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THE ROLE OF HABITAT MANAGEMENT IN SHAPING PREDATION, ANIMAL COLOR, 

AND GENE FLOW IN A METAPOPULATION OF FLORIDA SCRUB LIZARDS 

(SCELOPORUS WOODI) 

by  

RICHARD W. ORTON  

(Under the advisement of Lance D. McBrayer) 

 

ABSTRACT 

 

Anthropogenic disturbance is known to affect biological diversity at the community, 

species, and genetic levels.  Habitat fragmentation, in particular, has been shown to impact 

predator abundance and distribution, impede dispersal, and augment genetic drift.  In small 

populations, which often result from habitat fragmentation, the effects of human disturbance may 

be disproportionately expressed.  Small populations are more susceptible to selection pressures 

and random drift because genetic and phenotypic frequencies can become rapidly fixed, in 

comparison to larger populations.  In turn, fixation of maladaptive alleles or morphs can 

accelerate extinction.  For example, cryptic color polymorphism can be maintained by apostatic 

selection, where detection of prey is dependent on the relative frequencies of color morphs.  In 

the event that a conspicuous color morph becomes fixed, the probability of detection by visual 

predators is likely to increase, thus increasing probability of local extinction.  Furthermore, 

events that alter habitat structure and substrate composition may also increase exposure of 

cryptic animals to visual predators because crypsis is substrate-dependent.  A color morph that is 

cryptic against one visual background may be conspicuous against a different visual background.  

Subpopulations of Sceloporus woodi, a cryptic species of lizard, occupy managed stands of sand 

pine scrub and longleaf pine habitats in the Ocala National Forest.  These subpopulations are 

subjected to prescribe burning, fire suppression, and clear-cutting.  Here, I show that habitat 



 
 

alteration, due to management in the Ocala National Forest, results in differential predation 

between sampling locations.  As a result, significant variation in dorsal color is observed across 

the metapopulation.  Furthermore, subpopulations appear to experience little genetic drift, 

perhaps due to gene flow facilitated by anthropogenically-maintained corridors. 

 

INDEX WORDS:  Habitat fragmentation, Predation, Crypsis, Selection, Adaptation, Genetic 

drift, Habitat-management 
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CHAPTER 1 

HABITAT MANAGEMENT AFFECTS PREDATION IN A FRAGMENTED LANDSCAPE 

ABSTRACT 

Crypsis reduces the probability of detection in prey animals by concealing the visual 

signal of the animal within the local visual background.  However, because crypsis is a 

background-specific adaptation, animals cryptic in one visual background may become 

conspicuous in another visual background.  Thus, events which alter habitat structure and 

substrate composition are likely to affect rates of predation on cryptic animals.  Populations of 

Sceloporus woodi, a cryptic diurnal lizard, occupy clear-cut stands of sand pine scrub and 

prescribe-burned longleaf pine habitat within the Ocala National Forest.  Here, I use a 

combination of clay models resembling S. woodi and spectral analysis to examine the effects of 

spatial heterogeneity on rates of predation.  The proportion of attacked models placed in the field 

was greatest on open sand and deadwood in sand pine scrub habitat.  The dorsal color of models 

greatly contrasted open sand and dead wood, but had similar reflectance values to leaf litter, 

suggesting that models were cryptic on leaf litter.  However, the contrast between models and 

leaf litter did not vary between stands.  Moreover, the proportion of attacked models decreased 

as the age of sand pine scrub stands increased, and was low in stands of longleaf pine.  It is likely 

that the proportion of attacked models relates to increased exposure of open sand and decreased 

amounts of leaf litter, immediately following clear-cutting.  These findings suggest that habitat 

management can affect predation intensity on cryptic species.        
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INTRODUCTION 

Predation is often of interest to studies of phenotypic evolution because predation reduces 

fitness and predators can act directionally on specific phenotypes (Lima and Dill 1990).  For 

example, animals with colors and patterns that blend with the visual background (i.e. match the 

color of substrate), termed ‘crypsis,’ are often found in environments with high rates of predation 

imposed by visual predators (Kettlewell 1965; Endler and Basolo 1998).  The common inference 

is that cryptically-colored animals are more likely to avoid visual detection by predators than 

conspicuous individuals, barring aposematic coloration, and are thus more likely to survive and 

reproduce (Storfer et al. 1999; Stuart-Fox et al. 2003; Troscianko et al. 2016).  However, studies 

investigating crypsis often only infer predation to be the driving selection pressure behind colors 

that resemble the local visual background (but see Farallo and Forstner 2012).        

Crypsis has been noted in multiple taxa including amphibians (Storfer et al. 1999), 

mammals (Hoekstra and Nachman 2003), moths (Endler 1984) and reptiles (Stuart-Fox et al. 

2004; Rosenblum 2006; Stuart-Fox and Moussalli 2009; Farallo and Forstner 2012).  The dorsal 

color of reptiles, particularly, is thought to be under strong selection pressure for crypsis because 

diurnal reptiles experience intense selection from visual predators, such as birds (Norris and 

Lowe 1964; Kettlewell 1973).  Geographic variation in the dorsal color of cryptic reptiles is also 

documented (Norris and Lowe 1964; Sweet 1985; Fox et al. 2004; Rosenblum et al. 2006; 

Farallo and Forstner 2012), and because crypsis is a substrate-specific adaptation (Merilaita et al. 

1999; Ruxton et al. 2004), geographic variation in the dorsal color of reptiles may result from 

spatial heterogeneity in substrate coupled with selection pressure from visual predators.  In the 

past, ecological transition zones harboring reptiles have provided arenas for testing hypotheses 

regarding cryptic coloration, substrate, and predation (Rosenblum et al. 2006; Farallo and 
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Forstner 2012) because populations across these zones occupy habitats that vary in 

environmental characteristics, such as substrate type (Gleason 1917).  Thus, events that lead to 

variation in substrate type, natural or anthropogenically-influenced, may feasibly lead to 

variation in animal color in the presence of visual predators.        

Populations of the Florida scrub lizard (Sceloporus woodi) within the Ocala National 

Forest (ONF) of central Florida, provide an ideal opportunity in which to study the impacts of 

geographic variation in substrate on predation.  In the ONF, populations of S. woodi are exposed 

to avian predators, such as the Florid scrub jay (Aphelocoma coerulescens) (Breininger et al. 

2006), and are fragmented between longleaf pine (LLP) and sand pine scrub (SPS) habitats 

(Jackson 1973; Enge et al. 1986).  Longleaf pine and SPS within the ONF contrast in several 

environmental variables (Wells 1928; Jackson 1973; Greenberg et al. 1994), including dominant 

substrate type (Kaunert and McBrayer 2015).  Additionally, the ONF is an anthropogenically-

altered landscape that relies upon management practices to maintain successional habitats 

characteristic to LLP and SPS, where LLP is prescribe-burned on an annual or bi-annual cycle 

and stands of SPS are clear-cut following at least forty years of succession (Enge et al. 1986; 

Greenberg et al. 1994; Tiebout and Anderson 1997).  However, in place of clear-cutting, fire is 

suppressed in stands of SPS, allowing for increases in vegetation density and thus, changes to 

dominant substrate type over time (Tiebout and Anderson 2001).  The timing and type of 

management practice in the ONF likely exaggerates differences in substrate composition 

between LLP and SPS, as well as between different stands of SPS.  Consistently, stands of LLP 

and SPS within the ONF are in various stages of succession.     

In this study, we used clay models to test the effects of substrate type and management 

practice on predation in S. woodi between two contrasting habitats.  Without prior knowledge of 
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color polymorphism in S. woodi, we used uniformly-colored clay models, placed on substrates of 

various color, to quantify the contingency of predation on model-substrate contrast.  Our 

methods followed several published studies that have successfully used clay models to examine 

the influence of selection from predation (Pfennig et al. 2001; Wuster et al. 2004; Husak et al. 

2006; Steffen 2009).  Clay models provide an advantage for studying the impacts of color on 

predation, by removing individual variation such as size and behavior (Paemelaere et al. 2013).  

We predicted that attacks from visually oriented predators would be dependent on the degree to 

which models contrasted substrate and that the proportion of attacked models would vary 

between LLP and SPS due to differences in dominant substrate.  We also predicted that 

management practice would affect the proportion of attacked models because disturbance can 

alter substrate composition (Auerbach et al. 1997; Dinnage 2009).     

 

 

 

 

 

 

 

 

 

 



13 
 

MATERIALS AND METHODS 

Clay models 

We constructed models (Figure 1a) by molding a thin layer (1-2mm) of pre-tinted oil-

based modeling clay (Roma Plastilina; Van Aken International, Rancho Cucamonga, CA, USA), 

around commercially available plastic lizard replicas.  The replica lizards [snout-vent length 

(SVL) = 60mm] were within the size range of the average adult male S. woodi (mean = 55mm 

SVL; range= 50-65mm SVL).  We modeled our clay replicas (N = 380) after male S. woodi 

because the species is sexually dimorphic and males are thought to incur higher rates of 

predation than females.  Males have reduced dorsal patterning and bright blue throat badges, 

which are thought to play a role in sexual selection but may inadvertently attract predators 

(Husak, 2006).  The dorsal side and color badges of clay models were painted with acrylic paint 

(Liquitex, Cincinnati, OH, USA) to match the coloration of adult male S. woodi.  The color of 

models was selected by eye prior to the experiment, and was later verified with a 

spectrophotometer after the completion of the experiment.  Additionally, we constructed control 

models shaped as spheres from the same clay as lizard models, painted with the same paint used 

for the dorsal surface of clay lizard models.     

Field Placement 

We placed a total of 380 clay models and 32 controls among five longleaf pine (LLP) and 

five sand pine scrub (SPS) stands between June 2015 and June 2016 (Figure 2).  Models were 

placed in typical basking and foraging locations of S. woodi and would thereby be available to 

natural predators such as birds of prey (e.g. Falco columbarius) and Florida scrub jays 

(Aphelocoma coerulescens).  Forty models were spaced 10-20m apart within each stand to 
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characterize encounter rates of S. woodi in the Ocala National Forest (R. Orton, personal 

observation).  In order to test for predation and crypsis of S. woodi, we placed models on the 

three dominant substrates (open sand, deadwood, and leaf litter) in each stand (Kaunert and 

McBrayer, 2015).  These substrates contrast in color and are typical substrates for S. woodi 

activity (Kaunert and McBrayer, 2015).  Models were randomly placed on the different 

substrates to represent the proportion of each substrate within stands.  Statistical analysis of this 

sampling method matched published data on substrate abundance within each habitat type 

(Kaunert and McBrayer, 2015).  Models were left in the field for 72 undisturbed hours to allow 

predators sufficient time to locate models but to avoid acclimation of predators to the models.  

Models were retrieved between the 73rd and 74th hour and scored as “attacked” or “not attacked” 

according to the presence or absence of tooth or beak marks retained in the malleable clay, which 

were easily differentiated from one another (Figures 1b and 1c).  

Spectrophotometric measurements 

We used a bifurcated fiber optics probe (Ocean Optics, Dunedin, FL, USA) connected to 

an Ocean Optics Flame spectrometer and a xenon light source (Ocean Optics) to measure the 

spectral reflectance of model dorsal color, open sand, and leaf litter.  The fiber optic probe was 

held with a standard probe holder at 1mm from the surface of all substrates and models and at 

45˚.  All measurements were recorded with Ocean View software v1.5.2 (Ocean Optics) and 

were taken relative to a certified 99% diffuse white reflectance standard.  Dark current and white 

standard measurements were taken before each spectrophotometric reading.  To reduce noise, the 

average of two scans with a boxcar width of two was used for each measurement.   

Spectrophotometric Analysis and Visual Model Use 
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Approximately 97% of attacks to clay models were from avian predators.  Thus, we used 

AVICOL software (Gomez 2006) to analyze spectral data because the AVICOL analysis 

integrates cone sensitivity curves which provide the sensitivities to wavelengths for each of the 

four single cone types that birds possess (Bowmaker et al. 1997).  In AVICOL, Vorobyev and 

Osorio’s (1998) physiological model was used because it accounts for chromatic and achromatic 

contrast between colors as perceived by an organism with tetrachromatic vision.  This model is 

accepted to be consistent with the capabilities of avian vision (Osorio 1999; Osorio et al. 1999; 

Endler and Mielke 2005) and considers the chromatic and achromatic properties as independent 

sources of visual stimulation (Vorobyev and Osorio 1998).   

Acrhomatic contrast is crucial for distinguishing between small objects or objects 

visualized from large distances (Osorio et al. 1999; Lind and Kelber 2011).  For example, 

achromatic contrast might be expected to be important for avian predators that search for prey 

while midflight or while perched on tree branches.  Initially, we analyzed both chromatic and 

achromatic contrast, but found achromatic contrast to be a more reliable measure.  Thus, we 

focused our spectrometric analysis on achromatic contrast. The contrast between colors of two 

different samples is expressed as a just noticeable difference (JND) value, where a JND value = 

1 is the critical value for discrimination between two colors or objects of varying brightness 

(Gomez, 2006).  

We also collected 15 samples of sand and 15 samples of leaf litter from each habitat type 

(3 from each of 5 stands) and brought them back to the lab where we recorded 

spectrophotometric measurements. Three spectrophotometric measurements were taken on each 

sample and averaged.  This sample average was then averaged across the other two samples of 

the same substrate type collected from the same stand to obtain a measure of reflectance for a 
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particular substrate type from a particular stand.  We also took measurements of three lizard 

models (to ensure accuracy of measurements) and found the difference in reflectance 

measurements between models to be negligible (0.4 to 0.6 just noticeable difference, JND units).  

Because the difference in reflectance between the three lizard models was negligible and all 

models were colored with identical paint, there was no need to measure the spectral reflectance 

of additional models.  The average from the three lizard model spectral measurements was then 

used to determine the contrast against each substrate type from each stand where models were 

placed.  Difficulty in accurately measuring the reflectance of dead wood due to its irregular 

shape, prevented spectrophotometric measurements and thus deadwood was excluded from 

model-substrate contrast analyses.      

Cameras  

Camera s (Browing model BTC-5, Browning Arms Co, Morgan, UT, USA) were 

deployed to aid in predator identification and to potentially observe predation events.  Four 

camera traps were deployed at each stand for the same 72 hours as our models.  The camera traps 

were focused on one model per substrate type and one camera trap was focused on a random 

model.  The camera traps were set to take five photographs in rapid succession following the 

triggering of the camera sensor.  Also, cameras were set to take one photograph every minute 

from 0600 to 2030 hours.  The photographs were downloaded and reviewed in the lab between 

field data collection sessions.   

Statistical Analysis 

All statistical tests were performed using the JMP v12 statistical package (SAS Institute, 

Carry, NC, USA).  Chi-square tests were used to determine if the proportion of attacked models 

was contingent on habitat and/or substrate type.  When cell counts violated the assumptions of 
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Chi-square tests, we used a Fisher’s exact test (FET).  Chi-square tests were also used to test if 

the proportion of attacked models on different substrate types differed within habitat type and 

between LLP and SPS.  Because the distribution of JND values and attack rate did not meet the 

assumptions of normality, a nonparametric linear rank regression (Hettmansperger 1998; 

Hollander 1999) was used to determine if the proportion of attacked models was dependent upon 

the degree to which the dorsal color of models contrasted the color of substrate.  A Wilcoxon test 

was used to determine if the spectral values of the substrate types differed between LLP and 

SPS.  Because the ONF is an anthropogenically-managed landscape, a Chi-square test was used 

to determine if attack rate was associated with the age of stands (management practice).  All 

stands were classified as “1-3 CC” (less than four years post clear-cut), “4-6 CC” (four to six 

years post clear-cut), “7 CC” (more than six years post clear-cut), or “1-2 Burned” (one to two 

years post prescribe burn).  Last, a Chi-square test was used to determine if our method for 

placing models represented the relative proportions of each substrate type in LLP and SPS.       
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RESULTS 

The color of models was similar to the color of adult male S. woodi (6.97 JND).  Of the 

380 models placed in the ONF, 35 (9.2%) were attacked.  Of these, a single model was attacked 

by a mammal and the remaining 34 were attacked by avian predators.  We excluded the mammal 

attack from our analyses because the prey detection systems of mammals and birds are expected 

to drastically differ, and our focus was on the visual detection of prey.  Five of 380 models were 

lost either through experimental error, or from being carried away by a predator, and were 

excluded from analysis.  Statistical tests were run both including and excluding the single 

mammal attack; exclusion of the mammal attack made no difference in any of the results 

presented below.  Zero of the 32 controls were attacked, and were thus excluded from analyses.   

The proportion of attacked models was significantly different between LLP and SPS (X² 

= 12.632, P = 0.0004) (Figure 3a).  More specifically, the proportion of attacked models on open 

sand (X2 = 4.045, P = 0.0443) and on deadwood (X2 = 4.757, P = 0.0292) was significantly 

different between LLP and SPS, but the proportion of attacked models on leaf litter was not 

significantly different between LLP and SPS (X2 = 0.893, P = 0.3448) (Figure 3b).  Furthermore, 

the proportion of attacked models was contingent on substrate type within SPS (X² = 6.810, P = 

0.0332) and combined LLP and SPS (across the ONF) (X² = 10.876, P = 0.0043) but not 

significantly contingent on substrate type within LLP.  This result may be due to the overall low 

number of attacks in LLP (4.10%).  For attacks within LLP, the proportion of attacked models 

was not contingent on substrate type (P = 0.5911, FET).   

The proportion of attacked models across the ONF was dependent on the achromatic 

contrast between models and their associated substrate (R2=0.321, F(1,18) = 10.097, P = 0.0052) 

(Figure 4b) but not chromatic contrast (R2 =  0.0716; F(1,18) = 1.3892; P = 0.2539).  A Wilcoxon 
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test was then used to determine if the contrast between models and substrate types differed 

between LLP and SPS, and there was no difference in spectral contrast (between models and 

their substrates) for open sand (Z = -0.054, P = 0.6139) or leaf lifer (Z = -1.095, P = 0.2731) 

(Figure 4b).  However, the placement of models upon different substrates significantly differed 

between LLP and SPS (X2 = 49.062, P < 0.001*), with the frequency of models placed on leaf 

litter being greater in LLP and the frequency of models placed on open sand higher in SPS.  Data 

published by Kaunert and McBrayer (2015) confirms that placement of models was in relative 

proportion to the available substrate types in LLP and SPS.  Last, the proportion of attacked 

models was contingent upon management practice (X2 = 27.568, p < 0.001*) (Figure 5).  The 

proportion of attacked models was highest in 1-3 CC stands (.217) intermediate in 4-6 CC stands 

(.137), non-existent in 7 CC stands (0), and low in 1-2 Burned stands (.041).   

Camera traps placed near models captured over 104,400 minutes of photographs, yet no 

predation events were recorded on cameras.  However, camera traps did capture the presence of 

multiple taxa including lizards (S. woodi, Aspidescelis sexlineatus, and Plestiodon spp.), birds 

(Melanerpes carolinus, Paucaea aestivalis, Meleagrus gallopavo [Figure 1d]), and mammals 

(Podomys floridanus, Odocoileus virginianus, and Sus scrofa) near our clay models.  Of the 

species photographed by our camera traps, M. gallopavo was the most common (captured in six 

different photographs) followed by P. floridanus (captured in three different photographs).  All 

lizards and birds were captured by camera traps before 2130 and all mammals were captured 

between 2130 and 0600 when most lizards would be inactive.  Of the 35 attacked models, only 

one was placed with an accompanied camera trap.  This model was attacked by an obvious 

mammalian predator (likely Procyon lotor or Didelphis virginiana, based upon the distance 

between incisors [2.0 cm]), however, the associated camera trap was disturbed before the attack.  
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The camera trap was retrieved with the lens flush against the substrate, hence, the predation 

event was not captured on camera.   
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DISCUSSION 

  In the ONF, selection from visually-oriented predators appears to be reduced in LLP 

compared to SPS.   Differences in the proportion of attacked models between habitat types likely 

relates to differences in prey detection by avian predators between LLP and SPS.  For example, 

the contrast between substrates and models significantly affected rates of attacks in SPS, but 

there were no differences between the proportion of attacked models placed on sand, deadwood, 

or leaf litter in LLP.  Furthermore, the proportion of attacked models placed on sand and 

deadwood in SPS were significantly greater than the proportion of attacked models placed on 

sand and deadwood in LLP, even though contrast between models and substrates did not vary 

between LLP and SPS.  If prey detection by visual predators were similar between LLP and SPS, 

it would be expected that the patterns and proportions of attacked models would be similar for 

both habitat types, regardless of total number of attacked models.  However, this is not the case 

in our study, suggesting that visual predators with different mechanisms of prey detection (or 

foraging strategy) reside in LLP and SPS.         

The results of our study also compliment evidence that substrate type plays a significant 

role in the detection of prey by visually-oriented predators (Kettlewell 1965; Endler 1984; 

Farallo and Forstner 2012).  Across the ONF, the proportion of attacked models was contingent 

on substrate type, where models placed on sand and deadwood were attacked more often than 

models placed on leaf litter.  This pattern of attacks is likely manifested in the contrast between 

models and different substrates, suggesting that models are more cryptic against leaf litter than 

open sand or dead wood.  Our results indicate a positive relationship between the proportion of 

attacked models and the contrast between models and substrate, suggesting that there is selective 

pressure for crypsis on S. woodi across the ONF.      
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The theory of adaptive coloration predicts that cryptic individuals are more likely to 

survive than individuals with dorsal coloration that contrasts local substrate (Cott 1940; Endler 

1984).  Hence, selection is expected to lead to cryptic phenotypes in environments where 

predation from visual predators is high.  A-posteriori spectrophotometric measurements revealed 

that the average contrast between our models and three adult male S. woodi was 6.97 JND.  This 

value was similar to the average contrast between models and leaf litter (6.87 JND), and no 

models placed on leaf litter in SPS were attacked.  Thus, there appears to be selection pressure 

on the dorsal color of S. woodi to resemble leaf litter. This inference is supported with published 

data that substrate selection is greatly affected by predation risk (Stein and Magnuson 1976; 

Ruxton et al. 2004) and S. woodi encounter rates in SPS are highest on leaf litter despite the 

dominant substrate in SPS being open sand (Kaunert and McBrayer, 2015)  

   In LLP, where predation intensity from visual predators appears to be relaxed, it is 

possible that populations exhibit a wider range of dorsal coloration.  However, in addition to 

predator evasion, animal colors and patterns also affect thermoregulation (Endler 1978), which is 

vital for ectothermic organisms (Kettlewell 1973; Kingsolver and Wiernasz 1991; Bittner et al. 

2002; Strugariu and Zamfirescu 2011).  In environments with reduced selective pressure from 

visual predators, it is possible that thermoregulatory selective pressures drive dorsal coloration 

(Gibson and Falls 1979; Andren and Nilson 1981).  Recent data indicates that thermal quality of 

habitat significantly varies between LLP and SPS (Neel 2016).  Hence, it is plausible that 

tradeoffs in selective pressures between LLP and SPS in the ONF causes geographic variation in 

dorsal coloration of S. woodi.  Future work will measure the spectral reflectance of dorsal color 

in a large sample size of S. woodi from LLP and SPS to test for color polymorphism and 

background color-matching.   
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Additionally, management practices in the ONF appear to affect predation.  In addition to 

significant differences in the proportion of attacked models between LLP and SPS, the 

proportion of attacked models significantly differed by stand age.  Both LLP and SPS are fire-

dependent ecosystems, however, fire is suppressed in SPS and replaced with clear-cutting (CC) 

and roller-chopping (RC) in the ONF (Greenberg et al., 1994; Tiebout and Anderson, 2001).  

Clear-cutting in SPS exposes bare sand and deadwood, and decreases vegetation (Tiebout and 

Anderson, 1997).  However, as SPS stands mature, vegetative density (and leaf litter) increases 

and the amount of open sand decreases (Tiebout and Anderson, 1997; Tiebout and Anderson, 

2001), reducing the chances of visual detection of prey items that are cryptic against leaf litter.   

Meanwhile, LLP undergoes prescribed burns on a bi-annual schedule (Tiebout and Anderson, 

2001), maintaining LLP in a state of early to mid-succession (Wells and Shunk 1931) where 

open sand and leaf litter are both common and extensively used by S. woodi (Kaunert and 

McBrayer 2015).  Management practices such as prescribed burning and/or clearcutting have 

direct impacts on substrate composition and abundance, hence, likely affecting predation rates on 

S. woodi.  However, it is also possible that management affects the abundance and spatial 

distribution of potential avian predators in the ONF.   

Changes in avian species abundance and richness often result from anthropogenic 

disturbance (Herkert 1994; Gray et al. 2007).  In particular, avian populations tend to be 

detrimentally affected by habitat fragmentation (Robinson and Robinson 1999; Stratford and 

Stouffer 1999).  For example, habitat fragmentation was shown to decrease gene flow and 

increase the need for greater dispersal distance for A. coerulescens (Coulon et al. 2010).   

Furthermore, A. coerulescens prefers habitat with open sand and young scrub oaks (Fitzpatrick 

and Woolfenden 1984) which is characterized by recently-disturbed SPS (Breininger et al. 1995; 
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Breininger et al. 2006).  The highest A. coerulescens abundance that was anecdotally observed in 

the ONF was in a 1-3 CC stand (Figure 2; SPS 5), which happened to be the location of the 

highest predation rate on our models.  It is plausible that the relative abundance and spatial 

distribution of A. coerulescens is a determining factor of predation rate in our study.   

Management practices in the ONF are also likely to affect the spatial distribution of wild 

turkeys (Meleagris gallopavo), as impacts from anthropogenic disturbance are documented in 

other understory species (Barlow et al. 2006).  Cameras did not record any predation events, 

though we were able to use these data to identify several potential avian predators observed near 

attacked models.  The most common potential avian predator recorded by our camera traps were 

M. gallopavo, and most often in stands of LLP.  M.  gallopavo forage terrestrially where the 

advantage of cryptic coloration to prey may be overridden by the close proximity of the predator.   

The relative abundance of terrestrially-foraging avian predators, such as M. gallopavo, may 

describe the lack of variation in predation rate between substrate types within LLP.  Furthermore, 

the primary diet of M. gallopavo consists of seeds and berries, and only on occasion are M. 

gallopavo expected to consume small lizards (Rumble and Anderson 1996).  Hence, the dietary 

preference of M. gallopavo may account for the overall low attack rate in LLP.  Further study on 

avian density and spatial distribution within the ONF may be needed to fully understand 

variation in predation rate between LLP and SPS. 

In conclusion, avian predation on S. woodi appears to be related to substrate type, habitat 

type, and management practice in the ONF.  Differences in predation between LLP and SPS are 

likely directly and/or indirectly related to management practice and suggest that polymorphism 

in S. woodi may be apparent between LLP and SPS.  Though evidence indicating the effects of 

selective pressure from visual predators on cryptic coloration is well-documented, experiments 
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elucidating the impact of management practice on predation is not.  In species where survival is 

dependent on environmental factors that are subject to management practices, there may be 

unintended consequences due to those practices.  
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Table 1.1  A list of each sample location (stand) with the habitat type, management practice, 

proportion of attacked models per substrate type in each stand, and total proportion of attacked 

models for each stand.  The categories of management combine the type of management (burned 

vs clear cut and roller chopped) and time since last disturbance.  Categories:  1-2 Burned = 1-2 

years post burn in LLP ; 7 CC = 7+ years post clear cut in SPS; 4-6 CC = 4-6 years post clear cut 

in SPS; 1-3 CC = SPS stands 1-3 years post clear cut (CC).  

 

Habitat 

Type 

     Stand Management 

Practice 

Leaf 

Litter 

Open 

Sand 

Dead Wood Total 

Longleaf 

Pine 

 

 

 

 

Sand Pine 

Scrub 

Riverside 

Island 

Norwalk Island 

Kerr Island 

Salt Springs 

Island 

Hughes Island 

SPS1 

SPS2 

SPS3 

SPS4 

SPS5 

1-2 Burn                

1-2 Burn                         

1-2 Burn 

1-2 Burn 

1-2 Burn 

7 CC 

3-6 CC 

3-6 CC 

1-2 CC 

1-2 CC 

0                        

0 

0.05                  

0 

0 

0.10 

0 

0 

0 

0 

0 

0 

0.25 

0 

0 

0 

0.33 

0 

0.13 

0.38 

0 

0 

0.17 

0 

0.14 

0 

0.12 

0.22 

0.29 

0.20 

0 

0.03 

0.14 

0 

0.10 

0 

0.15 

0.13 

0.15 

0.25 
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Figure 1.1.  (a) Photograph of a clay model.  (b) Photograph of a clay model which was attacked 

multiple times by an avian predator on the head and torso, or by multiple avian predators.  

Models which were attacked multiple times were only counted as a single attack due to 

uncertainty in the number of predators.  (c) Close-up of a model attacked by an avian predator on 

the head.  Data collected from field traps suggest the model may have been attacked by M. 

gallopavo.   (d) Photograph captured by a camera trap showing a wild turkey (M. gallopavo) near 

one of our modles placed on deadwood (in foreground).  
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Figure 1.2.  Sample locations (stands) and total proportion of attacked models over 72 hours at 

each stand in the Ocala National Forest.  Hollow triangles represent the total proportion of 

attacks and are in relative proportion to one another, with an “X” representing zero attacks.   
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Figure 1.3. (a)  Difference in proportion of attacked models between longleaf pine and sand pine 

scrub (+/- 1 standard error). (b) Difference in proportion of attacked models among substrates for 

LLP and SPS (+/- 1 standard error).  Differences in the proportion of attacked models placed on 

deadwood and sand were significantly higher in SPS.  However, differences in the proportion of 

attacked models on leaf litter did not differ between LLP and SPS.  
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Figure 1.4.  (a) Achromatic contrast (measured in just noticeable difference) between models 

and leaf litter and models and open sand in LLP and SPS.  (b) Relationship (ranked regression) 

between model-substrate contrast (measured in just noticeable difference) and proportion of 

attacked models (R2=0.321, F(1,18) = 10.097, P = 0.0052).   
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Figure 1.5.  Proportion of attacked models by management practice of the stand.  1-2 Burned = 

one to two years post prescribe burn; 7 CC = seven years post clear-cut; 3-6 CC = three to six 

years post clear-cut; and 1-2 CC = one to two years post clear-cut.     
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CHAPTER 2 

THE RESPONSE OF ADAPTIVE COLORATION TO DIFFERENTIAL PREDATION IN A 

MANAGED LANDSCAPE 

ABSTRACT 

Animal colors and patterns are often viewed as adaptive responses to predation.  

However, little is known about variation in the adaptive response of color to different rates of 

predation.  Furthermore, few quantitative studies have examined the role of predation in the 

maintenance of sexual dichromatism.  Here, I use a combination of calibrated photographs, 

spectrometry, and antipredator behavior data to examine the influence of spatial heterogeneity in 

predation intensity on protective coloration in Sceloporus woodi.  Sceloporus woodi is a cryptic 

and sexually dimorphic lizard, which occupies managed stands of longleaf pine and sand pine 

scrub habitats in the Ocala National Forest.  Previously, these stands were shown to vary in rates 

of attacks on lizard clay models, potentially related to management practice.  The results of this 

study reveal that variation in color within populations of S. woodi across the Ocala National 

Forest decreased as predation intensity increased.  Moreover, the dorsal color of lizards more 

closely resembled the color of substrates in stands with increased rates of predation, suggesting 

an increased value for crypsis in high-predation environments.  Variation in dorsal color was 

more impacted for females than for males, and data collected in the field suggest that behavioral 

dimorphism and sexual dichromatism may be related to predation pressure.  Because 

management in the Ocala National Forest alters habitat structure and substrate composition, it is 
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likely that habitat management impacts animal color through variation in exposure to visual 

predators.       
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INTRODUCTION 

Predation is a driving force of the evolution of morphology and behavior (Cott 1940; 

Schall and Pianka 1980; Endler 1991; Eklov and Svanback 2006), which interact with one 

another and the local environment to reduce selective pressure imposed by predators (Heatwole 

1968; Forsman and Appelqvist 1998).  A classic manifestation of this interaction is the 

occurrence of protective coloration and its relationship with escape behavior and microhabitat 

use (substrate) (Endler 1980; Caldwell 1982; Endler 1984; Bond and Kamil 2002; Rosenblum et 

al. 2004).  For example, stripes, bands, and uniform coloration are thought to aid prey species in 

flight from predators following detection (Jackson et al. 1976; Pough 1976; Creer 2005), and 

geometric patterns reduce visual detection by concealing prey animals within their visual 

backgrounds (Endler 1978; Cooper and Allen 1994; Johannesson and Ekendahl 2002; Ruxton et 

al. 2004; Troscianko and Stevens 2015).   In turn, selection pressure is likely to vary between 

different visual backgrounds and different forms of adaptive color.   

Examples of adaptive responses in animal color and pattern are common, especially in 

regard to geographic (Storfer et al. 1999; Stuart-Fox and Ord 2004; Hoekstra et al. 2005; 

Rosenblum 2006) and intersexual variation (Badyaev and Martin 2000). Crypsis, in particular, is 

often associated with examples of local adaptation because crypsis is substrate-dependent (Norris 

and Lowe 1964; Endler 1980), and substrates often vary across space (Gleason 1917).  The 

common inference among local adaptation studies is that dorsal color is an adaptive response to 

selection pressure imposed by visual predators. However, there are few quantitative studies that 

examine sexual dichromatism as a response to selection pressure from visual predators (but see 

Stuart-Fox and Ord 2004), despite empirical evidence correlating sexual dimorphism with 

predation (Reimchen and Nosil 2004), and color polymorphism with variation in antipredator 
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defense behavior (Jackson et al. 1976; Pough 1976; Creer 2005).  Furthermore, with the 

exception of the stickleback (genus Gasterosteus), there appears to be little known about the 

effects of differential predation intensity on animal color, even though the intensity of predation 

can vary between sexes and across space (Hagen and Gilbertson 1973; Moodie et al. 1973). 

In addition to naturally-occurring geographic variation in rates of predation, habitat 

alteration from anthropogenic disturbance can affect predation intensity (Whittingham and Evans 

2004).  Practices, such as clear-cutting and prescribe burning, often affect substrate composition 

and habitat structure (Prescott et al. 2000).  In turn, these changes can have direct consequences 

on exposure to visual predators and the availability of refugia.  For example, an event which 

removes leaf litter from a habitat occupied by animals that are cryptic on leaf litter, may leave 

that population conspicuous on the resulting substrate.  Habitat alteration may also remove 

refuge, thus increasing exposure of animals to visual predators and potentially affecting animal 

behavior (Coull and Wells 1983; Dill and Houtman 1989; Huffaker 1991).  

Fragmented populations of the Florida scrub lizard (Sceloporus woodi) in the Ocala 

National Forest (ONF) provide an ideal opportunity in which to study the impacts of predation 

intensity on protective coloration.  Different populations face varying degrees of predation 

intensity by avian predators (see Orton and McBrayer unpublished), potentially due, at least in 

part, to management practice.  Because populations occupy longleaf pine (LLP) and sand pine 

scrub (SPS) habitats (Enge et al. 1986), which contrast in substrate composition (Kaunert and 

McBrayer 2015), the relationships between environment and protective coloration can be 

thoroughly examined.  Furthermore, sexual dicrhomatism in S. woodi dorsal pattern is ideal for 

testing the relative impacts of predation intensity on different forms of protective coloration, 

potentially with respect to the maintenance of sexual dichromatism.  
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Here, I use a combination of calibrated photographs, spectrometry, and behavioral data 

collected in the field to examine the influence of spatial heterogeneity in substrate composition 

and predation intensity on protective coloration.  First, I document phenotypic variation between 

habitat types and between sexes, and correlate ranges in dorsal color with predation 

intensity.  Next, I show that, despite the absence of classical local adaptation in the ONF, 

populations subjected to increased pressure from visual predators more closely match the color 

of local substrates than populations subjected to relaxed predation intensity.  Last, I show that 

escape behavior correlates with crypsis and that microhabitat (substrate) use varies between male 

and female S. woodi.  Because management practices alter substrate composition and habitat 

structure, it appears that management in the ONF impacts adaptive color in S. woodi.    
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MATERIALS AND METHODS 

Sample collection 

Lizards were collected from LLP and SPS stands within the ONF between early May and 

late August 2016, and were captured by hand or hand-held noose.  Lizards were then transported 

to the laboratory at Georgia Southern University where they were housed under standard 

conditions for an acclimation period of 72 to 86 hours prior to collecting any measurements.  All 

lizards were housed individually on sand and provided light (on a 12L:12D photoperiod) from 

commercially available 75 W incandescent and ultraviolet lamps.  This not only provided light, 

but a temperature gradient of 32 to 28 degrees Celsius to allow adequate thermoregulation 

(Cowles and Bogert 1944).  Water and food were provided ad libitum.  Lizards were only 

disturbed immediately before taking photographs or spectrometric measurements.  Lizards were 

removed from their enclosures between 1200 and 1400 hours and measurements were recorded 

within 60 seconds of capture.  Because temperature has been documented to affect coloration in 

Sceloporus (Sherbrooke et al. 1994), the internal temperature of each adult individual was 

measured immediately following any photograph or reflectance measurement, using a cloacal 

thermometer.  Only measurements of lizards that were within the range of operative temperatures 

were analyzed. Photographs were taken after approximately 72 hours of acclimation and 

spectrometry measurements were taken following approximately 24 hours after photographing 

lizards.      

Calibrated Photographs 

I digitally photographed individual lizards (n=126) under standardized lighting conditions 

in a windowless room, illuminated only by overhead fluorescent tubes.  No source of auxiliary 
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lighting was used for any photograph and all photographs were taken from a standard distance of 

0.5 meters.  Lizards were photographed using a Fujifilm S20 Pro digital camera (Fujifilm, 

Minato, Tokyo, Japan) with a Fujinon super EBC 6x zoom lens for all photographs.  This 35mm 

camera has an effective pixel count of 6.2 megapixels and allows for manual exposure and light 

metering.  The camera was manually adjusted for white balance and fluorescent lighting, and a 

standardized ISO sensitivity, shutter speed, and lens aperture (ISO = 200, shutter-speed 1/25th 

second exposure time, and F/6.0 aperture) were used.  I photographed all individuals at a 

resolution of 6 megapixels and a compression ratio of 1:4 (fine quality setting) before saving all 

images as 1280 x 960 JPEG files.  The dorsal surface of each lizard was photographed against a 

Color-aid basic gray scale (Color-aid, Hudson Falls, New York, USA) to allow calibration and 

equalization in Adobe Photoshop.   The average dorsal brightness was then measured using the 

blur and average tools in adobe Photoshop, measuring the dorsal area from the neck to the hip for 

both the right and left sides (divided by the spinal column).  The measurements for the left and 

right dorsal brightness were then averaged together to obtain the mean dorsal brightness for each 

individual.  

Spectrometry 

I used a bifurcated fiber optics probe (Ocean Optics, Dunedin, FL, USA) connected to an 

Ocean Optics Flame spectrometer and a xenon light source (Ocean Optics) to measure the 

spectral reflectance of lizard dorsal color, longleaf pines (Pinus palustris), sand pines (Pinus 

clausa), turkey oaks (Quercus laevis), open sand, and leaf litter.  The fiber optic probe was held 

with a standard probe holder 1mm from the surface of all substrates and lizards at 45˚.  All 

measurements were recorded with Ocean View software v1.5.2 (Ocean Optics) and were taken 

relative to a certified 99% diffuse white reflectance standard.  Dark current and white standard 
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measurements were taken before each spectrophotometric reading.  To reduce noise, the average 

of two scans with a boxcar width of two was used for each measurement.   

Fifteen samples of each substrate from each habitat type (3 from each of 5 stands) was 

collected and brought back to the lab where I measured spectral reflectance. Three 

spectrophotometric measurements were taken on each substrate and each lizard, then 

respectively averaged.  Substrate sample averages were then averaged across the other two 

samples of the same substrate type collected from the same stand to obtain a measure of 

reflectance for a particular substrate type from a particular stand.  For all lizards I took three 

readings, one measurement from three body positions: between the shoulders, mid dorsum, and 

between the hips.  These three measurements were then averaged together to obtain the mean 

dorsal reflectance for each lizard.   

Spectrophotometric Analysis 

AVICOL software (Gomez 2006) was used to analyze spectral data because it takes into 

account the spectral sensitivities for each of the four single cone types that birds possess 

(Bowmaker et al. 1997) and  birds are thought to be the dominant predator of S. woodi (see Orton 

and McBrayer unpublished).  In AVICOL, Vorobyev and Osorio’s physiological model (1998) 

was used because it accounts for both chromatic and achromatic contrast between colors as 

perceived by an organism with tetrachromatic vision.  This model is accepted to be consistent 

with the capabilities of avian vision (Osorio 1999; Osorio et al. 1999; Endler and Mielke 

2005).  This model also considers chromatic and achromatic properties as independent sources of 

visual stimulation (Vorobyev and Osorio 1998).   
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Acrhomatic contrast is thought to be especially important for avian predators because it is 

crucial for distinguishing between small objects or objects visualized from large distances 

(Osorio et al. 1999; Lind and Kelber 2011), such as when avian predators are midflight or 

perched in trees.  Additionally, I found through a previous experiment, that achromatic contrast 

was a more reliable indicator of attack rates for models placed on terrestrial 

substrates.  Conversely, chromatic contrast is thought to be important for visual detection of prey 

by avian predators when searching for prey items against a background of color, such as a tree or 

leaf litter (Lind and Kelber 2011).  Thus, the relative importance we placed on achromatic and 

chromatic contrast varied according to substrate.  For example, achromatic contrast was 

considered a more important measure of contrast between lizards and sand.   The contrast 

between colors of two different samples is expressed as a just noticeable difference (JND) value, 

where a JND value = 1 is the critical value for discrimination between two colors or objects of 

varying brightness (Gomez 2006).  

Field Measurements  

Quantification of lizard responses when approached by a researcher is a standard method 

for studying antipredator behavior in lizards (Rand 1964; Cooper 2003).  This measurement, 

termed ‘approach distance,’ was collected for lizards in both LLP and SPS.  Between early May 

and late August 2016, I measured approach distance and beginning substrate type for each lizard 

encountered in the field between 0830 and 1830 hours.  Approach distance for lizards which 

were confidently detected before flight were recorded.  Approach was conducted by traversing 

strait paths toward lizards at a steady walking pace, wearing the same clothing for each 

measurement.  Approach distance was measured by marking the initial location of the lizard 

before flight, our location (distance from the lizard) at the point of flight, and the substrate which 
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upon the lizard was initially observed.  SVL was recorded for each lizard because larger lizards 

are known to accelerate faster than smaller lizards (Huey and Hertz 1984), thus likely to affect 

approach distance.  All approach distance measures were then standardized by SVL before 

analyses.     

Statistical analysis 

All statistical tests were performed using the JMP v12 statistical package (SAS Institute, 

Carry, NC, USA).  First, differences in lizard dorsal color between sex and between habitat type 

(LLP and SPS) were tested using a two-way nested ANOVA with stand (sampling site) nested 

within habitat type, to account for any added variation due to the effect of stand.   Because values 

for dorsal color were not normally distributed, data was log transformed.  A Spearman’s rank 

correlation was used to test for a significant association between the range of dorsal colors within 

each stand with predation intensity.  Predation intensity was measured in a previous experiment 

(see Orton and McBrayer unpublished) as the proportion of attacked clay models per stand.  To 

determine the range of dorsal color, I subtracted the lowest value (measured as the sum of the 

percentage of red, green, and blue) from the highest value, for each stand.  The value for each 

stand was then paired with the predation intensity value for that same stand. 

Second, three-way ANOVAs were used to test for local adaption, using sex, habitat type, 

and substrate type as factors.  Just noticeable difference values met the assumptions of normality 

and equal variance after cube root transformation.  Separate three-way ANOVAs were used for 

chromatic contrast and achromatic contrast because avian predators interpret these visual stimuli 

differently are thought to be of importance for different substrate types (Osorio et al. 

1999).  Significant interaction terms were explored using a Tukey-Kramer HSD test (Tukey 

1953; Kramer 1956; Hayter 1984).   
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Next, a three-way ANOVA was used to test for differences in approach distance between 

sex, habitat type, and substrate type.  Approach distance, measured in meters, was standardized 

by lizard SVL.  Last, I tested if the percentage of detected lizards per substrate type was 

contingent on sex.  Because substrates vary between LLP and SPS, I tested for differences in 

detection between males and females within each habitat type using separate Chi-square tests.  

Post hoc analyses were performed using adjusted residuals, as in (Delucchi 1993).  The terms 

‘encounters’ or ‘microhabitat use,’ are used interchangeably in this study.     
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RESULTS 

Phenotypic Variation 

The results of this study reveal significant variation between the dorsal color of males and 

females (F(1,3) = 44.9765; P < 0.0001*) and between LLP and SPS (F(1,3)  = 25.8597; P < 0.0001*) 

(Figure 1).  Furthermore, the range in color variation is also associated with predation intensity 

(ρ = -0.81; p = 0.0015) (Figure 2), with the range in dorsal color being ten percent more 

constricted for SPS populations than for LLP populations.  Additionally, the range in dorsal color 

for LLP females is 12 percent more restricted than that of LLP males, and SPS females are 37 

percent more restricted in their range of dorsal color than are SPS males.  

 Crypsis 

Spectrophotometric data indicate that differences in contrast between the reflectance of 

lizard dorsal color and substrate vary between different substrate types, habitat types, and sex 

(Table 1).  Globally, both males and females match the color of leaf litter more closely than open 

sand (F(7,98) = 24.42; p <0.0001).   However, lizards collected from SPS are altogether more 

cryptic than lizards collected from LLP for terrestrial substrates (F(7,98) = 5.92; p = 0.0168) 

(Figure 3a) and vertical perches (F(11,68) = 3.78; p = 0.0059) (Figure 3b).  In regard to sexual 

dichromatism, there was a no intersexual variation determined for either terrestrial substrate in 

SPS (F(7,98) = 0.13; p = 0.72) (Figure 4a).  However, in LLP, there is a significant interaction 

between all three factors for terrestrial substrates, where females in LLP match the color of leaf 

litter more closely than males in LLP (F(7,98) = 5.08; p =0.0301 (Figure 4b).  Additionally, there 

was no intersexual variation in crypsis for vertical perches in SPS (F(11,68) = 2.38; p = 0.1001) 
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(Figure 4c), but in LLP, where predation is relaxed, females tend to match the color of vertical 

perches more closely than do males in LLP (F(11,68) = 10.77; p = 0.0016) (Figure 4d).   

Escape Behavior and Microhabitat Selection 

The approach distance for lizards found in SPS was significantly shorter than that of 

lizards in LLP (F(1,92) = 12.9878; P = 0.0005).  However, in LLP, females encountered on leaf 

litter had a shorter approach distance than males on leaf litter and when either sex was 

encountered on open sand (F(1,92) = 9.6414; p = 0.0025)  (Figure 4a).  In SPS, there was no 

intersexual variation for either terrestrial substrate (F(1,92) = 1.757; p = 0.1883) (Figure 

4b).  Furthermore, the detection percentages of lizards on different substrates was contingent on 

habitat type (X2 = 101.136; p <0.0001*), as well as sex in both LLP (X2 = 11.079; P = 0.0113) 

(Figure 5a) and SPS (X2 = 7.084; P = 0.0290) (Figure 5b).  In LLP, a higher percentage of males 

(as compared to females) was detected on Q. laevis and open sand, while a higher percentage of 

females was detected on P. palustris and leaf litter.  The highest percentage of females was 

detected on leaf litter and the highest percentage of males was detected on Q. laevis in LLP.  In 

SPS, the percentage of lizards detected on P. clausa was higher for males than for females and 

the percentages of lizards detected on leaf litter and open sand were slightly, but not 

significantly, higher for females than for males.  However, for both sexes, the highest percentage 

of lizards was detected on open sand in SPS.    

Management  

Nesting stand (sampling location) within habitat type revealed that 19.056 percent of 

variation in dorsal color is due to the effect of individual stands within each habitat type (F(10,110) 

= 3.2662; p = 0.0010*).  Last, spectrophotometric data show that the degree to which lizards 
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match substrate within a sampling location varies by management practice and the time since last 

disturbance, for both terrestrial substrates (F(4,167) = 2.8605; p = 0.0252) (Figure 6a) and vertical 

perches (F(4,167) = 2.7159; p = 0.0299) (Figure 6b).   
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DISCUSSION 

The results of this study are consistent with long-standing views that animal color and 

pattern can be an adaptive response to predation (Poulton 1890).  These data indicate that the 

color variation observed within a population is associated with local predation intensity and that 

predation likely plays a role in the maintenance of sexual dichromatism.  Analyses of calibrated 

photographs show that the range in dorsal color gradually decreases as predation intensity 

increases, and that this range is more constricted for females than for males, particularly in 

environments where predation intensity is increased.  Additionally, spectrophotometric data 

reveal that in environments of increased predation, intersexual variation is reduced and both 

sexes demonstrate crypsis for multiple substrates.  This data coincides well with data collected in 

the field, where in environments of increased predation, neither antipredator behavior nor 

microhabitat use varied between males and females.  These findings are similar to results 

published in studies of differential predation in fish, where sexual dichromatism becomes absent 

with increased predation, and defensive morphology and behavior become more pronounced 

(Moodie 1972; Hagen and Gilbertson 1973; Maan et al. 2008).  However, the data for the current 

study were collected in an anthropogenically-managed landscape, where habitat alteration 

appears to affect color variation.      

In response to decreased predation, a wider array of ‘safe’ colors and patterns are 

expected to satisfy the adaptive response to predation, while potentially increasing fitness for 

other selection pressures that affect color, such as thermoregulation (Stuart-Fox and Moussalli 

2009).  Conversely, environments of intense predation may increase the value of visually 

matching the local background, thus constricting the range of ‘safe’ colors (as reviewed byEndler 

1995).  A previous study suggests that predation intensity in SPS is approximately two and a half 
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times greater than in LLP (see Orton and McBrayer unpublished).  Likewise, lizards in SPS not 

only more closely resemble the color of local substrates, but the range of color variation within 

these populations is much narrower.  Additionally, intersexual variation in crypsis is significantly 

reduced, if not absent in populations of S. woodi inhabiting environments of increased predation.     

Crypsis is also considered, in general, to be a background-specific adaptation, where 

increased fitness in one microhabitat leads to decreased fitness in a different 

microhabitat.  Because most animals occupy heterogeneous environments, crypsis may lead to 

restrictions in microhabitat use or provide little benefit.  However, in a recent model, Merilaita et 

al. (1999) demonstrated that crypsis can be optimized as a compromise between the requirements 

of multiple visual backgrounds.  The current study may lend complimentary and empirical 

support to their findings because in environments of increased predation, S. woodi tend to 

simultaneously match the color of multiple substrates.  Likely, only a narrow range of color is 

sufficient in resembling multiple visual backgrounds.     

Moreover, my data show that the range in dorsal color for females is always more 

constricted than the range in dorsal color for males.  In particular, the impact of increased 

predation intensity on dorsal color range is three times greater for females than it is for males, 

and in LLP, only females appear to be cryptic for any substrate.  It has been previously suggested 

that sexual dimorphism can be an adaptive response to predation (Reimchen and Nosil 2004), 

though most studies attribute sexual dimorphism to sex-specific pressures that relate to fecundity 

(Schulte-Hostedde et al. 2002), niche partitioning (Slatkin 1984; Shine 1989), and sexual 

selection (Andersson 1994).  Sexual dichromatism, for example, is traditionally taught to result 

from sexual selection (Darwin 1859) and many contemporary studies provide complimentary 

support to this view (Andersson 1994; Badyaev and Martin 2000; Stuart-Fox and Ord 
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2004).  Even in aposematic species, the brightness of male color appears to be influenced by 

mate acquisition (Maan and Cummings 2009).  However, because cryptic coloration and reduced 

ornamentation are thought to result from natural selection (Endler 1980), intersexual variation in 

drab color and geometric patterns (disruptive coloration) imply that selective pressures from 

predators vary between males and females (as reviewed byBadyaev and Hill 2003).  It is possible 

that sexual dichromatism in S. woodi arises from sex-specific responses to selection pressure.   

Interestingly, both male and female juvenile S. woodi are dorsally-patterned.  It is during 

an ontogenetic shift, when males lose their dorsal pattern and develop conspicuous blue throat 

badges (Stiller and McBrayer 2013), which are thought to play a role in testosterone-driven 

behaviors such as mate acquisition and territorial defense (Moore 1984; Salvador et al. 

1997).  Cox et al. (2005) showed that by removing the primary source of circulating testosterone 

from male Sceloporus undulatus, ornamentation fades and dorsal pattern becomes 

observable.  Testosterone has been empirically demonstrated to increase activity, locomotor 

performance, and home range size in male (Sinervo et al. 2000), but not female, Sceloporus 

lizards.  These behaviors result in increased movement on behalf of the lizard (Salvador et al. 

1996) which can diminish any benefit provided by cryptic coloration.  The loss of dorsal 

patterning in male S. woodi, perhaps by design, is accompanied by an increase in approach 

distance, which suggests that the development of uniform coloration may be associated with 

flight from predators.    

Solid colors (Creer 2005), stripes (Brodie 1992), and contrasting bands (Shine and 

Madsen 1994; Lindell and Forsman 1996) assist prey species in rapid escape from predators by 

limiting a visual predator’s ability to accurately determine the movement, direction, and speed of 

a prey animal (as reviewed by Stevens and Merilaita 2009).  Solid colors and high contrast 
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stripes are frequently observed in animals that rely on rapid escape behavior to evade predators 

(Ruxton 2004; Creer 2005), such colubrid snakes (e.g.,  Titcomb et al. 2014) and zebras (e.g.,  

How and Zanker 2014).  Because the benefit of these patterns is dependent on flight, it is 

assumed that the visual environment has little impact on their evolution and 

maintenance.  Conversely, the success of crypsis is largely dependent on the local visual 

environment as well as the ability of the prey animal to remain sedentary because crypsis blends 

the visual signal of the animal with a still background (Endler 1978).  Thus, more sedentary 

animals, such as ambush foragers, stand to gain more from the benefit of crypsis than do highly 

active animals, such as male S. woodi.   

Alternatively, female S. woodi may incur a greater advantage provided by cryptic 

coloration than males because gravidity is known to decrease flight efficacy in different lizard 

species (Miles et al. 2000; Shine 2003).  Gravidity in reptiles can also lead to increased basking 

needed to achieve adequate body temperatures required by gestation (Shine 

2006).  Unintendedly, however, increased basking can result in elevated predation risk (Shine 

1980).  Thus, cryptic colors and patterns would potentially allow females increased exposure to 

visual predators, and decrease their need to rely on flight.  I found that females, when 

approached on leaf litter in LLP, allowed me to approach much closer than the males 

encountered on leaf litter.  I also found that females in LLP had a shorter approach distance when 

on leaf litter, a substrate for which they are cryptic, than they did for open sand where they are 

conspicuous.  Conversely, males initiated flight at a set approach distance, regardless of whether 

being encountered on sand or leaf litter in LLP.  It may be important to note that approach 

distance did not vary between males and females for either substrate in SPS, where both sexes 

appear to be equally cryptic on both terrestrial substrates.  These data anecdotally support the 
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hypothesis that crypsis is dependent on an animal’s ability to remain sedentary (Ydenberg and 

Dill 1986; Broom and Ruxton 2005; Martin et al. 2009), and suggest that crypsis only benefit S. 

woodi when they are encountered on a substrate for which they are cryptic.        

In lieu of increased risk of predation, cryptic animals are often more confined in their use 

of microhabitats than animals that rely on escape to evade predators (Stein and Magnuson 1976; 

Donnelly and Dill 1984; Merilaita et al. 2001; Ruxton 2004; Skelhorn and Ruxton 2011).  For 

example, (Harvey and Weatherhead 2006) found that gravid rattlesnakes are more selective in 

their choice of microhabitat than males and non-gravid females, opting for microhabitats which 

provided improved refuge.  Despite lacking frequencies for gravidity, I did find that females in 

LLP were more selective in their choice of substrate than were males, and were most often 

encountered on substrates for which they are cryptic, such as leaf litter and P. 

palustris.  Interestingly, this pattern was not found in SPS, where males and females were 

encountered at similar rates on both leaf litter and open sand.  However, there is marked 

variation in S. woodi use of substrates between habitat types.  I suspect that this variation is, at 

least in part, due to management practices in the ONF.   

Stands of SPS and LLP habitat are managed with different strategies in the ONF.  In SPS, 

any fire regime is suppressed and replaced with clear-cutting and LLP is maintained with 

prescribe burning on a biannual schedule (Tiebout and Anderson 1997).  Immediately following 

a clear-cut in SPS, vertical perches and vegetation are removed from the core of stands, leaf litter 

is reduced, and open sand is greatly exposed (Tiebout and Anderson 2001).   However, as a 

response to fire suppression in SPS, vegetation density increases unabated.  The result of this 

management strategy creates a mosaic of stands in various stages of succession in 

SPS.  Meanwhile, prescribe burning in LLP is thought to preserve habitat features characteristic 
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of early to mid-succession habitat (Wells 1928).  In particular, stands of LLP offer vertical 

perches and proportionately more leaf litter than open sand. Thus, substrate availability, 

influenced by management, likely plays a role in variation in predation intensity between 

stands.      

In a previous study, I found that the proportion of attacks on clay models resembling S. 

woodi was contingent on management, where predation appeared to be greatest immediately 

following clear-cutting, moderate in stands of LLP, and non-existent in stands seven years post 

clear-cut (see Orton and McBrayer unpublished).  We see here, that not only is color variation 

affected by variation in predation intensity, but that twenty percent of the variation in dorsal 

color is described by sampling location within each habitat type.  Specifically, the degree of 

crypsis within each stand varies according to management practice in the ONF.  Freshly clear-cut 

stands, where predation appears to be greatest, harbor the most cryptic populations.  In 

comparison, LLP stands and more mature stands of SPS harbor lizards which are less cryptic, 

with the exceptions of females, which appear to maintain crypsis against leaf litter but not open 

sand.  This variation is likely due to the effects of habitat alteration on microhabitat availability, 

influencing selection pressure on animal color.  Because differential microhabitat use and 

selection is likely to influence the dynamics and maintenance of phenotypic polymorphism 

(Farallo and Forstner 2012) and sex-specific variation in microhabitat use may contribute to the 

evolution of sexual dicrhomatism (Slatkin 1984; Merilaita and Jormalainen 1997), management 

practices that alter habitat structure and substrate composition may have unintended 

consequences on evolutionary trajectory.   
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Table 2.1.  Results of a three-way ANOVA, testing the effects of substrate, sex, and habitat on 

crypsis in S. woodi.  

 

Factor Terrestrial Substrates Vertical Perches 

 F(11,68) p F(7,98) p 

Substrate 24.42 <0.0001** 12.8 <0.0001** 

Habitat 5.92 0.0168* 3.78 0.0259* 

Sex 2.8 0.1 4.99 0.029* 

Substrate x Habitat 0.01 0.97 1.08 0.344 

Habitat x Sex 0.52 0.47 10.77 0.0016** 

Substrate X Sex 0.13 0.72 0.19 0.83 

Substrate x Habitat x Sex 5.08 0.031* 2.38 0.1001 
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Figure 2.1.  (a) Calibrated photographs for each sex from both habitat types.  (b) Results from a 

two-way ANOVA of mean dorsal color (+/- one standard error) for each sex from both habitat 

types.  Results are significant between sex (F(1,3)  = 25.8597; P < 0.0001*)  and habitat type(F(1,3) 

= 44.9765; P < 0.0001*).  Post hoc analyses Tukey-Kramer HSD test.  

 



54 
 

 

 

Figure 2.2.  Spearman’s rank correlation (with line of best fit) showing that the range in dorsal 

color is dependent on the predation intensity at each stand (ρ = -0.81; p = 0.0015) 
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Figure 2.3.   Global comparison of crypsis between habitat types for terrestrial substrates (a) 

(F(7,98) = 5.92; p = 0.0168) and vertical perches (b) (F(11,68) = 3.78; p = 0.0059).   

 

 

 

 

Figure 2.4.  Mean contrasts against substrates for males and females collected from both LLP 

and SPS; open sand (a), leaf litter (b), vertical perches in SPS (c) and vertical perches in LLP (d).  

Significant results from three-way ANOVA displayed in table 1.  Post hoc analyses Tukey-

Kramer HSD test.    
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Figure 2.5.  Mean approach distance (+/- one standard error) for males and females encountered 

on terrestrial substrates in LLP (a) and SPS (b).  Females in LLP had a shorter approach distance 

when encountered on leaf litter and a shorter approach distance than males encountered on either 

substrate (F(1,93) = 10.2213; P = 0.0019).  However, there were no differences in approach 

distance between sexes or substrate in SPS.  Mean percentage of both male and female lizards 

detected for each substrate in SPS (a) and LLP (b) (+/- one standard error). Detection was 

contingent on sex in LLP (X2 = 11.079; P = 0.0113) and SPS (X2 = 7.084; P = 0.0290).  Post hoc 

analyses performed using adjusted residuals.   
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Figure 2.6.  Global comparison of contrast against terrestrial substrates (a) (F(4,167) = 2.8605; p = 

0.0252) and vertical perches (b) (F(4,167) = 2.7159; p = 0.0299) between stands at various stages 

of succession: 9cc = nine years post clear cut; 7cc = seven years post clear cut; 5 cc = five years 

post clear-cut; 3 cc = three years post clear-cut; 1-2 burn = one to two years post burn in LLP 

habitat.  Post hoc analyses by Tukey-Kramer HSD test.  
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CHAPTER 3 

ANTHROPOGENICALLY-MAINTAINED CORRIDORS FACILITATE GENE FLOW IN A 

METAPOPULATION OF FLORIDA SCRUB LIZARDS, SCELOPORUS WOODI 

ABSTRACT 

Anthropogenic disturbance has the potential to influence dispersal and population size by 

altering habitat quality and connectivity, therefore impacting important demographic processes.  

Thus, species with limited vagility and specific habitat preferences may be particularly 

susceptible to landscape-altering events.  Subpopulations of Florida scrub lizards (Sceloporus 

woodi) within the Ocala National Forest (ONF) are subjected to prescribed fire, fire suppression 

and clear-cutting.  Stands of longleaf pine within the ONF are maintained on a biannual cycle of 

prescribed burning and harbor large populations of S. woodi.  Meanwhile, clear-cut stands of 

sand pine scrub (SPS) only temporarily provide suitable habitat for S. woodi.  I predict that S. 

woodi disperse from stands of SPS as vegetation density increases in the absence of a natural fire 

regime.  The objective of this study is to quantify temporal and spatial genetic diversity in S. 

woodi populations in the ONF and assess any correlation with habitat management practices. To 

this end, I used microsatellite markers to quantify genetic variation in S. woodi at two time points 

separated by approximately six generations, and spatial analyses to test for correlations between 

landscape metrics and genetic diversity.  Microsatellite markers revealed a weak population 

genetic structure that was better described by a least cost path than Euclidean distance.  I also 

found that temporal shifts in genetic diversity are correlated with several patch metrics, such as 

habitat quality and proximity.  These data suggest that corridors can facilitate gene flow in a 
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fragmented landscape, and thus, may have implications for the management of species of 

concern.       
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INTRODUCTION 

Understanding population-level responses to habitat alteration and anthropogenic 

disturbance is a leading concern of conservation biology (Hanski and Thomas 1994; Sanderson 

et al. 2002; Keller and Bollmann 2004; Foley et al. 2005).  Commonly, alteration of landscapes 

result in habitat fragmentation, where subpopulations of a larger metapopulation, are presented 

with isolation effects, area effects, and changes to habitat quality (Hanski 1998; McKinney and 

Lockwood 1999; Keller and Bollmann 2004).  These effects can lead to populations that decline 

with decreases in habitat extent, resulting in an acceleration of genetic drift (Frankham 1995).  

Increased genetic drift can then lead to rapid declines in effective population size, resulting in 

inbreeding depression and eventually extinction (Frankham 2005).  Typically, the assumption is 

that area and isolation effects are the dominant influences on metapopulation dynamics, though 

other measures of habitat quality may also explain significant variance in patch extinction and 

colonization (Hanski 1991; Hanski and Thomas 1994; Kindvall 1996).  If habitat variables other 

than area and connectivity have significant effects on metapopulation dynamics, then effective 

conservation may entail more than simply maintaining a suitable metapopulation geometry.          

The probability of metapopulation persistence in fragmented landscapes is dependent on 

gene flow between subdivided populations as this allows for rescue or recolonization of 

declining or extinct populations and prevents inbreeding effects in small populations (Thomas 

and Hanski, 1997).  A proposed method for moderating the negative effects of habitat 

fragmentation is the preservation of linear landscape elements (corridors) which can facilitate 

gene flow between patches.  However, the utility of corridors on metapopulation persistence is 

debated, as the ecological value of corridors is highly variable (Simberloff et al. 1992) and relies 

on species behavioral characteristics, landscape composition and structure, patch size, and 
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environmental variation (Hokit 2010). The benefit of corridors may be further complicated when 

landscapes are continually subject to habitat alteration that can affect metapopulation persistence.  

However, relatively little attention has been paid to the issue of connectivity for transient 

habitats, and thus the benefit provided by corridors for metapopulations inhabiting these 

landscapes.   

  The Ocala National Forest (ONF) of central Florida, is a highly transient landscape where 

different habitat types are managed with contrasting management practices, such as prescribe 

burning in longleaf pine (LLP) versus the combination of fire-suppression with clear-cutting in 

sand pine scrub (SPS).  The ONF also harbors a large metapopulation of Florida scrub lizards 

(Sceloporus woodi), which occupy stands of SPS and LLP within the ONF (Enge 1986; Kaunert 

and McBrayer 2015).  These lizards are both habitat specialists and limited in their dispersal 

capacity, thus are likely to be substantially affected by events which alter patch geometry.  

However, stands of SPS and LLP within the ONF are connected by a vast network of 

anthropogenically-maintained sand corridors, which facilitate human traffic and may have the 

potential to influence gene flow between subpopulations of Florida scrub lizards.   

Previous genetic analyses revealed that scrub lizard population structure was highly 

significant and that fixed differences or significant frequency shifts in mtDNA haplotypes were 

observed between most sampling locations separated by more than a few hundred meters of poor 

quality habitat (Clark et al. 1999; Tucker et al. 2014). These findings support the initial 

conclusion, formulated from landscape studies (Demarco 1992), that populations of Florida 

scrub lizards are effectively isolated by zones of unsuitable habitat.  Additionally, computer 

simulations suggest that fire suppression in the ONF significantly reduces connectivity between 

subpopulations (Tiebout and Anderson 1997).  However, to date, no study has examined 
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temporal changes in scrub lizard genetic diversity in response to habitat alteration in the ONF, 

nor has any study tested the effect of sand corridors on connectivity between stands.       

    An important use of genetic monitoring is the detection of demographic processes 

within populations, such as genetic bottleneck and founder events, which can influence the 

trajectory of metapopulation persistence (Schwartz et al. 2007).  Additionally, recent 

improvements in molecular genetic tools, coupled with advances in statistical programs, have led 

to the field of landscape genetics, which aims to provide information about the interaction 

between landscape characteristics and microevolutionary processes such as gene flow and 

genetic drift.  Here, I combine a genetic monitoring approach with landscape genetics analyses in 

order to provide insight into population-level response to alteration of habitat over time.  I used 

five polymorphic microsatellite markers to quantify genetic variation within and among scrub 

lizard subpopulations at two time points, and spatial analyses to assess the relationship between 

landscape features and demographic processes that can lead to genetic drift and inbreeding 

depressions.  The aim of this study was to estimate the impact of different management practices 

on demographic processes and determine the importance of corridors in facilitating gene flow 

within a metapopulation of the Florida scrub lizard. 
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METHODS 

Study System  

The major emphasis of forest management in the ONF is on sustained timber production, 

which calls for the suppression of fire in stands of SPS (Anderson and Tiebout 1993).  In place 

of a natural fire regime, SPS stands are clear-cut for timber harvest and then roller-chopped 

(Anderson and Tiebout, 1993).   Meanwhile, LLP stands are prescribe burned on an annual or 

biannual schedule.  The contrasting management strategies of different stands within the ONF 

create a fragmented landscape structure with stands of habitat constantly in different successional 

stages.  Species such as the Florida scrub lizard, which simultaneously exhibit low vagility and 

high habitat specificity for early successional habitat, are subjected to increased influence by 

habitat alteration events (Templeton, 2001).  The Ocala National Forest is purported to support 

the current highest abundance of the species (Enge 1996), however, continual anthropogenic 

influence on the ONF may be greatly affecting patterns of genetic diversity by increasing 

isolation and altering habitat suitability (Tucker et al 2014).  Population sizes of scrub lizards 

varies throughout the season with peaks measured at 124 individuals per hectare, coinciding with 

the first appearance of juveniles (McCoy et al. 2004).   

Sample collection 

Tucker et al., captured lizards by noose from two LLP and five SPS stands in the ONF 

during the 2010 active season (2014).  Tissue (toe or tail clip) was collected from individuals 

using a noninvasive method and preserved in 70 percent ethanol.  In the 2016 active season, I 

collected tissue from an additional 100 lizards captured amongst two of the same five SPS stands 

and the same two LLP stands sampled in 2010.  Three of the five SPS stands were not occupied 
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by scrub lizards in 2016.  However, we successfully extracted nuclear DNA from preserved toe 

clips collected from one additional LLP stand in 2010 that was not included in the microsatellite 

analyses by Tucker et al., (2014).  This stand was sampled once again in 2016, providing two 

SPS stands and three LLP stands which were sampled in both 2010 and 2016.  I also sampled an 

additional 106 lizards collected from four new SPS stands, which were only applied in the 

analyses of patch metrics, and are not included in any reported statistics related to temporal 

fluctuations (e.g. changes in heterozygosity or allelic richness).   

Nuclear DNA was extracted from all toe clips, for 2010 and 2016, using a DNeasy blood 

and tissue extraction kit following the manufacture’s protocol (Quiagen; Boston, MA, USA). 

Individual scrub lizards were then genotyped for five species-specific microsatellite loci using 

polymerase chain reaction (PCR) and genotyping protocols described in Tucker et al., (2014).  

Approximately eight percent of all samples, including samples collected in 2010, were PCR-

amplified and genotyped a second time to ensure repeatability scoring.    

Statistical analysis  

To test for the possibility of null alleles at each locus, I used the software program 

MICRO-CHECKER version 2.2.3 (Van Oosterhout et al. 2004).  To calculate F statistics, 

observed and expected heterozygosity, and to test exact probabilities for Hardy-Weinberg and 

genotype linkage disequilibrium, GENEPOP version 4 (Rousset 2008) was used.  Estimation of 

genetic differentiation was then quantified with pairwise Fst values calculated for all 

combinations of stands using a standard analysis of variance (ANOVA) as in Weir and 

Cockerham (Weir and Cockerham 1984).  Significance was determined with a Fisher’s exact G-

test.  Allelic richness was corrected for sample size and then estimated using FSTAT version 
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2.9.3.2 (Goudet 1995).  I then used software program BOTTLENECK (Cornuet and Luikart 

1996) to test for recent bottleneck events, using the TPM (two phase model; (Dirienzo et al. 

1994)) with 70 percent stepwise mutation model (SMM) and 30 percent infinite allele model 

(IAM).  Deviations between the observed and expected frequency distribution were tested using 

a Wilcoxon’s signed rank test. BOTTLENECK was run for 10,000 iterations.   

Data for patch metrics were obtained directly from spatial data provided by USDA ONF 

division.  Because each sampled stand has a clear and defined boundary, patch area was equated 

to the area of each stand, measured in hectares.  The habitat quality for each patch was measured 

as function of time of last disturbance, because empirical evidence suggest that scrub lizards 

prefer habitat features characteristic to young LLP and young SPS habitat (Tiebout and 

Anderson 2001).  Stand proximity was measured in a GIS (ArcMap 10.4; Redlands, CA, USA) 

as the cumulative strait-line distance from a focal stand to all known occupied stands.  Stand 

proximity shifted between time points based on the timing of clear-cuts.  If a stand was occupied 

in 2016, this stand was also assumed to be occupied in 2010 if the stand was clear-cut cut prior to 

that date.  Relationships between patch metrics (stand area, stand age, stand proximity) and 

genetic diversity were then tested using separate linear regressions followed by a Bonferroni 

adjustment (Rice 1989) to alpha to account for multiple simultaneous tests on a single dependent 

variable.   

To assess if corridors facilitate gene flow, I tested an alternative model of Least Cost Path 

(LCP) against the null model of Euclidean Distance (DE).  Euclidean Distance was measured as 

the shortest strait-line distance between each pair of sampled stands using ArcMap and land 

cover data obtained from the Florida Geographic Data Library (FGDL) for the ONF.  To 

estimate LCP, habitat types were classified according to the likelihood of occupation by scrub 
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lizards.  Several previous studies indicate that scrub lizards prefer open xeric habitat and are 

unlikely to occupy densely vegetated habitat, and do not occupy hydric habitat (Demarco 1992; 

Tiebout and Anderson 1997; Hokit et al. 1999).  Data collected in the field corroborate these 

indications and further suggest that scrub lizards do not occupy even moderately disturbed 

habitats, such as campgrounds.  Thus, I assigned resistance values in ArcMAP accordingly: open 

sand = 1; longleaf pine = 3; xeric oak scrub = 5; mature sand pine scrub = 6; flat woods = 7; high 

impact urban = 9; and open water = restricted.  Least Cost Path was then calculated as the 

shortest distance between a pair of sampled stands that accrued the lowest resistance value.   

Significant correlations of IBD and LCP with genetic distance (Fst), were tested using Mantel’s 

tests (Mantel, 1967).   
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RESULTS 

A total of 300 lizards collected from five sampling locations at two time points and four 

additional locations at one time point were genotyped for five polymorphic microsatellite loci.  

Out of 140 tests for linkage disequilibrium, four tests were found to be significant.  However, 

none of the significant pairings were consistent for any loci among populations, thus we assumed 

no linkage disequilibrium.  Two tests deviated from Hardy-Weinberg Equilibrium (HWE), 

however, these deviations occurred for the same locus (SW614-A1) in the same stand (Kerr 

Island) for both time points.  Despite that allele mis-scoring is thought to be common, often due 

to the presence of ‘stutter bands’ (Hoffman and Amos 2005), there was no evidence of mis-

scoring or allelic dropout.    

Global Fst across all individuals and subpopulations for 2016 was 0.013, compared to a 

2010 global Fst of 0.034.  The average number of effective alleles per subpopulation ranged 

from 6.2 to 10.6 in 2010 and 6.8 to 8 in 2016 and the average allelic richness per subpopulation 

ranged from 4.8 to 5.2 in 2010 and 4.7 to 6 in 2016.  Fluctuations in effective number of alleles 

and allelic richness varied between 2010 and 2016 depending on sampling location.  The 

BOTTLENECK analysis revealed a single significant heterozygote excesses, indicative of a 

recent bottleneck that occurred at Crash South (CS) in 2010 (p = 0.03125.  Additionally, 

BOTTLENECK detected a single heterozygote deficiency for sampling location Crash North 

(CN) at 2010 (p = 0.03125), suggesting a recent population expansion.  I also found that stand 

age and stand proximity were significantly associated with allelic richness (F(1,15) = 9.00; r2  = 

0.38; p = 0.0090 and F(1,15) = 9.63; r2 = 0.39; p = 0.0073, respectively) but that stand area was 

not.  Euclidean distance was not associated with genetic distance in either 2010 or 2016.  
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However, I found that LCP was associated with genetic distance in 2016, (r = 0.61; p = 0.0110), 

but not for 2010.   
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DISCUSSION 

Microsatellite analyses revealed that genetic differences between subpopulations of scrub 

lizards in the ONF decreased between 2010 and 2016, while genetic diversity increased within 

four of the five stands sampled at both time points.  Moreover, spatial analyses showed that 

genetic diversity within stands is correlated with stand age and proximity to other occupied 

stands, and that gene flow between stands is associated with sand corridors.  These results, 

together with observations of both a single heterozygote deficiency and a single heterozygote 

excess in 2010, suggest that gene flow can rescue subpopulations from demographic processes 

that can lead to genetic drift.  The decrease in genetic distance between subpopulations is likely 

explained by this genetic rescue followed by admixture.  Thus, the results of this study support 

the argument that anthropogencially-maintained corridors can benefit metapopulations by 

facilitating gene flow, particularly in the case of scrub lizards in the ONF.     

Continual alteration of landscapes affect landscape metrics, such as habitat quality and 

connectivity, which impact the population genetic structure of metapopulations (Puth and Wilson 

2001).  Temporal fluctuations in genetic diversity have been thoroughly studied in salmonid 

fishes and these studies often reveal that shifts in genetic differentiation occur due to changes in 

gene flow and genetic drift (Nielsen et al. 1999; Planes and Lenfant 2002) Kanda and Allendorf 

2001.  These temporal fluctuations in genetic differentiation can also change quickly due to 

demographic instability (Slatkin 1977; Whitlock and McCauley 1990), which can be caused by 

changes to landscape structure and patch geometry (Gilpin 1991; Hansen and Loeschcke 1996; 

Tessier and Bernatchez 1999; Jensen et al. 2005).  Genetic drift is often accelerated with 

reductions in habitat extent, and is reduced with increased connectivity (Frankel and Soulé 1981; 

Stockwell et al. 2003) (Stockwell et al. 2003).  Between 2010 and 2016, the scrub lizard 
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metapopulation in the ONF experienced a fifty percent reduction in genetic differentiation, 

suggesting an increase in gene flow, and thus increased connectivity between subpopulations.  

Empirical data and theory tend to suggest that the likelihood of colonization increases as 

connectivity increases and that the probability of local extinction increases as patch area 

decreases (Kindvall and Ahlen 1992; Thomas and Harrison 1992; Moilanen and Hanski 1998) 

(Thomas et al. 1992; Thomas & Jones 1993 This area-and-isolation paradigm (Hanski 1998) has 

been validated by a small group of case studies in various taxa such as plants and invertebrates 

(Kindvall & Ahlén 1992; Hanski & Thomas 1994) and it is commonly argued that additional 

variables, such as habitat quality, contribute little explanatory power to models of 

metapopulation dynamics (Hanski 1994; Moilanen and Hanski 1998; but see (Verboom et al. 

1991).  However, a recent meta-analysis of a wide variety of animal groups in fragmented 

landscapes demonstrated that patch size and isolation, the two key factors explaining population 

dynamics in island models, explained relatively little variation in stand occupancy (Prugh et al. 

2008). Instead, the authors concluded that habitat type and quality was more closely associated 

with stand occupancy.  Additionally, Tiebout and Anderson (1997) found that scrub lizard 

dispersal in the ONF, is likely related to the timing of disturbance in addition to patch geometry.  

Thus, demographic processes of habitat-specific species, such as the Florida scrub lizard, are 

likely to be affected by environmental variables in addition to patch geometry (Bennett 1983).   

Florida scrub lizards occupy a narrow range of young successional habitats (Christman et 

al. 1979; Anderson and Tiebout 1993) that provide open sand and exposure to direct sunlight 

(Campbell and Christman 1982; Mushinsky 1985; DeMarco 1992; Tiebout and Anderson 2001).  

In the ONF, such habitats only occur immediately following disturbances such as clear-cutting in 

SPS and prescribe burning in LLP (Anderson and Tiebout 1993; Anderson and Tiebout 1994).  
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Interestingly, while stands of SPS are managed with a combination of fire suppression and clear-

cutting in the ONF, stands of LLP habitat are maintained with prescribe burning on an annual or 

biannual cycle.  Observation (Tiebout and Anderson, personal observation) suggest that stands of 

SPS in the ONF remain suitable only until seven to nine years post clear-cut.  Thus, populations 

of scrub lizards occupying stands of LLP are consistently exposed to suitable habitat while SPS 

populations have to cope with temporal variation in the number, quality and spatial arrangement 

of stands (Fahrig 1992).  The results of the current study indicate that genetic diversity within 

stands is associated with stand age, or in the ONF, quality of habitat.   

Populations sampled in LLP showed no signs of population bottlenecks or founder events 

for either 2010 or 2016.  However, a heterozygote deficiency and a heterozygote excess were 

detected in two stands of SPS.  The heterozygote deficiency was detected for the population 

sampled at Crash North (CN) in 2010, which was clear-cut and roller chopped in 2009.  Because 

scrub lizards do not occupy mature sand pine scrub (DeMarco 1992; McCoy and Mushinsky 

1994; Tiebout and Anderson 1997), it is highly unlikely that CN could have been colonized for 

more than one generation prior to sampling.  Thus, the population sampled at CN in 2010 was 

potentially the founding population. My data show that the population sampled at CN in 2010 

also had an 8.5 percent lower average allelic richness and a slightly lower heterozygosity than 

the population sampled in 2016.  This is expected of a founding population because a smaller 

proportion of the total genetic variation within a metapopulation is expected to be carried by a 

small group of individuals.  Coupled with recent conclusions that heterozygote deficiencies can 

indicate recent admixture (Barson et al. 2009), it is likely that the population sampled at CN in 

2010 was experiencing genetic rescue from a recent founder event.  In species with relatively 

short generation times, new migrants can quickly rescue a population experiencing genetic drift 
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(Brown and Kodricbrown 1977), especially when the founding population size is small (Keller et 

al. 2001).   

Though recent clear-cuts in the ONF may temporarily provide suitable habitat for scrub 

lizards, increases in vegetation density are expected to reduce habitat extent and quality in SPS 

stands, in turn reducing population size.  Two of the original stands sampled by Tucker et al 

(2014) did not harbor lizards in 2016.  As of 2016, these two stands were 15 years post clear-cut.  

Furthermore, sampling at CS in 2016, which was then nine years post clear cut, was heavily 

confined to sand corridors bordering the stand.  Though the exact mechanisms of dispersal from 

aging stands of SPS and subsequent colonization are unknown (McCoy and Mushinsky 1994; 

Greenberg et al. 1994), several recaptures along the border at CS suggest that scrub lizards may 

temporarily occupy corridors adjacent to stands of declining habitat quality.  Colonization of and 

dispersal along sand corridors may then lead to outbreeding with the metapopulation, reducing 

genetic drift within a declining subpopulation.  Software program BOTTLENECK detected a 

genetic bottleneck for the population sampled at Crash South (CS) in 2010, when habitat quality 

was expected to be in the beginning stages of decline.  However, there was no indication of a 

genetic bottleneck for CS in 2016.  Furthermore, a large increase in allelic richness was observed 

between 2010 and 2016, suggesting potential genetic rescue due to increased gene flow (Kolbe et 

al. 2008).      

Similar results were found in a network of populations of Rocky Mountain Apollo 

butterflies, which, following a population bottleneck varied in their loss of genetic diversity and 

recovery due to different levels of connectivity (Jangjoo et al. 2016).  Unfortunately, I was 

limited to two stands of SPS in temporal analyses due to sampling design.  However, like the 

results found in Jangjoo et al.’s (2016) study, allelic richness was strongly associated with 
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connectivity (proximity) and increases in allelic richness followed each potential demographic 

rescue.  Additionally, previous studies on scrub lizard demography have concluded that 

demographic rescue and recolonization are likely to occur among patches that are in close 

proximity or are linked by suitable habitat (Tiebout and Anderson 1997; Hokit et al. 1999).  Both 

CN and CS share a high proximity to other occupied stands in the ONF.  Furthermore, previous 

experiments indicate that the addition of a single immigrant to a population experiencing genetic 

drift can have a substantial impact, with fitness improved by over 50 percent in a single 

generation (Spielman and Frankham 1992).  For example, Madsen et al (1999) introduced male 

Vipera berus (a species of European adder) into a declining and isolated population, where, 

within only a few generations, inbreeding effects had been completely assuaged and the 

population was expanding (Madsen et al. 1999).  Because female scrub lizards lay two to three 

clutches each breeding season, it is feasible that genetic rescue of declining subpopulations can 

occur quickly if stands are not isolated.     

Typically, anthropogenic disturbance increases habitat fragmentation and reduces gene 

flow between populations (Templeton et al. 2001).  However, in some cases, human disturbance 

has been shown to increase gene flow (Neve et al. 2008) by increasing connectivity. For 

example, using a model of least cost path, Coulon et al. (Coulon et al. 2004; Coulon et al. 2010) 

determined that genetic similarity between roe deer populations within a fragmented landscape 

was correlated with connectivity provided by wooded corridors.  The positive association 

between least cost distance and genetic distance among scrub lizard subpopulations in the ONF 

suggests that anthropogenically-maintained corridors, which facilitate human traffic in the ONF, 

also facilitate the dispersal of scrub lizards between neighboring stands.  However, only in 2016 

was any model of geographic or cost distance associated with genetic distance, potentially due to 
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increased genetic differentiation caused by a recent genetic bottleneck and founder event at CS 

and CN, respectively.         

The persistence of metapopulations depends on the balance between colonization and 

extinction dynamics (Harrison and Taylor 1997 (Johst et al. 2002).  Because temporal variation 

in habitat structure affects the probability of colonization and extinction within metapopulations 

(Wiens 1997), species inhabiting transient landscapes, such as the ONF, should be carefully 

monitored.  In particular, species with limited vagility may be at high risk of extinction in 

fragmented landscapes because dispersal between stands is necessary when habitat becomes 

unsuitable.  Considering the low dispersal documented for Florida scrub lizards, both empirical 

and theoretical evidence indicate that scrub patches within ridges are distinct demographic units 

(Hokit et al. 1999). Though the Florida scrub lizard is not yet recognized as endangered, the 

species is included on Florida’s list of Species of Greatest Conservation Concern (United States 

Fish Wildlife Service 1991; McCoy and Mushinsky 1992; Florida Fish and Wildlife 

Conservation Commission 2005).  The apparent inability of scrub lizards to disperse through 

maturing stands of SPS previously raised the question of how the ONF scrub lizard 

metapopulation was able to persist in the ‘managed mosaic of transient successional stages 

dominated by older seres’.  Results of the current study suggests that the low-traffic sand 

corridors facilitate scrub lizard gene flow.  Thus, in the absence of any fire regime in stands of 

SPS within the ONF, it is likely vitally important to maintain these sand corridors because 

connectivity in a metapopulation allows demographic rescue.       
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Table 3.1.  Pairwise estimates of Fst  with stands sampled in 2010 (below diagonal) and 2016 

(above diagonal).  * indcates significance using Fisher’s exact G-test (alpha level of 0.05). 

 

 

  

Crash 

North Crash South 

Salt 

Springs Hughes Island 

Kerr 

Island 

Crash North   0.03* 0.047* 0.023* 0.012* 

Crash South 0.018*   0.069* 0.011* 0.014 

Salt Springs 0.014 0.012*   0.016 0.016* 

Hughes Island 0.026* 0.0696* 0.072*   0.012* 

Kerr Island 0.048* 0.0379* 0.024 0.106*   
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Table 3.2.  Allelic richness (Ar), expected heterozygosity (He) and observed heterozygosity 

(Ho) for each stand sampled in 2010 and 2016.  In four of the five stands, allelic richness 

increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stand Ar 
 

HE 

 
HO 

 
  2010 2016 2010 2016 2010 2016 

Crash North 5.17 5.61 0.76 0.78 0.74 0.72 

Crash South 5.13 5.69 0.77 0.75 0.76 0.79 

Salt Springs 5.17 4.65 0.76 0.71 0.72 0.67 

Hughes Island 4.88 5.17 0.68 0.71 0.70 0.67 

Kerr Island 5.17 5.89 0.71 0.72 0.68 0.73 
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Figure 3.1.  

Location of SPS and LLP sites where Florida scrub lizards were sampled in the ONF.  Stands 

highlighted in black were sampled in 2010 and 2016, while stands highlighted in red were only 

sampled in 2016.  Stands of LLP are in green and are labeled by name.  The different habitat 

types and qualities are colored according to the legend.  Stand names correspond to stand names 

in tables 1 and 2. 
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Figure 3.2. Associations between Euclidean distance and least cost path with genetic distance.  

Populations sampled in 2010 (figures 2a and 2c) and populations sampled in 2016 (figures 2b 

and 2d).   
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Figure 3.3.  

Multiple linear regressions between patch geometry (proximity and age) and genetic diversity 

(allelic richness).  As proximity to other stands increases, the genetic diversity within a focal 

stands also increases.  Also, there is a positive correlation between the time since last disturbance 

and genetic diversity within a focal stand.  All sampling locations for 2010 and 2016 are 

included.  Tests are significant at Bonferroni correction (adjusted alpha level 0.0125). 
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