Interior Point Methods and Kernel Functions of a Linear Programming Problem

Latriece Y. Tanksley

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation

Tanksley, Latriece Y., "Interior Point Methods and Kernel Functions of a Linear Programming Problem" (2009). Electronic Theses and Dissertations. 650.
https://digitalcommons.georgiasouthern.edu/etd/650

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

INTERIOR POINT METHODS AND KERNEL FUNCTIONS
 OF A LINEAR PROGRAMMING PROBLEM

by

LATRIECE Y. TANKSLEY
(Under the Direction of Goran Lesaja)

Abstract

In this thesis the Interior - Point Method (IPM) for Linear Programming problem (LP) that is based on the generic kernel function is considered.

The complexity (in terms of iteration bounds) of the algorithm is first analyzed for a class of kernel functions defined by (3-1). This class is fairly general; it includes classical logarithmic kernel function, prototype self-regular kernel function as well as non-self-regular functions, thus it serves as a unifying frame for the analysis of IPM. Historically, most results in the theory of IPM are based on logarithmic kernel functions while other two classes are more recent. They were considered with the intention to improve theoretical and practical performance of IPMs. The complexity results that are obtained match the best known complexity results for these methods.

Next, the analysis of the IPM was summarized and performed for three more kernel functions. For two of them we again matched the best known complexity results.

The theoretical concepts of IPM were illustrated by basic implementation for the classical logarithmic kernel function and for the parametric kernel function both described in (3-1). Even this basic implementation shows potential for a good performance. Better implementation and more numerical testing would be necessary to draw more definite
conclusions. However, that was not the goal of the thesis, the goal was to show that IPM with kernel functions different than classical logarithmic kernel function can have best known theoretical complexity.

INTERIOR POINT METHODS AND KERNEL FUNCTIONS OF A LINEAR PROGRAMMING PROBLEM

by

LATRIECE Y. TANKSLEY

B.S., Savannah State University, 2000

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA
(C) 2009

LaTriece Y. Tanksley

All Rights Reserved

INTERIOR POINT METHODS AND KERNEL FUNCTIONS OF A LINEAR PROGRAMMING PROBLEM

Major Professor: Goran Lesaja

Committee: Billur Kaymakcalan
Scott Kersey
Yan Wu

Electronic Version Approved:
May 2009

ACKNOWLEDGEMENTS

Mathematics has always been of great interest to me. I cannot begin to express the joy and pleasure that I've experienced studying at Georgia Southern University under the direction of the great faculty here. Dr. Goran Lesaja has played an intricate role in my graduate research. I could not have made it to this point without his advisement and knowledge. I would like to thank Dr. Yan Wu and Dr. Billur Kaymakcalan for serving on the graduate committee. I have had the pleasure of taking previous classes from both instructors and want to thank them for their encouragement throughout my academic career. I would also like to thank Dr. Scott Kearsey for serving on the graduate committee. I have not had the pleasure of knowing him as well as the others, but I appreciate his interest in my graduate work. I would also like to thank graduate student Jie Chen and Segio Valdrig for their generous help with the implementation of the algorithms in MatLab. I would like to thank my parents, Algene and Dorothy Tanksley, for their support throughout this long journey. They have been great role models in my life and this accomplishment is a direct result of their hard work and commitment towards my academic success. Finally, I would like to thank the math professors at Savannah State University who first encouraged me and guided me through undergraduate studies in math. I am eternally grateful to them for their leadership and interest in my studies.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS 6
LIST OF FIGURES 8
LIST OF TABLES 9
NOMENCLATURE 10
CHAPTER
1 INTRODUCTION 12
2 INTERIOR POINT METHODS BASED ON KERNAL FUNCTIONS 18
3 ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS 27
4 ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNAL FUNCTIONS50
5 NUMERICAL RESULTS 68
6 CONCLUSION 74
REFERENCES 76
APPENDICES
APPENDIX A 77
APPENDIX B 82

LIST OF FIGURES

Figure 1: Graphical Interpretation of IPM 21
Figure 2: Generic Primal-Dual Interior-Point Algorithm for Linear Optimization 26
Figure 3: IPM Based on generic kernel function 70

LIST OF TABLES

Table 1: Wyndor Glass Company Data 14
Table 2: Complexity results for long-step methods 64
Table 3: Complexity results for short-step methods 65
Table 4: Numerical results for Example 69
Table 5: Numerical results for randomly generated "small problems"
with dimension less than 10 70
Table 6: Numerical results for randomly generated problems
with dimension 200×300 71
Table 7: Numerical results for randomly generated problem with dimension 400×700 71
Table 8: More Numerical Results 72
Table 9: More Numerical Results 72

NOMENCLATURE

R^{n}	Euclidean n dim space				
$R^{n}+$	All vectors of R^{n} with nonnegative components				
$x \in A$	Element x belongs to set A				
$\\|x\\|$	A Euclidian norm of vector $x \in R^{n}, \quad\\|x\\|=\sqrt{\sum_{i=1}^{n} x_{i}^{n}}$				
$\mu \rightarrow 0$,	μ converges to 0				
$f: R^{n} \rightarrow R$	A function with n variables				
$\nabla f, \nabla^{2} f$	A gradient and a Hessian of f				
$F: R^{n} \rightarrow R^{m}$	A vector valued function				
∇F	A Jacobian of F				
$X=\operatorname{diag}(x)$	A diagonal matrix that has components of the vector x on				
	the main diagonal and zeros everywhere else				
$x s, \frac{x}{s}, x^{-1}$	Component wise operations (product, division, inverse) of				
	vectors $x, s \in R^{n}$. For example, $x s=\left(x_{1} s_{1}, \cdots, x_{n} s_{n}\right)$.				
$o(f(n))$	There exist a constant C and a function $g(n)$ such that				
	$f(n) \geq C g(n)$ ("small o" notation).				

$O(f(n))$
There exist a constant C and a function $g(n)$ such that

$$
f(n) \leq C g(n)
$$

$\Omega(f(n))$
There exist constants C, K and a function $g(n)$ such that

$$
C g(n) \leq f(n) \leq K g(n) \text { ("big } \Omega \text { " notation). }
$$

CHAPTER 1

INTRODUCTION

Linear Programming Model

The mathematical model of linear programming is useful in solving a wide range of problems in industry, business, science and government. This is by far the most used optimization model.

These problems and their linear programming models can often be complex as they consist of a huge number of variables and constraints ranging up to the hundred thousands. A linear programming model consists of an objective function, that is a linear function, and the constraints on that function that are also linear. Linear programming involves the planning of activities to obtain a result that reaches a specified goal among all feasible alternatives.

A Linear Program (LP) is a problem that can be expressed in standard form as follows:

Minimum	$c^{T} x$
subject to	$A x=b$
	$x \geq 0$

where $x \in R^{n}$ is the vector of variables to be solved for, and matrix $A \in R^{m x n}$ and vectors $c \in R^{n}, b \in R^{m}$ are input data. . The linear function $Z=c^{T} x$ is called the objective function, and the equations $A x=b$ are called functional constraints, while $x \geq 0$ are called nonegativity constraints. The set $F=\left\{x \in R^{n} \mid A x=b, x \geq 0\right\}$ is called a feasible set. Geometrically, the set represents a polyhedron in R^{n}.

Many practical problems can be modeled as LP models. To illustrate this fact we list the following simple example taken from the [Hillier, Lieberman, 2005].

Example: The Wyndor Glass Co. produces high-quality glass products, including windows and glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the products. Because of declining earnings, top management has decided to revamp the company's product line. Unprofitable products are being discontinued, releasing production capacity to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4×6 foot double-hung wood-framed window
Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2. Product 2 needs only Plants 2 and 3. The marketing division has concluded that the company could sell as much of either product as could be produced by these plants. However, because both products would be competing for the same production capacity in Plant 3, it is not clear which mix of these two products would be most profitable. Each product will be produced in batches of 20 , so the production rate is defined as the number of batches produced per week. Any combination of production rates that satisfies the restrictions is permitted, including producing none of one product and as much as possible of the other. Profit from selling one batch of Product 1 (glass doors) is $\$ 3000$ and profit from selling one batch of Product 2 (windows) is $\$ 5000$. We assume that all produced batches will be sold. Goal: To determine what the production rates should be for the two products in order to maximize the total profit, subject to the restrictions imposed by the limited production capacities available in the three plants.

Of course, this is a simplified real world situation but good enough to illustrate the usefulness of the model. Formulation of the Linear Programming (LP) Problem

Let $x_{1}=$ number of batches of product 1 produced per week
$x_{2}=$ number of batches of product 2 produced per week
$Z=$ total profit per week in thousands of dollars from producing these two products The following table summarizes the data gathered:

Wyndor Glass Company Data

Plant	Production Time Per Batch Hours	Production Time Available per Week, Hours
	Product	
	1	2
2	1	0
	2	12
3	3	5000

Table 1
The objective function is $Z=3 x_{1}+5 x_{2}$ and it represents a total profit measured in thousands of dollars. The objective function is subject to the restrictions imposed by the limited production capacities available in each of the plants, and they can be mathematically expressed by the following inequalities:

Plant $1 \quad x_{1} \leq 4$
Plant $2 \quad 2 x_{2} \leq 12$
Plant $3 \quad 3 x_{1}+2 x_{2} \leq 18$

Thus, the overall linear programming model illustrating the Wyndor Glass Company is

\[

\]

By adding slack variables this problem can be transformed in the standard form (1-1).

\[

\]

The similar procedure can be done for different inequality formulations of LP.
This example illustrates the applicability of the LP model. The number of problems that can be modeled as LP is huge and widespread to many areas of science, industry, business, finance, government, etc. For more examples see [HL] and other Operations Research textbooks. Therefore, the efficient methods to solve LP models are very important. In the following sections we will outline main methods that are used to solve LP models.

Methods to Solve LP Models

The first successful general procedure, Simplex Method, for solving a LP problem was discovered by George Dantzig in 1947 although there were partial results discovered earlier. Theoretically the main idea of the simplex method (SM) is that it travels from vertex to vertex
on the boundary of the feasible region, repeatedly increasing or decreasing the objective function until either an optimal solution is found, or it is established that no solution exists. The number of iterations required in the worst case is an exponential function of the number of variables, as it was first discovered by Klee and Minti in 1972. However, the worst case behavior has not been observed in practice. On the contrary, the algorithm works very well in practice, typically requiring $O(n)$ iterations. Highly sophisticated implementations are available (CPLEX, MOSEK, LINDO, EXCEL SOLVER) and have excellent codes for simplex algorithms. These codes are capable of solving huge problems with millions of variables and thousands of constraints. This discrepancy between exponential worst case complexity and good practical behavior of simplex method prompted the research in two directions. One direction was a search for the algorithm with the polynomial worst case complexity and the other direction was the analysis of average complexity of simplex method.

In 1979, Leonid Khaciyan showed that the Ellipsoid Method, created by A.
Nemirovski and D. Yudin for nonlinear programming problems, solves any linear program in a number of steps which is a polynomial function of the amount of data defining the linear program. Unfortunately, in practice, the simplex method turned out to be far superior to the ellipsoid method. However, theoretical importance is significant because it provided a basis to prove that polynomial methods exist for many combinatorial problems.

In 1982 K. Borgward provided the first probabilistic analysis of the simplex method, showing that the expected number of iterations is polynomially bounded. Soon afterwards, other authors provided similar analysis. A relatively simple and complete analysis was provided by Adler and Megiddo in 1985. Using the clever probability model, they showed that
upper and lower bounds on an average number of iterations is a function of $\Omega\left((\min \{m, n\})^{2}\right)$, where m is the number of constraints and n is the number of variables.

In 1984, Narendra Karmarkar introduced an Interior-Point Method (IPM) for linear programming, combining the desirable theoretical properties of the ellipsoid method and practical advantages of the simplex method. Its success initiated an explosion in the development of interior-point methods that continue to this day.

These methods do not pass from vertex to vertex along the edges of the feasible region, which is the main feature of the simplex algorithm; they follow the central path in the interior of the feasible region. Though this property is easy to state, the analysis of interior-point methods is a subtle subject which is much less easily understood than the behavior of the simplex method. Interior-point methods are now generally considered competitive with the simplex method in most, though not all, applications, and sophisticated software packages implementing them are now available (CPLEX, MOSEK, LINDO, EXCEL SOLVER).

CHAPTER 2

INTERIOR POINT METHODS BASED ON KERNEL FUNCTIONS

The linear optimization problem in standard form is

$$
\text { (P) } \quad \min \left\{c^{T} x: A x=b, x \geq 0\right\}
$$

where $A \in R^{m x n}(\operatorname{rank}(A)=m), b \in R^{m}, c \in R^{n}$. The dual problem of (P) is

$$
\text { (D) } \max \left\{b^{T} y: A^{T} y+s=c, s \geq 0\right\}
$$

where $s \in R^{n}$ is a dual slack variable.

We can assume that the Interior Point Condition (IPC) is satisfied without loss of generality; that is, there exists a point $\left(x^{0}, s^{0}, y^{0}\right)$ such that $A x^{0}=b, x^{0}>0$ and $A^{T} y^{0}+s^{0}=c, s>0$, which means that the interiors of the feasible regions of the primal(P) and dual(D), are not empty. If the problem doesn't satisfy the IPC, it can be modified so that it does and even in such a way that $x^{0}=s^{0}=e$, where e denotes a vector of all ones. The details can be found in [Roos, C et. al., 1997].

Optimality conditions for (P) and (D) yield the following system of equations:

$$
\begin{align*}
& A x=b, x \geq 0 \\
& A^{T} y+s=c, s \geq 0 \tag{2-1}\\
& \quad x s=0
\end{align*}
$$

where the vector $x s$ denotes the component wise product of vectors x and s which is also called Hadamard product.

The theory of interior point methods (IPMs) that is based on the use of Newton's Method suggests that the third equation in (2-1) has to be perturbed. The third equation is often called the complementarity condition for the primal and dual, and is replaced by $x s=\mu e$, where μ is a positive parameter. The optimality conditions (2-1) are transformed to the following system:

$$
\begin{gather*}
A x \quad=b, x>0 \\
A^{T}+y+S=c, s>0 \tag{2-2}\\
x s=\mu e .
\end{gather*}
$$

Since $\operatorname{rank}(A)=m$, this system has unique solution for each $\mu>0$. We can write this solution as $(x(\mu), y(\mu), s(\mu))$, calling $x(\mu)$ the μ-center of (P) and $(y(\mu), s(\mu))$ the μ - center of (D). The set of all μ-centers forms a homotopy path in the interior of the feasible region that is called the central path.

The main property of the central path can be summarized as follows: if $\mu \rightarrow 0$, then the limit of the central path exists, the limit points satisfy the complementarity condition, and the limit yields optimal solutions for (P) and (D). This limiting property of the central path leads to the main idea of the iterative methods for solving (P) and (D): Trace the central path while reducing μ at each iteration. However, tracing the central path exactly would be too costly and inefficient. One of the main achievements of interior point methods was to show that tracing the central path approximately while still maintaining good properties of the algorithms is sufficient.

Tracing the central path means solving the system (2-2) using Newton Method on the function

$$
F(x, y, s)=\left[\begin{array}{l}
A x-b \tag{2-3}\\
A^{T} y+s-c \\
x s-\mu e
\end{array}\right]=0
$$

Tracing the central path approximately means that only one, or at most, a couple of iterations of a modified (damped) Newton's Method will be performed for a particular μ. One iteration of a Newton Method for the function (2-3) and particular μ is stated below.

$$
\nabla F\left[\begin{array}{l}
\Delta x \tag{2-4}\\
\Delta y \\
\Delta z
\end{array}\right]=-F(x, y, s)
$$

where

$$
\nabla F=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right]
$$

denotes the Jacobian of F and $[\Delta x, \Delta y, \Delta z]^{T}$ is a Newton's search direction that we want to calculate.

Solving (2-4) reduces to solving this system.

$$
\begin{align*}
& A \Delta x=0 \\
& A^{T} \Delta y+\Delta s=0 \tag{2-5}\\
& s \Delta x+x \Delta s=\mu e-x s
\end{align*}
$$

Next we update the current iterates (x, y, s) by taking an appropriate step along the calculated direction.

$$
x_{+}=x+\alpha \Delta x, y_{+}=y+\alpha \Delta y, s_{+}=s+\alpha \Delta s
$$

The step size α has to be chosen approximately, so that the new iterate is in a certain neighborhood of μ-center. The choice of α will be discussed later in the text.

The idea of the algorithm is illustrated in the Figure 1 blow.

Graphical Interpretation of IPM

Figure 1

In order to generalize the algorithm outlined above, we introduce a new vector

$$
\begin{equation*}
v=\sqrt{\frac{x s}{\mu}} \tag{2-6}
\end{equation*}
$$

which we use to define new scaled directions

$$
\begin{equation*}
d_{x}:=\frac{v \Delta x}{x}, d_{s}:=\frac{v \Delta s}{s} \tag{2-7}
\end{equation*}
$$

where the operations in (2-7) are component-wise product and division of vectors. Using the above definitions (2-6) and (2-7), the system (2-5) reduces to

$$
\begin{align*}
& A d_{x}=0 \\
& A \Delta y+d_{s}=0 \tag{2-8}\\
& d_{x}+d_{s}=v^{-1}-v
\end{align*}
$$

where $\quad \bar{A}=\frac{1}{\mu} A V^{-1} X, \quad V:=\operatorname{diag}(v), \quad X=\operatorname{diag}(x)$. Note that $\quad X=\operatorname{diag}(x)$ denotes a diagonal matrix that has components of the vector x on the main diagonal and zeros everywhere else.

The new search direction $(\Delta x, \Delta y, \Delta s)$ is obtained by first solving the system (2-
8).Once d_{x} and d_{s} are found we apply (2-6) to find Δx and Δs. This direction can also be obtained directly by solving the following system:

$$
\begin{align*}
& A \Delta x=0 \\
& A^{T} \Delta y+\Delta s=0 \\
& s \Delta x+x \Delta s=-\mu v \nabla \Psi(v) . \tag{2-9}
\end{align*}
$$

This system can be reduced to

$$
\begin{equation*}
M \Delta y=r \tag{2-10}
\end{equation*}
$$

where

$$
\begin{align*}
& M=A S^{-1} X A^{T} \\
& r=\mu A S^{-1} v \nabla \psi(v) \tag{2-11}
\end{align*}
$$

and $\quad X=\operatorname{diag}(x), S=\operatorname{diag}(s), V=\operatorname{diag}(v)$.

Once Δy is found, Δs and Δx are found by back substitutions

$$
\begin{align*}
& \Delta s=-A^{T} \Delta y \tag{2-12}\\
& \Delta x=-s^{-1}(x \Delta s-\mu v \nabla \Psi(v)) \tag{2-13}
\end{align*}
$$

where products denote component-wise products of vectors.

The following observation is crucial for the generalization of the method. Observe that $-\left(v^{-1}-v\right)$ is a gradient of the following function

$$
\begin{equation*}
\Psi_{c}(v)=\sum_{i=1}^{n}\left(\frac{v_{i}^{2}-1}{2}-\log v_{i}\right)=\left(\frac{v_{1}^{2}-1}{2}-\log v_{2}\right)+\cdots+\left(\frac{v_{n}^{2}-1}{2}-\log v_{n}\right) \tag{2-14}
\end{equation*}
$$

This function is called log-barrier function.

One may easily verify that the Hessian $\nabla^{2} \Psi_{c}(v)=\operatorname{diag}\left(e+v^{-2}\right)$. Since this matrix is positive definite, $\Psi_{c}(v)$ is strictly convex. Moreover, since $\nabla \Psi_{c}(e)=0$, it follows that
$\Psi_{c}(v)$ attains its minimal value at $v=e$, with $\Psi_{c}(e)=0$. Thus, it follows that $\Psi_{c}(v)$ is nonnegative everywhere and vanishes if and only if $v=e$, that is, if and only if $x=x(\mu)$ and $s=s(\mu)$. Hence, we see that the $\mu-$ centers $x(\mu)$ and $s(\mu)$ can be characterized as the minimizers of the function $\Psi_{c}(v)$. Therefore, the function $\Psi_{c}(v)$ serves as a proximity measure to the μ-centers (central path.. The norm based proximity measure that is derived from $\Psi_{c}(v)$ is defined as

$$
\begin{equation*}
\delta=\frac{1}{2}\left\|\nabla \Psi_{c}(v)\right\| . \tag{2-15}
\end{equation*}
$$

Furthermore, the complimentary equation in (2-8) can be written as $d_{x}+d_{s}=-\nabla \Psi_{c}(v)$, which is also called the scaled centering equation. The importance of the equation arises from the fact that it essentially defines the search directions. Since d_{x} and d_{s} are orthogonal, we will still have $d_{x} d_{s}=0$ if and only if $v=e$. The same is true for Δx and Δs.

The main idea of the generalization of the method is to replace the log-barrier function (2-14) with some other barrier function that has the same properties as log barrier. The choice of this function will certainly affect the calculation of the search direction, the step size, and with that the rate of the convergence of the method. It is worth examining the classes of barrier functions that may lead to the improved behavior of the algorithm. In what follows, we will consider several such classes.

We will restrict ourselves to the case where the barrier function $\Psi(v)$ is separable with identical coordinate functions $\varphi\left(v_{i}\right)$. Thus,

$$
\begin{equation*}
\Psi(v)=\sum_{i=1}^{n} \varphi\left(v_{i}\right) \tag{2-16}
\end{equation*}
$$

where $\varphi(t):[0, \infty)$ is twice differentiable and attains its minimum at $t=1$, with $\varphi(1)=0$. The function $\varphi(t)$ is called a kernel function. The log-barrier function belongs to this class.

The algorithm based on generic kernel function that was outlined above is summarized in the Figure 2 below. In principle, each barrier function gives rise to a different primal-dual algorithm. The parameters τ, θ and the step size α in the algorithm should be tuned in such a way that the number of iterations required by the algorithm is as small as possible. The resulting iteration bound will depend on the kernel function, and our main task becomes to find a kernel functions that give a good and possibly best known iteration bound. The question of finding the kernel function that minimizes the iteration bound is still an open question.

Generic Primal-Dual Interior-Point Algorithm for Linear Optimization

Input:
An input data A, b, c
A threshold parameter $\tau \geq 1$;
An accuracy parameter $\varepsilon>0$;
A fixed barrier update parameter $\theta<1$;
Iteration:
begin

$$
x:=e ; s:=e ; \mu:=1
$$

while $n \mu>\varepsilon$ do
begin
calculate $\mu:=\mu(1-\theta)$;
calculate $v:=\sqrt{\frac{x s}{\mu}}$;
while $\Psi(v)>\tau$ do
begin
calculate the direction $(\Delta x, \Delta y, \Delta s)$
using (2-10) - (2-13) :
calculate step size α;
update
$x:=x+\alpha \Delta x, s:=s+\alpha \Delta s, y:=y+\alpha \Delta y ;$
end
end
end

CHAPTER 3

ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS

The following class of kernel functions will be used to analyze the algorithm, Generic IPM, discussed in the Chapter 2, Figure 2.

$$
\psi_{p, q}(t)=\left\{\begin{array}{lr}
\frac{t^{p+1}-1}{p+1}+\frac{t^{1-q}-1}{q-1}, & t>0, p \in[0.1], q>1 \tag{3-1}\\
\frac{t^{p+1}-1}{p+1}-\log t, & t>0, p \in[0.1]
\end{array}\right.
$$

where p is a growth parameter and q is a barrier parameter.

Notice that $\frac{t^{1-q}-1}{q-1} \rightarrow-\log t$ when $q \rightarrow 1$. This class of kernel functions is fairly general. As we just explained, it includes log-kernel function as a special case. It also includes so-called self-regular kernel functions when $p=1$. These functions have been extensively discussed in recent literature (Peng, J, et. al, 2002). Moreover, it also includes non self-regular functions when $0 \leq p<1$. This class of functions was first discussed in (Lesaja G., et.al., 2008). The results in this chapter follow the results presented in that paper. However, the proofs of several results that were omitted in the paper are outlined here.

Properties of Kernel Functions

The derivatives of $\psi(t)$ in (3-1) play a crucial role in our analysis. Thus, we write down the first three derivatives:

$$
\begin{align*}
& \psi^{\prime}(t)=t^{p}-t^{-q} \\
& \psi^{\prime \prime}(t)=p t^{p-1}+q t^{-q-1} \tag{3-2}\\
& \psi^{\prime \prime \prime}(t)=p(p-1) t^{p-2}-q(q+1) t^{-q-2} .
\end{align*}
$$

In the next several lemmas we will describe certain properties of kernel function and its derivatives and their relationships in terms of inequalities. These results will be used in the analysis of the Generic IPM.

The following lemma states the so-called exponential convexity of kernel function which is crucial in proving the polynomial complexity of the Generic IPM.

Lemma 3.1 If $t_{1}>0$ and $t_{2}>0$, then $\psi\left(\sqrt{t_{1} t_{2}}\right) \leq \frac{1}{2}\left(\psi\left(t_{1}\right)+\left(\psi\left(t_{2}\right)\right)\right)$.

Proof: It can be shown that the inequality in the lemma holds if and only if
$t \psi^{\prime \prime}(t)+\psi^{\prime}(t) \geq 0$ for all $t>0$. This result is beyond the scope of the thesis and can be found (Peng, J., et. al., 2002). Using (3-1) one can easily verify that

$$
t \psi^{\prime \prime}(t)+\psi^{\prime}(t)=t\left(p t^{p-1}+\frac{q}{t^{q+1}}\right)+t^{p}-\frac{1}{t^{q}}=(p+1) t^{p}+\frac{(q-1)}{t^{q}}>0
$$

which completes the proof.

Lemma 3.2 If $t \geq 1$, then $\frac{\psi^{\prime}(t)}{2}(t-1) \leq \psi(t) \leq \frac{p+q}{2}(t-1)^{2}$.

Proof: If $f(t)=2 \psi(t)-(t-1) \psi^{\prime}(t)$, then $f^{\prime}(t)=\psi^{\prime}(t)-(t-1) \psi^{\prime \prime}(t)$ and $f^{\prime \prime}(t)=-(t-1) \psi^{\prime \prime \prime}(t)$. Also $f(1)=0$ and $f^{\prime}(1)=0$. Since $\psi^{\prime \prime \prime}(t)<0$ it follows that if
$t \geq 1$ then $f^{\prime \prime}(t) \geq 0$ whence $f^{\prime}(t) \geq 0$ and $f(t) \geq 0$. This implies the first inequality. The second inequality follows from Taylor's theorem and the fact that $\psi^{\prime \prime}(1)=p+q$.

Lemma 3.3 Suppose that $\psi\left(t_{1}\right)=\psi\left(t_{2}\right)$ with $t_{1} \leq 1 \leq t_{2}$. The following statements hold:
i. One has $\psi^{\prime}\left(t_{1}\right) \leq 0, \psi^{\prime}\left(t_{2}\right) \geq 0$, and $-\psi^{\prime}\left(t_{1}\right) \geq \psi^{\prime}\left(t_{2}\right)$.
ii. If $\beta \geq 1$, then $\psi\left(\beta t_{1}\right) \leq \psi\left(\beta t_{2}\right)$; equality holds if and only if $\beta=1$ or $t_{1}=t_{2}=1$.

Proof: Proof of (i):

The statement is obvious if $t_{1}=1$ or $t_{2}=1$ because then $\psi^{\prime}\left(t_{1}\right)=\psi^{\prime}\left(t_{2}\right)=0$ implies $t_{1}=t_{2}=1$ Thus we may assume that $t_{1}<1<t_{2}$. Suppose the opposite $-\psi^{\prime}\left(t_{1}\right)<\psi^{\prime}\left(t_{2}\right)$. By the mean value theorem we have

$$
\psi^{\prime}\left(t_{1}\right)=\left(1-t_{1}\right) \psi^{\prime \prime}\left(\xi_{2}\right), \text { for some } \xi_{2} \in\left(1, t_{2}\right)
$$

and

$$
-\psi^{\prime}\left(t_{2}\right)=\left(t_{2}-1\right) \psi^{\prime \prime}\left(\xi_{1}\right), \text { for some } \xi_{1} \in\left(t_{1}, 1\right) .
$$

Since $\psi^{\prime \prime}(\mathrm{t})$ is monotonically decreasing one has $\psi^{\prime \prime}\left(\xi_{1}\right) \geq \psi^{\prime \prime}\left(\xi_{2}\right)$. Then we obtain

$$
\left(t_{2}-1\right) \psi "\left(\xi_{2}\right)>\left(1-t_{1}\right) \psi^{"}\left(\xi_{1}\right) \geq\left(1-t_{1}\right) \psi "\left(\xi_{2}\right),
$$

Hence since $\psi^{\prime \prime}\left(\xi_{2}\right)>0$ it follows that $t_{2}-1>1-t_{1}$. Using this and the fact that $-\psi^{\prime}(t)$ is convex, we may also write

$$
\begin{array}{ll}
\psi\left(t_{2}\right)= & \\
=\int_{1}^{t_{2}} \psi^{\prime}(\xi) d \xi & \text { Since } \psi^{\prime}(t) \text { is concave, } \\
\geq \frac{1}{2}\left(t_{2}-1\right) \psi^{\prime}\left(t_{2}\right) & \text { Since } t_{2}-1>1-t_{1} \text { and } \psi^{\prime}\left(t_{2}\right)>0, \\
>\frac{1}{2}\left(1-t_{1}\right) \psi^{\prime}\left(t_{2}\right) & \text { Since } \psi^{\prime}\left(t_{1}\right)<\psi^{\prime}\left(t_{2}\right), \\
>-\frac{1}{2}\left(1-t_{1}\right) \psi^{\prime}(. & \text { Since } \psi^{\prime}(t) \text { is concave. } \\
\geq-\int_{t_{1}}^{1} \psi^{\prime}(\xi) d \xi & \\
=\psi\left(t_{1}\right) . &
\end{array}
$$

This contradiction proves the first part of the lemma.

Proof of (ii):

Consider, $f(\beta)=\psi\left(\beta t_{2}\right)-\psi\left(\beta t_{1}\right)$.

One has $f(1)=0$ and $f^{\prime}(\beta)=t_{2} \psi^{\prime}\left(\beta t_{2}\right)-t_{1} \psi^{\prime}\left(\beta t_{1}\right)$.

Since $\psi^{\prime \prime}(t) \geq 0$ for all $t>0, \psi^{\prime}(t)$ is monotonically increasing. Hence, $\psi^{\prime}\left(\beta t_{1}\right) \leq \psi^{\prime}\left(\beta t_{2}\right)$.
Substitution gives

$$
f^{\prime}(\beta)=t_{2} \psi^{\prime}\left(\beta t_{2}\right)-t_{1} \psi^{\prime}\left(\beta t_{1}\right) \geq t_{2} \psi^{\prime}\left(\beta t_{2}\right)-t_{1} \psi^{\prime}\left(\beta t_{2}\right)=\psi^{\prime}\left(\beta t_{2}\right)\left(t_{2}-t_{1}\right) \geq 0
$$

The last inequality holds since $t_{2} \geq t_{1}$ and $\psi^{\prime}(t) \geq 0$ for $t \geq 1$. This proves that $f(\beta) \geq 0$ for $\beta \geq 1$, and hence the inequality (ii) in the lemma follows.

If $\beta=1$ obviously we have equality. Otherwise, if $\beta>1$ and $f(\beta)=0$, then the mean value theorem implies $f^{\prime}(\xi)=0$ for some $\xi \in(1, \beta)$. But this implies $\psi^{\prime}\left(\xi t_{2}\right)=\psi^{\prime}\left(\xi t_{1}\right)$. Since $\psi^{\prime}(t)$
is strictly monotonic, this implies that $\xi t_{2}=\xi t_{1}$, whence $t_{1}=t_{2}$. Since also $t_{1} \leq 1 \leq t_{2}$ we obtain $t_{1}=t_{2}=1$. This completes the proof of the second part of the lemma.

Lemma 3.4 If $t \geq 1$, then $\psi^{\prime}(t)^{2} \geq 2 \psi(t) \psi^{\prime \prime}(t)$.

Proof: Defining $f(t)=\psi^{\prime}(t)^{2}-2 \psi(t) \psi^{\prime \prime}(t)$ one has $f(1)=0$ and

$$
f^{\prime}(t)=2 \psi^{\prime}(t) \psi^{\prime \prime}(t)-2 \psi^{\prime}(t) \psi^{\prime \prime}(t)-2 \psi(t) \psi^{\prime \prime \prime}(t)=-2 \psi(t) \psi^{\prime \prime \prime}(t)>0 .
$$

This proves the lemma.

Lemma 3.5 Let $\rho(s):[0, \infty) \rightarrow(0,1]$ be the inverse function of $-\frac{1}{2} \psi^{\prime}(t)$ for $t \leq 1$. The following inequality holds:

$$
\begin{equation*}
\rho(s) \geq \frac{1}{(1+2 s)^{\frac{1}{q}}} . \tag{3-3}
\end{equation*}
$$

Proof: Since $s=-\frac{1}{2} \psi^{\prime}(t)$, we have

$$
-2 s=t^{p}-t^{-q} \Rightarrow t^{-q}=t^{p}+2 s \leq 1+2 s .
$$

Since $t=\rho(1)$, this implies the lemma.

Lemma 3.6 If $t \geq 1$ and $q \geq 2-p$, then $t \leq 1+\sqrt{t \psi(t)}$.

Proof: Defining $f(t)=t \psi(t)-(t-1)^{2}$ we have $f(1)=0$ and

$$
f^{\prime}(t)=\psi(t)+t \psi^{\prime}(t)-2(t-1) .
$$

Moreover, it is clear that $f^{\prime}(1)=0$ and

$$
f^{\prime \prime}(t)=2 \psi^{\prime}(t)+t \psi^{\prime \prime}(t)-2=(2+p) t^{p}+(q-2) t^{-9}-2 \geq p t^{p}+(q-2) t^{q} \geq p\left(t^{p}-t^{-q}\right) \geq 0 .
$$

The second inequality above is due to the fact that $\mathrm{q} \geq 2-p$. Thus we obtain

$$
t \psi(t) \geq(t-1)^{2}
$$

which implies the lemma.

Lemma 3.7 Let $\varphi:[0, \infty) \rightarrow[1, \infty)$ be the inverse function of $\psi(t)$ for $t \geq 1$. The following inequalities hold:

$$
\begin{equation*}
(1+(p+1) s)^{\frac{1}{p+1}} \leq \varphi(s) \leq 1+s+\sqrt{s^{2}+2 s} . \tag{3-4}
\end{equation*}
$$

If $q \geq 2-p$, then

$$
\begin{equation*}
\varphi(s) \leq 1+\sqrt{s+s^{2}+s \sqrt{s^{2}+2 s}} \tag{3-5}
\end{equation*}
$$

Proof: Since $\mathrm{q}>1$ and $\mathrm{t} \geq 1$, we have

$$
s=\psi(t)=\frac{t^{p+1}-1}{p+1}+\frac{t^{1-q}-1}{q-1} \leq \frac{t^{p+1}-1}{p+1}
$$

Hence, the first inequality in (3-4) follows.

The second inequality in (3-4) follows by using the first inequality of Lemma 3.2:

$$
s=\psi(t) \geq \frac{1}{2}(t-1) \psi^{\prime}(t)=\frac{1}{2}(t-1)\left(t^{p}-t^{-q}\right) \geq \frac{1}{2}(t-1)\left(1-\frac{1}{t}\right)=\frac{1}{2}\left(t+\frac{1}{t}-2\right) .
$$

Hence, solving the following inequality

$$
t^{2}-2(1+s)^{t}+1 \leq 0
$$

leads to

$$
\begin{equation*}
t=\varphi(s) \leq 1+s+\sqrt{s^{2}+2 s} . \tag{3-6}
\end{equation*}
$$

Finally, let $q \geq 2-p$. By Lemma 3.6 one has $t \leq 1+\sqrt{t \psi(t)} \leq 1+\sqrt{t s}$.

Substitution of the upper bound for t given by (3-6) leads to

$$
\varphi(s) \leq 1+\sqrt{s+s^{2}+s \sqrt{s^{2}+2 s}}
$$

This completes the proof of the lemma.

Now we will derive a very important bound for normed proximity measure $\delta(v)=\frac{1}{2}\|\nabla \Psi(v)\|$ in terms of the original proximity measure given by the barrier function $\Psi(v)$.

Theorem 3.1 The following inequality holds:

$$
\begin{equation*}
\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v))) . \tag{3-7}
\end{equation*}
$$

The proof is beyond the scope of thesis and can be found in (Peng, J., et. al., 2002)

Corollary 3.1 If $\Psi(v) \geq \tau \geq 1$, then $\delta(v) \geq \frac{1}{6}(\Psi(v))^{\frac{p}{1+p}}$

Proof: Using Theorem 2.1, and the fact that $\Psi(v) \geq \tau \geq 1$, we have
$\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v)))=\frac{1}{2}(\varphi(\Psi(v)))^{p}-\left((\varphi(\Psi(v)))^{-q}\right) \geq \frac{1}{2}(\varphi(\Psi(v)))^{p}-\left((\varphi(\Psi(v)))^{-1}\right)$. Note that $t^{p}-\frac{1}{t}$ is monotonically increasing in t. Thus, by using the first inequality in (3-4), we obtain

$$
\begin{aligned}
\delta(v) & \geq \frac{1}{2} \frac{(\varphi(\Psi(v)))^{p+1}-1}{\varphi((\Psi(v))} \geq \frac{1}{2} \frac{(1+(p+1) \Psi(v))^{\frac{p+1}{p+1}}-1}{(1+(p+1) \Psi(v))^{\frac{1}{p+1}}} \\
& =\frac{1}{2} \frac{(p+1) \Psi(v)}{(1+(p+1) \Psi(v))^{\frac{1}{p+1}}} \geq \frac{1}{2} \frac{\Psi(v)}{(3 \Psi(v))^{\frac{1}{p+1}}} \\
& \geq \frac{1}{6}(\Psi(v))^{\frac{p}{p+1}}
\end{aligned}
$$

Which proves the corollary.

Analysis of the algorithm

The outline of the analysis of the algorithm is as follows.

1. Outer iteration estimates:

- Estimate of the increase of the barrier function after the μ update

2. Inner iteration estimates:

- Estimator for default step size
- Estimate of the decrease of the barrier function during the inner iteration with the default step size

Outer Iteration Estimates

At the start of each outer iteration of the algorithm, just before the update of the parameter μ with the factor $1-\theta$, we have $\psi(v) \leq \tau$. Since the μ vector is updated to $\mu^{+}=(1-\theta) \mu$, with $0<\theta<1$, the vector v is updated to $v^{+}=\frac{v}{\sqrt{1-\theta}}$, which in general leads to an increase in the value of $\Psi(v)$. Then, during the subsequent inner iterations, $\Psi(v)$ decreases until it passes the threshold τ again. During the course of the algorithm the largest values of $\Psi(v)$ occur just after the updates of μ. That is why we need to derive an estimate for the effect of a μ-update on the value of $\Psi(v)$.

Theorem 3.2 Let $\varphi:[0, \infty) \rightarrow[1, \infty)$ as defined in Lemma 3.7. Then for any positive vector v and any $\beta \geq 1$ the following inequality holds:

$$
\Psi(\beta v) \leq n \psi\left(\beta \varphi\left(\frac{\Psi(v)}{n}\right)\right)
$$

The proof is beyond the scope of this thesis and can be found in [Peng, J., et. al., 2002].

Corollary 3.2 Let $0 \leq \theta \leq 1$ and $v_{+}=\frac{v}{\sqrt{1-\theta}}$. If $\Psi(v) \leq \tau$, then

$$
\begin{equation*}
\Psi\left(v_{+}\right) \leq n \psi\left(\frac{\varphi\left(\frac{\tau}{n}\right)}{\sqrt{1-\theta}}\right) \leq \frac{(p+q) n}{2}\left(\frac{\varphi\left(\frac{\tau}{n}\right)}{\sqrt{1-\theta}}-1\right)^{2} \tag{3-8}
\end{equation*}
$$

Proof: With $\beta \geq 1$ and $\Psi(v) \leq 1$ the first inequality follows from Theorem 3.2. The second inequality follows by using Lemma 3.2 and $\psi^{\prime \prime}(1)=\frac{p+q}{q}$.

The following upper bounds on the value of $\psi\left(v_{+}\right)$after the μ-update follow immediately

$$
\begin{equation*}
\psi\left(v_{+}\right) \leq L_{1}:=n \varphi\left(\frac{1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}}{\sqrt{(1-\theta)}}\right), \quad q>1 \tag{3-9}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi\left(v_{+}\right) \leq L_{2}:=n \varphi\left(\frac{1+\sqrt{\frac{\tau}{n}+\frac{\tau^{2}}{n^{2}}+\frac{\tau}{n} \sqrt{\frac{\tau^{2}}{n^{2}}+\frac{2 \tau}{n}}}}{\sqrt{1-\theta}}\right), \quad q \geq 2-p \tag{3-10}
\end{equation*}
$$

Default Step-size

In this subsection, we will determine a default step size which not only keeps the iterations feasible but also gives rise to sufficiently large decrease of $\Psi(v)$ in each inner iteration. During an inner iteration, the parameter μ is fixed. After the step in the direction $(\Delta x, \Delta y, \Delta s)$ with step size α, the new iterate is

$$
\begin{equation*}
x_{+}=x+\alpha \Delta x, s_{+}=s+\alpha \Delta x, y_{+}=y+\alpha \Delta y \tag{3-11}
\end{equation*}
$$

And a new v-vector is given by

$$
\begin{equation*}
v_{+}=\sqrt{\frac{x_{+} s_{+}}{\mu}} . \tag{3-12}
\end{equation*}
$$

Since

$$
\begin{aligned}
& x_{+}=x\left(e+\alpha \frac{\Delta x}{x}\right)=x\left(e+\alpha \frac{d_{x}}{v}\right)=\frac{x}{v}\left(u+\alpha d_{x}\right), \\
& s_{+}=s\left(e+\alpha \frac{\Delta s}{s}\right)=s\left(e+\alpha \frac{d_{s}}{v}\right)=\frac{s}{v}\left(u+\alpha d_{s}\right), \\
& x s=\mu v^{2}
\end{aligned}
$$

we obtain

$$
v_{+}=\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)} .
$$

Next, we consider the decrease in Ψ as a function of α. We define two functions

$$
\begin{equation*}
f(\alpha)=\Psi\left(v_{+}\right)-\Psi(v) \tag{3-13}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}(\alpha):=\frac{1}{2}\left(\Psi\left(v+\alpha d_{\alpha}\right)+\Psi(v+\alpha d s)\right)-\Psi(v) . \tag{3-14}
\end{equation*}
$$

Lemma 3.1 implies that

$$
\Psi\left(v_{+}\right)=\Psi\left(\sqrt{\left(v+\alpha d_{x}\right)\left(v+\alpha d_{s}\right)}\right) \leq \frac{1}{2}\left(\Psi\left(v+\alpha d_{x}\right)+\Psi\left(v+\alpha d_{s}\right)\right) .
$$

The above inequality shows that $f_{1}(\alpha)$ is an upper bound of $f(\alpha)$. Obviously, $f(0)=f_{1}(0)=0$. Taking the derivative with respect to α, we get

$$
f_{1}^{\prime}(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime}\left(v_{i}+\alpha d_{x i}\right) d_{x i}+\psi^{\prime}\left(v_{i}+\alpha d_{s i}\right) d_{s i}\right) .
$$

From the above equation and using that $d_{x}+d_{s}=-\nabla \Psi(v)$ we obtain

$$
\begin{equation*}
f_{1}^{\prime}(0)=\frac{1}{2} \nabla \Psi(v)^{T}\left(d_{x}+d_{s}\right)=-\frac{1}{2} \nabla \Psi(v)^{T} \nabla \Psi(v)=-2 \delta(v)^{2} . \tag{3-15}
\end{equation*}
$$

Differentiating once again, we get

$$
\begin{equation*}
f^{\prime \prime} 1(\alpha)=\frac{1}{2} \sum_{i=1}^{n}\left(\psi^{\prime \prime}\left(v_{i}+\alpha d_{x i}\right)\right) d_{x i}^{2}+\psi^{\prime \prime}\left(\left(v_{i}+\alpha d_{s i}\right)\right) d_{s i}^{2}>0, \text { unless } d_{x}=d_{s}=0 . \tag{3-16}
\end{equation*}
$$

It is worthwhile to point out that during an inner iteration x and s are not both at the μ center since $\Psi(v) \geq \tau \geq 0$, so we may conclude that $f_{1}(\alpha)$ is strictly convex in α.

Lemma 3.8 The following inequality holds:

$$
\begin{equation*}
f_{1}^{\prime \prime}(\alpha) \leq 2 \delta^{2} \psi^{\prime \prime}\left(v_{\min }-2 \alpha \delta\right) . \tag{3-17}
\end{equation*}
$$

Proof: Since $d_{x} \perp d_{s}$, and $d_{x}+d_{s}=-\nabla \Psi(v)$ it is easy to see that $\left\|\left(d_{x}, d_{s}\right)\right\|=2 \delta$. where $\left\lvert\, \delta=\frac{1}{2}\|\nabla \Psi(v)\|\right.$ Therefore, we have $\left\|d_{x}\right\| \leq 2 \delta$ and $\left\|d_{s}\right\| \leq 2 \delta$. Hence,

$$
v_{i}+a d_{x} \geq v_{\min }-2 a \delta, \quad v_{i}+a d_{s} \geq v_{\min }-2 a \delta, \quad 1 \leq i \leq n
$$

Using (3-16) and definition of δ, we get

$$
f_{1}^{\prime \prime}(a) \leq \frac{1}{2} \psi^{\prime \prime}\left(v_{\min }-2 a \delta\right) \sum_{i=1}^{n}\left(d_{x i}^{2}+d_{s i}^{2}\right)=2 \delta^{2} \psi^{\prime \prime}\left(v_{\min }-2 a \delta\right) .
$$

This proves the lemma.

Lemma 3.9 If the step-size α satisfies

$$
\begin{equation*}
-\psi^{\prime}\left(v_{\min }-2 \alpha \delta\right)+\psi^{\prime}\left(v_{\min }\right) \leq 2 \delta \tag{3-18}
\end{equation*}
$$

then $f_{1}^{\prime}(\alpha) \leq 0$.

Proof: Using the Lemma 3.8,(3-15) and (3-17), we write:

$$
\begin{aligned}
f_{1}^{\prime}(a) & =f_{1}^{\prime}(0)+\int_{o}^{a} f_{1}^{\prime \prime}(\varsigma) d \varsigma \\
& \leq-2 \delta^{2}+2 \delta^{2} \int_{o}^{a} \psi^{\prime \prime}\left(v_{\min }-2 \varsigma \delta\right) d \varsigma \\
& =-2 \delta^{2}-\delta \int_{o}^{a} \psi^{\prime \prime}\left(v_{\min }-2 \varsigma \delta\right) d\left(v_{\min }-2 \varsigma \delta\right) \\
& =-2 \delta^{2}-\delta\left(\psi^{\prime}\left(v_{\min }-2 \alpha \delta\right)-\psi^{\prime}\left(v_{\min }\right)\right) \\
& \leq-2 \delta^{2}+2 \delta^{2}=0 .
\end{aligned}
$$

This proves the lemma.

Lemma 3.10 The largest possible value of the step-size satisfying the condition of Lemma 3.9 is given by

$$
\begin{equation*}
\bar{\alpha}:=\frac{1}{2 \delta}(\rho(\delta)-\rho(2 \delta)) \tag{3-19}
\end{equation*}
$$

Proof: We want α such that (3-18) holds with α as large as possible. Let us denote $v_{\min }$ as v_{1}. Since $\psi^{\prime \prime}(t)$ is decreasing the derivative with respect to v_{1}. of the expression which is to the left side of the inequality (3-18) (i.e. $\left.\psi^{\prime \prime}\left(v_{1}-2 \alpha \delta\right)+\psi^{\prime \prime}\left(v_{1}\right)\right)$ is negative. Hence, fixing δ, the smaller v_{1} is, the smaller α will be. We have

$$
\delta=\frac{1}{2}\|\nabla \Psi(v)\| \geq \frac{1}{2}\left|\psi^{\prime}\left(v_{1}\right)\right| \geq-\frac{1}{2} \psi^{\prime}\left(v_{1}\right) .
$$

Equality holds if and only if v_{1}. is the only coordinate in v that differs from 1 and $v_{1} \leq 1$ (in case $\left.\psi^{\prime}\left(v_{1}\right) \leq 0\right)$. Hence the worst situation for the step size occurs when v_{1} satisfies

$$
\begin{equation*}
-\frac{1}{2} \psi^{\prime}\left(v_{1}\right)=\delta . \tag{3-20}
\end{equation*}
$$

The derivative with respect to α of the expression that is the left side of the inequality (3-18) equals $2 \delta \psi^{\prime \prime}\left(v_{1}-2 \alpha \delta\right) \geq 0$ and hence this expression is increasing in α Thus, the largest possible value of α satisfying (3-18), satisfies

$$
\begin{equation*}
-\frac{1}{2} \psi^{\prime}\left(v_{1}-2 \alpha \delta\right)=2 \delta . \tag{3-21}
\end{equation*}
$$

Due to the definition of $\rho,(3-20)$ and (3-21) can be written as

$$
v_{1}=\rho(\delta), \quad v_{1}-2 \alpha \delta=\rho(2 \delta) .
$$

This implies

$$
\alpha=\frac{1}{2 \delta}\left(v_{1}-\rho(2 \delta)\right)=\frac{1}{2 \delta}(\rho(\delta)-\rho(2 \delta))
$$

and the lemma is proved.

Lemma 3.11 Let $\bar{\alpha}$ be defined by (3-19). The following inequality holds:

$$
\begin{equation*}
\bar{\alpha} \geq \frac{1}{\psi^{\prime \prime}(\rho(2 \delta))} . \tag{3-22}
\end{equation*}
$$

Proof: By definition of ρ,

$$
-\psi^{\prime}(\rho(\delta))=2 \delta
$$

Taking the derivative with respect to δ, we find

$$
-\psi^{\prime \prime}(\rho(\delta)) \rho^{\prime}(\delta)=2
$$

which leads to

$$
\begin{equation*}
\rho^{\prime}(\delta)=-\frac{2}{\psi^{\prime \prime}(\rho(\delta))}<0 \tag{3-23}
\end{equation*}
$$

Hence, ρ is monotonically decreasing. An immediate consequence of (3-19)) is

$$
\begin{equation*}
\bar{\alpha}=\frac{1}{2 \delta} \int_{2 \delta}^{\delta} \rho^{\prime}(\sigma) d \sigma=\frac{1}{\delta} \int_{\delta}^{2 \delta} \frac{d \sigma}{\psi^{\prime \prime}(\rho(\sigma))} \tag{3-24}
\end{equation*}
$$

where we also used (3-23). To obtain a lower bound for $\bar{\alpha}$, we want to replace the argument of the last integral by its minimal value. We would like to know when $\psi^{\prime \prime}(\rho(\sigma))$ is a maximal for $\sigma \in[\delta, 2 \delta]$. We know that $\psi^{\prime \prime}$ is monotonically decreasing. Thus $\psi^{\prime \prime}(\rho(\sigma))$ is maximal for $\sigma \in[\delta, 2 \delta]$ when $\rho(\sigma)$ is minimal. Since ρ is monotonically decreasing this occurs when $\sigma=2 \delta$. Therefore

$$
\bar{\alpha}=\frac{1}{\delta} \int_{\delta}^{2 \delta} \frac{d \sigma}{\psi^{\prime \prime}(\rho(\sigma))} \geq \frac{1}{\delta} \frac{\delta}{\psi^{\prime \prime}(\rho(2 \delta))}=\frac{1}{\psi^{\prime \prime}(\rho(2 \delta))}
$$

and the lemma is proved.

Theorem 3.3 We have $\bar{\alpha} \geq \widetilde{\alpha}:=\frac{1}{{ }^{1+q}}$

$$
\begin{equation*}
(p+q)(1+4 \delta)^{\frac{\dot{q}}{q}} \tag{3-25}
\end{equation*}
$$

Proof: Using Lemma 3.11, and the fact that $\psi^{\prime \prime}(t)$ is monotonically decreasing for $t \in(0,+\infty)$ we have

$$
\bar{\alpha} \geq \frac{1}{\psi^{\prime}(p(2 \delta))} \geq \frac{1}{p(1+4 \delta)^{\frac{1+q}{q}}+q(1+4 \delta)^{\frac{1+q}{q}}} \geq \frac{1}{(p+q)(1+4 \delta)^{\frac{q+1}{q}}}=\tilde{\alpha}
$$

and the theorem is proved.

Thus, we can define the following default step-size

$$
\begin{equation*}
\tilde{\alpha}:=\frac{1}{(p+q)(1+4 \delta)^{\frac{q+1}{q}}}, \tag{3-26}
\end{equation*}
$$

Inner Iteration Estimates

Using the lower bound on the step size obtained in (3-25), we can obtain results on the decrease of the barrier function during inner iteration.

Lemma 3.12 If the step size is such that $\alpha \leq \bar{\alpha}$, then $f(\alpha) \leq-\alpha \delta^{2}$.

Proof: Let the univariate function h be such that

$$
h(0)=f_{1}(0)=0, h^{\prime}(0)=f_{1}^{\prime}=2 \delta^{2}, h^{\prime \prime}(a)=2 \delta^{2} \psi^{\prime \prime}\left(v_{\min }-2 a \delta\right)
$$

According to (3-17) we have $f^{\prime \prime}(\alpha) \leq h^{\prime \prime}(\alpha)$ and that implies $f^{\prime}(\alpha) \leq h^{\prime}(\alpha)$ and $f(\alpha) \leq h(\alpha)$. Taking $\alpha \leq \tilde{\alpha}$, with $\tilde{\alpha}$ defined in (3-26)), we have

$$
h^{\prime}(\alpha)=-2 \delta^{2}+2 \delta^{2} \int_{0}^{\alpha} \psi^{\prime \prime}\left(v_{\min }-2 \xi \delta\right) d \xi=-2 \delta^{2}-\delta\left(\psi^{\prime}\left(v_{\min }-2 \alpha \delta\right)-\psi^{\prime}\left(v_{\min }\right)\right) \leq 0
$$

Since $\psi^{" \prime \prime}(t)$ decreasing in $t, h^{\prime \prime}(\alpha)$ is increasing α. Using Lemma 3.13 below, we get:

$$
f_{1}(a) \leq h(a) \leq \frac{1}{2} a h^{\prime}(0)=-\alpha \delta^{2}
$$

As we mentioned before, $f_{1}(\alpha)$ is an upper bound of $f(a)$, hence, the lemma is proved.

Theorem 3.4 The following inequality holds:

$$
\begin{equation*}
f(\widetilde{\alpha}) \leq-\frac{1}{60(p+q)} \Psi(v)^{\frac{p(q-1)}{q(p+1)}} . \tag{3-28}
\end{equation*}
$$

Poof: According to Lemma 3.12, if the step-size is such that $\alpha \leq \bar{\alpha}$, then $f(\alpha) \leq-\alpha \delta^{2}$. By (3-25) the default step-size $\tilde{\alpha}$ satisfies $\tilde{\alpha} \leq \alpha$, hence, the following upper bound for $f(\alpha)$ is obtained $f(\widetilde{\alpha}) \leq-\widetilde{\alpha} \delta^{2}$. Using Corollary 3.2 and the fact that $f(\widetilde{\alpha})$ is monotonically decreasing in δ, we obtain

$$
f(\tilde{\alpha}) \leq \frac{\delta^{2}}{(p+q)(1+4 \delta)^{\frac{q+1}{q}}}
$$

$$
\begin{aligned}
& \leq \frac{\Psi(v)^{\frac{2 p}{p+1}}}{36(p+q)\left(1+\frac{2}{3} \Psi(v)^{\frac{p}{p+1}}\right)^{\frac{q+1}{q}}} \\
& \leq-\frac{1}{60(p+q)} \Psi(v)^{\frac{p(q-1)}{q(p+1)}}
\end{aligned}
$$

Thus, the proof is complete.

Estimate of the total number of iterations

As we've already mentioned, there are two types of algorithms.

- The Short-step Algorithms, where the barrier update parameter θ depends on the size of the problem; that is, $\theta=O\left(\frac{1}{\sqrt{n}}\right)$.
- The Long-step Algorithms, where the barrier update parameter θ is fixed; that is, $\theta \in(0,1)$.

We will give the estimate of the total number of iterations needed for both types of algorithms.

We will need following technical results. The proofs can be found in (Peng, J., et. al., 2002)]

Lemma 3.13 If $\alpha \in[0,1]$ and $t \geq-1$ then $(1+t)^{\alpha} \leq 1+\alpha t$.

Lemma 3.14 Let $h(t)$ be twice differentiable convex function with $h(0)=0, h^{\prime}(0)<0$, and let $h(t)$ attain its (global) minimum at $t^{*}>0$. If $h^{\prime \prime}(t)$ is monotonically increasing for $t \in\left\{0, t^{*}\right\}$ then $h(t) \leq \frac{t h^{\prime}(0)}{2}, 0 \leq t \leq t^{*}$.

Lemma 3.15 Let $t_{0}, t_{1}, \ldots t_{k}$ be a sequence of positive numbers such that
$t_{k+1} \leq t_{k}-\beta_{k}{ }^{1-\gamma}, \quad k=0,1 \ldots K-1 \quad$ where $\beta>0$ and $0<\gamma \leq 1$. Then $K \leq\left[\frac{t_{0}^{\gamma}}{\beta \gamma}\right]$.

Long-step Algorithms

Lemma 3.16 The total number of outer iterations in both cases is the same.

$$
\begin{equation*}
\frac{1}{\theta} \log \frac{n}{\varepsilon} \tag{3-29}
\end{equation*}
$$

Proof: The number of outer iterations is the number of iterations K necessary to obtain $n \mu \leq \varepsilon$. Previous and new μ are related as follows $\mu:=(1-\theta) \mu$. Thus, $n \mu \leq \varepsilon$ can be written as $\mu_{0}(1-\theta)^{K} \leq \frac{\varepsilon}{n}$. We can assume that $\mu_{0}=1$ and by taking the logarithm of both sides of the inequality we obtain $K \log (1-\theta) \leq \log \frac{\varepsilon}{n}$. Using the Taylor theorem for $\log (1-\theta)$ we obtain $K \leq \frac{1}{\theta} \log \frac{n}{\varepsilon}$ proving the lemma.

Now we need to estimate the upper bound on the total number of inner iterations per one outer iteration for the large-step methods. That number is equal to the number of iterations necessary to return to the situation $\Psi(v) \leq \tau$. We denote the value of $\Psi(v)$ after the μ update
as Ψ_{0}. The subsequent values in the same outer iteration are denoted as $\Psi_{k}, k=1,2, \cdots, K$
where K denotes the total number of inner iterations in the outer iteration. By using (3-9), we have

$$
\Psi_{0} \leq n \psi\left(\frac{1+\frac{\tau}{n}+\sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}}{\sqrt{1-\Theta}}\right)
$$

Since $\psi(t) \leq \frac{t^{p+1}-1}{p+1}$ when $t \geq 1$ and $1-(1-\theta)^{\frac{p+1}{2}} \leq \theta$, after some elementary reductions, we obtain:

$$
\begin{equation*}
\Psi_{0} \leq \frac{n \theta+(p+1) \tau+n(p+1) \sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}}{(p+1)(1-\theta)^{\frac{p+1}{2}}} . \tag{3-30}
\end{equation*}
$$

Now Theorem 3.4 leads to

$$
\begin{equation*}
\Psi_{k+1} \leq \Psi_{k}-\beta\left(\Psi_{k}\right)^{1-\gamma}, \quad k=0,1, \ldots, . K-1 \tag{3-31}
\end{equation*}
$$

where $\beta=\frac{1}{60(p+q)}$ and $\gamma=\frac{p+q}{q(p+1)}$. Using Lemma 3.15 and (3-30) and (3-31) we obtain the following upper bound on the number K of inner iterations.

$$
K \leq 60 q(p+1)\left(\Psi_{0}\right)^{\frac{p+q}{q(p+1)}} \leq 60 q(p+1)\left(\frac{n \theta+(p+1) \tau+n(p+1) \sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}}{(p+1)(1-\theta)^{\frac{p+1}{2}}}\right)^{\frac{p+q}{q(p+1)}}
$$

32)

Now we can derive an upper bound on the total number iterations needed by the large-update version of the Generic IPM in Figure 2.1. According to Lemma 3.16 the number of outer iterations is bounded above by

$$
\frac{1}{\theta} \log \frac{n}{\varepsilon}
$$

By multiplying the number of outer iterations and the number of inner iterations obtained in
(3-32) in the lemma above we get an upper bound for the total number of iterations

$$
\frac{60 q(p+1)}{\theta}\left(\frac{\left.n \theta+(p+1) \tau+n(p+1) \sqrt{\left(\frac{\tau}{n}\right)^{2}+\frac{2 \tau}{n}}\right)^{\frac{p+q}{q(p+1)}}}{(p+1)(1-\theta)^{\frac{p+1}{2}}} \log \frac{n}{\varepsilon}\right.
$$

For large update methods we know that $\theta=\Theta(1)$, and $\tau=O(n)$. After some elementary transformations the iteration bound reduces to the following bound

$$
\begin{equation*}
O\left(q n^{\frac{p+q}{q(p+q)}} \log \frac{n}{\varepsilon}\right) \tag{3-33}
\end{equation*}
$$

This result is summarized in the theorem below

Theorem 3.5: Given that $\theta=\Theta(1)$ and $\tau=O(n)$ which are characteristics of the large-update methods the Generic IPM described in the Figure 2.1 will obtain ε - appropriate solutions of
(P) and (D) in at most $O\left(q n^{\frac{p+q}{q(p+q)}} \log \frac{n}{\varepsilon}\right)$ iterations.

The obtained complexity result contains several previously known complexity results as special cases.

1. When $p=1$ and $q>1$, the kernel function $\psi(t)$ becomes the prototype self-regular function. If in addition, $q=\log n$ the iteration bound reduces to the best known bound for self-regular function, which is $O\left(\sqrt{n} \log n \log \frac{n}{\varepsilon}\right)$.
2. Letting $p=1$ and $q=1$, the iteration bound becomes $O\left(n \log \frac{n}{\varepsilon}\right)$ and $\psi(t)$ represents the classical logarithmic kernel function.
3. For $q=2$ and $p=0, \psi(t)$ represents the simple kernel function $\psi(t)=t-\frac{1}{t}-2$ which is not self-regular. The iteration bound is the same as the one obtained for the logarithmic kernel function.

Short-Step Algorithms

To get the best possible bound for short-step methods we need to use the bound described in

$$
\Psi_{0} \leq n \psi\left(\frac{1+\sqrt{\frac{\tau}{n}+\frac{\tau^{2}}{n^{2}}+\frac{\tau}{n} \sqrt{\frac{\tau^{2}}{n^{2}}+\frac{2 \tau}{n}}}}{\sqrt{1-\theta}}\right) \leq \frac{(p+q) n}{2}\left(\frac{1+\sqrt{\frac{\tau}{n}+\frac{\tau^{2}}{n^{2}}+\frac{\tau}{n} \sqrt{\frac{\tau^{2}}{n^{2}}+\frac{2 \tau}{n}}}}{\sqrt{1-\theta}}-1\right)^{2}
$$

Using $1-\sqrt{1-\theta}=\frac{\theta}{1+\sqrt{1-\theta}} \leq \theta$ the above inequality can be simplified to

$$
\begin{equation*}
\Psi_{0} \leq \frac{p+q}{2(1-\theta)}\left(\theta \sqrt{n+\sqrt{\tau+\frac{\tau^{2}}{n}+\tau \sqrt{\frac{\tau^{2}}{n^{2}}+\frac{2 \tau}{n}}}}\right)^{2} \tag{3-34}
\end{equation*}
$$

Following the same line of arguments as in the above subsection 3.3.1 we conclude that the total number K of inner iterations is bounded above by

$$
\begin{equation*}
K \leq 60 q(p+1)\left(\Psi_{0}\right)^{\frac{p+q}{q(p+1)}} \leq \frac{p+q}{(1-\theta)}\left(\theta \sqrt{n+\sqrt{\tau+\frac{\tau^{2}}{n}+\tau \sqrt{\frac{\tau^{2}}{n^{2}}+\frac{2 \tau}{n}}}}\right)^{\frac{2(p+q)}{q(p+1)}} \tag{3-35}
\end{equation*}
$$

Given the upper bound on the number of the outer iterations as mentioned in the previous subsection 3.3.1 the upper bound on the total number of iterations is

$$
\begin{equation*}
\frac{60 q(p+q)}{\theta(1-\theta)}\left(\theta \sqrt{n}+\sqrt{\tau \frac{\tau^{2}}{n}+\tau \sqrt{\frac{\tau^{2}}{n^{2}}}+\frac{2 \tau}{n}}\right)^{\frac{2(p+q)}{q(p+1)}} \log \frac{n}{\varepsilon} \tag{3-36}
\end{equation*}
$$

For small update methods it is well known that $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$ and $\tau=O(1)$. After some elementary reductions one easily obtains that the iteration bound is $O\left(q^{2} \sqrt{n} \log \frac{n}{\varepsilon}\right)$. We summarize this result in the theorem below.

Theorem 3.6: Given that $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$ and $\tau=O(1)$ which are characteristics of the small update methods the Generic IPM described in the Figure 2.1 we will obtain ε-appropriate solutions of (P) and (D) in at most $O\left(q^{2} \sqrt{n} \log \frac{n}{\varepsilon}\right)$ iterations.

CHAPTER 4

ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNEL FUNCTIONS

Summary of the algorithm analysis

Looking carefully at the analysis of the Generic IPM described in Chapter 3 the procedure can be summarized in the following way.

Step 0: Input a kernel function ψ; an update parameter $\theta, 0<\theta<1$; a threshold parameter τ; and an accuracy parameter ε.

Step 1: \quad Solve the equation $-\frac{1}{2} \psi^{\prime}=s$ to get $\rho(s)$ the inverse function of

$$
-\frac{1}{2} \psi^{\prime}(t), t \in(0,1] . \text { If the equation is hard to solve, derive a lower bound for } \rho(s)
$$

Step 2: \quad Calculate the decrease of $\Psi(t)$ in terms of δ for the default step-size $\widetilde{\alpha}$ from

$$
f(\widetilde{\alpha}) \leq-\frac{\delta^{2}}{\psi^{\prime \prime}(\rho(2 \delta))}
$$

Step 3: \quad Solve the equation $\psi(t)=s$ to get $\varphi(s)$, the inverse function of $\psi(t), t \geq 1$. If the equation is hard to solve, derive lower and upper bounds for $\varphi(s)$.

Step 4: \quad Derive a lower bound for δ in terms of $\Psi(v)$ by using $\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v)))$.

Step 5: Using the results of Step 3 and Step 4 find a valid inequality of the form $f(\widetilde{\alpha}) \leq-\kappa \Psi(v)^{1-\gamma}$ for some positive constants κ and $\gamma \in(0,1]$.

Step 6: Calculate the upper bound of Ψ_{0} from

$$
\Psi_{0} \leq L_{\psi}(n, \theta, \tau)=n \psi\left(\frac{\varphi\left(\frac{\tau}{n}\right)}{\sqrt{1-\theta}}\right) \leq \frac{n}{2} \psi^{\prime \prime}(1)\left(\frac{\varphi\left(\frac{\tau}{n}\right)}{\sqrt{1-\theta}}-1\right)^{2}
$$

Step 7: Derive an upper bound for the total number of iterations from

$$
\frac{\Psi_{0}^{\gamma}}{\theta \kappa \gamma} \log \frac{n}{\varepsilon} .
$$

Step 8: \quad Set $\tau=O(n)$ and $\theta=\Theta(1)$ so as to calculate complexity bound for large-update methods, or set $\tau=O(1)$ and $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$ so as to calculate the complexity bound for small update methods.

Additional Kernel Functions

We will consider the following additional kernel functions.

$$
\psi_{1}(t)=\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q(q-1)}-\frac{q-1}{q}(t-1), \quad q>1
$$

$$
\begin{equation*}
\psi_{2}(t)=\frac{t^{2}-1}{2}+\frac{e^{\frac{1}{t}}-e}{e} \tag{4-2}
\end{equation*}
$$

$\psi_{3}(t)=\frac{t^{2}-1}{2}-\int_{1}^{t} e^{\frac{1}{\zeta}-1} d \zeta$

The growth term in all of them is the same $\psi_{g}(t)=\frac{t^{2}-1}{2}$ while the barrier term varies $\psi_{b}(t)$. The reason for considering this growth term is that according to the analysis above it seems to give the best complexity results and, thus, will give a more consistent view of the complexity analysis.

The following lemmas are useful for the above kernel functions. They are variations of the similar lemmas in the previous chapter and actually they are also valid for the class of kernel functions (3-1) used in that chapter. Their main purpose is to help facilitate the summary analysis described in the previous subsection.

Lemma 4.1 When $\psi(t)=\psi_{i}(t)$ for $1 \leq i \leq 3$, then $\sqrt{1+2 s} \leq \varphi(s) \leq 1+\sqrt{2 s}$.

Proof: The inverse function of $\psi(t)$ for $t \in[1, \infty)$ is obtained by solving for t from the equation $\psi(t)=s$, for $t \geq 1$. In almost all cases it is hard to solve this equation explicitly. However, we can easily find a lower and an upper bound for t and this suffices for our goal. First one has

$$
s=\psi(t)=\frac{t^{2}-1}{2}+\psi_{b}(t) \leq \frac{t^{2}-1}{2},
$$

where $\psi_{b}(t)$ denotes the barrier term. The inequality is due to the fact that $\psi_{b}(1)=0$ and $\psi_{b}(t)$ is monotonically decreasing. It follows that

$$
t=\varphi(s) \geq \sqrt{1+2 s}
$$

For the second inequality we use the fact that $\psi_{i}{ }^{\prime \prime}(t) \geq 1$ for $1 \leq i \leq 3$. Note that $\psi_{i}(t)$ are nonnegative strictly convex functions such that $\psi_{i}(1)=0$. This implies that $\psi_{i}(t)$ is twice differentiable and therefore is completely determined by its second derivative

$$
\begin{equation*}
\psi_{i}(t)=\int_{1}^{t} \int_{1}^{\xi} \psi_{i}^{\prime \prime}(\varsigma) d \varsigma d \xi \tag{4-4}
\end{equation*}
$$

Thus

$$
s=\psi_{i}(t)=\int_{1}^{t} \int_{1}^{\xi} \psi_{i}{ }^{\prime \prime}(\varsigma) d \varsigma d \xi \geq \int_{1}^{t} \int_{1}^{\xi} d \varsigma d \xi=\frac{1}{2}(t-1)^{2}
$$

which implies

$$
t=\varphi(s) \leq 1+\sqrt{2 s}
$$

This completes the proof.

Lemma 4.2 Let $1 \leq i \leq 3$. Then one has $L_{\psi}(n, \theta, \tau) \leq \frac{\psi^{\prime \prime}(1)}{2} \frac{(\sqrt{2 \tau}+\theta \sqrt{n})^{2}}{1-\theta}$. Hence, if $\tau=O(1)$ and $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$, then $\Psi_{0}=O\left(\psi^{\prime \prime}(1)\right)$.

Prof: By Lemma 4.1 we have $\varphi(s) \leq 1+\sqrt{2 s}$. Hence, by using Theorem 3.2 and first inequality in (3-8) we have

$$
\begin{equation*}
\Psi_{0} \leq L_{\psi}(n, \theta, \tau)=n \psi\left(\frac{\varphi\left(\frac{\tau}{n}\right)}{\sqrt{1-\theta}}\right) \leq n \psi\left(\frac{1+\sqrt{\frac{2 \tau}{n}}}{\sqrt{1-\theta}}\right) \tag{4-5}
\end{equation*}
$$

By using Taylor theorem and the fact that $\psi(1)=\psi^{\prime}(1)=0$ we obtain

$$
\psi(t)=\frac{1}{2} \psi^{\prime \prime}(1)(t-1)^{2}+\frac{1}{3!} \psi^{\prime \prime}(\xi)(\xi-1)^{3}
$$

Given the fact that $\psi^{\prime \prime}$ ' $(\xi)<0$ we obtain for $t>1$ and $1<\xi<t$

$$
\begin{equation*}
\psi(t) \leq \frac{1}{2} \psi^{\prime \prime}(1)(t-1)^{2} \tag{4-6}
\end{equation*}
$$

Applying (4-6) to (4-5)with $t=\frac{1+\sqrt{\frac{2 \tau}{n}}}{\sqrt{1-\theta}}$ we obtain

$$
\psi_{0} \leq \frac{n \psi^{\prime \prime}(1)}{2}\left(\frac{1+\sqrt{\frac{2 \tau}{n}}}{\sqrt{1-\theta}}-1\right)^{2} \leq \frac{n \psi^{\prime \prime}(1)}{2}\left(\frac{\theta+\sqrt{\frac{2 \tau}{n}}}{\sqrt{1-\theta}}\right)^{2}=\frac{\psi^{\prime \prime}(1)}{2} \frac{(\sqrt{2 \tau}+\theta \sqrt{n})^{2}}{1-\theta}
$$

where we also used the fact that $1-\sqrt{1-\theta}=\frac{\theta}{1+\sqrt{1-\theta}} \leq \theta$. This proves the lemma.

Lemma 4.3 Let $\eta:[0, \infty) \rightarrow(0,1]$ be the inverse function of the restriction of $-\psi_{b}{ }^{\prime}(t)$ to the interval $(0,1]$ where $\psi_{b}(t)$ is the barrier term in the kernel functions $\psi_{i}(t), 1 \leq i \leq 3$. Then

$$
\rho(s) \geq \eta(1+2 s) .
$$

Proof: Let $t=\rho(s)$. Due to the definition of ρ as the inverse function of $-\frac{1}{2} \psi^{\prime}(t)$ for $t \leq 1$ this means that

$$
-2 s=\psi^{\prime}(t)=t+\psi_{b}^{\prime}(t), t \leq 1 .
$$

Since $t \leq 1$ this implies

$$
-\psi_{b}^{\prime}(t)=t+2 s \leq 1+2 s
$$

Since $-\psi_{b}{ }^{\prime}(t)$ is monotonically decreasing in all three cases, it follows that

$$
t=\rho(s) \geq \eta(1+2 s),
$$

proving the lemma.

Analysis of the Generic IPM with Additional Kernel Functions

In this subsection we will provide the analysis of the Generic IPM using additional kernel functions stated in the subsection. We will follow the steps described earlier.

Example

Consider the function

$$
\psi_{1}(t)=\psi(t)=\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q(q-1)}-\frac{q-1}{q}(t-1), \quad q>1 .
$$

Step 1: The inverse function of $-\psi_{b}{ }^{\prime}(t)=1+\frac{t-q-1}{q}$ is given by $\eta(s)=-\frac{1}{(1+q(s-1))^{\frac{1}{q}}}$.

Hence, by Lemma 6.3, $\rho(s)=\frac{1}{(1+2 q s)^{\frac{1}{q}}}$.

Step 2: It follows that

$$
\begin{equation*}
f(\alpha) \leq-\frac{\delta^{2}}{\psi^{\prime \prime}(\eta(2 \delta))}=-\frac{\delta^{2}}{1+\frac{1}{\rho(2 \delta)^{q+1}}} \leq-\frac{\delta^{2}}{1+(1+4 q \delta)^{\frac{q+1}{q}}} . \tag{4-7}
\end{equation*}
$$

Step 3: By Lemma 6.1 the inverse function of $\psi(t)$ for $t \in[1, \infty)$ satisfies

$$
\sqrt{1+2 s} \leq \varphi(s) \leq 1+\sqrt{2 s}
$$

Omitting the argument v, we therefore have

$$
\varphi(\Psi(v)) \geq \sqrt{1+2 \Psi} .
$$

Step 4: Now using the fact that $\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v)))$, and assuming $\Psi \geq \tau \geq 1$, we obtain

$$
\begin{equation*}
\delta \geq \frac{1}{2}\left(\sqrt{1+2 \Psi}-1+\frac{1}{q}\left(1-\frac{1}{(1+2 \Psi)^{q}}\right) \geq \frac{1}{2}(\sqrt{1+2 \Psi}-1)=\frac{\Psi}{1+\sqrt{1+2 \Psi}} .\right. \tag{4-8}
\end{equation*}
$$

Step 5: Combining (4-7) and (4-8) after some elementary reductions, we obtain

$$
\begin{equation*}
f(\tilde{\alpha}) \leq-\frac{\delta^{2}}{1+(1+4 q \delta)^{\frac{q+1}{q}}} \leq-\frac{1}{53} \Psi^{\frac{q-1}{2 q}} . \tag{4-9}
\end{equation*}
$$

Thus, it follows that

$$
\Psi_{k+1} \leq \Psi_{k}-\kappa\left(\Psi_{k}\right)^{1-\gamma}, \quad k=0,1, \ldots, K-1
$$

with $\kappa=\frac{1}{53 q}$ and $\gamma=\frac{q+1}{2 q}$, and K denotes the number of inner iterations. Hence, by Lemma 3.15 the number K of inner iterations is bounded above by

$$
\begin{equation*}
K \leq \frac{\Psi_{0}}{k \gamma}=\frac{106 q^{2}}{q+1} \Psi_{0} \leq 106 q \Psi_{0}^{\frac{q+1}{2 q}} \tag{4-10}
\end{equation*}
$$

Step 6: To estimate Ψ_{0} we use Lemma 6.2, with $\psi^{\prime \prime}(1)=2$. Thus, we obtain

$$
\Psi_{0} \leq \frac{(\theta \sqrt{n}+\sqrt{2 \tau})^{2}}{1-\theta}
$$

Step 7: Thus, using Lemma 3.16 the total number of iterations is bounded above by

$$
\begin{equation*}
\frac{K}{\theta} \log \frac{n}{\varepsilon} \leq \frac{106 q}{\theta}\left(\frac{(\theta \sqrt{n}+\sqrt{2 \tau})^{2}}{1-\theta}\right)^{\frac{q+1}{2 q}} \log \frac{n}{\varepsilon} \tag{4-11}
\end{equation*}
$$

Step8: For large update methods (with $\tau=O(n)$ and $\theta=\Theta(1)$) the right hand side expression becomes

$$
\begin{equation*}
O\left(q n^{\frac{q+1}{2 q}} \log \frac{n}{\varepsilon}\right) \tag{4-12}
\end{equation*}
$$

For small update methods (with $\tau=O(1)$ and $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$) the right hand side expression becomes

$$
\begin{equation*}
O\left(q \sqrt{n} \log \frac{n}{\varepsilon}\right) \tag{4-13}
\end{equation*}
$$

Example

Consider the kernel function

$$
\psi_{2}(t)=\psi(t)=\frac{t^{2}-1}{2}+\frac{e^{\frac{1}{t}}-e}{e}
$$

Step 1: The inverse function of $-\psi_{b}{ }^{\prime}(t)=\frac{e^{\frac{1}{t}}-1}{t^{2}}$ is such that $\eta(s)=t \Leftrightarrow \frac{e^{\frac{1}{t}}-1}{t^{2}}=s, t \leq 1$. It
follows that $\frac{e^{\frac{1}{t}}-1}{t^{2}}=s t^{2} \leq s$ whence we obtain $\eta(s)=t \geq \frac{1}{1+\log s}$. Hence, by Lemma4.3, $\rho(s) \geq \eta(1+2 s)$.

Step 2: Since $\psi "(t)$ is monotonically decreasing we have

$$
f(\widetilde{\alpha}) \leq-\frac{\delta^{2}}{\psi^{\prime \prime}(\rho(2 \delta))} \leq \frac{\delta^{2}}{\psi^{\prime \prime}(\eta(1+4 q \delta))}
$$

Now putting $t=\eta(1+4 q \delta)$ we have $t \leq 1$ and we may write

$$
f(\alpha) \leq-\frac{\delta^{2}}{\psi^{\prime \prime}(t)}=-\frac{\delta^{2}}{1+\frac{1+2 t}{t^{4}} e^{\frac{1}{t}-1}} \leq \frac{\delta^{2}}{1+\frac{3}{t^{4}} e^{\frac{1}{t}-1}}=\frac{\delta^{2}}{1+\frac{3(1+4 \delta)}{t^{2}}} \leq \frac{\delta^{2}}{1+\frac{15 \delta}{t^{2}}} .
$$

Since $\frac{1}{t^{2}}=\frac{1}{(\eta(1+4 \delta))^{2}} \leq(1+\log (1+4 \delta))^{2}$ we finally get

$$
\begin{equation*}
f(\alpha)=\frac{\delta^{2}}{1+15 \delta(1+\log (1+4 \delta))^{2}} . \tag{4-14}
\end{equation*}
$$

Step 3: By Lemma 6.1 the inverse function of $\psi(t)$ for $t \in[1, \infty)$ satisfies $\sqrt{1+2 s} \leq \varphi(s) \leq 1+\sqrt{2 s}$. Omitting the argument v, we thus have $\varphi(\Psi(v)) \geq \sqrt{1+2 \Psi}$.

Step 4: Now using that $\delta(v) \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v))$, we obtain

$$
\begin{equation*}
\delta \geq \frac{1}{2}\left(\sqrt{1+2 \Psi}-\frac{e^{\frac{1}{\sqrt{1+2 \Psi}^{1}}-1}}{1+2 \Psi}\right) \geq \frac{1}{2}(\sqrt{1+2 \Psi}-1)=\frac{\Psi}{1+\sqrt{1+2 \Psi}} \tag{4-15}
\end{equation*}
$$

Step 5: Substitution of ((4-15) into the (4-14) gives, after some elementary reductions, while assuming $\Psi_{0} \geq \Psi \geq \tau \geq 1$

$$
f(\alpha) \leq-\frac{\Psi^{\frac{1}{2}}}{44(1+\log (1+\sqrt{2 \Psi}))^{2}} \leq-\frac{\Psi^{\frac{1}{2}}}{44\left(1+\log \left(1+\sqrt{2 \Psi_{0}}\right)\right)^{2}}
$$

Thus, it follows that

$$
\Psi_{k+1} \leq \Psi_{k}-\kappa\left(\Psi_{k}\right)^{1-\gamma}, \quad k=0,1, \ldots, K-1
$$

with $\kappa=\frac{1}{44\left(1+\log \left(1+\sqrt{2 \Psi_{0}}\right)\right)^{2}}$ and $\gamma=\frac{1}{2}$, and K denotes the number of inner iterations.
Hence, by Lemma 3.15 the number K of inner iterations is bounded above by

$$
K \leq \frac{\Psi_{0}}{k \gamma}=88\left(1+\log \left(1+\sqrt{2 \Psi_{0}}\right)\right)^{2} \Psi_{0}^{\frac{1}{2}} .
$$

Step 6: We use Lemma 4.2 with $\psi^{\prime \prime}(1)=4$, to estimate Ψ_{0}.

$$
\begin{equation*}
\Psi_{0} \leq 2 \frac{(\theta \sqrt{n}+\sqrt{2 \tau})^{2}}{1-\theta} . \tag{4-16}
\end{equation*}
$$

Substitution of (4-16) in the expression for K gives

$$
\begin{equation*}
K \leq 88 \sqrt{2}\left(1+\log \left(1+2 \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}}\right)\right)^{2} \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}} . \tag{4-17}
\end{equation*}
$$

Step 7: Thus the total number of iterations is bounded above by

$$
\begin{equation*}
\frac{K}{\theta} \log \frac{n}{\varepsilon} \leq 88 \sqrt{2}\left(1+\log \left(1+2 \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}}\right)\right)^{2} \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}} \log \frac{n}{\varepsilon} . \tag{4-18}
\end{equation*}
$$

Step 8: For large update methods, when $\tau=O(n)$ and $\theta=\Theta(1)$ the right hand side expression
(4-18) becomes

$$
\begin{equation*}
O\left(\sqrt{n}(\log n)^{2} \log \frac{n}{\varepsilon}\right) \tag{4-19}
\end{equation*}
$$

For small update methods, when $\tau=O(1)$ and $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$, the right hand side expression
(4-18) becomes

$$
\begin{equation*}
O\left(\sqrt{n} \log \frac{n}{\varepsilon}\right) \tag{4-20}
\end{equation*}
$$

Example

Consider the kernel function

$$
\psi_{3}(t)=\psi(t)=\frac{t^{2}-1}{2}-\int_{1}^{t} e^{\frac{1}{\zeta}-1} d \zeta .
$$

Step 1: The inverse function of $-\psi^{\prime}{ }_{b}(t)=e^{\frac{1}{\varepsilon}-1}$ is given by $\eta(s)=\frac{1}{1+\log s}$. Hence, by Lemma
6.3,

$$
\rho(s) \geq \frac{1}{1+\log (1+2 s)} .
$$

Step 2: It follows that

$$
\begin{equation*}
f(\alpha) \leq-\frac{\delta^{2}}{\psi^{\prime}(\rho(2 \delta))}=-\frac{\delta^{2}}{1+\frac{e^{\frac{1}{\rho(2 \delta)}-1}}{\rho(2 \delta)^{q+1}}} \leq-\frac{\delta^{2}}{1+(1+4 q \delta)(1+\log (1+4 \delta))^{2}} \tag{4-21}
\end{equation*}
$$

Step 3: By Lemma 4.1 the inverse function of $\psi(t)$ for $t \in[1, \infty)$ satisfies

$$
\sqrt{1+2 s} \leq \varphi(s) \leq 1+\sqrt{2 s}
$$

Thus we have, omitting the argument v,

$$
\varphi(\Psi(v)) \geq \sqrt{1+2 \Psi}
$$

Step 4: Now using that $\delta \geq \frac{1}{2} \psi^{\prime}(\varphi(\Psi(v)))$ we obtain

$$
\begin{equation*}
\delta \geq \frac{1}{2}\left(\sqrt{1+2 \Psi}-e^{\frac{1}{\sqrt{1+2 \Psi}}-1}\right) \geq \frac{1}{2}(\sqrt{1+2 \Psi}-1)=\frac{\Psi}{1+\sqrt{1+2 \Psi}} . \tag{4-22}
\end{equation*}
$$

Step 5: Substitution of (4-22) into the (4-21) gives, after some elementary reductions, while assuming $\Psi_{0} \geq \Psi \geq \tau \geq 1$

$$
f(\alpha) \leq-\frac{\Psi^{\frac{1}{2}}}{21(1+\log (1+\sqrt{\Psi}))^{2}} \leq-\frac{\Psi^{\frac{1}{2}}}{21\left(1+\log \left(1+\sqrt{\Psi_{0}}\right)\right)^{2}} .
$$

Thus, it follows that

$$
\Psi_{k+1} \leq \Psi_{k}-\kappa\left(\Psi_{k}\right)^{1-\gamma}, \quad k=0,1, \ldots, K-1
$$

with $\kappa=\frac{1}{21\left(1+\log \left(1+\sqrt{2 \Psi_{0}}\right)\right)^{2}}$ and $\gamma=\frac{1}{2}$, and K denotes the number of inner iterations.
Hence, by Lemma 3.15 the number K of inner iterations is bounded above by

$$
\begin{equation*}
K \leq \frac{\Psi_{0}}{k \gamma}=42\left(1+\log \left(1+\sqrt{2 \Psi_{0}}\right)\right)^{2} \Psi_{0}^{\frac{1}{2}} . \tag{4-23}
\end{equation*}
$$

We use Lemma 4.2, with $\psi^{\prime \prime}(1)=2$ to estimate Ψ_{0}. This gives

$$
\begin{equation*}
\Psi_{0} \leq \frac{(\theta \sqrt{n}+\sqrt{2 \tau})^{2}}{1-\theta} . \tag{4-24}
\end{equation*}
$$

Substitution of (4-24) into (4-24) leads to the following estimate for number K of inner iterations

$$
\begin{equation*}
K \leq 42\left(1+\log \left(1+\frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}}\right)\right)^{2} \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}} \tag{4-25}
\end{equation*}
$$

Step 7: By Lemma 3.16 the total number of iterations is bounded above by

$$
\begin{equation*}
\frac{K}{\theta} \log \frac{n}{\varepsilon} \leq 42\left(1+\log \left(1+\frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}}\right)\right)^{2} \frac{\theta \sqrt{n}+\sqrt{2 \tau}}{\sqrt{1-\theta}} \log \frac{n}{\varepsilon} \tag{4-26}
\end{equation*}
$$

Step 8: For large-update methods when $\tau=O(n)$ and $\theta=\Theta(1)$ the right hand side expression
(4-26) becomes

$$
\begin{equation*}
O\left(\sqrt{n}(\log n)^{2} \log \frac{n}{\varepsilon}\right) \tag{4-27}
\end{equation*}
$$

For small update methods, when $\tau=O(1)$ and $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$, the right hand side expression
(4-26) becomes

$$
\begin{equation*}
O\left(\sqrt{n} \log \frac{n}{\varepsilon}\right) \tag{4-28}
\end{equation*}
$$

Summary of complexity results

The complexity results for Generic IPM with kernel functions defined in (3-1) and in (4-1)-(43) are summarized in the Table for large-step methods and in the table for small-step methods. For the class of kernel functions (3-1) we consider three special cases,

- the logarithmic kernel function: $\psi(t)=\frac{t^{2}-1}{2}-\log t$
- the classical self-regular function when $p=1: \psi(t)=\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q-1}$
- the linear non-self-regular function when $p=0: \psi(t)=t-1+\frac{t^{1-q}-1}{q-1}$

Complexity of large-update methods

The complexity results for large-step methods are summarized below. They are obtained by taking into the account that $\tau=O(n)$ and $\theta=\Theta(1)$.

Complexity results for long-step methods

i	Kernel Function $\psi_{i}(t)$	Iteration Bound
1	$\frac{t^{2}-1}{2}-\log t$	$O(n) \log \frac{n}{\varepsilon}$
2	$\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q-1}$	$O\left(q n^{\frac{q+1}{2 q}}\right) \log \frac{n}{\varepsilon}$
3	$t-1+\frac{t^{1-q}-1}{q-1}$	$O(q n) \log \frac{n}{\varepsilon}$
4	$\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q(q-1)}-\frac{q-1}{q}(t-1)$	$O\left(q n^{\frac{q+1}{2 q}}\right) \log \frac{n}{\varepsilon}$
5	$\frac{t^{2}-1}{2}+\frac{e^{\frac{1}{t}}-e}{e}$	$O\left(\sqrt{n} \log ^{2} n\right) \log \frac{n}{\varepsilon}$
6	$\frac{t^{2}-1}{2}-\int_{1}^{t} e^{\frac{1}{\varepsilon}-1} d \xi$	$O\left(\sqrt{n} \log ^{2} n\right) \log \frac{n}{\varepsilon}$

Table 2

Notice that the best bound is obtained in case of 3 and 4 by taking $q=\frac{1}{2} \log n$ which gives the iteration bound of

$$
\begin{equation*}
O\left(\sqrt{n} \log n \log \frac{n}{\varepsilon}\right) \tag{4-29}
\end{equation*}
$$

which is currently the best known bound for large-update methods.

Complexity of small update methods

The complexity results for small-update methods are summarized below. They are obtained by taking into the account that $\theta=\Theta\left(\frac{1}{\sqrt{n}}\right)$ and $\tau=O(1)$.

Complexity results for short-step methods

i	Kernel Function $\psi_{i}(t)$	Iteration Bound
1	$\frac{t^{2}-1}{2}-\log t$	$O(n) \log \frac{n}{\varepsilon}$
2	$\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q-1}$	$O\left(q^{2} \sqrt{n}\right) \log \frac{n}{\varepsilon}$
3	$t-1+\frac{t^{1-q-1}}{q-1}$	$O\left(q^{2} \sqrt{n}\right) \log \frac{n}{\varepsilon}$
4	$\frac{t^{2}-1}{2}+\frac{t^{1-q}-1}{q(q-1)}-\frac{q-1}{q}(t-1)$	$O(q \sqrt{n}) \log \frac{n}{\varepsilon}$
5	$\frac{t^{2}-1}{2}+\frac{e^{\frac{1}{t}}-e}{e}$	$O(q \sqrt{n}) \log \frac{n}{\varepsilon}$
6	$\frac{t^{2}-1}{2}-\int_{1}^{t} e^{\frac{1}{\varepsilon}-1} d \xi$	$O(q \sqrt{n}) \log \frac{n}{\varepsilon}$

Table 3

The above table shows that the small-update methods based on listed kernel functions all have the same complexity, namely

$$
\begin{equation*}
O\left(\sqrt{n} \log \frac{n}{\varepsilon}\right) \tag{4-30}
\end{equation*}
$$

This is up till now the best iteration bound for IPMs solving LP problems.

Historically most of the IPMs were based on the logarithmic kernel function. Notice that the gap between theoretical complexity of short-step methods and large-step methods is significant; the short step methods have much better theoretical complexity. However, in practical implementations large-step methods work better. This discrepancy was one of the motivations to consider other kernel functions in hopes to find the kernel function which would not have a gap or the gap would be smaller. As we can see, this goal has been achieved; for cases 2 and 4 the gap is much smaller because for these kernel functions large step method has much better complexity than for the classical logarithmic kernel function. This is one of the main achievements of considering different classes of kernel functions.

CHAPTER 5

NUMERICAL RESULTS

The Generic IPM described in the Figure 1 was implemented in MATLAB 7.6 .0 with the class of kernel functions described by formula (3-1)

$$
\psi_{p, q}(t)= \begin{cases}\frac{t^{p+1}-1}{p+1}+\frac{t^{1-q}-1}{q-1}, & t>0, p \in[0,1], q>1 \\ \frac{t^{p+1}-1}{p+1}-\log t, & t>0, p \in[0,1]\end{cases}
$$

This imply that there are two implementations of the algorithm, one for the classical logarithmic kernel function

$$
\begin{equation*}
\psi(t)=\frac{t^{2}-1}{2}-\log t \tag{5-1}
\end{equation*}
$$

and one for the kernel function with parameters p and q

$$
\begin{equation*}
\psi_{p, q}(t)=\frac{t^{p+1}-1}{p+1}+\frac{t^{1-q}-1}{q-1}, \quad t>0, p \in[0,1], q>1 \tag{5-2}
\end{equation*}
$$

We call the first implementation "Classical Method" and the second implementation "New Method". Both codes are listed in the Appendix A.

The algorithm was tested on several examples with different sizes ranging from very small to moderate size problems. The data was entered in some cases "by hand" and for the others they were generated randomly.

Example: Consider the following simple LP model.

$$
\begin{array}{ll}
\max & 2 x_{1}+2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 3 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{array}
$$

It is easy to see that this problem has infinitely many optimal solutions, they are all the points on the segment $[(1,0) ;(0,1)]$ and the optimal value is $Z=6$. The problem was solved by New Method with $p=0.8, q=1.2$ with accuracy parameter $\varepsilon=0.001$. It took unusually many iterations (57), however algorithm steadily converged to the expected result $\left(x_{1}, x_{2}\right)=(1 \cdot 5,1,5)$.

Numerical results for Example

X			y	S		
1	1	1	0	1	1	1
1.383	1.383	0.234	$\begin{gathered} 0.823 \\ 4 \end{gathered}$	0.1	0.1	$\begin{gathered} 1.248 \\ 9 \end{gathered}$
$\begin{gathered} 1.488 \\ 3 \end{gathered}$	$\begin{gathered} 1.488 \\ 3 \end{gathered}$	$\begin{gathered} 0.023 \\ 4 \end{gathered}$	$\begin{gathered} 1.602 \\ 3 \end{gathered}$	$\begin{gathered} 0.065 \\ 6 \end{gathered}$	$\begin{gathered} 0.065 \\ 6 \end{gathered}$	$\begin{gathered} 1.756 \\ 7 \end{gathered}$
....	\ldots	\ldots	\ldots	\ldots	\ldots	
$\begin{gathered} 1.499 \\ 9 \end{gathered}$	$\begin{gathered} 1.499 \\ 9 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	$\begin{gathered} 2.000 \\ 2 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	$\begin{gathered} 0.000 \\ 2 \end{gathered}$	$\begin{gathered} 2.000 \\ 2 \end{gathered}$

Table 4

Objective function value $\mathrm{Z}=-5.9997$

This example also illustrates an important feature of the interior-point methods that distinguish them from simplex-type methods; that in the case of infinitely many optimal solutions they converge to the center of the optimal set rather than to the vertex. The graphical illustration of the above example with several first iterations is given below.

IPM Based on generic kernel function

Figure 3

Next, the algorithm was examined on the set of 200 randomly generated "small" problems for with sizes less than 10 . The average number of iteration and CPU time is given in the table below.

Classical method		New method	
Average Number		Average Number	
Of Iterations	Time	Of Iterations	Time
24.6	0.0362	40.7	0.0448

Numerical results for randomly generated "small problems" with dimension less than 10 Table 5

Next, the algorithm was examined on the set of 200 randomly generated "moderate size" problems of the size 200×300. The average number of iteration and CPU time is given in the table below.

Classical method		New method	
Average Number Of Iterations	Time	Average Number	
35.81	2.6626	40	2.8812

Numerical results for randomly generated problems with dimension 200x300
Table 6

The algorithm was then applied to the randomly generated problems of the bigger size 400×700. The result is given in the table below

Classical method		New method	
Average Number Of Iterations	Time	Average Number	
57	35.8048	41	25.4030

Numerical results for randomly generated problem with dimension 400x700
Table 7

Results summarized in tables seem to suggest that Classical Methods works slightly better for the problems of the smaller size while, as the dimension of the problem increases, the New Method becomes better. Another feature of the IPM is also visible from these examples and
that is that the number of iterations does not increase significantly with the increase in the size of the problem.

In the sequel the New Method was examined on the set of 200 randomly generated "small" problems with sizes less than 10 and for different values of parameters p and q . The results are given in the Table below.

$\mathrm{p}=0.7 \mathrm{q}=1.3$		$p=0.6 . q=1.4$	
Iteration	Time	Iteration	Time
40.6	0.0673	41.6	0.0648
$p=0.9, q=1.1$		$p=0.8, q=1.2$	
Iteration	Time	Iteration	Time
35.9	0.0526	37.2	0.0603

Table 8: More Numerical Results

Next, the New Method was examined on the set of 20 randomly generated problems of the size 200×300 and for different values of parameters p and q . The results are given in the Table below.

Table 9: More Numerical Results

The table seems to suggest that for the problems of the smaller size the New Method works the best when $p=0.9, q=1.1$, which is in line with theoretical expectation. However, for the problems of the higher dimension it is hard to make conclusion which combination of parameters works the best. Theory suggests that $p=1, q=\log n$ where n is the number of variables gives the best complexity. However for the particular set of problems in the previous table, it seems that combination $p=0.7, q=1.3$ works the best .

Better implementation and more testing is necessary for more definite conclusions.
However, that was not the intention of the thesis. The goal was to make the basic implementations that ilustrates theoretical concepts discussed in the thesis. Even on this basic level the implementation of the New Method shows the potential to work well. Of coure, with more sophisticated implementation the performance can be further improved.

CHAPTER 6

CONCLUSION

In this thesis the Interior - Point Method (IPM) for Linear Programming problem (LP) that is based on the generic kernel function is considered. The algorithm is described in Chapter 2.

In Chapter 3 the complexity (in terms of iteration bounds) of the algorithm is analyzed for a class of kernel functions defined by (3-1). This class is fairly general; it includes classical logarithmic kernel function, prototype self-regular kernel function as well as non-self-regular functions, thus it serves as a unifying frame for the analysis of IPMs. Two versions of the IPMs are considered, the short-step algorithms where barrier parameter θ depends on the size of the problem and long-step algorithms where barrier parameter is a fixed constant $\theta \in(0,1)$.

Historically most of the IPMs were based on the logarithmic kernel function. Notice that the gap between theoretical complexity of short-step methods and large-step methods is significant; the short step methods have much better theoretical complexity. However, in practical implementations large-step methods work better. This discrepancy was one of the motivations to consider other kernel functions in hopes to find the kernel function which would not have a gap or the gap would be smaller. As we can see this goal has been achieved; for kernel functions 2 and 4, the gap is much smaller than for the classical logarithmic kernel function. In addition, the complexity results that are obtained match the best known complexity results for these methods. This chapter is mostly based on the paper (Bai, Y., et al., 2008) with the addition of most of the proofs that were omitted in the paper.

The main contribution of the thesis is contained in Chapter 4. The detailed complexity analysis of the IPM that was provided in Chapter3 for kernel function (3-1) is summarized and the analysis of the algorithm was performed for three additional kernel functions (4-1) - (4-3). For one of them we again matched the best known complexity results for the large-step methods and for the other two the complexity is slightly weaker, however still significantly improved in comparison with classical logarithmic kernel function.

The IPM that is theoretically analyzed in Chapter 3 is implemented in Chapter 5 for the classical logarithmic kernel function (Classical Method) and for the parametric kernel function (New Method) both described in (3-1). Although the implementation is on the basic level, it shows potential for a good performance of IPM based on kernel function different than classical logarithmic kernel function on which most of the commercial codes are based. The preliminary calculations seem to indicate that IPM with classical kernel logarithmic function perform better on problems of the smaller size while for larger problems the New Methods seems to work slightly better. Also, based on the preliminary numerical tests it is hard to make conclusion which combination of parameters p and q in (3-1) works the best. Better implementation and more numerical testing would be necessary to draw more definite conclusions.

However, that was not the goal of the thesis, the goal was to show that IPM with kernel functions different than classical logarithmic kernel function can have best known theoretical complexity and to show that they have potential for practical implementations.

REFERENCES

[1] Y.Q Bai, C.Roos. A polynomial-time algorithm for linear optimization based on a new simple kernel function. Optimization Methods Software, 18 (6):631-646, 2003.
[2] Y. Bai, G. Lesaja, C. Roos, G. Wang, M. El Ghami. A Class of Large and Small Update Primal - Dual Interior-Point Algorithms for Linear Optimization. Journal of Optimization Theory and Applications, Volume 138, No. 3, 341-359, 2008.
[3] G. Lesaja. Introducing Interior-Point Methods for Introductionary Operations Research Courses and/or Linear Programming Courses, Open Operational Research Journal, accepted, 2008.
[4] F. Hillier and G. Lieberman. Introduction to Operations Research. Seventh Edition. McGraw Hill Publishing, 2001.
[5] J. Peng, C.Roos, and T. Telarky. Self- regularity: A New Paradigm for Primal-Dual Interior Point Algorithms. Princeton University Press, 2002.
[6] C. Roos, T. Telarky, and J.-Ph.Vial. Theory and Algorithms for Linear Optimization. An Interior-Point Approach. John Wiley \&Sons, Chichester, UK, 1997.
[7] S. Wright. Primal-Dual Interior Point Methods. SIAM Publishing, 1997.
[7] Y. Bai, M. El ghami, and C. Roos. A Comparative Study of New Barrier Functions for
Primal - Dual Interior - Point Algorithms in Linear Optimization.

APPENDICES

APPENDIX A

MatLab codes for the Classical Method

```
function [i,xx,yy,ss,z,d]=IpmClassical(A, b, c, epsilon)
%
% input tau, epsilon, theta
%
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.
    [m,n]=size(A);
    x=1*ones(n,1); s=1*ones(n,1); y=zeros(m,1); mu=x'*s/n;
    rd=c-A'*y-s;
    rp=b-A*x;
    i=1;
    xx(i,:)=x;
    yy(i,:)=y;
    ss(i,:)=s;
    while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
        i=i+1;
        [dx,ds,dy]=SolvesystemClassical(A,b, c, x,y,s,mu);
        inds=find(ds<0);indx=find(dx<0);
        alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
        x=x+alpha*dx;
        y=y+alpha*dy;
        s=s+alpha*ds;
        mu=min(x'*s/n,0.9*mu);
        rd=c-A'*y-s;
        rp=b-A*x;
        xx(i,:)=x;
        yy(i,:)=y;
        ss(i,:)=s;
        d(i,:)=dx';
        if i>200 || alpha<1e-11
                i;
                break;
        end
    end
    z=x'*C;
    %[i,z]
end
```

```
function [dx,ds,dy]=SolvesystemClassical(A,b,c,x,y,s,mu)
% This function solves the following system
% A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
%
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;
    gama=.1;
    X=diag(x);
    S=diag(s);
    S_inv=diag(1./s);
    rd=c-A'*y-s;
    rp=b-A*x;
    M=A*S_inv*X*A';
    r=b+A`}\mp@subsup{\}{S_inv*(X*rd-gama*mu*ones(size(A,2),1));}{
    dy=M\r;
    ds=rd-A'*dy;
    dx=-x+S_inv*(gama*mu*ones(size(A, 2),1)-X*ds);
end
```


MatLab codes for the New Method

```
function [i,xx,yy,ss,z,d]=IpmNew(A, b, c, epsilon)
%
%
% input tau, epsilon, theta
% v>0, 0<=p<=1, q>1, tau>1
% sizes: A--m*n, b--m, s--n, x--n, y--m, c--n
%
% To call this function, please set up the problem by defining A, b and
% c. Or load the example problem.
p=1-0.2;
q=1+0.2;
theta=0.1;
%tau=1.5;
    [m,n]=size(A);
    x=ones(n,1); s=ones(n,1); y=zeros(m,1); mu=x'*s/n;
    rd=c-A'*y-s;
    rp=b-A*x;
    i=1;
    xx(i,:)=x;
    Yy(i,:)=y;
    ss(i,:)=s;
    while norm(rd)>epsilon||norm(rp)>epsilon||n*mu > epsilon
        i=i+1;
        v=sqrt(x.*s./mu);
        [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q);
```

```
            delta=1/2*sqrt(sum((v.^p-1./v.^q).^2));
            alpha=1/((p+q)*(1-4*abs(delta))^(1+1/q));
            alpha=abs(alpha);
            inds=find(ds<0);indx=find (dx<0);
            alpha=0.9*min(abs([1;s(inds)./ds(inds);x(indx)./dx(indx)]));
            x=x+alpha*dx;
            y=y+alpha*dy;
            s=s+alpha*ds;
            rd=c-A'*y-s;
            rp=b-A*x;
            mu=(1-theta)*mu;
            xx(i,:)=x';
            yy(i,:)=y';
            ss(i,:)=s';
            d(i,:)=dx';
            if i>200 || alpha<1e-10
            i;
            break;
        end
    end
    z=x'*C;
    %[i,z]
end
function [dx,ds,dy]=SolvesystemNew(A,b,c,x,y,s,mu,v,p,q)
% This function solves the following system
% A*dx = 0
% A^T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))
%
% Psi(v)=sum((v.^(p+1)-1)/(p+1)+(v.^(1-q)-1)/(q-1));
% grad(v)=v.^p-v.^q;
gama=.1;
    X=diag(x);
    S=diag(s);
    S_inv=diag(1./s);
    r\overline{d}=c-A'* y-s;
    rp=b-A*x;
    M=A*S_inv*X*A';
    r=A*S_inv*(X*rd+mu*v.*(v.^p-gama*v.^(-q))) +rp;
    dy=M\r;
    ds=rd-A'*dy;
    dx=-S_inv*(X*ds+mu*v.*(v.^p-gama*v.^(-q)));
end
```


Problem Generator

```
function R=mytest(NO,m,n)
% This function solve the random systems of dimention m*n
```

```
input m,n are the dimention of A
input NO is the number of the iterations
MYTEST(); will apply both ipm methods to a random matrix with random
dimension m*n, where m,n are positive integers less than 10
MYTEST(N) will iterate 'MYTEST()' N times.
MYTEST(N,m,n) will iterately apply the methods to N random problems
with dimension m*n.
    if ~exist('NO')
    NO=1;
    end
    m_ne=0;n_ne=0;
    i\overline{f}}~\operatorname{exis}\overline{t}('m'
        m_ne=1;
    end
    if ~exist('n')
        n_ne=1;
    end
    dim=zeros(NO,2);
    k=1;
    while k<=NO
        if m_ne
            m=fix(rand(1)*10);
        end
        if n_ne
            n}=fix(rand(1)*10)
        end
        A=rand (m,n);b=rand (m,1); c=rand (n,1);
        if rank(A)<min(m,n) || min(m,n)==0
            %fprintf('rank(A)<min(m,)');
            if m==0 && ~m ne
                display('STOP, m=0');
                return;
            elseif n==0 && ~n_ne
                display('STOP, n=0');
                return;
            end
            continue;
        end
        tic;
        [i1(k),x1,Yy1,ss1,z1(k)]=IpmNew(A, b, c, 0.01);
        t1(k)=toc;
        tic;
        [i2(k),xx2,yy2,ss2,z2(k)]=IpmClassical(A, b, c, 0.01);
        t2(k)=toc;
        dim(k,1)=m;}\operatorname{dim}(k,2)=n
        k=k+1;
    end
    R = [dim(:,1),dim(:,2),i1',z1',t1',i2',z2',t2'];
    myfun®;
end
```


Organization of output

function myfun®

```
    fprintf(' New method Classical method \n');
    fprintf(' idx dim(m*n) iteration Opt time iteration Opt
time\n');
    fprintf('-----------------------------------------------------------------------------
--\n');
    for k=1:size(R,1)
        fprintf(' %3d %3d%3d %3d %6.4f %4.4f %3d %6.4f
%4.4f\n', ...
            k,R(k,:));
    end
    R_ave=sum(R)/size(R,1);
    fprintf('-----------------------------------------------------------------------------------
--\n');
    fprintf(' New method Classical method \n');
    fprintf(' dim(m*n) iteration time iteration time\n');
    fprintf(' average %3.1f %3.1f %3.1f %4.4f %3.1f
%4.4f\n', ...
    R_ave([1,2,3,5,6,8]));
    fprintf('-----------------------------------------------------------------------------
--\n');
end
```


APENDIX B

MatLab code Example 5.1

```
\(\max 3 * x \_1+5 * x \_2\)
s.t.
            x_1 + <=4
                        \(2 * x \_2<=12\)
        3 *x_1 + 2 * x_2 <=18
            x_1, x_2 >= 0
\(A=\)
    \(\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}\)
    \(\begin{array}{lllll}0 & 2 & 0 & 1 & 0\end{array}\)
    \(\begin{array}{lllll}3 & 1 & 0 & 0 & 1\end{array}\)
(change to min-problem)
\(\mathrm{c}=\)
    -3
    -5
    0
    0
    0
\(\mathrm{b}=\)
    4
    12
    18
```

```
>> [i,x,y,s,z]=lpmClassical(A, b, c, epsilon)
i=
    7
z =
    -41.9805
>> [i,x,y,s,z]=lpmNew(A, b, c, epsilon)
i=
    6 0
z =
    -41.9993
>> [i,x,y,s,z]=lpmClassical(A, b, c, epsilon)
i=
    7
x =
    1.0000 1.0000 1.0000 1.0000 1.0000
    1.4437}1.1.7530 0.8831 0.9645 1.0398
    2.0334}30.0422 0.7370 0.3825 0.8654
    2.9815
    3.8206}50.7689 0.0779 0.0054 0.1095 
    3.9803 5.9762 0.0095 0.0020}00.016
    3.9977 5.9975 0.0013 0.0005 0.0028
```

```
y=
        0 0 0
    -0.1333 -0.0519 0.0235
    -0.2783 -0.5925 -0.1361
    -0.5626 -1.3849 -0.4117
    -0.8317 -2.0210 -0.6562
    -0.9001 -2.1384 -0.6935
    -0.9363 -2.1549 -0.6873
s =
    1.0000 1.0000 1.0000 1.0000 1.0000
    0.4093
    0.1458
    0.0146
    0.0032
    0.0011
    0.0003 0.0002 0.9368
Z =
    -41.9805
>> [i,x,y,s,z]=IpmNew(A, b, c, epsilon)
i=
    6 0
z =
    -41.9993
```

1.0000	1.0000	1.0000	1.0000	1.0000
1.4437	1.7530	0.8831	0.9645	1.0398
2.0409	3.0601	0.7365	0.3780	0.8702
3.0192	4.6730	0.4016	0.0474	0.5044
3.8797	5.8542	0.0624	0.0308	0.1302
3.9559	5.9723	0.0383	0.0293	0.1223
3.9623	5.9859	0.0372	0.0256	0.1236
3.9669	5.9883	0.0330	0.0232	0.1105
3.9702	5.9896	0.0297	0.0208	0.0997
3.9732	5.9906	0.0268	0.0188	0.0897
3.9759	5.9916	0.0241	0.0169	0.0808
3.9783	5.9924	0.0217	0.0152	0.0727
3.9805	5.9932	0.0195	0.0137	0.0655
3.9824	5.9938	0.0176	0.0123	0.0589
3.9842	5.9945	0.0158	0.0111	0.0530
3.9857	5.9950	0.0143	0.0100	0.0478
3.9872	5.9955	0.0128	0.0090	0.0430
3.9884	5.9960	0.0116	0.0081	0.0387
3.9896	5.9964	0.0104	0.0073	0.0348
3.9906	5.9967	0.0094	0.0065	0.0314
3.9916	5.9971	0.0084	0.0059	0.0282
3.9924	5.9973	0.0076	0.0053	0.0254
3.9932	5.9976	0.0068	0.0048	0.0229
3.9939	5.9979	0.0061	0.0043	0.0206
3.9945	5.9981	0.0055	0.0039	0.0185
3.9950	5.9983	0.0050	0.0035	0.0167

3.9955	5.9984	0.0045	0.0031	0.0150
3.9960	5.9986	0.0040	0.0028	0.0135
3.9964	5.9987	0.0036	0.0025	0.0122
3.9967	5.9989	0.0033	0.0023	0.0109
3.9971	5.9990	0.0029	0.0021	0.0098
3.9974	5.9991	0.0026	0.0018	0.0089
3.9976	5.9992	0.0024	0.0017	0.0080
3.9979	5.9993	0.0021	0.0015	0.0072
3.9981	5.9993	0.0019	0.0013	0.0065
3.9983	5.9994	0.0017	0.0012	0.0058
3.9984	5.9995	0.0016	0.0011	0.0052
3.9986	5.9995	0.0014	0.0010	0.0047
3.9987	5.9996	0.0013	0.0009	0.0042
3.9989	5.9996	0.0011	0.0008	0.0038
3.9990	5.9996	0.0010	0.0007	0.0034
3.9991	5.9997	0.0009	0.0006	0.0031
3.9992	5.9997	0.0008	0.0006	0.0028
3.9993	5.9997	0.0007	0.0005	0.0025
3.9993	5.9998	0.0007	0.0005	0.0023
3.9994	5.9998	0.0006	0.0004	0.0020
3.9995	5.9998	0.0005	0.0004	0.0018
3.9995	5.9998	0.0005	0.0003	0.0016
3.9996	5.9998	0.0004	0.0003	0.0015
3.9996	5.9999	0.0004	0.0003	0.0013
3.9996	5.9999	0.0004	0.0002	0.0012
3.9997	5.9999	0.0003	0.0002	0.0011
3.9997	5.9999	0.0003	0.0002	0.0010

```
    3.9997}50.9999 0.0003 0.0002 0.0009 
    3.9998}50.9999 0.0002 0.0002 0.0008 
```



```
    3.9998}50.9999 0.0002 0.0001 0.0006 
    3.9998}50.9999 0.0002 0.0001 0.0006 
    3.9998}50.9999 0.0002 0.0001 0.0005 
    3.9999 6.0000
y =
        0 0 0
    -0.1333 -0.0519 0.0235
    -0.2846 -0.6023-0.1375
    -0.5916 -1.4288 -0.4214
    -0.9196 -2.0876 -0.6622
    -1.4299 -2.2344 -0.5248
    -1.5993 -2.2683 -0.4714
    -1.5888 -2.2669 -0.4748
    -1.5890 -2.2668 -0.4743
    -1.5884 -2.2665 -0.4741
    -1.5878 -2.2662 -0.4739
    -1.5873 -2.2660 -0.4738
    -1.5868 -2.2658 -0.4737
    -1.5864 -2.2656 -0.4735
    -1.5860 -2.2654 -0.4734
    -1.5857 -2.2652 -0.4733
    -1.5854 -2.2651 -0.4732
    -1.5851 -2.2649 -0.4732
```

```
-1.5848 -2.2648 -0.4731
-1.5846 -2.2647 -0.4730
-1.5844 -2.2646 -0.4730
-1.5842 -2.2645 -0.4729
-1.5841 -2.2645 -0.4729
-1.5839 -2.2644 -0.4728
-1.5838 -2.2643 -0.4728
-1.5837 -2.2643 -0.4728
-1.5835 -2.2642 -0.4727
-1.5834 -2.2642 -0.4727
-1.5834 -2.2641 -0.4727
-1.5833 -2.2641 -0.4727
-1.5832 -2.2641 -0.4727
-1.5831 -2.2640 -0.4726
-1.5831 -2.2640-0.4726
-1.5830 -2.2640-0.4726
-1.5830 -2.2640 -0.4726
-1.5830 -2.2639 -0.4726
-1.5829 -2.2639 -0.4726
-1.5829 -2.2639 -0.4726
-1.5828 -2.2639 -0.4726
-1.5828 -2.2639 -0.4725
-1.5828 -2.2639 -0.4725
-1.5828 -2.2639 -0.4725
-1.5828 -2.2638 -0.4725
-1.5827 -2.2638 -0.4725
-1.5827 -2.2638-0.4725
```

-1.5827	-2.2638	-0.4725		
-1.5827	-2.2638	-0.4725		
-1.5827	-2.2638	-0.4725		
-1.5827	-2.2638	-0.4725		
-1.5827	-2.2638	-0.4725		
-1.5827	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
-1.5826	-2.2638	-0.4725		
$s=$				
1.0000	1.0000	1.0000	1.0000	1.0000
0.4093	0.1000	0.9699	0.8885	0.8131
0.1425	0.0100	0.8960	1.2136	0.7489
0.0143	0.0168	0.8812	1.7184	0.7110
0.0220	0.0112	0.9486	2.1166	0.6911
0.0160	0.0110	1.4328	2.2373	0.5277
0.0148	0.0097	1.5996	2.2686	0.4717
0.0132	0.0088	1.5888	2.2669	0.4748
0.0119	0.0079	1.5890	2.2668	0.4743
0.0107	0.0071	1.5884	2.2665	0.4741

0.0096	0.0064	1.5878	2.2662	0.4739
0.0087	0.0057	1.5873	2.2660	0.4738
0.0078	0.0052	1.5868	2.2658	0.4737
0.0070	0.0047	1.5864	2.2656	0.4735
0.0063	0.0042	1.5860	2.2654	0.4734
0.0057	0.0038	1.5857	2.2652	0.4733
0.0051	0.0034	1.5854	2.2651	0.4732
0.0046	0.0031	1.5851	2.2649	0.4732
0.0041	0.0027	1.5848	2.2648	0.4731
0.0037	0.0025	1.5846	2.2647	0.4730
0.0033	0.0022	1.5844	2.2646	0.4730
0.0030	0.0020	1.5842	2.2645	0.4729
0.0027	0.0018	1.5841	2.2645	0.4729
0.0024	0.0016	1.5839	2.2644	0.4728
0.0022	0.0015	1.5838	2.2643	0.4728
0.0020	0.0013	1.5837	2.2643	0.4728
0.0018	0.0012	1.5835	2.2642	0.4727
0.0016	0.0011	1.5834	2.2642	0.4727
0.0014	0.0010	1.5834	2.2641	0.4727
0.0013	0.0009	1.5833	2.2641	0.4727
0.0012	0.0008	1.5832	2.2641	0.4727
0.0010	0.0007	1.5831	2.2640	0.4726
0.0009	0.0006	1.5831	2.2640	0.4726
0.0008	0.0006	1.5830	2.2640	0.4726
0.0008	0.0005	1.5830	2.2640	0.4726
0.0007	0.0005	1.5830	2.2639	0.4726
0.0006	0.0004	1.5829	2.2639	0.4726
0				
0				

```
    0.0006}00.0004 1.5829 2.2639 0.4726
    0.0005 0.0003 1.5828 2.2639 0.4726
    0.0005
    0.0004}00.0003 1.5828 2.2639 0.4725 
    0.0004 0.0002 1.5828 2.2639
    0.0003 0.0002 1.5828 2.2638
    0.0003 0.0002 1.5827 2.2638
    0.0003 0.0002 1.5827 2.2638
    0.0002
    0.0002 0.0001 1.5827 2.2638
    0.0002
    0.0002
    0.0002
    0.0001 0.0001 1.5827 2.2638
    0.0001 0.0001 1.5826 2.2638
    0.0001
    0.0001
    0.0001 0.0001 1.5826 2.2638
    0.0001 0.0001 1.5826 2.2638
    0.0001
    0.0001 0.0000}101.5826 2.2638 0.4725
    0.0001 0.0000}101.5826 2.2638 0.4725
    0.0001 0.0000}1.5826 2.2638 0.4725
z =
    -41.9993
>>
```


MatLab code for Table 5.2

random problems with random dimentions less that 10
New method Classical method
idx $\operatorname{dim}\left(m^{*} \mathrm{n}\right)$ iteration Opt time iteration Opt time

```
36 6 5 12 1.4119 0.0056 13 1.4164 0.0396
37 6 7 15 0.9627 0.0065 16 0.9627 0.0046
38}668170.7974 0.0072 24 0.7974 0.0073 
39}448170.7864 0.0336 21 0.7864 0.0061
40 8 3 15 0.4944 0.0070 38 0.3653 0.0140
41 4 9 72 1.0654 0.0757 27 1.0668 0.0086
42}55818180.4801 0.0076 24 0.4801 0.0072
43 8 9 14 1.3682 0.0070 19 1.3682 0.0064
44 2 2 13 0.7773 0.0042 14 0.7773 0.0033
45 6 5 13 0.2225 0.0059 14 0.2229 0.0049
46 8 6 14 1.6662 0.0068 20 1.6114 0.0268
47 3 6 6 17 0.3840 0.0069 30 NaN 0.0101
48 3 7 64 0.5853 0.0260 7 0.5886 0.0018
49}33312120.87500.0044 14 0.8750 0.0038
50 2 7 64 0.6310 0.0458 7 0.6367 0.0017
51 7 7 12 1.7618 0.0047 13 1.7618 0.0036
52 2 7 64 0.1590 0.0244 7 0.1647 0.0018
```


New method Classical method

$\operatorname{dim}(m * n)$ iteration time iteration time

```
average 4.9 5.4 40.7 0.0448 24.6 0.0362
```

New method Classical method
idx $\operatorname{dim}\left(\mathrm{m}^{*} \mathrm{n}\right)$ iteration Opt time iteration Opt time

| 1 | 9 | 1 | 45 | NaN | 0.0681 | 30 | NaN | 0.0326 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 9 | 1 | 45 | NaN | 0.0674 | 45 | NaN | 0.7326 |
| 3 | 7 | 7 | 12 | 3.1727 | 0.0053 | 14 | 3.1727 | 0.0042 |
| 4 | 7 | 7 | 12 | 2.0364 | 0.0050 | 13 | 2.0364 | 0.0037 |
| 5 | 5 | 4 | 14 | 0.7954 | 0.0675 | 16 | 0.7257 | 0.0059 |
| 6 | 6 | 3 | 49 | 0.4286 | 0.0243 | 92 | 0.4560 | 0.1107 |
| 7 | 6 | 1 | 45 | NaN | 0.1613 | 45 | NaN | 0.0612 |
| 8 | 3 | 9 | 66 | 0.2055 | 0.0284 | 9 | 0.1994 | 0.0024 |
| 9 | 3 | 1 | 45 | NaN | 0.1071 | 36 | NaN | 0.0133 |
| 10 | 7 | 8 | 13 | 2.3593 | 0.0057 | 14 | 2.3593 | 0.0042 |
| 11 | 2 | 7 | 64 | 0.3550 | 0.0246 | 8 | 0.3596 | 0.0019 |
| 12 | 6 | 7 | 14 | 1.7947 | 0.0055 | 15 | 1.7947 | 0.0043 |
| 13 | 2 | 6 | 62 | NaN | 0.0637 | 27 | NaN | 0.0096 |
| 14 | 3 | 2 | 201 | 0.4458 | 0.3814 | 71 | 0.1206 | 0.1475 |
| 15 | 7 | 8 | 14 | 2.3068 | 0.0059 | 16 | 2.3068 | 0.0258 |
| 16 | 7 | 5 | 28 | 0.4972 | 0.0138 | 19 | 0.5465 | 0.0067 |
| 17 | 4 | 9 | 17 | 1.2697 | 0.0076 | 18 | 1.2697 | 0.0053 |
| 18 | 2 | 7 | 64 | NaN | 0.0814 | 17 | NaN | 0.0044 |
| 19 | 1 | 4 | 58 | 0.0069 | 0.0650 | 6 | 0.0106 | 0.0015 |
| 20 | 5 | 5 | 12 | 2.0070 | 0.0045 | 13 | 2.0070 | 0.0036 |
| 21 | 1 | 5 | 60 | 0.0321 | 0.0245 | 6 | 0.0387 | 0.0026 |
| 22 | 1 | 2 | 52 | 0.2947 | 0.0739 | 5 | 0.2976 | 0.0012 |
| 23 | 9 | 6 | 23 | 0.7775 | 0.0118 | 52 | 0.5957 | 0.0617 |

24	5	3	18	1.7080	0.0088	33	1.2630	0.0476
25	4	3	31	0.3020	0.0528	28	0.3146	0.0426
26	5	8	16	2.4185	0.0069	16	2.4185	0.0046
27	4	7	16	0.2408	0.0064	20	0.2408	0.0059
28	9	8	17	1.8185	0.0091	24	1.2417	0.0096
29	1	2	52	0.2448	0.0208	5	0.2478	0.0012
30	3	4	14	1.0822	0.0051	17	1.0822	0.0046
31	4	5	14	1.4672	0.0054	16	1.4672	0.0044
32	4	2	201	0.0760	0.3930	59	0.0470	0.1529
33	5	8	25	0.5901	0.0115	28	0.5901	0.0087
34	1	9	66	0.0042	0.0293	7	0.0082	0.0018
35	3	7	15	0.8637	0.0060	201	0.2481	0.3810
36	6	5	12	1.4119	0.0056	13	1.4164	0.0396
40	2	7	64	0.6310	0.0458	7	0.6367	0.0017
37	6	7	15	0.9627	0.0065	16	0.9627	0.0046
48	3	7	64	0.5853	0.0260	7	0.5886	0.0018
48	6	8	17	0.7974	0.0072	24	0.7974	0.0073
47	6	5	13	0.2225	0.0059	14	1.6662	0.0068

51	7	7	12	1.7618	0.0047	13	1.7618	0.0036
52	2	7	64	0.1590	0.0244	7	0.1647	0.0018
53	4	5	15	3.6371	0.0059	16	3.6371	0.0455
54	9	3	42	0.4919	0.0216	41	0.7683	0.0158
55	7	1	45	NaN	0.0833	28	NaN	0.0224
56	5	4	20	1.4544	0.0331	14	1.6696	0.0063
57	2	1	45	NaN	0.0891	45	NaN	0.0296
58	7	5	41	1.6545	0.0388	33	0.8089	0.0497
59	1	7	64	0.1189	0.0272	8	0.1203	0.0020
60	9	9	12	3.7354	0.0071	15	3.7354	0.0049
61	6	8	16	1.3473	0.0067	17	1.3473	0.0051
62	2	8	65	0.1011	0.0256	7	0.1045	0.0018
63	2	6	16	0.5000	0.0055	19	0.5000	0.0048
64	2	6	62	0.4073	0.0233	6	0.4123	0.0014
65	4	6	15	1.0340	0.0374	19	1.0340	0.0054
66	3	9	66	0.9751	0.0292	8	0.9772	0.0021
67	5	5	13	0.9247	0.0050	14	0.9247	0.0039
68	6	6	13	1.6887	0.0051	14	1.6887	0.0452
69	2	2	13	0.1492	0.0045	15	0.1492	0.0036
70	3	2	171	NaN	0.1243	54	2.9584	0.0724
71	7	2	201	0.2807	0.2557	66	0.0886	-0.0771
72	5	2	201	0.6778	0.4181	75	1.0557	0.1723
73	2	9	66	0.0872	0.0264	7	0.0909	0.0018
74	5	7	14	1.4273	0.0056	15	1.4273	0.0040
75	9	9	12	4.2331	0.0055	14	4.2331	0.0048
76	4	4	13	0.7073	0.0047	14	0.7073	0.0040
77	2	9	66	0.4177	0.0272	7	0.4248	0.0019

78	7	9	15	2.3273	0.0066	16	2.3273	0.0050
79	7	5	15	0.6883	0.0382	13	0.8011	0.0524
80	3	5	17	0.7023	0.0066	19	0.7023	0.0053
81	8	5	17	1.6375	0.0082	87	0.5440	0.1686
82	5	6	17	0.5266	0.0070	22	0.5266	0.0065
83	6	9	16	1.1541	0.0073	19	1.1541	0.0059
84	1	2	52	0.9460	0.0199	5	0.9489	0.0012
85	3	9	20	1.4204	0.0087	39	NaN	0.0153
86	9	4	29	0.1871	0.0378	32	0.6971	0.0615
87	9	5	37	0.9494	0.0764	32	1.3586	0.0558
88	4	9	18	0.5192	0.0078	23	0.5192	0.0411
89	9	5	41	0.5489	0.0475	18	1.5730	0.0528
90	6	4	58	NaN	0.1482	58	NaN 0	0.1727
91	3	5	15	0.6959	0.0058	20	0.6959	0.0055
92	7	5	14	2.9338	0.0065	14	2.3208	0.0053
93	3	5	60	0.4861	0.0749	7	0.4866	0.0020
94	3	2	196	4.5525	0.3504	146	1.8557	70.3399
95	2	8	65	0.6134	0.0258	7	0.6152	0.0018
96	6	8	15	1.6926	0.0062	19	1.6926	0.0058
97	3	6	15	0.8336	0.0057	17	0.8336	0.0047
98		3	56	NaN	0.0830	14	1.4102	0.0045
99	7	2	201	0.0365	0.4461	83	1.0238	0.2068
100	6	61	45	NaN	0.1986	45	NaN	0.0328
101		14	58	0.6234	0.0448	6	0.6307	0.0014
102	7	75	14	1.1884	0.0070	38	0.4592	0.1011
103	2	25	60	0.5702	0.0634	6	0.5733	0.0014
104	8	85	38	1.2510	0.0198	19	1.3811	0.0390

```
105 5 7 16 0.7932 0.0068 19 0.7932 0.0267
106 2 3 56 0.6463 0.0198 5 0.6492 0.0012
107 7 9 18 1.2119 0.0081 24 1.2119 0.0078
108 4 2 116 0.4112 0.1974 116 0.3480}00.275
109 2 4 58 0.3450 0.0323 6 6 0.3478 0.0014
110}886470.8233 0.0480 25 0.8203 0.0931
111 1 5 60 0.0042 0.0245 7 0.0052 0.0017
112
113 7 7 13 1.4697 0.0053 14 1.4697 0.0044
114 9 2 120}0.4624 0.2295 201 0.8555 0.4208
115}99812121.9521 0.0063 13 1.9450 0.087
116}1114450.4377 0.0147 5 0.4378 0.001
117 6 3 40 1.3974 0.0493 60 0.0616 0.1541
118 2 5 60 0.0523 0.0223 6 6 0.0577 0.0014
119}455161.3757 0.0060 17 1.3757 0.0046
120}99813132.8652 0.0067 15 3.0675 0.0062
121 8 8 11 5.0975 0.0048 15 5.0975 0.0047
122 2 2 13 0.3116 0.0042 39 NaN 0.0116
123 9 5 18 0.4133 0.0092 21 0.5460
124}54417171.3629 0.0079 18 1.3382 0.0401
125}995171.4464 0.0085 16 1.9442 0.0707
126 7 6 15 2.1528 0.0073 13 1.5332 0.0388
127 1 2 52 0.4030 0.0202 5 0.4060 0.0012
128}99817171.5577 0.0091 16 1.3553 0.0158
1297145 NaN 0.1823 36 NaN 0.0295
130}88917\quad2.5650 0.0080 21 2.5650 0.007
131}3441500.3709 0.0055 17 0.3709 0.006
```

```
132 8 7 13 1.5864 0.0063 16 2.2049 0.0061
133 9 9 12 1.4834 0.0053 14 1.4834 0.0045
134 8 4 88 0.1456 0.1307 58 0.4504 0.1475
135}66227 0.0678 0.0600 16 NaN 0.0094
136 2 9 66 0.4524 0.0270 8 0.4538 0.0019
137 1 7 64 0.1021 0.0279 7 0.1043 0.0017
138 1 6 62 0.0028 0.0263 7 0.0051 0.0017
139}777123.4885 0.0052 13 3.4885 0.0037
140}3341
141 7 9 14 3.1083 0.0062 15 3.1083 0.0047
142 1 9 66 0.0150 0.0301 7 0.0228 0.0018
143}888123.1648 0.0050 13 3.1648 0.0041
144 3 8 16}00.6641 0.0651 17 0.6641 0.0048
145 6 2 127 NaN 0.1905 29 0.0231 0.0666
146}777113.2350 0.0046 13 3.2350 0.0043
147 2 4 58 0.7658 0.0200 6 0.7670 0.0013
148}88812122.1261 0.0050 13 2.1261 0.0038
149 2 5 60 0.2748 0.0218 6 0.2799 0.0526
150}113560.1017 0.0223 66 0.1030 0.0014
151}88915152.2372 0.0071 17 2.2372 0.0058
152 7 3 195 0.4054 0.3624 48 0.3538 0.1150
153}33917\0.7720 0.0073 20 0.7720 0.0058
154 1 5 60 0.0085 0.0624 7 0.0096 0.0017
155}577160.6305 0.0068 16 0.6305 0.0046
156}70816 1.9168 0.0070 25 1.9168 0.0083
157 4 5 14 0.7501 0.0052 15 0.7501 0.0045
158 7 1 45 NaN 0.1248 16 NaN 0.0114
```

159	3	3	11	0.9672	0.0264	12	0.9672	0.0031
160	1	1	45	0.4010	0.0133	4	0.4008	0.0008
161	4	8	18	0.6044	0.0076	19	0.6044	0.0053
162	6	5	14	1.2959	0.0066	16	1.2533	0.0058
163	9	6	15	1.5190	0.0076	23	1.2027	0.0529
164	9	9	12	2.4810	0.0054	13	2.4810	0.0041
165	7	2	54	3.0844	0.0905	26	1.1829	0.0092
166	9	5	11	0.6774	0.0054	20	0.8400	0.0390
167	3	9	66	0.1178	0.0305	7	0.1240	0.0019
168	2	3	56	1.2827	0.0201	5	1.2850	0.0012
169	8	5	14	3.1274	0.0066	21	2.3811	0.0387
170	2	4	58	0.2706	0.0206	6	0.2715	0.0014
171	4	3	79	1.8914	0.1462	159	0.6958	0.3458
172	1	5	60	0.0769	0.0245	6	0.0821	0.0015
173	1	3	56	0.1561	0.0220	5	0.1636	0.0012
174	7	4	55	0.3958	0.0958	31	0.8488	0.0474
175	7	6	22	0.4917	0.0108	23	0.5037	0.0401
176	1	4	58	0.0114	0.0541	6	0.0139	0.0014
177	6	7	15	1.2088	0.0063	19	1.2088	0.0057
178	8	7	22	2.3937	0.0109	31	3.0084	0.1104
179	9	8	12	2.3249	0.0063	23	2.0587	0.0430
180	1	8	65	0.0225	0.0277	8	0.0236	0.0329
181	8	3	21	0.2064	0.0111	52	0.1950	0.0961
182	8	1	45	$N a N$	0.1603	45	$N a N$	0.0903
183	3	1	45	$N a N$	0.0892	45	$N a N$	0.0170
184	4	9	16	0.7594	0.0070	25	0.7594	0.0080
185	7	6	12	1.7165	0.0058	16	1.2626	0.0795

```
    186 9 9 12 4.2814 0.0057 13 4.2814 0.0042
    187 7 9 15 1.0139 0.0067 17 1.0139 0.0051
    188 2 3 56 0.0452 0.0192 5 0.0469 0.0012
    189 8 4 48 0.4489 0.0365 14 1.0610 0.0049
    190 1 2 52 0.0018 0.0198 5 0.0047 0.0012
    191 4 9 18 1.5071 0.0082 23 1.5071 0.0282
    1924 3 15 0.5991 0.0068 16 0.6997 0.0056
    193 6 3 123 0.0110 0.2378 67 0.0438 0.1039
    194 1 6 62 0.1704 0.0566 7 0.1724 0.0017
    195 3 2 53 NaN 0.0634 17 NaN 0.0057
    196 24 58 0.0721 0.0200 6 0.0768 0.0015
    197 3 8 16 2.0542 0.0065 20 2.0542 0.0056
    198 5 1 45 NaN 0.1366 45 NaN 0.0839
    199 4 5 13 1.3755 0.0054 15 1.3755 0.0041
    200 3 3 14 1.8529 0.0051 15 1.8529 0.0039
```


New method Classical method

$\operatorname{dim}(m * n)$ iteration time iteration time
$\begin{array}{lllll}\text { average } 4.9 & 5.4 & 40.7 & 0.0448 & 24.6\end{array} 0.0362$

MatLab code forTable 5.3

solve the random system with dimention 200*300
$m=200 ; n=300$;
$A=r a n d(m, n)$;
$b=r a n d(m, 1)$;
$\mathrm{c}=\mathrm{rand}(\mathrm{n}, 1)$;
epsilon=0.01;
in new mehtod, $\mathrm{p}=0.8, \mathrm{q}=1.2$

New method idx iteration Opt						
34	31	13.3783	2.1870	34	13.3783	2.4084
35	33	13.5477	2.3660	38	13.5477	2.7975
36	35	12.2685	2.4543	47	12.2685	3.6504
37	34	12.1387	2.4273	42	12.1387	3.1664
38	31	14.3202	2.1804	42	14.3202	3.1886
39	33	11.7495	2.4815	30	11.7495	2.0452
40	30	15.0938	2.1312	39	15.0938	2.8654
41	40	15.4534	3.0469	44	15.4534	3.3165
42	38	12.4233	2.8703	44	12.4233	3.2338
43	66	12.7004	5.6847	40	12.7022	2.8478
44	39	12.4386	2.9631	40	12.4386	2.8733
45	33	13.5479	2.3851	42	13.5479	3.0937
46	36	13.7716	2.6777	43	13.7716	3.1809
47	33	12.7877	2.5047	35	12.7877	2.5006
48	36	16.7568	2.7086	36	16.7568	2.5545
49	38	15.3569	2.9702	34	15.3569	2.4201

average
New method Classical method
iteration time iteration Opt time

35.8100	2.6626	40.0000	2.8812

	erati	Opt			method	
1	33	14.1325	2.2903	36	14.1325	2.4028
2	34	11.4602	2.3497	40	11.4602	2.6396
\bigcirc	34	14.8578	2.3979	43	14.8578	3.4298
4	32	14.0615	2.3182	42	14.0615	2.9494
5	37	13.8361	2.6571	40	13.8361	2.7531
6	27	12.5830	1.8774	31	12.5830	2.0912
7	35	15.0891	2.4443	46	15.0891	3.1579
8	42	15.4758	3.0902	51	15.4758	3.5747
9	33	13.9757	2.3580	36	13.9755	2.3991
10	33	14.4968	2.3421	34	14.4968	2.3027
11	31	11.4472	2.1374	65	11.4295	4.6683
12	29	13.3044	1.9933	36	13.3044	2.4292
13	34	13.6009	2.3862	50	13.6009	3.4991
14	34	11.4376	2.4010	41	11.4376	2.8593
15	31	14.8721	2.1535	35	14.8721	2.34
16	38	14.0051	2.7457	35	14.0051	2.3498
17	29	13.8349	2.0148	35	13.8349	2.3490
18	35	12.8241	2.4992	42	12.8241	2.9333
19	33	13.0498	2.3489	42	13.0499	2.98
20	33	14.5358	2.3046	35	14.5358	2.3323
21	33	13.7607	2.3485	38	13.7607	2.6101
22	31	13.3368	2.1436	36	13.3368	2.4539
23	31	12.6427	2.1378	44	12.6427	3.0703
24	33	13.1727	2.3204	47	13.1727	3.355

25	38	12.4437	2.7154	45	12.4437	3.1244
26	30	16.4101	2.0944	39	16.4101	2.6710
27	43	14.5286	3.1413	39	14.5286	2.6813
28	32	14.2258	2.2594	31	14.2258	2.1112
29	34	11.9038	2.4134	51	11.9038	3.6221
30	29	12.9792	1.9981	33	12.9792	2.1890
31	30	13.5566	2.0404	39	13.5566	2.6850
32	30	13.9748	2.1090	31	13.9748	2.0360
33	38	13.9658	2.6906	41	13.9658	2.7484
34	31	13.3783	2.1870	34	13.3783	2.4084
35	33	13.5477	2.3660	38	13.5477	2.7975
36	35	12.2685	2.4543	47	12.2685	3.6504
37	34	12.1387	2.4273	42	12.1387	3.1664
38	31	14.3202	2.1804	42	14.3202	3.1886
39	33	11.7495	2.4815	30	11.7495	2.0452
40	30	15.0938	2.1312	39	15.0938	2.8654
41	40	15.4534	3.0469	44	15.4534	3.3165
42	38	12.4233	2.8703	44	12.4233	3.2338
43	66	12.7004	5.6847	40	12.7022	2.8478
44	39	12.4386	2.9631	40	12.4386	2.8733
45	33	13.5479	2.3851	42	13.5479	3.0937
46	36	13.7716	2.6777	43	13.7716	3.1809
47	33	12.7877	2.5047	35	12.7877	2.5006
48	36	16.7568	2.7086	36	16.7568	2.5545
49	38	15.3569	2.9702	34	15.3569	2.4201
50	35	10.1950	2.5621	41	10.1950	2.9928
51	39	14.4130	3.0114	47	14.4130	3.6163

52	35	14.5251	2.6399	40	14.5251	2.9441
53	72	14.9484	6.2311	45	14.9489	3.2947
54	35	16.3867	2.5885	40	16.3867	2.8813
55	38	12.7772	2.9128	42	12.7772	3.1070
56	34	13.0523	2.5302	38	13.0523	2.8084
57	35	13.0530	2.5921	43	13.0530	3.2378
58	34	13.0528	2.5316	35	13.0528	2.4582
59	31	15.8548	2.2426	35	15.8548	2.5212
60	29	14.2370	2.0127	39	14.2370	2.8138
61	43	13.5499	3.3413	38	13.5499	2.7139
62	35	12.8535	2.5790	35	12.8535	2.4133
63	33	12.9314	2.4403	37	12.9314	2.6749
64	95	13.7239	9.0412	44	13.7796	3.2587
65	31	15.8651	2.2830	34	15.8651	2.3814
66	37	13.8844	2.7863	38	13.8844	2.6984
67	38	14.4416	2.9258	46	14.4415	3.5383
68	35	13.3879	2.5361	44	13.3879	3.1893
69	37	14.7301	2.6624	47	14.7301	3.5063
70	34	14.0756	2.5296	40	14.0755	2.8794
71	37	13.8434	2.7015	41	13.8434	2.9964
72	32	14.9581	2.3169	32	14.9581	2.1915
73	31	13.0970	2.2517	40	13.0970	2.9671
74	32	12.1322	2.3486	42	12.1322	3.1600
75	33	14.5811	2.4676	36	14.5811	2.5803
76	36	15.1297	2.7490	40	15.1297	2.9157
77	28	16.3501	2.0110	37	16.3501	2.6951
78	37	11.7357	2.7682	38	11.7357	2.6857

```
79}44713.4661 3.8289 38 13.4661 2.7929 
80}303014.1476 2.1423 38 14.1476 2.7840 
81
82
83}4040\quad13.4680 2.9901 46 13.4680 3.4051
84}303711.5136 2.7620 42 11.5136 3.0184
85}303614.5218 2.7568 36 14.5218 2.6255
86
87}303212.6705 2.4086 41 12.6705 3.1666
88}303412.5076 2.6738 38 12.5076 2.8091
89}44014.6875 3.2020 34 14.6875 2.5030
90}303011.3641 2.2120 33 11.3641 2.3333 
91}303414.8216 2.5382 40 14.8216 2.9601 
92}303416.0217 2.5202 48 16.0217 3.8445
93
94}404015.8152 3.0568 41 15.8152 2.9229
95}33014.3876 2.2207 34 14.3876 2.4590 
96 30 15.8316 2.2985 40}15.8316 3.0683
97}33314.2434 2.4493 38 14.2434 2.8031
98}303713.7590 2.8397 46 13.7590 3.5587
99}303915.5669 2.8991 52 15.5669 3.9323 
100}303515.0051 2.6977 48 15.0051 3.7811
```

average

New method		Classical method	
iteration time	iteration Opt	time	
35.8100	2.6626	40.0000	2.8812

MatLab code for Table 5.4

solve the random system with dimention 400*700
$m=400 ; n=700$;
$A=\operatorname{rand}(m, n)$;
$b=\operatorname{rand}(m, 1)$;
$\mathrm{c}=$ rand $(\mathrm{n}, 1)$;
epsilon=0.01;
in Dr. Lesaja's mehtod, $p=0.8, q=1.2$

New method idx iteration Opt		erati	method Opt	time
1416.8015	25.4030		16.8018	35.8048

MatLab code for Table 5.4
impNew
$\mathrm{p}=1$-lambda;
$\mathrm{q}=1+$ lambda;
average of 200 iterations

MatLab code for Table 5.6

20 iterations

0.1			0.2			
idx $\operatorname{dim}\left(m^{*} \mathrm{n}\right)$ iteration Opt time				iteration Opt		t time
1200300	36	15.3765	2.7472	35	15.3765	2.6816
2200300	33	13.6721	2.5727	33	13.6721	2.5643
3200300	39	13.1033	3.0115	41	13.1033	3.2237
4200300	38	14.9661	3.0094	40	14.9661	3.2188
5200300		12.9225	2.4362	28	12.9225	2.0493
6200300	32	13.3005	2.3987	34	13.3005	2.5932
7200300	38	11.4939	2.9336	36	11.4939	2.8237
8200300	32	13.6853	2.4423	37	13.6853	2.9811
9200300	33	12.6659	2.5796	28	12.6659	2.0762
10200300	79	13.1793	6.9372	43	13.1802	3.4659
11200300	33	12.4495	2.4903	33	12.4495	2.4935
12200300	33	14.7143	2.5612	31	14.7143	2.3323
13200300	32	13.0591	2.3790	34	13.0591	2.6057
14200300	41	14.7339	3.2123	33	14.7339	2.4766
15200300	34	15.4971	2.6664	33	15.4971	2.6206
16200300	37	12.8786	2.9451	40	12.8786	3.0927
17200300	36	12.6252	2.7991	37	12.6252	2.9537
18200300	33	14.2547	2.5594	32	14.2547	2.4313
19200300	32	15.6560	2.4247	32	15.6560	2.4553
20200300	29	14.5694	2.1154	34	14.5694	2.5937

