
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2009

Interior Point Methods and Kernel Functions of a Linear
Programming Problem
Latriece Y. Tanksley

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation
Tanksley, Latriece Y., "Interior Point Methods and Kernel Functions of a Linear
Programming Problem" (2009). Electronic Theses and Dissertations. 650.
https://digitalcommons.georgiasouthern.edu/etd/650

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229063793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/650?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1

INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

by

LATRIECE Y. TANKSLEY

(Under the Direction of Goran Lesaja)

ABSTRACT

In this thesis the Interior – Point Method (IPM) for Linear Programming problem (LP) that is

based on the generic kernel function is considered.

The complexity (in terms of iteration bounds) of the algorithm is first analyzed for a class of

kernel functions defined by (3-1). This class is fairly general; it includes classical logarithmic

kernel function, prototype self-regular kernel function as well as non-self-regular functions,

thus it serves as a unifying frame for the analysis of IPM. Historically, most results in the

theory of IPM are based on logarithmic kernel functions while other two classes are more

recent. They were considered with the intention to improve theoretical and practical

performance of IPMs. The complexity results that are obtained match the best known

complexity results for these methods.

Next, the analysis of the IPM was summarized and performed for three more kernel functions.

For two of them we again matched the best known complexity results.

The theoretical concepts of IPM were illustrated by basic implementation for the classical

logarithmic kernel function and for the parametric kernel function both described in (3-1).

Even this basic implementation shows potential for a good performance. Better

implementation and more numerical testing would be necessary to draw more definite

2

conclusions. However, that was not the goal of the thesis, the goal was to show that IPM with

kernel functions different than classical logarithmic kernel function can have best known

theoretical complexity.

3

INDEX WORDS: Interior Point Methods, Linear Programming, Kernel Functions, Log Barrier Functions

INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

by

LATRIECE Y. TANKSLEY

B.S., Savannah State University, 2000

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2009

4

© 2009

LaTriece Y. Tanksley

All Rights Reserved

5

INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

 Major Professor: Goran Lesaja

 Committee: Billur Kaymakcalan

Scott Kersey

Yan Wu

Electronic Version Approved:

May 2009

6

ACKNOWLEDGEMENTS

Mathematics has always been of great interest to me. I cannot begin to express the joy and

pleasure that I’ve experienced studying at Georgia Southern University under the direction of

the great faculty here. Dr. Goran Lesaja has played an intricate role in my graduate research. I

could not have made it to this point without his advisement and knowledge. I would like to

thank Dr. Yan Wu and Dr. Billur Kaymakcalan for serving on the graduate committee. I have

had the pleasure of taking previous classes from both instructors and want to thank them for

their encouragement throughout my academic career. I would also like to thank Dr. Scott

Kearsey for serving on the graduate committee. I have not had the pleasure of knowing him as

well as the others, but I appreciate his interest in my graduate work. I would also like to thank

graduate student Jie Chen and Segio Valdrig for their generous help with the implementation

of the algorithms in MatLab. I would like to thank my parents, Algene and Dorothy Tanksley,

for their support throughout this long journey. They have been great role models in my life

and this accomplishment is a direct result of their hard work and commitment towards my

academic success. Finally, I would like to thank the math professors at Savannah State

University who first encouraged me and guided me through undergraduate studies in math. I

am eternally grateful to them for their leadership and interest in my studies.

7

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ..6

LIST OF FIGURES ...8

LIST OF TABLES...9

NOMENCLATURE ..10

CHAPTER

 1 INTRODUCTION ..12

 2 INTERIOR POINT METHODS BASED ON KERNAL FUNCTIONS18

 3 ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS . 27

 4 ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNAL FUNCTIONS50

 5 NUMERICAL RESULTS ..68

 6 CONCLUSION...74

REFERENCES ..76

APPENDICES

 APPENDIX A...77

 APPENDIX B...82

8

LIST OF FIGURES

Figure 1: Graphical Interpretation of IPM...21

Figure 2: Generic Primal-Dual Interior-Point Algorithm for Linear Optimization...................26

Figure 3: IPM Based on generic kernel function ...70

9

LIST OF TABLES

Table 1: Wyndor Glass Company Data ...14

Table 2: Complexity results for long-step methods...64

Table 3: Complexity results for short-step methods ..65

Table 4: Numerical results for Example ..69

Table 5: Numerical results for randomly generated “small problems”

with dimension less than 10...70

Table 6: Numerical results for randomly generated problems

with dimension 200x300..71

Table 7: Numerical results for randomly generated problem

with dimension 400x700..71

Table 8: More Numerical Results ..72

Table 9: More Numerical Results ..72

10

NOMENCLATURE

nR Euclidean n dim space


nR All vectors of nR with nonnegative components

Ax Element x belongs to set A

x A Euclidian norm of vector nRx , 



n

i

n
ixx

1

,0  converges to 0

RRf n : A function with n variables

f , f2 A gradient and a Hessian of f

mn RRF : A vector valued function

F A Jacobian of F

)(xdiagX  A diagonal matrix that has components of the vector x on

 the main diagonal and zeros everywhere else

1,, x
s

x
xs Component wise operations (product, division, inverse) of

vectors nRsx , . For example,),,(11 nn sxsxxs  .

))((nfo There exist a constant C and a function)(ng such that

)()(nCgnf  (“small o” notation).

11

))((nfO There exist a constant C and a function)(ng such that

)()(nCgnf 

))((nf There exist constants KC, and a function)(ng such that

)()()(nKgnfnCg  (“big  ” notation).

12

CHAPTER 1

 INTRODUCTION

Linear Programming Model

The mathematical model of linear programming is useful in solving a wide range of

problems in industry, business, science and government. This is by far the most used

optimization model.

These problems and their linear programming models can often be complex as they

consist of a huge number of variables and constraints ranging up to the hundred thousands. A

linear programming model consists of an objective function, that is a linear function, and the

constraints on that function that are also linear. Linear programming involves the planning of

activities to obtain a result that reaches a specified goal among all feasible alternatives.

A Linear Program (LP) is a problem that can be expressed in standard form as follows:

 Minimum xcT

subject to
0


x

bAx
(1-1)

where nRx is the vector of variables to be solved for, and matrix mxnRA and vectors

mn RbRc  , are input data. . The linear function xcZ T is called the objective function,

and the equations bAx  are called functional constraints, while 0x are called nonegativity

constraints. The set  0,|  xbAxRxF n is called a feasible set. Geometrically, the set

represents a polyhedron in nR .

13

Many practical problems can be modeled as LP models. To illustrate this fact we list

the following simple example taken from the [Hillier, Lieberman, 2005].

Example: The Wyndor Glass Co. produces high-quality glass products, including

windows and glass doors. It has three plants. Aluminum frames and hardware are made in

Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the

products. Because of declining earnings, top management has decided to revamp the

company’s product line. Unprofitable products are being discontinued, releasing production

capacity to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing

Product 2: A 4 x 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.

Product 2 needs only Plants 2 and 3. The marketing division has concluded that the company

could sell as much of either product as could be produced by these plants. However, because

both products would be competing for the same production capacity in Plant 3, it is not clear

which mix of these two products would be most profitable. Each product will be produced in

batches of 20, so the production rate is defined as the number of batches produced per week.

Any combination of production rates that satisfies the restrictions is permitted, including

producing none of one product and as much as possible of the other. Profit from selling one

batch of Product 1 (glass doors) is $3000 and profit from selling one batch of Product 2

(windows) is $5000. We assume that all produced batches will be sold. Goal: To determine

what the production rates should be for the two products in order to maximize the total profit,

subject to the restrictions imposed by the limited production capacities available in the three

plants.

14

Of course, this is a simplified real world situation but good enough to illustrate the usefulness

of the model. Formulation of the Linear Programming (LP) Problem

Let
1x = number of batches of product 1 produced per week

2x = number of batches of product 2 produced per week

 Z = total profit per week in thousands of dollars from producing these two products

The following table summarizes the data gathered:

Wyndor Glass Company Data

Plant Production Time Per Batch Hours Production Time Available

per Week, Hours

Product

1 2

1

2

3

1 0

0 2

3 2

4

12

18

Profit per Batch 3000 5000

Table 1

The objective function is 21 53 xxZ  and it represents a total profit measured in thousands of

dollars. The objective function is subject to the restrictions imposed by the limited production

capacities available in each of the plants, and they can be mathematically expressed by the

following inequalities:

15

18233

1222

41

21

2

1






xxPlant

xPlant

xPlant

Thus, the overall linear programming model illustrating the Wyndor Glass Company is

0,0

1823

122

4

53

21

21

2

1

21








xx

xx

x

xtosubject

xxZMaximize

By adding slack variables this problem can be transformed in the standard form (1-1).

0,0,0,0,0

1823

122

4

53

54321

521

42

31

21








xxxxx

xxx

xx

xxtosubject

xxZMaximize

The similar procedure can be done for different inequality formulations of LP.

This example illustrates the applicability of the LP model. The number of problems

that can be modeled as LP is huge and widespread to many areas of science, industry,

business, finance, government, etc. For more examples see [HL] and other Operations

Research textbooks. Therefore, the efficient methods to solve LP models are very important.

In the following sections we will outline main methods that are used to solve LP models.

Methods to Solve LP Models

The first successful general procedure, Simplex Method, for solving a LP problem was

discovered by George Dantzig in 1947 although there were partial results discovered earlier.

Theoretically the main idea of the simplex method (SM) is that it travels from vertex to vertex

16

on the boundary of the feasible region, repeatedly increasing or decreasing the objective

function until either an optimal solution is found, or it is established that no solution exists.

The number of iterations required in the worst case is an exponential function of the number

of variables, as it was first discovered by Klee and Minti in 1972. However, the worst case

behavior has not been observed in practice. On the contrary, the algorithm works very well in

practice, typically requiring)(nO iterations. Highly sophisticated implementations are

available (CPLEX, MOSEK, LINDO, EXCEL SOLVER) and have excellent codes for

simplex algorithms. These codes are capable of solving huge problems with millions of

variables and thousands of constraints. This discrepancy between exponential worst case

complexity and good practical behavior of simplex method prompted the research in two

directions. One direction was a search for the algorithm with the polynomial worst case

complexity and the other direction was the analysis of average complexity of simplex method.

In 1979, Leonid Khaciyan showed that the Ellipsoid Method, created by A.

Nemirovski and D. Yudin for nonlinear programming problems, solves any linear program in

a number of steps which is a polynomial function of the amount of data defining the linear

program. Unfortunately, in practice, the simplex method turned out to be far superior to the

ellipsoid method. However, theoretical importance is significant because it provided a basis to

prove that polynomial methods exist for many combinatorial problems.

In 1982 K. Borgward provided the first probabilistic analysis of the simplex method,

showing that the expected number of iterations is polynomially bounded. Soon afterwards,

other authors provided similar analysis. A relatively simple and complete analysis was

provided by Adler and Megiddo in 1985. Using the clever probability model, they showed that

17

upper and lower bounds on an average number of iterations is a function of  2}),(min{ nm ,

where m is the number of constraints and n is the number of variables.

In 1984, Narendra Karmarkar introduced an Interior-Point Method (IPM) for linear

programming, combining the desirable theoretical properties of the ellipsoid method and

practical advantages of the simplex method. Its success initiated an explosion in the

development of interior-point methods that continue to this day.

These methods do not pass from vertex to vertex along the edges of the feasible region,

which is the main feature of the simplex algorithm; they follow the central path in the interior

of the feasible region. Though this property is easy to state, the analysis of interior-point

methods is a subtle subject which is much less easily understood than the behavior of the

simplex method. Interior-point methods are now generally considered competitive with the

simplex method in most, though not all, applications, and sophisticated software packages

implementing them are now available (CPLEX, MOSEK, LINDO, EXCEL SOLVER).

18

CHAPTER 2

INTERIOR POINT METHODS BASED ON KERNEL FUNCTIONS

The linear optimization problem in standard form is

(P)  0,:min  xbAxxcT ,

where nmnxm RcRbmArankRA  ,),)((. The dual problem of (P) is

(D)  0,:max  scsyAyb TT ,

where nRs is a dual slack variable.

We can assume that the Interior Point Condition (IPC) is satisfied without loss of

generality; that is, there exists a point),,(000 ysx such that 0, 00  xbAx and

0,00  scsyAT , which means that the interiors of the feasible regions of the primal(P)

and dual(D), are not empty. If the problem doesn’t satisfy the IPC, it can be modified so that it

does and even in such a way that esx  00 , where e denotes a vector of all ones. The

details can be found in [Roos, C et. al., 1997].

Optimality conditions for (P) and (D) yield the following system of equations:

,0

0,

0,






xs

scsyA

xbAx
T (2-1)

where the vector xs denotes the component wise product of vectors x and s which is also

called Hadamard product.

19

The theory of interior point methods (IPMs) that is based on the use of Newton’s

Method suggests that the third equation in (2-1) has to be perturbed. The third equation is

often called the complementarity condition for the primal and dual, and is replaced by

exs  , where  is a positive parameter. The optimality conditions (2-1) are transformed to

the following system:

.

0,

0,

exs

scSyA

xbAx
T






 (2-2)

Since rank (A) = m, this system has unique solution for each  >0. We can write this solution

as  )(),(),( syx , calling)(x the  center of (P) and))(),(( sy the  center of (D).

The set of all  centers forms a homotopy path in the interior of the feasible region that is

called the central path.

The main property of the central path can be summarized as follows: if ,0 then

the limit of the central path exists, the limit points satisfy the complementarity condition, and

the limit yields optimal solutions for (P) and (D). This limiting property of the central path

leads to the main idea of the iterative methods for solving (P) and (D): Trace the central path

while reducing  at each iteration. However, tracing the central path exactly would be too

costly and inefficient. One of the main achievements of interior point methods was to show

that tracing the central path approximately while still maintaining good properties of the

algorithms is sufficient.

Tracing the central path means solving the system (2-2) using Newton Method on the

function

20

.0),,(






















exs

csyA

bAx

syxF T


(2-3)

Tracing the central path approximately means that only one, or at most, a couple of iterations

of a modified (damped) Newton’s Method will be performed for a particular  . One iteration

of a Newton Method for the function (2-3) and particular  is stated below.

),,(syxF

z

y

x

F 





















 (2-4)

where


















XS

IA

A

F T

0

0

00

denotes the Jacobian of F and  Tzyx  ,, is a Newton’s search direction that we want to

calculate.

Solving (2-4) reduces to solving this system.

xsesxxs

syA

xA
T







0

0

(2-5)

Next we update the current iterates  syx ,, by taking an appropriate step along the calculated

direction.

21

sssyyyxxx    ,,

The step size α has to be chosen approximately, so that the new iterate is in a certain

neighborhood of µ-center. The choice of  will be discussed later in the text.

The idea of the algorithm is illustrated in the Figure 1 blow.

Graphical Interpretation of IPM

Figure 1

In order to generalize the algorithm outlined above, we introduce a new vector

Optimal
solution

=0)

Central path

Neighborhood

neighborhoo

d

 of the

approximate

 solution

-centersIterate
s Directions with

step-size

Feasible
region

22




xs
 (2-6)

which we use to define new scaled directions

s

s
d

x

x
d sx








:,: (2-7)

where the operations in (2-7) are component-wise product and division of vectors. Using the

above definitions (2-6) and (2-7), the system (2-5) reduces to

 




1

0

0

sx

s

x

dd

dyA

dA

(2-8)

where)(),(:,
1 1 xdiagXvdiagVXAVA  


. Note that)(xdiagX  denotes a

diagonal matrix that has components of the vector x on the main diagonal and zeros

everywhere else.

The new search direction  syx  ,, is obtained by first solving the system (2-

8).Once xd and sd are found we apply (2-6) to find x and s . This direction can also be

obtained directly by solving the following system:

 (2-9) .
0

0

 




sxxs

syA

xA
T

23

This system can be reduced to

ryM  (2-10)

where

)(1

1

 






ASr

XAASM T

(2-11)

and  xdiagX  ,  sdiagS  ,  diagV  .

Once y is found, s and x are found by back substitutions

yAs T (2-12)

     sxsx 1 (2-13)

where products denote component-wise products of vectors.

The following observation is crucial for the generalization of the method. Observe that

   1 is a gradient of the following function

  .log
2

1
log

2

1
log

2

1 2

2

2
1

1

2




































 


n

n
n

i
i

i
c 








  (2-14).

This function is called log-barrier function.

One may easily verify that the Hessian)()(22   ediagc . Since this matrix is

positive definite,)(c is strictly convex. Moreover, since 0)( ec , it follows that

24

)(c attains its minimal value at e , with 0)( ec . Thus, it follows that)(c is

nonnegative everywhere and vanishes if and only if e , that is, if and only if

)()( ssandxx  . Hence, we see that the)()( sandxcenters can be characterized

as the minimizers of the function)(c . Therefore, the function)(c serves as a proximity

measure to the  -centers (central path.. The norm based proximity measure that is derived

from)(c is defined as

.)(
2

1  c (2-15)

Furthermore, the complimentary equation in (2-8) can be written as

)(csx dd  , which is also called the scaled centering equation. The importance of

the equation arises from the fact that it essentially defines the search directions. Since xd and

sd are orthogonal, we will still have 0sxdd if and only if e . The same is true for x

and s .

The main idea of the generalization of the method is to replace the log-barrier function

(2-14) with some other barrier function that has the same properties as log barrier. The choice

of this function will certainly affect the calculation of the search direction, the step size, and

with that the rate of the convergence of the method. It is worth examining the classes of

barrier functions that may lead to the improved behavior of the algorithm. In what follows, we

will consider several such classes.

We will restrict ourselves to the case where the barrier function)( is separable with

identical coordinate functions)(i . Thus,

25

)()(
1




n

i
i , (2-16)

where),0[:)(t is twice differentiable and attains its minimum at 1t , with 0)1( . The

function)(t is called a kernel function. The log-barrier function belongs to this class.

The algorithm based on generic kernel function that was outlined above is summarized

in the Figure 2 below. In principle, each barrier function gives rise to a different primal-dual

algorithm. The parameters τ,θ and the step size α in the algorithm should be tuned in such a

way that the number of iterations required by the algorithm is as small as possible. The

resulting iteration bound will depend on the kernel function, and our main task becomes to

find a kernel functions that give a good and possibly best known iteration bound. The question

of finding the kernel function that minimizes the iteration bound is still an open question.

26

Figure 2 Generic IPM

Generic Primal-Dual Interior-Point Algorithm for Linear Optimization

Input:

An input data A, b, c

A threshold parameter ;1

An accuracy parameter 0 ;

A fixed barrier update parameter 1 ;

Iteration:

 begin

1:;:;:  esex ;

while  n do

begin

calculate)1(:   ;

calculate ;:


 xs


while     do

begin

 calculate the direction  syx  ,,

using (2-10) – (2-13) :

 calculate step size  ;

update

yyysssxxx   :,:,: ;

end

end

end

27

CHAPTER 3

ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS

The following class of kernel functions will be used to analyze the algorithm, Generic

IPM, discussed in the Chapter 2, Figure 2 .

 

 


























1.0,0,log
1

1

1,1.0,0,
1

1

1

1

)(
1

11

,

ptt
p

t

qpt
q

t

p

t

t
p

qp

qp (3-1)

where p is a growth parameter and q is a barrier parameter.

Notice that t
q

t q

log
1

11





when 1q . This class of kernel functions is fairly general. As

we just explained, it includes log-kernel function as a special case. It also includes so-called

self-regular kernel functions when 1p . These functions have been extensively discussed in

recent literature (Peng, J, et. al, 2002). Moreover, it also includes non self-regular functions

when 10  p . This class of functions was first discussed in (Lesaja G., et.al., 2008). The

results in this chapter follow the results presented in that paper. However, the proofs of several

results that were omitted in the paper are outlined here.

Properties of Kernel Functions

The derivatives of)(t in (3-1) play a crucial role in our analysis. Thus, we write

down the first three derivatives:

28

.)1()1()(

)(

)('

22'''

11''













qp

qp

qp

tqqtppt

qtptt

ttt







(3-2)

In the next several lemmas we will describe certain properties of kernel function and its

derivatives and their relationships in terms of inequalities. These results will be used in the

analysis of the Generic IPM.

The following lemma states the so-called exponential convexity of kernel function which is

crucial in proving the polynomial complexity of the Generic IPM.

Lemma 3.1        212121 2

1
,00 ttttthentandtIf   .

Proof: It can be shown that the inequality in the lemma holds if and only if

00)(')(''  tallforttt  . This result is beyond the scope of the thesis and can be found

(Peng, J., et. al., 2002). Using (3-1) one can easily verify that

 
0

1
)1(

1
)(')(

1
1'' 









  


q

p
q

p
q

p

t

q
tp

t
t

t

q
pttttt  ,

which completes the proof.

Lemma 3.2 If 1t , then 2)1(
2

)()1(
2

)('



 t

qp
tt

t 
.

Proof: If),(')1()(2)(ttttf   then)('')1()(')(' ttttf   and

)(''')1()('' tttf  . Also 0)1(f and 0)1(' f . Since 0)(''' t it follows that if

29

1t then 0)('' tf whence 0)(' tf and 0)(tf . This implies the first inequality. The

second inequality follows from Taylor’s theorem and the fact that qp )1('' .

Lemma 3.3 Suppose that)()(21 tt   with 21 1 tt  . The following statements hold:

i. One has 0)(',0)(' 21  tt  , and)(')(' 21 tt   .

ii. If 1 , then)()(21 tt   ; equality holds if and only if 1 or 121  tt .

Proof: Proof of (i):

The statement is obvious if 11 t or 2t =1 because then 0)(')(21
'  tt  implies 121  tt

Thus we may assume that .1 21 tt  Suppose the opposite)(')(' 21 tt   . By the mean

value theorem we have

),()1()(' 2
''

11  tt  for some),1(22 t

and

 -),()1()(1
''

22
'   tt for some)1,(11 t .

Since '' (t) is monotonically decreasing one has)()(2
''

1
''   . Then we obtain

     ,)1()1()1(2
''

11
''

12
''

2  ttt 

Hence since ''  2 >0 it follows that 12 11 tt  . Using this and the fact that)(' t is

convex, we may also write

30

 

 

 

).(

)(

)('1
2

1

)(1
2

1

)(1
2

1

)(

)(

1

1 '

11

2
'

1

2
'

2

1

'

2

1

2

t

d

tt

tt

tt

d

t

t

t

































This contradiction proves the first part of the lemma.

Proof of (ii):

Consider,  ).()(12 ttf  

One has 0)1(f and  ).()(1
'

12
'

2
' ttttf  

Since 0)('' t for all ,0t)(' t is monotonically increasing. Hence,)(')(' 21 tt   .

Substitution gives

0))((')(')(')(')(')(' 12221221122  tttttttttttf 

The last inequality holds since fortandtt 0)('12   .1t This proves that   0f for

,1 and hence the inequality (ii) in the lemma follows.

If 1 obviously we have equality. Otherwise, if 1 and 0)(f , then the mean value

theorem implies 0)(' f for some),1(  . But this implies)()(1
'

2
' tt   . Since)(' t

Since)(' t is concave,

Since 0)(11 2
'

12  tandtt  ,

 Since)(')(' 21 tt   ,

 Since)(' t is concave.

31

is strictly monotonic, this implies that 12 tt   , whence 21 tt  . Since also 21 1 tt  we

obtain 121  tt . This completes the proof of the second part of the lemma.

Lemma 3.4 If 1t , then)('')(2)(' 2 ttt   .

Proof : Defining)('')(2)(')(2 ttttf   one has 0)1(f and

0)(''')(2)(''')(2)('')('2)('')('2)('  tttttttttf  .

This proves the lemma.

Lemma 3.5 Let]1,0(),0[:)(s be the inverse function of 1)('
2

1
 tfort . The

following inequality holds:

qs

s
1

)21(

1
)(



 . (3-3)

Proof: Since)('
2

1
ts  , we have

sstttts pqqp 2122   .

Since)1(t , this implies the lemma.

Lemma 3.6 If 1t and pq  2 , then)(1 ttt  .

Proof: Defining    21)( ttttf  we have 0)1(f and

       .12' '  tttttf 

32

Moreover, it is clear that   01' f and

              .022222'''2 9''   qpqpp ttptqpttqtpttttf 

The second inequality above is due to the fact that q p 2 . Thus we obtain

   21 ttt ,

which implies the lemma.

Lemma 3.7 Let),1[),0[:  be the inverse function of)(t for 1t . The following

inequalities hold:

   sssssp p 21)(11 2
1

1

   . (3-4)

If pq  2 , then

ssssss 21)(22  (3-5)

Proof: Since q>1 and t1, we have

 
1

1

1

1

1

1 111















p

t

q

t

p

t
ts

pqp



Hence, the first inequality in (3-4) follows.

The second inequality in (3-4) follows by using the first inequality of Lemma 3.2:

           .2
1

2

11
11

2

1
1

2

1
1

2

1 ' 





 






  

t
t

t
ttttttts qp

33

Hence, solving the following inequality

  01122  tst

leads to

  .21 2 sssst   (3-6)

Finally, let .2 pq  By Lemma 3.6 one has   .11 tsttt  

Substitution of the upper bound for t given by (3-6) leads to

  .21 22 ssssss 

This completes the proof of the lemma.

Now we will derive a very important bound for normed proximity measure     
2

1

in terms of the original proximity measure given by the barrier function)( .

Theorem 3.1 The following inequality holds:

     '
2

1
)(. (3-7)

The proof is beyond the scope of thesis and can be found in (Peng, J., et. al., 2002)

Corollary 3.1 If 1)(  , then   p

p

 1)(
6

1
)(

34

Proof: Using Theorem 2.1, and the fact that 1)(  , we have

                     1

2

1

2

1
'

2

1
)(   pqp . Note that

t
t p 1
 is monotonically increasing in t . Thus, by using the first inequality in (3-4), we obtain

  
  

  
  

    

  1

1

1

1

1

1

1

1

1
1

)(
6

1

)(3

)(

2

1

)(11

)()1(

2

1

)(11

1)(11

2

1

(

1)(

2

1
)(


































p

p

pp

p

p

p
p

p

p

p

pv

















Which proves the corollary.

Analysis of the algorithm

The outline of the analysis of the algorithm is as follows.

1. Outer iteration estimates:

 Estimate of the increase of the barrier function after the µ update

2. Inner iteration estimates:

 Estimator for default step size

 Estimate of the decrease of the barrier function during the inner iteration with the

default step size

35

 Outer Iteration Estimates

At the start of each outer iteration of the algorithm, just before the update of the

parameter µ with the factor 1 , we have  )(. Since the µ vector is updated to

)1( , with 10   , the vector  is updated to







1
, which in general leads

to an increase in the value of)( . Then, during the subsequent inner iterations,)(

decreases until it passes the threshold τ again. During the course of the algorithm the largest

values of)( occur just after the updates of µ. That is why we need to derive an estimate

for the effect of a µ-update on the value of)( .

Theorem 3.2 Let),1[),0[:  as defined in Lemma 3.7. Then for any positive vector

 and any 1 the following inequality holds:















 

n
n

)(
)(

 .

The proof is beyond the scope of this thesis and can be found in [Peng, J., et. al., 2002].

Corollary 3.2 Let 10  and






1

. If     , then

2

1
12

)(

1
)(





























































  






 nnqpn

n . (3-8)

36

Proof: With 1 and 1)(  the first inequality follows from Theorem 3.2. The second

inequality follows by using Lemma 3.2 and
q

qp 
)1('' .

The following upper bounds on the value of)( after the µ-update follow immediately

;1,
)1(

2
1

:)(

2

1 































 q
nnn

nL




 (3-9)

and

.2,
1

2
1

:)(
2

2

2

2

2 pq
nnnnn

nL 
























 



 (3-10)

Default Step-size

In this subsection, we will determine a default step size which not only keeps the

iterations feasible but also gives rise to sufficiently large decrease of)( in each inner

iteration. During an inner iteration, the parameter µ is fixed. After the step in the direction

 syx  ,, with step size α, the new iterate is

yyyxssxxx    ,, (3-11)

And a new  -vector is given by

37


 

 
sx

. (3-12)

Since

2

),(

),(





















 






 









 






 







xs

du
sd

es
s

s
ess

du
xd

ex
x

x
exx

s
s

x
x

we obtain

  sx dd   .

Next, we consider the decrease in  as a function of  . We define two functions

       f , (3-13)

and

           dsdf
2

1
:1 . (3-14)

Lemma 3.1 implies that

          sxsx dddd    2

1
.

The above inequality shows that)(1 f is an upper bound of)(f . Obviously,

0)0()0(1  ff . Taking the derivative with respect to  , we get

38

    



n

i
sisiixixii ddddf

1
1 ''

2

1
)('  .

From the above equation and using that)( sx dd we obtain

2
1)(2)()(

2

1
)()(

2

1
)0('  vvddvf T

sx
T . (3-15)

Differentiating once again, we get

      0''''
2

1
)('' 22

1
1  


sixi

ddddf sii

n

i
xii  , unless 0 sx dd .

(3-16)

It is worthwhile to point out that during an inner iteration sandx are not both at the  center

since 0)( v , so we may conclude that)(1 f is strictly convex in  .

Lemma 3.8 The following inequality holds:

  2''2)('' min
2

1 f . (3-17)

Proof: Since sx dd  , and   sx dd it is easy to see that   .2||,|| sx dd where

)(
2

1
|   Therefore, we have 2|||| xd and .2|||| sd Hence,

,2min  aad xi  ,2min  aad si  .1 ni 

Using (3-16) and definition of  , we get

   



n

i
sixi addaaf

1
min

"222
min

"
1)2(22"

2

1
)( .

39

This proves the lemma.

Lemma 3.9 If the step-size  satisfies

   2)('2' minmin  , (3-18)

then 0)('1 f .

Proof: Using the Lemma 3.8,(3-15) and (3-17), we write:

 
  

.022

)2(2

2)2(2

)2(22

)()0()(

22

min
'

min
'2

minmin
"2

min
"22

"
1

'
1

'
1


























d

d

dffaf

a

o

a

o

a

o

This proves the lemma.

Lemma 3.10 The largest possible value of the step-size satisfying the condition of Lemma

3.9 is given by

 )2()(
2

1
: 


 


(3-19)

Proof: We want  such that (3-18) holds with  as large as possible. Let us denote min as

.1 Since  t'' is decreasing the derivative with respect to .1 of the expression which is to

the left side of the inequality (3-18) (i.e.    )2 1
''

1
''   is negative. Hence, fixing  ,

the smaller 1 is, the smaller  will be. We have

40

     .
2

1
||

2

1
||||

2

1
1

'
1

'  

Equality holds if and only if .1 is the only coordinate in that differs from 1 and 11  (in

case   01
' ). Hence the worst situation for the step size occurs when 1 satisfies

  .
2

1
1

'   (3-20)

The derivative with respect to  of the expression that is the left side of the inequality (3-18)

equals   022 1
''   and hence this expression is increasing in  Thus, the largest

possible value of  satisfying (3-18), satisfies

  .22
2

1
1

'   (3-21)

Due to the definition of  , (3-20) and (3-21) can be written as

)2(2),(11   .

This implies

))2()((
2

1
))2((

2

1
1 





 

and the lemma is proved.

Lemma 3.11 Let  be defined by (3-19) . The following inequality holds:

  


2''

1
 . (3-22)

41

Proof: By definition of  ,

    2' 

Taking the derivative with respect to  , we find

     2'"  

which leads to

     0
''

2
' 


 . (3-23)

Hence,  is monotonically decreasing. An immediate consequence of (3-19)) is

     






 








2

2

'

''

1

2

1 d
d (3-24)

where we also used (3-23). To obtain a lower bound for , we want to replace the argument

of the last integral by its minimal value. We would like to know when    " is a maximal

for  .2,   . We know that " is monotonically decreasing. Thus    " is maximal for

  2, when   is minimal. Since  is monotonically decreasing this occurs when

 2 . Therefore

         ,2"

1

2

1

''

1
"

2














 
d

and the lemma is proved.

42

Theorem 3.3 We have
q

q

qp





1

)41)((

1
:~



 (3-25)

Proof: Using Lemma 3.11, and the fact that)('' t is monotonically decreasing for

),0(t we have






 ~

)41)((

1

)41()41(

1

))2((''

1
111








 
q

q

q

q

q

q

qpqp
p

and the theorem is proved.

Thus, we can define the following default step-size

q

q

qp
1

)41)((

1
:~









 , (3-26)

Inner Iteration Estimates

Using the lower bound on the step size obtained in (3-25), we can obtain results on the

decrease of the barrier function during inner iteration.

Lemma 3.12 If the step size is such that   , then 2)( f . (3-27)

Proof: Let the univariate function h be such that

  0)0(0 1  fh , 2'
1 2)0('  fh ,   aah 2"2)(min

2'' 

43

According to (3-17) we have     "" hf  and that implies     '' hf  and     hf  .

Taking  ~ , with ~ defined in (3-26)), we have

         0'2'22"22' minmin
2

0

min
22   


dh .

Since  t''' decreasing in)(, '' ht is increasing  . Using Lemma 3.13 below, we get:

2'
1)0(

2

1
)()( ahahaf

.

As we mentioned before,  1f is an upper bound of  af , hence, the lemma is proved.

Theorem 3.4 The following inequality holds:

)1(

)1(

)(
)(60

1
)~(






 pq

qp

qp
f  . (3-28)

Poof: According to Lemma 3.12, if the step-size is such that   , then 2)( f . By

(3-25) the default step-size ~ satisfies  ~ , hence, the following upper bound for)(f is

obtained 2~)~( f . Using Corollary 3.2 and the fact that)~(f is monotonically

decreasing in  , we obtain

)~(f
q

q

qp
1

2

)41)((










44

q

q

p

p

p

p

qp

1

1

1

2

)(
3

2
1)(36

)(

























)1(

)1(

)(
)(60

1 





 pq

qp

qp


Thus, the proof is complete.

Estimate of the total number of iterations

As we’ve already mentioned, there are two types of algorithms.

 The Short-step Algorithms, where the barrier update parameter θ depends on the size of

the problem; that is, 









n
O

1 .

 The Long-step Algorithms, where the barrier update parameter θ is fixed; that is,

)1,0( .

We will give the estimate of the total number of iterations needed for both types of algorithms.

We will need following technical results. The proofs can be found in (Peng, J., et. al., 2002)]

Lemma 3.13 If]1,0[ and 1t then tt   1)1(.

45

Lemma 3.14 Let)(th be twice differentiable convex function with ,0)0(',0)0( hh and

let)(th attain its (global) minimum at .0* t . If)('' th is monotonically increasing for

*},0{ tt then *0,
2

)0('
)(tt

th
th  .

Lemma 3.15 Let kttt ,..., 10 be a sequence of positive numbers such that

1...1,0,1
1  
 Kktt kkk

 where 













0.100

t
KThenand .

Long-step Algorithms

Lemma 3.16 The total number of outer iterations in both cases is the same.


n

log
1

(3-29)

Proof: The number of outer iterations is the number of iterations K necessary to obtain

 n . Previous and new  are related as follows )1(:  . Thus,  n can be

written as
n

K  )1(0 . We can assume that 10  and by taking the logarithm of both

sides of the inequality we obtain
n

K
 log)1log( . Using the Taylor theorem for

)1log( we obtain

n

K log
1

 proving the lemma.

Now we need to estimate the upper bound on the total number of inner iterations per one outer

iteration for the large-step methods. That number is equal to the number of iterations

necessary to return to the situation  )(. We denote the value of   after the  update

46

as 0 . The subsequent values in the same outer iteration are denoted as Kkk ,,2,1, 

where K denotes the total number of inner iterations in the outer iteration. By using (3-9), we

have

.
1

2
1

2

0
































nnn

n





Since  
1

11







p

t
t

p

 when 1t and  

2

1

)1(1
p

, after some elementary reductions, we

obtain:

 

2

1

2

0

)1)(1(

2
)1(1














p

p

nn
pnpn




. (3-30)

Now Theorem 3.4 leads to

  1,....,.1,0,1
1  
 Kkkkk

 , (3-31)

where  qp 


60

1 and
).1(




pq

qp . Using Lemma 3.15 and (3-30) and (3-31) we obtain

the following upper bound on the number K of inner iterations.

47

)1(

2

1

2

)1(
0

)1)(1(

2
)1()1(

)1(60))(1(60








































pq

qp

p
pq

qp

p

nn
pnpn

pqpqK




(3-

32)

Now we can derive an upper bound on the total number iterations needed by the large-update

version of the Generic IPM in Figure 2.1. According to Lemma 3.16 the number of outer

iterations is bounded above by


n

log
1

By multiplying the number of outer iterations and the number of inner iterations obtained in

(3-32) in the lemma above we get an upper bound for the total number of iterations







n

p

nn
pnpn

pq

pq

qp

p
log

)1)(1(

2
)1()1(

)1(60

)1(

2

1

2 



































.

For large update methods we know that),1( and)(nO . After some elementary

transformations the iteration bound reduces to the following bound















n

nqO qpq

qp

log)((3-33)

This result is summarized in the theorem below

48

Theorem 3.5: Given that  1 and  nO which are characteristics of the large-update

methods the Generic IPM described in the Figure 2.1 will obtain  - appropriate solutions of

(P) and (D) in at most 













n

nqO qpq

qp

log)(iterations.

The obtained complexity result contains several previously known complexity results as

special cases.

1. When 1p and 1q , the kernel function)(t becomes the prototype self-regular

function. If in addition, nq log the iteration bound reduces to the best known bound for

self-regular function, which is 








n

nnO loglog .

2. Letting 1p and 1q , the iteration bound becomes 








n

nO log and)(t represents

the classical logarithmic kernel function.

3. For 2q and 0p ,)(t represents the simple kernel function 2
1

)(
t

tt which

is not self-regular. The iteration bound is the same as the one obtained for the logarithmic

kernel function.

Short-Step Algorithms

To get the best possible bound for short-step methods we need to use the bound described in

(3-10).

49

 

2

2

2

2

2

2

2

2

2

0 1
1

2
1

21

2
1






























































 nnnnnnqpnnnnn
n

Using 


 



11

11 the above inequality can be simplified to

2

2

22

0

2

)1(2 




















nnn

n
qp 


(3-34)

Following the same line of arguments as in the above subsection 3.3.1 we conclude that the

total number K of inner iterations is bounded above by

)1(

)(2

2

22
)1(

0

2

)1(
))(1(60




























pq

qp

pq

qp

nnn
n

qp
pqK




(3-35)

Given the upper bound on the number of the outer iterations as mentioned in the previous

subsection 3.3.1 the upper bound on the total number of iterations is

.log
2

)1(

)(60
)1(

)(2

2

22





n

nnn
n

qpq
pq

qp






















(3-36)

50

For small update methods it is well known that 









n

1 and)1(O . After some

elementary reductions one easily obtains that the iteration bound is 








n

nqO log2 . We

summarize this result in the theorem below.

Theorem 3.6: Given that 









n

1 and  1O which are characteristics of the small

update methods the Generic IPM described in the Figure 2.1 we will obtain  - appropriate

solutions of (P) and (D) in at most 








n

nqO log2 iterations.

51

CHAPTER 4

ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNEL FUNCTIONS

Summary of the algorithm analysis

Looking carefully at the analysis of the Generic IPM described in Chapter 3 the

procedure can be summarized in the following way.

Step 0: Input a kernel function  ; an update parameter 10,  ; a threshold

parameter  ; and an accuracy parameter  .

Step 1: Solve the equation s '
2

1 to get)(s the inverse function of

]1,0(,)('
2

1
 tt . If the equation is hard to solve, derive a lower bound for)(s .

Step 2: Calculate the decrease of)(t in terms of  for the default step-size ~ from

  


2''
)~(

2

f .

Step 3: Solve the equation st )( to get)(s , the inverse function of 1),(tt . If the

equation is hard to solve, derive lower and upper bounds for)(s .

Step 4: Derive a lower bound for  in terms of)( by using        '
2

1
v .

Step 5: Using the results of Step 3 and Step 4 find a valid inequality of the form

  1)()~(f for some positive constants  and]1,0( .

52

Step 6: Calculate the upper bound of 0 from

2

0 1
1

)1("
21

),,(






































































nnn
nnL .

Step 7: Derive an upper bound for the total number of iterations from



 n
log0

.

Step 8: Set)1()(  andnO so as to calculate complexity bound for large-update

methods, or set)1(O and 









n

1 so as to calculate the complexity bound

for small update methods.

Additional Kernel Functions

We will consider the following additional kernel functions.

.1),1(
1

)1(

1

2

1
)(

12

1 












qt
q

q

qq

tt
t

q



(4-1)

e

eet
t

t 





1
2

2 2

1
)( (4-2)

53

  de
t

t
t








1

1
12

3 2

1
)((4-3)

The growth term in all of them is the same
2

1
)(

2 


t
tg while the barrier term varies

)(tb . The reason for considering this growth term is that according to the analysis above it

seems to give the best complexity results and, thus, will give a more consistent view of the

complexity analysis.

The following lemmas are useful for the above kernel functions. They are variations of

the similar lemmas in the previous chapter and actually they are also valid for the class of

kernel functions (3-1) used in that chapter. Their main purpose is to help facilitate the

summary analysis described in the previous subsection.

Lemma 4.1 When)()(tt i  for 31  i , then sss 21)(21   .

Proof: The inverse function of)(t for),1[t is obtained by solving for t from the

equation st )( , for 1t . In almost all cases it is hard to solve this equation explicitly.

However, we can easily find a lower and an upper bound for t and this suffices for our goal.

First one has

2

1
)(

2

1
)(

22 





t
t

t
ts b ,

where)(tb denotes the barrier term. The inequality is due to the fact that 0)1(b and

)(tb is monotonically decreasing. It follows that

54

sst 21)( 

For the second inequality we use the fact that 1)('' ti for 31  i . Note that)(ti are

nonnegative strictly convex functions such that 0)1(i . This implies that)(ti is twice

differentiable and therefore is completely determined by its second derivative




ddt
t

ii  
1 1

)('')((4-4)

Thus

2

1 11 1

)1(
2

1
)('')(    tddddts

tt

ii





which implies

sst 21)(  .

This completes the proof.

Lemma 4.2 Let 31  i . Then one has    

 




1

2

2

)1("
,,

2
n

nL . Hence, if

)1(O and  )1(",
1

0  Othen
n









 .

Prof: By Lemma 4.1 we have ss 21)( . Hence, by using Theorem 3.2 and first

inequality in (3-8) we have

55

 






























































1

2
1

1
,,0

nn
n

nnL (4-5)

By using Taylor theorem and the fact that 0)1(')1( we obtain

32)1)(("
!3

1
)1)(1("

2

1
)(  tt

Given the fact that 0)('''  we obtain for 1t and t 1

2)1)(1("
2

1
)( tt  (4-6)

Applying (4-6) to (4-5)with









1

2
1

nt we obtain

 
































































1

2

2

)1("

1

2

2

)1("
1

1

2
1

2

)1("
2

22

0

nnnnn

where we also used the fact that 


 



11

11 . This proves the lemma.

Lemma 4.3 Let]1,0(),0[:  be the inverse function of the restriction of)(' tb to the

interval]1,0(where)(tb is the barrier term in the kernel functions 31),( iti . Then

).21()(ss 

56

Proof: Let).(st  Due to the definition of  as the inverse function of

1)('
2

1
 tfort this means that

1),(')('2  tttts b .

Since 1t this implies

ssttb 212)(' 

Since)(' tb is monotonically decreasing in all three cases, it follows that

)21()(sst   ,

proving the lemma.

Analysis of the Generic IPM with Additional Kernel Functions

In this subsection we will provide the analysis of the Generic IPM using additional kernel

functions stated in the subsection. We will follow the steps described earlier.

Example

Consider the function

.1),1(
1

)1(

1

2

1
)()(

12

1 












qt
q

q

qq

tt
tt

q



Step 1: The inverse function of
q

qt
tb

1
1)('


 is given by

qsq

s
1

))1(1(

1
)(



 .

57

Hence, by Lemma 6.3,
qqs

s
1

)21(

1
)(



 .

Step 2: It follows that

qq

q

q

f 1

)41(1)2(

1
1))2((''

)(
2

1

22










 








 . (4-7)

Step 3: By Lemma 6.1 the inverse function of),1[)(tfort satisfies

sss 21)(21  

Omitting the argument  , we therefore have

 21))(( .

Step 4: Now using the fact that)))((('
2

1
)(  , and assuming 1  , we obtain

 















211

121
2

1

)21(

1
1

1
121(

2

1
qq

 . (4-8)

Step 5: Combining (4-7) and (4-8) after some elementary reductions, we obtain

q

q

q

q

q

f 2

12

53

1

)41(1

)~(1







 



 . (4-9)

Thus, it follows that

  1,...,1,0,1
1  
 Kkkkk



58

with
q53

1
 and

q

q

2

1
 , and K denotes the number of inner iterations. Hence, by Lemma

3.15 the number K of inner iterations is bounded above by

q

q

q
q

q

k
K

2

1

00

2
0 106

1

106











. (4-10)

Step 6: To estimate 0 we use Lemma 6.2, with .2)1("  Thus, we obtain

 







1

2
2

0

n
.

Step 7: Thus, using Lemma 3.16 the total number of iterations is bounded above by

 





nnqnK q

q

log
1

2106
log

2

1
2




















 . (4-11)

Step8: For large update methods (with)1()(  andnO) the right hand side expression

becomes










 


n

qnO q

q

log2

1

. (4-12)

For small update methods (with)1(O and 









n

1) the right hand side expression

becomes










n

nqO log . (4-13)

59

Example

Consider the kernel function

e

eet
tt

t 





1
2

2 2

1
)()( .

Step 1: The inverse function of
2

1

1
)('

t

e
t

t

b


 is such that 1,

1
)(

2

1




 ts
t

e
ts

t

 . It

follows that sst
t

e t


 2
2

1

1
whence we obtain

s
ts

log1

1
)(


 . Hence, by Lemma4.3,

)21()(ss  .

Step 2: Since)(" t is monotonically decreasing we have

 )41(''))2((''
)~(

22







q
f


 .

Now putting)41( qt  we have 1t and we may write

2

2

2

2

1
1

4

2

1
1

4

22

15
1

)41(3
13

1
21

1
)("

)(

tt
e

t
e

t

tt
f

tt

























.

Since
 

2
22

))41(log1(
)41(

11 






t

we finally get

2

2

))41(log1(151
)(





f . (4-14)

60

Step 3: By Lemma 6.1 the inverse function of)(t for),1[t satisfies

sss 21)(21   . Omitting the argument  , we thus have     21 .

Step 4: Now using that     ('
2

1
)(, we obtain

 



























211
121

2

1

21
21

2

1
1

21

1

e . (4-15)

Step 5: Substitution of ((4-15) into the (4-14) gives, after some elementary reductions, while

assuming 10  

2
0

2

1

2

2

1

))21(log1(44))21(log1(44
)(








f .

Thus, it follows that

  1,...,1,0,1
1  
 Kkkkk



with
2

0))21(log1(44

1


 and

2

1
 , and K denotes the number of inner iterations.

Hence, by Lemma 3.15 the number K of inner iterations is bounded above by

2

1

0
2

0
0))21(log1(88 




k
K .

Step 6: We use Lemma 4.2 with ,4)1("  to estimate 0 .

61

 







1

2
2

2

0

n
. (4-16)

Substitution of (4-16) in the expression for K gives

































1

2

1

2
21log1288

2

nn
K . (4-17)

Step 7: Thus the total number of iterations is bounded above by








nnnnK

log
1

2

1

2
21log1288log

2


























 . (4-18)

Step 8: For large update methods, when)1()(  andnO the right hand side expression

(4-18) becomes

  








n

nnO loglog 2 . (4-19)

For small update methods, when)1(O and 









n

1 , the right hand side expression

(4-18) becomes










n

nO log (4-20)

Example

Consider the kernel function

62

  de
t

tt
t








1

1
12

3 2

1
)()(.

Step 1: The inverse function of
1

1

)('


  etb is given by
s

s
log1

1
)(


 . Hence, by Lemma

6.3,

)21(log1

1
)(

s
s


 .

Step 2: It follows that

2

2

1

1
)2(

1

22

))41log(1)(41(1

)2(
1

))2((''
)(





















 q
e

f

q

.

(4-21)

Step 3: By Lemma 4.1 the inverse function of)(t for),1[t satisfies

sss 21)(21   .

Thus we have, omitting the argument  ,

    21 .

Step 4: Now using that      '
2

1
we obtain

 



















211
121

2

1
21

2

1 1
21

1

e . (4-22)

63

Step 5: Substitution of (4-22) into the (4-21) gives, after some elementary reductions, while

assuming 10  

2
0

2

1

2

2

1

))1(log1(21))1(log1(21
)(








f .

Thus, it follows that

  1,...,1,0,1
1  
 Kkkkk



with
2

0))21(log1(21

1


 and

2

1
 , and K denotes the number of inner iterations.

Hence, by Lemma 3.15 the number K of inner iterations is bounded above by

2

1

0
2

0
0))21(log1(42 




k
K . (4-23)

We use Lemma 4.2, with 2)1("  to estimate 0 . This gives

 







1

2
2

0

n
. (4-24)

Substitution of (4-24) into (4-24) leads to the following estimate for number K of inner

iterations

































1

2

1

2
1log142

2

nn
K . (4-25)

Step 7: By Lemma 3.16 the total number of iterations is bounded above by

64








nnnnK

log
1

2

1

2
1log142log

2


























 (4-26)

Step 8: For large-update methods when)1()(  andnO the right hand side expression

(4-26) becomes

  








n

nnO loglog 2 . (4-27)

For small update methods, when)1(O and 









n

1 , the right hand side expression

(4-26) becomes










n

nO log . (4-28)

Summary of complexity results

The complexity results for Generic IPM with kernel functions defined in (3-1) and in (4-1)-(4-

3) are summarized in the Table for large-step methods and in the table for small-step methods.

For the class of kernel functions (3-1) we consider three special cases,

 the logarithmic kernel function: t
t

t log
2

1
)(

2






 the classical self-regular function when 1p :
1

1

2

1
)(

12










q

tt
t

q



65

 the linear non-self-regular function when 0p :
1

1
1)(

1







q

t
tt

q



Complexity of large-update methods

The complexity results for large-step methods are summarized below. They are obtained by

taking into the account that)1()(  andnO .

Complexity results for long-step methods

i Kernel Function)(ti Iteration Bound

1
t

t
log

2

12





n

nO log)(

2

1

1

2

1 12





 

q

tt q


n

qnO q

q

log)(2

1

3

1

1
1

1







q

t
t

q


n

qnO log)(

4

   1
1

1

1

2

1 12









 

t
q

q

qq

tt q


n

qnO q

q

log)(2

1

5

e

eet t 



1

2

2

1 
n

nnO log)log(2

6
 de

t t







1

1
12

2

1

n

nnO log)log(2

Table 2

Notice that the best bound is obtained in case of 3 and 4 by taking nq log
2

1
 which gives the

iteration bound of

66










n

nnO loglog , (4-29)

which is currently the best known bound for large-update methods.

Complexity of small update methods

The complexity results for small-update methods are summarized below. They are obtained by

taking into the account that 









n

1 and  1O .

Complexity results for short-step methods

i Kernel Function)(ti Iteration Bound

1
t

t
log

2

12





n

nO log)(

2

1

1

2

1 12





 

q

tt q


n

nqO log)(2

3

1
1

11






q

t
t

q


n

nqO log)(2

4

   1
1

1

1

2

1 12









 

t
q

q

qq

tt q


n

nqO log)(

5

e

eet t 



1

2

2

1 
n

nqO log)(

6
 de

t t







1

1
12

2

1

n

nqO log)(

Table 3

67

The above table shows that the small-update methods based on listed kernel functions all have

the same complexity, namely

.log 








n

nO (4-30)

This is up till now the best iteration bound for IPMs solving LP problems.

Historically most of the IPMs were based on the logarithmic kernel function. Notice that

the gap between theoretical complexity of short-step methods and large-step methods is

significant; the short step methods have much better theoretical complexity. However, in

practical implementations large-step methods work better. This discrepancy was one of the

motivations to consider other kernel functions in hopes to find the kernel function which

would not have a gap or the gap would be smaller. As we can see, this goal has been

achieved; for cases 2 and 4 the gap is much smaller because for these kernel functions large

step method has much better complexity than for the classical logarithmic kernel function.

This is one of the main achievements of considering different classes of kernel functions.

68

CHAPTER 5

NUMERICAL RESULTS

The Generic IPM described in the Figure 1 was implemented in MATLAB 7.6.0 with

the class of kernel functions described by formula (3-1)

 

 


























1,0,0,log
1

1

1,1,0,0,
1

1

1

1

)(
1

11

,

ptt
p

t

qpt
q

t

p

t

t
p

qp

qp

This imply that there are two implementations of the algorithm, one for the classical

logarithmic kernel function

t
t

t log
2

1
)(

2




 (5-1)

and one for the kernel function with parameters p and q

  1,1,0,0,
1

1

1

1
)(

11

, 










qpt
q

t

p

t
t

qp

qp (5-2)

We call the first implementation “Classical Method” and the second implementation “New

Method”. Both codes are listed in the Appendix A.

The algorithm was tested on several examples with different sizes ranging from very

small to moderate size problems. The data was entered in some cases “by hand” and for the

others they were generated randomly.

Example: Consider the following simple LP model.

69

.0,0

3..

22max

21

21

21






xx

xxts

xx

It is easy to see that this problem has infinitely many optimal solutions, they are all the points

on the segment  )1,0();0,1(and the optimal value is 6Z . The problem was solved by New

Method with 2.1,8.0  qp with accuracy parameter 001.0 . It took unusually many

iterations (57), however algorithm steadily converged to the expected result

)5,1,5.1(),(21 xx .

Numerical results for Example

x y s

1 1 1 0 1 1 1

1.383 1.383 0.234

-
0.823

4 0.1 0.1
1.248

9

1.488
3

1.488
3

0.023
4

-
1.602

3
0.065

6
0.065

6
1.756

7

.... …. ….. ……. …… ……
……

…

1.499
9

1.499
9

0.000
2

-
2.000

2
0.000

2
0.000

2
2.000

2

Table 4

Objective function value Z = -5.9997

70

This example also illustrates an important feature of the interior-point methods that distinguish

them from simplex-type methods; that in the case of infinitely many optimal solutions they

converge to the center of the optimal set rather than to the vertex. The graphical illustration of

the above example with several first iterations is given below.

IPM Based on generic kernel function

Figure 3

Next, the algorithm was examined on the set of 200 randomly generated “small”
problems for with sizes less than 10. The average number of iteration and CPU time is given
in the table below.

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

24.6 0.0362 40.7 0.0448

Numerical results for randomly generated “small problems” with dimension less than 10
Table 5

71

Next, the algorithm was examined on the set of 200 randomly generated “moderate

size” problems of the size 200x300. The average number of iteration and CPU time is given in

the table below.

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

35.81 2.6626 40 2.8812

Numerical results for randomly generated problems with dimension 200x300

Table 6

The algorithm was then applied to the randomly generated problems of the bigger size

400x700. The result is given in the table below

Classical method New method

Average Number

Of Iterations Time

Average Number

Of Iterations Time

57 35.8048 41 25.4030

Numerical results for randomly generated problem with dimension 400x700

Table 7

Results summarized in tables seem to suggest that Classical Methods works slightly better for

the problems of the smaller size while, as the dimension of the problem increases, the New

Method becomes better. Another feature of the IPM is also visible from these examples and

72

that is that the number of iterations does not increase significantly with the increase in the size

of the problem.

In the sequel the New Method was examined on the set of 200 randomly generated “small”

problems with sizes less than 10 and for different values of parameters p and q. The results

are given in the Table below.

Table 8: More Numerical Results

Next, the New Method was examined on the set of 20 randomly generated problems of

the size 200x300 and for different values of parameters p and q. The results are given in the

Table below.

Table 9: More Numerical Results

73

The table seems to suggest that for the problems of the smaller size the New Method works

the best when 1.1,9.0  qp , which is in line with theoretical expectation . However, for

the problems of the higher dimension it is hard to make conclusion which combination of

parameters works the best. Theory suggests that nqp log,1  where n is the number of

variables gives the best complexity. However for the particular set of problems in the previous

table, it seems that combination 3.1,7.0  qp works the best .

Better implementation and more testing is necessary for more definite conclusions.

However, that was not the intention of the thesis. The goal was to make the basic

implementations that ilustrates theoretical concepts discussed in the thesis. Even on this basic

level the implementation of the New Method shows the potential to work well. Of coure, with

more sophisticated implementation the performance can be further improved.

74

CHAPTER 6

CONCLUSION

In this thesis the Interior – Point Method (IPM) for Linear Programming problem (LP)

that is based on the generic kernel function is considered. The algorithm is described in

Chapter 2.

In Chapter 3 the complexity (in terms of iteration bounds) of the algorithm is analyzed

for a class of kernel functions defined by (3-1). This class is fairly general; it includes classical

logarithmic kernel function, prototype self-regular kernel function as well as non-self-regular

functions, thus it serves as a unifying frame for the analysis of IPMs. Two versions of the

IPMs are considered, the short-step algorithms where barrier parameter  depends on the size

of the problem and long-step algorithms where barrier parameter is a fixed constant)1,0( .

Historically most of the IPMs were based on the logarithmic kernel function. Notice

that the gap between theoretical complexity of short-step methods and large-step methods is

significant; the short step methods have much better theoretical complexity. However, in

practical implementations large-step methods work better. This discrepancy was one of the

motivations to consider other kernel functions in hopes to find the kernel function which

would not have a gap or the gap would be smaller. As we can see this goal has been achieved;

for kernel functions 2 and 4, the gap is much smaller than for the classical logarithmic kernel

function. In addition, the complexity results that are obtained match the best known

complexity results for these methods. This chapter is mostly based on the paper (Bai, Y., et al.,

2008) with the addition of most of the proofs that were omitted in the paper.

75

The main contribution of the thesis is contained in Chapter 4. The detailed complexity

analysis of the IPM that was provided in Chapter3 for kernel function (3-1) is summarized and

the analysis of the algorithm was performed for three additional kernel functions (4-1) – (4-3).

For one of them we again matched the best known complexity results for the large-step

methods and for the other two the complexity is slightly weaker, however still significantly

improved in comparison with classical logarithmic kernel function.

The IPM that is theoretically analyzed in Chapter 3 is implemented in Chapter 5 for the

classical logarithmic kernel function (Classical Method) and for the parametric kernel function

(New Method) both described in (3-1). Although the implementation is on the basic level, it

shows potential for a good performance of IPM based on kernel function different than

classical logarithmic kernel function on which most of the commercial codes are based. The

preliminary calculations seem to indicate that IPM with classical kernel logarithmic function

perform better on problems of the smaller size while for larger problems the New Methods

seems to work slightly better. Also, based on the preliminary numerical tests it is hard to make

conclusion which combination of parameters p and q in (3-1) works the best. Better

implementation and more numerical testing would be necessary to draw more definite

conclusions.

However, that was not the goal of the thesis, the goal was to show that IPM with kernel

functions different than classical logarithmic kernel function can have best known theoretical

complexity and to show that they have potential for practical implementations.

76

REFERENCES

[1] Y.Q Bai, C.Roos. A polynomial-time algorithm for linear optimization based on a new

simple kernel function. Optimization Methods Software, 18 (6):631-646, 2003.

[2] Y. Bai, G. Lesaja, C. Roos, G. Wang, M. El Ghami. A Class of Large and Small Update

Primal – Dual Interior-Point Algorithms for Linear Optimization. Journal of Optimization

Theory and Applications, Volume 138, No. 3, 341-359, 2008.

[3] G. Lesaja. Introducing Interior-Point Methods for Introductionary Operations Research

Courses and/or Linear Programming Courses, Open Operational Research Journal, accepted,

2008.

[4] F. Hillier and G. Lieberman. Introduction to Operations Research. Seventh Edition.

McGraw Hill Publishing, 2001.

[5] J. Peng, C.Roos, and T. Telarky. Self- regularity: A New Paradigm for Primal-Dual

Interior Point Algorithms. Princeton University Press, 2002.

[6] C. Roos, T. Telarky, and J.-Ph.Vial. Theory and Algorithms for Linear Optimization. An

Interior-Point Approach. John Wiley &Sons, Chichester, UK, 1997.

[7] S. Wright. Primal-Dual Interior Point Methods. SIAM Publishing, 1997.

[7] Y. Bai, M. El ghami, and C. Roos. A Comparative Study of New Barrier Functions for

Primal – Dual Interior – Point Algorithms in Linear Optimization.

77

APPENDICES

APPENDIX A

MatLab codes for the Classical Method

function [i,xx,yy,ss,z,d]=IpmClassical(A, b, c, epsilon)
%
% input tau, epsilon, theta
%
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.

 [m,n]=size(A);
 x=1*ones(n,1); s=1*ones(n,1); y=zeros(m,1); mu=x'*s/n;
 rd=c-A'*y-s;
 rp=b-A*x;

 i=1;
 xx(i,:)=x;
 yy(i,:)=y;
 ss(i,:)=s;

 while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
 i=i+1;
 [dx,ds,dy]=SolvesystemClassical(A,b,c,x,y,s,mu);
 inds=find(ds<0);indx=find(dx<0);
 alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
 x=x+alpha*dx;
 y=y+alpha*dy;
 s=s+alpha*ds;
 mu=min(x'*s/n,0.9*mu);
 rd=c-A'*y-s;
 rp=b-A*x;

 xx(i,:)=x;
 yy(i,:)=y;
 ss(i,:)=s;
 d(i,:)=dx';
 if i>200 || alpha<1e-11
 i;
 break;
 end
 end
 z=x'*c;
 %[i,z]
end

78

function [dx,ds,dy]=SolvesystemClassical(A,b,c,x,y,s,mu)
% This function solves the following system
% A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
%
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;

 gama=.1;
 X=diag(x);
 S=diag(s);
 S_inv=diag(1./s);
 rd=c-A'*y-s;
 rp=b-A*x;

 M=A*S_inv*X*A';
 r=b+A*S_inv*(X*rd-gama*mu*ones(size(A,2),1));

 dy=M\r;
 ds=rd-A'*dy;
 dx=-x+S_inv*(gama*mu*ones(size(A,2),1)-X*ds);

end

MatLab codes for the New Method

function [i,xx,yy,ss,z,d]=IpmNew(A, b, c, epsilon)
%
%
% input tau, epsilon, theta
% v>0, 0<=p<=1, q>1, tau>1
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.

p=1-0.2;
q=1+0.2;
theta=0.1;
%tau=1.5;
 [m,n]=size(A);
 x=ones(n,1); s=ones(n,1); y=zeros(m,1); mu=x'*s/n;
 rd=c-A'*y-s;
 rp=b-A*x;
 i=1;
 xx(i,:)=x;
 yy(i,:)=y;
 ss(i,:)=s;
 while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
 i=i+1;
 v=sqrt(x.*s./mu);
 [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q);

79

 delta=1/2*sqrt(sum((v.^p-1./v.^q).^2));
 alpha=1/((p+q)*(1-4*abs(delta))^(1+1/q));
 alpha=abs(alpha);
 inds=find(ds<0);indx=find(dx<0);
 alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
 x=x+alpha*dx;
 y=y+alpha*dy;
 s=s+alpha*ds;

 rd=c-A'*y-s;
 rp=b-A*x;
 mu=(1-theta)*mu;
 xx(i,:)=x';
 yy(i,:)=y';
 ss(i,:)=s';
 d(i,:)=dx';
 if i>200 || alpha<1e-10
 i;
 break;
 end
 end
 z=x'*c;
 %[i,z]
end

function [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q)
% This function solves the following system
% A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
%
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;
gama=.1;
 X=diag(x);
 S=diag(s);
 S_inv=diag(1./s);
 rd=c-A'*y-s;
 rp=b-A*x;

 M=A*S_inv*X*A';
 r=A*S_inv*(X*rd+mu*v.*(v.^p-gama*v.^(-q)))+rp;

 dy=M\r;
 ds=rd-A'*dy;
 dx=-S_inv*(X*ds+mu*v.*(v.^p-gama*v.^(-q)));
end

Problem Generator

function R=mytest(NO,m,n)
% This function solve the random systems of dimention m*n

80

% input m,n are the dimention of A
% input NO is the number of the iterations
%
% MYTEST(); will apply both ipm methods to a random matrix with random
% dimension m*n, where m,n are positive integers less than 10
%
% MYTEST(N) will iterate ‘MYTEST()’ N times.
%
% MYTEST(N,m,n) will iterately apply the methods to N random problems
% with dimension m*n.

 if ~exist(‘NO’)
 NO=1;
 end
 m_ne=0;n_ne=0;
 if ~exist(‘m’)
 m_ne=1;
 end
 if ~exist(‘n’)
 n_ne=1;
 end

 dim=zeros(NO,2);
 k=1;
 while k<=NO
 if m_ne
 m=fix(rand(1)*10);
 end
 if n_ne
 n=fix(rand(1)*10);
 end

 A=rand(m,n);b=rand(m,1);c=rand(n,1);
 if rank(A)<min(m,n) || min(m,n)==0
 %fprintf(‘rank(A)<min(m,)’);
 if m==0 && ~m_ne
 display(‘STOP, m=0’);
 return;
 elseif n==0 && ~n_ne
 display(‘STOP, n=0’);
 return;
 end
 continue;
 end
 tic;
 [i1(k),x1,yy1,ss1,z1(k)]=IpmNew(A, b, c, 0.01);
 t1(k)=toc;
 tic;
 [i2(k),xx2,yy2,ss2,z2(k)]=IpmClassical(A, b, c, 0.01);
 t2(k)=toc;
 dim(k,1)=m;dim(k,2)=n;
 k=k+1;
 end
 R = [dim(:,1),dim(:,2),i1’,z1’,t1’,i2’,z2’,t2’];
 myfun®;
end

81

Organization of output

function myfun®

 fprintf(' New method Classical method \n');
 fprintf(' idx dim(m*n) iteration Opt time iteration Opt
time\n');
 fprintf('--
--\n');
 for k=1:size(R,1)
 fprintf(' %3d %3d%3d %3d %6.4f %4.4f %3d %6.4f
%4.4f\n', ...
 k,R(k,:));
 end
 R_ave=sum(R)/size(R,1);
 fprintf('--
--\n');
 fprintf(' New method Classical method \n');
 fprintf(' dim(m*n) iteration time iteration time\n');
 fprintf(' average %3.1f %3.1f %3.1f %4.4f %3.1f
%4.4f\n', ...
 R_ave([1,2,3,5,6,8]));
 fprintf('--
--\n');

end

82

APENDIX B

MatLab code Example 5.1

max 3 * x_1 + 5 * x_2

s.t.

 x_1 + <=4

 2 * x_2 <=12

3 * x_1 + 2 * x_2 <=18

 x_1 , x_2 >= 0

A =

 1 0 1 0 0

 0 2 0 1 0

 3 1 0 0 1

(change to min-problem)

c =

 -3

 -5

 0

 0

 0

b =

 4

 12

 18

83

>> [i,x,y,s,z]=IpmClassical(A, b, c, epsilon)

i =

 7

z =

 -41.9805

>> [i,x,y,s,z]=IpmNew(A, b, c, epsilon)

i =

 60

z =

 -41.9993

>> [i,x,y,s,z]=IpmClassical(A, b, c, epsilon)

i =

 7

x =

 1.0000 1.0000 1.0000 1.0000 1.0000

 1.4437 1.7530 0.8831 0.9645 1.0398

 2.0334 3.0422 0.7370 0.3825 0.8654

 2.9815 4.6039 0.4101 0.0542 0.4968

 3.8206 5.7689 0.0779 0.0054 0.1095

 3.9803 5.9762 0.0095 0.0020 0.0169

 3.9977 5.9975 0.0013 0.0005 0.0028

84

y =

 0 0 0

 -0.1333 -0.0519 0.0235

 -0.2783 -0.5925 -0.1361

 -0.5626 -1.3849 -0.4117

 -0.8317 -2.0210 -0.6562

 -0.9001 -2.1384 -0.6935

 -0.9363 -2.1549 -0.6873

s =

 1.0000 1.0000 1.0000 1.0000 1.0000

 0.4093 0.1000 0.9699 0.8885 0.8131

 0.1458 0.0100 0.8931 1.2073 0.7509

 0.0146 0.0068 0.8669 1.6891 0.7159

 0.0032 0.0026 0.8825 2.0717 0.7069

 0.0011 0.0007 0.9052 2.1434 0.6986

 0.0003 0.0002 0.9368 2.1554 0.6878

z =

 -41.9805

>> [i,x,y,s,z]=IpmNew(A, b, c, epsilon)

i =

 60

z =

 -41.9993

85

x =

 1.0000 1.0000 1.0000 1.0000 1.0000

 1.4437 1.7530 0.8831 0.9645 1.0398

 2.0409 3.0601 0.7365 0.3780 0.8702

 3.0192 4.6730 0.4016 0.0474 0.5044

 3.8797 5.8542 0.0624 0.0308 0.1302

 3.9559 5.9723 0.0383 0.0293 0.1223

 3.9623 5.9859 0.0372 0.0256 0.1236

 3.9669 5.9883 0.0330 0.0232 0.1105

 3.9702 5.9896 0.0297 0.0208 0.0997

 3.9732 5.9906 0.0268 0.0188 0.0897

 3.9759 5.9916 0.0241 0.0169 0.0808

 3.9783 5.9924 0.0217 0.0152 0.0727

 3.9805 5.9932 0.0195 0.0137 0.0655

 3.9824 5.9938 0.0176 0.0123 0.0589

 3.9842 5.9945 0.0158 0.0111 0.0530

 3.9857 5.9950 0.0143 0.0100 0.0478

 3.9872 5.9955 0.0128 0.0090 0.0430

 3.9884 5.9960 0.0116 0.0081 0.0387

 3.9896 5.9964 0.0104 0.0073 0.0348

 3.9906 5.9967 0.0094 0.0065 0.0314

 3.9916 5.9971 0.0084 0.0059 0.0282

 3.9924 5.9973 0.0076 0.0053 0.0254

 3.9932 5.9976 0.0068 0.0048 0.0229

 3.9939 5.9979 0.0061 0.0043 0.0206

 3.9945 5.9981 0.0055 0.0039 0.0185

 3.9950 5.9983 0.0050 0.0035 0.0167

86

 3.9955 5.9984 0.0045 0.0031 0.0150

 3.9960 5.9986 0.0040 0.0028 0.0135

 3.9964 5.9987 0.0036 0.0025 0.0122

 3.9967 5.9989 0.0033 0.0023 0.0109

 3.9971 5.9990 0.0029 0.0021 0.0098

 3.9974 5.9991 0.0026 0.0018 0.0089

 3.9976 5.9992 0.0024 0.0017 0.0080

 3.9979 5.9993 0.0021 0.0015 0.0072

 3.9981 5.9993 0.0019 0.0013 0.0065

 3.9983 5.9994 0.0017 0.0012 0.0058

 3.9984 5.9995 0.0016 0.0011 0.0052

 3.9986 5.9995 0.0014 0.0010 0.0047

 3.9987 5.9996 0.0013 0.0009 0.0042

 3.9989 5.9996 0.0011 0.0008 0.0038

 3.9990 5.9996 0.0010 0.0007 0.0034

 3.9991 5.9997 0.0009 0.0006 0.0031

 3.9992 5.9997 0.0008 0.0006 0.0028

 3.9993 5.9997 0.0007 0.0005 0.0025

 3.9993 5.9998 0.0007 0.0005 0.0023

 3.9994 5.9998 0.0006 0.0004 0.0020

 3.9995 5.9998 0.0005 0.0004 0.0018

 3.9995 5.9998 0.0005 0.0003 0.0016

 3.9996 5.9998 0.0004 0.0003 0.0015

 3.9996 5.9999 0.0004 0.0003 0.0013

 3.9996 5.9999 0.0004 0.0002 0.0012

 3.9997 5.9999 0.0003 0.0002 0.0011

 3.9997 5.9999 0.0003 0.0002 0.0010

87

 3.9997 5.9999 0.0003 0.0002 0.0009

 3.9998 5.9999 0.0002 0.0002 0.0008

 3.9998 5.9999 0.0002 0.0001 0.0007

 3.9998 5.9999 0.0002 0.0001 0.0006

 3.9998 5.9999 0.0002 0.0001 0.0006

 3.9998 5.9999 0.0002 0.0001 0.0005

 3.9999 6.0000 0.0001 0.0001 0.0005

y =

 0 0 0

 -0.1333 -0.0519 0.0235

 -0.2846 -0.6023 -0.1375

 -0.5916 -1.4288 -0.4214

 -0.9196 -2.0876 -0.6622

 -1.4299 -2.2344 -0.5248

 -1.5993 -2.2683 -0.4714

 -1.5888 -2.2669 -0.4748

 -1.5890 -2.2668 -0.4743

 -1.5884 -2.2665 -0.4741

 -1.5878 -2.2662 -0.4739

 -1.5873 -2.2660 -0.4738

 -1.5868 -2.2658 -0.4737

 -1.5864 -2.2656 -0.4735

 -1.5860 -2.2654 -0.4734

 -1.5857 -2.2652 -0.4733

 -1.5854 -2.2651 -0.4732

 -1.5851 -2.2649 -0.4732

88

 -1.5848 -2.2648 -0.4731

 -1.5846 -2.2647 -0.4730

 -1.5844 -2.2646 -0.4730

 -1.5842 -2.2645 -0.4729

 -1.5841 -2.2645 -0.4729

 -1.5839 -2.2644 -0.4728

 -1.5838 -2.2643 -0.4728

 -1.5837 -2.2643 -0.4728

 -1.5835 -2.2642 -0.4727

 -1.5834 -2.2642 -0.4727

 -1.5834 -2.2641 -0.4727

 -1.5833 -2.2641 -0.4727

 -1.5832 -2.2641 -0.4727

 -1.5831 -2.2640 -0.4726

 -1.5831 -2.2640 -0.4726

 -1.5830 -2.2640 -0.4726

 -1.5830 -2.2640 -0.4726

 -1.5830 -2.2639 -0.4726

 -1.5829 -2.2639 -0.4726

 -1.5829 -2.2639 -0.4726

 -1.5828 -2.2639 -0.4726

 -1.5828 -2.2639 -0.4725

 -1.5828 -2.2639 -0.4725

 -1.5828 -2.2639 -0.4725

 -1.5828 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

89

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5827 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

 -1.5826 -2.2638 -0.4725

s =

 1.0000 1.0000 1.0000 1.0000 1.0000

 0.4093 0.1000 0.9699 0.8885 0.8131

 0.1425 0.0100 0.8960 1.2136 0.7489

 0.0143 0.0168 0.8812 1.7184 0.7110

 0.0220 0.0112 0.9486 2.1166 0.6911

 0.0160 0.0110 1.4328 2.2373 0.5277

 0.0148 0.0097 1.5996 2.2686 0.4717

 0.0132 0.0088 1.5888 2.2669 0.4748

 0.0119 0.0079 1.5890 2.2668 0.4743

 0.0107 0.0071 1.5884 2.2665 0.4741

90

 0.0096 0.0064 1.5878 2.2662 0.4739

 0.0087 0.0057 1.5873 2.2660 0.4738

 0.0078 0.0052 1.5868 2.2658 0.4737

 0.0070 0.0047 1.5864 2.2656 0.4735

 0.0063 0.0042 1.5860 2.2654 0.4734

 0.0057 0.0038 1.5857 2.2652 0.4733

 0.0051 0.0034 1.5854 2.2651 0.4732

 0.0046 0.0031 1.5851 2.2649 0.4732

 0.0041 0.0027 1.5848 2.2648 0.4731

 0.0037 0.0025 1.5846 2.2647 0.4730

 0.0033 0.0022 1.5844 2.2646 0.4730

 0.0030 0.0020 1.5842 2.2645 0.4729

 0.0027 0.0018 1.5841 2.2645 0.4729

 0.0024 0.0016 1.5839 2.2644 0.4728

 0.0022 0.0015 1.5838 2.2643 0.4728

 0.0020 0.0013 1.5837 2.2643 0.4728

 0.0018 0.0012 1.5835 2.2642 0.4727

 0.0016 0.0011 1.5834 2.2642 0.4727

 0.0014 0.0010 1.5834 2.2641 0.4727

 0.0013 0.0009 1.5833 2.2641 0.4727

 0.0012 0.0008 1.5832 2.2641 0.4727

 0.0010 0.0007 1.5831 2.2640 0.4726

 0.0009 0.0006 1.5831 2.2640 0.4726

 0.0008 0.0006 1.5830 2.2640 0.4726

 0.0008 0.0005 1.5830 2.2640 0.4726

 0.0007 0.0005 1.5830 2.2639 0.4726

 0.0006 0.0004 1.5829 2.2639 0.4726

91

 0.0006 0.0004 1.5829 2.2639 0.4726

 0.0005 0.0003 1.5828 2.2639 0.4726

 0.0005 0.0003 1.5828 2.2639 0.4725

 0.0004 0.0003 1.5828 2.2639 0.4725

 0.0004 0.0002 1.5828 2.2639 0.4725

 0.0003 0.0002 1.5828 2.2638 0.4725

 0.0003 0.0002 1.5827 2.2638 0.4725

 0.0003 0.0002 1.5827 2.2638 0.4725

 0.0002 0.0002 1.5827 2.2638 0.4725

 0.0002 0.0001 1.5827 2.2638 0.4725

 0.0002 0.0001 1.5827 2.2638 0.4725

 0.0002 0.0001 1.5827 2.2638 0.4725

 0.0002 0.0001 1.5827 2.2638 0.4725

 0.0001 0.0001 1.5827 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0001 1.5826 2.2638 0.4725

 0.0001 0.0000 1.5826 2.2638 0.4725

 0.0001 0.0000 1.5826 2.2638 0.4725

 0.0001 0.0000 1.5826 2.2638 0.4725

z =

 -41.9993

>>

92

MatLab code for Table 5.2

random problems with random dimentions less that 10

 New method Classical method

 idx dim(m*n) iteration Opt time iteration Opt time

--

 36 6 5 12 1.4119 0.0056 13 1.4164 0.0396

 37 6 7 15 0.9627 0.0065 16 0.9627 0.0046

 38 6 8 17 0.7974 0.0072 24 0.7974 0.0073

 39 4 8 17 0.7864 0.0336 21 0.7864 0.0061

 40 8 3 15 0.4944 0.0070 38 0.3653 0.0140

 41 4 9 72 1.0654 0.0757 27 1.0668 0.0086

 42 5 8 18 0.4801 0.0076 24 0.4801 0.0072

 43 8 9 14 1.3682 0.0070 19 1.3682 0.0064

 44 2 2 13 0.7773 0.0042 14 0.7773 0.0033

 45 6 5 13 0.2225 0.0059 14 0.2229 0.0049

 46 8 6 14 1.6662 0.0068 20 1.6114 0.0268

 47 3 6 17 0.3840 0.0069 30 NaN 0.0101

 48 3 7 64 0.5853 0.0260 7 0.5886 0.0018

 49 3 3 12 0.8750 0.0044 14 0.8750 0.0038

 50 2 7 64 0.6310 0.0458 7 0.6367 0.0017

 51 7 7 12 1.7618 0.0047 13 1.7618 0.0036

 52 2 7 64 0.1590 0.0244 7 0.1647 0.0018

--

 New method Classical method

 dim(m*n) iteration time iteration time

average 4.9 5.4 40.7 0.0448 24.6 0.0362

--

93

 New method Classical method

 idx dim(m*n) iteration Opt time iteration Opt time

--

 1 9 1 45 NaN 0.0681 30 NaN 0.0326

 2 9 1 45 NaN 0.0674 45 NaN 0.7326

 3 7 7 12 3.1727 0.0053 14 3.1727 0.0042

 4 7 7 12 2.0364 0.0050 13 2.0364 0.0037

 5 5 4 14 0.7954 0.0675 16 0.7257 0.0059

 6 6 3 49 0.4286 0.0243 92 0.4560 0.1107

 7 6 1 45 NaN 0.1613 45 NaN 0.0612

 8 3 9 66 0.2055 0.0284 9 0.1994 0.0024

 9 3 1 45 NaN 0.1071 36 NaN 0.0133

 10 7 8 13 2.3593 0.0057 14 2.3593 0.0042

 11 2 7 64 0.3550 0.0246 8 0.3596 0.0019

 12 6 7 14 1.7947 0.0055 15 1.7947 0.0043

 13 2 6 62 NaN 0.0637 27 NaN 0.0096

 14 3 2 201 0.4458 0.3814 71 0.1206 0.1475

 15 7 8 14 2.3068 0.0059 16 2.3068 0.0258

 16 7 5 28 0.4972 0.0138 19 0.5465 0.0067

 17 4 9 17 1.2697 0.0076 18 1.2697 0.0053

 18 2 7 64 NaN 0.0814 17 NaN 0.0044

 19 1 4 58 0.0069 0.0650 6 0.0106 0.0015

 20 5 5 12 2.0070 0.0045 13 2.0070 0.0036

 21 1 5 60 0.0321 0.0245 6 0.0387 0.0026

 22 1 2 52 0.2947 0.0739 5 0.2976 0.0012

 23 9 6 23 0.7775 0.0118 52 0.5957 0.0617

94

 24 5 3 18 1.7080 0.0088 33 1.2630 0.0476

 25 4 3 31 0.3020 0.0528 28 0.3146 0.0426

 26 5 8 16 2.4185 0.0069 16 2.4185 0.0046

 27 4 7 16 0.2408 0.0064 20 0.2408 0.0059

 28 9 8 17 1.8185 0.0091 24 1.2417 0.0096

 29 1 2 52 0.2448 0.0208 5 0.2478 0.0012

 30 3 4 14 1.0822 0.0051 17 1.0822 0.0046

 31 4 5 14 1.4672 0.0054 16 1.4672 0.0044

 32 4 2 201 0.0760 0.3930 59 0.0470 0.1529

 33 5 8 25 0.5901 0.0115 28 0.5901 0.0087

 34 1 9 66 0.0042 0.0293 7 0.0082 0.0018

 35 3 7 15 0.8637 0.0060 201 0.2481 0.3810

 36 6 5 12 1.4119 0.0056 13 1.4164 0.0396

 37 6 7 15 0.9627 0.0065 16 0.9627 0.0046

 38 6 8 17 0.7974 0.0072 24 0.7974 0.0073

 39 4 8 17 0.7864 0.0336 21 0.7864 0.0061

 40 8 3 15 0.4944 0.0070 38 0.3653 0.0140

 41 4 9 72 1.0654 0.0757 27 1.0668 0.0086

 42 5 8 18 0.4801 0.0076 24 0.4801 0.0072

 43 8 9 14 1.3682 0.0070 19 1.3682 0.0064

 44 2 2 13 0.7773 0.0042 14 0.7773 0.0033

 45 6 5 13 0.2225 0.0059 14 0.2229 0.0049

 46 8 6 14 1.6662 0.0068 20 1.6114 0.0268

 47 3 6 17 0.3840 0.0069 30 NaN 0.0101

 48 3 7 64 0.5853 0.0260 7 0.5886 0.0018

 49 3 3 12 0.8750 0.0044 14 0.8750 0.0038

 50 2 7 64 0.6310 0.0458 7 0.6367 0.0017

95

 51 7 7 12 1.7618 0.0047 13 1.7618 0.0036

 52 2 7 64 0.1590 0.0244 7 0.1647 0.0018

 53 4 5 15 3.6371 0.0059 16 3.6371 0.0455

 54 9 3 42 0.4919 0.0216 41 0.7683 0.0158

 55 7 1 45 NaN 0.0833 28 NaN 0.0224

 56 5 4 20 1.4544 0.0331 14 1.6696 0.0063

 57 2 1 45 NaN 0.0891 45 NaN 0.0296

 58 7 5 41 1.6545 0.0388 33 0.8089 0.0497

 59 1 7 64 0.1189 0.0272 8 0.1203 0.0020

 60 9 9 12 3.7354 0.0071 15 3.7354 0.0049

 61 6 8 16 1.3473 0.0067 17 1.3473 0.0051

 62 2 8 65 0.1011 0.0256 7 0.1045 0.0018

 63 2 6 16 0.5000 0.0055 19 0.5000 0.0048

 64 2 6 62 0.4073 0.0233 6 0.4123 0.0014

 65 4 6 15 1.0340 0.0374 19 1.0340 0.0054

 66 3 9 66 0.9751 0.0292 8 0.9772 0.0021

 67 5 5 13 0.9247 0.0050 14 0.9247 0.0039

 68 6 6 13 1.6887 0.0051 14 1.6887 0.0452

 69 2 2 13 0.1492 0.0045 15 0.1492 0.0036

 70 3 2 171 NaN 0.1243 54 2.9584 0.0724

 71 7 2 201 0.2807 0.2557 66 0.0886 0.0771

 72 5 2 201 0.6778 0.4181 75 1.0557 0.1723

 73 2 9 66 0.0872 0.0264 7 0.0909 0.0018

 74 5 7 14 1.4273 0.0056 15 1.4273 0.0040

 75 9 9 12 4.2331 0.0055 14 4.2331 0.0048

 76 4 4 13 0.7073 0.0047 14 0.7073 0.0040

 77 2 9 66 0.4177 0.0272 7 0.4248 0.0019

96

 78 7 9 15 2.3273 0.0066 16 2.3273 0.0050

 79 7 5 15 0.6883 0.0382 13 0.8011 0.0524

 80 3 5 17 0.7023 0.0066 19 0.7023 0.0053

 81 8 5 17 1.6375 0.0082 87 0.5440 0.1686

 82 5 6 17 0.5266 0.0070 22 0.5266 0.0065

 83 6 9 16 1.1541 0.0073 19 1.1541 0.0059

 84 1 2 52 0.9460 0.0199 5 0.9489 0.0012

 85 3 9 20 1.4204 0.0087 39 NaN 0.0153

 86 9 4 29 0.1871 0.0378 32 0.6971 0.0615

 87 9 5 37 0.9494 0.0764 32 1.3586 0.0558

 88 4 9 18 0.5192 0.0078 23 0.5192 0.0411

 89 9 5 41 0.5489 0.0475 18 1.5730 0.0528

 90 6 4 58 NaN 0.1482 58 NaN 0.1727

 91 3 5 15 0.6959 0.0058 20 0.6959 0.0055

 92 7 5 14 2.9338 0.0065 14 2.3208 0.0053

 93 3 5 60 0.4861 0.0749 7 0.4866 0.0020

 94 3 2 196 4.5525 0.3504 146 1.8557 0.3399

 95 2 8 65 0.6134 0.0258 7 0.6152 0.0018

 96 6 8 15 1.6926 0.0062 19 1.6926 0.0058

 97 3 6 15 0.8336 0.0057 17 0.8336 0.0047

 98 4 3 56 NaN 0.0830 14 1.4102 0.0045

 99 7 2 201 0.0365 0.4461 83 1.0238 0.2068

 100 6 1 45 NaN 0.1986 45 NaN 0.0328

 101 1 4 58 0.6234 0.0448 6 0.6307 0.0014

 102 7 5 14 1.1884 0.0070 38 0.4592 0.1011

 103 2 5 60 0.5702 0.0634 6 0.5733 0.0014

 104 8 5 38 1.2510 0.0198 19 1.3811 0.0390

97

 105 5 7 16 0.7932 0.0068 19 0.7932 0.0267

 106 2 3 56 0.6463 0.0198 5 0.6492 0.0012

 107 7 9 18 1.2119 0.0081 24 1.2119 0.0078

 108 4 2 116 0.4112 0.1974 116 0.3480 0.2755

 109 2 4 58 0.3450 0.0323 6 0.3478 0.0014

 110 8 6 47 0.8233 0.0480 25 0.8203 0.0931

 111 1 5 60 0.0042 0.0245 7 0.0052 0.0017

 112 5 7 19 2.2536 0.0077 25 2.2536 0.0074

 113 7 7 13 1.4697 0.0053 14 1.4697 0.0044

 114 9 2 120 0.4624 0.2295 201 0.8555 0.4208

 115 9 8 12 1.9521 0.0063 13 1.9450 0.0872

 116 1 1 45 0.4377 0.0147 5 0.4378 0.0011

 117 6 3 40 1.3974 0.0493 60 0.0616 0.1541

 118 2 5 60 0.0523 0.0223 6 0.0577 0.0014

 119 4 5 16 1.3757 0.0060 17 1.3757 0.0046

 120 9 8 13 2.8652 0.0067 15 3.0675 0.0062

 121 8 8 11 5.0975 0.0048 15 5.0975 0.0047

 122 2 2 13 0.3116 0.0042 39 NaN 0.0116

 123 9 5 18 0.4133 0.0092 21 0.5460 0.0381

 124 5 4 17 1.3629 0.0079 18 1.3382 0.0401

 125 9 5 17 1.4464 0.0085 16 1.9442 0.0707

 126 7 6 15 2.1528 0.0073 13 1.5332 0.0388

 127 1 2 52 0.4030 0.0202 5 0.4060 0.0012

 128 9 8 17 1.5577 0.0091 16 1.3553 0.0158

 129 7 1 45 NaN 0.1823 36 NaN 0.0295

 130 8 9 17 2.5650 0.0080 21 2.5650 0.0070

 131 3 4 15 0.3709 0.0055 17 0.3709 0.0062

98

 132 8 7 13 1.5864 0.0063 16 2.2049 0.0061

 133 9 9 12 1.4834 0.0053 14 1.4834 0.0045

 134 8 4 88 0.1456 0.1307 58 0.4504 0.1475

 135 6 2 27 0.0678 0.0600 16 NaN 0.0094

 136 2 9 66 0.4524 0.0270 8 0.4538 0.0019

 137 1 7 64 0.1021 0.0279 7 0.1043 0.0017

 138 1 6 62 0.0028 0.0263 7 0.0051 0.0017

 139 7 7 12 3.4885 0.0052 13 3.4885 0.0037

 140 3 4 15 0.2784 0.0056 17 0.2784 0.0048

 141 7 9 14 3.1083 0.0062 15 3.1083 0.0047

 142 1 9 66 0.0150 0.0301 7 0.0228 0.0018

 143 8 8 12 3.1648 0.0050 13 3.1648 0.0041

 144 3 8 16 0.6641 0.0651 17 0.6641 0.0048

 145 6 2 127 NaN 0.1905 29 0.0231 0.0666

 146 7 7 11 3.2350 0.0046 13 3.2350 0.0043

 147 2 4 58 0.7658 0.0200 6 0.7670 0.0013

 148 8 8 12 2.1261 0.0050 13 2.1261 0.0038

 149 2 5 60 0.2748 0.0218 6 0.2799 0.0526

 150 1 3 56 0.1017 0.0223 6 0.1030 0.0014

 151 8 9 15 2.2372 0.0071 17 2.2372 0.0058

 152 7 3 195 0.4054 0.3624 48 0.3538 0.1150

 153 3 9 17 0.7720 0.0073 20 0.7720 0.0058

 154 1 5 60 0.0085 0.0624 7 0.0096 0.0017

 155 5 7 16 0.6305 0.0068 16 0.6305 0.0046

 156 7 8 16 1.9168 0.0070 25 1.9168 0.0083

 157 4 5 14 0.7501 0.0052 15 0.7501 0.0045

 158 7 1 45 NaN 0.1248 16 NaN 0.0114

99

 159 3 3 11 0.9672 0.0264 12 0.9672 0.0031

 160 1 1 45 0.4010 0.0133 4 0.4008 0.0008

 161 4 8 18 0.6044 0.0076 19 0.6044 0.0053

 162 6 5 14 1.2959 0.0066 16 1.2533 0.0058

 163 9 6 15 1.5190 0.0076 23 1.2027 0.0529

 164 9 9 12 2.4810 0.0054 13 2.4810 0.0041

 165 7 2 54 3.0844 0.0905 26 1.1829 0.0092

 166 9 5 11 0.6774 0.0054 20 0.8400 0.0390

 167 3 9 66 0.1178 0.0305 7 0.1240 0.0019

 168 2 3 56 1.2827 0.0201 5 1.2850 0.0012

 169 8 5 14 3.1274 0.0066 21 2.3811 0.0387

 170 2 4 58 0.2706 0.0206 6 0.2715 0.0014

 171 4 3 79 1.8914 0.1462 159 0.6958 0.3458

 172 1 5 60 0.0769 0.0245 6 0.0821 0.0015

 173 1 3 56 0.1561 0.0220 5 0.1636 0.0012

 174 7 4 55 0.3958 0.0958 31 0.8488 0.0474

 175 7 6 22 0.4917 0.0108 23 0.5037 0.0401

 176 1 4 58 0.0114 0.0541 6 0.0139 0.0014

 177 6 7 15 1.2088 0.0063 19 1.2088 0.0057

 178 8 7 22 2.3937 0.0109 31 3.0084 0.1104

 179 9 8 12 2.3249 0.0063 23 2.0587 0.0430

 180 1 8 65 0.0225 0.0277 8 0.0236 0.0329

 181 8 3 21 0.2064 0.0111 52 0.1950 0.0961

 182 8 1 45 NaN 0.1603 45 NaN 0.0903

 183 3 1 45 NaN 0.0892 45 NaN 0.0170

 184 4 9 16 0.7594 0.0070 25 0.7594 0.0080

 185 7 6 12 1.7165 0.0058 16 1.2626 0.0795

100

 186 9 9 12 4.2814 0.0057 13 4.2814 0.0042

 187 7 9 15 1.0139 0.0067 17 1.0139 0.0051

 188 2 3 56 0.0452 0.0192 5 0.0469 0.0012

 189 8 4 48 0.4489 0.0365 14 1.0610 0.0049

 190 1 2 52 0.0018 0.0198 5 0.0047 0.0012

 191 4 9 18 1.5071 0.0082 23 1.5071 0.0282

 192 4 3 15 0.5991 0.0068 16 0.6997 0.0056

 193 6 3 123 0.0110 0.2378 67 0.0438 0.1039

 194 1 6 62 0.1704 0.0566 7 0.1724 0.0017

 195 3 2 53 NaN 0.0634 17 NaN 0.0057

 196 2 4 58 0.0721 0.0200 6 0.0768 0.0015

 197 3 8 16 2.0542 0.0065 20 2.0542 0.0056

 198 5 1 45 NaN 0.1366 45 NaN 0.0839

 199 4 5 13 1.3755 0.0054 15 1.3755 0.0041

 200 3 3 14 1.8529 0.0051 15 1.8529 0.0039

--

 New method Classical method

 dim(m*n) iteration time iteration time

average 4.9 5.4 40.7 0.0448 24.6 0.0362

--

MatLab code forTable 5.3

solve the random system with dimention 200*300

m=200;n=300;

A=rand(m,n);

b=rand(m,1);

c=rand(n,1);

epsilon=0.01;

101

in new mehtod, p=0.8,q=1.2

 New method Classical method

 idx iteration Opt time iteration Opt time

 34 31 13.3783 2.1870 34 13.3783 2.4084

 35 33 13.5477 2.3660 38 13.5477 2.7975

 36 35 12.2685 2.4543 47 12.2685 3.6504

 37 34 12.1387 2.4273 42 12.1387 3.1664

 38 31 14.3202 2.1804 42 14.3202 3.1886

 39 33 11.7495 2.4815 30 11.7495 2.0452

 40 30 15.0938 2.1312 39 15.0938 2.8654

 41 40 15.4534 3.0469 44 15.4534 3.3165

 42 38 12.4233 2.8703 44 12.4233 3.2338

 43 66 12.7004 5.6847 40 12.7022 2.8478

 44 39 12.4386 2.9631 40 12.4386 2.8733

 45 33 13.5479 2.3851 42 13.5479 3.0937

 46 36 13.7716 2.6777 43 13.7716 3.1809

 47 33 12.7877 2.5047 35 12.7877 2.5006

 48 36 16.7568 2.7086 36 16.7568 2.5545

 49 38 15.3569 2.9702 34 15.3569 2.4201

average

 New method Classical method

iteration time iteration Opt time

 35.8100 2.6626 40.0000 2.8812

102

 New method Classical method

 idx iteration Opt time iteration Opt time

 1 33 14.1325 2.2903 36 14.1325 2.4028

 2 34 11.4602 2.3497 40 11.4602 2.6396

 3 34 14.8578 2.3979 43 14.8578 3.4298

 4 32 14.0615 2.3182 42 14.0615 2.9494

 5 37 13.8361 2.6571 40 13.8361 2.7531

 6 27 12.5830 1.8774 31 12.5830 2.0912

 7 35 15.0891 2.4443 46 15.0891 3.1579

 8 42 15.4758 3.0902 51 15.4758 3.5747

 9 33 13.9757 2.3580 36 13.9755 2.3991

 10 33 14.4968 2.3421 34 14.4968 2.3027

 11 31 11.4472 2.1374 65 11.4295 4.6683

 12 29 13.3044 1.9933 36 13.3044 2.4292

 13 34 13.6009 2.3862 50 13.6009 3.4991

 14 34 11.4376 2.4010 41 11.4376 2.8593

 15 31 14.8721 2.1535 35 14.8721 2.3473

 16 38 14.0051 2.7457 35 14.0051 2.3498

 17 29 13.8349 2.0148 35 13.8349 2.3490

 18 35 12.8241 2.4992 42 12.8241 2.9333

 19 33 13.0498 2.3489 42 13.0499 2.9874

 20 33 14.5358 2.3046 35 14.5358 2.3323

 21 33 13.7607 2.3485 38 13.7607 2.6101

 22 31 13.3368 2.1436 36 13.3368 2.4539

 23 31 12.6427 2.1378 44 12.6427 3.0703

 24 33 13.1727 2.3204 47 13.1727 3.3550

103

 25 38 12.4437 2.7154 45 12.4437 3.1244

 26 30 16.4101 2.0944 39 16.4101 2.6710

 27 43 14.5286 3.1413 39 14.5286 2.6813

 28 32 14.2258 2.2594 31 14.2258 2.1112

 29 34 11.9038 2.4134 51 11.9038 3.6221

 30 29 12.9792 1.9981 33 12.9792 2.1890

 31 30 13.5566 2.0404 39 13.5566 2.6850

 32 30 13.9748 2.1090 31 13.9748 2.0360

 33 38 13.9658 2.6906 41 13.9658 2.7484

 34 31 13.3783 2.1870 34 13.3783 2.4084

 35 33 13.5477 2.3660 38 13.5477 2.7975

 36 35 12.2685 2.4543 47 12.2685 3.6504

 37 34 12.1387 2.4273 42 12.1387 3.1664

 38 31 14.3202 2.1804 42 14.3202 3.1886

 39 33 11.7495 2.4815 30 11.7495 2.0452

 40 30 15.0938 2.1312 39 15.0938 2.8654

 41 40 15.4534 3.0469 44 15.4534 3.3165

 42 38 12.4233 2.8703 44 12.4233 3.2338

 43 66 12.7004 5.6847 40 12.7022 2.8478

 44 39 12.4386 2.9631 40 12.4386 2.8733

 45 33 13.5479 2.3851 42 13.5479 3.0937

 46 36 13.7716 2.6777 43 13.7716 3.1809

 47 33 12.7877 2.5047 35 12.7877 2.5006

 48 36 16.7568 2.7086 36 16.7568 2.5545

 49 38 15.3569 2.9702 34 15.3569 2.4201

 50 35 10.1950 2.5621 41 10.1950 2.9928

 51 39 14.4130 3.0114 47 14.4130 3.6163

104

 52 35 14.5251 2.6399 40 14.5251 2.9441

 53 72 14.9484 6.2311 45 14.9489 3.2947

 54 35 16.3867 2.5885 40 16.3867 2.8813

 55 38 12.7772 2.9128 42 12.7772 3.1070

 56 34 13.0523 2.5302 38 13.0523 2.8084

 57 35 13.0530 2.5921 43 13.0530 3.2378

 58 34 13.0528 2.5316 35 13.0528 2.4582

 59 31 15.8548 2.2426 35 15.8548 2.5212

 60 29 14.2370 2.0127 39 14.2370 2.8138

 61 43 13.5499 3.3413 38 13.5499 2.7139

 62 35 12.8535 2.5790 35 12.8535 2.4133

 63 33 12.9314 2.4403 37 12.9314 2.6749

 64 95 13.7239 9.0412 44 13.7796 3.2587

 65 31 15.8651 2.2830 34 15.8651 2.3814

 66 37 13.8844 2.7863 38 13.8844 2.6984

 67 38 14.4416 2.9258 46 14.4415 3.5383

 68 35 13.3879 2.5361 44 13.3879 3.1893

 69 37 14.7301 2.6624 47 14.7301 3.5063

 70 34 14.0756 2.5296 40 14.0755 2.8794

 71 37 13.8434 2.7015 41 13.8434 2.9964

 72 32 14.9581 2.3169 32 14.9581 2.1915

 73 31 13.0970 2.2517 40 13.0970 2.9671

 74 32 12.1322 2.3486 42 12.1322 3.1600

 75 33 14.5811 2.4676 36 14.5811 2.5803

 76 36 15.1297 2.7490 40 15.1297 2.9157

 77 28 16.3501 2.0110 37 16.3501 2.6951

 78 37 11.7357 2.7682 38 11.7357 2.6857

105

 79 47 13.4661 3.8289 38 13.4661 2.7929

 80 30 14.1476 2.1423 38 14.1476 2.7840

 81 33 14.0924 2.4596 38 14.0924 2.7350

 82 37 14.7447 2.7495 39 14.7447 2.7690

 83 40 13.4680 2.9901 46 13.4680 3.4051

 84 37 11.5136 2.7620 42 11.5136 3.0184

 85 36 14.5218 2.7568 36 14.5218 2.6255

 86 54 13.8599 3.9193 36 13.8574 2.6522

 87 32 12.6705 2.4086 41 12.6705 3.1666

 88 34 12.5076 2.6738 38 12.5076 2.8091

 89 40 14.6875 3.2020 34 14.6875 2.5030

 90 30 11.3641 2.2120 33 11.3641 2.3333

 91 34 14.8216 2.5382 40 14.8216 2.9601

 92 34 16.0217 2.5202 48 16.0217 3.8445

 93 33 14.0469 2.4813 41 14.0469 3.1175

 94 40 15.8152 3.0568 41 15.8152 2.9229

 95 30 14.3876 2.2207 34 14.3876 2.4590

 96 30 15.8316 2.2985 40 15.8316 3.0683

 97 33 14.2434 2.4493 38 14.2434 2.8031

 98 37 13.7590 2.8397 46 13.7590 3.5587

 99 39 15.5669 2.8991 52 15.5669 3.9323

 100 35 15.0051 2.6977 48 15.0051 3.7811

average

 New method Classical method

iteration time iteration Opt time

 35.8100 2.6626 40.0000 2.8812

106

MatLab code for Table 5.4

solve the random system with dimention 400*700

m=400;n=700;

A=rand(m,n);

b=rand(m,1);

c=rand(n,1);

epsilon=0.01;

in Dr. Lesaja's mehtod, p=0.8,q=1.2

 New method Classical method

 idx iteration Opt time iteration Opt time

 1 41 16.8015 25.4030 57 16.8018 35.8048

MatLab code for Table 5.4

impNew

p=1-lambda;

q=1+lambda;

average of 200 iterations

107

--

 0.1 0.2

 dim(m*n) iteration time iteration time

average 5.0 5.1 35.9 0.0526 37.2 0.0603

--

--

 0.3 0.4

 dim(m*n) iteration time iteration time

average 4.8 5.1 40.6 0.0673 41.6 0.0648

--

MatLab code for Table 5.6

20 iterations

--

 0.3 0.4

 dim(m*n) iteration time iteration time

average 200.0 300.0 33.8 2.5982 37.8 2.9957

--

--

 0.1 0.2

 dim(m*n) iteration time iteration time

average 200.0 300.0 36.6 2.8611 34.7 2.6867

--

108

--

 0.1 0.2

 idx dim(m*n) iteration Opt time iteration Opt time

--

 1 200300 36 15.3765 2.7472 35 15.3765 2.6816

 2 200300 33 13.6721 2.5727 33 13.6721 2.5643

 3 200300 39 13.1033 3.0115 41 13.1033 3.2237

 4 200300 38 14.9661 3.0094 40 14.9661 3.2188

 5 200300 32 12.9225 2.4362 28 12.9225 2.0493

 6 200300 32 13.3005 2.3987 34 13.3005 2.5932

 7 200300 38 11.4939 2.9336 36 11.4939 2.8237

 8 200300 32 13.6853 2.4423 37 13.6853 2.9811

 9 200300 33 12.6659 2.5796 28 12.6659 2.0762

 10 200300 79 13.1793 6.9372 43 13.1802 3.4659

 11 200300 33 12.4495 2.4903 33 12.4495 2.4935

 12 200300 33 14.7143 2.5612 31 14.7143 2.3323

 13 200300 32 13.0591 2.3790 34 13.0591 2.6057

 14 200300 41 14.7339 3.2123 33 14.7339 2.4766

 15 200300 34 15.4971 2.6664 33 15.4971 2.6206

 16 200300 37 12.8786 2.9451 40 12.8786 3.0927

 17 200300 36 12.6252 2.7991 37 12.6252 2.9537

 18 200300 33 14.2547 2.5594 32 14.2547 2.4313

 19 200300 32 15.6560 2.4247 32 15.6560 2.4553

 20 200300 29 14.5694 2.1154 34 14.5694 2.5937

--

	Interior Point Methods and Kernel Functions of a Linear Programming Problem
	Recommended Citation

	tmp.1375238340.pdf.EuMIE

