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INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

by

LATRIECE Y. TANKSLEY

(Under the Direction of Goran Lesaja)

ABSTRACT

In this thesis the Interior – Point Method (IPM) for Linear Programming problem (LP) that is 

based on the generic kernel function is considered. 

The complexity (in terms of iteration bounds) of the algorithm is first analyzed for a class of 

kernel functions defined by (3-1). This class is fairly general; it includes classical logarithmic 

kernel function, prototype self-regular kernel function as well as non-self-regular functions, 

thus it serves as a unifying frame for the analysis of IPM. Historically, most results in the 

theory of IPM are based on logarithmic kernel functions while other two classes are more 

recent. They were considered with the intention to improve theoretical and practical 

performance of IPMs. The complexity results that are obtained match the best known 

complexity results for these methods.

Next, the analysis of the IPM was summarized and performed for three more kernel functions. 

For two of them we again matched the best known complexity results.

The theoretical concepts of IPM were illustrated by basic implementation for the classical 

logarithmic kernel function and for the parametric kernel function both described in (3-1). 

Even this basic implementation shows potential for a good performance. Better 

implementation and more numerical testing would be necessary to draw more definite 
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conclusions. However, that was not the goal of the thesis, the goal was to show that IPM with 

kernel functions different than classical logarithmic kernel function can have best known 

theoretical complexity.
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NOMENCLATURE

nR                                          Euclidean n dim space


nR          All vectors of  nR with nonnegative components

Ax                                      Element x belongs to set A

x A Euclidian norm of vector nRx , 



n

i

n
ixx

1

,0  converges to 0

RRf n : A function with n variables

f , f2 A gradient and a Hessian of f

mn RRF : A vector valued function

F A Jacobian of F

)(xdiagX                          A diagonal matrix that has components of the vector x on 

          the main diagonal and zeros everywhere else

1,, x
s

x
xs                                Component wise operations (product, division, inverse) of 

vectors nRsx , .  For example, ),,( 11 nn sxsxxs  .

))(( nfo There exist a constant C and a function )(ng such that 

           )()( nCgnf  (“small o” notation).
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))(( nfO There exist a constant C and a function )(ng such that 

           )()( nCgnf 

))(( nf There exist constants KC, and a function )(ng such that 

            )()()( nKgnfnCg  (“big  ” notation).
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CHAPTER 1

                                                   INTRODUCTION

Linear Programming Model

The mathematical model of linear programming is useful in solving a wide range of 

problems in industry, business, science and government. This is by far the most used 

optimization model.

These problems and their linear programming models can often be complex as they 

consist of a huge number of variables and constraints ranging up to the hundred thousands.  A 

linear programming model consists of an objective function, that is a linear function, and the 

constraints on that function that are also linear. Linear programming involves the planning of 

activities to obtain a result that reaches a specified goal among all feasible alternatives. 

A Linear Program (LP) is a problem that can be expressed in standard form as follows:

     Minimum xcT

subject to 
0


x

bAx
(1-1)

where nRx is the vector of variables to be solved for, and matrix mxnRA and vectors 

mn RbRc  , are input data. . The linear function xcZ T is called the objective function, 

and the equations bAx  are called functional constraints, while 0x are called nonegativity 

constraints. The set  0,|  xbAxRxF n is called a feasible set.  Geometrically, the set 

represents a polyhedron in nR .
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Many practical problems can be modeled  as LP models. To illustrate this fact we list 

the following simple example taken from the [Hillier, Lieberman, 2005]. 

Example: The Wyndor Glass Co. produces high-quality glass products, including 

windows and glass doors. It has three plants. Aluminum frames and hardware are made in 

Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the 

products.  Because of declining earnings, top management has decided to revamp the 

company’s product line. Unprofitable products are being discontinued, releasing production 

capacity to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing

Product 2: A 4 x 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2. 

Product 2 needs only Plants 2 and 3. The marketing division has concluded that the company 

could sell as much of either product as could be produced by these plants. However, because 

both products would be competing for the same production capacity in Plant 3, it is not clear 

which mix of these two products would be most profitable. Each product will be produced in 

batches of 20, so the production rate is defined as the number of batches produced per week. 

Any combination of production rates that satisfies the restrictions is permitted, including 

producing none of one product and as much as possible of the other. Profit from selling one 

batch of Product 1 (glass doors) is $3000 and profit from selling one batch of Product 2 

(windows) is $5000. We assume that all produced batches will be sold. Goal: To determine 

what the production rates should be for the two products in order to maximize the total profit, 

subject to the restrictions imposed by the limited production capacities available in the three 

plants. 
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Of course, this is a simplified real world situation but good enough to illustrate the usefulness 

of the model. Formulation of the Linear Programming (LP) Problem

Let
1x   = number of batches of product 1 produced per week

      
2x = number of batches of product 2 produced per week

     Z   = total profit per week in thousands of dollars from producing these two products

The following table summarizes the data gathered:

Wyndor Glass Company Data

Plant Production Time Per Batch Hours Production Time Available

per Week, Hours

Product

1                                                2

1

2

3

1                                                0

0                                                2

3                                                2

4

12

18

Profit per Batch   3000                                      5000

Table 1

The objective function is 21 53 xxZ  and it represents a total profit measured in thousands of 

dollars. The objective function is subject to the restrictions imposed by the limited production 

capacities available in each of the plants, and they can be mathematically expressed by the 

following inequalities:
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18233

1222

41

21

2

1






xxPlant

xPlant

xPlant

Thus, the overall linear programming model illustrating the Wyndor Glass Company is 

0,0

1823

122

4

53

21

21

2

1

21








xx

xx

x

xtosubject

xxZMaximize

By adding slack variables this problem can be transformed in the standard form (1-1). 

0,0,0,0,0

1823

122

4

53

54321

521

42

31

21








xxxxx

xxx

xx

xxtosubject

xxZMaximize

The similar procedure can be done for different inequality formulations of LP.

This example illustrates the applicability of the LP model.  The number of problems 

that can be modeled as LP is huge and widespread to many areas of science, industry, 

business, finance, government, etc. For more examples see [HL] and other Operations 

Research textbooks. Therefore, the efficient methods to solve LP models are very important. 

In the following sections we will outline main methods that are used to solve LP models.

Methods to Solve LP Models

The first successful general procedure, Simplex Method, for solving a LP problem was 

discovered by George Dantzig in 1947 although there were partial results discovered earlier.

Theoretically the main idea of the simplex method (SM) is that it travels from vertex to vertex 
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on the boundary of the feasible region, repeatedly increasing or decreasing the objective 

function until either an optimal solution is found, or it is established that no solution exists. 

The number of iterations required in the worst case is an exponential function of the number 

of variables, as it was first discovered by Klee and Minti in 1972. However, the worst case 

behavior has not been observed in practice. On the contrary, the algorithm works very well in 

practice, typically requiring  )(nO iterations. Highly sophisticated implementations are 

available (CPLEX, MOSEK, LINDO, EXCEL SOLVER) and have excellent codes for 

simplex algorithms. These codes are capable of solving huge problems with millions of 

variables and thousands of constraints. This discrepancy between exponential worst case 

complexity and good practical behavior of simplex method prompted the research in two 

directions. One direction was a search for the algorithm with the polynomial worst case 

complexity and the other direction was the analysis of average complexity of simplex method.

In 1979, Leonid Khaciyan showed that the Ellipsoid Method, created by A. 

Nemirovski and D. Yudin for nonlinear programming problems, solves any linear program in 

a number of steps which is a polynomial function of the amount of data defining the linear 

program. Unfortunately, in practice, the simplex method turned out to be far superior to the 

ellipsoid method. However, theoretical importance is significant because it provided a basis to 

prove that polynomial methods exist for many combinatorial problems. 

In 1982 K. Borgward provided the first probabilistic analysis of the simplex method, 

showing that the expected number of iterations is polynomially bounded.  Soon afterwards, 

other authors provided similar analysis. A relatively simple and complete analysis was 

provided by Adler and Megiddo in 1985. Using the clever probability model, they showed that 
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upper and lower bounds on an average number of iterations is a function of  2}),(min{ nm , 

where m is the number of constraints and n is the number of variables. 

In 1984, Narendra Karmarkar introduced an Interior-Point Method (IPM) for linear 

programming, combining the desirable theoretical properties of the ellipsoid method and 

practical advantages of the simplex method. Its success initiated an explosion in the 

development of interior-point methods that continue to this day. 

These methods do not pass from vertex to vertex along the edges of the feasible region, 

which is the main feature of the simplex algorithm; they follow the central path in the interior 

of the feasible region. Though this property is easy to state, the analysis of interior-point 

methods is a subtle subject which is much less easily understood than the behavior of the 

simplex method. Interior-point methods are now generally considered competitive with the 

simplex method in most, though not all, applications, and sophisticated software packages 

implementing them are now available (CPLEX, MOSEK, LINDO, EXCEL SOLVER). 



18

CHAPTER 2

INTERIOR POINT METHODS BASED ON KERNEL FUNCTIONS

The linear optimization problem in standard form is 

(P)  0,:min  xbAxxcT ,

where nmnxm RcRbmArankRA  ,),)(( . The dual problem of (P) is

(D)   0,:max  scsyAyb TT ,

where nRs is a dual slack variable. 

We can assume that the Interior Point Condition (IPC) is satisfied without loss of 

generality; that is, there exists a point ),,( 000 ysx such that 0, 00  xbAx and 

0,00  scsyAT , which means that the interiors of the feasible regions of the primal(P) 

and dual(D), are not empty. If the problem doesn’t satisfy the IPC, it can be modified so that it 

does and even in such a way that esx  00 , where  e denotes a vector of all ones. The 

details can be found in [Roos, C et. al., 1997].  

Optimality conditions for (P) and (D) yield the following system of equations: 

,0

0,

0,






xs

scsyA

xbAx
T (2-1)

where the vector xs denotes the component wise product of vectors x and s which is also 

called Hadamard product.
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The theory of interior point methods (IPMs) that is based on the use of Newton’s 

Method suggests that the third equation in (2-1) has to be perturbed. The third equation is 

often called the complementarity condition for the primal and dual, and is replaced by 

exs  , where  is a positive parameter. The optimality conditions (2-1) are transformed to 

the following system:

.

0,

0,

exs

scSyA

xbAx
T






  (2-2)

Since rank (A) = m, this system has unique solution for each  >0. We can write this solution 

as  )(),(),(  syx , calling )(x the  center of (P) and ))(),((  sy the  center of (D). 

The set of all  centers forms a homotopy path in the interior of the feasible region that is 

called the central path.

The  main property of the central path can be summarized as follows:  if ,0 then 

the limit of the central path exists,  the limit points satisfy the complementarity condition, and 

the limit yields optimal solutions for (P) and (D). This limiting property of the central path 

leads to the main idea of the iterative methods for solving (P) and (D): Trace the central path 

while reducing  at each iteration. However, tracing the central path exactly would be too 

costly and inefficient.  One of the main achievements of interior point methods was to show 

that tracing the central path approximately while still maintaining good properties of the 

algorithms is sufficient.  

Tracing the central path means solving the system (2-2) using Newton Method on the 

function  
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.0),,( 






















exs

csyA

bAx

syxF T


(2-3)

Tracing the central path approximately means that only one, or at most, a couple of iterations 

of a modified (damped) Newton’s Method will be performed for a particular  . One iteration 

of a Newton Method for the function (2-3) and particular  is stated below.

),,( syxF

z

y

x

F 





















       (2-4)

where 


















XS

IA

A

F T

0

0

00

denotes the Jacobian of F and  Tzyx  ,, is a Newton’s search direction that we want to 

calculate. 

Solving (2-4) reduces to solving this system.

xsesxxs

syA

xA
T







0

0

(2-5)

Next we update the current iterates  syx ,, by taking an appropriate step along the calculated 

direction. 
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sssyyyxxx    ,,

The step size α has to be chosen approximately, so that the new iterate is in a certain 

neighborhood of µ-center. The choice of  will be discussed later in the text. 

The idea of the algorithm is illustrated in the Figure 1 blow.

Graphical Interpretation of IPM

Figure 1

In order to generalize the algorithm outlined above, we introduce a new vector

Optimal 
solution

=0)

Central path

Neighborhood

neighborhoo

d

     of the 

approximate

     solution

-centersIterate
s Directions with 

step-size

Feasible 
region
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


xs
 (2-6)

which we use to define new scaled directions

s

s
d

x

x
d sx








:,: (2-7)

where the operations in (2-7) are component-wise product and division of vectors. Using the 

above definitions (2-6) and (2-7), the system (2-5) reduces to 

 




1

0

0

sx

s

x

dd

dyA

dA

(2-8)

where )(),(:,
1 1 xdiagXvdiagVXAVA  


. Note that )(xdiagX  denotes a 

diagonal matrix that has components of the vector x on the main diagonal and zeros 

everywhere else.

The new search direction  syx  ,, is obtained by first solving the system (2-

8).Once xd and sd are found we apply (2-6) to find x and s . This direction can also be 

obtained directly by solving the following system:

   (2-9) .
0

0

 




sxxs

syA

xA
T
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This system can be reduced to

ryM  (2-10)

where

)(1

1

 






ASr

XAASM T

(2-11)

and  xdiagX  ,  sdiagS  ,  diagV  .

Once y is found, s and x are found by back substitutions

yAs T (2-12)

     sxsx 1 (2-13)

where products denote component-wise products of vectors.

The following observation is crucial for the generalization of the method. Observe that 

   1 is a gradient of the following function

  .log
2

1
log

2

1
log

2

1 2

2

2
1

1

2




































 


n

n
n

i
i

i
c 








      (2-14).

This function is called log-barrier function.

One may easily verify that the Hessian )()( 22   ediagc . Since this matrix is 

positive definite, )(c is strictly convex. Moreover, since 0)(  ec , it follows that 
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)(c attains its minimal value at e , with 0)(  ec . Thus, it follows that )(c is 

nonnegative everywhere and vanishes if and only if e , that is, if and only if 

)()(  ssandxx  . Hence, we see that the )()(  sandxcenters can be characterized 

as the minimizers of the function )(c . Therefore, the function )(c serves as a proximity 

measure to the  -centers (central path.. The norm based proximity measure that is derived 

from )(c is defined as 

.)(
2

1  c (2-15)

Furthermore, the complimentary equation in (2-8) can be written as 

)(csx dd  , which is also called the scaled centering equation. The importance of 

the equation arises from the fact that it essentially defines the search directions. Since xd and 

sd are orthogonal, we will still have 0sxdd if and only if e . The same is true for x

and s .

The main idea of the generalization of the method is to replace the log-barrier function 

(2-14) with some other barrier function that has the same properties as log barrier. The choice 

of this function will certainly affect the calculation of the search direction, the step size, and 

with that the rate of the convergence of the method. It is worth examining the classes of 

barrier functions that may lead to the improved behavior of the algorithm. In what follows, we 

will consider several such classes.   

We will restrict ourselves to the case where the barrier function )( is separable with 

identical coordinate functions )( i . Thus, 



25

)()(
1




n

i
i , (2-16)

where ),0[:)( t is twice differentiable and attains its minimum at 1t , with 0)1(  . The 

function )(t is called a kernel function.  The log-barrier function belongs to this class.

The algorithm based on generic kernel function that was outlined above is summarized 

in the Figure 2 below. In principle, each barrier function gives rise to a different primal-dual 

algorithm. The parameters τ,θ and the step size α in the algorithm should be tuned in such a 

way that the number of iterations required by the algorithm is as small as possible. The 

resulting iteration bound will depend on the kernel function, and our main task becomes to 

find a kernel functions that give a good and possibly best known iteration bound. The question 

of finding the kernel function that minimizes the iteration bound is still an open question.
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Figure 2 Generic IPM

Generic Primal-Dual Interior-Point Algorithm for Linear Optimization

Input:

An input data A, b, c

A threshold parameter ;1

An accuracy parameter 0 ;

A fixed barrier update parameter 1 ;

Iteration:

      begin

1:;:;:  esex ;

while  n do

begin

calculate )1(:   ;

calculate ;:


 xs


while     do

begin

    calculate the direction  syx  ,,

using (2-10) – (2-13) :

    calculate step size  ;

update 

yyysssxxx   :,:,: ;

end

end

end
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CHAPTER 3

ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS

The following class of kernel functions will be used to analyze the algorithm, Generic 

IPM, discussed in the Chapter 2, Figure 2 .

 
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t
p

qp

qp   (3-1)

where p is a growth parameter and q is a barrier parameter. 

Notice that t
q

t q

log
1

11





when 1q . This class of kernel functions is fairly general. As 

we just explained, it includes log-kernel function as a special case. It also includes so-called 

self-regular kernel functions when 1p . These functions have been extensively discussed in 

recent literature (Peng, J, et. al, 2002). Moreover, it also includes non self-regular functions 

when 10  p . This class of functions was first discussed in (Lesaja G., et.al., 2008). The 

results in this chapter follow the results presented in that paper. However, the proofs of several 

results that were omitted in the paper are outlined here.

Properties of Kernel Functions

The derivatives of )(t in (3-1) play a crucial role in our analysis.  Thus, we write 

down the first three derivatives:
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(3-2)

In the next several lemmas we will describe certain properties of kernel function and its 

derivatives and their relationships in terms of inequalities. These results will be used in the 

analysis of the Generic IPM.

The following lemma states the so-called exponential convexity of kernel function which is 

crucial in proving the polynomial complexity of the Generic IPM.

Lemma 3.1        212121 2

1
,00 ttttthentandtIf   . 

Proof: It can be shown that the inequality in the lemma holds if and only if 

00)(')(''  tallforttt  . This result is beyond the scope of the thesis and can be found

(Peng, J., et. al., 2002). Using (3-1) one can easily verify that

 
0

1
)1(

1
)(')(

1
1'' 









  


q

p
q

p
q

p

t

q
tp

t
t

t

q
pttttt  ,

which completes the proof. 

Lemma 3.2   If 1t , then  2)1(
2

)()1(
2

)('



 t

qp
tt

t 
.

Proof:  If ),(')1()(2)( ttttf   then )('')1()(')(' ttttf   and 

)(''')1()('' tttf  . Also 0)1( f and 0)1(' f . Since 0)(''' t it follows that if 
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1t then 0)('' tf whence 0)(' tf and 0)( tf . This implies the first inequality. The 

second inequality follows from Taylor’s theorem and the fact that qp )1('' . 

Lemma 3.3 Suppose that )()( 21 tt   with 21 1 tt  . The following statements hold:

i. One has 0)(',0)(' 21  tt  , and )(')(' 21 tt   .

ii. If 1 , then )()( 21 tt   ; equality holds if and only if 1 or 121  tt .

Proof: Proof of (i):

The statement is obvious if 11 t or 2t =1 because then 0)(')( 21
'  tt  implies 121  tt

Thus we may assume that .1 21 tt  Suppose the opposite )(')(' 21 tt   . By the mean 

value theorem we have 

                ),()1()(' 2
''

11  tt  for some ),1( 22 t

and

                - ),()1()( 1
''

22
'   tt for some )1,( 11 t .

Since '' (t) is monotonically decreasing one has )()( 2
''

1
''   . Then we obtain 

     ,)1()1()1( 2
''

11
''

12
''

2  ttt 

Hence since ''  2 >0 it follows that 12 11 tt  . Using this and the fact that )(' t is 

convex, we may also write
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This contradiction proves the first part of the lemma. 

Proof of (ii):

Consider,   ).()( 12 ttf  

One has 0)1( f and   ).()( 1
'

12
'

2
' ttttf  

Since 0)('' t for all ,0t )(' t is monotonically increasing. Hence, )(')(' 21 tt   . 

Substitution gives 

0))((')(')(')(')(')(' 12221221122  tttttttttttf 

The last inequality holds since fortandtt 0)('12   .1t This proves that   0f for

,1 and hence the inequality (ii) in the lemma follows. 

If 1 obviously we have equality. Otherwise, if 1 and 0)( f , then the mean value 

theorem implies 0)(' f for some ),1(   . But this implies )()( 1
'

2
' tt   . Since )(' t

Since )(' t is concave,

Since 0)(11 2
'

12  tandtt  ,

  Since )(')(' 21 tt   ,

     Since )(' t is concave.
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is strictly monotonic, this implies that 12 tt   , whence 21 tt  . Since also 21 1 tt  we 

obtain 121  tt . This completes the proof of the second part of the lemma.

Lemma 3.4  If 1t , then )('')(2)(' 2 ttt   .

Proof : Defining )('')(2)(')( 2 ttttf   one has 0)1( f and 

0)(''')(2)(''')(2)('')('2)('')('2)('  tttttttttf  . 

This proves the lemma.

Lemma 3.5  Let ]1,0(),0[:)( s be the inverse function of 1)('
2

1
 tfort . The 

following inequality holds: 

qs

s
1

)21(

1
)(



 . (3-3)

Proof:   Since )('
2

1
ts  , we have 

sstttts pqqp 2122   . 

Since )1(t , this implies the lemma. 

Lemma 3.6 If 1t and pq  2 , then )(1 ttt  .

Proof:  Defining    21)(  ttttf    we have 0)1( f and  

       .12' '  tttttf 
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Moreover, it is clear that   01' f and

              .022222'''2 9''   qpqpp ttptqpttqtpttttf 

The second inequality above is due to the fact that q p 2 . Thus we obtain

   21 ttt , 

which implies the lemma. 

Lemma 3.7 Let ),1[),0[:  be the inverse function of )(t for 1t . The following 

inequalities hold: 

   sssssp p 21)(11 2
1

1

   . (3-4)

If  pq  2 , then

ssssss 21)( 22  (3-5)

Proof: Since q>1 and t1, we have 

 
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Hence, the first inequality in (3-4) follows.

The second inequality in (3-4) follows by using the first inequality of Lemma 3.2:
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Hence, solving the following inequality

  01122  tst

leads to  

  .21 2 sssst   (3-6)

Finally, let .2 pq  By Lemma 3.6 one has   .11 tsttt  

Substitution of the upper bound for t given by (3-6) leads to 

  .21 22 ssssss 

This completes the proof of the lemma.

Now we will derive a very important bound for normed proximity measure     
2

1

in terms of the original proximity measure given by the barrier function )( . 

Theorem 3.1  The following inequality holds: 

     '
2

1
)( . (3-7)

The proof is beyond the scope of thesis and can be found in (Peng, J., et. al., 2002)

Corollary 3.1   If 1)(   , then   p

p

 1)(
6

1
)( 



34

Proof: Using Theorem 2.1, and the fact that 1)(   , we have 

                     1

2

1

2

1
'

2

1
)(    pqp . Note that 

t
t p 1
 is monotonically increasing in t . Thus, by using the first inequality in (3-4), we obtain 

  
  

  
  

    

  1

1

1

1

1

1

1

1

1
1

)(
6

1

)(3

)(

2

1

)(11

)()1(

2

1

)(11

1)(11

2

1

(

1)(

2

1
)(


































p

p

pp

p

p

p
p

p

p

p

pv

















Which proves the corollary.

Analysis of the algorithm

The outline of the analysis of the algorithm is as follows.

1. Outer iteration estimates: 

 Estimate of the increase of the barrier function after the µ update

2. Inner iteration estimates:

 Estimator for default step size

 Estimate of the decrease of the barrier function during the inner iteration with the 

default step size
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     Outer Iteration Estimates

At the start of each outer iteration of the algorithm, just before the update of the 

parameter µ with the factor 1 ,  we have  )( . Since the µ vector is updated to 

 )1(  , with 10   , the vector  is updated to 







1
, which in general leads 

to an increase in the value of )( . Then, during the subsequent inner iterations, )(

decreases until it passes the threshold τ again. During the course of the algorithm the largest 

values of )( occur just after the updates of µ. That is why we need to derive an estimate 

for the effect of a µ-update on the value of )( .

Theorem 3.2 Let ),1[),0[:  as defined in Lemma 3.7. Then for any positive vector 

 and any 1 the following inequality holds:















 

n
n

)(
)(

 .

The proof is beyond the scope of this thesis and can be found in [Peng, J., et. al., 2002].

Corollary 3.2 Let 10  and 






1

. If     , then 
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1
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1
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


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 nnqpn

n . (3-8)
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Proof: With 1 and 1)(   the first inequality follows from Theorem 3.2. The second 

inequality follows by using Lemma 3.2 and 
q

qp 
)1('' . 

The following upper bounds on the value of )(  after the µ-update follow immediately

;1,
)1(

2
1

:)(

2

1 






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

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 q
nnn

nL

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 (3-9)

and

.2,
1

2
1

:)(
2

2

2

2

2 pq
nnnnn

nL 
























 
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 (3-10)

Default Step-size

In this subsection, we will determine a default step size which not only keeps the 

iterations feasible but also gives rise to sufficiently large decrease of )( in each inner 

iteration. During an inner iteration, the parameter  µ is fixed. After the step in the direction 

 syx  ,, with step size α, the new iterate is 

yyyxssxxx    ,, (3-11)

And a new  -vector is given by  
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
 
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. (3-12)
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we obtain 

  sx dd   .

Next, we consider the decrease in  as a function of  . We define two functions 

       f , (3-13)

and 

           dsdf
2

1
:1 . (3-14)

Lemma 3.1 implies that 

          sxsx dddd    2

1
.

The above inequality shows that )(1 f is an upper bound of )(f . Obviously, 

0)0()0( 1  ff . Taking the derivative with respect to  , we get 
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    



n

i
sisiixixii ddddf

1
1 ''

2

1
)('  .

From the above equation and using that )( sx dd we obtain 

2
1 )(2)()(

2

1
)()(

2

1
)0('  vvddvf T

sx
T . (3-15)

Differentiating once again, we get 

      0''''
2

1
)('' 22

1
1  


sixi

ddddf sii

n

i
xii  , unless 0 sx dd .

(3-16)

It is worthwhile to point out that during an inner iteration sandx are not both at the  center 

since 0)(  v , so we may conclude that )(1 f is strictly convex in  . 

Lemma 3.8   The following inequality holds: 

  2''2)('' min
2

1 f . (3-17)

Proof: Since sx dd  , and   sx dd it is easy to see that   .2||,|| sx dd where 

)(
2

1
|   Therefore, we have 2|||| xd and .2|||| sd Hence,

,2min  aad xi    ,2min  aad si    .1 ni 

Using (3-16) and definition of  , we get

   



n

i
sixi addaaf

1
min

"222
min

"
1 )2(22"

2

1
)(  .
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This proves the lemma. 

Lemma 3.9  If the step-size  satisfies 

   2)('2' minmin  , (3-18)

then 0)('1 f .

Proof: Using the Lemma 3.8,(3-15) and (3-17), we write:

 
  

.022

)2(2

2)2(2

)2(22

)()0()(

22

min
'

min
'2

minmin
"2

min
"22

"
1

'
1

'
1


























d

d

dffaf

a

o

a

o

a

o

This proves the lemma.

Lemma 3.10  The largest possible value of the step-size satisfying the condition of Lemma 

3.9 is given by 

 )2()(
2

1
: 


 


(3-19)

Proof: We want  such that (3-18) holds with  as large as possible. Let us denote min as 

.1 Since  t'' is decreasing the derivative with respect to .1 of the expression which is to 

the left side of the inequality (3-18) (i.e.    )2 1
''

1
''   is negative. Hence, fixing  , 

the smaller 1 is, the smaller  will be. We have 
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     .
2

1
||

2

1
||||

2

1
1

'
1

'  

Equality holds if and only if .1 is the only coordinate in that differs from 1 and 11  (in 

case   01
'  ). Hence the worst situation for the step size occurs when 1 satisfies 

  .
2

1
1

'   (3-20)

The derivative with respect to    of the expression that is the left side of the inequality (3-18) 

equals   022 1
''   and hence this expression is increasing in  Thus, the largest 

possible value of  satisfying (3-18), satisfies   

  .22
2

1
1

'   (3-21)

Due to the definition of  , (3-20) and (3-21) can be written as 

)2(2),( 11   .

This implies 

))2()((
2

1
))2((

2

1
1 





 

and the lemma is proved.

Lemma 3.11  Let  be defined by (3-19) . The following inequality holds: 

  


2''

1
 . (3-22)
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Proof: By definition of  ,

    2' 

Taking the derivative with respect to  , we find                                                                

     2'"  

which leads to

     0
''

2
' 


 . (3-23)

Hence,  is monotonically decreasing. An immediate consequence of (3-19)) is 

     






 








2

2

'

''

1

2

1 d
d (3-24)

where we also used  (3-23). To obtain a lower bound for , we want to replace the argument 

of the last integral by its minimal value. We would like to know when    " is a maximal 

for  .2,   . We know that " is monotonically decreasing. Thus    " is maximal for 

  2, when   is minimal. Since  is monotonically decreasing this occurs when 

 2 . Therefore 

         ,2"

1

2

1

''

1
"

2














 
d

and the lemma is proved.
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Theorem 3.3   We have 
q

q

qp





1

)41)((

1
:~



 (3-25)

Proof: Using Lemma 3.11, and the fact that )('' t is monotonically decreasing for 

),0( t we have 






 ~

)41)((

1

)41()41(

1

))2((''

1
111








 
q

q

q

q

q

q

qpqp
p

and the  theorem is proved.

Thus, we can define the following default step-size

q

q

qp
1

)41)((

1
:~









 , (3-26)

Inner Iteration Estimates

Using the lower bound on the step size obtained in (3-25), we can obtain results on the 

decrease of the barrier function during inner iteration. 

Lemma 3.12 If the step size is such that   , then 2)(  f . (3-27)

Proof:  Let the univariate function h be such that 

  0)0(0 1  fh , 2'
1 2)0('  fh ,   aah 2"2)( min

2'' 
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According to (3-17) we have     "" hf  and that implies     '' hf  and     hf  . 

Taking  ~ , with ~ defined in (3-26)), we have 

         0'2'22"22' minmin
2

0

min
22   


dh .

Since  t''' decreasing in )(, '' ht is increasing  . Using Lemma 3.13 below, we get:

                                            

2'
1 )0(

2

1
)()(  ahahaf

.

As we mentioned before,  1f is an upper bound of  af , hence, the lemma is proved.

Theorem 3.4 The following inequality holds:

)1(

)1(

)(
)(60

1
)~( 






 pq

qp

qp
f  . (3-28)

Poof: According to Lemma 3.12, if the step-size is such that   , then 2)(  f . By 

(3-25) the default step-size ~ satisfies  ~ , hence, the following upper bound for )(f is 

obtained 2~)~(  f . Using Corollary 3.2 and the fact that )~(f is monotonically 

decreasing in  , we obtain 

)~(f
q

q

qp
1

2

)41)((









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q

q

p

p

p

p

qp

1

1

1

2

)(
3

2
1)(36

)(

























)1(

)1(

)(
)(60

1 





 pq

qp

qp


Thus, the proof is complete. 

Estimate of the total number of iterations

As we’ve already mentioned, there are two types of algorithms.

 The Short-step Algorithms, where the barrier update parameter θ depends on the size of 

the problem; that is, 









n
O

1 . 

 The Long-step Algorithms, where the barrier update parameter θ is fixed; that is, 

)1,0( .

We will give the estimate of the total number of iterations needed for both types of algorithms. 

We will need following technical results. The proofs can be found in (Peng, J., et. al., 2002)] 

Lemma 3.13    If ]1,0[ and 1t then tt   1)1( . 
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Lemma 3.14   Let )(th be twice differentiable convex function with ,0)0(',0)0(  hh and 

let )(th attain its (global) minimum at .0* t . If  )('' th is monotonically increasing for 

*},0{ tt then *0,
2

)0('
)( tt

th
th  .

Lemma 3.15    Let kttt ,..., 10 be a sequence of positive numbers such that 

1...1,0,1
1  
 Kktt kkk

    where 













0.100

t
KThenand . 

Long-step Algorithms

Lemma 3.16 The total number of outer iterations in both cases is the same. 


n

log
1

(3-29)

Proof: The number of outer iterations is the number of iterations K necessary  to obtain 

 n . Previous and new  are related as follows  )1(:  . Thus,  n can be 

written as 
n

K   )1(0 . We can assume that 10  and by taking the logarithm of both 

sides of the inequality we obtain 
n

K
 log)1log(  . Using the Taylor theorem for 

)1log(  we obtain  

n

K log
1

 proving the lemma.

Now we need to estimate the upper bound on the total number of inner iterations per one outer 

iteration for the large-step methods. That number is equal to the number of iterations 

necessary to return to the situation   )( . We denote the value of   after the  update 
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as 0 . The subsequent values in the same outer iteration are denoted as Kkk ,,2,1, 

where K denotes the total number of inner iterations in the outer iteration. By using (3-9), we 

have

.
1

2
1

2

0
































nnn

n





Since  
1

11







p

t
t

p

 when 1t and  

2

1

)1(1
p

, after some elementary reductions, we 

obtain:

 

2

1

2

0

)1)(1(

2
)1(1














p

p

nn
pnpn




. (3-30)

Now Theorem 3.4 leads to 

  1,....,.1,0,1
1  
 Kkkkk

 , (3-31)

where  qp 


60

1 and  
).1( 




pq

qp . Using Lemma 3.15 and (3-30) and (3-31) we obtain 

the following upper bound on the number K of inner iterations. 
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)1(

2

1

2

)1(
0

)1)(1(

2
)1()1(

)1(60))(1(60








































pq

qp

p
pq

qp

p

nn
pnpn

pqpqK




(3-

32)

Now we can derive an upper bound on the total number iterations needed by the large-update 

version of the Generic IPM in Figure 2.1. According to Lemma 3.16 the number of outer 

iterations is bounded above by


n

log
1

By multiplying the number of outer iterations and the number of inner iterations obtained in 

(3-32) in the lemma above we get an upper bound for the total number of iterations







n

p

nn
pnpn

pq

pq

qp

p
log

)1)(1(

2
)1()1(

)1(60

)1(

2

1

2 



































.

For large update methods we know that ),1( and )(nO . After some elementary 

transformations the iteration bound reduces to the following bound 















n

nqO qpq

qp

log)( (3-33)

This result is summarized in the theorem below
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Theorem 3.5: Given that  1 and  nO which are characteristics of the large-update 

methods the Generic IPM described in the Figure 2.1 will obtain  - appropriate solutions of 

(P) and (D) in at most 













n

nqO qpq

qp

log)( iterations.

The obtained complexity result contains several previously known complexity results as 

special cases. 

1. When 1p and 1q , the kernel function )(t becomes the prototype self-regular 

function. If in addition, nq log the iteration bound reduces to the best known bound for 

self-regular function, which is  








n

nnO loglog . 

2. Letting 1p and 1q , the iteration bound becomes 








n

nO log and )(t represents 

the classical logarithmic kernel function. 

3. For 2q and 0p , )(t represents the simple kernel function 2
1

)( 
t

tt which 

is not self-regular. The iteration bound is the same as the one obtained for the logarithmic 

kernel function.

Short-Step Algorithms

To get the best possible bound for short-step methods we need to use the bound described in 

(3-10). 
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

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
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































 nnnnnnqpnnnnn
n

Using 


 



11

11 the above inequality can be simplified to 

2

2

22

0

2

)1(2 




















nnn

n
qp 


(3-34)

Following the same line of arguments as in the above subsection 3.3.1 we conclude that the 

total number K of inner iterations is bounded above by 

)1(

)(2

2

22
)1(

0

2

)1(
))(1(60




























pq

qp

pq

qp

nnn
n

qp
pqK




(3-35)

Given the upper bound on the number of the outer iterations as mentioned in the previous 

subsection 3.3.1 the upper bound on the total number of iterations is 

.log
2

)1(

)(60
)1(

)(2

2

22





n

nnn
n

qpq
pq

qp






















(3-36)
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For small update methods it is well known that 









n

1 and )1(O . After some 

elementary reductions one easily obtains that the iteration bound is 








n

nqO log2 . We 

summarize this result in the theorem below.

Theorem 3.6: Given that 









n

1 and  1O which are characteristics of the small 

update methods the Generic IPM described in the Figure 2.1 we will obtain  - appropriate 

solutions of (P) and (D) in at most 








n

nqO log2 iterations.
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CHAPTER 4

ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNEL FUNCTIONS

Summary of the algorithm analysis

Looking carefully at the analysis of the Generic IPM described in Chapter 3 the

procedure can be summarized in the following way.

Step 0: Input a kernel function  ; an update parameter 10,  ; a threshold 

parameter  ; and an accuracy parameter  . 

Step 1: Solve the equation s '
2

1 to get )(s the inverse function of 

]1,0(,)('
2

1
 tt . If the equation is hard to solve, derive a lower bound for )(s . 

Step 2: Calculate the decrease of )(t in terms of  for the default step-size ~ from 

  


2''
)~(

2

f .

Step 3: Solve the equation st )( to get )(s , the inverse function of 1),( tt . If the 

equation is hard to solve, derive lower and upper bounds for )(s .

Step 4: Derive a lower bound for  in terms of )( by using        '
2

1
v .

Step 5: Using the results of Step 3 and Step 4 find a valid inequality of the form 

  1)()~(f for some positive constants  and ]1,0( . 
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Step 6: Calculate the upper bound of 0 from 

2

0 1
1

)1("
21

),,(






































































nnn
nnL . 

Step 7: Derive an upper bound for the total number of iterations from 



 n
log0

.

Step 8: Set )1()(   andnO so as to calculate complexity bound for large-update 

methods, or set )1(O and 









n

1 so as to calculate the complexity bound 

for small update methods.

Additional Kernel Functions

We will consider the following additional kernel functions.
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The growth term in all of them is the same 
2

1
)(

2 


t
tg while the barrier term varies 

)(tb . The reason for considering this growth term is that according to the analysis above it 

seems to give the best complexity results and, thus, will give a more consistent view of the 

complexity analysis.

The following lemmas are useful for the above kernel functions. They are variations of 

the similar lemmas in the previous chapter and actually they are also valid for the class of 

kernel functions  (3-1) used in that chapter. Their main purpose is to help facilitate the 

summary analysis described in the previous subsection.

Lemma 4.1    When )()( tt i  for 31  i , then sss 21)(21   .

Proof:  The inverse function of )(t for ),1[ t is obtained by solving for t from the 

equation st )( , for 1t . In almost all cases it is hard to solve this equation explicitly. 

However, we can easily find a lower and an upper bound for t and this suffices for our goal. 

First one has 

2

1
)(

2

1
)(

22 





t
t

t
ts b ,

where )(tb denotes the barrier term. The inequality is due to the fact that 0)1( b and 

)(tb is monotonically decreasing. It follows that 
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sst 21)(  

For the second inequality we use the fact that 1)('' ti for 31  i . Note that )(ti are 

nonnegative strictly convex functions such that 0)1( i . This implies that )(ti is twice 

differentiable and therefore is completely determined by its second derivative 




ddt
t

ii  
1 1

)('')( (4-4)

Thus
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1 11 1

)1(
2

1
)('')(     tddddts
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

which implies 

sst 21)(   .

This completes the proof.

Lemma 4.2    Let 31  i . Then one has    

 




1

2

2

)1("
,,

2
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nL . Hence, if 

)1(O and  )1(",
1

0  Othen
n









 . 

Prof: By Lemma 4.1 we have ss 21)(  . Hence, by using Theorem 3.2 and first 

inequality in (3-8) we have 
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By using Taylor theorem  and the fact that  0)1(')1(  we obtain
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Applying (4-6) to (4-5)with 
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where we also used the fact that 


 



11

11 . This proves the lemma.

Lemma 4.3 Let ]1,0(),0[:  be the inverse function of the restriction of )(' tb to the 

interval ]1,0( where )(tb is the barrier term in the kernel functions 31),(  iti . Then

).21()( ss 
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Proof: Let ).(st  Due to the definition of  as the inverse function of 

1)('
2

1
 tfort this means that 

1),(')('2  tttts b .

Since 1t this implies 

ssttb 212)(' 

Since )(' tb is monotonically decreasing in all three cases, it follows that 

)21()( sst   ,

proving the lemma.

Analysis of the Generic IPM with Additional Kernel Functions

In this subsection we will provide the analysis of the Generic IPM using additional kernel 

functions stated in the subsection. We will follow the steps described earlier.

Example

Consider the function 
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Step 1: The inverse function of 
q

qt
tb

1
1)('


 is given by 

qsq

s
1

))1(1(

1
)(



 . 
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Hence, by Lemma 6.3, 
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s
1
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Step 2: It follows that 
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 . (4-7)

Step 3: By Lemma 6.1 the inverse function of ),1[)( tfort satisfies 

sss 21)(21  

Omitting the argument  , we therefore have 

 21))((  .

Step 4: Now using the fact that )))((('
2

1
)(   , and assuming 1  , we obtain 
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Step 5: Combining (4-7) and (4-8) after some elementary reductions, we obtain

q

q
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q

q
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


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 . (4-9)

Thus, it follows that 

  1,...,1,0,1
1  
 Kkkkk
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with 
q53

1
 and 

q

q

2

1
 , and K denotes the number of inner iterations. Hence, by Lemma 

3.15 the number K of inner iterations is bounded above by 

q

q

q
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Step 6: To estimate 0 we use Lemma 6.2, with .2)1("  Thus, we obtain

 
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
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2
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n
.

Step 7:  Thus, using Lemma 3.16 the total number of iterations is bounded above by 
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Step8:  For large update methods ( with )1()(   andnO ) the right hand side expression 

becomes
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


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qnO q

q

log2

1

. (4-12)

For small update methods ( with )1(O and 









n

1 ) the right hand side expression 

becomes
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
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
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
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nqO log . (4-13)



59

Example

Consider the kernel function
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Step 2: Since )(" t is monotonically decreasing we have 
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Step 3:  By Lemma 6.1 the inverse function of )(t for  ),1[ t satisfies 

sss 21)(21   . Omitting the argument  , we thus have     21 . 

Step 4: Now using that     ('
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Step 5: Substitution of  ((4-15) into the (4-14) gives, after some elementary reductions, while 

assuming 10  
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 , and K denotes the number of inner iterations.

Hence, by Lemma 3.15 the number K of inner iterations is bounded above by 
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Step 6: We use Lemma 4.2 with ,4)1("  to estimate 0 . 
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Substitution of (4-16) in the expression for K gives 
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Step 7: Thus the total number of iterations is bounded above by 
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Step 8: For large update methods, when )1()(   andnO the right hand side expression 

(4-18) becomes 
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For small update methods, when )1(O and 
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Example

Consider the kernel function 
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Step 3: By Lemma 4.1 the inverse function of )(t for ),1[ t satisfies 

sss 21)(21   .

Thus we have, omitting the argument  , 

    21 . 
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Step 5: Substitution of  (4-22) into the (4-21) gives, after some elementary reductions, while 

assuming 10  
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We use Lemma 4.2, with 2)1("  to estimate 0 . This gives 
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Substitution of (4-24) into (4-24) leads to the following estimate for number K of inner 

iterations
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Step 7: By Lemma 3.16 the total number of iterations is bounded above by 
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Step 8: For large-update methods when )1()(   andnO the right hand side expression 

(4-26) becomes 
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For small update methods, when )1(O and 
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Summary of complexity results

The complexity results for Generic IPM with kernel functions defined in (3-1) and in (4-1)-(4-

3) are summarized in the Table for large-step methods and in the table for small-step methods. 

For the class of kernel functions (3-1) we consider three special cases, 

 the logarithmic kernel function: t
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 the linear non-self-regular function when 0p :
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Complexity of large-update methods

The complexity results for large-step methods are summarized below. They are obtained by 

taking into the account that )1()(   andnO .

Complexity results for long-step methods
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Table 2

Notice that the best bound is obtained in case of 3 and 4 by taking nq log
2

1
 which gives the 

iteration bound of 
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




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nnO loglog , (4-29)

which is currently the best known bound for large-update methods.

Complexity of small update methods

The complexity results for small-update methods are summarized below. They are obtained by 

taking into the account that 









n

1 and  1O .

Complexity results for short-step methods
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The above table shows that the small-update methods based on listed kernel functions all have 

the same complexity, namely 

.log 








n

nO (4-30)

This is up till now the best iteration bound for IPMs solving LP problems.

Historically most of the IPMs were based on the logarithmic kernel function. Notice that 

the gap between theoretical complexity of short-step methods and large-step methods is 

significant; the short step methods have much better theoretical complexity. However, in 

practical implementations large-step methods work better. This discrepancy was one of the 

motivations to consider other kernel functions in hopes to find the kernel function which 

would not have a gap or the gap would be smaller.  As we can see, this goal has been 

achieved; for cases 2 and 4 the gap is much smaller because for these kernel functions large 

step method has much better complexity than for the classical logarithmic kernel function. 

This is one of the main achievements of considering different classes of kernel functions.
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CHAPTER 5 

NUMERICAL RESULTS

The Generic IPM described in the Figure 1 was implemented in MATLAB 7.6.0  with 

the class of kernel functions described by formula (3-1)
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This imply that there are two implementations of the algorithm, one for the classical 

logarithmic kernel function  

t
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 (5-1)

and one for the kernel function with parameters p and q
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We call the first implementation “Classical Method” and the second implementation “New 

Method”. Both codes are listed in the Appendix A.

The algorithm was tested on several examples with different sizes ranging from  very 

small to moderate size problems. The data was entered in some cases “by hand” and for the 

others they were generated randomly. 

Example: Consider the following simple LP model.
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It is easy to see that this problem has infinitely many optimal solutions, they are all the points 

on the segment  )1,0();0,1( and the optimal value is 6Z . The problem was solved by New 

Method with 2.1,8.0  qp with accuracy parameter 001.0 .  It took unusually many 

iterations (57), however algorithm steadily converged to the expected result 

)5,1,5.1(),( 21 xx .

Numerical results for Example

x y s

1 1 1 0 1 1 1

1.383 1.383 0.234

-
0.823

4 0.1 0.1
1.248

9

1.488
3

1.488
3

0.023
4

-
1.602

3
0.065

6
0.065

6
1.756

7

.... …. ….. ……. …… ……
……

…

1.499
9

1.499
9

0.000
2

-
2.000

2
0.000

2
0.000

2
2.000

2

Table 4

Objective function value Z = -5.9997
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This example also illustrates an important feature of the interior-point methods that distinguish 

them from simplex-type methods; that in the case of infinitely many optimal solutions they 

converge to the center of the optimal set rather than to the vertex.  The graphical illustration of 

the above example with several first iterations is given below.

IPM Based on generic kernel function

Figure 3

Next, the algorithm was examined on the set of 200 randomly generated “small” 
problems for with sizes less than 10. The average number of iteration and CPU time is given 
in the table below.

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

24.6 0.0362 40.7 0.0448

Numerical results for randomly generated “small problems” with dimension less than 10
Table 5



71

Next, the algorithm was examined on the set of 200 randomly generated “moderate 

size” problems of the size 200x300. The average number of iteration and CPU time is given in 

the table below.

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

35.81 2.6626 40 2.8812

Numerical results for randomly generated problems with dimension 200x300

Table 6

The algorithm was then applied to the randomly generated problems of the bigger size 

400x700.  The result is given in the table below

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

57 35.8048 41 25.4030

Numerical results for randomly generated problem with dimension 400x700

Table 7

Results summarized in tables seem to suggest that Classical Methods works slightly better for 

the problems of the smaller size while, as the dimension of the problem increases, the New 

Method becomes better. Another feature of the IPM is also visible from these examples and 
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that is that the number of iterations does not increase significantly with the increase in the size 

of the problem.

In the sequel the New Method was examined on the set of 200 randomly generated “small” 

problems with sizes less than 10 and for different values of parameters p and q. The results 

are given in the Table below.

Table 8: More Numerical Results

Next, the New Method was examined on the set of 20 randomly generated problems of 

the size 200x300 and for different values of parameters p and q. The results are given in the 

Table below.

Table 9: More Numerical Results
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The table seems to suggest that for the problems of the smaller size the New Method  works 

the best when  1.1,9.0  qp , which is in line with theoretical expectation . However, for 

the problems of the higher dimension it is hard to make conclusion which combination  of 

parameters works the best. Theory suggests that  nqp log,1  where n is the number of 

variables gives the best complexity. However for the particular set of problems in the previous 

table, it seems that combination  3.1,7.0  qp works the best .

Better implementation and more testing is necessary for more definite conclusions. 

However, that was not the intention of the thesis. The goal was to make the basic 

implementations that ilustrates theoretical concepts discussed in the thesis. Even on this basic 

level the implementation of the New Method shows the potential to work well. Of coure, with 

more sophisticated  implementation the performance can be further improved.



74

CHAPTER 6

CONCLUSION

In this thesis the Interior – Point Method (IPM) for Linear Programming problem (LP) 

that is based on the generic kernel function is considered.  The algorithm is described in 

Chapter 2.

In Chapter 3 the complexity (in terms of iteration bounds) of the algorithm is analyzed 

for a class of kernel functions defined by (3-1). This class is fairly general; it includes classical 

logarithmic kernel function, prototype self-regular kernel function as well as non-self-regular 

functions, thus it serves as a unifying frame for the analysis of IPMs.  Two versions of the 

IPMs are considered, the short-step algorithms where barrier parameter    depends on the size 

of the problem and long-step algorithms where barrier parameter is a fixed constant )1,0( . 

Historically most of the IPMs were based on the logarithmic kernel function. Notice 

that the gap between theoretical complexity of short-step methods and large-step methods is 

significant; the short step methods have much better theoretical complexity. However, in 

practical implementations large-step methods work better. This discrepancy was one of the 

motivations to consider other kernel functions in hopes to find the kernel function which 

would not have a gap or the gap would be smaller.  As we can see this goal has been achieved; 

for kernel functions 2 and 4, the gap is much smaller than for the classical logarithmic kernel 

function. In addition, the complexity results that are obtained match the best known 

complexity results for these methods. This chapter is mostly based on the paper (Bai, Y., et al., 

2008) with the addition of most of the proofs that were omitted in the paper.
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The main contribution of the thesis is contained in Chapter 4. The detailed complexity 

analysis of the IPM that was provided in Chapter3 for kernel function (3-1) is summarized and 

the analysis of the algorithm was performed for three additional kernel functions (4-1) – (4-3). 

For one of them we again matched the best known complexity results for the large-step 

methods and for the other two the complexity is slightly weaker, however still significantly 

improved in comparison with classical logarithmic kernel function.

The IPM that is theoretically analyzed in Chapter 3 is implemented in Chapter 5 for the 

classical logarithmic kernel function (Classical Method) and for the parametric kernel function 

(New Method) both described in (3-1). Although the implementation is on the basic level, it 

shows potential for a good performance of IPM based on kernel function different than 

classical logarithmic kernel function on which most of the commercial codes are based. The 

preliminary calculations seem to indicate that IPM with classical kernel logarithmic function 

perform better on problems of the smaller size while for larger problems the New Methods 

seems to work slightly better. Also, based on the preliminary numerical tests it is hard to make 

conclusion which combination  of parameters p and q in (3-1) works the best.  Better 

implementation and more numerical testing would be necessary to draw more definite 

conclusions.

However, that was not the goal of the thesis, the goal was to show that IPM with kernel 

functions different than classical logarithmic kernel function can have best known theoretical 

complexity and to show that they have potential for practical implementations. 
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APPENDICES

APPENDIX A

MatLab codes for the Classical Method 

function [i,xx,yy,ss,z,d]=IpmClassical(A, b, c, epsilon)
% 
% input tau, epsilon, theta
% 
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.

    [m,n]=size(A);
    x=1*ones(n,1); s=1*ones(n,1); y=zeros(m,1); mu=x'*s/n;
    rd=c-A'*y-s;
    rp=b-A*x;

    i=1;        
    xx(i,:)=x;
    yy(i,:)=y;
    ss(i,:)=s;
        
    while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
        i=i+1;
        [dx,ds,dy]=SolvesystemClassical(A,b,c,x,y,s,mu);
        inds=find(ds<0);indx=find(dx<0);
        alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
        x=x+alpha*dx;
        y=y+alpha*dy;
        s=s+alpha*ds;
        mu=min(x'*s/n,0.9*mu);
        rd=c-A'*y-s;
        rp=b-A*x;
        
        xx(i,:)=x;
        yy(i,:)=y;
        ss(i,:)=s;
        d(i,:)=dx';
        if i>200 || alpha<1e-11
            i;
            break;
        end
   end
    z=x'*c;
    %[i,z]
end
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function [dx,ds,dy]=SolvesystemClassical(A,b,c,x,y,s,mu)
% This function solves the following system
%        A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
% 
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;

    gama=.1;
    X=diag(x);
    S=diag(s);
    S_inv=diag(1./s);
    rd=c-A'*y-s;
    rp=b-A*x;   
    
    M=A*S_inv*X*A';
    r=b+A*S_inv*(X*rd-gama*mu*ones(size(A,2),1));
    
    dy=M\r;
    ds=rd-A'*dy;
    dx=-x+S_inv*(gama*mu*ones(size(A,2),1)-X*ds);
     
end

MatLab codes for the New Method

function [i,xx,yy,ss,z,d]=IpmNew(A, b, c, epsilon)
% 
%
% input tau, epsilon, theta
% v>0, 0<=p<=1, q>1, tau>1
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.

p=1-0.2;
q=1+0.2;
theta=0.1;
%tau=1.5;
    [m,n]=size(A);
    x=ones(n,1); s=ones(n,1); y=zeros(m,1); mu=x'*s/n;
    rd=c-A'*y-s;
    rp=b-A*x;
    i=1;        
    xx(i,:)=x;
    yy(i,:)=y;
    ss(i,:)=s;
    while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
        i=i+1;
        v=sqrt(x.*s./mu);
        [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q);
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        delta=1/2*sqrt(sum((v.^p-1./v.^q).^2));
        alpha=1/((p+q)*(1-4*abs(delta))^(1+1/q));
        alpha=abs(alpha);
        inds=find(ds<0);indx=find(dx<0);
        alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
        x=x+alpha*dx;
        y=y+alpha*dy;
        s=s+alpha*ds;
        
        rd=c-A'*y-s;
        rp=b-A*x;
        mu=(1-theta)*mu;
        xx(i,:)=x';
        yy(i,:)=y';
        ss(i,:)=s';
        d(i,:)=dx';
        if i>200 || alpha<1e-10
            i;
            break;
        end
    end    
    z=x'*c;
    %[i,z]
end

function [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q)
% This function solves the following system
%        A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
% 
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;
gama=.1;
    X=diag(x);
    S=diag(s);
    S_inv=diag(1./s);
    rd=c-A'*y-s;
    rp=b-A*x;   
    
    M=A*S_inv*X*A';
    r=A*S_inv*(X*rd+mu*v.*(v.^p-gama*v.^(-q)))+rp;
    
    dy=M\r;
    ds=rd-A'*dy;
    dx=-S_inv*(X*ds+mu*v.*(v.^p-gama*v.^(-q)));
end

Problem Generator

function R=mytest(NO,m,n)
% This function solve the random systems of dimention m*n
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% input m,n are the dimention of A
% input NO is the number of the iterations
% 
% MYTEST();   will apply both ipm methods to a random matrix with random
% dimension m*n, where m,n are positive integers less than 10
%
% MYTEST(N)  will iterate ‘MYTEST()’ N times.
% 
% MYTEST(N,m,n)  will iterately apply the methods to N random problems
% with dimension m*n.

    if ~exist(‘NO’) 
        NO=1;
    end
    m_ne=0;n_ne=0;
    if ~exist(‘m’)
        m_ne=1;
    end
    if ~exist(‘n’)
        n_ne=1;
    end   
    
    dim=zeros(NO,2);
    k=1;
    while k<=NO
        if m_ne
            m=fix(rand(1)*10);
        end
        if n_ne
            n=fix(rand(1)*10);
       end

        A=rand(m,n);b=rand(m,1);c=rand(n,1);
        if rank(A)<min(m,n) || min(m,n)==0
            %fprintf(‘rank(A)<min(m,)’);
            if m==0 && ~m_ne
                display(‘STOP, m=0’);
                return;
            elseif n==0 && ~n_ne
                display(‘STOP, n=0’);
                return;
            end    
            continue;
        end
        tic;
        [i1(k),x1,yy1,ss1,z1(k)]=IpmNew(A, b, c, 0.01);
        t1(k)=toc;
        tic;
        [i2(k),xx2,yy2,ss2,z2(k)]=IpmClassical(A, b, c, 0.01);
        t2(k)=toc;
        dim(k,1)=m;dim(k,2)=n;
        k=k+1;
    end
    R = [dim(:,1),dim(:,2),i1’,z1’,t1’,i2’,z2’,t2’];
    myfun®;
end
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Organization of output

function myfun®
     
    fprintf('       New method              Classical method \n');
    fprintf('  idx dim(m*n)  iteration Opt     time     iteration Opt     
time\n');
    fprintf('--------------------------------------------------------------
--\n');
    for k=1:size(R,1)
        fprintf('   %3d %3d%3d  %3d   %6.4f   %4.4f     %3d   %6.4f   
%4.4f\n', ...
                k,R(k,:));
    end
    R_ave=sum(R)/size(R,1);
    fprintf('--------------------------------------------------------------
--\n');
    fprintf('                     New method        Classical method \n');
    fprintf('         dim(m*n)   iteration time     iteration  time\n');
    fprintf(' average %3.1f %3.1f     %3.1f    %4.4f      %3.1f     
%4.4f\n', ...
                R_ave([1,2,3,5,6,8]));
    fprintf('--------------------------------------------------------------
--\n');

end
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APENDIX B

MatLab code Example 5.1

max 3 * x_1 + 5 * x_2

s.t.

    x_1 +         <=4

      2 * x_2 <=12

3 * x_1 + 2 * x_2 <=18

  x_1 , x_2 >= 0

A =

     1     0     1     0     0

     0     2    0     1     0

     3     1     0     0     1

(change to min-problem)

c =

    -3

    -5

     0

     0

     0

b =

     4

    12

    18
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>> [i,x,y,s,z]=IpmClassical(A, b, c, epsilon)

i =

     7

z =

  -41.9805

>> [i,x,y,s,z]=IpmNew(A, b, c, epsilon)

i =

   60

z =

  -41.9993

>> [i,x,y,s,z]=IpmClassical(A, b, c, epsilon)

i =

     7

x =

    1.0000    1.0000    1.0000    1.0000    1.0000

    1.4437    1.7530    0.8831    0.9645    1.0398

    2.0334    3.0422    0.7370    0.3825    0.8654

    2.9815    4.6039    0.4101    0.0542    0.4968

    3.8206    5.7689    0.0779    0.0054    0.1095

    3.9803    5.9762    0.0095    0.0020    0.0169

    3.9977    5.9975    0.0013    0.0005    0.0028
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y =

         0         0         0

   -0.1333   -0.0519    0.0235

   -0.2783   -0.5925   -0.1361

   -0.5626   -1.3849   -0.4117

   -0.8317   -2.0210   -0.6562

   -0.9001   -2.1384   -0.6935

   -0.9363   -2.1549   -0.6873

s =

    1.0000    1.0000    1.0000    1.0000    1.0000

    0.4093    0.1000    0.9699    0.8885    0.8131

    0.1458    0.0100    0.8931    1.2073    0.7509

    0.0146    0.0068    0.8669    1.6891    0.7159

    0.0032    0.0026    0.8825    2.0717    0.7069

    0.0011    0.0007    0.9052    2.1434    0.6986

    0.0003    0.0002    0.9368    2.1554    0.6878

z =

  -41.9805

>> [i,x,y,s,z]=IpmNew(A, b, c, epsilon)

i =

    60

z =

  -41.9993
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x =

    1.0000    1.0000    1.0000    1.0000    1.0000

    1.4437    1.7530    0.8831    0.9645    1.0398

    2.0409    3.0601    0.7365    0.3780    0.8702

    3.0192    4.6730    0.4016    0.0474    0.5044

    3.8797    5.8542    0.0624    0.0308    0.1302

    3.9559    5.9723    0.0383    0.0293    0.1223

    3.9623    5.9859    0.0372    0.0256    0.1236

    3.9669    5.9883    0.0330    0.0232    0.1105

    3.9702    5.9896    0.0297    0.0208    0.0997

    3.9732    5.9906    0.0268    0.0188    0.0897

    3.9759    5.9916    0.0241    0.0169    0.0808

    3.9783    5.9924    0.0217    0.0152    0.0727

    3.9805    5.9932    0.0195    0.0137    0.0655

    3.9824    5.9938    0.0176    0.0123    0.0589

    3.9842    5.9945    0.0158    0.0111    0.0530

    3.9857    5.9950    0.0143    0.0100    0.0478

    3.9872    5.9955    0.0128    0.0090    0.0430

    3.9884    5.9960    0.0116    0.0081    0.0387

    3.9896    5.9964    0.0104    0.0073    0.0348

    3.9906    5.9967    0.0094    0.0065    0.0314

    3.9916    5.9971    0.0084    0.0059    0.0282

    3.9924    5.9973    0.0076    0.0053    0.0254

    3.9932    5.9976    0.0068    0.0048    0.0229

    3.9939    5.9979    0.0061    0.0043    0.0206

    3.9945    5.9981    0.0055    0.0039    0.0185

    3.9950    5.9983    0.0050    0.0035    0.0167
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    3.9955    5.9984    0.0045    0.0031    0.0150

    3.9960    5.9986    0.0040    0.0028    0.0135

    3.9964    5.9987    0.0036    0.0025    0.0122

    3.9967    5.9989    0.0033    0.0023    0.0109

    3.9971    5.9990    0.0029    0.0021    0.0098

    3.9974    5.9991    0.0026    0.0018    0.0089

    3.9976    5.9992    0.0024    0.0017    0.0080

    3.9979    5.9993    0.0021    0.0015    0.0072

    3.9981    5.9993    0.0019    0.0013    0.0065

    3.9983    5.9994    0.0017    0.0012    0.0058

    3.9984    5.9995    0.0016    0.0011    0.0052

    3.9986    5.9995    0.0014    0.0010    0.0047

    3.9987    5.9996    0.0013    0.0009    0.0042

    3.9989    5.9996    0.0011    0.0008    0.0038

    3.9990    5.9996    0.0010    0.0007    0.0034

    3.9991    5.9997    0.0009    0.0006    0.0031

    3.9992    5.9997    0.0008    0.0006    0.0028

    3.9993    5.9997    0.0007    0.0005    0.0025

    3.9993    5.9998    0.0007    0.0005    0.0023

    3.9994    5.9998    0.0006    0.0004    0.0020

    3.9995    5.9998    0.0005    0.0004    0.0018

    3.9995    5.9998    0.0005    0.0003    0.0016

    3.9996    5.9998   0.0004    0.0003    0.0015

    3.9996    5.9999    0.0004    0.0003    0.0013

    3.9996    5.9999    0.0004    0.0002    0.0012

    3.9997    5.9999    0.0003    0.0002    0.0011

    3.9997    5.9999    0.0003    0.0002    0.0010
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    3.9997    5.9999    0.0003    0.0002    0.0009

    3.9998    5.9999    0.0002    0.0002    0.0008

    3.9998    5.9999    0.0002    0.0001    0.0007

    3.9998    5.9999    0.0002    0.0001    0.0006

    3.9998    5.9999    0.0002    0.0001    0.0006

    3.9998    5.9999    0.0002    0.0001    0.0005

    3.9999    6.0000    0.0001    0.0001    0.0005

y =

         0         0         0

   -0.1333   -0.0519    0.0235

   -0.2846   -0.6023   -0.1375

   -0.5916   -1.4288   -0.4214

   -0.9196   -2.0876   -0.6622

   -1.4299   -2.2344   -0.5248

   -1.5993   -2.2683   -0.4714

   -1.5888   -2.2669   -0.4748

   -1.5890   -2.2668   -0.4743

   -1.5884   -2.2665   -0.4741

   -1.5878   -2.2662   -0.4739

   -1.5873   -2.2660   -0.4738

   -1.5868   -2.2658   -0.4737

   -1.5864   -2.2656   -0.4735

   -1.5860   -2.2654   -0.4734

   -1.5857   -2.2652   -0.4733

   -1.5854   -2.2651   -0.4732

   -1.5851   -2.2649   -0.4732
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   -1.5848   -2.2648   -0.4731

   -1.5846   -2.2647   -0.4730

   -1.5844   -2.2646   -0.4730

   -1.5842   -2.2645   -0.4729

   -1.5841   -2.2645   -0.4729

   -1.5839   -2.2644   -0.4728

   -1.5838   -2.2643   -0.4728

   -1.5837   -2.2643   -0.4728

   -1.5835   -2.2642   -0.4727

   -1.5834   -2.2642   -0.4727

   -1.5834   -2.2641   -0.4727

   -1.5833   -2.2641   -0.4727

   -1.5832  -2.2641   -0.4727

   -1.5831   -2.2640   -0.4726

   -1.5831   -2.2640   -0.4726

   -1.5830   -2.2640   -0.4726

   -1.5830   -2.2640   -0.4726

   -1.5830   -2.2639   -0.4726

   -1.5829   -2.2639   -0.4726

   -1.5829   -2.2639   -0.4726

   -1.5828   -2.2639   -0.4726

   -1.5828   -2.2639   -0.4725

   -1.5828   -2.2639   -0.4725

   -1.5828   -2.2639   -0.4725

   -1.5828   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725
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   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5827   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

   -1.5826   -2.2638   -0.4725

s =

    1.0000    1.0000    1.0000    1.0000    1.0000

    0.4093    0.1000    0.9699    0.8885    0.8131

    0.1425    0.0100    0.8960    1.2136    0.7489

    0.0143    0.0168    0.8812    1.7184    0.7110

    0.0220    0.0112    0.9486    2.1166    0.6911

    0.0160    0.0110    1.4328    2.2373    0.5277

    0.0148    0.0097    1.5996    2.2686    0.4717

    0.0132    0.0088    1.5888    2.2669    0.4748

    0.0119    0.0079    1.5890    2.2668    0.4743

    0.0107    0.0071    1.5884    2.2665    0.4741
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    0.0096    0.0064    1.5878    2.2662    0.4739

    0.0087    0.0057    1.5873    2.2660    0.4738

   0.0078    0.0052    1.5868    2.2658    0.4737

    0.0070    0.0047    1.5864    2.2656    0.4735

    0.0063    0.0042    1.5860    2.2654    0.4734

    0.0057    0.0038    1.5857    2.2652    0.4733

    0.0051    0.0034    1.5854    2.2651    0.4732

    0.0046    0.0031    1.5851    2.2649    0.4732

    0.0041    0.0027    1.5848    2.2648    0.4731

    0.0037    0.0025    1.5846    2.2647    0.4730

    0.0033    0.0022    1.5844    2.2646    0.4730

    0.0030    0.0020    1.5842    2.2645    0.4729

   0.0027    0.0018    1.5841    2.2645    0.4729

    0.0024    0.0016    1.5839    2.2644    0.4728

    0.0022    0.0015    1.5838    2.2643    0.4728

    0.0020    0.0013    1.5837    2.2643    0.4728

    0.0018    0.0012    1.5835    2.2642    0.4727

    0.0016    0.0011    1.5834    2.2642    0.4727

    0.0014    0.0010    1.5834    2.2641    0.4727

    0.0013    0.0009    1.5833    2.2641    0.4727

    0.0012    0.0008    1.5832    2.2641    0.4727

    0.0010    0.0007    1.5831    2.2640    0.4726

    0.0009    0.0006    1.5831    2.2640    0.4726

    0.0008    0.0006    1.5830    2.2640    0.4726

    0.0008    0.0005    1.5830    2.2640    0.4726

    0.0007    0.0005    1.5830    2.2639    0.4726

    0.0006    0.0004    1.5829    2.2639    0.4726
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    0.0006    0.0004    1.5829    2.2639    0.4726

    0.0005    0.0003    1.5828    2.2639    0.4726

    0.0005    0.0003    1.5828    2.2639    0.4725

    0.0004    0.0003    1.5828    2.2639    0.4725

    0.0004    0.0002    1.5828    2.2639    0.4725

    0.0003    0.0002    1.5828    2.2638    0.4725

    0.0003    0.0002    1.5827    2.2638    0.4725

    0.0003    0.0002    1.5827    2.2638    0.4725

    0.0002    0.0002    1.5827    2.2638    0.4725

    0.0002    0.0001    1.5827    2.2638    0.4725

    0.0002    0.0001    1.5827    2.2638    0.4725

    0.0002    0.0001    1.5827    2.2638    0.4725

    0.0002    0.0001    1.5827    2.2638    0.4725

    0.0001    0.0001    1.5827    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0001    1.5826    2.2638    0.4725

    0.0001    0.0000    1.5826    2.2638    0.4725

    0.0001    0.0000    1.5826    2.2638    0.4725

    0.0001    0.0000    1.5826    2.2638    0.4725

z =

  -41.9993

>>
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MatLab code for Table 5.2

random problems with random dimentions less that 10

                      New method           Classical method 

  idx  dim(m*n)  iteration Opt  time     iteration Opt     time

----------------------------------------------------------------

    36   6  5   12   1.4119   0.0056      13   1.4164   0.0396

    37   6  7   15   0.9627   0.0065      16   0.9627   0.0046

    38   6  8   17   0.7974   0.0072      24   0.7974   0.0073

    39   4  8   17   0.7864   0.0336      21   0.7864   0.0061

    40   8  3   15   0.4944   0.0070      38   0.3653   0.0140

    41   4  9   72   1.0654   0.0757      27   1.0668   0.0086

    42   5  8   18   0.4801   0.0076      24   0.4801   0.0072

    43   8  9   14   1.3682   0.0070      19   1.3682   0.0064

    44   2  2   13   0.7773   0.0042      14   0.7773   0.0033

    45   6  5   13   0.2225   0.0059      14   0.2229   0.0049

    46   8  6   14   1.6662   0.0068      20   1.6114   0.0268

    47   3  6   17   0.3840   0.0069      30      NaN   0.0101

    48   3  7   64   0.5853   0.0260       7   0.5886   0.0018

    49   3  3   12   0.8750   0.0044      14   0.8750   0.0038

    50   2  7   64   0.6310   0.0458       7   0.6367   0.0017

    51   7  7   12   1.7618   0.0047      13   1.7618   0.0036

    52   2  7   64   0.1590   0.0244       7   0.1647   0.0018

----------------------------------------------------------------

                     New method        Classical method 

         dim(m*n)   iteration time     iteration  time

average 4.9 5.4     40.7    0.0448      24.6     0.0362

----------------------------------------------------------------
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                      New method           Classical method 

  idx  dim(m*n)  iteration Opt  time     iteration Opt     time

----------------------------------------------------------------

     1   9  1   45      NaN   0.0681      30      NaN  0.0326

     2   9  1   45      NaN   0.0674      45      NaN   0.7326

     3   7  7   12   3.1727   0.0053      14   3.1727   0.0042

     4   7  7   12   2.0364   0.0050      13   2.0364   0.0037

     5   5  4   14   0.7954   0.0675      16   0.7257   0.0059

     6   6  3   49   0.4286   0.0243      92   0.4560   0.1107

     7   6  1   45      NaN   0.1613      45      NaN   0.0612

     8   3  9   66   0.2055   0.0284       9   0.1994   0.0024

     9   3  1   45      NaN   0.1071      36      NaN   0.0133

    10   7  8   13   2.3593   0.0057      14   2.3593   0.0042

    11   2  7   64   0.3550   0.0246       8   0.3596   0.0019

    12   6  7   14   1.7947   0.0055      15   1.7947   0.0043

    13   2  6   62      NaN   0.0637      27      NaN   0.0096

    14   3  2  201   0.4458   0.3814      71   0.1206   0.1475

    15   7  8   14   2.3068   0.0059      16   2.3068   0.0258

    16   7  5   28   0.4972   0.0138      19   0.5465   0.0067

    17   4  9   17   1.2697   0.0076      18   1.2697   0.0053

    18  2  7   64      NaN   0.0814      17      NaN   0.0044

    19   1  4   58   0.0069   0.0650       6   0.0106   0.0015

    20   5  5   12   2.0070   0.0045      13   2.0070   0.0036

    21   1  5   60   0.0321   0.0245       6   0.0387   0.0026

    22   1  2   52   0.2947   0.0739       5   0.2976   0.0012

    23   9  6   23   0.7775   0.0118      52   0.5957   0.0617
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    24   5  3   18   1.7080   0.0088      33   1.2630   0.0476

    25   4  3   31   0.3020   0.0528      28   0.3146   0.0426

    26   5  8   16   2.4185   0.0069      16   2.4185   0.0046

    27   4  7   16   0.2408   0.0064      20   0.2408   0.0059

    28   9  8   17   1.8185   0.0091      24   1.2417   0.0096

    29   1  2   52   0.2448   0.0208       5   0.2478   0.0012

    30   3  4   14  1.0822   0.0051      17   1.0822   0.0046

    31   4  5   14   1.4672   0.0054      16   1.4672   0.0044

    32   4  2  201   0.0760   0.3930      59   0.0470   0.1529

    33   5  8   25   0.5901   0.0115      28   0.5901   0.0087

    34   1  9   66   0.0042   0.0293       7   0.0082   0.0018

    35   3  7   15   0.8637   0.0060     201   0.2481   0.3810

    36   6  5   12   1.4119   0.0056      13   1.4164   0.0396

    37   6  7   15   0.9627   0.0065      16   0.9627   0.0046

    38   6  8   17   0.7974   0.0072      24   0.7974   0.0073

    39   4  8   17   0.7864   0.0336      21   0.7864   0.0061

    40   8  3   15   0.4944   0.0070      38   0.3653   0.0140

    41   4  9   72   1.0654   0.0757      27   1.0668   0.0086

    42   5  8   18   0.4801   0.0076      24   0.4801   0.0072

    43   8  9   14   1.3682   0.0070      19   1.3682   0.0064

    44   2  2   13   0.7773   0.0042      14   0.7773   0.0033

    45   6  5   13   0.2225   0.0059      14   0.2229   0.0049

    46   8  6   14   1.6662   0.0068      20   1.6114   0.0268

    47   3  6   17   0.3840   0.0069      30      NaN   0.0101

    48   3  7   64   0.5853   0.0260       7   0.5886   0.0018

    49   3  3   12   0.8750   0.0044      14   0.8750   0.0038

    50   2  7   64   0.6310   0.0458       7   0.6367   0.0017
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    51   7  7   12   1.7618   0.0047      13   1.7618   0.0036

    52   2  7   64   0.1590   0.0244       7   0.1647   0.0018

    53   4  5   15   3.6371   0.0059      16   3.6371   0.0455

    54   9  3   42   0.4919   0.0216      41   0.7683   0.0158

    55   7  1   45      NaN   0.0833      28      NaN   0.0224

    56   5  4   20   1.4544   0.0331      14   1.6696   0.0063

    57   2  1   45      NaN   0.0891      45      NaN   0.0296

    58   7  5   41   1.6545   0.0388      33   0.8089   0.0497

    59   1  7   64   0.1189   0.0272       8   0.1203   0.0020

    60   9  9   12   3.7354   0.0071      15   3.7354   0.0049

    61   6  8   16   1.3473   0.0067      17   1.3473   0.0051

    62   2  8   65   0.1011   0.0256       7   0.1045   0.0018

    63   2  6   16   0.5000   0.0055      19   0.5000   0.0048

    64   2  6   62   0.4073   0.0233       6   0.4123   0.0014

    65   4  6   15   1.0340   0.0374      19   1.0340   0.0054

    66   3  9   66   0.9751   0.0292       8   0.9772   0.0021

    67   5  5   13   0.9247   0.0050      14   0.9247   0.0039

    68   6  6   13   1.6887   0.0051      14   1.6887   0.0452

    69   2  2   13   0.1492   0.0045      15   0.1492   0.0036

    70   3  2  171      NaN   0.1243      54   2.9584   0.0724

    71   7  2  201   0.2807   0.2557      66   0.0886   0.0771

    72   5  2  201   0.6778   0.4181      75   1.0557   0.1723

    73   2  9   66   0.0872   0.0264       7   0.0909   0.0018

    74   5  7   14   1.4273   0.0056      15   1.4273   0.0040

   75   9  9   12   4.2331   0.0055      14   4.2331   0.0048

    76   4  4   13   0.7073   0.0047      14   0.7073   0.0040

    77   2  9   66   0.4177   0.0272       7   0.4248   0.0019
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    78   7  9   15   2.3273   0.0066      16   2.3273   0.0050

    79   7  5   15   0.6883   0.0382      13   0.8011   0.0524

    80   3  5   17   0.7023   0.0066      19   0.7023   0.0053

    81   8  5   17   1.6375   0.0082      87   0.5440   0.1686

    82   5  6   17   0.5266   0.0070      22   0.5266   0.0065

    83   6  9   16   1.1541   0.0073      19   1.1541   0.0059

    84   1  2   52   0.9460   0.0199       5   0.9489   0.0012

    85   3  9   20   1.4204   0.0087      39      NaN   0.0153

    86   9  4   29   0.1871   0.0378      32   0.6971   0.0615

    87   9  5   37   0.9494   0.0764      32   1.3586   0.0558

    88   4  9   18   0.5192   0.0078      23   0.5192   0.0411

    89   9  5   41   0.5489   0.0475      18   1.5730   0.0528

    90   6  4   58      NaN   0.1482      58      NaN   0.1727

    91   3  5   15   0.6959   0.0058      20   0.6959   0.0055

    92   7  5   14   2.9338   0.0065      14   2.3208   0.0053

    93   3  5   60   0.4861   0.0749       7   0.4866   0.0020

    94   3  2  196   4.5525   0.3504     146   1.8557   0.3399

    95   2  8   65   0.6134   0.0258       7   0.6152   0.0018

    96   6  8   15   1.6926   0.0062      19   1.6926   0.0058

    97   3  6   15   0.8336   0.0057      17   0.8336   0.0047

    98   4  3   56      NaN   0.0830      14   1.4102   0.0045

    99   7  2  201   0.0365   0.4461      83   1.0238   0.2068

   100   6  1   45      NaN   0.1986      45      NaN   0.0328

   101   1  4   58   0.6234   0.0448       6   0.6307   0.0014

   102   7  5   14   1.1884   0.0070      38   0.4592   0.1011

   103   2  5   60   0.5702  0.0634       6   0.5733   0.0014

   104   8  5   38   1.2510   0.0198      19   1.3811   0.0390
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   105   5  7   16   0.7932   0.0068      19   0.7932   0.0267

   106   2  3   56   0.6463   0.0198       5   0.6492   0.0012

   107   7  9   18   1.2119   0.0081      24   1.2119   0.0078

   108   4  2  116   0.4112   0.1974     116   0.3480   0.2755

   109   2  4   58   0.3450   0.0323       6   0.3478   0.0014

   110   8  6   47   0.8233   0.0480      25   0.8203   0.0931

   111   1  5   60   0.0042   0.0245       7   0.0052   0.0017

   112   5  7   19   2.2536   0.0077      25   2.2536   0.0074

   113   7  7   13   1.4697   0.0053      14   1.4697   0.0044

   114   9  2  120   0.4624   0.2295     201   0.8555   0.4208

   115   9  8   12   1.9521   0.0063     13   1.9450   0.0872

   116   1  1   45   0.4377   0.0147       5   0.4378   0.0011

   117   6  3   40   1.3974   0.0493      60   0.0616   0.1541

   118   2  5   60   0.0523   0.0223       6   0.0577   0.0014

   119   4  5   16   1.3757   0.0060      17   1.3757   0.0046

   120   9  8   13   2.8652   0.0067      15   3.0675   0.0062

   121   8  8   11   5.0975   0.0048      15   5.0975   0.0047

   122   2  2   13   0.3116   0.0042      39      NaN   0.0116

   123   9  5   18   0.4133   0.0092      21   0.5460   0.0381

   124   5  4   17   1.3629   0.0079      18   1.3382   0.0401

   125   9  5   17   1.4464   0.0085      16   1.9442   0.0707

   126   7  6   15   2.1528   0.0073      13   1.5332   0.0388

   127   1  2   52   0.4030   0.0202       5   0.4060   0.0012

   128   9  8   17   1.5577   0.0091      16   1.3553   0.0158

   129   7  1   45      NaN   0.1823      36      NaN   0.0295

   130   8  9   17   2.5650   0.0080      21   2.5650   0.0070

   131   3  4   15   0.3709   0.0055      17   0.3709   0.0062
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   132   8  7   13   1.5864   0.0063      16   2.2049   0.0061

   133   9  9   12   1.4834   0.0053      14   1.4834   0.0045

   134   8  4   88   0.1456   0.1307      58   0.4504   0.1475

   135   6  2   27   0.0678   0.0600      16      NaN   0.0094

   136   2  9   66   0.4524   0.0270       8   0.4538   0.0019

   137   1  7   64   0.1021   0.0279       7   0.1043   0.0017

   138   1  6   62   0.0028   0.0263       7   0.0051   0.0017

   139   7  7   12   3.4885   0.0052      13   3.4885   0.0037

  140   3  4   15   0.2784   0.0056      17   0.2784   0.0048

   141   7  9   14   3.1083   0.0062      15   3.1083   0.0047

   142   1  9   66   0.0150   0.0301       7   0.0228   0.0018

   143   8  8   12   3.1648   0.0050      13   3.1648   0.0041

   144   3  8   16   0.6641   0.0651      17   0.6641   0.0048

   145   6  2  127      NaN   0.1905      29   0.0231   0.0666

   146   7  7   11   3.2350   0.0046      13   3.2350   0.0043

   147   2  4   58   0.7658   0.0200       6   0.7670   0.0013

   148   8  8   12   2.1261   0.0050      13   2.1261   0.0038

   149   2  5   60   0.2748   0.0218       6   0.2799   0.0526

   150   1  3   56   0.1017   0.0223       6   0.1030   0.0014

   151   8  9   15   2.2372   0.0071      17   2.2372   0.0058

   152   7  3 195   0.4054   0.3624      48   0.3538   0.1150

   153   3  9   17   0.7720   0.0073      20   0.7720   0.0058

   154   1  5   60   0.0085   0.0624       7   0.0096   0.0017

   155   5  7   16   0.6305   0.0068      16   0.6305   0.0046

   156   7  8   16   1.9168   0.0070      25   1.9168   0.0083

   157   4  5   14   0.7501   0.0052      15   0.7501   0.0045

   158   7  1   45      NaN   0.1248      16      NaN   0.0114
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   159   3  3   11   0.9672   0.0264      12   0.9672   0.0031

   160   1  1   45   0.4010   0.0133       4   0.4008   0.0008

   161   4  8   18   0.6044   0.0076      19   0.6044   0.0053

   162   6  5   14   1.2959   0.0066      16   1.2533   0.0058

   163   9  6   15   1.5190   0.0076      23   1.2027   0.0529

   164   9  9   12   2.4810   0.0054      13   2.4810   0.0041

   165   7  2   54   3.0844   0.0905      26   1.1829   0.0092

   166   9  5   11   0.6774   0.0054      20   0.8400   0.0390

   167   3  9   66   0.1178   0.0305       7   0.1240   0.0019

   168   2  3   56   1.2827   0.0201       5   1.2850   0.0012

   169   8  5   14   3.1274   0.0066      21   2.3811   0.0387

   170   2  4   58   0.2706   0.0206       6   0.2715   0.0014

   171   4  3   79   1.8914   0.1462     159   0.6958   0.3458

   172   1  5   60   0.0769   0.0245       6   0.0821   0.0015

   173   1  3   56   0.1561   0.0220       5   0.1636   0.0012

   174   7  4   55   0.3958   0.0958      31   0.8488   0.0474

   175   7  6   22   0.4917   0.0108      23   0.5037   0.0401

   176   1  4   58   0.0114   0.0541       6   0.0139   0.0014

   177   6  7   15   1.2088   0.0063      19   1.2088   0.0057

   178   8  7   22   2.3937   0.0109      31   3.0084   0.1104

   179   9  8   12   2.3249   0.0063      23   2.0587   0.0430

   180   1  8   65   0.0225   0.0277      8   0.0236   0.0329

   181   8  3   21   0.2064   0.0111      52   0.1950   0.0961

   182   8  1   45      NaN   0.1603      45      NaN   0.0903

   183   3  1   45      NaN   0.0892      45      NaN   0.0170

   184   4  9   16   0.7594   0.0070      25  0.7594   0.0080

   185   7  6   12   1.7165   0.0058      16   1.2626   0.0795
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   186   9  9   12   4.2814   0.0057      13   4.2814   0.0042

   187   7  9   15   1.0139   0.0067      17   1.0139   0.0051

   188   2  3   56   0.0452   0.0192       5   0.0469   0.0012

   189   8  4   48   0.4489   0.0365      14   1.0610   0.0049

   190   1  2   52   0.0018   0.0198       5   0.0047   0.0012

   191   4  9   18   1.5071   0.0082      23   1.5071   0.0282

   192   4  3   15   0.5991   0.0068      16   0.6997   0.0056

   193   6  3  123   0.0110   0.2378      67   0.0438   0.1039

   194   1  6   62   0.1704   0.0566       7   0.1724   0.0017

   195   3  2   53      NaN   0.0634      17      NaN   0.0057

   196   2  4   58   0.0721   0.0200       6   0.0768   0.0015

   197   3  8   16   2.0542   0.0065      20   2.0542   0.0056

   198   5  1   45      NaN   0.1366      45      NaN   0.0839

   199   4  5   13   1.3755   0.0054      15   1.3755   0.0041

   200   3  3   14   1.8529   0.0051      15   1.8529   0.0039

----------------------------------------------------------------

                     New method        Classical method 

         dim(m*n)   iteration time     iteration  time

average 4.9 5.4     40.7    0.0448      24.6     0.0362

----------------------------------------------------------------

MatLab code forTable 5.3

solve the random system with dimention 200*300

m=200;n=300;

A=rand(m,n);

b=rand(m,1);

c=rand(n,1);

epsilon=0.01;



101

in new mehtod, p=0.8,q=1.2

       New method              Classical method 

  idx  iteration Opt     time     iteration Opt     time

-----------------------------------------------------------

    34      31   13.3783   2.1870     34   13.3783   2.4084

    35      33   13.5477   2.3660     38   13.5477   2.7975

    36      35  12.2685   2.4543     47   12.2685   3.6504

    37      34   12.1387   2.4273     42   12.1387   3.1664

    38      31   14.3202   2.1804     42   14.3202   3.1886

    39      33   11.7495   2.4815     30   11.7495   2.0452

    40      30   15.0938   2.1312     39   15.0938   2.8654

    41      40   15.4534   3.0469     44   15.4534   3.3165

    42      38   12.4233   2.8703     44   12.4233   3.2338

    43      66   12.7004   5.6847     40   12.7022   2.8478

    44      39   12.4386   2.9631     40   12.4386   2.8733

    45      33   13.5479   2.3851     42   13.5479   3.0937

    46      36   13.7716   2.6777     43   13.7716   3.1809

    47      33   12.7877   2.5047     35   12.7877   2.5006

    48      36   16.7568   2.7086     36   16.7568   2.5545

    49      38   15.3569   2.9702     34   15.3569   2.4201

-----------------------------------------------------------

average

       New method                 Classical method 

iteration      time        iteration Opt     time

-----------------------------------------------------------

   35.8100      2.6626       40.0000         2.8812



102

       New method              Classical method 

  idx  iteration Opt     time     iteration Opt     time

-----------------------------------------------------------

     1      33   14.1325   2.2903     36   14.1325   2.4028

     2      34   11.4602   2.3497     40   11.4602   2.6396

     3      34   14.8578   2.3979     43   14.8578   3.4298

     4      32   14.0615   2.3182     42   14.0615   2.9494

     5      37   13.8361   2.6571     40   13.8361   2.7531

     6      27   12.5830   1.8774     31   12.5830   2.0912

     7      35   15.0891   2.4443     46   15.0891   3.1579

     8      42   15.4758   3.0902     51   15.4758   3.5747

     9      33   13.9757   2.3580     36   13.9755   2.3991

    10      33   14.4968   2.3421     34   14.4968   2.3027

    11      31   11.4472   2.1374     65   11.4295   4.6683

    12      29   13.3044   1.9933     36   13.3044   2.4292

    13      34   13.6009   2.3862     50   13.6009   3.4991

    14      34   11.4376   2.4010     41   11.4376   2.8593

    15      31   14.8721   2.1535     35   14.8721   2.3473

    16      38   14.0051   2.7457     35   14.0051   2.3498

    17      29   13.8349   2.0148     35   13.8349   2.3490

    18     35   12.8241   2.4992     42   12.8241   2.9333

    19      33   13.0498   2.3489     42   13.0499   2.9874

    20      33   14.5358   2.3046     35   14.5358   2.3323

    21      33   13.7607   2.3485     38   13.7607   2.6101

    22      31   13.3368   2.1436     36   13.3368   2.4539

    23      31   12.6427   2.1378     44   12.6427   3.0703

    24      33   13.1727   2.3204     47   13.1727   3.3550
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    25      38   12.4437   2.7154     45   12.4437   3.1244

    26      30   16.4101   2.0944     39   16.4101   2.6710

    27      43   14.5286   3.1413     39   14.5286   2.6813

    28      32   14.2258   2.2594     31   14.2258   2.1112

    29      34   11.9038   2.4134     51   11.9038   3.6221

    30      29   12.9792   1.9981     33   12.9792   2.1890

    31      30   13.5566   2.0404     39   13.5566   2.6850

    32      30   13.9748   2.1090     31   13.9748   2.0360

    33      38   13.9658   2.6906     41   13.9658   2.7484

    34      31   13.3783   2.1870     34   13.3783   2.4084

    35      33   13.5477   2.3660     38   13.5477   2.7975

    36      35   12.2685   2.4543     47   12.2685   3.6504

    37      34   12.1387   2.4273     42   12.1387   3.1664

    38      31   14.3202   2.1804     42   14.3202   3.1886

    39      33   11.7495   2.4815     30   11.7495   2.0452

    40      30   15.0938   2.1312     39   15.0938   2.8654

    41      40   15.4534   3.0469     44   15.4534   3.3165

    42      38   12.4233   2.8703     44   12.4233   3.2338

    43      66   12.7004   5.6847     40   12.7022   2.8478

    44      39   12.4386   2.9631     40   12.4386   2.8733

    45      33   13.5479   2.3851     42   13.5479   3.0937

    46      36   13.7716   2.6777     43   13.7716   3.1809

    47      33   12.7877   2.5047     35   12.7877   2.5006

   48      36   16.7568   2.7086     36   16.7568   2.5545

    49      38   15.3569   2.9702     34   15.3569   2.4201

    50      35   10.1950   2.5621     41   10.1950   2.9928

    51      39   14.4130   3.0114     47   14.4130   3.6163
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    52      35   14.5251   2.6399     40   14.5251   2.9441

    53      72   14.9484   6.2311     45   14.9489   3.2947

    54      35   16.3867   2.5885     40   16.3867   2.8813

    55      38   12.7772   2.9128     42   12.7772   3.1070

    56      34   13.0523   2.5302     38   13.0523   2.8084

    57      35   13.0530   2.5921     43   13.0530   3.2378

    58      34   13.0528   2.5316     35   13.0528   2.4582

    59      31   15.8548   2.2426     35   15.8548   2.5212

    60      29   14.2370   2.0127     39   14.2370   2.8138

    61      43   13.5499   3.3413     38   13.5499   2.7139

    62      35   12.8535   2.5790     35   12.8535   2.4133

    63      33   12.9314   2.4403     37   12.9314   2.6749

    64      95   13.7239   9.0412     44   13.7796   3.2587

    65      31   15.8651   2.2830     34   15.8651   2.3814

    66      37   13.8844   2.7863     38   13.8844   2.6984

    67      38   14.4416   2.9258     46   14.4415   3.5383

    68      35   13.3879   2.5361     44   13.3879   3.1893

    69      37   14.7301   2.6624     47   14.7301   3.5063

    70      34   14.0756   2.5296     40   14.0755   2.8794

    71      37   13.8434   2.7015     41   13.8434   2.9964

    72      32   14.9581   2.3169     32   14.9581   2.1915

    73      31   13.0970   2.2517     40   13.0970   2.9671

    74      32   12.1322   2.3486     42   12.1322   3.1600

    75      33   14.5811   2.4676     36   14.5811   2.5803

    76      36   15.1297   2.7490     40   15.1297   2.9157

    77      28   16.3501   2.0110     37   16.3501   2.6951

    78      37   11.7357   2.7682     38   11.7357   2.6857
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    79      47   13.4661   3.8289     38   13.4661   2.7929

    80      30   14.1476   2.1423     38   14.1476   2.7840

    81      33   14.0924   2.4596     38   14.0924   2.7350

    82     37   14.7447   2.7495     39   14.7447   2.7690

    83      40   13.4680   2.9901     46   13.4680   3.4051

    84      37   11.5136   2.7620     42   11.5136   3.0184

    85      36   14.5218   2.7568     36   14.5218   2.6255

    86      54   13.8599   3.9193     36   13.8574   2.6522

    87      32   12.6705   2.4086     41   12.6705   3.1666

    88      34   12.5076   2.6738     38   12.5076   2.8091

    89      40   14.6875   3.2020     34   14.6875   2.5030

    90      30   11.3641   2.2120     33   11.3641   2.3333

    91      34   14.8216   2.5382     40   14.8216   2.9601

    92      34   16.0217   2.5202     48   16.0217   3.8445

    93      33   14.0469   2.4813     41   14.0469   3.1175

    94      40   15.8152   3.0568     41   15.8152   2.9229

    95      30   14.3876   2.2207     34   14.3876   2.4590

    96      30   15.8316   2.2985     40   15.8316   3.0683

    97      33   14.2434   2.4493     38   14.2434   2.8031

    98      37   13.7590   2.8397     46   13.7590   3.5587

    99      39   15.5669   2.8991     52   15.5669   3.9323

   100      35   15.0051   2.6977     48   15.0051   3.7811

-----------------------------------------------------------

average

       New method                 Classical method 

iteration      time        iteration Opt     time

   35.8100      2.6626       40.0000         2.8812



106

MatLab code for Table 5.4

solve the random system with dimention 400*700

m=400;n=700;

A=rand(m,n);

b=rand(m,1);

c=rand(n,1);

epsilon=0.01;

in Dr. Lesaja's mehtod, p=0.8,q=1.2

       New method              Classical method 

  idx  iteration Opt     time     iteration Opt     time

-----------------------------------------------------------

   1      41   16.8015   25.4030     57   16.8018   35.8048

-----------------------------------------------------------

MatLab code for Table 5.4

impNew

p=1-lambda;

q=1+lambda;

average of 200 iterations
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----------------------------------------------------------------

                     0.1                       0.2 

         dim(m*n)   iteration time     iteration  time

average 5.0 5.1     35.9    0.0526      37.2     0.0603

----------------------------------------------------------------

----------------------------------------------------------------

                     0.3                0.4

         dim(m*n)   iteration time     iteration  time

average 4.8 5.1     40.6    0.0673      41.6     0.0648

----------------------------------------------------------------

MatLab code for Table 5.6

20 iterations

----------------------------------------------------------------

                     0.3                 0.4

         dim(m*n)   iteration time     iteration  time

average 200.0 300.0     33.8    2.5982      37.8     2.9957

----------------------------------------------------------------

----------------------------------------------------------------

                       0.1                       0.2 

         dim(m*n)   iteration time     iteration  time

average 200.0 300.0     36.6    2.8611      34.7     2.6867

----------------------------------------------------------------
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----------------------------------------------------------------

                     0.1                       0.2 

  idx dim(m*n)  iteration Opt     time     iteration Opt     time

----------------------------------------------------------------

     1 200300   36   15.3765   2.7472      35   15.3765   2.6816

     2 200300   33   13.6721   2.5727      33   13.6721   2.5643

     3 200300   39   13.1033   3.0115      41   13.1033   3.2237

     4 200300   38   14.9661   3.0094      40   14.9661   3.2188

     5 200300   32   12.9225   2.4362      28   12.9225   2.0493

     6 200300   32   13.3005   2.3987      34   13.3005   2.5932

     7 200300   38   11.4939   2.9336      36   11.4939   2.8237

     8 200300   32   13.6853   2.4423      37   13.6853   2.9811

     9 200300   33   12.6659   2.5796      28   12.6659   2.0762

    10 200300   79   13.1793   6.9372      43   13.1802   3.4659

    11 200300   33   12.4495   2.4903      33   12.4495   2.4935

    12 200300   33   14.7143   2.5612      31   14.7143   2.3323

    13 200300   32   13.0591   2.3790      34   13.0591   2.6057

    14 200300   41   14.7339   3.2123      33   14.7339   2.4766

    15 200300   34   15.4971   2.6664      33   15.4971   2.6206

    16 200300   37   12.8786   2.9451      40   12.8786   3.0927

    17 200300   36   12.6252   2.7991      37   12.6252   2.9537

    18 200300   33   14.2547   2.5594      32   14.2547   2.4313

    19 200300   32   15.6560   2.4247      32   15.6560   2.4553

    20 200300   29   14.5694   2.1154      34   14.5694   2.5937

----------------------------------------------------------------


	Interior Point Methods and Kernel Functions of a Linear Programming Problem
	Recommended Citation

	tmp.1375238340.pdf.EuMIE

