crosier (1986). Each of these are

special cases of a family of cumulative sum type charts described by Champ, Woodall,

and Mohsen (1991). We also discuss the method of Healy (1987) for deriving the one-

sided CUSUM X charts of Page (1954). An example is given illustrating how a

practitioner would used these charts.

3.2 CUSUM X Charts of Page (1954)

In his seminal paper, Page (1954) introduced the CUSUM quality control chart for

monitoring the process mean. The tabular form of the CUSUM chart was developed

by Ewan and Kemp (1960). Jones, Champ, and Rigdon (2004) expressed in tabular

form the statistic for an upper one-sided CUSUM X chart with estimated parameters

for detecting an increase in the process mean as

C+t = max

�
0; C+t�1 +

X t � b�0b�0=pn � k+
�

with C+0 = 0. Here, the statistics b�0 and b�0 are estimators of �0 and �0, respectively.
The chart is a plot of the points

�
t; C+t

�
for t = 1; 2; : : :. The chart signals a potential

out-of-control process at sampling stage t if C+t > h
+, where h+ � 0. The associated

lower sided CUSUM X chart for detecting decreases in the mean plots C�t versus t,

where

C�t = min

�
0; C�t�1 +

X t � b�0b�0=pn + k�
�

with C�0 = 0. The lower one-sided CUSUM X chart signals at sampling stage t if

C�t < h
� with h� � 0. The combined plot of the points

�
t; C�t

�
and

�
t; C+t

�
for t =

1; 2; : : : will be referred to as a two-sided CUSUM X chart. The chart parameters k�

11
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and k+ are often referred to as �reference�values and the chart parameters h� and h+

are called the control limits of the charts. One can see that the CUSUMX chart (with

estimated parameters) reduces to the Shewhart X chart (with estimated parameters)

if both h� and h+ are set to zero. Selecting 0 < C+0 < h
+ (or h� < C�0 < 0) gives

the charts that Lucas and Crosier (1982) referred to as a �head-start.�A head-start

increases the charts ability to detect a process that is initially out-of-control.

3.3 Healy�s Derivation

Healy (1987) developed the CUSUM chart for monitoring a process mean under

the assumption that �0 and �0 are known. For the upper one-sided CUSUM X chart,

let �+1 > �0 be a value of the process mean when the process is out-of-control for

which the practitioner is interested in detecting quickly. According to Healy (1987),

the upper one-sided CUSUM X chart can be expressed as

C
+(�)
t = max

(
0; C

+(�)
t�1 + log

 
fX
�
X t

��� = �+1 ; �0 �
fX
�
X t j� = �0; �0

� !) :
The chart signals at sampling stage t if C+(�)t > h+(�). Note that we can write

log

 
fX
�
X t

��� = �+1 ; �0 �
fX
�
X t j� = �0; �0

� ! = �+1 � �0
�0=
p
n

�
X t � �0
�0=
p
n
� k+

�
where k+ = 0:5 (�1 � �0) = (�0=

p
n). De�ning

C+t =
�0=
p
n

�+1 � �0
C
+(�)
t and h+ =

�0=
p
n

�+1 � �0
h+(�)

then

C+t = max

�
0; C+t�1 +

X t � �0
�0=
p
n
� k+

�
:

In a similar way, the lower one-sided CUSUM X chart with known parameters can

be derived with plotted statistic C�t given by

C�t = min

�
0; C+t�1 +

X t � �0
�0=
p
n
+ k�

�
;

where k� = 0:5
�
�0 � ��1

�
= (�0=

p
n) with ��1 < �0.
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3.4 Crosier�s Two-Sided CUSUM X Chart

Crosier (1986) introduced a CUSUM chart for monitoring the mean of a quality

measurement. First, he discusses the one-sided CUSUM X charts of Page (1954).

He expresses the plotted statistics in a way that shows how the statistics are shrunk

toward zero by multiplying by factors between zero and one. In particular, the plotted

statistic for the upper one-sided CUSUM X of Page (1954) is expressed as the the

statistic C+(�)t , where C+(�)t is determined by �rst calculating

A
+(�)
t = C

+(�)
t�1 +X t � �0

and then determining C+(�)t by

C
+(�)
t =

8><>: 0; A
+(�)
t � k+�0=

p
n;�

A
+(�)
t

��
1� k+ (�0=

p
n) =A

+(�)
t

�
; A

+(�)
t > k+�0=

p
n:

with C+(�)0 = 0 and k+ > 0. The chart signals at the �rst sampling stage t such that

C
+(�)
t > h+�0=

p
n, where h+ � 0. For an equivalent form of this chart, we de�ne

A+t =
�p
n=�0

�
A
+(�)
t and C+t =

�p
n=�0

�
C
+(�)
t :

It follows that

A+t = C+t�1 +
X t � �0
�0=
p
n
;

C+t =

8<: 0; A+t � k+;�
A+t
� �
1� k+=A+t

�
; A+t > k

+:

with C+0 = 0 and k
+ > 0. A signal is given if C+t > h

+.

It is not di¢ cult to see that the upper one-sided CUSUM chart of Crosier (1986)

is equivalent to the one-sided tabular form of the CUSUM X chart of Page (1954) as

given by Ewan and Kemp (1960). For the upper one-sided chart C+t = 0 provided

A+t � k+ or equivalently if

C+t�1 +
X t � �0
�0=
p
n
� k+ � 0:
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If A+t > k
+ or equivalently if

C+t�1 +
X t � �0
�0=
p
n
� k+ > 0;

then

C+t =
�
A+t
� �
1� k+=A+t

�
= A+t � k+ = C+t�1 +

X t � �0
�0=
p
n
� k+:

This is equivalent to de�ning

C+t = max

�
0; C+t�1 +

X t � �0
�0=
p
n
� k+

�
which is the statistic of the one-sided CUSUM X described by Ewan and Kemp

(1960).

Although Crosier (1986) did not give a lower one-sided version of his upper one-

sided chart, we give a version here. We de�ne the lower one-sided CUSUM chart

statistic C�(�)t by �rst de�ning

A
�(�)
t = C

�(�)
t�1 +X t � �0

and then de�ning

C
�(�)
t =

8><>: 0; A
�(�)
t � k� (�0=

p
n) ;�

A
�(�)
t

��
1� k� (�0=

p
n) =A

�(�)
t

�
; A

+(�)
t < k� (�0=

p
n) :

with C�(�)0 = 0. The chart signals a potential out-of-control process at sampling stage

t if C�(�)t < h� (�0=
p
n), where h� � 0. An equivalent form sets

A�t =
�p
n=�0

�
A
�(�)
t and C�t =

�p
n=�0

�
C
�(�)
t :

One can show that this chart is equivalent to the lower one-sided CUSUMX described

by Ewan and Kemp (1960).

Crosier (1986) however de�ned a two-sided CUSUM chart so that a single statistic

is ploted versus the sample number t. His two-sided CUSUM chart is equivalent to
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the CUSUM X chart that plots the statistic C�t versus t that is obtained by �rst

computing

A�t =
��C�t�1 +X t � �0

�� followed by
C�t =

8<: 0; A�t � k (�0=
p
n) ;�

C�t�1 +X t � �0
�
(1� k (�0=

p
n) =A�t ) ; A

�
t > k (�0=

p
n) :

with C�0 = 0 and k > 0. A more general version of the CUSUM chart of Crosier (1986)

signals at sampling stage t if C�t < �h (�0=
p
n) or C�t > h (�0=

p
n) with h � 0. An

equivalent form of this chart is a plot of the points (t; Ct), where one �rst computes

At =

����Ct�1 + X t � �0
�0=
p
n

���� followed by
Ct =

8><>: 0; At � k;�
Ct�1 +

Xt��0
�0=

p
n

�
(1� k=At) ; At > k:

with C�0 = 0 and k > 0. The chart signals at sampling stage t if Ct < h
� or Ct > h+.

This chart can also be expressed as

Ct =

8>>>><>>>>:
0; if

���Ct�1 + Xt��0
�0=

p
n

��� � k;
Ct�1 +

Xt��0
�0=

p
n
+ k; if Ct�1 +

Xt��0
�0=

p
n
< �k;

Ct�1 +
Xt��0
�0=

p
n
� k; if Ct�1 + Xt��0

�0=
p
n
> k:

The estimated parameters versions of these charts replace the in-control values �0

and �0 with their respective estimates b�0 and b�0.
In order to analyze the performance of a chart, we observe that we can express

Yt =
X t � b�0b�0=pn = V �10

�
�Zt +

p
n� � Z0=

p
m
�
;

where

� =
�� �0
�0

, � =
�

�0
, Zt =

X t � �
�=
p
n
, Z0 =

b�0 � �0
�0=
p
mn

, and V0 =
b�0
�0
.

If �0 is known and used in place of b�0, this is equivalent to setting Z0 = 0. Similarly,
if �0 is known and used in place of b�0, this is equivalent to setting V0 = 1. Under the
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normal model, the random variable Zt has a standard normal distribution. Further,

if the average of the sample means and the average of the sample variances of m

independent random samples each of size n are used respectively to estimate �0 and

�20, then Z0 has a standard normal distribution and m (n� 1)V 20 has a chi square

distribution with m (n� 1) degrees of freedom.

We observe that the joint distribution of Y1; : : : ; Yt depends on the process para-

meters � and �, the number of preliminary samples m, the sample size n, and the

statistics Z0 and V0. It then follows that the joint distributions of

C�1 ; : : : ; C
�
t ; C

+
1 ; : : : ; C

+
t ; C1; : : : ; Ct

depend on these values as well as the chart parameters k�, k+, h�, and h+. The

process determines the values of � and � and the variability in Z0 and V0. The

practitioner selects the values m, n, k�, h�, k+, and h+. One often discussed method

for selecting the chart parametersm, n, k�, h�, k+, and h+ is based on the distribution

of the run length.

3.5 Example

Montgomery (1997) gives an example of a forging process that is producing piston

rings for automotive engines. One quality measurement of interest is the inside diam-

eter X of a piston ring. He gives m = 25 independent samples each of size n = 5 that

was collected initially from the output of the production process. The Phase I X and

R charts were used as aids by the practitioner to infer that these data were measure-

ments on output from an in-control process. The data is then used to estimate the

in-control mean �0 and in-control standard deviation �0 as

b�0 = x = 1

25

25X
i=1

xi =
1850:028

25
= 74:001256, and

b�0 = sp
c4;25

=

r
1

25

X25

i=1
s2i =c4;25 = 0:009912678176:
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The unbiasing constant c4;25 is

c4;25 =

p
2�
�
25(5�1)+1

2

�
p
25 (5� 1)�

�
25(5�1)

2

� = 0:9900524688:
Fifteen samples of size n = 5 are given by Montgomery (1997) taken from the

process in Phase II (the monitoring phase). The statistics C�t and C
+
t , respectively,

of the lower and upper CUSUM X chart of Page (1954) and the statistic Ct of the

two-sided CUSUM X chart of Crosier (1986) are given in Table 3.1 along with the

sample mean X t, for t = 26; : : : ; 40.2666666666666666666666666666666666666666666666666664

Table 1: CUSUM Statistics

t X t C�t C+t Ct

26 74:0086 0:0000 0:7409 0:7409

27 74:0022 0:0000 0:8361 0:8361

28 73:9922 �0:9136 0:0000 �0:0775

29 74:0036 �0:6771 0:2365 0:1590

30 73:7974 �21:2423 0:0000 �20:4062

31 74:2072 �0:4665 20:7758 0:3696

32 73:8056 �20:2044 1:0379 �19:3683

33 73:7978 �40:7293 0:0000 �39:8932

34 74:0112 �39:7261 1:0032 �38:8900

35 73:8126 �58:7579 0:0000 �57:9218

36 73:8040 �78:6572 0:0000 �77:8211

37 73:2166 �157:8141 0:0000 �156:9780

38 73:8196 �176:1397 0:0000 �175:3036

39 73:8234 �194:0820 0:0000 �193:2459

40 74:0128 �192:9174 1:1646 �192:0813

3777777777777777777777777777777777777777777777777775
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Figure 3.1 is a graph of the points
�
t;X t

�
for t = 26; : : : ; 40 along with the charts

lower (LCD) and upper (UCL) control limits given by

LCL = 74:001256� 2:76410:9900524688p
5

= 72:777 and

UCL = 74:001256 + 2:7641
0:9900524688p

5
= 75:225:

The control limits are chosen using simulation so the chart has an in-control ARL of

200.

Figure 3.1: Phase II X Chart

The plot of the points
�
t; C�t

�
and

�
t; C+t

�
is illustrate in Figure 3.2 along with the

charts lower (LCD) and upper (UCL) control limits, using random-number genera-

tion are given by

LCL = �4:3687 and UCL = 4:3687.
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up to the time the chart signals. These limits are chosen using simulation so the chart

has an in-control ARL of 200. The chart �rst signal at time t = 30.

Figure 3.2. Two-Side CUSUM X Chart of Page (1954)

The plot of the statistic Ct versus t is given in Figure 3.3 up to the time the chart

signals at time t = 30 with lower (LCL) and upper (UCL) control limits given by

LCL = �4:1445 and UCL = 4:1445.
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These limits are also plotted on the chart.

Figure 3.3. Two-Sided CUSUM X Chart of Crosier (1986)

The control limits for this chart were chosen using simulation so the chart would have

an ARL of 200. The Shewhart X chart with 3-sigma limits does not indicate the

mean has shifted whereas both the two-sided CUSUM X charts of Page (1954) and

Crosier (1986) do.

3.6 Analysis of the Run Length Distribution

The run length of the chart is the number of samples taken in Phase II when

the chart �rst signals a potential out-of-control process. Let T� and T+ be the

run lengths of the lower and upper one-sided CUSUM X charts of Page (1954),

respectively. Further, let T be the run length of the two-sided CUSUM X chart of

Page (1954). It is not di¢ cult to show that

T = min
�
T�; T+

	
:

We propose to select the chart parameters k�, h�, k+, and h+ given m and n such

that the run length distribution of the chart has the following properties: (1) The
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mean of the run length distribution, known as the average run length (ARL), will

have a given value ARL0 when the process is in-control. (2) For speci�ed values of �

and �, �1 and �1, the out-of-control ARL will be a minimum. Consequently, it will

be one of our interest to determine the distributions of T�, T+, and T .

We will examine three methods for determining the run length distribution of a

CUSUM chart. One of these methods is the Markov chain approach. This method is

discussed in Brook and Evans (1972) for the one-sided CUSUM chart. The authors

discuss a Markov chain as an exact representation of a CUSUM chart based on

attribute data and as an approximation when the quality measurement is a con-

tinuous random variable. Woodall (1984) extended the method by Brook and Evans

(1972) by giving a Markov chain representation of a two-sided CUSUM based on an

attribute quality measurement. We extend the method in Woodall (1984) for CUSUM

charts based on a continuous quality measurement.

Page (1954) gives an integral equation whose solution is the ARL of a one-sided

CUSUM chart when the support of the quality measurement is the set of real numbers.

Other integral equations useful in determining various properties of the run length

distribution are discussed in van Dobben de Bruyn (1968). Champ, Rigdon, and

Scharnagl (2000) give a method for deriving the integral equations useful in studying

the run length distribution of various control charts. Champ and Ridgon (1991)

showed that if a particular method is used to approximate the integral equations that

describe the run length distribution of a CUSUM X the results are equivalent to

the Markov chain approximation method of Brook and Evans (1972). We will show

that any approximation method to the integral equations used to describe the run

length distribution of one-sided CUSUM X charts will also provide an approximate

Markov chain representation of the chart. The integral equation method is used to

obtain integral equations useful in determining run length the run length distribution

of two-sided CUSUM X chart of Crosier (1986). We will compare the Markov chain
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approximation presented by Crosier (1986) for his two-sided chart with the integral

equation method.

3.7 Conclusion

Descriptions of the one- and two-sided CUSUM X of Page (1954) as expressed in

tabular form by Ewan and Kemp (1960) and the two-sided CUSUM X of Crosier

(1986) were discussed when parameters are known. These charts were also dis-

cussed when the in-control parameters are estimated. The method of Healy (1987)

for deriving the one-sided CUSUM X was discussed. Equivalent forms of these charts

are derived that are useful in analyzing the run length performance of the charts.

These forms will be used in the following chapters in the derivation of methods for

analyzing the run length distribution of the charts. For more discussion of CUSUM

charts, see Hawkins and Olwell (1998).



Chapter 4

INTEGRAL EQUATION METHOD

4.1 Introduction

As previously stated, Page (1954) and van Dobben de Bruyn (1968) give var-

ious integral equations useful in determining the run length distribution of one-sided

CUSUM X charts. Champ, Rigdon, and Scharnagl (2001) give a method for deriving

these integral equations. We will use their method to derive various integral equations

that will be useful in describing the run length distribution the two-sided CUSUM

chart of Crosier (1986). An iterative method is used to describe the probability mass

function of the run length distribution. We show how the tail probabilities of the run

length distribution can be approximated using the results of Woodall (1983). Other

integral equations are given whose exact solution are parameters of the run length

distribution such as the ARL and standard deviation run length (SDRL). While

the solution of these integral equations cannot be determined exactly, they can be

approximated accurately. The approximation method using Gaussian quadrature is

discussed.

4.2 One-Sided CUSUM Charts

For the upper one-sided CUSUM X chart of Page (1954), we will represent the

probability that the run length equals t given that C+0 = u
+ by pr (t ju+ ). As will be

seen, the probability pr+ (t ju+ ) is also a function of the process parameters � and �,

the number of preliminary samples m, the sample size n, and the chart parameters

k+ and h+. Using the method of Champ, Rigdon, and Scharnagl (2001), it can be

show that

pr+
�
t
��u+ � =

8>>>>>><>>>>>>:

1� �
�
v0(h+�u++k+)��

�

�
; t = 1

pr+ (t� 1 j0)�
�
v0(0�u++k+)��

�

�
+
R h+
0
pr+

�
t� 1

��c+1 � v0� ��v0(c+1 �u++k+)��
�

�
dc+1 ; t � 2:

23
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where � =
p
n� � z0=

p
m. Similar results hold for the lower one-sided CUSUM

chart. In particular, the probability pr� (t ju� ) the lower one-sided CUSUM X of

Page (1954) signals at time t given that C�0 = u
� is determined by

pr�
�
t
��u� � =

8>>>>>><>>>>>>:

�

�
v0(h��u��k�)��

�

�
; t = 1

pr� (t� 1 j0)�
�
v0(0�u��k�)��

�

�
+
R 0
h� pr

� �t� 1 ��c�1 � v0� ��v0(c�1 �u��k�)��
�

�
dc�1 ; t � 2:

It is convenient to express the average run length (ARL+) of the upper one-sided

CUSUM X chart of Page (1954) with C+0 = u
+ by M+ (u+). That is,

M+
�
u+
�
=
X1

t=1
tpr+

�
t
��u+ � :

It can be shown using the method presented in Champ, Rigdon, and Scharnagl (2001)

that the function M+ (u+) is the exact solution to the integral equation

M+
�
u+
�
= 1 +M+ (0)�

�
v0 (0� u+ + k+)� �

�

�
+

Z h+

0

M+
�
c+1
� v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1 :

This is similar to the integral equation for average run length given by Page (1954).

De�ning the function M+
2 (u

+) by

M+
2

�
u+
�
=
X1

t=1
t2pr+

�
t
��u+ � ;

it can be shown using the method presented by Champ, Rigdon, and Scharnagl (2001)

that the function M+
2 (u

+) is a solution to the integral equation

M+
2

�
u+
�
= 1 + 2M+ (0)�

�
v0 (0� u+ + k+)� �

�

�
+2

Z h+

0

M+
�
c+1
� v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1

+M+
2 (0)�

�
v0 (0� u+ + k+)� �

�

�
+

Z h+

0

M+
2

�
c+1
� v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1 :
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Similarly for the lower one-sided CUSUM X chart of Page (1954) the average run

length M� (u�) and the expected value of the square of the run length M�
2 (u

�) can

be showed to be, respectively, the solutions of the integral equations

M� �u�� = 1 +M� (0)

�
1� �

�
v0 (0� u� � k�)� c

�

��
+

Z 0

h�
M� �c�1 � v0� �

 
v0
�
c�1 � u� � k�

�
� �

�

!
dc�1 :

and

M�
2

�
u�
�
= 1 + 2M� (0)

�
1� �

�
v0 (0� u� � k�)� �

�

��
+2

Z 0

h�
M� �c�1 � v0� �

 
v0
�
c�1 � u� � k�

�
� �

�

!
dc�1

+M�
2 (0)�

�
v0 (0� u� � k�)� �

�

�
+

Z 0

h�
M�
2

�
c�1
� v0
�
�

 
v0
�
c�1 � u� � k�

�
� �

�

!
dc�1 :

For integral equations whose solutions are other parameters of the run length distri-

bution see van Dobben de Bruyn (1968) as well as Champ, Rigdon, and Scharnagl

(2001). We note that the functions M� (u�), M�
2 (u

�), M+ (u+), and M+
2 (u

+) are

also functions of the process parameters � and �, the number of preliminary samples

m, the sample size n, and the chart parameters k�, h�, k+, and h+.

4.3 Two-Sided CUSUM Charts

The integral equations describing the distribution of the run length T =

min fT�; T+g of the two-sided CUSUM X chart of Page (1954) as described by

Ewan and Kemp (1960) are not available. However, Kemp (1961) showed that

1

ARL
=

1

ARL�
+

1

ARL+
;

given that C�0 = 0 and C
+
0 = 0, where ARL

� =M� (0), ARL+ =M+ (0), and ARL

are the means of the distribution of T�, T+, and T respectively.



26

Let Tc represent the run length of the two-sided CUSUMX chart of Crosier (1986)

with starting value C0 = u 2 [�h; h]. We de�ne

prc (t ju) = P (Tc = t jC0 = u) :

As we will see, the function prc (t ju) is also a function of the distributional para-

meters � and �, the number of preliminary samples m, sample size n, and the chart

parameters k, and h. For t = 1, we have

prc (1 ju) = P (Tc = 1 jC0 = u)

= P (C1 < �h jC0 = u) + P (C1 > h jC0 = u)

= P

�
u+

X1 � b�0b�0=pn + k < �h
�
+ P

�
u+

X1 � b�0b�0=pn � k > h
�

= P
�
u+ v�10

�
�Z1 +

p
n� � z0=

p
m
�
+ k < �h

�
+P

�
u+ v�10

�
�Z1 +

p
n� � z0=

p
m
�
� k > h

�
= �

�
v0 (�h� u� k)� �

�

�
+1� �

�
v0 (h� u+ k)� �

�

�
:

For t > 1, we see that

prc (t ju) = P (Tc = t jC0 = u) = P (Tc � 1 = t� 1;�h � C1 < 0 jC0 = u)

+P (Tc � 1 = t� 1; C1 = 0 jC0 = u)

+P (Tc � 1 = t� 1; 0 < C1 � h jC0 = u)

= P (Tc � 1 = t� 1 jC0 = u;�h � C1 < 0)P (�h � C1 < 0 jC0 = u)

+P (Tc � 1 = t� 1 jC0 = u;C1 = 0)P (C1 = 0 jC0 = u)

+P (Tc � 1 = t� 1 jC0 = u; 0 < C1 � h) + P (0 < C1 � h jC0 = u)

=

Z 0

�h
prc (t� 1 jc1 )

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+prc (t� 1 j0)
�
�

�
v0 (0� u� k)� �

�

�
� �

�
v0 (0� u+ k)� �

�

��
+

Z h

0

prc (t� 1 jc1 )
v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1:
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The expected value of the run length (ARL)Mc (u) and the expected value of the

square of the run length Mc;2 (u) of this chart are given by

Mc (u) =
X1

t=1
tprc (t ju) and Mc;2 (u) =

X1

t=1
t2prc (t ju) .

Applying the method of Champ, Rigdon, and Scharnagl (2001), we obtain integral

equation whose exact solution are the functions Mc (u) and Mc;2 (u). We see that

Mc (u) =
X1

t=1
tprc (t ju) = prc (1 ju) +

X1

t=2
tprc (t ju)

= prc (1 ju) +
X1

t=1
(1 + t) prc (1 + t ju)

= prc (1 ju) +
X1

t=1
prc (1 + t ju) +

X1

t=1
tprc (1 + t ju)

= 1 +
X1

t=1
tP (Tc � 1 = t jC0 = u) :

Note that

prc (1 ju) +
X1

t=1
prc (1 + t ju) = prc (1 ju) +

X1

t=2
prc (t ju) = 1:

Next we write

prc (1 + t ju) = P (Tc � 1 = t jC0 = u)

= P (Tc � 1 = t; C1 < �h jC0 = u)

+P (Tc � 1 = t;�h � C1 < 0 jC0 = u)

+P (Tc � 1 = t; C1 = 0 jC0 = u)

+P (Tc � 1 = t; 0 < C1 � h jC0 = u)

+P (Tc � 1 = t; C1 > h jC0 = u) :

Observe that

P (Tc � 1 = t; C1 < �h jC0 = u) = P (Tc � 1 = t; C1 > h jC0 = u) = 0:
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This follows because for t � 1 the events fTc � 1 = tg and fC1 < �hg are mutually

exclusive as are the events fTc � 1 = tg and fC1 > hg. Thus,

prc (1 + t ju) = P (Tc � 1 = t;�h � C1 < 0 jC0 = u)

+P (Tc � 1 = t; C1 = 0 jC0 = u)

+P (Tc � 1 = t; 0 < C1 � h jC0 = u)

= P (Tc � 1 = t jC0 = u;�h � C1 < 0)P (�h � C1 < 0 jC0 = u)

+P (Tc � 1 = t jC0 = u;C1 = 0)P (C1 = 0 jC0 = u)

+P (Tc � 1 = t jC0 = u; 0 < C1 � h)P (0 < C1 � h jC0 = u)

=
R 0
�h prc (t jc1 ) fC1jC0 (c1 ju) dc1

+prc (t j0)FC1jC0 (0 ju)

+
R h
0
prc (t jc1 ) fC1jC0 (c1 ju) dc1:

Using these results, we write

Mc (u) = 1 +
X1

t=1
t
R 0
�h prc (t jc1 ) fC1jC0 (c1 ju) dc1

+
X1

t=1
tprc (t j0)FC1jC0 (0 ju)

+
X1

t=1
t
R h
0
prc (t jc1 ) fC1jC0 (c1 ju) dc1

= 1 +
R 0
�h

�X1

t=1
tprc (t jc1 )

�
fC1jC0 (c1 ju) dc1

+
�X1

t=1
tprc (t j0)

�
FC1jC0 (0 ju)

+
R h
0

�X1

t=1
tprc (t jc1 )

�
fC1jC0 (c1 ju) dc1

= 1 +
R 0
�hMc (c1) fC1jC0 (c1 ju) dc1

+Mc (0)FC1jC0 (0 ju)

+
R h
0
Mc (c1) fC1jC0 (c1 ju) dc1
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Observing that

fC1jC0 (c1 ju) =
v0
�
�

�
v0 (c1 � u� k)� c

�

�
I(�1;0) (c1) + FC1jC0 (0 ju) If0g (c1)

+
v0
�
�

�
v0 (c1 � u+ k)� c

�

�
I(0;1) (c1) , with

FC1jC0 (0 ju) = �

�
v0 (0� u� k)� c

�

�
� �

�
v0 (0� u+ k)� c

�

�
;

we can write

Mc (u) = 1 +
R 0
�hMc (c1)

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+
R h
0
Mc (c1)

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1:

It is clear that the conditional distribution of C1 given C0 = u is a mix of a discrete

and continuous part. In a similar way, it is shown in the Appendix that

Mc;2 (u) = 1 + 2
R 0
�hM2 (c1)

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+2M2 (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+2
R h
0
M2 (c1)

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

+
R 0
�hMc;2 (c1)

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc;2 (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+
R h
0
Mc;2 (c1)

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1:

The 100th percentage point of the run length distribution is the integer value t

that satis�es the inequalities

FT (t) =
Xt

t=1
pr (t ju) �  with FT (t � 1) =

Xt�1

t=1
pr (t ju) < ;

where pr (t ju) is the probability mass function of the run length distribution. For

example, if the run length distribution is a geometric distribution with parameter p,
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then the 100th percentage point t is determined by

t =

�
ln (1� )
ln (1� p)

�
:

4.4 Approximation Methods

While the probability mass function of the run length distributions for t > 1 for

both the two one-sided CUSUMX charts of Page (1954) and the two-sided CUSUMX

chart of Crosier (1986) are exact solutions of their respective integral equations, these

probabilities cannot be computed exactly. In this section, we will examine methods

that give good approximations for these probabilities as well as other parameters of

the run length distribution. Approximations for the run length distribution of the

two-sided CUSUM X chart of Crosier (1986) will be derived in this section. The

approximations for the two one-sided CUSUM X charts of Page (1954) have been

derived by Champ, Rigdon, and Scharnagl (2001) and will only be stated here for

completeness.

For t > 1, we can use Gaussian quadrature to approximate the probability mass

function prc (t ju) of Crosier�s (1986) two-sided CUSUM X chart as

prc (t jui ) =
P��1

j=1 prc (t� 1 juj )
v0
�
�

�
v0 (uj � ui � k)� �

�

�
wj + prc (t� 1 ju� )

�
�
�

�
v0 (u� � ui � k)� �

�

�
� �

�
v0 (u� � ui + k)� �

�

��
+
P2��1

j=�+1 prc (t� 1 juj )
v0
�
�

�
v0 (uj � ui + k)� �

�

�
wj;

where

uj =

8>>>><>>>>:
h
2

�
u�j � 1

�
; for j = 1; : : : ; � � 1;

0; for j = �; and

h
2

�
u�j�� + 1

�
; for j = � + 1; : : : ; 2� � 1;

and

wj =

8<:
h
2
w�j ; for j = 1; : : : ; � � 1;

h
2
w�j��; for j = � + 1; : : : ; 2� � 1:
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Here, the u�j�s are the � � 1 Gaussian quadrature points and the w�i �s the associated

weights based on Legendre polynomials. The Gaussian quadrature points u�j and

weights w�j can be found in such reference texts as Abramowitz and Stegun (1972).

This yields a sequence of equations that gives approximate solutions for the proba-

bility mass function prc (t ju) at the values u1; : : : ; u2��1 for t > 1 with exact values

for t = 1. This can be seen by de�ning the (2� � 1)� 1 vector pt by

pt = [prc (t� 1 ju1 ) ; : : : ; prc (t� 1 ju2��1 )]T

and the (2� � 1)� (2� � 1) matric Qc having (i; j)th component

v0
�
�
�
v0(uj�ui�k)��

�

�
wj; for j = 1; : : : ; � � 1;

�
�
v0(u0�ui+k)��

�

�
� �

�
v0(u0�ui�k)�c

�

�
; for j = �; and

v0
�
�
�
v0(uj�ui+k)��

�

�
wj��; for j = � + 1; : : : ; 2� � 1;

for i = 1; : : : ; 2� � 1. It follows that

pt = Qpt�1 = Q
t�1p1

for t > 1.

This method may give poor approximations for pt if t is large. Woodall (1983)

showed that the �tail�probabilities of the one- and two-sided CUSUMX chart of Page

(1954) can be quite well approximated by a geometric distribution. In particular, he

shows that for the upper one-sided CUSUM X chart there exist a value 0 < �+u+ < 1

and a value t+(�) such that

pr+
�
t
��u+ � t ��+u+�t�t+(�) pr �t+(�) ��u+ �

for t > t+(�). Note that �+u+ is a function of the starting value u
+. Further, he gives

a method for approximating �+u+ . This allows good approximations for the various

parameters of the run length distribution. This approximation method also applies

to the CUSUM X chart of Crosier (1986).
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For Crosier�s (1986) CUSUM X chart, there exist a value 0 < �u < 1 and a value

t� such that

prc (t ju) t �t�t
�

u pr
�
t�
��u+ �

for t > t�. Using these results, we can obtain good approximations for the ARL

(Mc (u)), standard deviation of the run length (SDRL), and various percentage

points of the run length distribution. The approximation for the ARL is obtained by

observing that

Mc (u) =
X1

t=1
tprc (t ju) =

Xt�

t=1
tprc (t ju) +

X1

t=t�+1
tprc (t ju)

t
Xt�

t=1
tprc (t ju) +

�X1

t=t�+1
t�t�t

�

u

�
pr
�
t�
��u+ �

=
Xt�

t=1
tprc (t ju) +

�X1

t=1
(t� + t) �tu

�
pr
�
t�
��u+ �Xt�

t=1
tpr (t ju) + �upr (t� ju)

�
t�

1� �u
+

1

(1� �u)2
�

To obtain the approximation for the SDRL, we �rst obtain the expectation Mc;2 (u)

of the square of the run length distribution. We have

Mc;2 (u) =
X1

t=1
t2prc (t ju) =

Xt�

t=1
t2prc (t ju) +

X1

t=1
(t� + t)2 prc (t

� + t ju)

=
Xt�

t=1
t2prc (t ju) + (t�)2

X1

t=1
prc (t

� + t ju)

+2t�
X1

t=1
prc (t

� + t ju) +
X1

t=1
t2prc (t

� + t ju)

Using Woodall�s (1983) approximation �tuprc (t
� ju) for prc (t� + t ju), we have

Mc;2 (u) t
Xt�

t=1
t2prc (t ju) + (t�)2

�X1

t=1
�tu

�
prc (t

� ju)

+2t�
�X1

t=1
�tu

�
prc (t

� ju) +
�X1

t=1
t2�tu

�
prc (t

� ju)

It is easy to show thatX1

t=1
�tu =

�u
1� �u

;
X1

t=1
t�tu =

�u

(1� �u)2
; and

X1

t=1
t2�tu =

�u (1 + �u)

(1� �u)3
:

Thus,

Mc;2 (u) t
Xt�

t=1
t2prc (t ju) + �uprc (t� ju)

 
(t�)2

1� �u
+

2t�

(1� �u)2
+

1 + �u

(1� �u)3

!
:
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We can now obtain the SDRL asq
Mc;2 (u)� (Mc (u))

2:

As previously stated the 100th percentile of the run length distribution given

C0 = u is the integer t such that

FTc (t ju) �  and FTc (t � 1 ju) < ,

where

FTc (t ju) =
Xt

�=1
prc (� ju) :

If FTc (t
� ju) � , then t � t�. In this case, the value of t can be determined

using a search method. For the case in which FTc (t
� ju) < , then t > t� and

can be approximated using Woodall�s (1983) method. For this case, we have that t

approximately satis�es the following inequalities.

FTc (t
� ju) +

�Xt�t�

t=1
�tu

�
pr
�
t�
��u+ � �  and

FTc (t
� ju) +

�Xt�1�t�

t=1
�tu

�
pr
�
t�
��u+ � < :

Observing that

Xt�t�

t=1
�tu =

�u
�
1� �t�t�u

�
1� �u

and
Xt�1�t�

t=1
�tu =

�u
�
1� �t�1�t�u

�
1� �u

;

then t (approximately) satis�es the compound inequality

t� +
ln
�
1� 1��u

�u

�FTc (t�ju )
pr(t�ju+ )

�
ln (�u)

� t < t� + 1 +
ln
�
1� 1��u

�u

�FTc (t�ju )
pr(t�ju+ )

�
ln (�u)

:

We then see that the integer t is determined by

t =

2666t� +
ln
�
1� 1��u

�u

�FTc (t�ju )
pr(t�ju+ )

�
ln (�u)

3777 :
Similar results to these holds for the lower and upper one-sided CUSUM X chart

of Page (1954). One only needs to replace the appropriate values of the run length
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distribution in place of those for the run length distribution of the two-sided CUSUM

X of Crosier (1986).

As in the case with the probability mass function for the two-sided CUSUM X

chart of Crosier (1986), we can obtain an approximation based on Guassian quadra-

ture of the integral equation whose exact solution with the average run lengthMc (u)

of the chart. Using our previous results, we have the following approximation

Mc (ui) = 1 +
P��1

j=1Mc (uj)
v0
�
�

�
v0 (uj � uj � k)� �

�

�
wj

+Mc (u�)

�
�

�
v0 (u� � ui � k)� �

�

�
� �

�
v0 (u� � ui + k)� �

�

��
+
P2��1

j=�+1Mc (uj)
v0
�
�

�
v0 (uj � ui � k)� �

�

�
wj��:

This is a system of 2� � 1 equations in the 2� � 1 unknows Mc (u1) ; : : : ;Mc (u2��1).

We can express this system in matrix form as

Mc = QcMc + 1 or (I�Qc)Mc = 1

with the (2� � 1) � (2� � 1) matrix Qc as previously de�ned in this section, the

(2� � 1)� 1 vectorMc de�ned by

Mc = [Mc (u1) ; : : : ;Mc (u2��1)]
T ;

and 1 a (2� � 1)� 1 vector of ones. It follows that

Mc = (I�Qc)
�1 1.

If the practitioner chooses to set C0 = ui, then the �th component Mc (ui) of Mc

is the approximation to the ARL of the two-sided CUSUM X chart. In particular,

Mc (u�) =Mc (0) is the ARL when C0 = 0.

4.5 Conclusion

In this chapter, various integral equations were studied that described the dis-

tribution of the run length. Integral equations useful for describing the run length
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distribution of both the lower and upper one-sided CUSUM X charts of Page (1954)

can be found in the literature but not for the two-sided version of the chart. Crosier

(1986) used a Markov chain method for approximating the average run length of

his two-sided CUSUM X chart. We derived integral equations that can be used to

obtain more accurate results for this chart. A Gaussian quadrature method was used

to obtain approximate solutions to the integral equations presented. It was shown how

Woodall�s (1983) approximation method can be used to obtain an approximation for

the tail probabilities useful in obtaining various run length distribution parameters.



Chapter 5

MARKOV CHAIN METHOD

5.1 Introduction

In this chapter, we will examine Markov chain approximations of the Markov

processes fCtg,
�
C�t
	
, and

�
C+t
	
. We begin by examining the Markov chain repre-

sentations for the lower and upper one-sided CUSUM X charts of Page (1954). It

was shown by Champ and Rigdon (1991) that if the integral equation for the upper

on-sided CUSUM X of Page (1954) is approximated a certain way it would give the

same approximation as the Markov chain method. We will show that this also holds

for the run length distribution.

The method of Woodall (1984) is extended to a Markov chain representation of

the two-sided CUSUM X charts of Page (1954). Crosier (1986) presents the Markov

chain approximation of his two-sided CUSUM X chart. It is presented here for

completeness. We show that if the integral equation that has its exact solution the

ARL of the two-sided CUSUM X chart of Crosier (1986) is approximated a certain

way gives equivalent results to the Markov chain method. We also show that this

holds for the run length distribution of this chart.

5.2 One-Sided CUSUM X Charts of Page (1954)

Brook and Evans (1972) develop a Markov chain representation of the one-sided

CUSUM X charts of Page (1954). The representation is exact for attribute and

approximate for variables data. The �+ nonabsorbing states of the Markov chain

approximation of the upper one-sided CUSUM X are the points in the interval [0; h+]

that have the values i+w+ for i+ = 0; 1; : : : ; �+� 1, where w+ = 2h+= (2�+ � 1). The

36
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probability that the chain transitions from the nonabsorbing state i+w+ to nonab-

sorbing state j+w+ is given by

�

�
v0((j++0:5�i+)w++k+)��

�

�
;

if j+ = 0;

�

�
v0((j++0:5�i+)w++k+)��

�

�
� �

�
v0((j+�0:5�i+)w++k+)��

�

�
;

if j+ = 1; : : : ; �+ � 1:

De�ne the �+ � �+ matrix R+ such the (i+; j+) component is the probability the

Markov chain approximation to the upper one-sided CUSUM X chart of Page (1954)

transitions from the nonabsorbing state i+w+ to the nonabsorbing state j+w+ for

i+; j+ = 0; : : : ; �+ � 1. This is the matrix that results from removing from the

transition matrix the row and column associated with the absorbing state.

It can be shown for t > 1 that

p+t t R+p+t�1 with p
+
1 t

�
I�R+

�
1;

where I is the �+ � �+ identity matrix and 1 is a �+ � 1 vector of ones. Here, pt is

de�ned by

p+t =
�
pr+

�
t
��0w+ � ; : : : ; pr+ �t ����+ � 1�w+ ��T :

It follows that the vectorM+ of ARLs can be determined approximately by

M+ t
�
I�R+

��1
1;

where

M+ =
�
M+

�
0w+

�
; : : : ;M+

��
�+ � 1

�
w+
��T

:

Similar results hold for the lower one-sided CUSUM X chart of Page (1954). The

�� nonabsorbing states of the Markov chain approximation have the form �i�w� for

i� = 0; : : : ; �� � 1, where w� = 2 jh�j = (2�� � 1). The probability that the chain

transitions from the nonabsorbing state �i�w� to nonabsorbing state �j�w� is given
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by

1� �
�
v0((�j��0:5+i�)w��k�)��

�

�
;

if j� = 0;

�

�
v0((�j�+0:5+i�)w��k�)��

�

�
� �

�
v0((�j��0:5+i�)w��k�)��

�

�
;

if j� = 1; : : : ; �� � 1:

These are the transition probabilities of the ��� �� matrix R� determined from the

transition by removing the row and column associated with the absorbing state.

5.3 Two-Sided CUSUM X Charts of Page (1954)

The Markov chain representation of the two-sided CUSUM X chart of Page (1954)

has nonabsorbing states of the form (�i�w�; i+w+), where �i�w� and i+w+ are non-

absorbing states of the Markov chain approximation of the lower and upper one-sided

CUSUM X charts of Page (1954). The probability the Markov chain transitions from

the nonabsorbing state (�i�w�; i+w+) to the nonabsorbing state (�j�w�; j+w+) is

given by

�

�
v0((j++0:5�i+)w++k+)��

�

�
� �

�
v0((�j��0:5+i�)w��k�)��

�

�
;

if j� = 0, j+ = 0;

�

�
v0((j++0:5�i+)w++k+)��

�

�
��

�
max

�
v0((�0:5+i�)w��k�)��

�
;
v0((j+�0:5�i+)w++k+)��

�

��
;

if j� = 0, j+ = 1; : : : ; �+ � 1;

�

�
min

�
v0((�j�+0:5+i�)w��k�)��

�
;
v0((j++0:5�i+)w++k+)��

�

��
��

�
v0((�j��0:5+i�)w��k�)��

�

�
;

if j� = 1; : : : ; �� � 1, j+ = 0;

�

�
min

�
v0((�j�+0:5+i�)w��k�)��

�
;
v0((j++0:5�i+)w++k+)��

�

��
��

�
max

�
v0((�0:5+i�)w��k�)��

�
;
v0((j+�0:5�i+)w++k+)��

�

��
;

if j� = 1; : : : ; �� � 1, j+ = 1; : : : ; �+ � 1:
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There are ���+ nonabsorbing states. For convenience, we number the states by the

nonabsorbing state (�i�w�; i+w+) being numbered i��+ + i+.

Letting R be the ���+ � ���+ matrix obtained from the transition matrix by

removing the row and column assoicated with the absorbing state, we can express the

run length distribution in the form

pt t Rpt�1 with p1 t (I�R)1:

The vectorM of ARLs of the chart can then be determined approximately by

M t (I�R)�1 1;

where 1 is an ���+�1 vector of ones. A FORTRAN program is given in the Appendix

for determining the ARL of the chart when the in-control parameters are known. The

transitions probabilities for this case are obtained from the transition probabilities

when parameters are estimated by setting z0 = 0 and v0 = 1.

5.4 Two-Sided CUSUM X Chart of Crosier (1986)

Crosier (1986) gives a Markov chain approximation to his two sided CUSUMX chart.

The states are the values

� (� � 1)w; : : : ;�w; 0; w; : : : ; (� � 1)w:

There is one absorbing state. In general, we will express the ith nonabsorbing state

by (i� �)w with i ranging from 1 to 2�� 1. The probabilities of making a transition

from nonaborbing state (i� �)w to nonabsorbing state (j � �)w is

�
�
v0((j+0:5�i)w�k)��

�

�
� �

�
v0((j�0:5�i)w�k)��

�

�
,

if j = 1; : : : ; � � 1;

�
�
v0((j+0:5�i)w+k)��

�

�
+ 1� �

�
v0((j�0:5�i)w+k)��

�

�
,

if j = �;

�
�
v0((j+0:5�i)w+k)��

�

�
� �

�
v0((j�0:5�i)w+k)��

�

�
,

if j = � + 1; : : : ; 2� � 1:
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for i = 1; : : : ; 2��1. De�ne the (2� � 1)� (2� � 1) matrix R with (i; j)th component

the probability the Markov chain makes a transition from nonabsorbing state (i� �)w

to nonabsorbing state (j � �)w. The matrixR is obtained from the transition matrix

by removing the row and column associated with the absorbing state. As with the

one-sided charts, the run length distribution pc;t can be approximated by

pc;t t Rcpc;t�1 with pc;1 t (I�Rc)1:

The vectorMc of ARLs of the chart can then be determined approximately by

Mc t (I�Rc)
�1 1;

where I is a (2� � 1)� (2� � 1) identity matrix and 1 is a (2� � 1)�1 vector of ones.

5.5 Equivalence of the Markov Chain and Integral Equation Approaches

As previously stated, Champ and Rigdon (1991) expressed the integral equation

whose exact solution is the function M+ (u+) by

M+
�
u+
�
= 1 +M+ (0)�

�
v0 (0� u+ + k+)� �

�

�
+

Z 0:5w+

0

M+
�
c+1
� v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1

+
P�+�1

j+=1

Z (j++0:5)w+
(j+�0:5)w+

M+
�
c+1
� v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1 :

By the mean value theorem for integrals, there exists values

�+0 ; �
+
1 ; : : : ; �

+
�+�1

with (j+ � 0:5)w+ < �+j+ � (j+ + 0:5)w+ such that

M+
�
u+
�
= 1 +M+ (0)�

�
v0 (0� u+ + k+)� �

�

�
+M+

�
�+0
� Z 0:5w+

0

v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1

+
P�+�1

j+=1M
+
�
�+j+
�Z (j++0:5)w+

(j+�0:5)w+

v0
�
�

 
v0
�
c+1 � u+ + k+

�
� �

�

!
dc+1 :
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for j+ = 1; : : : ; �+�1. Replacing �+j+ with j+w+, it can be stated approximately that

M+
�
i+w+

�
= 1 +M+ (0)�

�
v0 (0� i+w+ + k+)� �

�

�
+M+ (0)

Z 0:5w+

0

v0
�
�

 
v0
�
c+1 � i+w+ + k+

�
� �

�

!
dc+1

+
P�+�1

j+=1M
+
�
j+w+

�
�
Z (j++0:5)w+
(j+�0:5)w+

v0
�
�

 
v0
�
c+1 � i+w+ + k+

�
� �

�

!
dc+1

= 1 +M+ (0)�

�
v0 ((0:5� i+)w+ + k+)� �

�

�
+
P�+�1

j+=1M
+
�
j+w+

�
� [�

�
v0 ((j

+ + 0:5� i+)w+ + k+)� �
�

�
��

�
v0 ((j

+ � 0:5� i+)w+ + k+)� �
�

�
]

In this case, the �+ � �+ matrix Q+ such that M+ t (I�Q+)
�1
1 has (i+; j+)th

component

�

�
v0((j++0:5�i+)w++k+)��

�

�
,

i+ = 0; : : : ; �+ � 1, j+ = 0;

�

�
v0((j++0:5�i+)w++k+)��

�

�
� �

�
v0((j+�0:5�i+)w++k+)��

�

�
,

i+ = 0; : : : ; �+ � 1, j+ = 1; : : : ; �+ � 1:

By inspection, we see that R+ = Q+. Thus, the Markov chain approximation and

this approximation to the integral equation for the mean give the same results.

It would then follow that

p+t t R+p+t�1

for t > 1. For the integral equation method, the i+ component of p+1 is given exactly

by

�

�
v0 (�h� i+w+ � k)� �

�

�
+ 1� �

�
v0 (h� i+w+ + k)� �

�

�
:
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Adding the components in the i+ row of Q+, we have

�

�
v0 ((j

+ + 0:5� i+)w+ + k+)� �
�

�
+
X�+�1

j+=1
[�

�
v0 ((j

+ + 0:5� i+)w+ + k+)� �
�

�
��

�
v0 ((j

+ � 0:5� i+)w+ + k+)� �
�

�
]

= �

�
v0 (h� i+w+ + k)� �

�

�
� �

�
v0 (�h� i+w+ � k)� �

�

�
:

This is the probability the chart does not signal at sampling stage t = 1 for a chart

beginning in state i+w+. It would then follow that one minus this probability which

is

�

�
v0 (�h� i+w+ � k)� �

�

�
+ 1� �

�
v0 (h� i+w+ + k)� �

�

�
:

is the probability that the chart signals at sampling stage t = 1. Hence, we have

p+1 =
�
I�R+

�
1 =

�
I�Q+

�
1

is exact. Similar results hold for the lower one-sided CUSUM X chart of Page (1954).

For the CUSUM X chart of Crosier (1986), we can write the integral equation in

which the exact solution is the function Mc (u)as

Mc (u) = 1 +
X��1

j=1

Z (j��+0:5)w

(j���0:5)w
Mc (c1)

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+

Z 0

�0:5w
Mc (c1)

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+

Z 0:5w

0

Mc (c1)
v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

+
X2��1

j=�+1

Z (j��+0:5)w

(j���0:5)w

R
Mc (c1)

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

By the mean value theorem for integrals, there exists values

��(��1); : : : ; ; ��1; ��0; �0; �1; : : : ; ���1
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such that

Mc (u) = 1 +
X��1

j=1
Mc

�
�j��

� Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc

�
��0
� Z 0

�0:5w

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+Mc (�0)

Z 0:5w

0

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

+
X2��1

j=�+1
Mc

�
�j��

� Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

with

(j � 0:5)w � �j�� < (j + 0:5) , for j = 1; : : : ; � � 1;

�0:5w � ��0 � 0; 0 � �0 � 0:5w;

(j � 0:5) < w�j�� � (j + 0:5) , for j = � + 1; : : : ; 2� � 1.

The symbols ��0 and �0 are being used to represent distinct values. We then have

Mc (u) = 1 +
X��1

j=1
Mc

�
�j��

� R (j��+0:5)w
(j���0:5)w

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc

�
��0
� Z 0

�0:5w

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1

+Mc (0)

�
�

�
v0 (0� u+ k)� �

�

�
� �

�
v0 (0� u� k)� �

�

��
+Mc (�0)

Z 0:5w

0

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

+
X2��1

j=�+1
Mc

�
�j��

� Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1

Approximating �i�� = (i� �)w for i = 1; : : : ; ��1; �+1; : : : ; 2��1 and ��0 = �0 = 0,

then we can obtain approximate values of Mc ((i� �)w) from the system of 2� � 1
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equations in the 2� � 1 unknowns Mc ((i� �)w) given by

Mc ((i� �)w) = 1 +
X��1

j=1
Mc ((j � �)w)

�
Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � (i� �)w � k)� �

�

�
dc1

+Mc (0)

Z 0

�0:5w

v0
�
�

�
v0 (c1 � (i� �)w � k)� �

�

�
dc1

+Mc (0) [�

�
v0 (� (i� �)w + k)� �

�

�
��

�
v0 (� (i� �)w � k)� �

�

�
]

+Mc (0)

Z 0:5w

0

v0
�
�

�
v0 (c1 � (i� �)w + k)� �

�

�
dc1

+
X2��1

j=�+1
Mc ((j � �)w)

�
Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � (i� �)w + k)� �

�

�
dc1

Making the substitutions

�

�
v0 (0� u� k)� �

�

�
= �

R1
0

v0
�
�

�
v0 (c1 � u� k)� �

�

�
dc1 and

�

�
v0 (0� u+ k)� �

�

�
=

R 0
�1

v0
�
�

�
v0 (c1 � u+ k)� �

�

�
dc1;

we have

Mc ((i� �)w) = 1 +
X��1

j=1
Mc ((j � �)w)

�
Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � (i� �)w � k)� �

�

�
dc1

+Mc (0) [
R1
�0:5w

v0
�
�

�
v0 (c1 � (i� �)w � k)� �

�

�
dc1

+

Z 0:5w

�1

v0
�
�

�
v0 (c1 � (i� �)w + k)� �

�

�
dc1]

+
X2��1

j=�+1
Mc ((j � �)w)

�
Z (j��+0:5)w

(j���0:5)w

v0
�
�

�
v0 (c1 � (i� �)w + k)� �

�

�
dc1
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We can also write

Mc ((i� �)w) = 1 +
X��1

j=1
Mc ((j � �)w) [�

�
v0 ((j + 0:5� i)w � k)� �

�

�
��

�
v0 ((j � 0:5� i)w)� k � �

�

�
]

+Mc (0) [�

�
v0 ((0:5� i)w + k)� �

�

�
+1� �

�
v0 ((�0:5� i)w � k)� �

�

�
]

+
X2��1

j=�+1
Mc ((j � �)w)

�[�
�
v0 ((j � � + 0:5)w � (i� �)w + k)� �

�

�
��

�
v0 ((j � � � 0:5)w � (i� �)w + k)� �

�

�
]

This system of equations can be expressed in the form

M = 1+QM;

where

M = [Mc (� (� � 1)w) ; : : : ;Mc ((� � 1)w)] :

By inspection, we see thatQ = R, whereR is the (2� � 1)�(2� � 1) matrix obtained

from the transition matrix of Markov chain representation of the chart after the row

and column associated with the absorbing state is removed.

5.6 Conclusion

In this chapter, we discussed the Markov chain approximations of the one- and

two-sided CUSUM X charts. The Markov chain approximation of the two-sided

CUSUM X chart was implemented in FORTRAN. It was shown that approximating

the integral equations describing the run length distribution in a certain way gives the

same approximations as the Markov chain approach. In this sense, the two methods

were shown to be equivalent.



Chapter 6

CONCLUSION

6.1 General Conclusions

The integral equation and Markov chain methods were presented that are useful

in analyzing the run length distributions of the one- and two- sided CUSUM X charts

of Page (1954) and the two- sided CUSUM X chart of Crosier (1986). The two-sided

CUSUM X chart of Page (1954) was implemented in FORTRAN. For the two- sided

CUSUM X chart of Crosier (1986), we presented an estimated parameters version,

derived integral equations useful in studying the run length performance of the chart,

and showed under what conditions the integral equation method and the Markov

chain method are equivalent.

6.2 Areas for Further Research

It is our interest to develop a FORTRAN program to determine the run length

distribution of the two-sided CUSUM X chart of Page (1954) when parameters are

estimated using a Markov chain approach. Also, we plan to develop a FORTRAN

program to determine the run length distribution of the two- sided CUSUM X chart

of Crosier (1986). Little work has been done with CUSUM charts that are useful

in monitoring for a change in the standard deviation of the quality measurement of

interest. We would like to extend our work to the CUSUM R (sample range) and

S (sample standard deviation) charts. Integral equations that would be useful in

describing the run length distribution of the two-sided CUSUM X of Page (1954) do

not presently exist. We plan to look into developing this method for the two-sided

CUSUM X of Page (1954).
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APPENDIX

Derivation of Mc;2 (u)

The expected value Mc;2 (u) of the square of the run length for Crosier�s (1986)

two-sided CUSUM X chart is determined as follows.

Mc;2 (u) =
X1

t=1
t2prc (t ju) = prc (1 ju) +

X1

t=2
t2prc (t ju)

= prc (1 ju) +
X1

t=1
(1 + t)2 prc (1 + t ju)

= prc (1 ju) +
X1

t=2
prc (t ju) + 2

X1

t=1
tprc (1 + t ju)

+
X1

t=1
t2prc (1 + t ju) :

Since

prc (1 ju) +
X1

t=1
prc (1 + t ju) = prc (1 ju) +

X1

t=2
prc (t ju) = 1;

then

Mc;2 (u) = 1 + 2
X1

t=1
tprc (1 + t ju) +

X1

t=1
t2prc (1 + t ju) :

Writing

prc (1 + t ju) =
R 0
�h prc (t jc1 ) fC1jC0 (c1 ju) dc1 + prc (t j0)FC1jC0 (0 ju)

+
R h
0
prc (t jc1 ) fC1jC0 (c1 ju) dc1;

we have

Mc;2 (u) = 1 + 2
X1

t=1
t
R 0
�h prc (t jc1 ) fC1jC0 (c1 ju) dc1

+2
X1

t=1
tprc (t j0)FC1jC0 (0 ju)

+2
X1

t=1
t
R h
0
prc (t jc1 ) fC1jC0 (c1 ju) dc1

+
X1

t=1
t2
R 0
�h prc (t jc1 ) fC1jC0 (c1 ju) dc1

+
X1

t=1
t2prc (t j0)FC1jC0 (0 ju)

+
X1

t=1
t2
R h
0
prc (t jc1 ) fC1jC0 (c1 ju) dc1:
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After regrouping, we have

Mc;2 (u) = 1 + 2
R 0
�h

�X1

t=1
tprc (t jc1 )

�
fC1jC0 (c1 ju) dc1

+2
�X1

t=1
tprc (t j0)

�
FC1jC0 (0 ju)

+2
R h
0

�X1

t=1
tprc (t jc1 )

�
fC1jC0 (c1 ju) dc1

+
R 0
�h

�X1

t=1
t2prc (t jc1 )

�
fC1jC0 (c1 ju) dc1

+
�X1

t=1
t2prc (t j0)

�
FC1jC0 (0 ju)

+
R h
0

�X1

t=1
t2prc (t jc1 )

�
fC1jC0 (c1 ju) dc1:

Observing that

M (c1) =
X1

t=1
tprc (t jc1 ) ;M2 (c1) =

X1

t=1
t2prc (t jc1 ) ;

and making these substitutions, then

Mc;2 (u) = 1 + 2
R 0
�hMc (c1)

v0
�
�

�
v0 (c1 � u� k)� c

�

�
dc1 + 2Mc (0)

�
�
�

�
v0 (0� u+ k)� c

�

�
� �

�
v0 (0� u� k)� c

�

��
+2
R h
0
Mc (c1)

v0
�
�

�
v0 (c1 � u+ k)� c

�

�
dc1

+
R 0
�hMc;2 (c1)

v0
�
�

�
v0 (c1 � u� k)� c

�

�
dc1 +Mc;2 (0)

�
�
�

�
v0 (0� u+ k)� c

�

�
� �

�
v0 (0� u� k)� c

�

��
+
R h
0
Mc;2 (c1)

v0
�
�

�
v0 (c1 � u+ k)� c

�

�
dc1

FORTRAN PROGRAM
c*---------------------------------------------------*

c* The ARL and SDRL of the two-sided CUSUM chart of *

c* Page (1954) are computed using a Markov chain *

c* method. *
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c*---------------------------------------------------*

c* Variables List *

c* Integer Variables *

c* etan - number of states lower sided chart *

c* etap - number of states upper sided chart *

c* eta=etn*etp *

c* etamax -- mazimum of eta *

c* m - number of preliminary samples *

c* n - sample size *

c* npmf -- size of the pmf vector *

c* ts -- run length after which run length *

c* approximated by geometric distribution *

c* Double Precision Variables *

c* arl - estimated average run length of chart *

c* delta -- standardized shift in the mean *

c* hn -- lower control limit *

c* hp -- upper control limit *

c* kn -- k of lower sided chart *

c* kp -- k of upper sided chart *

c* lambda -- sigma divided by sigma_0 *

c* Pmf(200) -- probability mass function to 200 *

c* q(1000,1000) -- Q matrix, max 1000x1000 *

c* sdrl -- standard deviation of the run length *

c* v0 -- unbiased estimator of sigma_0 divided by *

c* sigma_0 *

c* z0 -- standardized value of estimate of mu_0 *

c*---------------------------------------------------*
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c*

integer eta,etamax,etan,etap,m,n,npmf,ts

double precision arl,delta,hn,hp,kn,kp,lp,

& lambda,pmf(200),q(1000,1000),sdrl,v0,z0

c*

etamax=1000

npmf=200

c*

c*---------------------------------------------------*

c* Various variables are initialized *

c*---------------------------------------------------*

c*

etan=30

etap=30

delta=0.0d0

lambda=1.0d0

m=10

n=5

z0=0.0d0

v0=1.0d0

kn=0.5d0

kp=0.5d0

hn=-4.292d0

hp=-hn

c*

c*---------------------------------------------------*

c* Matrix Q is determined *
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c*---------------------------------------------------*

c*

call qcusum2(q,eta,etamax,delta,lambda,

& m,n,z0,v0,kn,kp,hn,hp,etan,etap)

c*

c*---------------------------------------------------*

c* Run length distribution is determined with tail *

c* approximated by a geometric distribution *

c*---------------------------------------------------*

c*

call rldistr(q,eta,etamax,pmf,npmf,ts,lp)

c*

c*---------------------------------------------------*

c* ARL and SDRL are determined *

c*---------------------------------------------------*

c*

call rlpar(pmf,npmf,ts,lp,arl,sdrl)

c*

c*---------------------------------------------------*

c* ARL and SDRL reported *

c*---------------------------------------------------*

c*

write(*,60) arl,sdrl

60 format(2(1x,f8.3))

c*

stop

end
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c*

c*---------------------------------------------------*

c* The Q matrix is calculated *

c*---------------------------------------------------*

c*

subroutine qcusum2(q,eta,etamax,delta,lambda,

& m,n,z0,v0,kn,kp,hn,hp,etan,etap)

c*

c*---------------------------------------------------*

c* Variables List *

c* Defined in Main Routine *

c*---------------------------------------------------*

c*

integer eta,etamax,etan,etap,i0,i1,j0,j1,m,n

double precision c,delta,DNML,hn,hp,kn,kp,

& lambda,q(etamax,etamax),tp,tpmax,tpmin,wn,

& wp,v0,z0

c*

c*---------------------------------------------------*

c* Initializing some variables *

c*---------------------------------------------------*

c*

dsqrm=dsqrt(1.0d0*m)

dsqrn=dsqrt(1.0d0*n)

c=(dsqrn*delta)-(z0/dsqrm)

c*

c*---------------------------------------------------*



56

c* i0=the initial state in the negative direction *

c* j0=the initial state in the positive direction *

c* i1=the next state in the negative direction *

c* j1=the next state in the positive direction *

c*---------------------------------------------------*

c*

eta=etan*etap

wn=2.0d0*dabs(hn)/(2.0d0*etan-1)

wp=2.0d0*dabs(hp)/(2.0d0*etap-1)

c

do 2 i=1,eta

do 1 j=1,eta

c

j0=(i-1)/etan

i0=(i-1)-etan*j0

j1=(j-1)/etan

i1=(j-1)-etan*j1

c

if ((i1.eq.0).and.(j1.eq.0)) then

tpmax=(dsqrt(v0)*((i0-0.5d0)*wn-kn)-c)/lambda

tpmin=(dsqrt(v0)*((0.5d0-j0)*wp+kp)-c)/lambda

endif

c

if ((i1.ne.0).and.(j1.eq.0)) then

tpmax=(dsqrt(v0)*((i0-i1-0.5d0)*wn-kn)-c)/lambda

tpmin=(dsqrt(v0)*((i0-i1+0.5d0)*wn-kn)-c)/lambda

tp=(dsqrt(v0)*((0.5d0-j0)*wp+kp)-c)/lambda
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if (tp.lt.tpmin) tpmin=tp

endif

c

if ((i1.eq.0).and.(j1.ne.0)) then

tpmax=(dsqrt(v0)*((i0-0.5d0)*wn-kn)-c)/lambda

tp=(dsqrt(v0)*((j1-j0-0.5d0)*wp+kp)-c)/lambda

if (tp.gt.tpmax) tpmax=tp

tpmin=(dsqrt(v0)*((j1-j0+0.5d0)*wp+kp)-c)/lambda

endif

c

if ((i1.ne.0).and.(j1.ne.0)) then

tpmax=(dsqrt(v0)*((i0-i1-0.5d0)*wn-kn)-c)/lambda

tp=(dsqrt(v0)*((j1-j0-0.5d0)*wp+kp)-c)/lambda

if (tp.gt.tpmax) tpmax=tp

tpmin=(dsqrt(v0)*((i0-i1+0.5d0)*wn-kn)-c)/lambda

tp=(dsqrt(v0)*((j1-j0+0.5d0)*wp+kp)-c)/lambda

if (tp.lt.tpmin) tpmin=tp

endif

q(i,j)=0.0d0

if (tpmax.lt.tpmin)

& q(i,j)=DNML(tpmin)-DNML(tpmax)

c

1 continue

2 continue

c

return

end
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c*

c*---------------------------------------------------*

c* The probability mass function (pmf) for the run *

c* distribution is determined for a given Q matrix *

c* describing the (approximate) Markov chain *

c* representation of the chart. *

c*---------------------------------------------------*

c*

subroutine rldistr(q,eta,etamax,pmf,npmf,ts,lp)

c*

c*---------------------------------------------------*

c* Variables List *

c* See list in Main Routine *

c* lhat -- one estimate of parameter in geometric *

c* approximation of the tail probabilities *

c* lp -- another estimate of parameter in geometric *

c* approximation of the tail probabilities *

c* pr(1000) -- vector of run length probabilities *

c* associated with the nonabsorbing states *

c* pr1(1000) -- previous value of pr(1000) *

c*---------------------------------------------------*

c*

integer ck,eta,etamax,i,istate,j,npmf,t,ts

double precision cdf,lhat,lp,q(etamax,etamax),

& pmf(npmf),pr(1000),pr1(1000)

c*

c*---------------------------------------------------*
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c* Probability mass function of the run length *

c* distribution is calculated iteratively by *

c* pr(eta) = Q*pr1(eta) *

c*---------------------------------------------------*

c*

ck=0

istate=1

c*

t=1

do 2 i=1,eta

pr(i)=0.0d0

do 1 j=1,eta

pr(i)=pr(i)+q(i,j)

1 continue

pr(i)=1.0d0-pr(i)

2 continue

pmf(1)=pr(istate)

cdf=pmf(1)

c*

3 t=t+1

do 4 i=1,eta

pr1(i)=pr(i)

4 continue

c*

do 6 i=1,eta

pr(i)=0.0d0

do 5 j=1,eta
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pr(i)=pr(i)+q(i,j)*pr1(j)

5 continue

6 continue

pmf(t)=pr(istate)

cdf=cdf+pmf(t)

if (t.le.20) goto 3

if (ck.eq.1) goto 9

c*

lhat=pmf(t)/pmf(t-1)

lp=1.0d0-cdf+pmf(t)

lp=(1.0d0-cdf)/lp

epsilon=dabs(lhat-lp)

if (epsilon.gt.0.000001d0) goto3

c*

ts=t

ck=1

goto 3

c*

9 return

end

c*

c*---------------------------------------------------*

c* ARL and SDRL are determined

c*---------------------------------------------------*

c*

subroutine rlpar(pmf,npmf,ts,lp,arl,sdrl)

c*
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c*---------------------------------------------------*

c* Variables list *

c* See main routine *

c* i -- indexing variable *

c* t -- value of the run length *

c* arl -- average run length *

c* sdrl -- standard deviation of the run length *

c* tmp -- temporary variable *

c*---------------------------------------------------*

c*

integer i,npmf,t,ts

double precision arl,cdf,lp,pmf(npmf),

& sdrl,tmp

c*

c*--------------------------------------------------*

c* ARL and mean of the square of the run length are *

c* calculated exactly up to an including t* (ts) *

c* with the tail part of each approximated using *

c* a geometric distribution to approximate the tail *

c* probabilities. *

c*--------------------------------------------------*

i=1

arl=0.0d0

sdrl=0.0d0

cdf=0.0d0

do 1 t=1,ts

arl=arl+t*pmf(t)



62

sdrl=sdrl+t*t*pmf(t)

cdf=cdf+pmf(t)

1 continue

tmp=pmf(ts+1)*(ts/(1.0d0-lp)

& +1/((1.0d0-lp)*(1.0d0-lp)))

arl=arl+tmp

tmp=pmf(ts+1)*(ts*ts/(1.0d0-lp)

& +(2.0d0*ts-1.0d0)/((1.0d0-lp)*(1.0d0-lp))

& +2.0d0/((1.0d0-lp)*(1.0d0-lp)*(1.0d0-lp)))

sdrl=sdrl+tmp

sdrl=sdrl-arl*arl

sdrl=dsqrt(sdrl)

c*

return

end

C

DOUBLE PRECISION FUNCTION DNML(X)

C

C COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION

C P(Y<=X) OF A RANDOM VARIABLE Y HAVING A

C STANDARD NORMAL DISTRIBUTION.

C

DOUBLE PRECISION X,Y,S,RN,ZERO,ONE,ERF,SQRT2,PI

DATA SQRT2,ONE/1.414213562373095,1.D0/

DATA PI,ZERO/3.141592653589793,0.D0/

Y=X/SQRT2

IF (X.LT.ZERO) Y=-Y
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S=ZERO

DO 1 N=1,37

RN=N

S=S+DEXP(-RN*RN/25)/N*DSIN(2*N*Y/5)

1 CONTINUE

S=S+Y/5

ERF=2*S/PI

DNML=(ONE+ERF)/2

IF (X.LT.ZERO) DNML=(ONE-ERF)/2

IF (X.LT.-8.3D0) DNML=ZERO

IF (X.GT.8.3D0) DNML=ONE

RETURN

END
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