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OPTIMAL AND PERMISSIBLE SAMPLING RATES  

FOR FIRST-ORDER SAMPLING OF TWO-BAND SIGNALS 

 

 

by 

 

DANIEL F. LINDER II 

(Under the Direction of Yan Wu) 

 

ABSTRACT 

 

Sampling theory plays an essential role in the advancement of digital signal processing 

(DSP).  All known DSP processors only work with digital samples of an analog signal 

(continuous-time signal).  Therefore, reliable sampling of a signal is crucial for the 

successive phases of DSP.  A well-known industry standard for sufficient sampling of an 

analog signal is that the sampling rate is at least twice the highest frequency of the signal.  

Obviously, the greater the highest frequency of the signal, the higher the sampling rate 

required, hence, more wear and tear on the sampling device. This research focuses on 

developing sampling methods for passband signals, which arises for broad-band signal 

processing, and it has drawn great interests in the DSP community.  A first-order 

sampling method with optimal and total identification of all permissible sampling rates 

for two-band passband signals is studied in this work.  A rigorous proof for all the 

sampling rates is presented.  It is shown that the new sampling rates are much lower than 

the industrial standard.  Therefore, the new sampling mechanism has sound theoretical 

and commercial values.  Quantitative analysis is performed on the proposed sampling 

method, including a fast algorithm for computing all feasible sampling rates for two-band 

passband signals. 
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CHAPTER 1 

INTRODUCTION 

Digital Signal Processing (DSP) has been the driving force for the development of 

modern scientific technologies.  Its applications have been seen from space technology to 

household electronics.  An indispensable component of digital signal processing is 

sampling because an analog signal has to be sampled before any DSP procedures can be 

applied, see Fig. 1.1.   

 

Figure 1.1 Sampling and Digital Signal Processing 

The process of selecting values of an analog signal at discrete-time instants is called 

sampling.  A sampling device is used to take measurements of the analog signal at a 

regular interval of time.  The interval of time, or so-called sampling interval, the 

reciprocal of which is called sampling rate, has to be carefully selected so that the 

samples capture the characteristics of the original analog signal.  A well-known industrial 

standard for sufficient sampling of an analog signal is that the sampling rate is at least 

twice the highest frequency, also known as the Nyquist rate [J. G. Proakis and D. G. 

Manolakis, 1996], of the signal.  The challenge of effective sampling comes from signals 

with high frequency components because the sampling device has to perform at a much 

faster rate to cope with the high frequencies, and such sampling devices are expensive to 

make.  As the modern technologies advance at a faster pace than ever, DSP technologies 

  DSP 
( )f t  ( )f nT  
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have to be at least one-step ahead.  Particularly with the emergence of broad-band signals 

from space, commercial applications, and military, the highest frequency of which is 

usually at the range of mega-hertz or even giga-hertz, construction of advanced sampling 

mechanisms have become one of the most active research areas in digital signal 

processing.  The goal of developing new sampling methods is always the same, that is, to 

reduce the sampling rate to a level that is lower than the Nyquist rate.   

    In the past decade or so, higher-order sampling methods were developed to lower the 

sampling rate [Moon, 2000, Mitra, et. al., 1993, Xiao, 1995]. The idea of using a guard-

band to reduce the susceptibility of the permissible sampling rates to aliasing was 

introduced in [Vaughan, et. al., 1991].  Similar treatment of the problem can be found in 

[Gaskell, 1978; Gregg, 1979; Coulson, 1994]. However, due to the excessive structural 

complexity, the implementation of those higher-order methods may add more cost to the 

making of such sampling devices.   

    It is observed that most broad-band signals are passband signals with existence of 

significant gaps among the spectral components of the signal displayed from the 

frequency domain [Proakis and Manolakis, 1996], see Fig.1.2.  The objective of this 

research is to develop low-cost sampling methods to achieve a lower sampling rate than 

the Nyquist rate by utilizing the gaps among the spectra.  The proposed sampling 

mechanism is guaranteed to be low-cost because only first-order sampling is considered, 

which has the simplest design structure, known as sample-and-hold.  The idea of deriving 

such new sampling rates, both optimal and admissible sampling rates, is that the spectra 

of a passband signal do not intersect with each other (anti-aliasing) as they shift 

horizontally at a step size that is equal to the designated sampling rate.  
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Figure 1.2 Two-Band passband signals with significant gaps 

    The Fig. 1.1 describes the continuous signal )(tf  being sampled by some process at 

regular intervals. The first box represents the sampling device. This process converts the 

continuous or analog signal to a digital one where the digital signal processor (DSP), 

manipulates and recreates the original. This work provides all possible sampling rates and 

determines the smallest. This improvement allows the sampler to perform at a much 

slower rate to recreate the original signal, hence saving money on sampler maintenance.  

    The idea of signal processing involves transforming the time dependent signal )(tf  

into a frequency dependent function )(ωF  via a Fourier transform, with sampling 

frequency 
T

f

1
=∆ . This transformation simplifies analysis from an often times difficult 

signal function to an analysis of a much easier one in frequency domain. Finding the 

smallest sampling rate translates into an increase in T , where T  corresponds to the time 

delay in the sampling device. Allowing this delay to be as large as possible means the 

sampling device can sample much more slowly.  One might ask what a feasible sampling 

rate is and what the industry standards are. It helps to observe the following diagram. 

 

 

 

 

d  c a  b 
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                                                                                               Figure1.3                                     

         

 

 

Figure 1.3 Sufficient vs. insufficient sampling 

    The Fig. 1.3 is an illustration of the original signal after conversion into frequency 

domain. After a signal has been sampled, copies of the signal in frequency domain are 

distributed along the frequency axis. The picture at the bottom left reflects a sampling 

frequency that is feasible. This frequency is considered feasible because no intersection 

occurs between copies. The picture at the bottom right reflects a sampling scheme that is 

not feasible. Copies using this frequency are observed to have intersections. This 

phenomenon is called aliasing and does not allow for successful reconstruction of the 

original signal.  The industry standard for sampling is that the sampling rate be at least 

twice the bandwidth of the signal.  

    Using this standard would translate into, bf 2>∆ , with b  being the highest frequency 

of the signal, in the case where the signal is in frequency domain. However, this sampling 

rate does not use valuable space between the spectra. Modifying the sampling rate to 

make use of these spaces can dramatically decrease the rate that a sampling machine has 

to sample the signal. In chapter 2, all possible sampling frequencies are determined with 

minimum constraints. 

1s
f

 

2
aliasing( )sf
 



5 

  

 

    In what follows, we give a brief review of some basic facts in digital signal processing. 

Let )(tf  be an analog signal of time, then the Fourier transform into frequency domain 

takes the form 

                                                      ∫
∞

∞−

−= dtetfF tiωω )()(                                                 (1-1)                                                         

Then the inversion formula will express )(tf  using )(ωF  in the following way 

                                               ∫
∞

∞−

= ωω
π

ω deFtf ti)(
2

1
)(                                                  (1-2) 

From analysis it is known that { }∞ −∞=n
tin

e 0ω
 forms an orthogonal basis for periodic 

functions in 2L , with period T, and 
T

π
ω

2
0 = .  Then ∑

∞

−∞=

=
n

tin

neatf 0)(
ω

, implying, 

tim
etf 0),(

ω
 = 

tim

n

tin

n eea 00 ,
ωω∑

∞

−∞=

 = ∫
−

−
2

2

00

T

T

timtin

m dteea
ωω

= ∫
−

−
2

2

00

T

T

timtim

m dteea
ωω

= Tam . 

Then, ∫
−

=
2

2

0)(
1

T

T

tim

m dtetf
T

a
ω

, from the orthogonality of the basis functions. 

Combining the previous derivations yield the familiar Fourier series representation as:  

                                     ∑
∞

−∞=

=
n

tin

neatf 0)(
ω

, with ∫
−

=
2

2

0)(
1

T

T

tin

n dtetf
T

a
ω

                        (1-3).    

    Introducing the Dirac delta function that is defined to satisfy the following conditions: 

(i) 0)( =tδ  when 0≠t , and ∫
∞

∞−

= 1)( dttδ   
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(ii) ∞=)(tδ  when 0=t  and the important property ∫
∞

∞−

= )0()()( fdtttf δ  

From this definition, it is easy to verify the convolution ∫
∞

∞−

=−=∗ )()()( tfdtff ττδτδ . 

Next, we introduce the impulse train function, ∑
∞

−∞=

+=
n

nTtt )()( δµ  as periodic with 

periodT . The Fourier series representation of )(tµ  is,  

                                    ∑
∞

−∞=

=
n

tin

neat 0)(
ωµ  , where ∫

−

−=
2

2

0)(
1

T

T

tin

n dtet
T

a
ωµ . 

Therefore,  

na = ∫ ∑
−

−
∞

−∞=

+
2

2

0)(
1

T

T

tin

n

dtenTt
T

ωδ . 

Since 




−∈
2

,
2

TT
t , ∫

−

=
2

2

)(
1

T

T

n dtt
T

a δ
T

1
= . 

    It is known that the Fourier transform of two convoluted functions is the product of 

their Fourier transforms, that is,   

                                                  )()()()( ωω GFtgtf ↔∗ .                                         (1-4) 

To show that ∑∑
∞

−∞=

∞

−∞=

−↔
nn

tin
n

T
e

T
)(

21
0

0 ωωδ
πω

, one may use the following derivation: 

∑∫∑
∞

−∞=

∞

∞−

∞

−∞=

− −=−
n

ti

n

den
T

n
T

F ωωωδ
π

π
ωωδ ω)(

2

2

1
)}(

1
{ 00

1
 = ∑ ∫

∞

−∞=

∞

∞−

−
n

ti den
T

ωωωδ ω)(
1

0  

 = ∑
∞

−∞=n

tin
e

T
0

1 ω
. 
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Thus, 

∑∑
∞

−∞=

∞

−∞=

−=∗
nn

tin
nF

T
e

T
tfF )()(

2
}

1
)({ 0

0 ωωδω
πω

, 

 taking the inverse Fourier transform on both sides of the above equation, we obtain the 

following: 

 ∑
∞

−∞=

∗
n

tin
e

T
tf 0

1
)(

ω
 = ∫ ∑

∞

∞−

∞

−∞=

−
n

ti denF
T

ωωωδω ω)()(
1

0  = ∑ ∫
∞

−∞=

∞

∞−

−
n

ti denF
T

ωωωδω ω)()(
1

0 . 

Again, using the properties of Dirac delta, the above derivation leads to 

∑
∞

−∞=

∗
n

tin
e

T
tf 0

1
)(

ω
 = ∑

∞

−∞=n

tin
enF

T
0)(

1
0

ωω .                           

Evaluating the convolution on the left gives 

∑
∞

−∞=

=+
n

nTtf )( ∑
∞

−∞=n

tin
enF

T
0)(

1
0

ωω . 

Introducing the functions ∑
∞

−∞=

+=
n

nTtftf )()(  and ∑
∞

−∞=

+=
n

nFF )()( 1ωωω , where 

1

1

2

T

π
ω = , it can be shown that  

                                ∑
∞

−∞=

−=
n

inT
enTfF

ω

ω
π

ω 1)(
2

)( 1

1

 with 
1

1

2

ω
π

=T ,                                (1-5) 

this is known as the Poisson Summation Formula.  The outline of the derivation is stated 

as follows: we begin with a series representation for the periodic impulse train in the 

frequency domain: 

∑ ∑
∞

−∞=

∞

−∞=

−=+
n n

inT

nean
ωωωδ 1)( 1 , 

 and na  can be easily computed to be 
1

1

ω
. Thus, 
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                                ∑∑
∞

−∞=

−
∞

−∞=

∗=+∗
n

inT

n

eFnF
ω

ω
ωωωδω 1

1

1

1
)()()(                             (1-6) 

evaluating the left side of (1-6) gives 

∑∫
∞

−∞=

∞

∞−

+−
n

dnF τωωτδτ ))(()( 1  = ∑ ∫
∞

−∞=

∞

∞−

+−
n

dnF τωωτδτ ))(()( 1 . 

Using the properties of Dirac delta, the integral on the left of (1-6) 

becomes ∑
∞

−∞=

+
n

nF )( 1ωω . Evaluating the convolution on the right side of (1-6) gives  

∑∫
∞

−∞=

−−
∞

∞− n

inT
deF τ

ω
τ τω )(

1

1
1

)(  = ∑ ∫
∞

−∞=

∞

∞−

−−

n

inT
deF ττ

ω
τω )(

1

1)(
1

 = ∑ ∫
∞

−∞=

∞

∞−

−

n

inTinT
deFe ττ

ω
τω 11 )(

1

1

 

= ∑
∞

−∞=

−

n

inT
enTf

ω

ω
π

1)(
2

1

1

. 

Combining the computation of both sides of the (1-6) produces Poisson’s Summation 

Formula. ∑
∞

−∞=

−=
n

inT
enTfF

ω

ω
π

ω 1)(
2

)( 1

1

with 
1

1

2

ω
π

=T . 

    The goal of these calculations is to express the original signal in terms of its samples. 

The Poisson formula is close but not quite there. Taking inverse Fourier transforms 

would not produce the original signal. In order to achieve the goal, we must first 

introduce an ideal low pass filter and then present the famous Shannon’s Sampling 

Theorem [J. G. Proakis and D. G. Manolakis, 1996]. The Fourier Transform of the 

function 

∑
∞

−∞=

−=
n

nTtnTTftf )()()( δδ = ∑
∞

−∞=

−

n

tinenTTf ω)(  
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and together with (1-5) yield ∑
∞

−∞=

+
n

nF )( 0ωω . Noticing that this process has created 

multiple copies of the Fourier Transform of )(tf  in frequency domain, it is suitable to 

design a filter to extract only the original frequency domain signals from their copies. 

    Consider the ideal lowpass filter, =)(ωS 1 if σω <  and 0 otherwise.  Taking the 

inverse Fourier Transform of )(ωS gives  

∫
∞

∞−

= ωω
π

ω deSts ti)(
2

1
)(  = ∫

−

σ

σ

ω ω
π

de ti

2

1
 = )sin(

1
t

t
σ

π
. 

From the definition of the lowpass filter, )(ωS , it is clear that    

                                 ∑
∞

−∞=

+
n

nFS )()( 0ωωω  = )(ωF  whenever 
π
σ

≥
T

1
.                        (1-7) 

The minimum sampling rate σ2  is known as the Nyquist rate, and it specifies a sampling 

rate to guarantee perfect reconstruction of a signal from the samples. Taking the inverse 

Fourier Transform of both sides of (1-7) gives )()( tfts δ∗  = )(tf , which leads to 

                                          ∑
∞

−∞= −
−

=
n nTt

nTtnTf
tf

)(

)(sin)(
)(

σ
σ

.                                          (1-8) 

This is the famous Shannon’s Sampling Theorem. It proves that a signal )(tf  can be 

perfectly reconstructed from its samples with an ideal lowpass filter, given the Nyquist 

rate is satisfied. 

    We have now established that a signal can be reconstructed in this way given that the 

sampling rate is at least the Nyquist rate. The Nyquist rate guarantees that the copies of 

the signal in frequency domain do not overlap and avoid aliasing. However, in the case of 

a two-band passband signal, the Nyquist rate can be improved upon by allowing the 

copies of the spectra to move between each other. The proceeding work establishes the 
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necessary and sufficient conditions for permissible and optimal sampling rates in the case 

of two-band passband signals. 
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CHAPTER 2 

OPTIMAL AND PERMISSIBLE STEP SIZES FOR TWO DISJOINT INTERVALS 

    Before the discussion of necessary and sufficient conditions for the feasible step sizes, 

we introduce several important symbols to make the work transparent. 

Shifted Interval 

    The symbol ∆m

baI ],[  will designate the closed interval ],[ ∆+∆+ mbma , where       

m Ν∈ , I ],[ ba  = [ a , b ], and +∈∆ R . 

Feasible Step Size 

    Throughout the text, it is always assumed that the intervals [ ]ba,   and [ ]cd ,  are closed, 

disjoint, and satisfy bacd <<< .  

    The symbol f∆  will be used to designate a feasible step size.  f∆  is a feasible step 

size for two intervals [ ]ba,  and [ ]cd ,  if, 

i.)  I [ ]
∆m

ba,  intersects I [ ]
∆n
cd ,  at only one point, or the intersection is empty, for all non-

negative integers m  and n .  

ii.)  I [ ]
∆m

ba,  intersects I [ ]
∆n
ba,  at only one point, or the intersection is empty, for all non-

negative integers m  and n .  

iii.)  I [ ]
∆m

cd ,  intersects I [ ]
∆n
cd ,  at only one point, or the intersection is empty, for all non-

negative integers m  and n .  

Optimal Step Size 

    The symbol o∆  will be used to designate the optimal step size. o∆  is optimal if all   

f∆ ≥   o∆ . 
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The Floor Function 

    The symbol  x  denotes the greatest integer less than x . For example,  14.3  =3.  

    The following Propositions (P1-P4) determine feasible step sizes for two arbitrary 

intervals illustrated in the following diagram: 

 

Figure 2.1 Arbitrary two-band 

Proposition 2.1 If ∆  ≥  ( )ab − , then [ ] ∩
∆m

baI , [ ] φ=∆n
baI ,  or a singleton for integers m  and 

n . 

Proof: 

This is the Nyquist rate and is known. 

Proposition 2.2 Let [ ]cd ,  and [ ]ba,  be closed disjoint intervals; if +∈∃ Zm  such that  

amc ≤∆+  and bmd ≥∆++ )1( , then  ],[],[ ba

n

cd II ∩∆  is empty or a singleton for all non-

negative integers  n  . 

Proof: 

The proof is elementary. Any integer less than m would clearly not cause an intersection 

as well as any integer greater than m  + 1. The integers m  and  m + 1 cause at most one 

intersection namely at the points a  or b  respectively. 

Proposition 2.3 Let [ ]ba, and [ ]cd , be closed disjoint intervals on the real line. If 

φ=∩∆
],[],[ ba

m

cd II  or a singleton for all integers m , then φ=∩ ∆∆ n

ba

m

cd II ],[],[  or a singleton 

for all integers m , n .  

 d    c    a    b 
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Proof:  

The proof is by contradiction. Let I ∆m

cd ],[ ∩ I ],[ ba  = φ  or a singleton hold for all m Ν∈  and 

pick k , p ∈ Ν  such that I ∆k
cd ],[ ∩ I ∆p

ba ],[ contains more than a point; then clearly k  must 

be greater than p  for a non-empty intersection to occur.  

Case 1 

d  +  k ∆  ≤  a  + p∆  < c  + k ∆  ≤  b  + p ∆ . Subtracting p ∆  from each of the four 

expressions  

d  + ( k – p )∆    ≤    a    < c  + ( k – p ) ∆   ≤  b , which contradicts I ∆m

cd ],[ ∩ I ],[ ba  = φ  or a 

singleton. 

Case 2 

d  +  k ∆   ≤    a  + p ∆   <    b + p ∆   ≤   c  + k ∆ . Subtracting p ∆  from each of the 

four expressions yields 

d  + ( k – p )∆   ≤    a    <  b    ≤  c  + ( k – p ) ∆ , which contradicts I ∆m

cd ],[ ∩ I ],[ ba  = φ  or a 

singleton. 

Case 3 

a  + p ∆   <  d  + k ∆  ≤   b  + p ∆  ≤    c+ k ∆ . Subtracting p ∆  again from each 

expression 

yields 

a    <  d  + ( k – p )∆  ≤    b  ≤   c  + ( k – p )∆ , contradicting I ∆m

cd ],[ ∩ I ],[ ba  = φ  or a 

singleton. 

Case 4 

a  + p ∆   ≤  d   + k ∆  <   c  + k ∆    ≤   b + p ∆ . Subtracting p∆  yields 
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a    ≤    d  + ( k – p )∆  <   c  + ( k – p )∆    ≤   b , again contradicting I ∆m

cd ],[ ∩ I ],[ ba  = φ  or 

a singleton. Since all four cases cover any intersection and each lead to a contradiction, 

the proposition must hold.   

Proposition 2.4 Let [ ]cd ,  and [ ]ba,  be closed disjoint intervals such that )( dc −≥∆  

and )( ab −≥∆ . If ∃   m ∈  Z +  such that amc ≤∆+  and  bmd ≥∆++ )1( , then ∆  is a 

feasible step size.  

Proof: 

Combining Proposition 2.1, 2.2, and 2.3 implies the statement. 

    The next set of propositions (P5-P14) will allow us to partition the positive real line by 

using a set of points calculated from the integer 








−+−
−

=
)()( dcab

ca
t .  This value can be 

thought of as the capacity of the gap between the two intervals [ ]ba,  and [ ]cd ,  to 

accommodate the intervals shifting through the gap without causing intersections. Using 

this value, we can partition the positive side of the real line and determine feasibility of 

the stepsize. 

Proposition 2.5 If  








−+−
−

=
)()( dcab

ca
t , then 

1+
−

t

db
  ≤   

t

ca −
. 

Proof:  

By definition,  t    ≤   
)()( dcab

ca

−+−
−

. Because the quantity is clearly positive, we have             

t

1
   ≥    

ca

dcab

−
−+− )()(

   =   
ca

cadb

−
−−− )()(

   =   
ca

db

−
−

 – 1, then 

t

t 1+
  ≥   

ca

db

−
−

   implying that  
1+

−
t

db
  ≤   

t

ca −
. 
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Proposition 2.6 Let 








−+−
−

=
)()( dcab

ca
t ; then 

1+
−

t

db
 ≥  )( ab −  and   

1+
−

t

db
 ≥  )( dc −  

Proof:  

The above inequalities can be obtained from, 

1+
−

t

db
  ≥   

1
)()(
+

−+−
−
−

dcab

ca

db
    =   

)()( dcab

db

db

−+−
−
−

 = )()( dcab −+− . 

Proposition 2.7 Let 








−+−
−

=
)()( dcab

ca
t ; then 

nt

db

−+
−
1

   ≤    
nt

ca

−
−

 for n  = 0…. 1−t  

Proof: 

By definition,   t    ≤   
)()( dcab

ca

−+−
−

    which implies   t   – n   ≤   
)()( dcab

ca

−+−
−

     

Using the same argument as above we obtain  

nt −
1

   ≥   
)()( dcab

ca

−+−
−

  =   
ca

db

−
−

 – 1, 

and 
nt

nt

−
−+1

    ≥    
ca

db

−
−

 ,  which implies   
nt

db

−+
−
1

   ≤    
nt

ca

−
−

. 

Thus the sequence 














−
−

−+
−

nt

ca

nt

db
,

1

1

0

−
=

t

n  forms a sequence of closed disjoint 

intervals, because ( a – c ) < (b – d )   implying   
nt

ca

−
−

 < 
nt

db

−
−

. The fact that the intervals 

are disjoint will be crucial to the development of a fast algorithm to determine 

intersections later in the work. 
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Proposition 2.8 Let 








−+−
−

=
)()( dcab

ca
t ; then 

nt

db

++
−
1

   >    
nt

ca

+
−

 for n = 1, 2…….. 

Proof: 

Since  n   ≥   1,   we have t  + n  > 
)()( dcab

ca

−+−
−

. 

Thus, 

nt +
1

   <   
ca

dcab

−
−+− )()(

   =   
ca

db

−
−

  –   1,     

which implies 

nt

nt

+
++1

  <   
ca

db

−
−

. Hence, 
nt

db

++
−
1

   >   
nt

ca

+
−

. 

 

Proposition 2.9 If 








−+−
−

=
)()( dcab

ca
t , then    ∪

∞

=









+
−

+
−

1

,
n nt

db

nt

ca
  =   








+
−
1

,0
t

db
.         

Proof: 

Let  x ∈  ∪
∞

=









+
−

+
−

1

,
n nt

db

nt

ca
, then x  ∈   








+
−

+
−

kt

db

kt

ca
,  for some k.  Then     

 0   <   
kt

ca

+
−

   <   x    <   
kt

db

+
−

  ≤   
1+

−
t

db
  implying that x  ∈  








+
−
1

,0
t

db
. 

Let  x  ∈   







+
−
1

,0
t

db
,   then    0 <  x   <

1+
−

t

db
, so ε∃  > 0 such that x   >ε . 

Since  
nt

ca

+
−

 →  0   as  n ∞→ ,  ε∀  > 0    ∃  N :   n  > N   implies  
nt

ca

+
−

 <  ε , thus    

nt

ca

+
−

 < x .  Let M denote the smallest positive integer such that   
Mt

ca

+
−

 < x ,                    

(Well-Ordering Property). Thus, 
Mt

ca

+
−

  <  x  ≤   
1−+

−
Mt

ca
. If M > 1, from Proposition 
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2.8 we obtain, 
1−+

−
Mt

ca
 < 

Mt

db

+
−

  yielding 
Mt

ca

+
−

  <  x   ≤  
1−+

−
Mt

ca
  <  

Mt

db

+
−

. If M  

= 1, and x ∈  







+
−
1

,0
t

db
 then 

1+
−

t

ca
  <  x   <  

1+
−

t

db
   then  x  ∈  








+
−

+
−

1
,

1 t

db

t

ca
  proving 

the proposition. 

Proposition 2.10 Let x∆  ∈  







+
−
1

,0
t

db
 where 









−+−
−

=
)()( dcab

ca
t ; then x∆  is not a 

feasible solution. 

Proof: 

Since  x∆  ∈  







+
−
1

,0
t

db
, then by Proposition 2.9  x∆  ∈  ∪

∞

=









+
−

+
−

1

,
n nt

db

nt

ca
. 

Therefore,  x∆  ∈  







+
−

+
−

kt

db

kt

ca
,  for some integer k   ≥   1. Then,         

kt

ca

+
−

  <  x∆   <  
kt

db

+
−

, implying c  + ( t  + k ) x∆   >  a      and   d  + ( t  + k ) x∆   < b  

Case 1 

If   c  + ( t  + k ) x∆   ≥   b , then      d + ( t  + k ) x∆   <  b   ≤  c   + ( t  + k ) x∆ , 

intersecting in an interval to the left of b . 

Case 2 

If   c  + ( t  + k ) x∆  < b , then     a  <  c  + ( t  + k ) x∆  <b   ,  intersecting around  

c  + ( t  + k ) x∆ .  Since both intersections contain more than just a singleton, x∆  is not a 

feasible solution. 
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Proposition 2.11 Let  x∆   ∈   ∪
1

0

−

=

t

n









−
−

−
−

nt

db

nt

ca
,   and 









−+−
−

=
)()( dcab

ca
t ; then  x∆  

is not a feasible step size. 

Proof: 

If  x∆   ∈  ∪
1

0

−

=

t

n

 







−
−

−
−

nt

db

nt

ca
, , then   x∆  ∈    








−
−

−
−

kt

db

kt

ca
,  for some k  less than  

t  – 1, which implies c  + ( t  – k ) x∆   >  a      and   d  + ( t  – k ) x∆   <  b  

Case 1 

If c  + ( t  – k ) x∆    ≥   b  , then  d  + ( t  – k ) x∆   <  b   ≤   c  + ( t  – k ) x∆ , intersecting 

in an interval to the left of b . 

Case 2 

If c   + ( t  – k ) x∆  < b  , then  a   <  c  + ( t  – k ) x∆  <  b , intersecting around   

c  + ( t  – k ) x∆ . 

Thus, x∆   is not a feasible step size.  

Proposition 2.12 Let f∆ ∈∪
1

1

,
1

−

=






−
−

+−
−t

n nt

ca

nt

db [ )∪ ∞− ,db , 








−+−
−

=
)()( dcab

ca
t , then 

f∆  is a feasible stepsize. 

Proof: 

If  f∆  ∈ [ )∞− ,db , then it is greater than the Nyquist rate, and is feasible. Thus, we only 

consider,  

f∆  ∈  ∪
1

1

,
1

−

=






−
−

+−
−t

n nt

ca

nt

db
.  Then  f∆  ∈   





−
−

+−
−

kt

ca

kt

db
,

1
 for some k = 1, 2, ……. t -1, 

implying 
1+−

−
kt

db
  ≤   f∆   ≤   

kt

ca

−
−

.  Thus  c  + ( t  – k ) f∆ ≤  a    and   
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d  + ( t  – k  + 1) f∆   ≥   b . From Proposition 2.4 and 2.6, f∆  is a feasible solution with 

1+
−

t

db
 being the smallest feasible solution and hence the optimal solution. 

Proposition 2.13 Let 








−+−
−

=
)()( dcab

ca
t ; then       

                    ∪
k

n nt

db

nt

ca

nt

ca

nt

db

0

,,
1=









−
−

−
−

∪





−
−

−+
−

  =   






−
−

+
−

kt

db

t

db
,

1
 for k  = 0 …. t  – 1. 

Proof: 

The proof is by induction. 

i.) If  k  = 0,  






 −−
∪




 −
+
−

t

db

t

ca

t

ca

t

db
,,

1
  =  






 −
+
−

t

db

t

db
,

1
. 

ii.) Assume the statement is true for all integers less than k, then  

                     ∪
k

n nt

db

nt

ca

nt

ca

nt

db

0

,,
1=









−
−

−
−

∪





−
−

−+
−

 

                   = 







−
−

−
−

∪





−
−

−+
−

∪







−
−

−
−

∪





−
−

−+
−−

= kt

db

kt

ca

kt

ca

kt

db

nt

db

nt

ca

nt

ca

nt

dbk

n

,,
1

,,
1

1

0

∪  

                   = 







−
−

−
−

∪





−
−

−+
−

∪








−−
−

+
−

kt

db

kt

ca

kt

ca

kt

db

kt

db

t

db
,,

1)1(
,

1
 

                   = 







−
−

−
−

∪





−
−

+
−

kt

db

kt

ca

kt

ca

t

db
,,

1
 

                   = 






−
−

+
−

kt

db

t

db
,

1
. 

Proposition 2.14 Let 








−+−
−

=
)()( dcab

ca
t ; then       

                    ∪
1

0

,,
1

−

=









−
−

−
−

∪





−
−

−+
−t

n nt

db

nt

ca

nt

ca

nt

db
  =  






 −
+
−

db
t

db
,

1
. 
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Proof: 

The result follows directly from Proposition 13. 

    Now, we are ready to prove the main result of the chapter. The preceding propositions 

have allowed us to decompose the positive real line into regions in which feasibility is 

known. Proposition 10 has shown that no feasible step sizes exist in the interval 









+
−
1

,0
t

db
. Proposition 14 partitions the interval 






 −
+
−

db
t

db
,

1
 into subintervals in 

which feasibility is known. Finally, the interval [ )∞− ,db , consists entirely of feasible 

step sizes. Observing Fig 2.1 will illustrate how the positive real line is decomposed into 

feasible and non-feasible regions. 

Figure 2.2 Partition of the number line with the feasible and non-feasible intervals 

We are ready to prove the feasible stepsize theorem. 

Theorem 2.1 ∆ f is a feasible solution for the intervals [ ]cd ,  and [ ]ba,  if and only if, 

f∆  ∈  ∪
1

0

,
1

−

=

∪





−
−

−+
−t

n nt

ca

nt

db [ )∞− ,db ,  where 








−+−
−

=
)()( dcab

ca
t . 

Proof: 

Since the interval 







+
−
1

,0
t

db
 contains no feasible step sizes by Proposition 10, and the 

union, ∪
1

0

,
−

=









−
−

−
−t

n nt

db

nt

ca
 contains no feasible step sizes by Proposition 11, and  

1

b d

t

−
+

 a c

t

−

 

b d

t

−  
1

a c

t

−
−

 
2

b d−  a c−  b d−  
. . .          . . . 

0 
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∪
1

0

,,
1

−

=









−
−

−
−

∪





−
−

−+
−t

n nt

db

nt

ca

nt

ca

nt

db
  =  






 −
+
−

db
t

db
,

1
, then all possible step sizes 

contained in ( )db −,0  must belong to the union ∪
1

1

,
1

−

=






−
−

+−
−t

n nt

ca

nt

db [ )∪ ∞− ,db  by 

Proposition 2.12. 

� 

The following diagram illustrates the role of each proposition in the proof of the main 

theorems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Flowchart for the relations among the propositions and the main theorems 
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Proposition 
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10 

 

Proposition 

11 

 

Proposition 

13 

 

Proposition 

14 

 

Theorem 

3.1 

 

Theorem  

2.1 
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   The following is a simulation example for Theorem 2.1. We choose [ ] [ ]13,10, =ba , and 

[ ] [ ]10,14, −−=cd . According to Theorem 2.1, the feasible stepsizes are calculated and 

shown in the figure below.   

    The following diagram illustrates the new location of the blocks after a single shift 

with the optimal stepsize ( 9=∆ ). 

 

Figure 2.4 Shifting of two blocks after one step at the optimal stepsize 
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    This diagram shows the new location of the blocks after two shifts, notice that the 

block is allowed to move inside the gap. 

 

 

Figure 2.5 Shifting of two blocks after two steps at the optimal stepsize 
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    This diagram illustrates the new location of the blocks, indicating that there is no 

intersection between the two blocks on the right. 

 

Figure 2.6 Shifting of two blocks after three steps at the optimal stepsize 
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CHAPTER 3 

EXTENSION AND FAST ALGORITHM 

    Since all possible options for a feasible solution have been examined and the necessary 

and sufficient conditions for feasibility have been established for two disjoint closed 

intervals, we can extend the result to an arbitrary number of closed disjoint intervals by 

collecting feasible solutions from the pair-wise solutions and determining their 

intersections. 

Pseudo-code 

    In this section, a suitable algorithm is developed to determine a set of feasible solutions 

in the case where multiple intervals occur and their shifted copies are not allowed to 

intersect. The primary advantage of the algorithm is that it is not computationally 

demanding. The relatively small complexity is strongly dependent on the fact that the set 

of all feasible solutions for each pair of intervals is a union of disjoint sets. Another key 

observation is that every one of the intervals has a lower bound greater than the upper 

bound of the previous, that is  ( a  – c  ) < (b – d  ) or 
nt

ca

−
−

 < 
nt

db

−
−

, from the discussions 

earlier in the work. The algorithm is developed as follows. 

Initialization 

Let    I
1,1 n , I 2,2 n ………..I

knk , each be a union of closed disjoint intervals with the 

property mentioned above that is the upper bound of an interval is strictly less than the 

lower bound of the next , and I
ini, is the i th  such union containing in  such intervals.    

Thus,         

                 I
1,1 n  = ],..[........................................],[],[ 1,1,1,21,21,11,1 11 nn bababa ∪∪  
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                  I
2,2 n  = ],.........[..............................],[],[ 2,2,2,22,22,12,1 22 nn bababa ∪∪  

               .  

             I
knk ,  = ],.[........................................],[],[ ,,,2,2,1,1 knknkkkk kk

bababa ∪∪  

Step 1. 

:if one of the unions is empty, then stop. 

:find the maximum value of the left endpoint of the first interval in each union 

call it L max ,  

:find the minimum value of the right endpoint of the first interval in each union 

call it R min . 

Step 2. 

: If    L max ≤R min , then [ ]minmax ,RL  is an intersection and is stored in, F. Remove 

the interval that R min  occurred in from the union it was contained in, and go to 

Step 1. 

:Else remove  the interval that R min  occurred in from the union it was contained in 

and go to Step 1. 

Correctness of the algorithm 

Proposition 3.1 The algorithm finds the intersection of k such unions containing one 

interval each. 

Proof: 

Since each union contains only one interval, we are looking for the intersection of the k 

intervals. 
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i.) In the case of two intervals [ ]11 ,ba  and [ ]22 ,ba , there are four possible intersections. 

Case 1. 

1221 bbaa ≤≤≤ , in which the algorithm finds [ ]minmax ,RL  = [ ]22 ,ba  to be the 

intersection. 

Case 2. 

2112 bbaa ≤≤≤ , in which the algorithm finds [ ]minmax ,RL   =  [ ]11 ,ba  to be the 

intersection. 

Case 3. 

 2121 bbaa ≤≤≤ , in which the algorithm finds [ ]minmax ,RL   =  [ ]12 ,ba   to be the 

intersection. 

Case 4. 

1212 bbaa ≤≤≤ , in which the algorithm finds [ ]minmax ,RL   =  [ ]21 ,ba     to be the 

intersection. 

ii.) Assume the algorithm finds the intersection of 1−k  intervals for all non-negative 

integers less than k, 

Then  [ ]∩
k

n

nn ba
1

,
=

  =  [ ]∩
1

1

,
−

=

k

n

nn ba  ∩  [ ]kk ba ,   =   [ ]minmax ,RL   ∩   [ ]kk ba , . From case i the 

algorithm find the intersection of two intervals and hence the finite intersection of k 

intervals. From the principle of Mathematical Induction, the proposition holds. 

Proposition 3.2 If the algorithm gives a non-empty intersection, [ ]minmax ,RL , for k 

intervals, then [ ]minmax ,RL  is indeed an intersection. 
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Proof: 

Let [ ]ii ba ,  be an arbitrary interval in the collection of k intervals, then from the algorithm 

we have maxLai ≤  and  minRbi ≤ .  Since minmax RL ≤ , ii bRLa ≤≤≤ minmax , which gives 

the appropriate intersection. 

    The results from Proposition 3.1 and 3.2 assure us that the algorithm is reliable for 

finding the intersection of k intervals or that the algorithm will find all intersections and 

will not give nonintersecting solutions. But what about a sequence of unions? When we 

decide to find all feasible solutions for an arbitrary number of intervals we are left with 

finding intersections of sequence of unions, where each union represents a set of feasible 

solutions for two intervals. The fact that the two intervals generate a union in which each 

of the elements in the union, namely a closed interval, are pair-wise disjoint allows for 

removal of an interval from one union at each iteration of the algorithm, thus reducing the 

algorithm to one where only two linear searches are required at each iteration.  

Proposition 3.3 If  I
1,1 n , I 2,2 n ………..I

knk ,  is a sequence of unions of closed disjoint 

intervals where the upper bound of an interval is strictly less than the lower bound of the 

next, then the algorithm finds the intersection,  I
1,1 n ∩  I

2,2 n ∩……….. ∩ I
knk , . 

Proof: 

i.) From Proposition 3.1, the algorithm finds the intersection of the first k intervals of 

each collection if there is an intersection on the first iteration. The removal process 

removes an interval that can no longer cause intersection because each   ≥+1ia ib  ≥R min  

in every collection, thus the interval removed is pair-wise disjoint with each remaining 

interval. 
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ii.) Assume the algorithm has found the intersection if any on the thn  iteration with n 

intervals removed. Since each iteration produces an interval or the empty set, it is disjoint 

from one produced at a different iteration, the intersection is a set of disjoint intervals. 

Now, on the (n + 1) st  iteration, the algorithm finds the intersection, if any, of the k 

intervals under consideration, (from Proposition 3.1). Since the interval removed is 

disjoint from the remaining intervals, all possible intersections involving those (n + 1) 

intervals have been considered. By the principles of Mathematical induction the process 

discovers all possible intersections involving the removed n intervals on the n th  iteration. 

From this result, and the fact that the process eventually terminates, the proposition must 

hold. 

Complexity 

    The complexity of an algorithm is extremely important. If in this case the 

computational complexity of the algorithm was costly, it might not be beneficial to use a 

modified sampling scheme. The cost of determining an appropriate sampling rate would 

outweigh the cost of using the traditional Nyquist rate. However, the complexity proves 

to be relatively small compared with the current sampling rates. A worst case scenario is 

often helpful in setting a bound on the time an algorithm will take to achieve a task. In 

this situation, the worst case occurs when every interval except the last is removed from 

each of the unions. 

Proposition 3.4  The complexity of the algorithm, C, satisfies 

                                          C ≤  2k 







+−∑

=

k

i

in
1

1)1(                                      (3-1) 

where k is number of unions and n i  are the number of intervals in the thi  union. 
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This observation follows from the algorithm performing two linear searches at each 

iteration on k elements which is of complexity k2 , the maximum number of iterations the 

algorithm can perform 







+−∑

=

j

i

in
1

1)1(  occurs when each of the unions contains only it’s 

last interval, the last iteration produces the extra 1. 
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CHAPTER 4 

TWO-BAND PASSBAND SAMPLING THEOREM 

    In chapter 2, all feasible step sizes for two arbitrary closed disjoint intervals. This 

chapter focuses on the two-band passband signal. Using Theorem 2.1 to determine all 

feasible step sizes for distinct pairs, then using the Algorithm to find the intersection will 

give all feasible step sizes for the two-band passband signal. 

Definition 4.1   Let [ , ] [ , ] [ , ] [ , ] [ , ] [ , ]d c a bI c d b a d c a b∪ = − − ∪ − − ∪ ∪ .  A signal ( )f t  is said 

to be bandpassed to [ , ] [ , ]d c a b∪ , see Fig. 1.2, if its Fourier transform ( )F ω satisfies the 

condition ( ) 0F ω =  if [ , ] [ , ]d c a bIω ∪∉ .  

    The illustration in Fig 1.2 gives a general idea of a signal bandpassed to[ , ] [ , ]d c a b∪ . 

Two bands on the negative frequency axis are mirror images of the original two bands on 

the positive side. In this case, there are four distinct pairings to consider between bands. 

From Theorem 2.1, we calculate the feasible step sizes for each pair and use the 

Algorithm to calculate the feasible sampling rates from the six sets of step sizes. 

Ideal Two-Band Filter Design 

    Now that we know the feasible sampling rates for a signal bandpassed to [ , ] [ , ]d c a b∪ , 

we need to design a filter to retrieve the original spectra in the frequency domain.  We 

adopt the csinc-function, first introduced in [Y. Wu, 2005], for the ideal bandpass filters 

In that case  

                                         


 ∈

= ∪

otherwise

I
S bacd

0

1
)( ],[],[ω

ω                                                    (4-1)   

The inverse Fourier Transform of )(ts  is 
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where [ , ]

cos( )sin( / 2)
csinc ( )

/ 2

t t
t

t
ω σ

ω σ
σ

= . This filter will extract the original spectra from the 

copies. 

Sampling Theorem for Two-Band Signals 

 

    Inspection of Fig 1.2 reveals that a two-band signal bandpassed over [ ] [ ], ,d c a b∪ , 

gives six pair-wise comparisons between spectra. We list all the comparisons: [ ]ab −− ,  

with [ ]cd −− , , [ ]ab −− ,  with [ ]cd , , [ ]ab −− ,  with [ ]ba, , [ ]cd −− ,  with [ ]cd , , [ ]cd −− ,  

with [ ]ba, , [ ]cd ,  with [ ]ba, . Using Theorem 2.1 on each comparison gives a set of 

feasible step sizes for each. Finally, using the algorithm will determine the intersection of 

each set of feasible step sizes.  

 

Theorem 4.1 Suppose a signal ( )f t  is bandpassed over [ ] [ ], ,d c a b∪ . Let sω and T be the 

sampling frequency and sampling interval, respectively, and
2

s
T

π
ω = .  Then, ( )f t can be 

completely determined from its samples ( )f nT  via   
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and only if the sampling frequency sω satisfies the following feasibility condition,  

                        )
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( ) ( )

, .k

a ck k k
b a c d
k k k k

t
 −
 = =

− + −  
  

Proof:   

First, we introduce an impulse train modulated by the samples ( )f nT  of the signal ( )f t : 

∑
∞

−∞=
−=

n

nTtnTTftf ).()()( δδ  

According to the Poisson formula, the Fourier transform of )(tfδ  is given by 

                                             ( ) ( ) ( )jnT
s

n n

F Tf nT e F nω
δ ω ω ω

∞ ∞
−

=−∞ =−∞
= = +∑ ∑                       (4-5) 

where )(ωF  is the Fourier transform of ).(tf  The spectrum of )(tf  can be recovered 

from (4-5) by applying the ideal two-band bandpass filter (4-2) to )(ωδF  as follows: 

                                                ( ) ( ) ( ) ( ) ( ).s
n

F S F S F nδω ω ω ω ω ω
∞

=−∞
= = +∑                        (4-6) 

This is guaranteed because none of the spectra ( ),sF nω ω+  ,0≠n overlap with )(ωF  at 

the sampling rate sω  satisfying (4-4) according to Theorem 3.1 and earlier discussions. 

Therefore, taking the inverse Fourier transform of (4-6) yields 
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∑
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                                              � 
    To give the reader an example of the difference in sampling rates, consider a signal 

bandpassed to [ ] [ ]kHzkHzkHzkHz 520,50025,20 ∪ . Then the Nyquist rate or industry 

standard is kHz1040 . However, with the proposed sampling mechanism, the sampling 

rate can be as low as kHz50 . This sampling rate was determined by the MatLab software 

appended. The difference is significant. The sampling rate has thus been reduced by a 

factor of twenty. When considering higher frequency signals i.e. mHz , the sampling rate 

can be reduced to kHz . This reduced rate is commercially appealing when considering 

expensive sampling devices, see to Fig 1.2. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

    In this thesis, we considered all possible step sizes for the sampling frequency of two-

band passband signals. In chapter 2, we partitioned the positive real line into subintervals 

and determined all the feasible stepsizes from the subintervals. The propositions led to 

the necessary and sufficient conditions for the permissible stepsize for the shifting 

without intersection of two arbitrary disjoint intervals. The closed form expressions for 

the permissible stepsizes from Theorem 2.1 along with the fast algorithm developed in 

chapter 3 allow us to calculate the optimal and feasible sampling rates for the two-band 

passband signals, which consists of six pairs of sub-bands. Finally, an example in chapter 

4 was used to demonstrate the efficacy of the new sampling scheme. 

The new sampling scheme will reduce the sampling rate dramatically in most cases. 

This work can be extended to multi-band passband signals and the computation of the 

optimal and feasible solutions will be low-complexity allowing for implementation in 

real design. The simplicity of first-order sampling makes this approach very attractive 

due to the minimal cost for designing the sampling device. The range of permissible 

sampling rates calculated by this scheme allows for flexibility in design without using 

guard-band.  Overall, this new approach will be viable and commercially appealing.  
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APPENDIX 

MATLAB CODE FOR TWO CALCULATING FEASIBLE STEP SIZE 

INTERSECTIONS 
 

%%This method allows user to input band positions and calls feasibleSol 

function deltaCalculator = calculateDelta(a,b,c,d) 
t1 = floor((a/(b-a))); 
j=1; 
k=1; 
l=1; 
m=1; 
for i=0:(t1-1) 
    x1(j) = 2*b/(t1 + 1 - i); 
    x1(j+1) = 2*a/(t1 - i); 
    j=j+2; 
end 
    x1(2*t1+1) = 2*b; 
    x1(2*t1+2) = 9999999999; 
t2 = floor(((a+c)/((b-a)+(d-c)))); 
for i=0:(t2-1) 
    x2(k) = (b+d)/(t2 + 1 -i);     
    x2(k+1) = (a+c)/(t2 - i); 
    k=k+2; 
end 
    x2(2*t2+1) = b+d; 
    x2(2*t2 + 2) = 9999999999;  
t3 = floor(((c-b)/((b-a)+(d-c)))); 
for i=0:(t3-1) 
    x3(l) = (d-a)/(t3 + 1 - i); 
    x3(l+1) = (c-b)/(t3 -i); 
    l=l+2; 
end 
    x3(2*t3+1) = d-a; 
    x3(2*t3+2) = 999999999; 
t4 = floor((c/(d-c))); 
for i=0:(t4-1) 
    x4(m) = 2*d/(t4 + 1 - i); 
    x4(m+1) = 2*c/(t4 - i); 
    m=m+2; 
end 
    x4(2*t4+1) = 2*d; 
    x4(2*t4+2) = 999999999; 

  
deltaCalculator = feasibleSol(x1,x2,x3,x4); 

 

%%This method takes vectors x1,x2,x3,x4 consisting of intervals and 

determines intersection. 

function feasible = feasibleSol(x1,x2,x3,x4) 
i=1; 
j=1; 
k=1; 
n=1; 
p=1; 
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while (i<=length(x1)-1)&(j<=length(x2)-1)&(k<=length(x3)-

1)&(n<=length(x4)-1) 
   maxim = maximum(x1(i),x2(j),x3(k),x4(n)); 
   minum = minimum(x1(i+1),x2(j+1),x3(k+1),x4(n+1));  
  if minum >= maxim  
   if x1(i) == maxim 
    if x1(i+1) == minum y(p)=x1(i);y(p+1)=x1(i+1);i=i+2;p=p+2; 
       elseif x2(j+1) == minum y(p)=x1(i);y(p+1)=x2(j+1);j=j+2;p=p+2; 
       elseif x3(k+1)==minum y(p)=x1(i);y(p+1)=x3(k+1);k=k+2;p=p+2; 
              else  y(p)=x1(i);y(p+1)=x4(n+1);n=n+2;p=p+2; 
              end 

               
       elseif x2(j) == maxim     
          if x2(j+1) == minum y(p)=x2(j);y(p+1)=x2(j+1);j=j+2;p=p+2; 
              elseif x1(i+1) == minum 

y(p)=x2(j);y(p+1)=x1(i+1);i=i+2;p=p+2; 
                    elseif x3(k+1) == minum 

y(p)=x2(j);y(p+1)=x3(k+1);k=k+2;p=p+2; 
                       else y(p)=x2(j);y(p+1)=x4(n+1);n=n+2;p=p+2; 
                         end 

  
        elseif x3(k) == maxim  
          if x3(k+1) == minum y(p)=x3(k);y(p+1)=x3(k+1);k=k+2;p=p+2; 
          elseif x2(j+1) == minum 

y(p)=x3(k);y(p+1)=x2(j+1);j=j+2;p=p+2; 
          elseif x1(i+1) == minum 

y(p)=x3(k);y(p+1)=x1(i+1);i=i+2;p=p+2; 
          elseif x4(n+1) == minum 

y(p)=x3(k);y(p+1)=x4(n+1);n=n+2;p=p+2; 
                     end 

    
         elseif x4(n) == maxim 
               if x4(n+1) == minum 

y(p)=x4(n);y(p+1)=x4(n+1);n=n+2;p=p+2; 
               elseif x2(j+1) == minum 

y(p)=x4(n);y(p+1)=x2(j+1);j=j+2;p=p+2; 
               elseif x3(k+1) == minum 

y(p)=x4(n);y(p+1)=x3(k+1);k=k+2;p=p+2; 
               elseif x1(i+1) == minum 

y(p)=x4(n);y(p+1)=x1(i+1);i=i+2;p=p+2; 
               end 
   end 

   
  else 
      if x1(i+1)==minum i=i+2; 
      elseif x2(j+1)==minum j=j+2; 
      elseif x3(k+1)==minum k=k+2; 
      else n=n+2; 
      end 
end 
end 
   feasible = y(1); 
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JAVA SIMULATION FOR FEASIBLE STEP SIZES  

%%This new set of code is a java simulation of spectra copies on the frequency axis 

import java.awt.*; 

import javax.swing.*; 

public class SimulationFrame extends JFrame{ 

          double a; 

          double b; 

          double c; 

          double d; 

          gridPanel grid; 

          public SimulationFrame(double a, double b, double c, double d){ 

          this.a = a; this.b = b; this.c = c; this.d = d; 

          grid = new gridPanel(a,b,c,d); 

          getContentPane().add(grid); 

           } 

          public void paintComponent(Graphics g){ 

          super.paint(g); 

          g.drawLine(100,100,25,50); 

          g.setColor(Color.black); 

       repaint(); 

    }} 

import java.awt.*; 

import javax.swing.*; 
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public class Simulation{ 

     public static void main(String[] args){ 

     String a = JOptionPane.showInputDialog(null,"Input a"); 

     String b = JOptionPane.showInputDialog(null,"Input b"); 

     String c = JOptionPane.showInputDialog(null,"Input c"); 

     String d = JOptionPane.showInputDialog(null,"Input d"); 

    double a1 = Double.parseDouble(a); 

     double b1 = Double.parseDouble(b); 

     double c1 = Double.parseDouble(c); 

     double d1 = Double.parseDouble(d); 

     double a2 = (int)(a1*100); 

     double b2 = (int)(b1*100); 

     double c2 = (int)(c1*100); 

     double d2 = (int)(d1*100); 

     if(a2%10<=4)  {a2 = ((int)(a2/10));a2 = a2/10;} 

     else {a2 = ((int)(a2/10));a2 = a2/10 + .05;} 

     if(b2%10<=4)  {b2 = ((int)(b2/10));b2 = b2/10;} 

     else {b2 = ((int)(b2/10));b2 = b2/10 + .05;} 

     if(c2%10<=4)  {c2 = ((int)(c2/10));c2 = c2/10;} 

     else {c2 = ((int)(c2/10));c2 = c2/10 + .05;} 

     if(d2%10<=4)  {d2 = ((int)(d2/10));d2 = d2/10;} 

     else {d2 = ((int)(d2/10));d2 = d2/10 + .05;} 

     SimulationFrame fram1 = new SimulationFrame(a2,b2,c2,d2); 
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     fram1.repaint(); 

     fram1.setSize(1100,1100); 

     fram1.setVisible(true)}} 

  import java.awt.*; 

  import java.awt.event.*; 

  import javax.swing.*; 

  public class gridPanel extends JPanel implements ActionListener{ 

      int delta; 

      box Box1; 

      box Box2; 

      JButton bt1; 

   JButton bt2; 

      JButton bt3; 

      JButton bt4; 

      JTextField field; 

      int t; 

      double array[]; 

      double a; 

      double b; 

      double c; 

      double d; 

      int x1; 

      int y1; 
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      int x2; 

      int y2; 

      Timer timer; 

      int i; 

      public gridPanel(double a, double b, double c, double d){ 

        Box1 = new box(a,b,Color.red); 

        Box2 = new box(d,c,Color.red); 

        timer = new Timer(1000,this); 

        bt1 = new JButton("Start"); 

        bt2 = new JButton("Guess"); 

        bt3 = new JButton("Stop"); 

        bt4 = new JButton("Restart"); 

        bt1.setMnemonic('s'); 

        bt3.setMnemonic('p'); 

        bt4.setMnemonic('r'); 

        this.t = (int)(Math.floor((a-c)/((b-a)+(c-d)))); 

        array = new double[2*t]; 

        for(int i=0;i<2*t;i+=2){ 

           array[i] = (b-d)/(t+1-(i/2)); 

           array[i+1] = (a-c)/(t-(i/2)); 

              } 

        bt1.addActionListener(this); 

        bt2.addActionListener(this); 
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        bt3.addActionListener(this); 

        bt4.addActionListener(this); 

        field = new JTextField(); 

       this.a = a; this.b = b; this.c = c; this.d = d; 

        add(bt1); 

     add(bt2); 

  add(bt3); 

        add(bt4); 

        add(field); 

        i = 0; 

        x1 = (int)(20*a+500); 

        y1 = 80; 

        x2 =  (int)(20*d+500); 

        y2 = 80; 

        double delta1 = (b-d)/(Math.floor((a-c)/((b-a)+(c-d)))+1); 

        this.delta = (int)(20*delta1) + 1; 

        this.requestFocus(); 

       } 

      public void setBox(box Box,int x, int y){ 

        Box.setLocation(20,30); 

       } 

       public void paintComponent(Graphics g){ 

       super.paintComponent(g); 
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       g.drawLine(0,100,1000,100); 

       g.setColor(Color.black); 

       for(int i=0;i<=50;i++){ 

     g.drawLine(20*i,105,20*i  ,95); 

       String n = Integer.toString(i-25); 

           g.drawString(n,20*i,120); 

           g.setColor(Color.black); 

    } 

             g.drawString("Enter a Guess For Delta",430,270); 

             field.setLocation(450,300); 

             field.setSize(100,20); 

             add(Box1); 

  Box1.setLocation((int)(20*a + 500),y1); 

  add(Box2);Box2.setLocation((int)(20*d + 500),y2); 

             Box1.setSize((int)(20*(b-a)),20); 

             Box2.setSize((int)(20*(c-d)),20); 

             g.setColor(Color.blue); 

             g.fillRect(x1,y1 -20,(int)(20*(b-a)),20); 

             g.setColor(Color.blue); 

             g.fillRect(x2,y2 - 20,(int)(20*(c-d)),20); 

             g.setColor(Color.black); 

             g.drawString("Permissable Step Size",400,350); 

             for(int i=0;i<2*t;i+=2){ 
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             g.drawString("[" + Double.toString(array[i]),550,350 + (i/2)*20); 

             g.drawString(Double.toString(array[i+1])+"]",580,350 + (i/2)*20); 

             g.drawString("["+Double.toString(b-d),550,350 + t*20);                      

              g.drawString("Inf]",580,350 + t*20); 

 }} 

      public void actionPerformed(ActionEvent e){ 

              if(e.getSource()==bt1) 

               double del = (b-d)/(Math.floor((a-c)/((b-a)+(c-d)))+1); 

              delta = (int)(20*del) + 1; 

        timer.start(); 

     x1 = x1 + delta; 

     x2 = x2 + delta; 

                  repaint(); 

              } 

              if(e.getSource()==bt2){String text = field.getText(); 

                   double del = Double.parseDouble(text);this.delta = (int)(20*del)+1; 

                   timer.start(); 

                   } 

              if(e.getSource()==bt3){timer.stop(); 

              } 

              if(e.getSource()==timer){ 

      i = i + 1; 

      x1 = x1 + delta; 
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      x2 = x2 + delta; 

                  repaint();  }  

              if(e.getSource()==bt4){ 

              x1 = (int)(20*a+500); 

              y1 = 80; 

   x2 =  (int)(20*d+500); 

              y2 = 80; 

              repaint();  }}} 

import javax.swing.*; 

import java.awt.*; 

class box extends JPanel{ 

    double a; 

    double b; 

    double x; 

    double y; 

    Color c; 

    public box(double a, double b, Color c){ 

  this.a = a; 

  this.b = b; 

                        this.c = c; 

   setSize((int)(20*(b-a)),20); 

   } 

    public void moveBox(int x, int y){ 
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         setLocation(x,y);} 

    public void paintComponent(Graphics g){ 

  super.paintComponent(g); 

  g.setColor(Color.black); 

  g.fillRect(0,0,(int)(20*(b-a)),20);   }} 
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