View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Georgia Southern University: Digital Commons@Georgia Southern

JACK M., AVERITT

COLLEGE

GRADUATE Georgia Southern University
STUDIES .. .

s Digital Commons@Georgia Southern
Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Spring 2009

Interior Point Methods and Kernel Functions of a Linear
Programming Problem

Latriece Y. Tanksley

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

Recommended Citation

Tanksley, Latriece Y., "Interior Point Methods and Kernel Functions of a Linear
Programming Problem" (2009). Electronic Theses and Dissertations. 650.
https://digitalcommons.georgiasouthern.edu/etd/650

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

https://core.ac.uk/display/229063793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/650?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

INTERIOR POINT METHODS AND KERNEL FUNCTIONS
OF A LINEAR PROGRAMMING PROBLEM
by
LATRIECE Y. TANKSLEY
(Under the Direction of Goran Lesaja)
ABSTRACT

In this thesis the Interior — Point Method (IPM) for Linear Programming problem (LP) that is

based on the generic kernel function is considered.

The complexity (in terms of iteration bounds) of the algorithm is first analyzed for a class of
kernel functions defined by (3-1). This class is fairly general; it includes classical logarithmic
kernel function, prototype self-regular kernel function as well as non-self-regular functions,
thus it serves as a unifying frame for the analysis of IPM. Historically, most results in the
theory of IPM are based on logarithmic kernel functions while other two classes are more
recent. They were considered with the intention to improve theoretical and practical
performance of IPMs. The complexity results that are obtained match the best known

complexity results for these methods.

Next, the analysis of the IPM was summarized and performed for three more kernel functions.

For two of them we again matched the best known complexity results.

The theoretical concepts of IPM were illustrated by basic implementation for the classical
logarithmic kernel function and for the parametric kernel function both described in (3-1).
Even this basic implementation shows potential for a good performance. Better

implementation and more numerical testing would be necessary to draw more definite

conclusions. However, that was not the goal of the thesis, the goal was to show that IPM with
kernel functions different than classical logarithmic kernel function can have best known

theoretical complexity.

INDEX WORDS: Interior Point Methods, Linear Programming, Kernel Functions, Log Barrier Functions

INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

LATRIECE Y. TANKSLEY

B.S., Savannah State University, 2000

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2009

© 2009

LaTriece Y. Tanksley

All Rights Reserved

INTERIOR POINT METHODS AND KERNEL FUNCTIONS

OF A LINEAR PROGRAMMING PROBLEM

Major Professor: Goran Lesaja

Committee: Billur Kaymakcalan
Scott Kersey

Yan Wu

Electronic Version Approved:

May 2009

ACKNOWLEDGEMENTS

Mathematics has always been of great interest to me. I cannot begin to express the joy and
pleasure that I’ve experienced studying at Georgia Southern University under the direction of
the great faculty here. Dr. Goran Lesaja has played an intricate role in my graduate research. |
could not have made it to this point without his advisement and knowledge. I would like to
thank Dr. Yan Wu and Dr. Billur Kaymakcalan for serving on the graduate committee. I have
had the pleasure of taking previous classes from both instructors and want to thank them for
their encouragement throughout my academic career. I would also like to thank Dr. Scott
Kearsey for serving on the graduate committee. I have not had the pleasure of knowing him as
well as the others, but I appreciate his interest in my graduate work. I would also like to thank
graduate student Jie Chen and Segio Valdrig for their generous help with the implementation
of the algorithms in MatLab. I would like to thank my parents, Algene and Dorothy Tanksley,
for their support throughout this long journey. They have been great role models in my life
and this accomplishment is a direct result of their hard work and commitment towards my
academic success. Finally, I would like to thank the math professors at Savannah State
University who first encouraged me and guided me through undergraduate studies in math. I

am eternally grateful to them for their leadership and interest in my studies.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ..ottt ettt st 6

LIST OF FIGURES ...ttt sttt ettt e s 8

LIST OF TABLES ...ttt ettt ettt e s e e st e e st e et e s st e e naneeeas 9

NOMENCLATURE ...ttt ettt ettt s 10
CHAPTER

I INTRODUCTION ..ottt ettt ettt e s 12

2 INTERIOR POINT METHODS BASED ON KERNAL FUNCTIONScccc.c.... 18

3 ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS . 27

4 ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNAL FUNCTIONSS50

S NUMERICAL RESULTS ..ottt 68

6 CONCLUSION. ..ottt e 74
REFERENCES ...ttt st s 76
APPENDICES

APPENDIX A .ottt 77

APPENDIX B ..ot e 82

LIST OF FIGURES

Figure 1: Graphical Interpretation of IPMcccoviieiiiieiiieeeececceeee e,

Figure 2: Generic Primal-Dual Interior-Point Algorithm for Linear Optimization

Figure 3: IPM Based on generic kernel function............cccceeeeieeeiiieicieencieecieeens

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

LIST OF TABLES

Wyndor Glass Company Dataccccueeeiiiiiiiiiiieeeieece e
Complexity results for long-step methods..........coccuveeiiieeiiiiiciieeeee e
Complexity results for short-step methods..........cccveeeiieeiiiiieciieeiee e
Numerical results for EXamplecccoviiiiioiiiiiiieceeceeceeee e
Numerical results for randomly generated “small problems”

with dimension less than 10.........ccccoiiiiii e
Numerical results for randomly generated problems

with dimension 200X300..........couiiiiiiiiiieee e
Numerical results for randomly generated problem

with dimension 400X 700..........oouiiiiiiiiiie et
More Numerical ReSUILSc.ooiiiiiiiiiiii e

MOre NUMETICAL RESULLS .coeeeeneee et e e e

R}’l

xe A

F:R" > R"

VF

X =diag(x)

o(f(n))

10

NOMENCLATURE
Euclidean n dim space

All vectors of R" with nonnegative components

Element x belongs to set 4

A Euclidian norm of vectorx € R", ||x” = /Zn:xl”
i=1

u converges to 0

A function with n variables
A gradient and a Hessian of f

A vector valued function
A Jacobian of F

A diagonal matrix that has components of the vector x on

the main diagonal and zeros everywhere else

Component wise operations (product, division, inverse) of

vectors x,s € R". For example, xs = (x,s,, -, x5,).

n-n

There exist a constant C' and a function g(n) such that

f(n)=Cg(n) (“small 0” notation).

O(f (n))

Q(f(m)

There exist a constant C' and a function g(n) such that
f(n) < Cg(n)
There exist constants C, K and a function g(n) such that

Cg(n) < f(n) < Kg(n)(“big Q” notation).

11

12

CHAPTER 1

INTRODUCTION

Linear Programming Model

The mathematical model of linear programming is useful in solving a wide range of
problems in industry, business, science and government. This is by far the most used

optimization model.

These problems and their linear programming models can often be complex as they
consist of a huge number of variables and constraints ranging up to the hundred thousands. A
linear programming model consists of an objective function, that is a linear function, and the
constraints on that function that are also linear. Linear programming involves the planning of

activities to obtain a result that reaches a specified goal among all feasible alternatives.

A Linear Program (LP) is a problem that can be expressed in standard form as follows:

Minimum c' x
Ax =

subject to x=b (1-1)
x>0

where x € R" is the vector of variables to be solved for, and matrix 4 € R™" and vectors
ceR",beR" are input data. . The linear function Z = ¢’ x is called the objective function,
and the equations Ax = b are called functional constraints, while x > 0 are called nonegativity

constraints. The set F' = {x eER"|Ax=b, x> 0} is called a feasible set. Geometrically, the set

represents a polyhedron in R”.

13

Many practical problems can be modeled as LP models. To illustrate this fact we list
the following simple example taken from the [Hillier, Lieberman, 2005].

Example: The Wyndor Glass Co. produces high-quality glass products, including
windows and glass doors. It has three plants. Aluminum frames and hardware are made in
Plant 1, wood frames are made in Plant 2, and Plant 3 produces the glass and assembles the
products. Because of declining earnings, top management has decided to revamp the
company’s product line. Unprofitable products are being discontinued, releasing production
capacity to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing

Product 2: A 4 x 6 foot double-hung wood-framed window
Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
Product 2 needs only Plants 2 and 3. The marketing division has concluded that the company
could sell as much of either product as could be produced by these plants. However, because
both products would be competing for the same production capacity in Plant 3, it is not clear
which mix of these two products would be most profitable. Each product will be produced in
batches of 20, so the production rate is defined as the number of batches produced per week.
Any combination of production rates that satisfies the restrictions is permitted, including
producing none of one product and as much as possible of the other. Profit from selling one
batch of Product 1 (glass doors) is $3000 and profit from selling one batch of Product 2
(windows) is $5000. We assume that all produced batches will be sold. Goal: To determine
what the production rates should be for the two products in order to maximize the total profit,
subject to the restrictions imposed by the limited production capacities available in the three

plants.

14

Of course, this is a simplified real world situation but good enough to illustrate the usefulness
of the model. Formulation of the Linear Programming (LP) Problem

Let x, = number of batches of product 1 produced per week
x, = number of batches of product 2 produced per week

Z = total profit per week in thousands of dollars from producing these two products
The following table summarizes the data gathered:

Wyndor Glass Company Data

Plant Production Time Per Batch Hours Production Time Available
per Week, Hours
Product
1 2
1 1 0 4
2 0 2 12
3 3 2 18
Profit per Batch 3000 5000
Table 1

The objective function is Z = 3x, +5x, and it represents a total profit measured in thousands of
dollars. The objective function is subject to the restrictions imposed by the limited production
capacities available in each of the plants, and they can be mathematically expressed by the

following inequalities:

15

Plant 1 x, <4
Plant 2 2x, <12
Plant 3 3x, +2x, <18

Thus, the overall linear programming model illustrating the Wyndor Glass Company is

Maximize Z =3x, +5x,
subject to X, <4
2x, <12

3x, +2x, <18

x20,x,20

By adding slack variables this problem can be transformed in the standard form (1-1).

Maximize Z =3x, +5x,
subject to X, + X, =4
2x, +x, =12
3x, +2x, +x; =18

x20,x,20,x,20,x, 20,x, 20
The similar procedure can be done for different inequality formulations of LP.

This example illustrates the applicability of the LP model. The number of problems
that can be modeled as LP is huge and widespread to many areas of science, industry,
business, finance, government, etc. For more examples see [HL] and other Operations
Research textbooks. Therefore, the efficient methods to solve LP models are very important.
In the following sections we will outline main methods that are used to solve LP models.

Methods to Solve LP Models

The first successful general procedure, Simplex Method, for solving a LP problem was

discovered by George Dantzig in 1947 although there were partial results discovered earlier.

Theoretically the main idea of the simplex method (SM) is that it travels from vertex to vertex

16

on the boundary of the feasible region, repeatedly increasing or decreasing the objective
function until either an optimal solution is found, or it is established that no solution exists.
The number of iterations required in the worst case is an exponential function of the number
of variables, as it was first discovered by Klee and Minti in 1972. However, the worst case
behavior has not been observed in practice. On the contrary, the algorithm works very well in

practice, typically requiring O(n) iterations. Highly sophisticated implementations are

available (CPLEX, MOSEK, LINDO, EXCEL SOLVER) and have excellent codes for
simplex algorithms. These codes are capable of solving huge problems with millions of
variables and thousands of constraints. This discrepancy between exponential worst case
complexity and good practical behavior of simplex method prompted the research in two
directions. One direction was a search for the algorithm with the polynomial worst case
complexity and the other direction was the analysis of average complexity of simplex method.

In 1979, Leonid Khaciyan showed that the Ellipsoid Method, created by A.
Nemirovski and D. Yudin for nonlinear programming problems, solves any linear program in
a number of steps which is a polynomial function of the amount of data defining the linear
program. Unfortunately, in practice, the simplex method turned out to be far superior to the
ellipsoid method. However, theoretical importance is significant because it provided a basis to
prove that polynomial methods exist for many combinatorial problems.

In 1982 K. Borgward provided the first probabilistic analysis of the simplex method,
showing that the expected number of iterations is polynomially bounded. Soon afterwards,
other authors provided similar analysis. A relatively simple and complete analysis was

provided by Adler and Megiddo in 1985. Using the clever probability model, they showed that

17

upper and lower bounds on an average number of iterations is a function of Q((min {m,n})’),

where m is the number of constraints and n is the number of variables.

In 1984, Narendra Karmarkar introduced an Interior-Point Method (IPM) for linear
programming, combining the desirable theoretical properties of the ellipsoid method and
practical advantages of the simplex method. Its success initiated an explosion in the
development of interior-point methods that continue to this day.

These methods do not pass from vertex to vertex along the edges of the feasible region,
which is the main feature of the simplex algorithm; they follow the central path in the interior
of the feasible region. Though this property is easy to state, the analysis of interior-point
methods is a subtle subject which is much less easily understood than the behavior of the
simplex method. Interior-point methods are now generally considered competitive with the
simplex method in most, though not all, applications, and sophisticated software packages

implementing them are now available (CPLEX, MOSEK, LINDO, EXCEL SOLVER).

18

CHAPTER 2
INTERIOR POINT METHODS BASED ON KERNEL FUNCTIONS

The linear optimization problem in standard form is
(P) min{ch cAx=b, x> O},
where 4 € R""" (rank(A) =m), beR"™, c €R". The dual problem of (P) is
(D) max{bTy:ATy+S=c,SZO},
where s € R" is a dual slack variable.

We can assume that the Interior Point Condition (IPC) is satisfied without loss of
generality; that is, there exists a point (x°,s°,°) such that 4x’ =5, x’ >0 and
A"y’ +5° = ¢, 5 >0, which means that the interiors of the feasible regions of the primal(P)
and dual(D), are not empty. If the problem doesn’t satisfy the IPC, it can be modified so that it

does and even in such a way that x° = s° = e, where e denotes a vector of all ones. The

details can be found in [Roos, C et. al., 1997].
Optimality conditions for (P) and (D) yield the following system of equations:
Ax= b,x>0

A'y+s=1c520 (2-1)

xs =0,

where the vector xs denotes the component wise product of vectors x and s which is also

called Hadamard product.

19

The theory of interior point methods (IPMs) that is based on the use of Newton’s
Method suggests that the third equation in (2-1) has to be perturbed. The third equation is
often called the complementarity condition for the primal and dual, and is replaced by
xs = pe , where u1is a positive parameter. The optimality conditions (2-1) are transformed to
the following system:

Ax =b,x>0

A" +y+S=1¢c,5>0 (2-2)

xXs = pe.

Since rank (A) = m, this system has unique solution for each g >0. We can write this solution

as (x(y),y(y),s(u)), calling x(u)the u—center of (P) and (y(u),s(u))the u— center of (D).

The set of all 1 — centers forms a homotopy path in the interior of the feasible region that is

called the central path.

The main property of the central path can be summarized as follows: if ¢ — 0, then

the limit of the central path exists, the limit points satisfy the complementarity condition, and
the limit yields optimal solutions for (P) and (D). This limiting property of the central path
leads to the main idea of the iterative methods for solving (P) and (D): Trace the central path
while reducing u at each iteration. However, tracing the central path exactly would be too
costly and inefficient. One of the main achievements of interior point methods was to show
that tracing the central path approximately while still maintaining good properties of the

algorithms is sufficient.

Tracing the central path means solving the system (2-2) using Newton Method on the

function

20

Ax—-b
F(x,y,8)=|A"y+s-c|=0. (2-3)
xs — e
Tracing the central path approximately means that only one, or at most, a couple of iterations

of a modified (damped) Newton’s Method will be performed for a particular x . One iteration

of a Newton Method for the function (2-3) and particular u is stated below.

Ax
(2-4)
VF| Ay | =-F(x,y,5)
Az
where
A 0 0
VF =|0 4" I
S 0 X

denotes the Jacobian of F and [Ax,Ay,Az | is a Newton’s search direction that we want to

calculate.

Solving (2-4) reduces to solving this system.

AAx =0
A"Ay+As =0 (2-5)
SAx + xAs = pe — xs

Next we update the current iterates (x, y,s) by taking an appropriate step along the calculated

direction.

X, =x+alx, y, =y+aldy, s, =s+als

The step size a has to be chosen approximately, so that the new iterate is in a certain

neighborhood of p-center. The choice of a will be discussed later in the text.

The idea of the algorithm is illustrated in the Figure 1 blow.

Graphical Interpretation of IPM

lterate

CentraP path Directions with

step-size

Feasible
region

Neighborhood
«- Optimal
/‘ solution

g—approximate (n=0)

solution

Figure 1

In order to generalize the algorithm outlined above, we introduce a new vector

21

22

v=_[— (2-6)
U

d =—,d =— (2-7)

where the operations in (2-7) are component-wise product and division of vectors. Using the
above definitions (2-6) and (2-7), the system (2-5) reduces to
Ad =0

AAy+d =0 (2-8)

d +d, =v"'-v

where A= lAV*IX , Vi=diag(v), X =diag(x).Note that X = diag(x) denotes a

7
diagonal matrix that has components of the vector x on the main diagonal and zeros

everywhere else.

The new search direction (Ax, Ay, As) is obtained by first solving the system (2-
8).Once d_ and d are found we apply (2-6) to find Ax and As. This direction can also be
obtained directly by solving the following system:

AAx =0

ATAy+As =0
sAX + xAs = oV (). (2-9)

23

This system can be reduced to

MAy =r (2-10)
where
M =A45"'x4"
r=uAS vV (v)
(2-11)

and X =diag(x), S =diag(s), V = diag(v).
Once Ay is found, As and Ax are found by back substitutions
As =—A" Ay (2-12)
Ax = =57 (xAs — uoV¥ (v)) (2-13)
where products denote component-wise products of vectors.

The following observation is crucial for the generalization of the method. Observe that

- (l)_l - z)) is a gradient of the following function

n (2 -1 21 ;=1
‘Pc(u):Z(U’z —loguij=(012 —10g02J+---+(U”2 —logunj. (2-14).

This function is called log-barrier function.

One may easily verify that the Hessian V*W, (v) = diag(e + v). Since this matrix is

positive definite, ¥, (v)is strictly convex. Moreover, since V¥, (e) =0, it follows that

24

Y, (v) attains its minimal value at v = e, with ¥_(e) = 0. Thus, it follows that ¥, (v) s

nonnegative everywhere and vanishes if and only if v = e, that is, if and only if

x =x(u)and s = s(u). Hence, we see that the u — centers x(u) and s(u) can be characterized
as the minimizers of the function ¥, (v) . Therefore, the function ‘¥, (v) serves as a proximity
measure to the g -centers (central path.. The norm based proximity measure that is derived

from ¥, (v)1s defined as
1
S = 5||V‘Pc)| (2-15)

Furthermore, the complimentary equation in (2-8) can be written as

d._+d, =-VY¥Y, (v), which is also called the scaled centering equation. The importance of
the equation arises from the fact that it essentially defines the search directions. Since d_ and
d are orthogonal, we will still have d d, = 0if and only if v =e. The same is true for Ax
and As .

The main idea of the generalization of the method is to replace the log-barrier function
(2-14) with some other barrier function that has the same properties as log barrier. The choice
of this function will certainly affect the calculation of the search direction, the step size, and
with that the rate of the convergence of the method. It is worth examining the classes of

barrier functions that may lead to the improved behavior of the algorithm. In what follows, we

will consider several such classes.

We will restrict ourselves to the case where the barrier function W(v) is separable with

identical coordinate functions ¢(v,) . Thus,

25

Y(v) = _anco(v,-), (2-16)

where ¢(t) :[0,)1s twice differentiable and attains its minimum atz =1, with ¢(1) =0. The

function ¢(¢) is called a kernel function. The log-barrier function belongs to this class.

The algorithm based on generic kernel function that was outlined above is summarized
in the Figure 2 below. In principle, each barrier function gives rise to a different primal-dual
algorithm. The parameters 1,0 and the step size a in the algorithm should be tuned in such a
way that the number of iterations required by the algorithm is as small as possible. The
resulting iteration bound will depend on the kernel function, and our main task becomes to
find a kernel functions that give a good and possibly best known iteration bound. The question

of finding the kernel function that minimizes the iteration bound is still an open question.

Generic Primal-Dual Interior-Point Algorithm for Linear Optimization

Input:
An input data A, b, ¢
A threshold parameter 7 > I
An accuracy parameter & >0 ;
A fixed barrier update parameter 6 <1;
Iteration:
begin
xX=e85=e u=1;
while nu > e do
begin

calculate u:= u(1-0);

/x

calculate v = |—;
U
d

s
while ¥(v)> 7 do
begin

calculate the direction (Ax,Ay,As)

using (2-10) — (2-13) :

calculate step size o ;

update

XxX=x+alMAx, s=s+alAs, y=y+aly;

end

end

end

Figure 2 Generic IPM

26

27

CHAPTER 3

ANALYSIS OF THE ALGORITHM FOR A CLASS OF KERNEL FUNCTIONS

The following class of kernel functions will be used to analyze the algorithm, Generic

IPM, discussed in the Chapter 2, Figure 2 .

-1 17—
+ ., t>0,pel0.1], g>1
p+1 qg-1
Vo =3 (3-1)
—logt, t>0, pelo.1]
p+1

where p is a growth parameter and ¢ is a barrier parameter.

l-q

. t
Notice that

" — —log#when g — 1. This class of kernel functions is fairly general. As
q —

we just explained, it includes log-kernel function as a special case. It also includes so-called

self-regular kernel functions when p =1. These functions have been extensively discussed in

recent literature (Peng, J, et. al, 2002). Moreover, it also includes non self-regular functions

when 0 < p < 1. This class of functions was first discussed in (Lesaja G., et.al., 2008). The

results in this chapter follow the results presented in that paper. However, the proofs of several

results that were omitted in the paper are outlined here.

Properties of Kernel Functions

The derivatives of w(¢) in (3-1) play a crucial role in our analysis. Thus, we write

down the first three derivatives:

28

p)=t"—1"
w ()=pt" +qt7"" (3-2)
w ()= p(p-Dt"? —q(qg+ 1.

In the next several lemmas we will describe certain properties of kernel function and its
derivatives and their relationships in terms of inequalities. These results will be used in the

analysis of the Generic IPM.

The following lemma states the so-called exponential convexity of kernel function which is

crucial in proving the polynomial complexity of the Generic IPM.

Lemma3.1 I ¢ >0 and t, >0, then l//(w/l‘ltz)ﬁ

(w(e)+ w(2)).

Proof: It can be shown that the inequality in the lemma holds if and only if
ty' (t)+w'(t) =0 for all t > 0. This result is beyond the scope of the thesis and can be found

(Peng, J., et. al., 2002). Using (3-1) one can easily verify that

ty () +y'(t) = t(ptp_l +tqi+lj+tp —tiq =(p+t? +(qt—;1) >0,
which completes the proof.
Lemma 3.2 If 7>1, then %(t)(t—l) <w(r) < pTJ"](r—l)z.

Proof: If f(¢)=2w(t)—(t—Dy'(t), then £'(¢)=y'()—(t—Dy"(f)and

6 =—(-Dy"'(©). Also f(1)=0and f'(1)=0. Since y'"'(¢) < Oit follows that if

29

t >1then f'"(¢)>0whence f'(#) >0 and f(¢#) > 0. This implies the first inequality. The

second inequality follows from Taylor’s theorem and the fact that "' (1)=p+¢ .
Lemma 3.3 Suppose that y(¢,) =w(¢,) with ¢, <1<¢,. The following statements hold:
i. Onehas y'(¢,)<0,y'(t,)20,and —y'(t,) 2y'(t,).
ii. If =1, then w(pft,)<w(pft,);equality holds if and only if f=1or ¢, =¢, =1.
Proof: Proof of (i):

The statement is obvious if 7, =1or z,=1 because then y '(¢,) =w'(t,) =0 implies ¢, =¢, =1
Thus we may assume that #, <1<¢,. Suppose the opposite —y'(¢,) <y'(¢,). By the mean

value theorem we have
w'(t)=~1-t)y (&), forsome & e(l,t,)
and
-y () =(t, — Dy (&), forsomeé, e(¢,,]).
Since ' (t) is monotonically decreasing one hasy ' (£,) > w ' (£,) . Then we obtain
(6 =Dy (&)> =1y (&)= -1 (&)

Hence since v (&,)>0 it follows thatz, —1 > 1—¢, . Using this and the fact that —y'(¢) is

convex, we may also write

30

w(t,) =
= [y (&g

> (- @)

Since y'(¢) is concave,
Since t, —1>1—t, andy (¢,) >0,

1 !
—(1=
>2(tl)u/(tz) Since l//'(l‘l)<l//'(t2),

1 \
> _5(1 —1)'/’ (Since ' (¢) is concave.

N RAGLS
=y ().

This contradiction proves the first part of the lemma.
Proof of (ii):
Consider, f(8)=y/(ft,)-w(ft,).

One has f(1)=0and f'(B) =ty (Bt,) -ty (Bt,).

Since w''(t) 2 0 forall £ >0, w'(¢)1s monotonically increasing. Hence, y'(f¢,) <w'(ft,).

Substitution gives
S'(B)=tw' (Bt —tyw'(Bt) 2L,y (Bt,) -ty (Bt) =y'(Bt,)t, —1,) =20

The last inequality holds since ¢, > ¢, and ' (¢) > 0 for ¢ > 1. This proves that f (,8) > 0 for

P >1,and hence the inequality (ii) in the lemma follows.

If B =1obviously we have equality. Otherwise, if f >1and f(f) =0, then the mean value

theorem implies f'(£) =0 for some & € (1,). But this impliesy (&,) =w (&,) . Since w'(¢)

is strictly monotonic, this implies that £¢, = &¢,, whence ¢, =¢,. Since also ¢, <1<¢, we

obtain ¢, =¢, = 1. This completes the proof of the second part of the lemma.
Lemma 3.4 If £ >1, then y'(t)* > 2w (H)y"(¢).
Proof : Defining f(¢) =w'(¢)> = 2w (¢t)y'(¢) one has f(1)=0and

f1@) =2y (") =2p' (") = 2p Oy (1) = 2w ("' () > 0.
This proves the lemma.

Lemma 3.5 Let p(s):[0,00) — (0,1]be the inverse function of —%y/'(t) for t<1.The

following inequality holds:

o(s) > % (3-3)
(1+25)¢

Proof: Since s = —%l//'(l‘) , we have

—2s=t? -t T =t T =¢t? +2s <1+ 2s.

Since ¢ = p(1), this implies the lemma.

Lemma 3.6 If r>1and ¢ >2—p,then ¢t <1+ /ty(?).
Proof: Defining f(¢) = tl//(t)— (t - 1)2 we have f(1)=0 and

[0 =y)+ ey '(6)-2-1)

31

Moreover, it is clear that f* (l) =0and

() =2 (O)+ 1y () -2 =2+ p)t* +(g=2)° =2= pt? +(g—2)t* = ple? —77)> 0.

The second inequality above is due to the fact that q> 2 — p. Thus we obtain

ty(t)>(t-1),
which implies the lemma.

Lemma 3.7 Let ¢ :[0,00) — [1,0) be the inverse function of y/(¢) for £ > 1. The following

inequalities hold:

1

(1+(p+1)s)ﬁ <@(s)<1+s++/s +25. (3-4)

If ¢g>2-p,then

o(5) < 1+s +57 +s3s” +2s (3-5)

Proof: Since g>1 and t>1, we have

p+l =g _ p+l
S=l//(t):t 1+t lgt 1
p+1 qg-1 p+1

Hence, the first inequality in (3-4) follows.

The second inequality in (3-4) follows by using the first inequality of Lemma 3.2:

s =t//(t)2

-1 =Ll —t"f)zé(t—l)[l—%j:%[t+l—2j.

t

N | =

32

33

Hence, solving the following inequality
t* =2(1+s) +1<0
leads to

t=(0(s)£1+s+\/s2+25. (3-6)

Finally, let ¢ >2— p.By Lemma 3.6 one has ¢ <1 +1/tl//(t) <1+4/15.

Substitution of the upper bound for ¢ given by (3-6) leads to

¢(s)£l+\/s+s2 + 5% + 2s.

This completes the proof of the lemma.

. . : - 1
Now we will derive a very important bound for normed proximity measure & (U) = EHV‘P(U)H

in terms of the original proximity measure given by the barrier function ¥ (v).

Theorem 3.1 The following inequality holds:
1
5) 2~y (p(¥ (). (3-7)
The proof is beyond the scope of thesis and can be found in (Peng, J., et. al., 2002)

Corollary 3.1 If ¥(v)>7 >1, then 6(v) > %(\P(u))ﬁ

34

Proof: Using Theorem 2.1, and the fact that W(v)>7 >1, we have

((¥©)) ~(@(¥©)"). Note that

N | =

502 21 (p(¥0) = 5 (o(¥) ~((p(¥(0)))

t” ——is monotonically increasing in ¢ . Thus, by using the first inequality in (3-4), we obtain

(@) -1 10+(p+ P () ~1
20 o(Y@) 2 (1 (pr)w)in
1 (p+)¥() ¥(v)

1
_ 1 |
21+ (p+ ¥ 2 (¥W))e

5(v)

>~ (Y(0))i

AN~

Which proves the corollary.

Analysis of the algorithm

The outline of the analysis of the algorithm is as follows.

1. Outer iteration estimates:

e Estimate of the increase of the barrier function after the u update

2. Inner iteration estimates:

e Estimator for default step size

e Estimate of the decrease of the barrier function during the inner iteration with the

default step size

35

Outer Iteration Estimates

At the start of each outer iteration of the algorithm, just before the update of the

parameter p with the factor 1-6, we have w(v) < 7. Since the p vector is updated to

" =(1-0)u,with 0 < <1, the vector v is updated to v = , which in general leads

v
N1-6
to an increase in the value of W(v). Then, during the subsequent inner iterations, ¥ (v)

decreases until it passes the threshold t again. During the course of the algorithm the largest

values of W(v) occur just after the updates of p. That is why we need to derive an estimate

for the effect of a p-update on the value of ¥(v).

Theorem 3.2 Let ¢ :[0,0) — [1,0) as defined in Lemma 3.7. Then for any positive vector

vand any f >1the following inequality holds:

W(pv) <n w(ﬁw(T’gU)D .

The proof is beyond the scope of this thesis and can be found in [Peng, J., et. al., 2002].

v
1-6

Corollary 3.2 Let 0<d<land v, = Jf ‘P(u) <7, then

"’Tj (p+q)n (”@
Y(,)<ny| —2L (<274 "1 . (3-8)

1-6 2 V1-6

36

Proof: With f>1and Y¥(v) <1 the first inequality follows from Theorem 3.2. The second

inequality follows by using Lemma 3.2 and y''(1) = pPrq .
q

The following upper bounds on the value of w (v,) after the p-update follow immediately

T (sz 27
1+—+ +—

n n

y(,)<L =np =g

q>1 (3-9)

and

w(,) <L, =ng . gq22-p. (3-10)

Default Step-size

In this subsection, we will determine a default step size which not only keeps the

iterations feasible but also gives rise to sufficiently large decrease of W (v) in each inner
iteration. During an inner iteration, the parameter p is fixed. After the step in the direction

(Ax,Ay,As)with step size a, the new iterate is
X, =x+alx, s, =s+alx, y, =y+aly (3-11)

And a new v -vector is given by

37

v, = |—. (3-12)
u
Since
d
X, :x(e+agJ=x(e+a—"j=£(u+adx),
x v L
d
S, :s(e+a§j:s(e+a—sj:£(u+ads),
s v v
xs = (o’
we obtain

v, = \/(U +od)v+ad,).

Next, we consider the decrease in W as a function of & . We define two functions
fla)="¢(v,)-¥(), (3-13)

and
fl(a)::%(‘P(U+adQ)+‘P(u+ocds))—‘1’(u). (3-14)

Lemma 3.1 implies that

¥(,)=¥(forad) orad))<-(Po+ad)+ Po+ad,)).

N | =

The above inequality shows that f, () is an upper bound of f(«) . Obviously,

f(0)= £,(0)=0. Taking the derivative with respect to « , we get

38

n

Sfi(a) = %Z(W'(Ui +adxi)dxi +W'(Ui +adsi)dsi)'

i=1

From the above equation and using that d _+d_ =-V¥(v) we obtain
f1(0)= %vxp(v)T (d,+d,)= —%V‘P(V)T V¥ (v) =-25()°. (3-15)

Differentiating once again, we get

" (a) :%Zn:(l//”(ui +adx1.))di_ +1"((v, +ocdsi))dj >0,unless d, =d, =0.

i=1

(3-16)

It is worthwhile to point out that during an inner iteration x and s are not both at the u center

since W(v)>7 >0, so we may conclude that f, (&) is strictly convex in « .
Lemma 3.8 The following inequality holds:

fi"(@) <28%" (v, —2ad). (3-17)
Proof: Sinced, L d ,and d +d, =-V¥(v) it is easy to see that || (d,,d,)||= 25. where

|0 = %HVLP(U)” Therefore, we have || d_ ||< 26 and || d, ||< 26.Hence,

v,+ad_zv, . —2ad, v, +ad, 2V, —2a6, 1<i<n.

min min

Using (3-16) and definition of &, we get

n

(@2 +a2)=26%"(,, —2a5)

£ @59 (0, ~2a0)

i=1

39

This proves the lemma.
Lemma 3.9 If the step-size o satisfies

~Y Uy =208)+y' () <26, (3-18)
then f,'(a)<0.

Proof: Using the Lemma 3.8,(3-15) and (3-17), we write:

fi@ =£0)+[f(5)ds

<-25%+ 252j”y/' (L. —2¢8)dc

=-28" =5 [Y Uy, —260)d(v,y, —250)

= 26" = [y (U, —208) ' (V)
<-25%+25%=0.

This proves the lemma.

Lemma 3.10 The largest possible value of the step-size satisfying the condition of Lemma

3.9 is given by

— L s - i
o =—=(p(8)= p(29)) (3-19)

Proof: We want a such that (3-18) holds with « as large as possible. Let us denote v . as
v,. Since y"(¢)is decreasing the derivative with respect to v,.of the expression which is to
the left side of the inequality (3-18) (i.e. v (U1 -2a0)+ a (Ul)) is negative. Hence, fixing &,

the smaller v, is, the smaller a will be. We have

40

1 1, . 1 .
§=IIV¥R)IE v) -2y ()

Equality holds if and only if v,. is the only coordinate inv that differs from 1 andv, <1 (in

case w'(ul)ﬁ 0). Hence the worst situation for the step size occurs when v, satisfies
——y'(v,)=06. (3-20)

The derivative with respect to a of the expression that is the left side of the inequality (3-18)
equals 20y (z)1 -2a0) > 0 and hence this expression is increasing in @ Thus, the largest

possible value of « satisfying (3-18), satisfies
1 .
-3¥ (v, —2a8)=26. (3-21)

Due to the definition of p, (3-20) and (3-21) can be written as
v, =p6), v —2a6=p(20).

This implies

o= %(vl —p(28)) = %(pw) ~ p(28)

and the lemma is proved.

Lemma 3.11 Let « be defined by (3-19) . The following inequality holds:

1

@2 (pas)

(3-22)

41

Proof: By definition of p,

—v'(p(6))=25

Taking the derivative with respect to 6 , we find

which leads to

p'(8)=-———<0. (3-23)

) 20
a:ijp'(o)dazlj”L (3-24)

where we also used (3-23). To obtain a lower bound for & , we want to replace the argument
of the last integral by its minimal value. We would like to know when v (p(c)) is a maximal
for o € [5 ,20 1 . We know that " is monotonically decreasing. Thus v (p(a))is maximal for

o€ [5 ,20] when p(O')is minimal. Since p is monotonically decreasing this occurs when

o =26 . Therefore

and the lemma is proved.

-~ 1
Theorem 3.3 Wehave a > a =

l+g

(p+q)(1+45) ¢

Proof: Using Lemma 3.11, and the fact that y''(¢) is monotonically decreasing for
t € (0,+0)we have

1 1 1
>

>
"(p(28)) g g = 0
Vo) p(1+48) ¢ +q(1+45) 1 (p+q)(1+45) “

a> =qa

and the theorem is proved.

Thus, we can define the following default step-size

~ 1
o=

g+l ?

(p+q)(1+45)

Inner Iteration Estimates

42

(3-25)

(3-26)

Using the lower bound on the step size obtained in (3-25), we can obtain results on the

decrease of the barrier function during inner iteration.
Lemma 3.12 If the step size is such that o < a, then f(a)<—as”’.
Proof: Let the univariate function /4 be such that

H0)= £,(0)=0, 1'(0) = f; =267, K (@) =28y" (v, ~2a5)

(3-27)

43

According to (3-17) we have f"(cr)< h"(r) and that implies f'(cr)< A'(a)and f(a)< h(a).

Taking o < a , with a defined in (3-26)), we have

h'(a) = _252 + 252!‘/1"(Umin - 2§5V§ = _252 - 5(W'(Umin - 20(5)— W'(Umin)) < 0 .
0
Since y " (t)decreasing in ¢, 4" (a) is increasing ¢ . Using Lemma 3.13 below, we get:
fi(a) < h(a) < %ah'(O) —t

As we mentioned before, f, (a) is an upper bound of f (a), hence, the lemma is proved.

Theorem 3.4 The following inequality holds:

1 pr(g-1)

f@ys— P (0) 1P (3-28)

0(p+9q)

Poof: According to Lemma 3.12, if the step-size is such that « < a, then f(a)<—-ad’. By
(3-25) the default step-size & satisfies & < «, hence, the following upper bound for f (&) is
obtained f(&)<-ad’. Using Corollary 3.2 and the fact that f'(&)is monotonically

decreasing in & , we obtain

f@ <—%

(p+q)1+45)

44

2p
+1
. ¥’
g+l
P\ q
36(p+ q)(l + % ¥(v)*
p(g-1)
<_ 1 \P(U)q(pﬂ)
60(p +q)

Thus, the proof is complete.
Estimate of the total number of iterations
As we’ve already mentioned, there are two types of algorithms.
e The Short-step Algorithms, where the barrier update parameter 6 depends on the size of

the problem; that is, 8 = O(Lj .

Jn

e The Long-step Algorithms, where the barrier update parameter 0 is fixed; that is,

0 <(0,1).
We will give the estimate of the total number of iterations needed for both types of algorithms.
We will need following technical results. The proofs can be found in (Peng, J., et. al., 2002)]

Lemma 3.13 If a €[0,1]and ¢ >—1then (1+¢)” <1+ at.

45

Lemma 3.14 Let A(z) be twice differentiable convex function with 4(0) =0, 4'(0) < 0, and
let A(t) attain its (global) minimum at #*>0. . If A''(¢)is monotonically increasing for

th' (0)
2

t €{0,¢*} thenh(¢) < ,0<1<t*.

Lemma 3.15 Let ¢,,¢,,...t, be a sequence of positive numbers such that

_ t]
te,<t,—p. ", k=0]1.K—-1 where f>0and 0<)/£1.ThenKS{ﬂ—°y]
Long-step Algorithms

Lemma 3.16 The total number of outer iterations in both cases is the same.

L jog? (3-29)
0 &

Proof: The number of outer iterations is the number of iterations K necessary to obtain

nu < ¢ . Previous and new pu are related as follows u:=(1—-80)u . Thus, nu < & can be

written as 1, (1—0)" < £ We can assume that M, =1 and by taking the logarithm of both
n
sides of the inequality we obtain K log(1—8) < log£ . Using the Taylor theorem for
n
log(1-6)we obtain K < % log2 proving the lemma.
£

Now we need to estimate the upper bound on the total number of inner iterations per one outer
iteration for the large-step methods. That number is equal to the number of iterations

necessary to return to the situation ¥(v) < 7. We denote the value of W(v)after the update

46

as ‘P, . The subsequent values in the same outer iteration are denoted as ¥, , k =1,2,---,K

where K denotes the total number of inner iterations in the outer iteration. By using (3-9), we

have

Y, <n
0 v —e
p+l p+l
Since y/(t) < " when t>1 and 1-(1-6) > <8, after some elementary reductions, we
p+
obtain:
Y 2
n@+(p+1)+n(p+1) (—j + 5
n n
Y, < il : (3-30)
(p+1(1-0)?
Now Theorem 3.4 leads to
v <¥ -p(v,)7, k=0,1,..,.K-1, (3-31)
1 p+q . .
where f =——— and y = ————. Using Lemma 3.15 and (3-30) and (3-31) we obtain

60(p +q) g(p+1).

the following upper bound on the number K of inner iterations.

47

P+q
o) q(p+1)

2
T T
pig n9+(p+1)r+n(p+1)\/(;j +7
K <£60gq(p+ 1)(‘{’0)q(””) <60g(p+1)

3-

p+l

(p+D(1-0) >

32)

Now we can derive an upper bound on the total number iterations needed by the large-update
version of the Generic IPM in Figure 2.1. According to Lemma 3.16 the number of outer

iterations is bounded above by

Lo
o ge

By multiplying the number of outer iterations and the number of inner iterations obtained in

(3-32) in the lemma above we get an upper bound for the total number of iterations

ptq

- 2 27 q(p+1)
nf+(p+)r+n(p+1) (j +—

n n

60q(p +1)

0 pil
(p+D(1-0)*

logﬁ.
£

For large update methods we know that 8 = ®(1),and 7 = O(n). After some elementary

transformations the iteration bound reduces to the following bound

ptq
O(q Ao+ 1ogﬁJ (3-33)
&

This result is summarized in the theorem below

48

Theorem 3.5: Given that # = ©(1)and 7 = O(n) which are characteristics of the large-update

methods the Generic IPM described in the Figure 2.1 will obtain & - appropriate solutions of

p+q

(P) and (D) in at most O(q ni7* log EJ iterations.
g

The obtained complexity result contains several previously known complexity results as

special cases.

1. When p=1 and ¢g >1, the kernel function y(¢) becomes the prototype self-regular

function. If in addition, ¢ = logn the iteration bound reduces to the best known bound for

self-regular function, which is O(«/; lognlog Ej .
&

2. Letting p =1and g =1, the iteration bound becomes O[n logﬁj and y(¢) represents
£

the classical logarithmic kernel function.

3. For g=2 and p =0, y(¢) represents the simple kernel function w(¢) =t —%— 2 which

is not self-regular. The iteration bound is the same as the one obtained for the logarithmic

kernel function.
Short-Step Algorithms
To get the best possible bound for short-step methods we need to use the bound described in

(3-10).

49

r ot |t 2r r 7t ottt 2r
I+, —+—F5+—[5+— I+ —+—F5+—[F5+—
n o n ni\n n <(p+q)n n o n ni\n n

-1

Using 1-+1-6 = _ 0 < @ the above inequality can be simplified to

1+4/1-6

2

2 2
.{,OSP_HI 0 n+\/r+r—+r,/r—2+2—r (3-34)
2(1-6) n n n

Following the same line of arguments as in the above subsection 3.3.1 we conclude that the

total number K of inner iterations is bounded above by

2(p+q)

pHq N) 2 5 q(p+1)
K <60g(p+1)(¥,) """ < LT9 g n+\/r+r—+r,/r—2+—r (3-35)
(1-0) n n n

Given the upper bound on the number of the outer iterations as mentioned in the previous

subsection 3.3.1 the upper bound on the total number of iterations is

2(p+q)

(p+D)
60g(p+q) T’ 2 2r | n
——— | On+, | t—+71, [—+— log—. 3-36
oa-0) | "V T TN T 8 (3-36)

50

For small update methods it is well known that 6 = @(LJ and7 = O(1) . After some

Jn
elementary reductions one easily obtains that the iteration bound is O[qz\/g log ﬁj. We
&£

summarize this result in the theorem below.

Jn

Theorem 3.6: Given that 6 = ®(Lj and 7 = O(1) which are characteristics of the small

update methods the Generic IPM described in the Figure 2.1 we will obtain ¢ - appropriate

solutions of (P) and (D) in at most O[qz\/g log ﬁj iterations.
£

51

CHAPTER 4

ANALYSIS OF THE ALGORITHM FOR ADDITIONAL KERNEL FUNCTIONS

Summary of the algorithm analysis

Looking carefully at the analysis of the Generic IPM described in Chapter 3 the

procedure can be summarized in the following way.

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Input a kernel function y ; an update parameter 6, 0 <8 <1; a threshold

parameter 7 ; and an accuracy parameter & .

Solve the equation —%l//':s to get p(s)the inverse function of

- %l/l' (t),t(0,1]. If the equation is hard to solve, derive a lower bound for p(s).
Calculate the decrease of W (#) in terms of ¢ for the default step-size a from

~ 52
HO== ey

Solve the equation y(f) =s to get ¢(s), the inverse function of y(¢),z >1. If the

equation is hard to solve, derive lower and upper bounds for ¢(s).
. . . 1
Derive a lower bound for & in terms of ¥ (v) by using 5(v)> El//'(go (P (v))).

Using the results of Step 3 and Step 4 find a valid inequality of the form

f(&) < —x¥(v)"7 for some positive constants x and y € (0,1].

52

Step 6: Calculate the upper bound of ¥, from
2
T T
)] a0
Y, <L (n0,7)=ny| —= |<—y"() —==-1] .
Y 10| 2" V|0
Step 7: Derive an upper bound for the total number of iterations from
lP}/
0 log2 :
Oky ¢
Step 8: Set 7 = O(n)and 8 = ©(1)so as to calculate complexity bound for large-update

methods, or set 7 =0(1) and 6 = ®(%} so as to calculate the complexity bound
n
for small update methods.

Additional Kernel Functions

We will consider the following additional kernel functions.

=1 t77-1 g-1
t)= + - t-1), > 1.
w, (1) 5 aG—1 p () q
(4-1)
1
t*—-1 e —e
W, (1) = + (4-2)

2

53

2 ‘ l—l

é‘ —!ei d¢ (4-3)

v, (0) ="

2

The growth term in all of them is the same y, (¢) = while the barrier term varies

v, (¢) . The reason for considering this growth term is that according to the analysis above it

seems to give the best complexity results and, thus, will give a more consistent view of the

complexity analysis.

The following lemmas are useful for the above kernel functions. They are variations of
the similar lemmas in the previous chapter and actually they are also valid for the class of
kernel functions (3-1) used in that chapter. Their main purpose is to help facilitate the

summary analysis described in the previous subsection.
Lemma 4.1 When y(¢)=y,(t)for 1<i<3,then v1+2s <¢(s) <1+ Vs

Proof: The inverse function of y(¢) for ¢ €[1,0)1s obtained by solving for ¢ from the
equation y(t)=s, for £ >1. In almost all cases it is hard to solve this equation explicitly.

However, we can easily find a lower and an upper bound for ¢ and this suffices for our goal.

First one has

t* -1 t* -1
—’_l//b(t)S 2 b

s=y(t)=

where w, (¢) denotes the barrier term. The inequality is due to the fact that y,(1) =0 and

v, (t) 1s monotonically decreasing. It follows that

t=@(s)2~1+2s

For the second inequality we use the fact that ;"' (r)>1for1 <i < 3. Note that v, (¢) are
nonnegative strictly convex functions such that y,(1)= 0. This implies that y,(¢) is twice

differentiable and therefore is completely determined by its second derivative

t e
v,()=[[v,"()dcds (4-4)

Thus
t & ¢ 1
s=v,0=[[y."©dcds>[[dcds = -1y

which implies
t=p(s)<1++/2s.

This completes the proof.

A0 (\/Z +6n)2

Lemma 4.2 Let 1<i<3.Thenone has L, (n,H,r)_ 5 —o . Hence, if

r=0(l)and 0 = @(LJ, then ¥, = O(y"(1)).

Jn

Prof: By Lemma 4.1 we have ¢(s) <1+ V2s. Hence, by using Theorem 3.2 and first

inequality in (3-8) we have

54

55

T 2T
)] [
Y,<L, (n0,7)=n <n L 4-5

By using Taylor theorem and the fact that (1) =w'(1) = 0 we obtain

L, S 3
l//(t)=5'// (M -1) 4 (S)s -1

Given the fact that y'"'(£) < 0 we obtain for # >1 and 1< & <¢

1
v <y - 1)? (4-6)
1+ 27
Applying (4-6) to (4-5)with ¢ = _ we obtain
pplying N
2 2
1+ 2 0+ 27 2
o< O V| m @] TV | (s +0d)
T2 1-6) J1-6 2 1-6

0
1++/1-6

where we also used the fact that 1 -+/1-6 = < @ . This proves the lemma.

Lemma 4.3 Let 77:[0,00) — (0,1] be the inverse function of the restriction of —y,'(¢) to the

interval (0,1] where v, (¢) is the barrier term in the kernel functions y,(¢), 1<i<3. Then

p(s) =2 n+2s).

56

Proof: Let ¢t = p(s). Due to the definition of p as the inverse function of

- %z//'(t) for t <1this means that

“2s=y'(O)=t+y,'(¢), t<1.
Since #<1 this implies
-y, (t)=t+25s<1+2s
Since —w,'(¢) is monotonically decreasing in all three cases, it follows that
t=p(s)2n(+2s),
proving the lemma.

Analysis of the Generic IPM with Additional Kernel Functions

In this subsection we will provide the analysis of the Generic IPM using additional kernel

functions stated in the subsection. We will follow the steps described earlier.

Example

Consider the function

P =1 t7 -1 g-1
w, () =y()= + - (t-1), q>1.
1 2 q(@-D) ¢

t=gq-1 is given by n(s):—;l.

(1+g(s 1))

Step 1: The inverse function of —y,"'(t) =1+

57

Hence, by Lemma 6.3, p(s) =

I

1+ 2qs);
Step 2: It follows that

2 2 2
" ° - ° 1 - 0 g+l " (4_7)
A 01€2) —
0(25)"" 1+(1+4g0) ‘¢

fla)<-

Step 3: By Lemma 6.1 the inverse function of y(¢) for ¢t €[1,0) satisfies

V1425 <p(s) <1+4/2s

Omitting the argument v, we therefore have

P(P (L)) = 1+2¥ .

Step 4: Now using the fact that 6(v) > %W'(go(‘l’(u))) , and assuming V¥ > 7 >1, we obtain

521(\/1+2‘P—1+l(1—;j21(\/1+2‘1’—1):L. (4-8)
2 g\ (1+2%))2 1++/1+2%

Step 5: Combining (4-7) and (4-8) after some elementary reductions, we obtain

_ 52 =
fla)s- — S—E‘P 7, (4-9)
1+(1+4¢5)

Thus, it follows that

¥, <Y -x(P)7, k=0l..K-1

58

. 1 +1 . . .
with k =——and y = 9+ ,and K denotes the number of inner iterations. Hence, by Lemma

53q 2q

3.15 the number K of inner iterations is bounded above by

+1

¥ 2 e
Yo _1069" ¢ < 106qw," . (4-10)

ky q+1

K<

Step 6: To estimate ‘¥, we use Lemma 6.2, with y"(1) = 2. Thus, we obtain

¥ <£—H/;+*/§2 .

‘T 1-0
Step 7: Thus, using Lemma 3.16 the total number of iterations is bounded above by

q+1
N5
K n£106q[(49«/;+ 21)]11 n

—log— 0g—. 4-11
0 %9 -0 5 @-1D)

Step8: For large update methods (with 7 = O(n) and @ = ©(1)) the right hand side expression

becomes

g+l
O(qn 2 1ogﬁ}. (4-12)

For small update methods (with 7 =O(1) and 6 = ®(L]) the right hand side expression

Jn

becomes

o(q\/Z log ﬁj . (4-13)
&

Example

Consider the kernel function

1

=1 el —e
+ .
2 e

w,O)=y()=

! !
e —1

Step 1: The inverse function of —y,'(¢) = et—;l is such that n(s) =t < =s5,t<1.1t

1

e —

1 :
— =5t < whence we obtain 7(s) =1 >
t

follows that

. Hence, by Lemma4.3,
1+logs

p(s)=n+2s).

Step 2: Since w"(¢)1s monotonically decreasing we have

5 . 5’
w"'(p(26)) v (n(1+4¢5))

f(@)<-

Now putting ¢t =n(1+4gd) we have ¢t <1 and we may write

2 2 2 2 2
fla)=- f(t)? 15% oS 53 oo 3(51+45)S 5155'
v 1+ +4 el l+e I+ I+
t ¢ t t
i 1 1 2
Since —=———<(1+1log(l1+40))” we finally get

t* (n(1+45))

52

I = 55+ og 1+ 40))

59

(4-14)

60

Step 3: By Lemma 6.1 the inverse function of y(¢) for ¢ €[1,00) satisfies

VI+2s <p(s) <1+ V2s . Omitting the argument v, we thus have (o(‘{’(u)) >4/14+2Y¥.

Step 4: Now using that 6(v) > %W'({D(\I’(U», we obtain

1 e 1 ¥
§>—|1+2¥ - > —WI+2¥ -1)=—— . (4-15)
2 142V 2() 1++/1+ 2%

Step 5: Substitution of ((4-15) into the (4-14) gives, after some elementary reductions, while

assuming ¥, >V >7>1

1 1
P2 - p2

fla)<— ~<- =
44(1+log (1+~/2¥9)) 441+ log (1+2¥,))

Thus, it follows that
v, <Y -«(¥)7, k=0l..,K-1

1
an
44(1+log (1+2%,))’

with x =

1 : : .
dy= 5 and K denotes the number of inner iterations.

Hence, by Lemma 3.15 the number K of inner iterations is bounded above by
LPO 2 l
K< Ty =88(1+log(1+/2'¥,)) ¥¢.
/4

Step 6: We use Lemma 4.2 with y"(1) = 4,to estimate ¥, .

61

2
P, <2 9&;;{? . (4-16)

Substitution of (4-16) in the expression for K gives

o +22) on + 427
<882 1+1 1+2 . 4-17
K< f{ + og(e D — (4-17)

Step 7: Thus the total number of iterations is bounded above by

%log e 88ﬁ(l+ log(l +2
&

0\/;+\/§ 20\/;+x/§10 n (4-18)
J1-6 1-0 &

Step 8: For large update methods, when 7 = O(n) and 6 = ©(1) the right hand side expression

(4-18) becomes

O(& (logn)’ 1ogﬁj : (4-19)
&

For small update methods, when 7 =0O(1) and 6 = @(LJ , the right hand side expression

Jn

(4-18) becomes
O(JZ 1ogﬁj (4-20)
£

Example

Consider the kernel function

62

2 i l—l

2_—!64 dc .

vy (0 =y () ="

1

-1
Step 1: The inverse function of —y/', (f) =e® 1is given by n(s) =

. Hence, by Lemma

1+1logs

6.3,

>

P 2 e+ 29)
Step 2: It follows that
2 2 2
fla)< - J =- o - <- o >
w''(p(20)) sy 1+ (1+4q06)(1+1log(l1+40))
e
p(26)*
(4-21)

Step 3: By Lemma 4.1 the inverse function of y/(¢) for ¢ €[l,) satisfies

VI+2s <p(s) <1++/25 .

Thus we have, omitting the argument v,

o(P(v))=V1+2V¥ .

Step 4: Now using that 6 > %l//'(go(‘l’(u)))we obtain

1

1 o1 ¥
S>—|J1+2¥ —eV2¥ > (V1429 -1)=— — . (4-22)
2(] 2() 1+4/1+2¥

63

Step 5: Substitution of (4-22) into the (4-21) gives, after some elementary reductions, while

assuming ¥, >V >7>1

1 1

P2 2

- <- .
210 +log(1+W¥))* 21(1+log(1++/¥,))*

fla)<

Thus, it follows that
v, <Y, -«(¥)7, k=0l.,K-1

1
and
21(1+log (1+4/2'F,))2

with x =

1 . . .
y = 5 and K denotes the number of inner iterations.

Hence, by Lemma 3.15 the number K of inner iterations is bounded above by
TO 2 l
K < T 42(1+1log(1++/2¥,)) ¢ . (4-23)
/4

We use Lemma 4.2, with y"(1) =2 to estimate ‘¥, . This gives

0 1-6

Substitution of (4-24) into (4-24) leads to the following estimate for number K of inner

iterations

(4-25)

K S42[1+10g(1+ WZMEH ONn+2r

1-6 1-6

Step 7: By Lemma 3.16 the total number of iterations is bounded above by

64

emﬁnz 0n +:2c

K n
—log—<42| 1+1log| 1+ — 4-26
0 ge (g(1-6 1-6 gs ()

Step 8: For large-update methods when 7 = O(n) and 6 = ©(1) the right hand side expression

(4-26) becomes

O(& (logn)’ 1ogﬁj : (4-27)
&

For small update methods, when 7 =0O(1) and 6 = @(LJ , the right hand side expression

Jn

(4-26) becomes
O(JZ 1ogﬁj . (4-28)
£

Summary of complexity results

The complexity results for Generic IPM with kernel functions defined in (3-1) and in (4-1)-(4-
3) are summarized in the Table for large-step methods and in the table for small-step methods.

For the class of kernel functions (3-1) we consider three special cases,

2

e the logarithmic kernel function: y(¢) = —logt

t* -1 71 -1
2 qg-1

e the classical self-regular function when p =1: y(¢) =

65

lI-g _
e the linear non-self-regular function when p=0: w(¥)=t-1+ !

Complexity of large-update methods

The complexity results for large-step methods are summarized below. They are obtained by

taking into the account that 7 = O(n) and 6 = ©(1).

Complexity results for long-step methods

i Kernel Function v, () Iteration Bound
1 2 _ n
ol gt O(n)log”
_ +1
g Olgn™ Ylog"
2 qg-—1 £
3 I-¢ n
t—1+ ! ! O(gn)log—
q- &
4 ?-1 t"1-1 g-1 o n
- (t_l) O(gn*)log—
2 qlg-1) ¢ (gn™")log -
5 1
> -1 e —e O(x/ZIOg2 n)logg
2 e
6 2 _ (o1
! : I_Ieg 1d§ O(n log n)logg

Notice that the best bound is obtained in case of 3 and 4 by taking g = %logn which gives the

iteration bound of

Table 2

66

(4-29)

O(ﬁlognlogﬁJ ,
£

which is currently the best known bound for large-update methods.
Complexity of small update methods
The complexity results for small-update methods are summarized below. They are obtained by

taking into the account that 0 = @(L] and 7 = O(1).

Jn

Complexity results for short-step methods

1 Kernel Function v, () Iteration Bound

1 2 _ n
AL O(n)log”
2 2 _ =g _
2 qg-1 3
3 tl_q_l 2 n
t—1+ O(q*~/n)log—
qg-—1 £

O(q \/;)logg

O(q \/;)logg

O(q mlogg

Table 3

67

The above table shows that the small-update methods based on listed kernel functions all have

the same complexity, namely
0(\/2 1ogﬁj. (4-30)
£

This is up till now the best iteration bound for [PMs solving LP problems.

Historically most of the IPMs were based on the logarithmic kernel function. Notice that
the gap between theoretical complexity of short-step methods and large-step methods is
significant; the short step methods have much better theoretical complexity. However, in
practical implementations large-step methods work better. This discrepancy was one of the
motivations to consider other kernel functions in hopes to find the kernel function which
would not have a gap or the gap would be smaller. As we can see, this goal has been
achieved; for cases 2 and 4 the gap is much smaller because for these kernel functions large
step method has much better complexity than for the classical logarithmic kernel function.

This is one of the main achievements of considering different classes of kernel functions.

68

CHAPTER 5

NUMERICAL RESULTS

The Generic IPM described in the Figure 1 was implemented in MATLAB 7.6.0 with

the class of kernel functions described by formula (3-1)

e B
+ ., t>0,pel01] g>1
p+1 qg-1
l//qu(t)= tp+1 1
—logt, t>0, pelo,1]
p+1

This imply that there are two implementations of the algorithm, one for the classical

logarithmic kernel function

2

w(t) =" —logt (5-1)

and one for the kernel function with parameters p and ¢

(7 —1 -

, t>0, pelo,1] ¢g>1 (5-2)

f) = +
V() p+1 g-1

We call the first implementation “Classical Method” and the second implementation “New

Method”. Both codes are listed in the Appendix A.

The algorithm was tested on several examples with different sizes ranging from very
small to moderate size problems. The data was entered in some cases “by hand” and for the

others they were generated randomly.

Example: Consider the following simple LP model.

69

max 2x, +2x,

s.t. X +x,<3
x,20,x,20.
It is easy to see that this problem has infinitely many optimal solutions, they are all the points
on the segment [(1,0); (0,1)] and the optimal value is Z = 6 . The problem was solved by New
Method with p =0.8, ¢ =1.2 with accuracy parameter & = 0.001. It took unusually many
iterations (57), however algorithm steadily converged to the expected result

(x,,x,)=(1.5,15).

Numerical results for Example

X y S
1 1 1 0 1 1 1
0.823 1.248
1.383 1.383 0.234 4 0.1 0.1 9
1.488 1.488 0.023 1.602 0.065 0.065 1.756
3 3 4 3 6 6 7
1.499 1.499 0.000 2.000 0.000 0.000 2.000
9 9 2 2 2 2 2
Table 4

Objective function value Z = -5.9997

70

This example also illustrates an important feature of the interior-point methods that distinguish
them from simplex-type methods; that in the case of infinitely many optimal solutions they
converge to the center of the optimal set rather than to the vertex. The graphical illustration of

the above example with several first iterations is given below.

0&f

wl

IPM Based on generic kernel function

Figure 3

Next, the algorithm was examined on the set of 200 randomly generated “small”
problems for with sizes less than 10. The average number of iteration and CPU time is given
in the table below.

Classical method New method
Average Number Average Number
Of Iterations Time Of Iterations Time
24.6 0.0362 40.7 0.0448

Numerical results for randomly generated “small problems” with dimension less than 10
Table 5

71

Next, the algorithm was examined on the set of 200 randomly generated “moderate

size” problems of the size 200x300. The average number of iteration and CPU time is given in

the table below.
Classical method New method
Average Number Average Number
Of Iterations Time Of Iterations Time
35.81 2.6626 40 2.8812

Numerical results for randomly generated problems with dimension 200x300

Table 6

The algorithm was then applied to the randomly generated problems of the bigger size

400x700. The result is given in the table below

Classical method New method
Average Number Average Number
Of Iterations Time Of Iterations Time
57 35.8048 41 25.4030

Numerical results for randomly generated problem with dimension 400x700

Table 7

Results summarized in tables seem to suggest that Classical Methods works slightly better for
the problems of the smaller size while, as the dimension of the problem increases, the New

Method becomes better. Another feature of the IPM is also visible from these examples and

72

that is that the number of iterations does not increase significantly with the increase in the size

of the problem.

In the sequel the New Method was examined on the set of 200 randomly generated “small”
problems with sizes less than 10 and for different values of parameters p and q. The results

are given in the Table below.

P=0.7.9=1.3 p=0.6,9=1.4
lteration Time lteration Time
40.06 0.0673 41.6 0.0648

p=0.9g=11 p=0.8,0=1.2
lteration | Time lteration |[Time
35.9 0.0526 37.2 0.0603

Table 8: More Numerical Results

Next, the New Method was examined on the set of 20 randomly generated problems of
the size 200x300 and for different values of parameters p and q. The results are given in the

Table below.

Table 9: More Numerical Results

73

The table seems to suggest that for the problems of the smaller size the New Method works
the best when p =0.9, g =1.1, which is in line with theoretical expectation . However, for
the problems of the higher dimension it is hard to make conclusion which combination of
parameters works the best. Theory suggests that p =1, g =logn where nis the number of
variables gives the best complexity. However for the particular set of problems in the previous

table, it seems that combination p =0.7, g =1.3 works the best .

Better implementation and more testing is necessary for more definite conclusions.
However, that was not the intention of the thesis. The goal was to make the basic
implementations that ilustrates theoretical concepts discussed in the thesis. Even on this basic
level the implementation of the New Method shows the potential to work well. Of coure, with

more sophisticated implementation the performance can be further improved.

74

CHAPTER 6

CONCLUSION

In this thesis the Interior — Point Method (IPM) for Linear Programming problem (LP)
that is based on the generic kernel function is considered. The algorithm is described in

Chapter 2.

In Chapter 3 the complexity (in terms of iteration bounds) of the algorithm is analyzed
for a class of kernel functions defined by (3-1). This class is fairly general; it includes classical
logarithmic kernel function, prototype self-regular kernel function as well as non-self-regular
functions, thus it serves as a unifying frame for the analysis of IPMs. Two versions of the
IPMs are considered, the short-step algorithms where barrier parameter 6 depends on the size

of the problem and long-step algorithms where barrier parameter is a fixed constanté € (0,1).

Historically most of the IPMs were based on the logarithmic kernel function. Notice
that the gap between theoretical complexity of short-step methods and large-step methods is
significant; the short step methods have much better theoretical complexity. However, in
practical implementations large-step methods work better. This discrepancy was one of the
motivations to consider other kernel functions in hopes to find the kernel function which
would not have a gap or the gap would be smaller. As we can see this goal has been achieved;
for kernel functions 2 and 4, the gap is much smaller than for the classical logarithmic kernel
function. In addition, the complexity results that are obtained match the best known
complexity results for these methods. This chapter is mostly based on the paper (Bai, Y., et al.,

2008) with the addition of most of the proofs that were omitted in the paper.

75

The main contribution of the thesis is contained in Chapter 4. The detailed complexity
analysis of the IPM that was provided in Chapter3 for kernel function (3-1) is summarized and
the analysis of the algorithm was performed for three additional kernel functions (4-1) — (4-3).
For one of them we again matched the best known complexity results for the large-step
methods and for the other two the complexity is slightly weaker, however still significantly

improved in comparison with classical logarithmic kernel function.

The IPM that is theoretically analyzed in Chapter 3 is implemented in Chapter 5 for the
classical logarithmic kernel function (Classical Method) and for the parametric kernel function
(New Method) both described in (3-1). Although the implementation is on the basic level, it
shows potential for a good performance of IPM based on kernel function different than
classical logarithmic kernel function on which most of the commercial codes are based. The
preliminary calculations seem to indicate that IPM with classical kernel logarithmic function
perform better on problems of the smaller size while for larger problems the New Methods
seems to work slightly better. Also, based on the preliminary numerical tests it is hard to make
conclusion which combination of parameters p and q in (3-1) works the best. Better
implementation and more numerical testing would be necessary to draw more definite

conclusions.

However, that was not the goal of the thesis, the goal was to show that [IPM with kernel
functions different than classical logarithmic kernel function can have best known theoretical

complexity and to show that they have potential for practical implementations.

76

REFERENCES

[1] Y.Q Bai, C.Roos. A polynomial-time algorithm for linear optimization based on a new
simple kernel function. Optimization Methods Software, 18 (6):631-646, 2003.

[2] Y. Bai, G. Lesaja, C. Roos, G. Wang, M. El Ghami. A Class of Large and Small Update
Primal — Dual Interior-Point Algorithms for Linear Optimization. Journal of Optimization
Theory and Applications, Volume 138, No. 3, 341-359, 2008.

[3] G. Lesaja. Introducing Interior-Point Methods for Introductionary Operations Research
Courses and/or Linear Programming Courses, Open Operational Research Journal, accepted,
2008.

[4] F. Hillier and G. Lieberman. Introduction to Operations Research. Seventh Edition.

McGraw Hill Publishing, 2001.

[5]J. Peng, C.Roos, and T. Telarky. Self- regularity: A New Paradigm for Primal-Dual

Interior Point Algorithms. Princeton University Press, 2002.

[6] C. Roos, T. Telarky, and J.-Ph.Vial. Theory and Algorithms for Linear Optimization. An
Interior-Point Approach. John Wiley &Sons, Chichester, UK, 1997.

[7] S. Wright. Primal-Dual Interior Point Methods. SIAM Publishing, 1997.

[7] Y. Bai, M. El ghami, and C. Roos. A Comparative Study of New Barrier Functions for

Primal — Dual Interior — Point Algorithms in Linear Optimization.

APPENDICES

APPENDIX A

MatLab codes for the Classical Method

function [i,xx,vy,ss,z,d]=IpmClassical (A, b, c, epsilon)

d° A o° o° o° o°

o\

end

input tau, epsilon, theta
sizes: A--m*n, b--m, s--n, x--n, y--m, Cc--n

To call this function, please set up the problem by defining A, b and
c.

Or load the example problem.

[m,n]=size(A);

x=1*ones (n,1); s=1*ones(n,1l); y=zeros(m,1l); mu=x'*s/n;
rd=c-A'*y-s;

rp=b-A*x;

0 X e
n <X

;
i, :)=x;
i,:)=y;
i,:)=s;

—_~ e~ —~

while norm(rd)>epsilon| |norm(rp)>epsilon]| |n*mu > epsilon
i=i+1;
[dx,ds,dy]=SolvesystemClassical (A,b,c,x,y,s,mu) ;
inds=find (ds<0) ; indx=find (dx<0) ;
alpha=0.9*min (abs ([1;s(inds) ./ds (inds);x (indx) ./dx (indx)]));
x=x+alpha*dx;
y=yt+alpha*dy;
s=s+alpha*ds;
mu=min (x'*s/n, 0.9*mu) ;
rd=c-A'*y-s;
rp=b-A*x;

xxX (i, :)=x;
yy(i,:)=y;
ss (i, :)=s;
d(i,:)=dx';
if i>200 || alpha<le-11
i;
break;
end
end
z=x"'*c;
$[1i, z]

77

function [dx,ds,dy]l=SolvesystemClassical (A,b,c,x,y,sS,mu)
% This function solves the following system

o\

% A*dx = 0
% A"T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))

o\

o\

Psi(v)=sum((v.” (p+1)-1)/(p+1)+(v.” (1-g9)-1)/(g-1));
grad(v)=v." " p-v."q;

o

gama=.1;

X=diag (x);
S=diag(s);

S _inv=diag(l./s);
rd=c-A'*y-s;
rp=b-A*x;

M=A*S inv*X*A';
r=b+A*S inv* (X*rd-gama*mu*ones (size(A,2),1));

dy=M\r;
ds=rd-A'*dy;

dx=-x+S 1inv* (gama*mu*ones (size (A, 2),1)-X*ds);

end

MatLab codes for the New Method

function [i,xx,yy,ss,z,d]=IpmNew(A, b, c, epsilon)

[o)

o o

o

input tau, epsilon, theta
v>0, 0<=p<=l, g>1, tau>l
sizes: A--m*n, b--m, s--n, x--n, y--m, Cc--n

o o oe

o

To call this function, please set up the problem by defining A, b and
c. Or load the example problem.

o

p=1-0.2;

g=1+0.2;

theta=0.1;

$tau=1.5;
[m,n]=size(A);
x=ones (n,1); s=ones(n,1l); y=zeros(m,1l); mu=x'*s/n;
rd=c-A'*y-s;

rp=b-A*x;

i=1;

Xx (i, :)=x;

yy (i, :)=y;

ss (i, :)=s;

while norm(rd)>epsilon| |norm(rp)>epsilon]| |n*mu > epsilon
i=i+1;

v=sqrt (x.*s./mu) ;
[dx,ds,dy]=SolvesystemNew (A, b,c,x,y,s,mu,v,p,q);

78

delta=1/2*sqgrt (sum((v. p-1./v."qg

alpha=1/((p+q) * (1-4*abs (delta))”
alpha=abs (alpha) ;
inds=find (ds<0) ; indx=find (dx<0) ;

alpha=0.9*min (abs ([1;s(inds) ./ds (inds) ; x (indx)

x=x+alpha*dx;
y=yt+alpha*dy;
s=s+alpha*ds;

rd=c-A'*y-s;

) ."2));
(1+1/q));

./dx (indx) 1)) ;

rp=b-A*x;
mu= (l-theta) *mu;
xx(i,:)=x";
yy(i,:)=y';
ss(i,:)=s"';
d(i,:)=dx"';
if i>200 || alpha<le-10
i;
break;
end
end
z=x"'*cC;
$[1i,z]
end
function [dx,ds,dy]l=SolvesystemNew (A,b,c,x,y,s,mu,v,p,Jd)
% This function solves the following system
% A*dx = 0
% A"T*dy + ds = 0
% S*dx + x*ds = - mu*v.*grad(Psi(v))

o° oo

o

grad (v
gama=.1;

)=v. " p-v."q;

X=diag (x);
S=diag(s);
S inv=diag(l./s);

rd=c
rp=b

_A' *y_s;
_A*X;

M=A*S inv*X*A';

Psi(v)=sum((v." (p+1)-1)/ (p+1)+(v."(1-q)-1)/(q-1));

r=A*S inv* (X*rd+mu*v.* (v.” "p-gama*v.” (-q)))+rp;
dy=M\r;
ds=rd-A'*dy;
dx=-S _inv* (X*ds+mu*v.* (v.”"p-gama*v.” (-q))) ;
end
Problem Generator
function R=mytest (NO,m,n)

[o)

% This function solve the random systems of dimention m*n

79

o\

input m,n ar
input NO is

o oP

o

MYTEST () ;
dimension m*

o° oo

o\

MYTEST (N) w

o

o

MYTEST (N, m, n
with dimensi

o\

if ~exist(
NO=1;

end

m ne=0;n n

if ~exist(
m ne=1

end

1if ~exist(
n ne=1

end

dim=zeros (
k=1;
while k<=N
if m n
m=
end
if n.n
n=
end

e the dimention of A
the number of the iterations

will apply both ipm methods to a random matrix with random
n, where m,n are positive integers less than 10

11l iterate ‘MYTEST ()’ N times.

) will iterately apply the methods to N random problems
on m*n.

‘NO')

e=0;
\ml)
’

\nl)

NO, 2) ;
o)
e

fix(rand (1) *10);

e
fix(rand (1) *10);

A=rand (m,n) ;b=rand(m, 1) ;c=rand(n,1);

if ran
St
if

k(A)<min (m,n) || min (m,n)==0
printf (‘rank (A)<min(m,)’);
m==0 && ~m ne
display ('STOP, m=0");
return;

elseif n==0 && ~n_ne
display (‘'STOP, n=0");
return;
end
continue;
end
tic;
[11(k),x1,yyl,ssl,zl(k)]=IpmNew(A, b, c, 0.01);
tl (k)=toc;
tic;
[12 (k) ,xx2,yy2,552,22 (k)]=IpmClassical (A, b, c, 0.01);
t2 (k)=toc;
dim(k,1l)=m;dim(k,2)=n;
k=k+1;
end
R = [dim(:,1),dim(:,2),411",2z1’,tl’,i2",22"',t2"'];
myfun®;

end

80

81

Organization of output

function myfun®

fprintf (' New method Classical method \n'");

fprintf (' idx dim(m*n) iteration Opt time iteration Opt
time\n');

fprintf('--—-------"-"-— -
--\n'");

for k=1l:size (R, 1)

fprintf (' %$3d %$3d%3d %$3d %6.4f %4.4f %3d %6.4f
%4 .4f\n"',
k,R(k,:));

end

R _ave=sum(R)/size(R,1);

fprintf('--————----"-"""""""""
--\n'");

fprintf (' New method Classical method \n'):;

fporintf (' dim (m*n) iteration time iteration time\n');

fprintf (' average $3.1f %3.1f %3.1f %4.4f $3.1f
%4 .4f\n"',

FPr ANt (T mmmmmmmm
-—\n');

end

APENDIX B

MatLab code Example 5.1

max3*x 1+5*x 2
s.t.
x_ 1+ <=4
2*x 2<=12
3*x_1+2*x_2<=18

x 1,x2>=0

A=
1 01 0 O
0O 2 01 O
31 0 0 1

(change to min-problem)

12

18

82

>> [i,x,y,s,z]=lpmClassical(A, b, c, epsilon)

-41.9805

>> [i,x,y,s,z]=lpmNew(A, b, c, epsilon)

-41.9993

>> [i,x,y,s,z]=lpmClassical(A, b, c, epsilon)

1.0000

1.4437

2.0334

2.9815

3.8206

3.9803

3.9977

1.0000

1.7530

3.0422

4.6039

5.7689

5.9762

5.9975

1.0000

0.8831

0.7370

0.4101

0.0779

0.0095

0.0013

1.0000

0.9645

0.3825

0.0542

0.0054

0.0020

0.0005

1.0000

1.0398

0.8654

0.4968

0.1095

0.0169

0.0028

83

-0.1333

-0.2783

-0.5626

-0.8317

-0.9001

-0.9363

1.0000

0.4093

0.1458

0.0146

0.0032

0.0011

0.0003

Z=

-41.9805

>> [i,x,y,s,z]=lpmNew(A, b, c, epsilon)

60

Z=

-41.9993

0 0

-0.0519

-0.5925

-1.3849

-2.0210

-2.1384

-2.1549

1.0000

0.1000

0.0100

0.0068

0.0026

0.0007

0.0002

0.0235

-0.1361

-0.4117

-0.6562

-0.6935

-0.6873

1.0000

0.9699

0.8931

0.8669

0.8825

0.9052

0.9368

1.0000

0.8885

1.2073

1.6891

2.0717

2.1434

2.1554

1.0000

0.8131

0.7509

0.7159

0.7069

0.6986

0.6878

84

1.0000

1.4437

2.0409

3.0192

3.8797

3.9559

3.9623

3.9669

3.9702

3.9732

3.9759

3.9783

3.9805

3.9824

3.9842

3.9857

3.9872

3.9884

3.9896

3.9906

3.9916

3.9924

3.9932

3.9939

3.9945

3.9950

1.0000

1.7530

3.0601

4.6730

5.8542

5.9723

5.9859

5.9883

5.9896

5.9906

5.9916

5.9924

5.9932

5.9938

5.9945

5.9950

5.9955

5.9960

5.9964

5.9967

5.9971

5.9973

5.9976

5.9979

5.9981

5.9983

1.0000

0.8831

0.7365

0.4016

0.0624

0.0383

0.0372

0.0330

0.0297

0.0268

0.0241

0.0217

0.0195

0.0176

0.0158

0.0143

0.0128

0.0116

0.0104

0.0094

0.0084

0.0076

0.0068

0.0061

0.0055

0.0050

1.0000

0.9645

0.3780

0.0474

0.0308

0.0293

0.0256

0.0232

0.0208

0.0188

0.0169

0.0152

0.0137

0.0123

0.0111

0.0100

0.0090

0.0081

0.0073

0.0065

0.0059

0.0053

0.0048

0.0043

0.0039

0.0035

1.0000

1.0398

0.8702

0.5044

0.1302

0.1223

0.1236

0.1105

0.0997

0.0897

0.0808

0.0727

0.0655

0.0589

0.0530

0.0478

0.0430

0.0387

0.0348

0.0314

0.0282

0.0254

0.0229

0.0206

0.0185

0.0167

85

3.9955

3.9960

3.9964

3.9967

3.9971

3.9974

3.9976

3.9979

3.9981

3.9983

3.9984

3.9986

3.9987

3.9989

3.9990

3.9991

3.9992

3.9993

3.9993

3.9994

3.9995

3.9995

3.9996

3.9996

3.9996

3.9997

3.9997

5.9984

5.9986

5.9987

5.9989

5.9990

5.9991

5.9992

5.9993

5.9993

5.9994

5.9995

5.9995

5.9996

5.9996

5.9996

5.9997

5.9997

5.9997

5.9998

5.9998

5.9998

5.9998

5.9998

5.9999

5.9999

5.9999

5.9999

0.0045

0.0040

0.0036

0.0033

0.0029

0.0026

0.0024

0.0021

0.0019

0.0017

0.0016

0.0014

0.0013

0.0011

0.0010

0.0009

0.0008

0.0007

0.0007

0.0006

0.0005

0.0005

0.0004

0.0004

0.0004

0.0003

0.0003

0.0031

0.0028

0.0025

0.0023

0.0021

0.0018

0.0017

0.0015

0.0013

0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0006

0.0005

0.0005

0.0004

0.0004

0.0003

0.0003

0.0003

0.0002

0.0002

0.0002

0.0150

0.0135

0.0122

0.0109

0.0098

0.0089

0.0080

0.0072

0.0065

0.0058

0.0052

0.0047

0.0042

0.0038

0.0034

0.0031

0.0028

0.0025

0.0023

0.0020

0.0018

0.0016

0.0015

0.0013

0.0012

0.0011

0.0010

86

3.9997

3.9998

3.9998

3.9998

3.9998

3.9998

3.9999

-0.1333

-0.2846

-0.5916

-0.9196

-1.4299

-1.5993

-1.5888

-1.5890

-1.5884

-1.5878

-1.5873

-1.5868

-1.5864

-1.5860

-1.5857

-1.5854

-1.5851

5.9999

5.9999

5.9999

5.9999

5.9999

5.9999

6.0000

-0.0519

-0.6023

-1.4288

-2.0876

-2.2344

-2.2683

-2.2669

-2.2668

-2.2665

-2.2662

-2.2660

-2.2658

-2.2656

-2.2654

-2.2652

-2.2651

-2.2649

0.0003

0.0002

0.0002

0.0002

0.0002

0.0002

0.0001

0.0235

-0.1375

-0.4214

-0.6622

-0.5248

-0.4714

-0.4748

-0.4743

-0.4741

-0.4739

-0.4738

-0.4737

-0.4735

-0.4734

-0.4733

-0.4732

-0.4732

0.0002

0.0002

0.0001

0.0001

0.0001

0.0001

0.0001

0.0009

0.0008

0.0007

0.0006

0.0006

0.0005

0.0005

87

-1.5848

-1.5846

-1.5844

-1.5842

-1.5841

-1.5839

-1.5838

-1.5837

-1.5835

-1.5834

-1.5834

-1.5833

-1.5832

-1.5831

-1.5831

-1.5830

-1.5830

-1.5830

-1.5829

-1.5829

-1.5828

-1.5828

-1.5828

-1.5828

-1.5828

-1.5827

-1.5827

-2.2648

-2.2647

-2.2646

-2.2645

-2.2645

-2.2644

-2.2643

-2.2643

-2.2642

-2.2642

-2.2641

-2.2641

-2.2641

-2.2640

-2.2640

-2.2640

-2.2640

-2.2639

-2.2639

-2.2639

-2.2639

-2.2639

-2.2639

-2.2639

-2.2638

-2.2638

-2.2638

-0.4731

-0.4730

-0.4730

-0.4729

-0.4729

-0.4728

-0.4728

-0.4728

-0.4727

-0.4727

-0.4727

-0.4727

-0.4727

-0.4726

-0.4726

-0.4726

-0.4726

-0.4726

-0.4726

-0.4726

-0.4726

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

88

-1.5827

-1.5827

-1.5827

-1.5827

-1.5827

-1.5827

-1.5826

-1.5826

-1.5826

-1.5826

-1.5826

-1.5826

-1.5826

-1.5826

-1.5826

1.0000

0.4093

0.1425

0.0143

0.0220

0.0160

0.0148

0.0132

0.0119

0.0107

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

-2.2638

1.0000

0.1000

0.0100

0.0168

0.0112

0.0110

0.0097

0.0088

0.0079

0.0071

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

-0.4725

1.0000

0.9699

0.8960

0.8812

0.9486

1.4328

1.5996

1.5888

1.5890

1.5884

1.0000

0.8885

1.2136

1.7184

2.1166

2.2373

2.2686

2.2669

2.2668

2.2665

1.0000

0.8131

0.7489

0.7110

0.6911

0.5277

0.4717

0.4748

0.4743

0.4741

89

0.0096

0.0087

0.0078

0.0070

0.0063

0.0057

0.0051

0.0046

0.0041

0.0037

0.0033

0.0030

0.0027

0.0024

0.0022

0.0020

0.0018

0.0016

0.0014

0.0013

0.0012

0.0010

0.0009

0.0008

0.0008

0.0007

0.0006

0.0064

0.0057

0.0052

0.0047

0.0042

0.0038

0.0034

0.0031

0.0027

0.0025

0.0022

0.0020

0.0018

0.0016

0.0015

0.0013

0.0012

0.0011

0.0010

0.0009

0.0008

0.0007

0.0006

0.0006

0.0005

0.0005

0.0004

1.5878

1.5873

1.5868

1.5864

1.5860

1.5857

1.5854

1.5851

1.5848

1.5846

1.5844

1.5842

1.5841

1.5839

1.5838

1.5837

1.5835

1.5834

1.5834

1.5833

1.5832

1.5831

1.5831

1.5830

1.5830

1.5830

1.5829

2.2662

2.2660

2.2658

2.2656

2.2654

2.2652

2.2651

2.2649

2.2648

2.2647

2.2646

2.2645

2.2645

2.2644

2.2643

2.2643

2.2642

2.2642

2.2641

2.2641

2.2641

2.2640

2.2640

2.2640

2.2640

2.2639

2.2639

0.4739

0.4738

0.4737

0.4735

0.4734

0.4733

0.4732

0.4732

0.4731

0.4730

0.4730

0.4729

0.4729

0.4728

0.4728

0.4728

0.4727

0.4727

0.4727

0.4727

0.4727

0.4726

0.4726

0.4726

0.4726

0.4726

0.4726

90

0.0006

0.0005

0.0005

0.0004

0.0004

0.0003

0.0003

0.0003

0.0002

0.0002

0.0002

0.0002

0.0002

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

Z=

-41.9993

>>

0.0004

0.0003

0.0003

0.0003

0.0002

0.0002

0.0002

0.0002

0.0002

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0000

0.0000

0.0000

1.5829

1.5828

1.5828

1.5828

1.5828

1.5828

1.5827

1.5827

1.5827

1.5827

1.5827

1.5827

1.5827

1.5827

1.5826

1.5826

1.5826

1.5826

1.5826

1.5826

1.5826

1.5826

1.5826

2.2639

2.2639

2.2639

2.2639

2.2639

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

2.2638

0.4726

0.4726

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

0.4725

91

MatLab code for Table 5.2

random problems with random dimentions less that 10

New method

idx dim(m*n) iteration Opt time

Classical method

iteration Opt time

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

68 17

4 8 17

83 15

49 72

58 18

89 14

22 13

65 13

86 14

36 17

37 64

33 12

27 64

1.4119

0.9627

0.7974

0.7864

0.4944

1.0654

0.4801

1.3682

0.7773

0.2225

1.6662

0.3840

0.5853

0.8750

0.6310

1.7618

0.1590

0.0056 13
0.0065 16
0.0072 24
0.0336 21
0.0070 38
0.0757 27
0.0076 24
0.0070 19
0.0042 14
0.0059 14
0.0068 20
0.0069 30
0.0260 7

0.0044 14
0.0458 7

0.0047 13
0.0244 7

1.4164 0.0396

0.9627 0.0046

0.7974 0.0073

0.7864 0.0061

0.3653 0.0140

1.0668 0.0086

0.4801 0.0072

1.3682 0.0064

0.7773 0.0033

0.2229 0.0049

1.6114 0.0268

NaN 0.0101

0.5886 0.0018

0.8750 0.0038

0.6367 0.0017

1.7618 0.0036

0.1647 0.0018

average 4.95.4 40.7 0.0448

New method

dim(m*n) iteration time

Classical method

iteration time

24.6 0.0362

92

New method

Classical method

idx dim(m®*n) iteration Opt time iteration Opt time

8

3

9

45

45

12

12

14

49

45

66

9 31 45

NaN 0.0681

NaN 0.0674

3.1727 0.0053

2.0364 0.0050

0.7954 0.0675

0.4286 0.0243

NaN 0.1613

0.2055 0.0284

NaN 0.1071

10 7 8 13 2.3593 0.0057

11

12

13

14

15

16

17

18

19

20

21

22

23

2

7

7

6

2 201

64

14

62

14

28

17

64

58

12

60

52

23

0.3550 0.0246

1.7947 0.0055

NaN 0.0637

30 NaN 0.0326

45 NaN 0.7326

14 3.1727 0.0042

13 2.0364 0.0037

16 0.7257 0.0059

92 0.4560 0.1107

45 NaN 0.0612

9 0.1994 0.0024

36 NaN 0.0133

14 2.3593 0.0042

8 0.3596 0.0019

15 1.7947 0.0043

27 NaN 0.0096

0.4458 0.3814 71 0.1206 0.1475

2.3068 0.0059

0.4972 0.0138

1.2697 0.0076

NaN 0.0814

0.0069 0.0650

2.0070 0.0045

0.0321 0.0245

0.2947 0.0739

0.7775 0.0118

16 2.3068 0.0258

19 0.5465 0.0067

18 1.2697 0.0053

17 NaN 0.0044

6 0.0106 0.0015

13 2.0070 0.0036

6 0.0387 0.0026

5 0.2976 0.0012

52 0.5957 0.0617

93

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

18

31

16

16

17

52

14

14

201

25

66

15

12

15

17

17

15

72

18

14

13

13

14

17

64

12

64

1.7080

0.3020

2.4185

0.2408

1.8185

0.2448

1.0822

1.4672

0.0760 0.3930

0.5901

0.0042

0.8637

1.4119

0.9627

0.7974

0.7864

0.4944

1.0654

0.4801

1.3682

0.7773

0.2225

1.6662

0.3840

0.5853

0.8750

0.6310

0.0088

0.0528

0.0069

0.0064

0.0091

0.0208

0.0051

0.0054

0.0115

0.0293

0.0060

0.0056

0.0065

0.0072

0.0336

0.0070

0.0757

0.0076

0.0070

0.0042

0.0059

0.0068

0.0069

0.0260

0.0044

0.0458

33

28

16

20

24

1.2630 0.0476

0.3146 0.0426

2.4185 0.0046

0.2408 0.0059

1.2417 0.0096

5 0.2478 0.0012

17

16

59 0.0470 0.1529

28

1.0822 0.0046

1.4672 0.0044

0.5901 0.0087

7 0.0082 0.0018

201 0.2481 0.3810

13

16

24

21

38

27

24

19

14

14

20

30

1.4164 0.0396

0.9627 0.0046

0.7974 0.0073

0.7864 0.0061

0.3653 0.0140

1.0668 0.0086

0.4801 0.0072

1.3682 0.0064

0.7773 0.0033

0.2229 0.0049

1.6114 0.0268

NaN 0.0101

7 0.5886 0.0018

14

0.8750 0.0038

7 0.6367 0.0017

94

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

4

12 1.7618 0.0047

64 0.1590 0.0244

15 3.6371 0.0059

42 0.4919 0.0216

45 NaN 0.0833

20 1.4544 0.0331

45 NaN 0.0891

41 1.6545 0.0388

64 0.1189 0.0272

12 3.7354 0.0071

16 1.3473 0.0067

65 0.1011 0.0256

16 0.5000 0.0055

62 0.4073 0.0233

15 1.0340 0.0374

66 0.9751 0.0292

13 0.9247 0.0050

13 1.6887 0.0051

13 0.1492 0.0045

171 NaN 0.1243

201 0.2807 0.2557

201 0.6778 0.4181

66 0.0872 0.0264

14 1.4273 0.0056

12 4.2331 0.0055

13 0.7073 0.0047

66 0.4177 0.0272

13 1.7618 0.0036

7 0.1647 0.0018

16 3.6371 0.0455

41 0.7683 0.0158

28 NaN 0.0224

14 1.6696 0.0063

45 NaN 0.0296

33 0.8089 0.0497

8 0.1203 0.0020

15 3.7354 0.0049

17 1.3473 0.0051

7 0.1045 0.0018

19 0.5000 0.0048

6 0.4123 0.0014

19 1.0340 0.0054

8 0.9772 0.0021

14 0.9247 0.0039

14 1.6887 0.0452

15 0.1492 0.0036

54 2.9584 0.0724

66 0.0886 0.0771

75 1.0557 0.1723

7 0.0909 0.0018

15 1.4273 0.0040

14 4.2331 0.0048

14 0.7073 0.0040

7 0.4248 0.0019

95

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

35 17

85 17

56 17

69 16

12 52

39 20

94 29

95 37

49 18

95 41

6 4 58

3515

75 14

35 60

32196

28 65

6 8 15

36 15

4 3 56

7 2 201

61 45

14 58

75 14

25 60

85 38

2.3273 0.0066

0.6883 0.0382

0.7023 0.0066

1.6375 0.0082

0.5266 0.0070

1.1541 0.0073

0.9460 0.0199

1.4204 0.0087

0.1871 0.0378

0.9494 0.0764

0.5192 0.0078

0.5489 0.0475

NaN 0.1482

0.6959 0.0058

2.9338 0.0065

0.4861 0.0749

4.5525 0.3504

0.6134 0.0258

1.6926 0.0062

0.8336 0.0057

NaN 0.0830

0.0365 0.4461

NaN 0.1986

0.6234 0.0448

1.1884 0.0070

0.5702 0.0634

1.2510 0.0198

16

13

19

87

22

19

2.3273 0.0050

0.8011 0.0524

0.7023 0.0053

0.5440 0.1686

0.5266 0.0065

1.1541 0.0059

5 0.9489 0.0012

39

32

32

23

18

58

20

14

NaN 0.0153

0.6971 0.0615

1.3586 0.0558

0.5192 0.0411

1.5730 0.0528

NaN 0.1727

0.6959 0.0055

2.3208 0.0053

7 0.4866 0.0020

146 1.8557 0.3399

7 0.6152 0.0018

19

17

1.6926 0.0058

0.8336 0.0047

14 1.4102 0.0045

83 1.0238 0.2068

45

6

NaN 0.0328

0.6307 0.0014

38 0.4592 0.1011

6

0.5733 0.0014

19 1.3811 0.0390

96

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

16 0.7932 0.0068

56 0.6463 0.0198

18 1.2119 0.0081

116 0.4112 0.1974

58 0.3450 0.0323

47 0.8233 0.0480

60 0.0042 0.0245

19 2.2536 0.0077

13 1.4697 0.0053

120 0.4624 0.2295

12 1.9521 0.0063

45 0.4377 0.0147

40 1.3974 0.0493

60 0.0523 0.0223

16 1.3757 0.0060

13 2.8652 0.0067

11 5.0975 0.0048

13 0.3116 0.0042

18 0.4133 0.0092

17 1.3629 0.0079

17 1.4464 0.0085

15 2.1528 0.0073

52 0.4030 0.0202

17 1.5577 0.0091

45 NaN 0.1823

17 2.5650 0.0080

15 0.3709 0.0055

19 0.7932 0.0267

5 0.6492 0.0012

24 1.2119 0.0078

116 0.3480 0.2755

6 0.3478 0.0014

25 0.8203 0.0931

7 0.0052 0.0017

25 2.2536 0.0074

14 1.4697 0.0044

201 0.8555 0.4208

13 1.9450 0.0872

5 0.4378 0.0011

60 0.0616 0.1541

6 0.0577 0.0014

17 1.3757 0.0046

15 3.0675 0.0062

15 5.0975 0.0047

39 NaN 0.0116

21 0.5460 0.0381

18 1.3382 0.0401

16 1.9442 0.0707

13 1.5332 0.0388

5 0.4060 0.0012

16 1.3553 0.0158

36 NaN 0.0295

21 2.5650 0.0070

17 0.3709 0.0062

97

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

13

12

88

27

66

64

62

12

15

14

66

12

16

127

11

58

12

60

56

15

195

17

60

16

16

14

45

1.5864

1.4834

0.1456

0.0678

0.4524

0.1021

0.0028

3.4885

0.2784

3.1083

0.0150

3.1648

0.6641

NaN

3.2350

0.7658

2.1261

0.2748

0.1017

2.2372

0.4054 0.3624

0.7720

0.0085

0.6305

1.9168

0.7501

0.0063

0.0053

0.1307

0.0600

0.0270

0.0279

0.0263

0.0052

0.0056

0.0062

0.0301

0.0050

0.0651

0.1905

0.0046

0.0200

0.0050

0.0218

0.0223

0.0071

0.0073

0.0624

0.0068

0.0070

0.0052

NaN 0.1248

16 2.2049 0.0061

14 1.4834 0.0045

58 0.4504 0.1475

16 NaN 0.0094

8 0.4538 0.0019

7 0.1043 0.0017

7 0.0051 0.0017

13 3.4885 0.0037

17 0.2784 0.0048

15 3.1083 0.0047

7 0.0228 0.0018

13 3.1648 0.0041

17 0.6641 0.0048

29 0.0231 0.0666

13 3.2350 0.0043

6 0.7670 0.0013

13 2.1261 0.0038

6 0.2799 0.0526

6 0.1030 0.0014

17 2.2372 0.0058

48 0.3538 0.1150

20 0.7720 0.0058

7 0.0096 0.0017

16 0.6305 0.0046

25 1.9168 0.0083

15 0.7501 0.0045

16 NaN 0.0114

98

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

11

45

18

14

15

12

54

11

66

56

14

58

79

60

56

55

22

58

15

22

12

65

21

45

45

16

12

0.9672

0.4010

0.6044

1.2959

1.5190

2.4810

3.0844

0.6774

0.1178

1.2827

3.1274

0.2706

1.8914

0.0769

0.1561

0.3958

0.4917

0.0114

1.2088

2.3937

2.3249

0.0225

0.2064

0.0264

0.0133

0.0076

0.0066

0.0076

0.0054

0.0905

0.0054

0.0305

0.0201

0.0066

0.0206

0.1462

0.0245

0.0220

0.0958

0.0108

0.0541

0.0063

0.0109

0.0063

0.0277

0.0111

NaN 0.1603

NaN 0.0892

0.7594

1.7165

0.0070

0.0058

12 0.9672 0.0031

4 0.4008 0.0008

19 0.6044 0.0053

16 1.2533 0.0058

23 1.2027 0.0529

13 2.4810 0.0041

26 1.1829 0.0092

20 0.8400 0.03%90

7 0.1240 0.0019

5 1.2850 0.0012

21 2.3811 0.0387

6 0.2715 0.0014

159 0.6958 0.3458

6 0.0821 0.0015

5 0.1636 0.0012

31 0.8488 0.0474

23 0.5037 0.0401

6 0.0139 0.0014

19 1.2088 0.0057

31 3.0084 0.1104

23 2.0587 0.0430

8 0.0236 0.0329

52 0.1950 0.0961

45 NaN 0.0903

45 NaN 0.0170

25 0.7594 0.0080

16 1.2626 0.0795

99

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

12

15

56

48

52

18

15

123 0.0110 0.2378

4.2814

1.0139

0.0452

0.4489

0.0018

1.5071

0.5991

0.0057

0.0067

0.0192

0.0365

0.0198

0.0082

0.0068

62 0.1704 0.0566

53

58

16

45

13

14

NaN 0.0634

0.0721

2.0542

0.0200

0.0065

NaN 0.1366

1.3755

1.8529

0.0054

0.0051

13 4.2814 0.0042

17 1.0139 0.0051

5 0.0469 0.0012

14 1.0610 0.0049

5 0.0047 0.0012

23 1.5071 0.0282

16 0.6997 0.0056

67 0.0438 0.1039

7 0.1724 0.0017

17 NaN 0.0057

6 0.0768 0.0015

20 2.0542 0.0056

45 NaN 0.0839

15 1.3755 0.0041

15 1.8529 0.0039

New method

Classical method

dim(m*n) iteration time

average 4.95.4 40.7 0.0448

iteration time

24.6 0.0362

MatLab code forTable 5.3

solve the random system with dimention 200*300

m=200;n=300;

A=rand(m,n);

b=rand(m,1);

c=rand(n,1);

epsilon=0.01;

100

in new mehtod, p=0.8,q=1.2

New method

Classical method

idx iteration Opt time iteration Opt time
34 31 13.3783 2.1870 34 13.3783 2.4084
35 33 13.5477 2.3660 38 13.5477 2.7975
36 35 12.2685 2.4543 47 12.2685 3.6504
37 34 12.1387 2.4273 42 12.1387 3.1664
38 31 14.3202 2.1804 42 14.3202 3.1886
39 33 11.7495 2.4815 30 11.7495 2.0452
40 30 15.0938 2.1312 39 15.0938 2.8654
41 40 15.4534 3.0469 44 15.4534 3.3165
42 38 12.4233 2.8703 44 12.4233 3.2338
43 66 12.7004 5.6847 40 12.7022 2.8478
44 39 12.4386 2.9631 40 12.4386 2.8733
45 33 13.5479 2.3851 42 13.5479 3.0937
46 36 13.7716 2.6777 43 13.7716 3.1809
47 33 12.7877 2.5047 35 12.7877 2.5006
48 36 16.7568 2.7086 36 16.7568 2.5545
49 38 15.3569 2.9702 34 15.3569 2.4201

average

New method

iteratio

n

time

Classical method

iteration Opt

time

35.8100

2.6626

40.0000

2.8812

101

New method Classical method

idx iteration Opt time iteration Opt time

1 33 14.1325 2.2903 36 14.1325 2.4028
2 34 11.4602 2.3497 40 11.4602 2.6396
3 34 14.8578 2.3979 43 14.8578 3.4298
4 32 14.0615 2.3182 42 14.0615 2.9494
5 37 13.8361 2.6571 40 13.8361 2.7531
6 27 12.5830 1.8774 31 12.5830 2.0912
7 35 15.0891 2.4443 46 15.0891 3.1579
8 42 154758 3.0902 51 15.4758 3.5747
9 33 13.9757 2.3580 36 13.9755 2.3991
10 33 14.4968 2.3421 34 14.4968 2.3027
11 31 11.4472 2.1374 65 11.4295 4.6683
12 29 13.3044 1.9933 36 13.3044 2.4292
13 34 13.6009 2.3862 50 13.6009 3.4991
14 34 11.4376 2.4010 41 11.4376 2.8593
15 31 14.8721 2.1535 35 14.8721 2.3473
16 38 14.0051 2.7457 35 14.0051 2.3498
17 29 13.8349 2.0148 35 13.8349 2.3490
18 35 12.8241 2.4992 42 12.8241 2.9333
19 33 13.0498 2.3489 42 13.0499 2.9874
20 33 14.5358 2.3046 35 14.5358 2.3323
21 33 13.7607 2.3485 38 13.7607 2.6101
22 31 13.3368 2.1436 36 13.3368 2.4539
23 31 12.6427 2.1378 44 12.6427 3.0703
24 33 13.1727 2.3204 47 13.1727 3.3550

102

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

38

30

43

32

34

29

30

30

38

31

33

35

34

31

33

30

40

38

66

39

33

36

33

36

38

35

39

12.4437

16.4101

14.5286

14.2258

11.9038

12.9792

13.5566

13.9748

13.9658

13.3783

13.5477

12.2685

12.1387

14.3202

11.7495

15.0938

15.4534

12.4233

12.7004

12.4386

13.5479

13.7716

12.7877

16.7568

15.3569

10.1950

14.4130

2.7154

2.0944

3.1413

2.2594

2.4134

1.9981

2.0404

2.1090

2.6906

2.1870

2.3660

2.4543

2.4273

2.1804

2.4815

2.1312

3.0469

2.8703

5.6847

2.9631

2.3851

2.6777

2.5047

2.7086

2.9702

2.5621

3.0114

45

39

39

31

51

33

39

31

41

34

38

47

42

42

30

39

44

44

40

40

42

43

35

36

34

41

47

12.4437

16.4101

14.5286

14.2258

11.9038

12.9792

13.5566

13.9748

13.9658

13.3783

13.5477

12.2685

12.1387

14.3202

11.7495

15.0938

15.4534

12.4233

12.7022

12.4386

13.5479

13.7716

12.7877

16.7568

15.3569

10.1950

14.4130

3.1244

2.6710

2.6813

2.1112

3.6221

2.1890

2.6850

2.0360

2.7484

2.4084

2.7975

3.6504

3.1664

3.1886

2.0452

2.8654

3.3165

3.2338

2.8478

2.8733

3.0937

3.1809

2.5006

2.5545

2.4201

2.9928

3.6163

103

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

35

72

35

38

34

35

34

31

29

43

35

33

95

31

37

38

35

37

34

37

32

31

32

33

36

28

37

14.5251

14.9484

16.3867

12.7772

13.0523

13.0530

13.0528

15.8548

14.2370

13.5499

12.8535

12.9314

13.7239

15.8651

13.8844

14.4416

13.3879

14.7301

14.0756

13.8434

14.9581

13.0970

12.1322

14.5811

15.1297

16.3501

11.7357

2.6399

6.2311

2.5885

2.9128

2.5302

2.5921

2.5316

2.2426

2.0127

3.3413

2.5790

2.4403

9.0412

2.2830

2.7863

2.9258

2.5361

2.6624

2.5296

2.7015

2.3169

2.2517

2.3486

2.4676

2.7490

2.0110

2.7682

40

45

40

42

38

43

35

35

39

38

35

37

44

34

38

46

44

47

40

41

32

40

42

36

40

37

38

14.5251

14.9489

16.3867

12.7772

13.0523

13.0530

13.0528

15.8548

14.2370

13.5499

12.8535

12.9314

13.7796

15.8651

13.8844

14.4415

13.3879

14.7301

14.0755

13.8434

14.9581

13.0970

12.1322

14.5811

15.1297

16.3501

11.7357

2.9441

3.2947

2.8813

3.1070

2.8084

3.2378

2.4582

2.5212

2.8138

2.7139

2.4133

2.6749

3.2587

2.3814

2.6984

3.5383

3.1893

3.5063

2.8794

2.9964

2.1915

2.9671

3.1600

2.5803

2.9157

2.6951

2.6857

104

79 47 13.4661 3.8289 38 13.4661
80 30 14.1476 2.1423 38 14.1476
81 33 14.0924 2.4596 38 14.0924
82 37 14.7447 2.7495 39 14.7447
83 40 13.4680 2.9901 46 13.4680
84 37 11.5136 2.7620 42 11.5136
85 36 14.5218 2.7568 36 14.5218
86 54 13.8599 3.9193 36 13.8574
87 32 12,6705 2.4086 41 12.6705
88 34 12,5076 2.6738 38 12.5076
89 40 14.6875 3.2020 34 14.6875
90 30 11.3641 2.2120 33 11.3641
91 34 14.8216 2.5382 40 14.8216
92 34 16.0217 2.5202 48 16.0217
93 33 14.0469 2.4813 41 14.0469
94 40 15.8152 3.0568 41 15.8152
95 30 14.3876 2.2207 34 14.3876
96 30 15.8316 2.2985 40 15.8316
97 33 14.2434 24493 38 14.2434
98 37 13.7590 2.8397 46 13.7590
99 39 15.5669 2.8991 52 15.5669
100 35 15.0051 2.6977 48 15.0051 3.7811
average

New method

iteration

35.8100

time

2.6626

Classical method

iteration Opt

40.0000

time

2.8812

2.7929

2.7840

2.7350

2.7690

3.4051

3.0184

2.6255

2.6522

3.1666

2.8091

2.5030

2.3333

2.9601

3.8445

3.1175

2.9229

2.4590

3.0683

2.8031

3.5587

3.9323

105

MatLab code for Table 5.4

solve the random system with dimention 400*700

m=400;n=700;
A=rand(m,n);
b=rand(m,1);
c=rand(n,1);

epsilon=0.01;

in Dr. Lesaja's mehtod, p=0.8,q=1.2

New method Classical method

idx iteration Opt time iteration Opt time

1 41 16.8015 25.4030 57 16.8018 35.8048

MatLab code for Table 5.4

impNew

p=1-lambda;

g=1+lambda;

average of 200 iterations

106

0.1 0.2
dim(m*n) iteration time iteration time

average 5.05.1 35.9 0.0526 37.2 0.0603

0.3 0.4
dim(m*n) iteration time iteration time

average4.85.1 40.6 0.0673 41.6 0.0648

MatLab code for Table 5.6

20 iterations

0.3 0.4
dim(m*n) iteration time iteration time

average 200.0300.0 33.8 2.5982 37.8 2.9957

0.1 0.2
dim(m*n) iteration time iteration time

average 200.0300.0 36.6 2.8611 34.7 2.6867

107

0.1 0.2
idx dim(m™*n) iteration Opt time iteration Opt
1200300 36 15.3765 2.7472 35 15.3765
2200300 33 13.6721 2.5727 33 13.6721
3200300 39 13.1033 3.0115 41 13.1033
4200300 38 14.9661 3.0094 40 14.9661
5200300 32 12.9225 2.4362 28 12.9225
6200300 32 13.3005 2.3987 34 13.3005
7200300 38 11.4939 2.9336 36 11.4939
8200300 32 13.6853 2.4423 37 13.6853
9200300 33 12.6659 2.5796 28 12.6659
10200300 79 13.1793 6.9372 43 13.1802
11200300 33 12.4495 2.4903 33 12.4495
12 200300 33 14.7143 2.5612 31 14.7143
13200300 32 13.0591 2.3790 34 13.0591
14 200300 41 14.7339 3.2123 33 14.7339
15200300 34 15.4971 2.6664 33 15.4971
16 200300 37 12.8786 2.9451 40 12.8786
17 200300 36 12.6252 2.7991 37 12.6252
18 200300 33 14.2547 2.5594 32 14.2547
19 200300 32 15.6560 2.4247 32 15.6560
20200300 29 14.5694 2.1154 34 14.5694

time

2.6816

2.5643

3.2237

3.2188

2.0493

2.5932

2.8237

2.9811

2.0762

3.4659

2.4935

2.3323

2.6057

2.4766

2.6206

3.0927

2.9537

2.4313

2.4553

2.5937

108

	Interior Point Methods and Kernel Functions of a Linear Programming Problem
	Recommended Citation

	tmp.1375238340.pdf.EuMIE

