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GENERALIZED CLASSES OF DISTRIBUTIONS WITH

APPLICATIONS TO INCOME AND LIFETIME DATA

by

SHUJIAO HUANG

(Under the Direction of Broderick O. Oluyede)

ABSTRACT

In this thesis, new classes of distributions namely: exponentiated Kumaraswamy-

Dagum (EKD), Log-exponentiated Kumaraswamy-Dagum (Log-EKD), McDonald

Log-logistic (McLLog) and Gamma-Dagum (GD) distributions are presented. A thor-

ough and comprehensive investigation of these classes of distributions is conducted.

Mathematical properties of these classes of distributions including series expansion,

hazard and reverse hazard functions, moments, generating functions, mean and me-

dian deviations, Bonferroni and Lorenz curves, distribution of order statistics, mo-

ments of order statistics and entropies are presented. Estimation of parameters of

these distributions via maximum likelihood technique, Fisher information and asymp-

totic confidence intervals are given. Maximum likelihood estimation of the param-

eters of the exponentiated Kumaraswamy-Dagum distribution for censored data is

constructed. Real data examples are presented to illustrate the usefulness and appli-

cability of these proposed classes of distributions.

Key Words : Kumaraswamy Distribution; Dagum Distribution; McDonald

Distribution; Log-logistic Distribution; Gamma Distribution
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CHAPTER 1

INTRODUCTION

1.1 Introduction

For complex systems including electronic and mechanical systems, the hazard rate

function often exhibits non-monotonic (upside down bathtub or bathtub shaped)

hazard rates. In this thesis, several new classes of distributions are presented. These

distributions can be used for modeling data in several areas including engineering,

medical sciences, biological studies and economics.

The purpose here is to define new families of probability distributions that extend

well-known families of distributions and at the same time provide greater flexibility

in modeling data in practice. For a cumulative distribution function (cdf) F (x) of

any random variable, one such generalized class of distributions is referred to as

Kumaraswamy generalized distribution [19] with cdf GKG(x) is given by

GKG(x) = 1− (1− Fψ(x))φ,

for ψ > 0 and φ > 0. Another generalized class of distributions is the McDonald

generalized distribution:

GMcG(x) =
1

B(ac−1, b)

∫ F c(x)

0

wac
−1−1(1− w)b−1dw,

for a, b and c > 0. The McDonald generalization is a generalization of the beta-F

distributions. See [10], [14], [18] and references therein. Generalizations via weighted

distributions are also of tremendous practical importance. See [26], [27], [29], [32] for

details. Additional generalizations can be obtained via the gamma distribution, and

such generalized class of distributions are referred to as gamma generalized distribu-

tion:

GGG(x) =
γ(−θ−1 log(F̄ (x)), α)

Γ (α)
,
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[36], for α, θ > 0, where F̄ (x) = 1 − F (x), and γ(x, α) =
∫ x
0
tα−1e−tdt is the lower

incomplete gamma function. Ristić and Balakrishnan [33] also proposed an alternative

gamma-generator defined by the cdf:

G(x) = 1− 1

Γ (α)

∫ − logF (x)

0

tα−1e−tdt,

for α > 0, where Γ (α) =
∫∞
0
tα−1e−tdt is the gamma function.

1.2 Outline of Thesis

The outline of this thesis is as follows: In Chapter 2, the exponentiated Kumaraswamy-

Dagum distribution, sub-models, hazard and reverse hazard functions, moments, mo-

ment generating function, Bonferroni and Lorenz curves, mean and median deviations,

reliability, simulation and applications are given. Chapter 3 presents maximum like-

lihood estimation in the exponentiated Kumaraswamy-Dagum distribution with type

I right censored and type II double censored data. Applications to real data are also

presented. Log-exponentiated Kumaraswamy-Dagum distribution and its statistical

properties are discussed in Chapter 4. Chapter 5 contains McLLog distribution, its

statistical properties, simulation and applications. The Gamma-Dagum and related

distributions are presented in Chapter 6, followed by areas of further or additional

research.



CHAPTER 2

THE EXPONENTIATED KUMARASWAMY-DAGUM

DISTRIBUTION

2.1 Introduction

Camilo Dagum proposed the distribution which is referred to as Dagum distribution

in 1977. This proposal enable the development of statistical distributions used to fit

empirical income and wealth data, that could accommodate heavy tails in income

and wealth distributions. Dagum’s proposed distribution has both Type-I and Type-

II specification, where Type-I is the three parameter specification and Type-II deals

with four parameter specification. This distribution is a special case of generalized

beta distribution of the second kind (GB2), McDonald [22], McDonald and Xu [23],

when the parameter q = 1, where the probability density function (pdf) of the GB2

distribution is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

, for y > 0.

Note that a > 0, p > 0, q > 0 are the shape parameters, b is the scale parameter and

B(p, q) = Γ (p)Γ (q)
Γ (p+q)

is the beta function. Kleiber [17] traced the genesis of Dagum dis-

tribution and summarized several statistical properties of this distribution. Domma

et al. [7] obtained the maximum likelihood estimates of the parameters of Dagum

distribution for censored data. Domma and Condino [8] presented the beta-Dagum

distribution.

The pdf and cdf of Dagum distribution are given by:

gD(x;λ, β, δ) = βλδx−δ−1(1 + λx−δ)−β−1 (2.1)

and

GD(x;λ, β, δ) = (1 + λx−δ)−β, (2.2)
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for x > 0, where λ is a scale parameter, δ and β are shape parameters. Dagum [6]

refers to his model as the generalized logistic-Burr distribution. The kth raw or non

central moments are given by

E
(
Xk
)

= βλ
k
δB

(
β +

k

δ
, 1− k

δ

)
,

for k < δ, and λ, β > 0, where B(·, ·) is the beta function. The qth percentile is

xq = λ
1
δ

(
q−

1
β − 1

)− 1
δ
.

In this chapter, we present generalizations of the Dagum distribution via Ku-

maraswamy distribution and its exponentiated version. This leads to the exponenti-

ated Kumaraswamy-Dagum distribution.

The motivation for the development of this distribution is the modeling of size

distribution of personal income and lifetime data with a diverse model that takes into

consideration not only shape and scale, but also skewness, kurtosis and tail variation.

This chapter is organized as follows. In section 2.2, we present the exponentiated

Kumaraswamy-Dagum distribution and its sub models, as well as series expansion,

hazard and reverse hazard functions. Moments, moment generating function, Lorenz

and Bonferroni curves, mean and median deviations, and reliability are obtained in

section 2.3. Section 2.4 contains results on the distribution of the order statistics

and Rényi entropy. Estimation of model parameters via the method of maximum

likelihood is presented in section 2.5. In section 2.6, various simulations are conducted

for different sample sizes. Section 2.7 contains examples and applications of the EKD

distribution and its sub-models, followed by concluding remarks.

2.2 The Exponentiated Kumaraswamy-Dagum Distribution

In this section, we present the proposed distribution and its sub-models. Series ex-

pansion, hazard and reverse hazard functions are also studied in this section.
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2.2.1 The Kumaraswamy-Dagum Distribution

Kumaraswamy [19] introduced a two-parameter distribution on (0, 1). Its cdf is given

by

G(x) = 1− (1− xψ)φ, x ∈ (0, 1),

for ψ > 0 and φ > 0.

For an arbitrary cdf F (x) with pdf f(x) = dF (x)
dx

, the family of Kumaraswamy-G

distributions with cdf GK(x) is given by

GK(x) = 1− (1− Fψ(x))φ,

for ψ > 0 and φ > 0. By letting F (x) = GD(x), we obtain the Kumaraswamy-Dagum

(KD) distribution, with cdf

GKD(x) = 1− (1−Gψ
D(x))φ,

where GD(x) is the cdf of Dagum distribution.

2.2.2 The Exponentiated Kumaraswamy-Dagum Distribution

Replacing the dependent parameter βψ by α, the cdf and pdf of the EKD distribution

are given by

G
EKD

(x;α, λ, δ, φ, θ) = {1− [1− (1 + λx−δ)−α]φ}θ, (2.3)

and

g
EKD

(x;α, λ, δ, φ, θ) = αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1, (2.4)

for α, λ, δ, φ, θ > 0, and x > 0, respectively. The quantile function of the EKD

distribution is in closed form,

G−1
EKD

(q) = xq = λ
1
δ

{
[1− (1− q

1
θ )

1
φ ]−

1
α − 1

}− 1
δ

. (2.5)
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Figure 2.1: EKD Density Functions

Plots of the pdf for selected values of the model parameters are given in Figure

2.1. The plots indicate that the EKD pdf can be decreasing or right skewed.

2.2.3 Sub-models

Sub-models of the EKD distribution for selected values of the parameters are pre-

sented in this section.

1© When θ = 1, we obtain Kumaraswamy-Dagum distribution with cdf:

G(x;α, λ, δ, φ) = 1− [1− (1 + λx−δ)−α]φ,

for α, λ, δ, φ > 0 and x > 0.

2© When φ = 1, φ = θ = 1 and α = φ = 1, we obtain Dagum distribution with

cdfs:

G(x;α, λ, δ, θ) = (1 + λx−δ)−αθ,
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G(x;α, λ, δ) = (1 + λx−δ)−α,

and

G(x;λ, δ, θ) = (1 + λx−δ)−θ,

respectively.

3© When λ = 1, we obtain exponentiated Kumaraswamy-Burr III distribution

with cdf:

G(x;α, δ, φ, θ) = {1− [1− (1 + x−δ)−α]φ}θ,

for α, δ, φ, θ > 0 and x > 0.

4© When λ = θ = 1, we obtain Kumaraswamy-Burr III distribution with cdf:

G(x;α, δ, φ) = 1− [1− (1 + x−δ)−α]φ,

for α, δ, φ > 0 and x > 0.

5© When λ = φ = θ = 1, we obtain Burr III distribution with cdf:

G(x;α, δ) = (1 + x−δ)−α,

for α, δ > 0 and x > 0.

6©When α = 1, we obtain exponentiated Kumaraswamy-Fisk or Kumaraswamy

Log-logistic distribution with cdf:

G(x;λ, δ, φ, θ) = {1− [1− (1 + λx−δ)−1]φ}θ,

for λ, δ, φ, θ > 0 and x > 0.

7© When α = θ = 1, we obtain Kumaraswamy-Fisk or Kumaraswamy Log-

logistic distribution with cdf:

G(x;λ, δ, φ) = 1− [1− (1 + λx−δ)−1]φ,

for λ, δ, φ > 0 and x > 0.
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8© When α = φ = θ = 1, we obtain Fisk or Log-logistic distribution with cdf:

G(x;λ, δ) = (1 + λx−δ)−1,

for λ, δ > 0 and x > 0.

2.2.4 Series Expansion

We apply the series expansion

(1− z)b−1 =
∞∑
j=0

(−1)jΓ (b)

Γ (b− j)j!
zj, (2.6)

for b > 0 and |z| < 1, to obtain the series expansion of the EKD distribution.

By using equation (2.6),

g
EKD

(x) =
∞∑
i=0

∞∑
j=0

ω(i, j)x−δ−1(1 + λx−δ)−α(j+1)−1, (2.7)

where ω(i, j) = αλδφθ (−1)i+jΓ (θ)Γ (φi+φ)
Γ (θ−i)Γ (φi+φ−j)i!j! .

Note that in the Dagum(α, δ, λ) distribution, α and δ are shape parameters,

and λ is a scale parameter. In the Exponentiated-Kum(ψ, φ, θ) distribution, ψ is a

skewness parameter, φ is a tail variation parameter, and the parameter θ characterizes

the skewness, kurtosis, and tail of the distribution.

Consequently, for the EKD(α, λ, δ, φ, θ) distribution, α is a shape and skewness

parameter, δ is a shape parameter, λ is a scale parameter, φ is a tail variation pa-

rameter, and the parameter θ characterizes the skewness, kurtosis, and tail of the

distribution.
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Figure 2.2: EKD Hazard Functions

2.2.5 Hazard and Reverse Hazard Functions

The hazard function of the EKD distribution is

h
EKD

(x) =
g
EKD

(x)

1−GEKD(x)

= αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1

×
(

1− {1− [1− (1 + λx−δ)−α]φ}θ
)−1

. (2.8)

Plots of the hazard function are presented in Figure 2.2. The plots show vari-

ous shapes including monotonically decreasing, unimodal, bathtub, and upside down

bathtub shapes for the selected values of the parameters.

The reverse hazard function of the EKD distribution is

τ
EKD

(x) =
g
EKD

(x)

G
EKD

(x)

= αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}−1. (2.9)
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2.3 Moments, Moment Generating Function, Bonferroni and Lorenz

Curves, Mean and Median Deviations, and Reliability

In this section, we present the moments, moment generating function, Bonferroni

and Lorenz curves, mean and median deviations as well as the reliability of the EKD

distribution. The moments of the sub-models can be readily obtained from the general

results.

2.3.1 Moments and Moment Generating Function

Let t = (1 + λx−δ)−1 in equation (2.7), then the sth raw moment of the EKD distri-

bution is given by

E(Xs) =

∫ ∞
0

xs · g
EKD

(x)dx

=
∞∑
i=0

∞∑
j=0

ω(i, j)λ
s
δ
−1 · 1

δ
·B
(
α(j + 1) +

s

δ
, 1− s

δ

)

=
∞∑
i=0

∞∑
j=0

ω(i, j, s)B

(
α(j + 1) +

s

δ
, 1− s

δ

)
, (2.10)

where ω(i, j, s) = αφθλ
s
δ
(−1)i+jΓ (θ)Γ (φi+φ)
Γ (θ−i)Γ (φi+φ−j)i!j! , and s < δ.

The moment generating function of the EKD distribution is given by

M(t) =
∞∑
r=0

∞∑
i=0

∞∑
j=0

ω(i, j, r)
tr

r!
B

(
α(j + 1) +

r

δ
, 1− r

δ

)
,

for r < δ.

2.3.2 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are widely used tool for analyzing and visualizing in-

come inequality. Lorenz curve, L(p) can be regarded as the proportion of total income

volume accumulated by those units with income lower than or equal to the volume
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Figure 2.3: EKD Bonferroni and Lorenz Curves

x, and Bonferroni curve, B(p) is the scaled conditional mean curve, that is, ratio of

group mean income of the population. Plots of Bonferroni and Lorenz curves are

given in Figure 2.3.

Let I(a) =
∫ a
0
x · g

EKD
(x)dx and µ = E(X), then Bonferroni and Lorenz curves

are given by

B(p) =
I(q)

pµ
and L(p) =

I(q)

µ
,

respectively, for 0 ≤ p ≤ 1, and q = G−1EKD(p). The mean of the EKD distribution

is obtained from equation (2.10) with s = 1, and the quantile function is given in

equation (2.5). Consequently,

I(a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)B
t(a)

(
α(j + 1) +

1

δ
, 1− 1

δ

)
, (2.11)

for δ > 1, where t(a) = (1 + λa−δ)−1, and BG(x)(c, d) =
∫ G(x)

0
tc−1(1 − t)d−1dt for

|G(x)| < 1 is incomplete beta function.
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2.3.3 Mean and Median Deviations

If X has the EKD distribution, we can derive the mean deviation about the mean

µ = E(X) and the median deviation about the median M from

δ1 =

∫ ∞
0

|x− µ| g
EKD

(x)dx and δ2 =

∫ ∞
0

|x−M | g
EKD

(x)dx,

respectively. The mean µ is obtained from equation (2.10) with s = 1, and the median

M is given by equation (2.5) when q = 1
2
.

The measure δ1 and δ2 can be calculated by the following relationships:

δ1 = 2µGEKD(µ)− 2µ+ 2T (µ) and δ2 = 2T (M)− µ,

where T (a) =
∫∞
a
x · g

EKD
(x)dx follows from equation (2.11), that is

T (a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)

[
B

(
α(j + 1) +

1

δ
, 1− 1

δ

)
−Bt(a)

(
α(j + 1) +

1

δ
, 1− 1

δ

)]
.

2.3.4 Reliability

The reliabilityR = P (X1 > X2) whenX1 andX2 have independentEKD(α1, λ1, δ1, φ1, θ1)

and EKD(α2, λ2, δ2, φ2, θ2) distributions is given by

R =

∫ ∞
0

g1(x)G2(x)dx

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

ζ(i, j, k, l)

∫ ∞
0

x−δ1−1(1 + λ1x
−δ1)−α1(j+1)−1(1 + λ2x

−δ2)−α2ldx,

where ζ(i, j, k, l) = α1λ1δ1φ1θ1
(−1)i+j+k+lΓ (θ1)Γ (φ1i+φ1)Γ (θ2+1)Γ (φ2k+1)

Γ (θ1−i)Γ (φ1i+φ1−j)Γ (θ2+1−k)Γ (φ2k+1−l)i!j!k!l! .

If λ = λ1 = λ2 and δ = δ1 = δ2, then reliability can be reduced to

R =
∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

ζ(i, j, k, l)

λδ[α1(j + 1) + α2l]
.
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2.4 Order Statistics and Entropy

In this section, the distribution of the kth order statistic and Rényi entropy (Rényi

[31]) for the EKD distribution are presented. The entropy of a random variable is a

measure of variation of the uncertainty.

2.4.1 Order Statistics

The pdf of the kth order statistics from a cdf F (x) and associated pdf f(x) is given

by

fk:n(x) =
f(x)

B(k, n− k + 1)
F k−1(x)[1− F (x)]n−k

= k

(
n

k

)
f(x)F k−1(x)[1− F (x)]n−k. (2.12)

Using equation (2.6), the pdf of the kth order statistic from EKD distribution is

given by

gk:n(x) =
∞∑
i=0

∞∑
j=0

∞∑
p=0

K(i, j, p, k) · x−δ−1(1 + λx−δ)−α−αp−1,

where K(i, j, p, k) = (−1)i+j+pΓ (n−k+1)Γ (θk+θi)Γ (φj+φ)
Γ (n−k+1−i)Γ (θk+θi−j)Γ (φj+φ−p)i!j!p!k

(
n
k

)
αλδφθ.

2.4.2 Entropy

Rényi entropy of a distribution with pdf f(x) is defined as

IR(τ) = (1− τ)−1 log

{∫
R
f τ (x)dx

}
, τ > 0, τ 6= 1.

Using equation (2.6), Rényi entropy of the EKD distribution is given by

IR(τ) = (1− τ)−1 log

[ ∞∑
i=0

∞∑
j=0

(−1)i+jΓ (θτ − τ + 1)Γ (φτ − τ + φi+ 1)

Γ (θτ − τ + 1− i)Γ (φτ − τ + φi+ 1− j)i!j!

× ατλ−
τ
δ
+ 1
δ δτ−1φτθτB(ατ + αj +

1− τ
δ

, τ +
τ − 1

δ
)

]
.
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for ατ + αj + 1−τ
δ

> 0 and τ + τ−1
δ

> 0. Rényi entropy for the sub-models can be

readily obtained.

2.5 Estimation of Model Parameters

In this section, we present estimation of the parameters of the EKD distribution via

method of maximum likelihood estimation. The elements of the score function are

presented. There are no closed form solutions to the nonlinear equations obtained by

setting the elements of the score function to zero.

2.5.1 Maximum Likelihood Estimation

Let x = (x1, · · · , xn)T be a random sample of the EKD distribution with unknown

parameter vector Θ = (α, λ, δ, φ, θ)T .

The log-likelihood function for Θ is

l(Θ) = n(lnα + lnλ+ ln δ + lnφ+ ln θ)− (δ + 1)
n∑
i=1

lnxi

− (α + 1)
n∑
i=1

ln(1 + λx−δi ) + (φ− 1)
n∑
i=1

ln[1− (1 + λx−δi )−α]

+ (θ − 1)
n∑
i=1

ln{1− [1− (1 + λx−δi )−α]φ}. (2.13)

The partial derivatives of l(Θ) with respect to the parameters are

∂l

∂α
=

n

α
−

n∑
i=1

ln(1 + λx−δi ) + (φ− 1)
n∑
i=1

(1 + λx−δi )−α ln(1 + λx−δi )

1− (1 + λx−δi )−α

− (θ − 1)φ
n∑
i=1

[1− (1 + λx−δi )−α]φ−1(1 + λx−δi )−α ln(1 + λx−δi )

1− [1− (1 + λx−δi )−α]φ
,
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∂l

∂λ
=

n

λ
− (α + 1)

n∑
i=1

x−δi
1 + λx−δi

+ (φ− 1)α
n∑
i=1

(1 + λx−δi )−α−1x−δi
1− (1 + λx−δi )−α

− (θ − 1)φα
n∑
i=1

[1− (1 + λx−δi )−α]φ−1(1 + λx−δi )−α−1x−δi
1− [1− (1 + λx−δi )−α]φ

,

∂l

∂δ
=

n

δ
−

n∑
i=1

lnxi + (α + 1)λ
n∑
i=1

x−δi lnxi

1 + λx−δi

− (φ− 1)αλ
n∑
i=1

(1 + λx−δi )−α−1x−δi lnxi

1− (1 + λx−δi )−α

+ (θ − 1)φαλ
n∑
i=1

[1− (1 + λx−δi )−α]φ−1(1 + λx−δi )−α−1x−δi lnxi

1− [1− (1 + λx−δi )−α]φ
,

∂l

∂φ
=

n

φ
+

n∑
i=1

ln[1− (1 + λx−δi )−α]− (θ − 1)
n∑
i=1

[1− (1 + λx−δi )−α]φ ln[1− (1 + λx−δi )−α]

1− [1− (1 + λx−δi )−α]φ
,

and

∂l

∂θ
=

n

θ
+

n∑
i=1

ln{1− [1− (1 + λx−δi )−α]φ},

respectively. The MLE of the parameters α, λ, δ, φ, and θ, say α̂, λ̂, δ̂, φ̂, and θ̂, must

be obtained by numerical methods.

2.5.2 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the parameters

of the EKD distribution. The expectations in the Fisher Information Matrix (FIM)

can be obtained numerically. Let Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) be the maximum likelihood

estimate of Θ = (α, λ, δ, φ, θ). Under the usual regularity conditions and that the

parameters are in the interior of the parameter space, but not on the boundary, we
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have:
√
n(Θ̂−Θ)

d−→ N5(0, I
−1(Θ)), where I(Θ) is the expected Fisher information

matrix. The asymptotic behavior is still valid if I(Θ) is replaced by the observed in-

formation matrix evaluated at Θ̂, that is J(Θ̂). The multivariate normal distribution

N5(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct

confidence intervals and confidence regions for the individual model parameters and

for the survival and hazard rate functions.

The approximate individual 100(1− η)% two-sided confidence intervals for α, λ,

δ, φ and θ are given by:

α̂± Z η
2

√
I−1αα (Θ̂), λ̂± Z η

2

√
I−1λλ (Θ̂), δ̂ ± Z η

2

√
I−1δδ (Θ̂)

φ̂± Z η
2

√
I−1φφ (Θ̂), θ̂ ± Z η

2

√
I−1θθ (Θ̂)

respectively, where Z η
2

is the upper η
2
th percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the EKD distri-

bution with its sub-models for a given data set. For example, to test θ = 1, the LR

statistic is

ω = 2[ln(L(α̂, λ̂, δ̂, φ̂, θ̂))− ln(L(α̃, λ̃, δ̃, φ̃, 1))],

where α̂, λ̂, δ̂, φ̂ and θ̂ are the unrestricted estimates, and α̃, λ̃, δ̃ and φ̃ are the

restricted estimates. The LR test rejects the null hypothesis if ω > χ2
d
, where χ2

d

denote the upper 100d% point of the χ2 distribution with 1 degree of freedom.

2.6 Simulation Study

In this section, we examine the performance of the EKD distribution by conducting

various simulations for different sizes (n=200, 400, 800, 1200) via the subroutine NLP

in SAS. We simulate 2000 samples for the true parameter values I : α = 2, λ = 1, δ =

3, φ = 2, θ = 2 and II : α = 1, λ = 1, δ = 1, φ = 1, θ = 1. Table 2.1 lists the means
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MLEs of the five model parameters along with the respective root mean squared

errors (RMSE). From the results, we can verify that as the sample size n increases,

the mean estimates of the parameters tend to be closer to the true parameter values,

since RMSEs decay toward zero.

2.7 Applications

In this section, applications based on real data, as well as comparison of the EKD

distribution with its sub-models are presented. We provide examples to illustrate the

flexibility of the EKD distribution in contrast to other models, including the expo-

nentiated Kumaraswamy-Weibull (EKW), and beta-Kumaraswamy-Weibull (BKW)

distributions for data modeling. The pdfs of EKW and BKW distributions are

f
EKW

(x) = θabcλcxc−1e−(λx)
c

[
1− e−(λx)c

]a−1{
1−

[
1− e−(λx)c

]a}b−1
×

[
1−

{
1−

[
1− e−(λx)c

]a}b]θ−1
,

and

f
BKW

(x) =
1

B(a, b)
αβcλcxc−1e−(λx)

c

[
1− e−(λx)c

]α−1
×

{
1−

[
1− e−(λx)c

]α}βb−1[
1−

{
1−

[
1− e−(λx)c

]α}β]a−1
,

respectively.

The first data set consists of the number of successive failures for the air con-

ditioning system of each member in a fleet of 13 Boeing 720 jet airplanes (Proschan

[28]). The data is presented in Table 2.3. The second data set consists of the salaries

of 818 professional baseball players for the year 2009 (USA TODAY). The third data

set represents the poverty rate of 533 districts with more than 15,000 students in

2009 (Digest of Education Statistics “http://nces.ed.gov/programs/digest/d11/

http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp
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Table 2.1: EKD Monte Carlo Simulation Results

I II

n Parameter Mean RMSE Mean RMSE

200 α 4.41621 3.979304324 1.7899006 1.992043574

λ 1.3580866 2.642335804 1.4287071 1.528578784

δ 3.1167852 2.601663026 1.0337146 0.5898521

φ 5.7270324 6.535452517 2.4702434 3.712081559

θ 4.5560563 4.306946865 2.8884959 3.689669972

400 α 3.5972873 3.071770841 1.5456974 1.513782811

λ 1.1196079 0.900800533 1.1382897 0.732002869

δ 2.9333424 1.821450521 1.0064105 0.377302664

φ 4.6989703 5.277876069 1.5488732 1.872088246

θ 4.1188983 3.616692978 2.4213684 2.969367761

800 α 3.1040595 2.417025941 1.4359333 1.278449373

λ 1.0626388 0.609066006 1.0432761 0.346996974

δ 2.8960167 1.36814261 1.0017278 0.250650155

φ 3.7437056 3.919777583 1.176675 0.766203302

θ 3.4890255 2.748229594 1.9733522 2.197844717

1200 α 2.8399564 2.058703427 1.3884174 1.169251427

λ 1.0429655 0.501712467 1.021836 0.258884917

δ 2.9152476 1.133666485 1.0014919 0.193825437

φ 3.1751818 3.043071803 1.083574 0.392293513

θ 3.164176 2.346236284 1.731924 1.788360814

http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp
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Table 2.2: Descriptive Statistics of Application Data Sets

Data Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

I 92.07 54.00 14.00 107.92 11646 2.16 5.19 1.0 603.0

II 3.26 1.15 0.40 4.36 19.05 2.10 5.13 0.4 33.0

III 17.71 16.80 9.30 8.80 77.38 0.80 0.73 2.7 53.6

tables/dt11_096.asp”). These data sets are modeled by the EKD distribution and

compared with the corresponding sub-models, the Kumaraswamy-Dagum and Dagum

distributions, and as well as EKW, BKW distributions. Table 2.2 gives a descriptive

summary of each sample. The air conditioning system sample has far more variability

and the baseball player salary sample has the smallest variability.

The maximum likelihood estimates (MLEs) of the parameters are computed by

maximizing the objective function via the subroutine NLMIXED in SAS. The es-

timated values of the parameters (standard error in parenthesis), -2 Log-likelihood

statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information

Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Information Criterion,

AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(Θ̂) is the value of the likelihood function

evaluated at the parameter estimates, n is the number of observations, and p is the

number of estimated parameters for the EKD distribution and its sub-distributions

are tabulated.

Fitted densities plots, probability plots (Chambers et al [1]) and plots of the

empirical and estimated survival functions are presented in Figure 2.4, Figure 2.5

and Figure 2.6. For the EKD distribution, we plotted for example,

G(x
(j)

) = {1− [1− (1 + λ̂x−δ̂
(j)

)−α̂]φ̂}θ̂

against j−0.375
n+0.25

, j = 1, 2, ..., n, where x
(j)

are the ordered values of the observed data.

http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp
http://nces.ed.gov/programs/digest/d11/tables/dt11_096.asp
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Table 2.3: Air Conditioning System Data

194 413 90 74 55 23 97 50 359 50 130 487 57

102 15 14 10 57 320 261 51 44 9 254 493 33

18 209 41 58 60 48 56 87 11 102 12 5 14

14 29 37 186 29 104 7 4 72 270 283 7 61

100 61 502 220 120 141 22 603 35 98 54 100 11

181 65 49 12 239 14 18 39 3 12 5 32 9

438 43 134 184 20 386 182 71 80 188 230 152 5

36 79 59 33 246 1 79 3 27 201 84 27 156

21 16 88 130 14 118 44 15 42 106 46 230 26

59 153 104 20 206 5 66 34 29 26 35 5 82

31 118 326 12 54 36 34 18 25 120 31 22 18

216 139 67 310 3 46 210 57 76 14 111 97 62

39 30 7 44 11 63 23 22 23 14 18 13 34

16 18 130 90 163 208 1 24 70 16 101 52 208

95 62 11 191 14 71

A measure of closeness of the plot to the diagonal line given by the sum of squares

SS =
n∑
j=1

[
G(x

(j)
)−

(
j − 0.375

n+ 0.25

)]2
was calculated for each plot. The plot with the smallest SS corresponds to the model

with points that are closer to the diagonal line.

For the air conditioning system data, initial values α = 1, λ = 2, δ = 0.6, φ =

3, θ = 1 are used in SAS code for EKD model. The LR statistics for the test of

the hypothesis H0 : KD against Ha : EKD and H0 : D against Ha : EKD are

1.9 (p-value= 0.17) and 13.4 (p-value= 0.0012). There is no significant difference
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Figure 2.4: EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Air Conditioning System Data
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Table 2.4: EKD Estimation for Air Conditioning System Data

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 20.6164 4.7323 0.6192 18.1616 0.1657 2065.0 2075.0 2075.3 2091.2 0.0309

(1.2347) (0.4174) (0.0459) (5.8028) (0.0089)

KD 5.0354 4.3846 0.3762 21.7047 1 2066.9 2074.9 2075.2 2087.9 0.0368

(2.1177) (3.0727) (0.1253) (27.9167) -

D 1.2390 94.1526 1.2626 1 1 2078.4 2084.4 2084.5 2094.1 0.1344

(0.1749) (33.7549) (0.0663) - -

a b c λ θ

EKW 3.7234 0.1219 1.0595 0.0495 0.3784 2063.7 2073.7 2074.0 2089.8 0.0254

(0.8783) (0.0183) (0.1448) (0.0224) (0.1136)

a b α β c λ

BKW 1.4342 0.0830 2.0054 1.9100 0.7412 0.1809 2064.6 2076.6 2077.1 2096.1 0.0338

(1.2507) (0.0875) (1.6573) (1.9807) (0.0343) (0.0388)

between EKD and KD. The KD distribution gives smaller SS value than Dagum

distribution and slightly bigger than EKD. For the non-nested models, the values of

AIC and AICC for KD and EKD models are very close, however the BIC value for KD

distribution is slightly smaller than the corresponding value for the EKD distribution.

We conclude that KD model compares favorably with the EKD distribution and thus

provides a good fit for the air conditioning system data.

For the baseball player salary data set, initial values for EKD model in SAS code

are α = 70, λ = 0.01, δ = 1.026, φ = 0.1, θ = 1. The EKD distribution is a better fit

than KD and Dagum distributions for this data, as well as the other distributions. The

values of the statistics AIC, AICC and BIC for KD distribution are smaller compared

to the non-nested distributions. The LR statistics for the test of the hypotheses H0 :

KD against Ha : EKD and H0 : D against Ha : EKD are 93.1 (p-value< 0.0001)

and 361.5 (p-value< 0.0001). Consequently, we reject the null hypothesis in favor of

the EKD distribution and conclude that the EKD distribution is significantly better

than the KD and Dagum distributions based on the LR statistic. The value of AIC,
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Figure 2.5: EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Baseball Player Salary Data
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Table 2.5: EKD Estimation for Baseball Player Salary Data

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 69.1586 0.000043 7.6321 0.0591 0.4075 2864.1 2874.1 2874.2 2897.7 7.8153

(0.000036) (0.0000058) (0.0557) (0.0044) (0.0327)

KD 69.0839 0.000011 7.2375 0.0996 1 2957.2 2965.2 2965.2 2984.0 7.7095

(0.000061) (0.00000133) (0.037) (0.0036) -

D 70.0780 0.0116 1.0312 1 1 3225.6 3231.6 3231.6 3245.7 6.4568

(34.4988) (0.0058) (0.0301) - -

a b c λ θ

EKW 15.0514 0.1368 0.6376 8.8903 0.5419 3209.8 3219.8 3219.9 3243.3 5.3289

(2.0692) (0.0266) (0.0756) (4.9198) (0.2098)

a b α β c λ

BKW 24.0047 0.03783 14.4799 4.6029 0.5168 32.1184 3088.4 3100.4 3100.5 3128.7 18.0516

(0.6879) (0.0039) (0.2069) (0.4549) (0.006) (2.4559)

AICC and BIC statistics are lower for the EKD distribution when compared to those

for the EKW and BKW distributions.

For poverty rate data, initial values for EKD model are α = 73, λ = 0.1, δ =

0.15, φ = 60, θ = 0.33. The LR statistic for the test of the hypotheses H0 : KD

against Ha : EKD and H0 : D against Ha : EKD are 8.2 (p-value= 0.0042) and

81.1 (p-value < 0.0001), respectively. The values of AIC, AICC and BIC statistics

shows EKD distributions is a better model and the SS value of the EKD model is

comparatively smaller than the corresponding values for the KD and D distributions.

Consequently, we conclude that EKD distribution is the best fit for the poverty rate

data.

2.8 Concluding Remarks

We have proposed and presented results on a new class of distributions called the

EKD distribution. This class of distributions has applications in income and lifetime

data analysis. Properties of this class of distributions including the series expansion
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Figure 2.6: EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Poverty Rate Data
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Table 2.6: EKD Estimation for Poverty Rate Data

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 75.5803 0.851500 0.8183 60.9069 0.3091 3750.7 3760.7 3760.8 3782.1 0.1305

(11.1276) (0.32) (0.0714) (29.1324) (0.02229)

KD 60.8898 0.304000 0.4666 90.2889 1 3758.9 3766.9 3767.0 3784.0 0.2604

(17.5714) (0.0963) (0.0555) (54.8283) -

D 1.7954 350.0100 2.4175 1 1 3831.8 3837.8 3837.9 3850.7 0.9210

(0.2034) (105.94) (0.0784) - -

a b c λ θ

EKW 0.1013 2.2289 2.741 0.02545 20.0336 3752.8 3762.8 3762.9 3784.2 0.1071

(0.0944) (1.8026) (2.2276) (0.0199) (30.0233)

a b α β c λ

BKW 0.9985 1.0006 1.9999 0.03989 2.0006 0.1141 4727.5 4739.5 4739.7 4765.2 80.9942

(0.0069) (0.0431) (0.0584) (0.0017) (0.2564) (0.0075)

of pdf, cdf, moments, hazard function, reverse hazard function, income inequality

measures such as Lorenz and Bonferroni curves are derived. Rényi entropy, order

statistics, reliability, mean and median deviations are presented. Estimation of the

parameters of the models and applications are also given.



CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATION IN THE

EXPONENTIATED KUMARASWAMY-DAGUM DISTRIBUTION

WITH CENSORED SAMPLES

3.1 Introduction

The main motivation for the development of this distribution is the modeling of size

distribution of personal income and lifetime data for censored data with a diverse

model that takes into consideration not only shape and scale but also skewness,

kurtosis and tail variation. Also, motivated by the various applications of Dagum

distributions in several areas including exponential tilting (weighting) in finance and

actuarial sciences, as well as economics, where Dagum distribution plays an impor-

tant role in size distribution of personal income, we construct, develop and show

that this new class of generalized Dagum-type distribution called the exponentiated-

Kumaraswamy-Dagum distribution is applicable to real lifetime censored data in order

to demonstrate the competitiveness, as well as usefulness of the proposed distribution

in reliability and survival analysis problems.

In this chapter, we present maximum likelihood estimation as well as comparisons

with other parametric models in the exponentiated Kumaraswamy-Dagum distribu-

tion under Type I right censored and Type II doubly censored schemes. This chapter

is organized as follows. Maximum likelihood estimates of the model parameters under

Type I right censored and Type II doubly censored plans are presented in section 3.2.

Applications, case studies and comparisons with the exponentiated Kumaraswamy-

Weibull distribution are given in section 3.3, followed by concluding remarks in section

3.4.
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3.2 Maximum Likelihood Estimation

Different censoring mechanisms lead to different likelihood functions. In the following

sections, we construct log-likelihood functions of the EKD distribution to deal with

type I right and type II doubly censored observations.

Although the maximum likelihood estimates are not available in closed form, they

can be evaluated with the help of numerical techniques. The difficulties in dealing

with the EKD distribution due to its complicated mathematical tractability are easily

overcome by using iterative methods which do not require high-computational efforts

even in the presence of censoring.

3.2.1 Type I Right Censoring

This is the most common form of incomplete data often encountered in survival anal-

ysis. Type I right censored data arises when the study is conducted over a specified

time period that can terminate before all the units have failed. Each individual has a

fixed censoring time Ci, which would be the time between the date of entry and the

end of study, so that the complete failure time of an individual will be known only if

it is less than or equal to the censoring time Ti ≤ Ci; otherwise, only a lower bound of

the individual lifetime is available Ti > Ci. The data for this design are conveniently

indicated by pairs of random variables (Ti, εi), i = 1, . . . , n. Consider a sample size

n of independent positive random variables T1, . . . , Tn such that Ti is associated with

an indicator variable εi = 0 if Ti is a censoring time. Let Θ = (α, λ, δ, φ, θ)T , then the

likelihood function, L(Θ), of a type I right censored sample (t1, ε1), ..., (tn, εn) from

EKD distribution with pdf g
EKD

(·) and survival function S
EKD

(·) can be written as

L(Θ) =
n∏
i=1

g
EKD

(ti)
εiS

EKD
(ti)

1−εi ,
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where S
EKD

(ti) = 1 − G
EKD

(ti). The log-likelihood function, l(Θ), based on data,

from Equation (2.3) and (2.4) is

l(Θ) =
n∑
i=1

εi

{
lnα + lnλ+ ln δ + lnφ+ ln θ − (δ + 1) ln ti

− (α + 1) ln(1 + λt−δi ) + (φ− 1) ln[1− (1 + λt−δi )−α]

+ (θ − 1) ln{1− [1− (1 + λt−δi )−α]φ}
}

+
n∑
i=1

(1− εi) ln

{
1− {1− [1− (1 + λt−δi )−α]φ}θ

}
. (3.1)

The MLEs Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) are obtained from the numerical maximization of Equa-

tion (3.1). Let Θ = (α, λ, δ, φ, θ)T be the parameter vector and Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) be

the maximum likelihood estimate of Θ = (α, β, θ, λ, δ). Under the usual regularity

conditions and that the parameters are in the interior of the parameter space, but

not on the boundary [11], we have:
√
n(Θ̂−Θ)

d−→ N5(0, I
−1(Θ)), where I(Θ) is the

expected Fisher information matrix. The asymptotic behavior is still valid if I(Θ) is

replaced by the observed information matrix evaluated at Θ̂, that is J(Θ̂). The multi-

variate normal distribution N5(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T ,

can be used to construct confidence intervals and confidence regions for the individual

model parameters and for the survival and hazard rate functions.

3.2.2 Type II Doubly Censoring

Type II doubly censored data is used to indicate that, in an ordered sample of size n,

a known number of observations is missing at both ends, while in type I censoring,

the number of censored observations is a random variable and the time of study is

fixed. The data consists of the remaining ordered observations tr+1, . . . , tm when the

r smallest observations and the n−m largest observations are out of a sample of size

n from the EKD distribution. The likelihood function, L(Θ), of the type II doubly
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censored sample t(r+1), ..., t(m) from EKD distribution with pdf g
EKD

(·), cdf G
EKD

(·)

and survival function S
EKD

(·) is given by

L(Θ) =
n!

r!(n−m)!
{G

EKD
(t(r+1))}r{SEKD(t(m))}n−m

m∏
i=r+1

g
EKD

(t(i)).

The log-likelihood function, l(Θ), for a type II doubly censored sample t(r+1), ..., t(m)

from EKD distribution is given by

l(Θ) = ln

(
n!

r!(n−m)!

)
+ rθ ln{1− [1− (1 + λt−δ(r+1))

−α]φ}

+ (n−m) ln

(
1− {1− [1− (1 + λt−δ(m))

−α]φ}θ
)

+
m∑

i=r+1

(
lnα + lnλ+ ln δ + lnφ+ ln θ − (δ + 1) ln t(i)

−(α + 1) ln(1 + λt−δ(i) ) + (φ− 1) ln[1− (1 + λt−δ(i) )
−α]

+(θ − 1) ln{1− [1− (1 + λt−δ(i) )
−α]φ}

)
. (3.2)

As in the type I right censoring scheme, the MLEs Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) are only

obtained by numerical methods.

3.3 Applications

In this section, we give some applications to real life data. Maximum likelihood

estimates of the model parameters under type I right and type II doubly censored

data are obtained and comparisons with the exponentiated Kumaraswamy-Weibull

distribution and its sub-models, which are widely used in reliability and survival data

analysis are presented. We compared EKD and its sub-models, as well as exponen-

tiated Kumaraswamy-Weibull (EKW) distribution, with the aid of the statistics: -2

Log-likelihood statistic, Akaike Information Criterion, AIC = 2p− 2 ln(L), Bayesian

Information Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Information

Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(Θ̂) is the value of the likelihood
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function evaluated at the parameter estimates, n is the number of observations, and

p is the number of estimated parameters in the model. The EKW pdf is given by

f
EKW

(x) = θabcλcxc−1e−(λx)
c

[
1− e−(λx)c

]a−1{
1−

[
1− e−(λx)c

]a}b−1
×

[
1−

{
1−

[
1− e−(λx)c

]a}b]θ−1
,

Probability plots (Chambers et al. [1]) are also presented. For the probability

plot, we plotted G
EKD

(x(j); α̂, λ̂, δ̂, φ̂, θ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j)

are the ordered values of the observed data. We also computed a measure of closeness

of each plot to the diagonal line. This measure of closeness of the plot to the diagonal

line is given by the sum of squares

SS =
n∑
j=1

[
G(x

(j)
)−

(
j − 0.375

n+ 0.25

)]2
,

where the censored data will be deleted for calculating in type I right censored data.

3.3.1 Case I: Remission Times of Cancer Patients

For the first example, we consider the data set on remission times (in months) for 137

cancer patients [21]. Estimates of the parameters for type I right censored models,

AIC, AICC, BIC, and SS are given in Table 3.1. In the plot comparing the survival

functions of the EKD, KD, D and EKW distributions with the Kaplan-Meier curve,

we see that the EKD distribution is preferred, while the other models tend to over or

underestimate, mostly overestimate the empirical curve.

Plots of the fitted densities and the histogram, hazard functions, empirical sur-

vival functions, and observed probability vs predicted probability for the remission

times data are given in Figure 3.1.

The LR test statistic of the hypothesis H0 : KD against Ha : EKD and H0 : D

against Ha : EKD are 107.9 (p-value < 0.0001) and 20.4 (p-value < 0.0001). Also,
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Figure 3.1: Type I EKD Fitted Densities, Hazard Functions, Empirical Survival

Curves and Observed Probabilities for Remission Times Data
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Table 3.1: Type I EKD Estimation for Remission Times Data

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 4.0674 52.0264 1.7826 1.425 0.1792 836.7 846.7 847.2 861.3 0.0410

(0.6287) (32.0067) (0.2623) (0.6799) (0.02053)

KD 0.1862 0.5639 7.8559 0.0577 1 944.6 952.6 952.9 964.3 2.8410

(0.05143) (0.2804) (0.1391) (0.005263) -

D 2.5445 2.5344 1.1709 1 1 857.1 863.1 863.2 871.8 0.1870

(0.8068) (1.3466) (0.1174) - -

a b c λ θ

EKW 1.1633 0.05785 2.4018 0.05674 0.1918 927.2 937.2 937.7 951.8 4.7914

(0.2468) (0.01698) (0.1602) (0.005661) (0.04479)

EKD distribution gives the smallest SS value. We can conclude that EKD is the best

fit for remission times data.

3.3.2 Case II: 2004 New Car and Truck Data

The second example consists of price of 428 new vehicles for the 2004 year (Kiplinger’s

Personal Finance, Dec 2003). After sorting the data, we note the 4 largest numbers

are far away from others. So we drop the last 4 number. As a result, 424 numbers are

analyzed, where n = 428, r = 0,m = 424. Estimates of the parameters, −2 log(L),

AIC, AICC, BIC, and SS are given in Table 3.2.

Plots of the fitted density and the histogram, and observed probability versus

predicted probability are given in Figure 3.2. The sub-model, Dagum distribution

seem to be the “superior” fit for this data, based on the plots and the statistics given

in Table 3.2.

The LR test statistic of the hypothesis H0 : KD against Ha : EKD is 489.2

(p-value < 0.0001). Dagum gives the smallest AIC, AICC, BIC and SS values.
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Table 3.2: Type II EKD Estimation for Price of Cars Data (×104)

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 0.006567 0.3440 13.7987 0.1609 16.6667 1489.9 1499.9 1500.0 1520.1 0.2816

(0.000265) (0.03825) (0.1624) (0.00789) (2.5266)

KD 9.4739 0.0027 13.5703 0.0537 1 1979.1 1987.1 1987.2 2003.3 14.8571

(1.2372) (0.000734) (0.1214) (0.00266) -

D 2.453 6.3435 2.9237 1 1 1472.4 1478.4 1478.4 1490.5 0.0478

(0.7916) (3.6931) (0.2089) - -

a b c λ θ

EKW 6.0407 0.0273 4.1272 0.2520 0.0705 1582.5 1592.5 1592.7 1612.8 3.5570

(0.1765) (0.00367) (0.07324) (0.003682) (0.003311)

Figure 3.2: Type II EKD Fitted Densities, Observed Probabilities for Price of Cars

Data
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3.4 Concluding Remarks

We employed a new class of distributions called the Exponentiated Kumaraswamy-

Dagum (EKD) distribution to fit censored data. We showed that this class of distri-

butions is competitive class of models as far as censored observations in lifetime and

reliability analysis are concerned. Estimation of the parameters of the models under

Type I right and Type II doubly censoring plans and applications are also given.



CHAPTER 4

THE LOG-EXPONENTIATED KUMARASWAMY-DAGUM

DISTRIBUTION

4.1 Introduction

The log transformation can be used to make highly skewed distribution less skewed.

This can be valuable both for making patterns in the data more interpretable and for

helping to meet the assumptions of inferential statistics. If X is any random variable,

and F is the cdf of X, then Y = log(X) is called Log-F distribution.

In this chapter, we introduce the log-exponentiated Kumaraswamy-Dagum dis-

tribution which can be useful to model lifetime data. This chapter is organized as

follows. In section 4.2, we present the log-exponentiated Kumaraswamy-Dagum dis-

tribution and its sub models, as well as series expansion, hazard and reverse hazard

functions. Moments, moment generating function, Bonferroni and Lorenz curves,

mean and median deviations, and reliability are given in section 4.3. Section 4.4

contains results on the distribution of the order statistics and measure of uncertainty.

Estimation of model parameters via the method of maximum likelihood is presented

in section 4.5. In section 4.6, various simulations are conducted for different sample

sizes followed by concluding remarks.

4.2 The Log-Exponentiated Kumaraswamy-Dagum Distribution

In this section, we present the proposed distribution and its sub-models. Series ex-

pansion, hazard and reverse hazard functions and reliability are also studied in this

section.
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4.2.1 The Log-Exponentiated Kumaraswamy-Dagum Distri-

bution

If X ∼ EKD(α, λ, δ, φ, θ), we define the Log-EKD distribution by the distribution of

Y = logX. Its density function is

g
Log−EKD(y) = αλδφθe−δy(1 + λe−δy)−α−1[1− (1 + λe−δy)−α]φ−1

× {1− [1− (1 + λe−δy)−α]φ}θ−1, (4.1)

for α, λ, δ, φ, θ > 0 and −∞ < y <∞.

The cdf of the Log-EKD distribution is

G
Log−EKD(y) = {1− [1− (1 + λe−δy)−α]φ}θ, (4.2)

for α, λ, δ, φ, θ > 0 and −∞ < y <∞.

The quantile function is given by

yq = δ−1 lnλ− δ−1 ln{[1− (1− q
1
θ )

1
φ ]−

1
α − 1}. (4.3)

Plots of the pdf for selected values of the model parameters are given in Figure

4.1.

4.2.2 Sub-models

Sub-models of the Log-EKD distribution for selected values of the parameters are

presented in this section.

1© When θ = 1, we obtain Log-Kumaraswamy-Dagum distribution with cdf:

G
Log−KD(y) = 1− [1− (1 + λe−δy)−α]φ,

for α, λ, δ, φ > 0 and −∞ < y <∞.
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Figure 4.1: Log-EKD Density Functions

2© When φ = θ = 1, we obtain Log-Dagum distribution with cdf:

G
Log−D(y) = (1 + λe−δy)−α,

for α, λ, δ > 0 and −∞ < y <∞.

3©When λ = 1, we obtain Log-exponentiated Kumarawamy-Burr III distribution

with cdf:

G
Log−EKB(y) = {1− [1− (1 + e−δy)−α]φ}θ,

for α, δ, φ, θ > 0 and −∞ < y <∞.

4©When λ = θ = 1, we obtain Log-Kumarawamy-Burr III distribution with cdf:

G
Log−KB(y) = 1− [1− (1 + e−δy)−α]φ,

for α, δ, φ > 0 and −∞ < y <∞.

5© When λ = φ = θ = 1, we obtain Log-Burr III distribution with cdf:

G
Log−B(y) = (1 + e−δy)−α,
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for α, δ > 0 and −∞ < y <∞.

6©When α = 1, we obtain Log-exponentiated Kumarawamy-Fisk or Log-exponentiated

Kumarawamy Log-logistic distribution with cdf:

G
Log−EKF (y) = {1− [1− (1 + λe−δy)−1]φ}θ,

for λ, δ, φ, θ > 0 and −∞ < y <∞.

7© When α = θ = 1, we obtain Log-Kumarawamy-Fisk or Log-Kumaraswamy

Log-logistic distribution with cdf:

G
Log−KF (y) = 1− [1− (1 + λe−δy)−1]φ,

for λ, δ, φ > 0 and −∞ < y <∞.

8© When α = φ = θ = 1, we obtain Log-Fisk or Log Log-logistic distribution

with cdf:

G
Log−F (y) = (1 + λe−δy)−1,

for λ, δ > 0 and −∞ < y <∞.

4.2.3 Series Expansion

By using equation (2.6), we obtain the series expansion of the Log-EKD distribution:

g
Log−EKD(x) =

∞∑
i=0

∞∑
j=0

ω(i, j)e−δy(1 + λe−δy)−α−αj−1, (4.4)

where ω(i, j) = αλδφθ (−1)i+jΓ (θ)Γ (φi+φ)
Γ (θ−i)Γ (φi+φ−j)i!j! .
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Figure 4.2: Log-EKD Hazard Functions

4.2.4 Hazard and Reverse Hazard Functions

The hazard function of the Log-EKD distribution is

h
Log−EKD(x) =

g
Log−EKD(x)

1−GLog−EKD(x)

= αλδφθe−δy(1 + λe−δy)−α−1[1− (1 + λe−δy)−α]φ−1

× {1− [1− (1 + λe−δy)−α]φ}θ−1

×
(

1− {1− [1− (1 + λe−δy)−α]φ}θ
)−1

. (4.5)

Plots of the hazard function are presented in Figure 4.2 for five different com-

binations of the parameter values. The graphs include increasing hazard rate and

‘sigmoidal’ shapes.

The reverse hazard function of the Log-EKD distribution is

τ
Log−EKD(x) =

g
Log−EKD(x)

G
Log−EKD(x)

= αλδφθe−δy(1 + λe−δy)−α−1[1− (1 + λe−δy)−α]φ−1

× {1− [1− (1 + λe−δy)−α]φ}−1. (4.6)
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4.3 Moments, Moment Generating Function, Bonferroni and Lorenz

Curves, Mean and Median Deviations, and Reliability

4.3.1 Moments and Moment Generating Function

The sth moment of the Log-EKD distribution is given by

E(Y s) =

∫ ∞
−∞

ysg
Log−EKD(y)dy

=
∞∑
i=0

∞∑
j=0

ω(i, j)

∫ ∞
−∞

yse−δy(1 + λe−δy)−α−αj−1dy.

Let t = (1 + λe−δy)−1, then y = δ−1 ln λt
1−t and the sth moment of the Log-EKD

distribution is given by

E(Y s) =
∞∑
i=0

∞∑
j=0

ω(i, j)δ−s−1λ−1
∫ 1

0

(
ln

λt

1− t

)s
tα+αj−1dt,

=
∞∑
i=0

∞∑
j=0

ω(i, j, s)Σ(α, λ, j, s), (4.7)

where ω(i, j, s) = ω(i, j)δ−s−1λ−1 and

Σ(α, λ, j, s) =

∫ 1

0

(
ln

λt

1− t

)s
tα+αj−1dt.

The moment generating function of the Log-EKD distribution is

M(t) =
∞∑
i=0

∞∑
j=0

∞∑
r=0

ω(i, j, r)
tr

r!
Σ(α, λ, j, r).

4.3.2 Bonferroni and Lorenz Curves

The definition of Bonferroni and Lorenz curves are given by

B(p) =
I(q)

pµ
and L(p) =

I(q)

µ
,
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where I(a) =
∫ a
−∞ y ·gLog−EKD(y)dy, µ = E(Y ) and q = G−1

Log−EKD
(p). The mean of the

Log-EKD distribution is obtained from equation (4.7) with s = 1 and the quantile

function is given in equation (4.3).

Let t(y) = (1 + λe−δy)−1, then

I(a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)Σt(a)(α, λ, j, 1),

where

Σt(a)(α, λ, j, s) =

∫ t(a)

0

(
ln

λt

1− t

)s
tα+αj−1dt.

4.3.3 Mean and Median Deviations

If Y has the Log-EKD distribution, the mean and median deviations about the mean

µ and the median M are given by

δ1 =

∫ ∞
−∞
|x− µ|g

Log−EKD(y)dy and δ2 =

∫ ∞
−∞
|x−M |g

Log−EKD(y)dy,

respectively. The measure δ1 and δ2 can be calculated by the following relationships:

δ1 = 2µG
Log−EKD(µ)− 2µ+ 2T (µ) and δ2 = 2T (M)− µ,

where T (a) =
∫∞
a
y · g

Log−EKD(y)dy follows as

T (a) =
∞∑
i=0

∞∑
j=0

ω(i, j, 1)

[
Σ(α, λ, j, 1)−Σt(a)(α, λ, j, 1)

]
.

4.3.4 Reliability

The reliability R = P (X1 > X2) when X1 and X2 have independent

Log−EKD(α1, λ1, δ1, φ1, θ1) and Log−EKD(α2, λ2, δ2, φ2, θ2) distributions is given
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by

R =

∫ ∞
−∞

g1(y)G2(y)dy

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

ζ(i, j, k, l)

∫ ∞
−∞

e−δ1y(1 + λ1e
−δ1y)−α1−α1j−1(1 + λ2e

−δ2y)−α2ldy,

where ζ(i, j, k, l) = α1λ1δ1φ1θ1
(−1)i+j+k+lΓ (θ1)Γ (φ1i+φ1)Γ (θ2+1)Γ (φ2k+1)

Γ (θ1−i)Γ (φ1i+φ1−j)Γ (θ2+1−k)Γ (φ2k+1−l)i!j!k!l! .

If λ = λ1 = λ2 and δ = δ1 = δ2, then reliability can be reduced to

R =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=0

ζ(i, j, k, l)

δλ(α1 + α1j + α2l)
.

4.4 Order Statistics and Entropy

In this section, the distribution of the kth order statistic and Rényi entropy (Rényi

[31]) for the Log-EKD distribution are presented. The entropy of a random variable

is a measure of variation of the uncertainty.

4.4.1 Order Statistics

The pdf of the kth order statistic from a pdf f(x) is

fk:n(x) =
f(x)

B(k, n− k + 1)
F k−1(x)[1− F (x)]n−k

= k

(
n

k

)
f(x)F k−1(x)[1− F (x)]n−k. (4.8)

Using equation (2.6), the pdf of the kth order statistic from Log-EKD distribution

is given by

gk:n(x) =
∞∑
i=0

∞∑
j=0

∞∑
p=0

K(i, j, p, k) · e−δy(1 + λe−δy)−α−αp−1,

where K(i, j, p, k) = (−1)i+j+pΓ (n−k+1)Γ (θk+θi)Γ (φj+φ)
Γ (n−k+1−i)Γ (θk+θi−j)Γ (φj+φ−p)i!j!p!k

(
n
k

)
αλδφθ.
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4.4.2 Entropy

Rényi entropy of a distribution with pdf f(x) is defined as

IR(τ) = (1− τ)−1 log

{∫
R
f τ (x)dx

}
, τ > 0, τ 6= 1.

Using equation (2.6), Rényi entropy of Log-EKD distribution is given by

IR(τ) = (1− τ)−1 log

[ ∞∑
i=0

∞∑
j=0

(−1)i+jΓ (θτ − τ + 1)Γ (φτ − τ + φi+ 1)

Γ (θτ − τ + 1− i)Γ (φτ − τ + φi+ 1− j)i!j!

× (αφθ)τδτ−1B(ατ + αj, τ)

]
.

for ατ + αj > 0. Rényi entropy for the sub-models can be readily obtained.

4.5 Estimation of Model Parameters

In this section, we present estimates of the parameters of the Log-EKD distribution

via method of maximum likelihood estimation. The elements of the score function are

presented. There are no closed form solutions to the nonlinear equations obtained by

setting the elements of the score function to zero. Thus, the estimates of the model

parameters must be obtained via numerical methods.

4.5.1 Maximum Likelihood Estimation

Let x = (x1, · · · , xn)T be a random sample of the Log-EKD distribution with unknown

parameter vector Θ = (α, λ, δ, φ, θ)T . The log-likelihood function for Θ is

l(Θ) = n(lnα + lnλ+ ln δ + lnφ+ ln θ)− δ
n∑
i=1

yi

− (α + 1)
n∑
i=1

ln(1 + λe−δyi) + (φ− 1)
n∑
i=1

ln[1− (1 + λe−δyi)−α]

+ (θ − 1)
n∑
i=1

ln{1− [1− (1 + λe−δyi)−α]φ}. (4.9)
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The partial derivatives of l(Θ) with respect to the parameters are

∂l

∂α
=

n

α
−

n∑
i=1

ln(1 + λe−δyi) + (φ− 1)
n∑
i=1

(1 + λe−δyi)−α ln(1 + λe−δyi)

1− (1 + λe−δyi)−α

− (θ − 1)φ
n∑
i=1

[1− (1 + λe−δyi)−α]φ−1(1 + λe−δyi)−α ln(1 + λe−δyi)

1− [1− (1 + λe−δyi)−α]φ
,

∂l

∂λ
=

n

λ
− (α + 1)

n∑
i=1

e−δyi

1 + λe−δyi

+ (φ− 1)α
n∑
i=1

(1 + λe−δyi)−α−1e−δyi

1− (1 + λe−δyi)−α

− (θ − 1)φα
n∑
i=1

[1− (1 + λe−δyi)−α]φ−1(1 + λe−δyi)−α−1e−δyi

1− [1− (1 + λe−δyi)−α]φ
,

∂l

∂δ
=

n

δ
−

n∑
i=1

yi + (α + 1)λ
n∑
i=1

e−δyiyi
1 + λe−δyi

− (φ− 1)αλ
n∑
i=1

(1 + λe−δyi)−α−1e−δyiyi
1− (1 + λe−δyi)−α

+ (θ − 1)φαλ
n∑
i=1

[1− (1 + λe−δyi)−α]φ−1(1 + λe−δyi)−α−1e−δyiyi
1− [1− (1 + λe−δyi)−α]φ

,

∂l

∂φ
=

n

φ
+

n∑
i=1

ln[1− (1 + λe−δyi)−α]

− (θ − 1)
n∑
i=1

[1− (1 + λe−δyi)−α]φ ln[1− (1 + λe−δyi)−α]

1− [1− (1 + λe−δyi)−α]φ
,

and

∂l

∂θ
=

n

θ
+

n∑
i=1

ln{1− [1− (1 + λe−δyi)−α]φ},

respectively. The MLEs of the parameters α, λ, δ, φ, and θ, say α̂, λ̂, δ̂, φ̂, and θ̂, must

be obtained by numerical methods.
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4.5.2 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the parameters of

the Log-EKD distribution. The expectations in the Fisher Information Matrix (FIM)

can be obtained numerically. Let Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) be the maximum likelihood

estimate of Θ = (α, λ, δ, φ, θ). Under the usual regularity conditions and that the

parameters are in the interior of the parameter space, but not on the boundary, we

have:
√
n(Θ̂−Θ)

d−→ N5(0, I
−1(Θ)), where I(Θ) is the expected Fisher information

matrix. The asymptotic behavior is still valid if I(Θ) is replaced by the observed in-

formation matrix evaluated at Θ̂, that is J(Θ̂). The multivariate normal distribution

N5(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct

confidence intervals and confidence regions for the individual model parameters and

for the survival and hazard rate functions.

The approximate 100(1− η)% two-sided confidence intervals for α, λ, δ, φ and θ

are given by:

α̂± Z η
2

√
I−1αα (Θ̂), λ̂± Z η

2

√
I−1λλ (Θ̂), δ̂ ± Z η

2

√
I−1δδ (Θ̂)

φ̂± Z η
2

√
I−1φφ (Θ̂), and θ̂ ± Z η

2

√
I−1θθ (Θ̂)

respectively, where Z η
2

is the upper η
2
th percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the Log-EKD

distribution with its sub-models for a given data set. For example, to test θ = 1, the

LR statistic is

ω = 2[ln(L(α̂, λ̂, δ̂, φ̂, θ̂))− ln(L(α̃, λ̃, δ̃, φ̃, 1))],

where α̂, λ̂, δ̂, φ̂ and θ̂ are the unrestricted estimates, and α̃, λ̃, δ̃ and φ̃ are the

restricted estimates. The LR test rejects the null hypothesis if ω > χ2
d
, where χ2

d

denote the upper 100d% point of the χ2 distribution with 1 degrees of freedom.
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4.6 Simulation Study

In this section, we examine the performance of the Log-EKD distribution by con-

ducting various simulations for different sizes (n=200, 400, 800, 1200) via the sub-

routine NLP in SAS. We simulate 2000 samples for the true parameters values

I : α = 2, λ = 1, δ = 3, φ = 2, θ = 2 and II : α = 1, λ = 1, δ = 1, φ = 1, θ = 1. Table

4.1 lists the means MLEs of the five model parameters along with the respective root

mean squared errors (RMSE). From the results, we can verify that as the sample

size n increases, the mean estimates of the parameters tend to be closer to the true

parameter values, since RMSEs decay toward zero.

4.7 Applications

In this section, we present examples to illustrate the flexibility of the Log-EKD dis-

tribution and its sub-models.

The maximum likelihood estimates (MLEs) of the Log-EKD parameters α, λ,

δ, φ, and θ are computed by maximizing the objective function via the subroutine

NLMIXED in SAS. The estimated values of the parameters (standard error in paren-

thesis), -2log-likelihood statistic, Akaike Information Criterion, AIC = 2p− 2 ln(L),

Bayesian Information Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike

Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value of

the likelihood function evaluated at the parameter estimates, n is the number of

observations, and p is the number of estimated parameters are presented in Ta-

ble 4.2, 4.3 and 4.5. Also, values of the Kolmogorov-Smirnov statistic, KS =

max1≤i≤n{GLog−EKD(x(i)) − i−1
n
, i
n
− G

Log−EKD(x(i))}, and the sum of squares SS =∑n
j=1

[
G
Log−EKD(x(j))−

(
j − 0.375

n+ 0.25

)]2
are presented. These statistics are used to

compare the distributions presented in these tables. Plots of the fitted densities and
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Table 4.1: Log-EKD Monte Carlo Simulation Results

I II

n Parameter Mean RMSE Mean RMSE

200 α 4.413567 3.975001597 1.7936395 1.999236829

λ 1.3590802 2.660520645 1.4262762 1.506448705

δ 3.1165707 2.601430068 1.0336256 0.58947307

φ 5.7306381 6.543780841 2.463487 3.692871552

θ 4.5556804 4.304073408 2.8852635 3.689011832

400 α 3.6016435 3.077083246 1.5472599 1.516016227

λ 1.1189229 0.900938233 1.1378167 0.730888227

δ 2.9330833 1.821683864 1.0064811 0.377391441

φ 4.7024933 5.282620694 1.5487748 1.874007577

θ 4.1166788 3.615296336 2.4197854 2.969633816

800 α 3.1044653 2.416169282 1.4362126 1.279387041

λ 1.0625975 0.60917083 1.043214 0.346919155

δ 2.8962218 1.367997003 1.0017939 0.250660128

φ 3.7409284 3.911557669 1.1763134 0.763548623

θ 3.4876455 2.746251136 1.9721072 2.195744771

1200 α 2.8414335 2.059748577 1.3876676 1.167100296

λ 1.0429831 0.501683566 1.0217614 0.258797025

δ 2.9150681 1.133929716 1.0014528 0.193822599

φ 3.1775145 3.051107995 1.0836516 0.3923371

θ 3.1649001 2.349326286 1.7327449 1.789785015
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Table 4.2: Log-EKD Estimation for Traffic Data

Estimates Statistics

Model α λ δ φ θ -2 Log L AIC AICC BIC SS KS

Log-EKD 23.7377 0.8084 0.3006 0.0944 0.2837 674.8 684.8 685.6 697.0 0.0750 0.0581

(19.6741) (0.8897) (0.01182) (0.02677) (0.08761)

Log-KD 47.9714 0.04924 0.2754 0.1906 1 689.4 697.4 697.9 707.1 0.5419 0.1392

(38.6781) (0.04179) (0.01133) (0.02293) -

Log-D 4.2567 0.7007 0.07852 1 1 731.3 737.3 737.6 744.6 0.6941 0.1648

(2.5951) (0.5251) (0.008062) - -

Log-Fisk 1 4.3565 0.08595 1 1 756.4 760.4 760.5 765.2 0.7132 0.2215

- (0.9326) (0.008169) - -

the histogram of the data are given in Figures 4.3, 4.4 and 4.5. Probability plots

(Chambers et al. [1]) are also presented in above Figures. For the probability plot,

we plotted G
Log−EKD(x(j); α̂, λ̂, δ̂, φ̂, θ̂) against

j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j)

are the ordered values of the observed data.

The first example consists of the length of intervals between the times at which

vehicles pass a point on a road [16]. Initial values for Log-EKD model in SAS code

are α = 0.15, λ = 0.0001, δ = 0.001, φ = 0.1, θ = 1.5. Estimates of the parameters

of Log-EKD distribution and its related sub-models (standard error in parentheses),

AIC, AICC, BIC, KS and SS for traffic data are given in Table 4.2. The estimated

covariance matrix for Log-EKD distribution is given by:



387.07 −15.7106 −0.1793 0.06776 0.1128

−15.7106 0.7916 0.009276 −0.00938 −0.0361

−0.1793 0.009276 0.00014 −0.00012 −0.00044

0.06776 −0.00938 −0.00012 0.000716 0.001674

0.1128 −0.0361 −0.00044 0.001674 0.007675


The 95% asymptotic confidence intervals are: α ∈ 23.7377 ± 1.96(19.6741), λ ∈
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0.8084 ± 1.96(0.8897), δ ∈ 0.3006 ± 1.96(0.01182), φ ∈ 0.0944 ± 1.96(0.02677) and

θ ∈ 0.02837± 1.96(0.08761).

Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function for the traffic data are given in Figure

4.3.

The LR test statistic of the hypothesis H0: Log-KD against Ha: Log-EKD and

H0: Log-D against Ha: Log-EKD are 14.6 (p-value < 0.0002) and 56.5 (p-value

< 0.0001). We can conclude that there is a significant difference between Log-EKD

and Log-KD, Log-D distributions.

Table 4.3: Log-EKD Estimation for Active Repair Times (hours) Data

Estimates Statistics

Model α λ δ φ θ -2 Log L AIC AICC BIC SS KS

Log-EKD 1.621 1.1789 1.4754 0.1845 0.9213 197.5 207.5 209.2 215.9 0.1657 0.1364

(0.7701) (0.7553) (0.04401) (0.04319) (0.3424)

Log-KD 1.702 1.3545 1.4934 0.1964 1 197.4 205.4 206.6 212.2 0.2395 0.1350

(0.8004) (0.8303) (0.04107) (0.03373) -

Log-D 5.2301 0.542 0.4223 1 1 214.4 220.4 221.0 225.4 0.3268 0.1624

(4.5503) (0.5578) (0.06166) - -

Log-Fisk 1 4.11 0.4658 1 1 228.1 232.1 232.5 235.5 0.3354 0.2350

- (1.2575) (0.06454) - -

The second example consists of the active repair times (hours) for an airborne

communication transceiver [16]. Initial value for Log-EKD model in SAS code are

α = 1, λ = 0.1, δ = 0.1, φ = 0.1, θ = 1. Estimates of the parameters of Log-EKD

distribution and its related sub-models (standard error in parentheses), AIC, AICC,

BIC, KS and SS are given in Table 4.3. The estimated covariance matrix for Log-EKD
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model is given by:

0.5931 0.05057 0.00937 −0.00866 −0.1506

0.05057 0.5705 0.02152 −0.00977 −0.1677

0.00937 0.02152 0.001937 −0.00059 −0.00803

−0.00866 −0.00977 −0.00059 0.001865 0.009607

−0.1506 −0.1677 −0.00803 0.009607 0.1173


Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function are given in Figure 4.4.

The LR test statistic of the hypothesis H0: Log-D against Ha: Log-EKD is 16.9

(p-value = 0.0002). We can conclude that there is a significant difference between Log-

EKD and Log-D. There is no significant difference between Log-EKD and Log-KD

distributions. Log-KD gives the smallest AIC, AICC, BIC values and comparatively

small SS, KS value, except for the Log-EKD model. We conclude that the Log-KD

distribution provides the “best” fit for the active repair times data.

The third example represents INPC data and is given in Table 4.4. The INPC is

a national index of consumer prices in Brazil, produced since 1979. Collection period

extends from day 01 to 30 of the reference month. INPC measures the cost of living

of households with heads employees. Initial value for Log-EKD model in SAS code

are α = 0.1, λ = 0.1, δ = 0.1, φ = 0.1, θ = 1. Estimates of the parameters of Log-EKD

distribution and its related sub-models (standard error in parentheses), AIC, AICC,

BIC SS and KS are given in Table 4.5. The estimated covariance matrix for Log-EKD
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Table 4.4: INPC Data

0.69 0.97 0.43 0.30 0.25 0.59 0.32 0.31 0.26 0.26

0.44 0.42 0.49 0.62 0.42 0.43 0.16 -0.02 0.11 -0.07

0.13 0.12 0.27 0.23 0.38 0.40 0.54 0.58 0.15 0.00

0.03 -0.11 0.70 0.91 0.73 0.44 0.57 0.86 0.44 0.17

0.17 0.50 0.73 0.50 0.40 0.41 0.57 0.39 0.83 0.54

0.37 0.39 0.82 0.18 0.04 -0.06 0.99 1.38 1.37 1.46

2.47 2.70 3.39 1.57 0.83 0.86 1.15 0.61 0.09 0.68

0.62 0.31 1.07 0.74 1.29 0.94 0.44 0.79 1.11 0.60

0.57 0.84 0.48 0.49 0.77 0.55 0.29 0.16 0.43 1.21

1.39 0.30 -0.05 0.09 0.13 0.05 0.61 0.74 0.94 0.96

0.39 0.55 0.74 0.07 0.05 0.47 1.28 1.29 0.65 0.42

-0.18 0.11 -0.31 -0.49 -0.28 0.15 0.72 0.45 0.49 0.54

0.85 0.57 0.15 0.29 0.10 -0.03 0.18 0.35 0.11 0.60

0.68 0.45 0.81 0.33 0.34 0.38 0.02 0.50 1.20 1.33

1.28 0.93 0.29 0.71 1.46 1.65 1.51 1.40 1.17 1.02

2.46 2.18 2.10 2.49 1.62 1.01 1.44
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Table 4.5: Log-EKD Estimation for INPC Data

Estimates Statistics

Model α λ δ φ θ -2 Log L AIC AICC BIC SS KS

Log-EKD 3.6042 3.503 5.283 0.3042 0.4004 232.1 242.1 242.5 257.4 0.0274 0.0388

(9.6258) (6.0352) (4.3398) (0.2153) (0.6422)

Log-KD 1.0054 3.0204 7.2134 0.2569 1 232.5 240.5 240.8 252.8 0.0343 0.0405

(0.4941) (2.4859) (1.5043) (0.05679)

Log-D 4.5406 0.7089 2.5971 1 1 239.9 245.9 246.0 255.0 0.1239 0.0699

(3.0103) (0.5982) (0.2457)

Log-Fisk 1 6.4846 3.2693 1 1 263.8 267.8 267.9 273.9 0.2485 0.0785

(1.1577) (0.2217)

model is given by:

92.6562 −46.5209 −40.5145 1.7494 −5.9026

−46.5209 36.4231 23.296 −1.1953 2.2874

−40.5145 23.296 18.8336 −0.8782 2.4294

1.7494 −1.1953 −0.8782 0.04635 −0.0944

−5.9026 2.2874 2.4294 −0.0944 0.4124


Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function are given in Figure 4.5.

There is no significant difference between the Log-EKD and Log-KD distribu-

tions, however Log-KD gives smaller AIC, AICC, BIC values, and second smallest

SS, KS values. So Log-KD distribution provides the “best” fit for this data.
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4.8 Concluding Remarks

We have proposed and presented results on a new class of distributions called the Log-

EKD distribution. This class of distributions have applications in cost and lifetime

data analysis. Properties of this class of distributions including the series expansion

of pdf, cdf, moments, hazard function, reverse hazard function, income inequality

measures such as Lorenz and Bonferroni curves are derived. Rényi entropy, order

statistics, reliability, mean and median deviations are presented. Estimation of the

parameters of the models and applications are also given.
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Figure 4.3: Log-EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Traffic Data
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Figure 4.4: Log-EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Active Repair Times
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Figure 4.5: Log-EKD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for INPC Data



CHAPTER 5

THE MCDONALD LOG-LOGISTIC DISTRIBUTION

5.1 Introduction

The log-logistic distribution is a very useful distribution with applications in several

areas including survival analysis, hydrology and economics. There are several gener-

alizations of this distribution including the beta log-logistic, presented by Lamonte

[20] following the generator approach introduced by Eugene et al. [9]. In this note,

we present the McDonald log-logistic distribution and its statistical properties with

applications to lifetime data. Some McDonald generalized distributions in the liter-

ature include work by Cordeiro et al. [4] on the McDonald extended distributions

generalizing the exponential, generalized exponential, Kumaraswamy exponential and

beta exponential distributions, and the McDonald Normal distribution by Cordeiro

et al. [2]. Recently, Merovci and Elbatal [24] generalized the Sarhan and Zaindin [34]

three parameters modified Weibull distribution via the McDonald distribution. See

references therein for additional results. More recently, Cordeiro et al. [3] developed

the five parameters McDonald Weibull distribution and applied the log-McDonald

Weibull regression model to censored data.

In this chapter, we present the McDonald log-logistic distribution, which is more

flexible distribution than the log-logistic and beta log-logistic distributions, and show

that it is an appealing alternative to several lifetime models including the gamma,

McDonald Weibull and its sub-models including the beta Weibull distribution.

The log-logistic distribution, also called Fisk distribution, has the pdf and cdf:

G
LLog

(x) = (1 + λx−δ)−1, (5.1)
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and

g
LLog

(x) =
λδx−δ−1

(1 + λx−δ)2
, (5.2)

respectively. The rth moments for r < δ is given by

E (Xr) = λ
r
δB
(

1 +
r

δ
, 1− r

δ

)
, (5.3)

where B(·, ·) is the beta function.

This chapter is organized as follows. In section 5.2, we obtain the McLLog distri-

bution and discuss some of its statistical and mathematical properties. In section 5.3,

moments and moment generating function of the McLLog distribution are presented.

Bonferroni and Lorenz curves are obtained in section 5.4. The mean and median

deviations are given in section 5.5. Section 5.6 contains results on the distribution of

the order statistics and measures of uncertainty. Estimation of model parameters via

the method of maximum likelihood is given in section 5.7. In Section 5.8, various sim-

ulations are conducted for different sample sizes. Section 5.9 contains examples and

applications of the McLLog distribution and its sub-models, followed by concluding

remarks.

5.2 The McDonald Log-logistic Distribution

In this section, we consider a generalization of the Log-logistic distribution via Mc-

Donald distributions.

5.2.1 The McDonald Log-logistic Distribution

Let G denotes a baseline cdf of a random variable X, then the class of Mc-G distri-

bution is defined as

F
McG

(x) = I
Gc(x)

(ac−1, b) =
1

B(ac−1, b)

∫ Gc(x)

0

wac
−1−1(1− w)b−1dw, (5.4)
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for a, b, c > 0, where Iy(a, b) = By(a,b)

B(a,b)
is the incomplete beta function ratio, (Grad-

shteyn and Ryzhik [13]). By(a, b) =
∫ y
0
wa−1(1 − w)b−1dw is the incomplete beta

function, B(a, b) = Γ (a)Γ (b)/Γ (a + b) is the beta function, and Γ (.) is the gamma

function. The pdf corresponding to equation (5.4) is of the form

f
McG

(x) =
cg(x)

B(ac−1, b)
Ga−1(x)[1−Gc(x)]b−1. (5.5)

Note that g(x) is tractable when the cdf G(x) and its pdf g(x) = dG(x)/dx have

simple analytic forms. The additional shape parameters allows for the introduction

of skewness and variation of tail weight. When c = 1, we obtain the beta log-

logistic distribution and when a = c, the resulting distribution is the Kumaraswamy

generalization. We define the McLLog distribution by taking G(x) = G
LLog

(x) to be

the LLog distribution in equation (5.1). The McLLog cdf and pdf are therefore given

by

F
McLLog

(x; a, b, c, λ, δ) =
1

B(ac−1, b)

∫ (1+λx−δ)−c

0

ωac
−1−1(1− ω)b−1dω

= I
(1+λx−δ)−c

(ac−1, b), (5.6)

and

f
McLLog

(x; a, b, c, λ, δ) =
cλδ

B(ac−1, b)
x−δ−1(1 + λx−δ)a−1[1− (1 + λx−δ)−c]b−1, (5.7)

for a, b, c, λ, δ > 0 and x > 0, respectively. The quantile function is

xq =

{[(
I−1q (ac−1, b)

)− 1
c

− 1

]
1

λ

}− 1
δ

. (5.8)

Graphs of the pdf of McLLog distribution are given in Figure 5.1 for selected

values of the parameters. The plots show that the McLLog pdf can be decreasing or

right skewed. The distribution has positive asymmetry.
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Figure 5.1: McLLog Density Functions

5.2.2 Sub-models

In this section, some sub-models of the McLLog distribution are presented.

1© When c = 1 we obtain the beta log-logistic (BLLog) distribution with cdf

F
BLLog

(x) = I
(1+λx−δ)−1

(a, b),

for a, b, λ, δ > 0 and x > 0.

2© When b = c = 1, we get exponentiated log-logistic (ELLog) or Dagum distri-

bution with cdf

F
ELLog

(x) = (1 + λx−δ)−a,

for a, λ, δ > 0 and x > 0.

3© When a = b = c = 1, the log-logistic (LLog) distribution is obtained with the

cdf
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F
LLog

(x) = (1 + λx−δ)−1,

for λ, δ > 0 and x > 0.

5.2.3 Series Expansion

In this section , we apply the series expansion

(1− z)b−1 =
∞∑
j=0

(−1)jΓ (b)

Γ (b− j)j!
zj, (5.9)

for b > 0 and |z| < 1, to obtain a series representation of the McLLog pdf:

f
McLLog

(x; a, b, c, λ, δ) =
∞∑
i=0

ω(i)x−δ−1(1 + λx−δ)−a−ci−1, (5.10)

where ω(i) = (−1)iΓ (b)
Γ (b−i)i! ·

cλδ
B(ac−1,b)

.

5.2.4 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the McLLog distribution are given by

h
McLLog

(x; a, b, c, λ, δ) =
f
McLLog

(x; a, b, c, λ, δ)

1− F
McLLog

(x; a, b, c, λ, δ)

=
cλδ

B(ac−1, b)
x−δ−1(1 + λx−δ)−a−1[1− (1 + λx−δ)−c]b−1

×
[
1− I

(1+λx−δ)−c
(ac−1, b)

]−1
(5.11)

and

τ
McLLog

(x; a, b, c, λ, δ) =
f
McLLog

(x; a, b, c, λ, δ)

F
McLLog

(x; a, b, c, λ, δ)

=
cλδ

B(ac−1, b)
x−δ−1(1 + λx−δ)−a−1[1− (1 + λx−δ)−c]b−1

×
[
I
(1+λx−δ)−c

(ac−1, b)

]−1
, (5.12)
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Figure 5.2: McLLog Hazard Functions

respectively. Plots of the hazard function for selected values of the parameters are

given in Figure 5.2. The plot shows various shapes including monotonically decreas-

ing, unimodal, and upside down bathtub shapes for five combinations of the values

of the parameters. This flexibility makes the McLLog hazard rate function suitable

for both monotonic and non-monotonic empirical hazard behaviors that are likely to

be encountered in real life situations.

5.2.5 Mean Residual Life Function

The mean residual life function (MRLF) of a distribution F is given by µ(t) = EF (X−

t|X ≥ t). Setting u(x) = (1 +λx−δ)−1 in the series expansion of the McLLog pdf, the
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MRLF of the McLLog distribution is given by

µ(t) =

∫∞
t

(x− t)f
McLLog

(x)dx∫∞
t
f
McLLog

(x)dx

=

∑∞
i=0 ω(i)

∫∞
t

(x− t)x−δ−1(1 + λx−δ)−a−ci−1dx

1−G
McLLog

(t; a, b, c, λ, δ)

=

∑∞
i=0 ω(i)∆(t, i)

1−G
McLLog

(t; a, b, c, λ, δ)
, (5.13)

where

∆(t, i) = λ
1
δ
−1δ−1

[
B

(
a+ ci+

1

δ
, 1− 1

δ

)
−Bu(t)

(
a+ ci+

1

δ
, 1− 1

δ

)]
− t

λδ(a+ ci)

[
1− u(t)a+ci

]
.

5.3 Moments and Moment Generating Function

In this section, we present the moments and moment generating function of the

McLLog distribution. The sth non-central moment of the McLLog distribution is

given by

E(Xs) =

∫ ∞
0

xs ·
∞∑
i=0

ω(i)x−δ−1(1 + λx−δ)−a−ci−1dx

=
∞∑
i=0

ω(i)λ
s
δ
−1δ−1B

(
a+ ci+

s

δ
, 1− s

δ

)
=

∞∑
i=0

ω(s, i)B

(
a+ ci+

s

δ
, 1− s

δ

)
, (5.14)

for s < δ, where ω(s, i) = (−1)iΓ (b)
Γ (b−i)i! ·

cλ
s
δ

B(ac−1,b)
.

The moment generating function of the McLLog distribution is given by

M(t) =
∞∑
r=0

∞∑
i=0

tr

r!
ω(r, i)B

(
a+ ci+

r

δ
, 1− r

δ

)
, (5.15)

for r < δ.
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5.4 Bonferroni and Lorenz Curves

In this section, inequality measures, namely Bonferroni and Lorenz curves, are pre-

sented. Bonferroni and Lorenz curves have played basic roles, for example, in the

analysis of income concentration and earning inequality.

Let I(q) =
∫ q
0
x · f

McLLog
(x)dx, ν = E(X) and q = F−1(p), then Bonferroni and

Lorenz curves are given by

B(p) =
I(q)

pν
and L(p) =

I(q)

ν
,

respectively. Letting u(x) = (1 + λx−δ)−1, then

I(q) =
∞∑
i=0

ω(1, i)Bu(q)

(
a+ ci+

1

δ
, 1− 1

δ

)
, (5.16)

for δ > 1. Also, the mean ν of the McLLog distribution is

ν =

∫ ∞
0

x · g(x)dx =
∞∑
i=0

ω(1, i)B

(
a+ ci+

1

δ
, 1− 1

δ

)
, (5.17)

for δ > 1.

Graphs of Bonferroni and Lorenz curves for selected values of the model param-

eters are given in Figure 5.3.

5.5 Mean and Median Deviations

If X has the McLLog distribution, we can derive the mean deviation about the mean

ν = E(X) and the median deviation about the median M from

δ1 =

∫ ∞
0

|x− ν| f
McLLog

(x)dx and δ2 =

∫ ∞
0

|x−M | f
McLLog

(x)dx,

respectively. The mean ν is obtained in equation (5.17) and the median M can be

given by x0.5 from equation (5.8). Also, these measures can be calculated by the

following relationships

δ1 = 2ν F
McLLog

(ν)− 2ν + 2T (ν) and δ2 = 2T (M)− ν,
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Figure 5.3: McLLog Bonferroni and Lorenz Curves

where T (a) =
∫∞
a
x · f

McLLog
(x)dx follows from equation (5.16) as

T (a) =
∞∑
i=0

ω(1, i)

[
B

(
a+ ci+

1

δ
, 1− 1

δ

)
−Bu(q)

(
a+ ci+

1

δ
, 1− 1

δ

)]
.

5.6 Order Statistics and Entropy

In this section, the distribution of the kth order statistic and measures of uncertainty

including Rényi entropy are presented.

5.6.1 Order Statistics

The pdf of the kth order statistic from a pdf f(x) is given by

fk:n(x) =
f(x)

B(k, n− k + 1)
F k−1(x)[1− F (x)]n−k

= k

(
n

k

)
f(x)F k−1(x)[1− F (x)]n−k.

Note that

[
1 − F (x)

]n−k
=
∑∞

j=0
(−1)jΓ (n−k+1)
Γ (n−k+1−j)j! F

j(x), where n − k + 1 > 0 and

0 6 F (x) 6 1. The pdf of the kth order statistic from the McLLog distribution is
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given by

fk:n(x) =
∞∑
i=0

∞∑
j=0

ω(i)
(−1)jΓ (n− k + 1)

Γ (n− k + 1− j)j!
k

(
n

k

)
x−δ(1 + λx−δ)−a−ci−1

×
(
I
(1+λx−δ)−c

(ac−1, b)

)k+i−1
.

5.6.2 Entropy

Rényi entropy is given by

IR(τ) = (1− τ)−1 log

[ ∫
R

f τ (x)dx

]
,

for τ > 0 and τ 6= 1. Note that the τ th power of the McLLog density has the series

representation

f τ
McLLog

(x) =
∞∑
i=0

(−1)iΓ (bτ − τ + 1)

Γ (bτ − τ + 1− i)i!

(
cλδ

B(ac−1, b)

)τ
× x−(δ+1)τ (1 + λx−δ)−aτ−τ−ci.

Let u(x) = (1+λx−δ)−1, then Rényi entropy for the McLLog distribution is given

by

IR(τ) = (1− τ)−1 log

{ ∞∑
i=0

(−1)iΓ (bτ − τ + 1)

Γ (bτ − τ + 1− i)i!

(
c

B(ac−1, b)

)τ
λ−

τ
δ
+ 1
δ δτ−1

× B

(
aτ + ci− τ

δ
+

1

δ
, τ +

τ

δ
− 1

δ

)}
. (5.18)

5.7 Estimation of Model Parameters

In this section, we present estimates of the parameters of the McLLog distribution

via the method of maximum likelihood estimation.
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5.7.1 Maximum Likelihood Estimation

Let x = (x1, · · · , xn)T be a random sample of the McLLog distribution with unknown

parameter vector Θ = (a, b, c, λ, δ)T . The log-likelihood function is

l(Θ) = n(ln c+ lnλ+ ln δ − lnB(ac−1, b))

− (δ + 1)
n∑
i=1

lnxi − (a+ 1)
n∑
i=1

ln(1 + λx−δi )

+ (b− 1)
n∑
i=1

ln[1− (1 + λx−δi )−c]. (5.19)

The partial derivative of l(Θ) with respect to the parameters are:

∂l

∂a
= −n

c

(
ψ(ac−1)− ψ(ac−1 + b)

)
−

n∑
i=1

ln(1 + λx−δi ),

∂l

∂b
= −n

(
ψ(b)− ψ(ac−1 + b)

)
+

n∑
i=1

ln

[
1− (1 + λx−δi )−c

]
,

∂l

∂c
=

n

c
+
na

c2

(
ψ(ac−1)− ψ(ac−1 + b)

)
+ (b− 1)

n∑
i=1

(1 + λx−δi )−c ln(1 + λx−δi )

[
1− (1 + λx−δi )−c

]−1
,

∂l

∂λ
=

n

λ
− (a+ 1)

n∑
i=1

x−δi (1 + λx−δi )−1

+ (b− 1)c
n∑
i=1

x−δi (1 + λx−δi )−c−1[1− (1 + λx−δi )−c]−1,

and

∂l

∂δ
=

n

δ
−

n∑
i=1

lnxi + (a+ 1)λ
n∑
i=1

x−δi lnxi(1 + λx−δi )−1

− (b− 1)cλ
n∑
i=1

x−δi lnxi(1 + λx−δi )−c−1[1− (1 + λx−δi )−c]−1.
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The maximum likelihood estimates (MLEs) of the parameters a, b, c, λ and δ,

says â, b̂, ĉ, λ̂ and δ̂ are obtained by solving the following equations ∂l
∂a

= ∂l
∂b

= ∂l
∂c

=

∂l
∂λ

= ∂l
∂δ

= 0. A numerical technique must be applied, since there is no closed form

solution to these equations.

5.7.2 Asymptotic Confidence Intervals

In this section, asymptotic confidence intervals for the McLLog distribution are pre-

sented. Let Θ̂ = (â, b̂, ĉ, λ̂, δ̂) be the MLE of Θ. Under the usual regularity conditions

and that the parameters are in the interior of the parameter space, but not on the

boundary, we have:
√
n(Θ̂ − Θ)

d−→ N5(0, I
−1(Θ)), where I(Θ) is the expected

Fisher information matrix. The asymptotic behavior is still valid if I(Θ) is replaced

by the observed information matrix evaluated at Θ̂, that is J(Θ̂). Elements of the

observed information matrix are available from the authors upon request. The multi-

variate normal distribution N5(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T ,

can be used to construct confidence intervals and confidence regions for the individual

model parameters and for the survival and hazard rate functions. The approximate

100(1− η)% two-sided confidence intervals for a, b, c, λ, and δ are given by:

â± Z η
2

[
V̂ ar(â)

] 1
2

, b̂± Z η
2

[
V̂ ar(b̂)

] 1
2

, ĉ± Z η
2

[
V̂ ar(ĉ)

] 1
2

,

λ̂± Z η
2

[
V̂ ar(λ̂)

] 1
2

, and δ̂ ± Z η
2

[
V̂ ar(δ̂)

] 1
2

respectively, where V̂ ar(·) is the diagonal element of J(Θ̂)−1 for each parameter and

Z η
2

is the upper η
2
th percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the McLLog

distribution with its sub-models for a given data set. For example, to test b = c = 1,
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the LR statistic is

ω = 2[ln(L(â, b̂, ĉ, λ̂, δ̂))− ln(L(ã, 1, 1, λ̃, δ̃))],

where â, b̂, ĉ, λ̂ and δ̂ are the unrestricted estimates, and ã, λ̃ and δ̃ are the restricted

estimates. The LR test rejects the null hypothesis if ω > χ2
d
, where χ2

d
denote the

upper 100d% point of the χ2 distribution with 2 degrees of freedom.

5.8 Simulation Study

In this section, we examine the performance of the McLLog distribution by conducting

various simulations for different sample sizes. We simulate 1000 samples for the true

parameters values I : a = 2, b = 1, c = 3, λ = 4, δ = 2 and II : a = 1, b = 1, c =

1, λ = 1, δ = 1. Table 5.1 lists the mean MLEs of the five parameters along with their

respective root mean squared errors (RMSE) for sample sizes n = 50, n = 100, n = 200

and n = 400. For a parameter θ and its estimate θ̂, RMSE is given by

RMSE(θ) =

√√√√ 1

n

n∑
i=1

(θ̂ − θ)2.

In our case, n = 1000 is sample number. From the results Table 5.1, we can verify

that as the sample size n increases, the mean estimates of the parameters tend to be

closer to the true parameter values, since RMSEs decay toward zero.

5.9 Applications

In this section, we present applications of McLLog distribution to real data, as well

as comparison of the distribution with its sub-models, Weibull, McDonald Weibull

(McW), beta Weibull (BW) and gamma distributions.The cdfs of these distributions

are given by

F
Weibull

(x; k, λ) = 1− e−(x/λ)k ,
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Table 5.1: McLLog Monte Carlo Simulation Results

I II

n Parameter Mean RMSE Mean RMSE

50 a 2.5366677 0.953764594 1.2147011 0.591153618

b 1.7247068 1.63386407 1.2435729 0.742338198

c 2.541612 0.971367129 0.8496807 0.463244428

λ 3.8753448 0.813458604 1.1902982 0.723070467

δ 1.960098 0.717810351 1.1232576 0.517693346

100 a 2.273306 0.612963213 1.1549044 0.495121601

b 1.3439854 1.060377008 1.1414762 0.566895581

c 2.7627228 0.663192506 0.8665471 0.384943243

λ 3.8767538 0.621510257 1.0991431 0.534468615

δ 1.9754614 0.488438123 1.0789402 0.387445867

200 a 2.1230394 0.369084679 1.1051537 0.411659932

b 1.1425864 0.562945823 1.0876159 0.419099869

c 2.8907186 0.416792274 0.8956349 0.321894237

λ 3.9543896 0.518317277 1.0643899 0.383613999

δ 1.990635 0.320518642 1.0536146 0.304602528

400 a 2.0636928 0.222489326 1.0800026 0.338342282

b 1.0607148 0.28944084 1.0701165 0.341335758

c 2.9485626 0.230661657 0.9186915 0.275012545

λ 3.9463409 0.397750047 1.0426499 0.269199554

δ 1.9905656 0.212761134 1.0278817 0.236813429
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F
McW

(x; k, λ, a, b, c) =
1

B(ac−1, b)

∫ F c
Weibull

(x;k,λ)

0

wac
−1−1(1− w)b−1dw,

F
BW

(x; k, λ, a, b) =
1

B(a, b)

∫ F
Weibull

(x;k,λ)

0

wa−1(1− w)b−1dw,

and

F
Gamma

(x;α, β) =
1

Γ (α)
γ(α, βx),

respectively.

The maximum likelihood estimates (MLEs) of the parameters are computed by

maximizing the objective function via the subroutine NLMIXED in SAS. The es-

timated values of the parameters (standard error in parenthesis), -2 log-likelihood

statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information

Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Information Criterion,

AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(Θ̂) is the value of the likelihood function eval-

uated at the parameter estimates, n is the number of observations, and p is the num-

ber of estimated parameters for the McLLog distribution and its sub-distributions.

A measure of closeness of the plot to the diagonal line given by the sum of squares

SS =
n∑
j=1

[
F (x

(j)
)−

(
j − 0.375

n+ 0.25

)]2
was calculated for each plot. The plot with the smallest SS corresponds to the model

with points that are closer to the diagonal line. We also obtained Kolmogorov-

Smirnov (KS) statistic (smaller is better) for each model, where

KS = max
1≤i≤n

{
F (xi)−

i− 1

n
,
i

n
− F (xi)

}
.

The first example represents the remission times (in months) of a random sample

of 128 bladder cancer patients reported in Lee and Wang [21], where 9 censored

observations have been removed. Initial values for McLLog model in SAS code are

a = 1, b = 1, c = 2, λ = 0.023 and δ = 1. Estimates of the parameters, AIC, AICC,
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Table 5.2: McLLog Estimation for Remission Times Data

Estimates Statistics

Distribution a b c λ δ -2 Log Likelihood AIC AICC BIC SS KS

McLLog 3.7812 51.8809 1.2523 25.3143 0.505 821.4 831.4 831.9 845.6 0.0374 0.0453

(0.2105) (0.09516) (0.04213) (3.3147) (0.03542)

BLLog 63.2938 342.68 1 6.8431 0.1299 827.3 835.3 835.6 846.7 0.0843 0.0549

(0.1879) (0.1148) - (0.1365) (0.008203)

ELLog 1.1892 1 1 12.1923 1.5563 825.8 831.8 832.0 840.3 0.0703 0.0565

(0.2385) - - (5.6362) (0.1376)

LLog 1 1 1 11.2011 1.5048 830.2 834.2 834.3 839.9 0.5669 0.1141

- - - (2.0498) (0.0953)

k λ

Weibull 1.0478 9.5607 828.2 832.2 832.3 837.9 0.1499 0.0700

(0.06758) (0.8529)

k λ a b c

McW 0.4755 3.823 3.9874 2.424 4.9933 821.1 831.1 831.6 845.4 0.0358 0.0448

(0.05287) (1.7312) (1.1422) (0.149) (1.4181)

k λ a b

BW 0.6662 3.1098 2.7346 0.9082 821.4 829.4 829.7 840.8 0.0382 0.0449

(0.06853) (1.4446) (0.5328) (0.2885)

α β

Gamma 1.1725 0.1252 826.7 830.7 830.8 836.4 0.1326 0.0733

(0.1308) (0.01731)
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Figure 5.4: McLLog Fitted Densities, Observed Probabilities for Remission Times

Data

BIC, SS and KS are given in Table 5.2. Plots of the fitted density and observed

vs expected probability are given in Figure 5.4. The estimated covariance matrix is

given by: 

0.04432 −0.0323 −0.00155 −0.3684 −0.00267

−0.0323 0.009056 −0.01946 1.0685 0.004104

−0.00155 −0.01946 0.001775 −0.06236 −0.00007

−0.3684 1.0685 −0.06236 10.9872 0.09017

−0.00267 0.004104 −0.00007 0.09017 0.001254


,

and the 95% confidence intervals for the model parameters are given by a ∈ (3.7812±

1.96 × 0.2105), b ∈ (51.889 ± 1.96 × 0.09516), c ∈ (1.2523 ± 1.96 × 0.04213), λ ∈

(25.3143± 1.96× 3.3147), and δ ∈ (0.505± 1.96× 0.03542), respectively.

The LR test statistics of the hypothesis H0 : BLLog against Ha : McLLog, H0 :

LLog against Ha : McLLog are 5.9 (p-value=0.015) and 8.8 (p-value=0.032). The
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Table 5.3: McLLog Estimation for Price of Cars Data

Estimates Statistics

Distribution a b c λ δ -2 Log Likelihood AIC AICC BIC SS KS

McLLog 27.1372 3.3695 1.1617 0.4129 1.2703 1489.0 1499.0 1499.1 1519.3 0.0270 0.0196

(0.739) (0.1111) (0.02272) (0.02745) (0.04871)

BLLog 20.143 3.0866 1 0.5537 1.3504 1489.1 1497.1 1497.2 1513.4 0.0271 0.0199

(0.5018) (0.1533) - (0.03197) (0.05834)

ELLog 2.466 1 1 6.2724 2.917 1493.9 1499.9 1500.0 1512.1 0.0503 0.0279

(0.4929) - - (2.333) (0.1564)

LLog 1 1 1 44.1835 3.6393 1505.6 1509.6 1509.7 1517.8 0.0598 0.0254

- - - (7.615) (0.1461)

k λ

Weibull 1.839 3.712 1638.4 1642.4 1642.4 1650.5 1.7156 0.0989

(0.05965) (0.1037)

k λ a b c

McW 0.4667 0.8049 26.8973 5.096 0.001932 1511.8 1521.8 1522 1542.1 0.1630 0.0382

(0.02209) (0.1235) (2.3193) (0.04712) (0.000164)

k λ a b

BW 0.3188 0.007203 722.63 1.2263 1488.7 1496.7 1496.8 1513 0.0302 0.0196

(0.01198) (0.001562) (5.4931) (0.02912)

α β

Gamma 4.0703 1.2419 1555.4 1559.4 1559.5 1567.6 0.6973 0.0688

(0.2676) (0.08691)

McLLog distribution is significantly better for this data set than the BLLog and

LLog models. The McLLog distribution is comparable to the McW distribution with

the values of the statistics AIC, AICC, BIC, SS and KS just about the same for both

McLLog and McW distributions. The McLLog distribution provides a very good fit

to the histogram. The probability plot also shows the adequacy of the model for the

data set.

The second example consists of price of 428 new vehicles for the 2004 year

(Kiplinger’s Personal Finance, Dec 2003). Initial values for McLLog model in SAS

code are a = 18, b = 2.9, c = 0.7, λ = 0.01, δ = 1.38. The MLE, AIC, AICC, BIC, SS

and KS statistics are given in Table 5.3. Plots of the fitted density and observed vs
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Figure 5.5: McLLog Fitted Densities, Observed Probabilities for Price of Cars Data

expected probability are given in Figure 5.5.

McLLog distribution gives a little smaller -2 log likelihood value than BLLog

distribution, but the LR test statistics of the hypothesis H0 : BLLog against Ha :

McLLog is 0.1 (p-value=0.7518). Consequently, the McLLog distribution is not sig-

nificantly better than BLLog distribution. BLLog distribution gives comparatively

smaller AIC, AICC and BIC values than McLLog and ELLog distributions, while

McLLog distribution gives smallest SS and KS statistics. We conclude that BLLog

distribution is a good model for this data set.

5.10 Concluding Remarks

A new multi-parameter distribution called the McDonald Log-logistic (McLLog) dis-

tribution, is proposed and studied in detail. This class of distributions contains

a number of distributions with potential applications to a wide area of economics,

finance, reliability and medicine. Properties of the class of McLLog distributions
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including the pdfs, cdfs, moments, hazard function, reverse hazard function, mean

residual life function, Bonferroni and Lorenz curves, Rényi entropy are derived. A

simulation study is carried out to examine the performance of the McLLog distri-

bution, via the root mean square error of the maximum likelihood estimators of the

model parameters. Maximum likelihood estimates of the parameters and applications

are presented to illustrate the usefulness and applicability of the proposed model and

its sub-models.



CHAPTER 6

THE GAMMA-DAGUM DISTRIBUTION

6.1 Introduction

Kleiber [17] traced the genesis of Dagum distribution and summarized several statisti-

cal properties of this distribution. Domma et al. [7] obtained the maximum likelihood

estimates of the parameters of Dagum distribution from censored samples. Dagum

[6] distribution is a special case of generalized beta distribution of the second kind

(GB2), McDonald [22], McDonald and Xu [23], when the parameter q = 1, where the

probability density function (pdf) of the GB2 distribution is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

for y > 0. (6.1)

Note that a > 0, p > 0, q > 0, are the shape parameters and b > 0 is the scale

parameter and B(p, q) = Γ (p)Γ (q)
Γ (p+q)

is the beta function. Domma and Condino [8] ob-

tained statistical properties of the beta-Dagum distribution. The pdf and cumulative

distribution function (cdf) of Dagum distribution are given by:

fD(y;λ, β, δ) = βλδy−δ−1(1 + λy−δ)−β−1, (6.2)

and

FD(y;λ, β, δ) = (1 + λy−δ)−β, y > 0, λ, β, δ > 0, (6.3)

respectively. The hazard and the reverse hazard functions are given by:

hD(y;λ, β, δ) =
fD(y;λ, β, δ)

FD(y;λ, β, δ)
=
βλδy−δ−1(1 + λy−δ)−β−1

1− (1 + λy−δ)−β
, (6.4)

and

τD(y;λ, β, δ) = βλδy−δ−1(λy−δ + 1)−1, (6.5)

respectively. The kth raw or non-central moments are:

E(Y k) = E(Y k|β, δ, λ) = βλ
k
δB

(
β +

k

δ
, 1− k

δ

)
, for δ > k.
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Motivated by the various applications of Dagum distribution in finance and actu-

arial sciences, as well as in economics, where Dagum distribution plays an important

role in size distribution of personal income, we construct a new class of Dagum-type

distribution called the gamma-Dagum (GD) distribution and apply the model to real

lifetime data.

For any baseline cdf F (x), and x ∈ R, Zografos and Balakrishnan [36] defined

the distribution (when θ = 1) with pdf g(x) and cdf G(x) (for α > 0) as follows

g(x) =
1

Γ (α)θα
[− log(F (x))]α−1(1− F (x))(1/θ)−1f(x), (6.6)

and

G(x) =
1

Γ (α)θα

∫ − log(F (x))

0

tα−1e−t/θdt =
γ(−θ−1 log(F (x)), α)

Γ (α)
, (6.7)

respectively, where g(x) = dG(x)/dx, Γ (α) =
∫∞
0
tα−1e−tdt denotes the gamma func-

tion, and γ(z, α) =
∫ z
0
tα−1e−tdt denotes the incomplete gamma function. The corre-

sponding hazard rate function (hrf) is

hG(x) =
[− log(1− F (x))]α−1f(x)(1− F (x))(1/θ)−1

θα(Γ (α)− γ(−θ−1 log(1− F (x)), α))
. (6.8)

The class of distributions for the special case of θ = 1, is referred to as the ZB-G

family of distributions. Also, (when θ = 1), Ristić and Balakrishnan [33] proposed

an alternative gamma-generator defined by the cdf and pdf

G2(x) = 1− 1

Γ (α)θα

∫ − logF (x)

0

tα−1e−t/θdt, α > 0, (6.9)

and

g2(x) =
1

Γ (α)θα
[− log(F (x))]α−1(F (x))(1/θ)−1f(x), (6.10)

respectively.

In this chapter, we consider the generalized family of distributions given in equa-

tion (6.6) via Dagum distribution. Zografos and Balakrishnan [36] motivated the
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ZB-G model as follows. Let X(1), X(2), ......, X(n) be lower record values from a se-

quence of independent and identically distributed (i.i.d.) random variables from a

population with pdf f(x). Then, the pdf of the nth upper record value is given by

equation (6.6), when θ = 1. A logarithmic transformation of the parent distribution

F transforms the random variable X with density (6.6) to a gamma distribution.

That is, if X has the density (6.6), then the random variable Y = − log[1 − F (X)]

has a gamma distribution GAM(α; 1) with density k(y;α) = 1
Γ (α)

yα−1e−y, y > 0. The

opposite is also true, if Y has a gamma GAM(α; 1) distribution, then the random

variable X = G−1(1−e−Y ) has a ZB-G distribution (Zografos and Balakrishnan [36]).

In addition to the motivations provided by Zografos and Balakrishnan [36], we are

interested in the generalization of the Dagum distribution via the gamma-generator

and establishing the relationship between the distributions in equations (6.6) and

(6.10), and weighted distributions in general.

Weighted distribution provides an approach to deal with model specification and

data interpretation problems. It adjusts the probabilities of actual occurrence of

events to arrive at a specification of the probabilities when those events are recorded.

Fisher [12] first introduced the concept of weighted distribution, in order to study the

effect of ascertainment upon estimation of frequencies. Rao [32] unified concept of

weighted distribution and use it to identify various sampling situations. Cox [5] and

Zelen [37] introduced weighted distribution to present length biased sampling. Patil

[29] used weighted distribution as stochastic models in the study of harvesting and

predation. The usefulness and applications of weighted distribution to biased samples

in various areas including medicine, ecology, reliability, and branching processes can

also be seen in Nanda and Jain [25], Gupta and Keating [15], Oluyede [26] and in

references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y; θ), where
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θ is a vector of parameters, then the pdf of the weighted random variable Y w is given

by:

fw(y; θ, β) =
w(y, β)f(y; θ)

ω
, (6.11)

where the weight function w(y, β) is a non-negative function, that may depend on

the vector of parameters β, and 0 < ω = E(w(Y, β)) <∞ is a normalizing constant.

In general, consider the weight function w(y) defined as follows:

w(y) = ykelyF i(y)F
j
(y). (6.12)

Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = 0; i → i − 1;

j = n − i; k = l = i = 0 and k = l = j = 0 in this weight function, one at a time,

implies probability weighted moments, moment-generating functions, moments, order

statistics, proportional hazards and proportional reversed hazards, respectively, where

F (y) = P (Y ≤ y) and F (y) = 1 − F (y). If w(y) = y, then Y ∗ = Y w is called the

size-biased version of Y .

Ristić and Balakrishnan [33], provided motivations for the new family of distri-

butions given in equation (6.9) when θ = 1, that is for n ∈ N, equation (6.9) above is

the pdf of the nth lower record value of a sequence of i.i.d. variables from a population

with density f(x). Ristić and Balakrishnan [33] used the exponentiated exponential

(EE) distribution with cdf F (x) = (1 − e−βx)α, where α > 0 and β > 0, in equation

(6.10) to obtained and study the gamma-exponentiated exponential (GEE) model.

See references therein for additional results on the GEE model. Pinho et al. [30] pre-

sented the statistical properties of the gamma-exponentiated Weibull distribution. In

this note, we obtain a natural extension for Dagum distribution, which we call the

gamma-Dagum (GD) distribution.

Note that if θ = 1 and α = n + 1, in equation (6.6), we obtain the cdf and pdf
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of the upper record values U given by

FU(u) =
1

n!

∫ − log(1−G(u))

0

yne−ydy, (6.13)

and

fU(u) = g(u)[− log(1−G(u))]n/n!. (6.14)

Similarly, from equation (6.10), the pdf of the lower record values is given by

fL(t) = g(t)[− log(G(t))]n/n!. (6.15)

This chapter is organized as follows. In section 6.2, some basic results, the

gamma-Dagum (GD) distribution, series expansion and its sub-models, hazard and

reverse hazard functions and the quantile function are presented. The moments and

moment generating function, mean and median deviations are given in section 6.3.

Section 6.4 contains some additional useful results on the distribution of order statis-

tics and Rényi entropy. In section 6.5, results on the estimation of the parameters of

the GD distribution via the method of maximum likelihood are presented. Applica-

tions are given in section 6.6, followed by concluding remarks.

6.2 The Gamma-Dagum Distribution

In this section, the GD distribution, series expansion of its pdf and some sub-models

are presented.
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6.2.1 The Gamma-Dagum Distribution

By inserting Dagum distribution in equation (6.7), the cdf GGD(x) = G(x) of the GD

distribution is obtained as follows:

GGD(x) =
1

Γ (α)θα

∫ − log[1−(1+λx−δ)−β ]

0

tα−1e−t/θdt

=
γ(−θ−1 log[1− (1 + λx−δ)−β], α)

Γ (α)
, (6.16)

where x > 0, λ > 0, β > 0, δ > 0, α > 0, θ > 0, and γ(x, α) =
∫ x
0
tα−1e−tdt is the

lower incomplete gamma function. The corresponding GD pdf is given by

g
GD

(x) =
λβδx−δ−1

Γ (α)θα
(1 + λx−δ)−β−1

(
− log[1− (1 + λx−δ)−β]

)α−1
× [1− (1 + λx−δ)−β](1/θ)−1. (6.17)

Figure 6.1: GD Density Functions

The graph of the GD pdf can be seen in Figure 6.1. The plots indicate that the

GD distribution can be decreasing (L-shaped) or right skewed.
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If a random variable X has the GD density, we write X ∼ GD(λ, β, δ, α, θ). Let

y = [1 + λx−δ]−β, and ψ = 1/θ, then using the series representation − log(1 − y) =∑∞
i=0

yi+1

i+1
, we have[
− log(1− y)

]α−1
= yα−1

[ ∞∑
m=0

(
α− 1

m

)
ym
( ∞∑

s=0

ys

s+ 2

)m]
,

and applying the result on power series raised to a positive integer, with as = (s+2)−1,

that is, ( ∞∑
s=0

asy
s

)m
=
∞∑
s=0

bs,my
s, (6.18)

where bs,m = (sa0)
−1∑s

l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 , (Gradshteyn and

Ryzhik [13]), the GD pdf can be written as

g
GD

(x) =
λβδx−δ−1[1 + λx−δ]−β−1

Γ (α)θα
yα−1

×
∞∑
m=0

∞∑
s=0

(
α− 1

m

)
bs,my

m+s

∞∑
k=0

(
ψ − 1

k

)
(−1)kyk

=
λβδx−δ−1[1 + λx−δ]−β−1

Γ (α)θα

×
∞∑
m=0

∞∑
s,k=0

(
α− 1

m

)(
ψ − 1

k

)
(−1)kbs,my

α+m+s+k−1

=
∞∑
m=0

∞∑
s,k=0

(
α− 1

m

)(
ψ − 1

k

)
(−1)kbs,m

× δλβ

θαΓ (α)
x−δ−1[1 + λx−δ]−β(m+s+k+α)−1

=
∞∑
m=0

∞∑
s,k=0

(
α− 1

m

)(
ψ − 1

k

)
(−1)k

bs,m
(m+ s+ k + α)θαΓ (α)

× λβ(m+ s+ k + α)δx−δ−1[1 + λx−δ]−β(m+s+k+α)−1,

where f(x;λ, β(m+s+k+α), δ) is the Dagum pdf with parameters λ, β(m+s+k+α),

and δ. Let C = {(m, s, k) ∈ Z3
+}, and ψ = 1/θ, then the weights in the GD pdf are

wν = (−1)k
(
α− 1

m

)(
ψ − 1

k

)
bm,s

(m+ s+ k + α)θαΓ (α)
,
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and

g
GD

(x) =
∑
ν∈C

wvfD(x;λ, β(m+ s+ k + α), δ). (6.19)

It follows therefore that the GD density is a linear combination of the Dagum pdfs.

The statistical and mathematical properties can be readily obtained from those of

the Dagum distribution. Note that g
GD

(x) is a weighted pdf with the weight function

w(x) = [− log(1− F (x))]α−1[1− F (x)]
1
θ
−1, (6.20)

that is,

g
GD

(x) =
[− log(1− F (x))]α−1[1− F (x)]

1
θ
−1

θαΓ (α)
f(x)

=
w(x)f(x)

EF (w(X))
, (6.21)

where 0 < EF [[− log(1− F (x))]α−1[1− F (x)]
1
θ
−1] = θαΓ (α) <∞, is the normalizing

constant. Similarly,

g2(x) =
[− log(F (X))]α−1[F (X)]

1
θ
−1

θαΓ (α)
f(x) =

w(x)f(x)

EF (w(X))
, (6.22)

where 0 < EF (w(X)) = EF ([− log(F (X))]α−1[F (X)]
1
θ
−1) = θαΓ (α) <∞.

6.2.2 Sub-models

Some of the sub-models of the GD distribution are listed below:

• If θ = 1, we obtain the gamma-Dagum distribution via the ZB-Dagum (ZB-D)

distribution.

• When λ = θ = 1, we have the ZB-Burr III (ZB-B III) distribution.

• When β = θ = 1, we obtain the ZB-Fisk or ZB-Log logistic (ZB-F or ZB-LLog)

distribution.
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• If α = 1, we get the exponentiated Dagum (ED) distribution, which is also a

Dagum distribution.

• When β = 1, we have the gamma-Fisk or gamma-Log logistic (GF or GLLog)

distribution.

• If λ = 1, we obtain the gamma-Burr III (GB III) distribution.

• If θ = 1 and α = 1, we have Dagum (D) distribution.

• When λ = α = θ = 1, we have Burr III (B III) distribution.

• When λ = α = 1, we have exponentiated Burr III (EB III) distribution.

• When β = α = 1, we obtain Fisk or Log-logistic (F or LLog) distribution.

6.2.3 Hazard and Reverse Hazard Functions

In general, if X is a continuous random variable with distribution function F, and

probability density function (pdf) f, then the hazard function, reverse hazard function

and mean residual life functions are given by hF (x) = f(x)/F (x), τF (x) = f(x)/F (x),

and δF (x) =
∫∞
x
F (u)du/F (x) respectively. The functions hF (x), δF (x), and F (x) are

equivalent (Shaked and Shanthikumar [35]). The hazard and reverse hazard functions

of the GD distribution are

hG(x) =
λβδx−δ−1[1 + λx−δ]−β−1(− log(1− [1 + λx−δ]−β))α−1[1− (1 + λx−δ)−β](1/θ)−1

θα(Γ (α)− γ(−θ−1 log(1− (1 + λx−δ)−β), α))
,

(6.23)

and

τG(x) =
λβδx−δ−1[1 + λx−δ]−β−1(− log(1− [1 + λx−δ]−β))α−1[1− (1 + λx−δ)−β](1/θ)−1

θα(γ(−θ−1 log(1− (1 + λx−δ)−β), α))
,

(6.24)



87

Figure 6.2: GD Hazard Functions

for x ≥ 0, λ > 0, β > 0, δ > 0, α > 0, and θ > 0, respectively.

The graph of hazard function for selected parameters can be found in Figure 6.2.

The plots shows various shapes including monotonically decreasing, unimodal and

upside down bathtub shapes for five different combinations of the parameter values.

6.2.4 Quantile Function

The quantile function of GD distribution is obtained by solving the equation

G(Q(y)) = y, 0 < y < 1. (6.25)

Note that the inverse or quantile function of Dagum distribution, FD(x) = [1+λx−δ]−β

is given by QD(.), that is

QD(y) = λ
1
δ

(
y

−1
β − 1

)−1
δ
. (6.26)
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The quantile function of the GD distribution is obtained by inverting equation (6.16)

to obtain

QGD(y) = λ
1
δ

[(
1− e−θu

)−1
β

− 1

]−1
δ

, (6.27)

where u = γ−1(yΓ (α), α).

6.3 Moments, Moment Generating Function, Mean and Median

Deviations

In this section, moments, moment generating function, mean and median deviations

of the GD distribution are presented.

6.3.1 Moments and Moment Generating Function

Let β∗ = β(m+ s+ k+α), and Y ∼ D(λ, β∗, δ). Note that from Y ∼ D(α, β∗, δ), the

rth moment of the random variable Y is

E(Y r) = β∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (6.28)

r < δ, so that the rth raw moment of GD distribution is given by:

E(Xr) =
∑
ν∈C

wνE(Y r) =
∑
ν∈C

wνβ
∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (6.29)

r < δ. The moment generating function (MGF) , for |t| < 1, is given by:

MX(t) =
∑
ν∈C

wνMY (t)

=
∑
ν∈C

∞∑
i=0

wν
ti

i!
β∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (6.30)

for r < δ.

Theorem 6.1.

E{[− log(1− F (X))]r[(1− F (X))s]} =
θr+αΓ (r + α)

(sθ + 1)αθαΓ (α)
. (6.31)
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Proof:

E{[− log(1− F (X))]r[(1− F (X))s]}

=

∫ ∞
0

f(x)

θαΓ (α)
[− log(1− F (x))]r+α−1[1− F (x)]s+(1/θ)−1dx

=
θr+αΓ (r + α)

(sθ + 1)αθαΓ (α)
. (6.32)

Corollary 6.2. If s = 0 , we have E[− log(1 − F (X))r] = θr+αΓ (r+α)
θαΓ (α)

, and if r = 0,

E[(1− F (X))s] = [sθ + 1]−α.

Proof: Let s = 0 in equation (6.31), then

E[− log(1− F (X))r] =
θr+αΓ (r + α)

θαΓ (α)
. (6.33)

Let θ∗ = s+ 1
θ
, then with r = 0 in equation (6.31), we obtain

E[(1− F (X))s] = [sθ + 1]−α. (6.34)

6.3.2 Mean and Median Deviations

If X has the GD distribution, we can derive the mean deviation about the mean µ by

δ1 =

∫ ∞
0

|x− µ|g
GD

(x)dx = 2µG
GD

(µ)− 2µ+ 2T (µ), (6.35)

and the median deviation about the median M by

δ2 =

∫ ∞
0

|x−M |g
GD

(x)dx = 2T (M)− µ, (6.36)

where µ = E(X) is given in equation (6.29), M = QGD(0.5) in equation (6.27) and

T (a) =
∫∞
a
x · g

GD
(x)dx. Let β∗ = β(m+ s+ k + α), then

T (a) =
∑
ν∈C

wνTD(λ,β∗,δ)(a)

=
∑
ν∈C

wνβ
∗λ

1
δ

[
B

(
β∗ +

1

δ
, 1− 1

δ

)
−B

(
t(a); β∗ +

1

δ
, 1− 1

δ

)]
, (6.37)

where t(a) = (1 + λa−δ)−1, and B(x; a, b) =
∫ x
0
ta−1(1− t)b−1dt.
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6.4 Order Statistics and Rényi Entropy

Order statistics plays an important role in probability and statistics. The concept of

entropy plays a vital role in information theory. The entropy of a random variable

is defined in terms of its probability distribution and can be shown to be a good

measure of randomness or uncertainty. In this section, we present the distribution of

the order statistics, and Rényi entropy for the GD distribution.

6.4.1 Order Statistics

The pdf of the ith order statistic from the GD pdf g(x) is given by

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−i

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
[G(x)]i+j−1

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)[
γ(−θ−1 log(1− F (x), α))

Γ (α)

]i+j−1
.

Using the fact that

γ(x, α) =
∞∑
m=0

(−1)mxm+α

(m+ α)m!
, (6.38)



91

and setting cm = (−1)m/((m+ α)m!), we have

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
(−1)j

[Γ (α)]i+j−1
[−θ−1 log(F (x))]α(i+j−1)

×
[ ∞∑
m=0

(−1)m(−θ−1 log(F (x)))m

(m+ α)m!

]i+j−1
=

n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

[Γ (α)]i+j−1
[−θ−1 log(F (x))]α(i+j−1)

×
∞∑
m=0

dm,i+j−1(−θ−1 log(F (x)))m,

where d0 = c
(i+j−1)
0 , dm,i+j−1 = (mc0)

−1∑m
l=1[(i+ j − 1)l −m+ l]cldm−l,i+j−1. Now,

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,n−i+j

[Γ (α)]i+j−1
[−θ−1 log(F (x))]α(i+j−1)+m

=
n![− log(F (x))]α−1[F (x)]ψ−1f(x)

(i− 1)!(n− i)!Γ (α)θα

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1
[Γ (α)]i+j−1

× [−θ−1 log(F (x))]α(i+j−1)+m

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1

[Γ (α)]i+j

× [log(F (x))]α(i+j)+m−1

θα(i+j)+m
[F (x)]ψ−1f(x)

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1

[Γ (α)]i+j

× Γ (α(i+ j) +m)

θα(i+j)+m
[− log(F (x))]α(i+j)+m−1

Γ (α(i+ j) +m)
[F (x)]ψ−1f(x).

That is,

gi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1Γ (α(i+ j) +m)

[Γ (α)]i+j

× g(x;α(i+ j) +m,β, λ, δ, θ),
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where g(x;α(i+ j) +m,β, λ, δ, θ) is the GD pdf with parameters λ, β, δ, θ, and shape

parameter α∗ = α(i+ j) +m. It follows therefore that

E(Xj
i:n) =

n!

(i− 1)!(n− i)!
∑
ν∈C

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jwνdm,i+j−1

[Γ (α)]i+j

× Γ (α(i+ j) +m)β∗λj/δB

(
β∗ +

j

δ
, 1− j

δ

)
,

for j < δ, where B(., .) is the beta function. These moments are often used in several

areas including reliability, insurance and quality control for the prediction of future

failures times from a set of past or previous failures.

6.4.2 Rényi Entropy

Rényi entropy is an extension of Shannon entropy. Rényi entropy is defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[g(x;λ, β, δ, α, θ)]vdx

)
, v 6= 1, v > 0. (6.39)

Rényi entropy tends to Shannon entropy as v → 1. Let y = [1 + λx−δ]−β. Note that

for α > 1 and ν/θ a natural number,

gvGD(x) =
(λβδ)v

(θΓ (α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
x−vδ−v

× [1 + λx−δ]−vβ−vym+s+vα−v+k

=
(λβδ)v

(θΓ (α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
× x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−v.

Now, ∫ ∞
0

gvGD(x)dx =
(λβδ)v

(θΓ (α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
×

∫ ∞
0

x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−vdx.



93

Let t = [1 + λx−δ]−1, then∫ ∞
0

x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−vdx

=
λ−v−

v
δ
+δ

δ

∫ 1

0

tβ(m+s+k+vα)− v
δ
+δ−1(1− t)v+

v
δ
−δ−1dt

=
λ−v−

v
δ
+δ

δ
B

(
β(m+ s+ k + vα) + δ − v

δ
, v +

v

δ
− δ
)
,

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt is the beta function. Consequently, Rényi entropy

for GD distribution is given by

IR(v) =
1

1− v
log

[
λv−

v
δ βvδv−1

θvα(Γ (α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
(v/θ)− 1

k

)
bs,m

× B

(
β(m+ s+ k + vα) + δ − v

δ
, v +

v

δ
− δ
)]
,

for v > 0, v 6= 1.

6.5 Estimation of Model Parameters

In this section, we present estimates of the parameters of the GD distribution.

6.5.1 Maximum Likelihood Estimation

Consider a random sample x1, x2, ......, xn from the gamma-Dagum distribution. The

likelihood function is given by

L(λ, β, δ, θ, α) =
(λβδ)n

[θαΓ (α)]n

n∏
i=1

{
x−δ−1i [1 + λx−δi ]−β−1

×
[
− log

(
1− (1 + λx−δi )−β

)]α−1[
1− (1 + λx−δi )−β

](1/θ)−1}
.
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Now, the log-likelihood function denoted by ` is

` = log[L(λ, β, δ, θ, α)]

= n log(λ) + n log(β) + n log(δ) + (−δ − 1)
n∑
i=1

log(xi)

+ (−β − 1)
n∑
i=1

log(1 + λx−δi ) + (α− 1)
n∑
i=1

log

[
− log

(
1− (1 + λx−δi )

)]
+

(
1

θ
− 1

) n∑
i=1

log

[
1− (1 + λx−δi )

]
− nα log(θ)− n log(Γ (α)). (6.40)

The entries of the score function are given by

∂`

∂λ
=

n

λ
+ (−β − 1)

n∑
i=1

x−δi
1 + λx−δi

+ (α− 1)
n∑
i=1

β(1 + λx−δi )−β−1x−δi
(1− (1 + λx−δi )−β) log(1− (1 + λx−δi )−β)

+

(
1

θ
− 1

) n∑
i=1

β(1 + λx−δi )−β−1x−δi
log(1− (1 + λx−δi )−β)

, (6.41)

∂`

∂β
=

n

β
−

n∑
i=1

log(1 + λx−δi )

+ (α− 1)
n∑
i=1

(1 + λx−δi )−β log(1 + λx−δi )(−1)

(1− (1 + λx−δi )−β)(log(1− (1 + λx−δi )−β))

+

(
1

θ
− 1

) n∑
i=1

(1 + λx−δi )−β log(1 + λx−δi )

[1− (1 + λx−δi )−β]
, (6.42)

∂`

∂δ
=

n

δ
−

n∑
i=1

log(xi) + (−β − 1)
n∑
i=1

λx−δi log(x−δi )(−1)

1 + λx−δi

+ (α− 1)
n∑
i=1

λx−δi log(λx−δi )

(1− (1 + λx−δi )−β)(log(1− (1 + λx−δi )−β))
, (6.43)
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∂`

∂α
= −nΓ

′(α)

Γ (α)
− n log(α) +

n∑
i=1

log

(
− log

(
1− (1 + λx−δi )−β

))
, (6.44)

and

∂`

∂θ
= −nα

θ
− 1

θ2

n∑
i=1

log

(
− log

(
1− (1 + λx−δi )−β

))
. (6.45)

The equations obtained by setting the above partial derivatives to zero are not

in closed form and the values of the parameters α, β, θ, λ, δ must be found by using

iterative methods. The maximum likelihood estimates of the parameters, denoted

by ∆̂ is obtained by solving the nonlinear equation ( ∂`
∂α
, ∂`
∂β
, ∂`
∂θ
, ∂`
∂λ
, ∂`
∂δ

)T = 0, using a

numerical method such as Newton-Raphson procedure. The Fisher information ma-

trix is given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2`
∂θi∂θj

), i, j = 1, 2, 3, 4, 5, can be numerically

obtained by MATLAB or MAPLE software. The total Fisher information matrix

nI(∆) can be approximated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (6.46)

For a given set of observations, the matrix given in equation (6.46) is obtained after

the convergence of the Newton-Raphson procedure in MATLAB software.

6.5.2 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the parameters

of the GD distribution. The expectations in the Fisher Information Matrix (FIM)

can be obtained numerically. Let ∆̂ = (λ̂, β̂, δ̂, θ̂, α̂) be the maximum likelihood

estimate of ∆ = (λ, β, δ, θ, α). Under the usual regularity conditions and that the

parameters are in the interior of the parameter space, but not on the boundary, we

have:
√
n(∆̂−∆)

d−→ N5(0, I
−1(∆)), where I(∆) is the expected Fisher information
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matrix. The asymptotic behavior is still valid if I(∆) is replaced by the observed in-

formation matrix evaluated at ∆̂, that is J(∆̂). The multivariate normal distribution

N5(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct

confidence intervals and confidence regions for the individual model parameters and

for the survival and hazard rate functions. A large sample 100(1 − η)% confidence

intervals for λ, β, δ, θ and α are:

λ̂± Z η
2

√
I−1λλ (∆̂), β̂ ± Z η

2

√
I−1ββ (∆̂), δ̂ ± Z η

2

√
I−1δδ (∆̂)

θ̂ ± Z η
2

√
I−1θθ (∆̂), and α̂± Z η

2

√
I−1αα (∆̂)

respectively, where Z η
2

is the upper η
2
th percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the GD distribution

with its sub-models for a given data set. For example, to test θ = α = 1, the LR

statistic is ω = 2[ln(L(λ̂, β̂, δ̂, θ̂, α̂))− ln(L(λ̃, β̃, δ̃, 1, 1))], where λ̂, β̂, δ̂, θ̂ and α̂, are

the unrestricted estimates, and λ̃, β̃, and δ̃ are the restricted estimates. The LR test

rejects the null hypothesis if ω > χ2
ε
, where χ2

ε
denote the upper 100ε% point of the

χ2 distribution with 2 degrees of freedom.

6.6 Applications

In this section, we present examples to illustrate the flexibility of the GD distribution

and its sub-models, as well as the gamma-exponentiated Weibull (GEW) distribution

[30] for data modeling. The pdf of GEW distribution is given by

g
GEW

(x) =
kαδ

λΓ (δ)

(
x

λ

)k−1
e−(

x
λ
)k
[
1− e−(

x
λ
)k
]α−1[

− log

(
1− e−(

x
λ
)k
)]δ−1

, (6.47)

for α, δ, λ, k > 0.

The maximum likelihood estimates (MLEs) of the GD parameters λ, β, δ, θ, and

α are computed by maximizing the objective function via the subroutine NLMIXED
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Table 6.1: GD Estimation for Baseball Player Salary Data

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 0.000016 98.9836 7.354 0.6932 12.0803 2913.9 2923.9 2924.0 2947.4 9.1210 0.1657

(0.000004127) (0.05025) (0.05141) (0.08185) (1.031)

ZB-D 0.000809 99.564 1.5113 3.1336 1 3201.7 3209.7 3209.8 3228.6 6.5741 0.1216

(0.000469) (0.000067) (0.1338) (0.5981) -

ZB-BurrIII 1 26.3597 1.146 0.05352 1 3345.7 3351.7 3351.8 3365.9 5.6495 0.1528

- (0.3903) (0.03028) (0.001913) -

ZB-Fisk 0.00873 1 1.9669 5.4913 1 3221.5 3227.5 3227.5 3241.6 6.3699 0.1262

(0.005112) - (0.1193) (0.6208) -

D 0.00973 83.1324 1.0131 1 1 3225.5 3231.5 3231.5 3245.6 6.1089 0.1324

(0.001811) (15.3394) (0.02966) - -

k α δ λ

GEW 0.5861 5.2885 0.1684 0.06826 3294.5 3302.5 3302.5 3321.3 6.0177 0.1457

(0.009715) (0.5144) (0.004691) (0.002001)

in SAS. The estimated values of the parameters (standard error in parenthesis), -

2log-likelihood statistic, Akaike Information Criterion, AIC = 2p− 2 ln(L), Bayesian

Information Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Informa-

tion Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value of the

likelihood function evaluated at the parameter estimates, n is the number of ob-

servations, and p is the number of estimated parameters are presented in Table

6.1, 6.2 and 6.3. Also, presented are values of the Kolmogorov-Smirnov statis-

tic, KS = max1≤i≤n{GGD(xi) − i−1
n
, i
n
− GGD(xi)}, and the sum of squares SS =∑n

j=1

[
G
GD

(x(j); λ̂, β̂, δ̂, θ̂, α̂)−
(
j − 0.375

n+ 0.25

)]2
. These statistics are used to compare

the distributions presented in these tables. Plots of the fitted densities and the his-

togram of the data are given in Figures 6.3, 6.4 and 6.5. Probability plots (Chambers

et al. [1]) are also presented in Figures 6.3, 6.4 and 6.5. For the probability plot, we

plotted G
GD

(x(j); λ̂, β̂, δ̂, θ̂, α̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the

ordered values of the observed data.
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The first example consists of the salaries of 818 professional baseball players

for the year 2009 (USA TODAY). Initial value for GD model in SAS code are

λ = 0.0001, β = 100, δ = 1, α = 0.1, θ = 15. Estimates of the parameters of GD

distribution and its related sub-models (standard error in parentheses), AIC, AICC,

BIC, KS and SS for baseball player salary data are given in Table 6.1. The estimated

covariance matrix for GD distribution is given by:



1.70E − 11 1.67E − 07 1.08E − 07 −3.2E − 07 3.43E − 06

1.67E − 07 0.002525 0.001457 −0.00368 0.05181

1.08E − 07 0.001457 0.002643 −0.00252 0.02977

−3.16E − 07 −0.00368 −0.00252 0.006699 −0.07547

3.43E − 06 0.05181 0.02977 −0.07547 1.063


The 95% asymptotic confidence intervals are: λ ∈ 0.000016±1.96(0.000004127), β ∈

98.9836 ± 1.96(0.05025), δ ∈ 7.354 ± 1.96(0.05141), α ∈ 0.6932 ± 1.96(0.08185) and

θ ∈ 12.0803± 1.96(1.031).

Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function for the baseball player salary data are

given in Figure 6.3.

The LR test statistic of the hypothesis H0: ZB-D against Ha: GD, H0: ZB-

BurrIII against Ha: GD and H0: ZB-Fisk against Ha: GD are 287.8 (p-value <

0.0001), 431.8 (p-value < 0.0001) and 307.6 (p-value < 0.0001). We can conclude

that there is a significant difference between GD and ZB-D, ZB-BurrIII and ZB-Fisk

distributions.

The second example consists of the number of successive failures for the air

conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes [28].

Initial value for GD model in SAS code are λ = 1.2, β = 14, δ = 1, α = 0.9, θ = 0.01.
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Table 6.2: GD Estimation for Air Conditioning System Data

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 2.1816 31.0783 0.538 0.1856 0.05384 2065.1 2075.1 2075.4 2091.2 0.0334 0.0401

(0.8567) (7.1966) (0.05068) (0.0188) (0.034)

ZB-D 10.611 14.8939 0.9507 0.1885 1 2084.7 2092.7 2092.9 2105.7 0.5144 0.0982

(1.9869) (1.0488) (0.0375) (0.0194) -

ZB-BurrIII 1 51.7658 0.7498 0.2579 1 2101.5 2107.5 2107.6 2117.2 0.3876 0.0786

- (1.0861) (0.0327) (0.02906) -

ZB-Fisk 102.03 1 1.2902 1.2013 1 2078.5 2084.5 2084.6 2094.2 0.0797 0.0467

(51.2069) - (0.07275) (0.1991) -

D 118.02 1.1792 1.2873 1 1 2077.4 2083.4 2083.5 2093.1 0.0687 0.0421

(71.3654) (0.2375) (0.09666) - -

k α δ λ

GEW 0.2651 1.3363 0.05339 0.0007 2338.4 2346.4 2346.6 2359.3 8.4196 0.3863

(0.001118) (0.4333) (0.003965) (0.000001897)

Estimates of the parameters of GD distribution and its related sub-models (standard

error in parentheses), AIC, AICC, BIC, KS and SS for air conditioning system data

are given in Table 6.2. The estimated covariance matrix for GD model is given by:

0.7339 −6.1407 0.02873 −0.00537 0.006472

−6.1407 51.7908 −0.2362 0.04324 −0.05223

0.02873 −0.2362 0.002568 0.00014 0.001453

−0.00537 0.04324 0.00014 0.000353 0.000194

0.006472 −0.05223 0.001453 0.000194 0.001156


Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function for the air conditioning system data are

given in Figure 6.4.

The LR test statistic of the hypothesis H0: ZB-D against Ha: GD, H0: ZB-
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BurrIII against Ha: GD and H0: ZB-Fisk against Ha: GD are 19.6 (p-value < 0.0001),

36.4 (p-value < 0.0001) and 13.4 (p-value = 0.0012). We can conclude that there is a

significant difference between GD and ZB-D, ZB-BurrIII and ZB-Fisk distributions.

The values of the statistics KS as well value of SS are smallest for the GD distribution.

We conclude that the GD distribution provides the best fit for the air conditioning

system data.

Table 6.3: GD Estimation for Remission Times Data

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 36.5904 4.6432 1.6783 0.1763 0.827 818.9 828.9 829.4 843.2 0.0153 0.0345

(20.0777) (0.6152) (0.2154) (0.02128) (0.3848)

ZB-D 14.4218 5.6739 1.4787 0.1932 1 821.4 829.4 829.7 840.8 0.0422 0.0457

(4.9839) (0.5272) (0.1038) (0.02313) -

ZB-BurrIII 1 14.0701 0.955 0.3086 1 846.8 852.8 853.0 861.4 0.3641 0.0945

- (0.8515) (0.054) (0.04013) -

ZB-Fisk 78.8617 1 1.9597 0.6595 1 819.6 825.6 825.8 834.1 0.0205 0.0396

(47.7597) - (0.1721) (0.1125) -

D 0.04426 56.2014 0.7713 1 1 884.2 890.2 890.4 898.8 0.9490 0.1382

(0.02063) (25.1544) (0.04672) - -

k α δ λ

GEW 0.9718 1.8349 0.03244 1.9013 1154.7 1162.7 1163.0 1174.1 25.4662 0.6689

(0.008578) (0.9136) (0.002901) (0.002509)

The third example represents the remission times (in months) of a random sample

of 128 bladder cancer patients [21]. Initial value for GD model in SAS code are

λ = 7, β = 1, δ = 0.84, α = 0.21, θ = 0.3. Estimates of the parameters of GD

distribution and its related sub-models (standard error in parentheses), AIC, AICC,

BIC and SS for remission times data are given in Table 6.3. The estimated covariance
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matrix for GD model is given by:

403.11 −11.7265 3.5502 −0.1583 2.8776

−11.7265 0.3785 −0.1238 0.002601 −0.1345

3.5502 −0.1238 0.0464 −0.00018 0.06253

−0.1583 0.002601 −0.00018 0.000453 0.000548

2.8776 −0.1345 0.06253 0.000548 0.148


Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function for the remission times data are given in

Figure 6.5.

The LR test statistic of the hypothesis H0: ZB-D against Ha: GD and H0: ZB-

BurrIII against Ha: GD are 2.5 (p-value = 0.1138) and 27.9 (p-value < 0.0001).

We can conclude that there is a significant difference between GD and ZB-BurrIII

distributions. GD distribution gives smaller AIC, AICC, BIC, SS and KS values. The

GD distribution provides the best fit for the remission time data.

The fourth example represents the poverty rate of 533 districts with more than

15,000 students in 2009. Estimates and statistics are given in Table 6.4.

Plots of the fitted densities and the histogram, observed probability vs predicted

probability, and empirical survival function for the poverty rate data are given in

Figure 6.6.

In this example, ZB-Burr III distribution has smaller AIC, AICC and BIC values.

Dagum model has smallest SS and KS value. We conclude that the Dagum and ZB-

Burr III sub-models provide good fits for this data.
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Table 6.4: GD Estimation for Poverty Rate Data

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 11.2183 0.008726 8.6879 26.0407 1.0012 3833.3 3843.3 3843.4 3864.7 1.5034 0.1006

(0.195) (0.001009) (0.03426) (1.4376) (0.05551)

ZB-D 1.4224 0.05819 8.6002 26.0351 1 3832.8 3840.8 3840.9 3857.9 1.4312 0.0979

(0.3187) (0.000937) (0.07815) (0.2144) -

ZB-BurrIII 1 0.07221 8.631 26.2914 1 3833.6 3839.6 3839.7 3852.5 1.3499 0.0951

- (0.008338) (0.04403) (0.2035) -

ZB-Fisk 350.03 1 2.5291 1.6577 1 3846.3 3852.3 3852.3 3865.1 1.1908 0.0808

(83.6114) - (0.07197) (0.1602) -

D 250.03 1.9862 2.3418 1 1 3838.2 3844.2 3844.2 3857.0 1.0088 0.0763

(73.788) (0.2337) (0.07534) - -

k α δ λ

GEW 0.6504 1.0122 0.04372 0.2043 4515.8 4523.8 4523.9 4540.9 15.7331 0.2588

(0.003773) (0.2143) (0.001904) (0.000456)

6.7 Concluding Remarks

A new class of generalized Dagum distribution called the gamma-Dagum distribution

is proposed and studied. The GD distribution has the GB, GF, ED and D distribu-

tions as special cases. The density of this new class of distributions can be expressed

as a linear combination of Dagum density functions. The GD distribution possesses

hazard function with flexible behavior. We also obtain closed form expressions for the

moments, mean and median deviations, distribution of order statistics and entropy.

Maximum likelihood estimation technique is used to estimate the model parameters.

Finally, the GD model is fitted to real data sets to illustrate the usefulness of the

distribution.
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6.8 Areas of Further Research

Bayesian analysis of model parameters by specifying prior distributions will be studied

in the future. Also, inference for McLLog and GD distributions using censored data

are going to be investigated. In particular, we will consider type I right censored and

type II doubly censored data.
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Figure 6.3: GD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Baseball Player Salary Data
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Figure 6.4: GD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Air Conditioning System Data
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Figure 6.5: GD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Remission Times Data
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Figure 6.6: GD Fitted Densities, Observed Probabilities and Empirical Survival

Curves for Poverty Rate Data
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Appendix A

R CODE FOR DISTRIBUTIONS

A.1 The Exponentiated Kumaraswamy-Dagum Distribution

# define EKD pdf

g=function(alpha,lambda,delta,phi,theta,x){

y=alpha*lambda*delta*phi*theta*((x)ˆ(-delta-1))*((1+lambda*(xˆ(-delta)))ˆ(-alpha-

1)) *((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(phi-1))

*((1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(phi)))ˆ(theta-1))

return(y)

}

# define EKD cdf

G=function(alpha,lambda,delta,phi,theta,x){

y=(1-((1-((1+lambda*(xˆ(-delta)))ˆ(-alpha)))ˆ(phi)))ˆ(theta)

return(y)

}

# define EKD hazard

h=function(alpha,lambda,delta,phi,theta,x){

y=g(alpha,lambda,delta,phi,theta,x)/(1-G(alpha,lambda,delta,phi,theta,x))

return(y)

}

# define EKD quantile

quantile=function(alpha,lambda,delta,phi,theta,q){

((lambda)ˆ(1/delta))*((((1-((1-((q)ˆ(1/theta)))ˆ(1/phi)))ˆ(-1/alpha))-1)ˆ(-1/delta))

}

# define EKD moments.
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# note: k<delta

moments=function(alpha,lambda,delta,phi,theta,k){

f=function(alpha,lambda,delta,phi,theta,k,x){(xˆk)*(g(alpha,lambda,delta,phi,theta,x))}

y=integrate(f,lower=0,upper=Inf,subdivisions=100000,alpha=alpha,lambda=lambda,

delta=delta,phi=phi,theta=theta,k=k)

return(y)

}

# define EKD I(a)

Ia=function(alpha,lambda,delta,phi,theta,a){

n=length(a)

y=0

for(i in 1:n){

y[i]=integrate(function(alpha,lambda,delta,phi,theta,x){x*g(alpha,lambda,delta,phi,theta,x)},

lower=0,upper=a[i],subdivisions=100000,alpha=alpha,lambda=lambda,delta=delta,phi=phi,

theta=theta)$value

}

return(y)

}

# define EKD bonferroni

# note: p is between (0,1)

bonferroni=function(alpha,lambda,delta,phi,theta,p){

q=quantile(alpha,lambda,delta,phi,theta,p)

mu=moments(alpha,lambda,delta,phi,theta,1)$value

y=(Ia(alpha,lambda,delta,phi,theta,q))/(p*mu)

return(y)

}
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# define EKD lorenz

# note: p is between (0,1)

lorenz=function(alpha,lambda,delta,phi,theta,p){

q=quantile(alpha,lambda,delta,phi,theta,p)

mu=moments(alpha,lambda,delta,phi,theta,1)$value

y=(Ia(alpha,lambda,delta,phi,theta,q))/(mu)

return(y)

}

A.2 The Log-Exponentiated Kumaraswamy-Dagum Distribution

# define Log-EKD pdf

LogEKD pdf=function(alpha,lambda,delta,phi,theta,y){

alpha*lambda*delta*phi*theta*exp(-delta*y)*((1+lambda*exp(-delta*y))ˆ(-alpha-1))*((1-

((1+lambda*exp(-delta*y))ˆ(-alpha)))ˆ(phi-1))*((1-((1-((1+lambda*exp(-delta*y))ˆ(-

alpha)))ˆ(phi)))ˆ(theta-1))

}

# define Log-EKD cdf

LogEKD cdf=function(alpha,lambda,delta,phi,theta,y){

(1-((1-((1+lambda*exp(-delta*y))ˆ(-alpha)))ˆ(phi)))ˆ(theta)

}

# define Log-EKD hazard

LogEKD hazard=function(alpha,lambda,delta,phi,theta,y){

LogEKD pdf(alpha,lambda,delta,phi,theta,y)/(1-LogEKD cdf(alpha,lambda,delta,phi,theta,y))

}
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#define Log-EKD quantile

LogEKD quantile=function(alpha,lambda,delta,phi,theta,q){

deltaˆ(-1)*log(lambda)-(deltaˆ(-1))*(log(((1-((1-qˆ(1/theta))ˆ(1/phi)))ˆ(-1/alpha))-1))

}

A.3 The McDonald Log-Logistic Distribution

# define McLLog pdf

# Note: beta(a,b)=integral 0ˆ1 tˆ(a-1)(1-t)ˆ(b-1)dt

McLLogg=function(a,b,c,lambda,delta,x){

(1/beta(a/c,b))*c*lambda*delta*(xˆ(-delta-1))*((1+lambda*(xˆ(-delta)))ˆ(-a-1))

*((1-((1+lambda*((x)ˆ(-delta)))ˆ(-c)))ˆ(b-1))

}

# define McLLog cdf

# Note: pbeta(x,a,b)=I x(a,b)=B x(a,b)/B(a,b)

McLLogG=function(a,b,c,lambda,delta,x){

pbeta((1+lambda*(xˆ(-delta)))ˆ(-c),a/c,b)

}

# define McLLog Hazard

McLLogh=function(a,b,c,lambda,delta,x){

McLLogg(a,b,c,lambda,delta,x)/(1-McLLogG(a,b,c,lambda,delta,x))

}

# define McLLog Quantile

# Note: qbeta(pbeta(x,a,b),a,b)=x

McLLogquantile=function(a,b,c,lambda,delta,q){
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((((qbeta(q,a/c,b))ˆ(-1/c))-1)/lambda)ˆ(-1/delta)

}

# define McLLog moments

# Note: s<delta

McLLogmoments=function(a,b,c,lambda,delta,s){

f=function(a,b,c,lambda,delta,s,x){(xˆs)*McLLogg(a,b,c,lambda,delta,x)}

y=integrate(f,lower=0,upper=Inf,subdivisions=100000,a=a,b=b,c=c,

lambda=lambda,delta=delta,s=s)

return(y)

}

# define McLLog I(q)

McLLogIq=function(a,b,c,lambda,delta,q){

n=length(q)

y=0

for(i in 1:n){

y[i]=integrate(function(a,b,c,lambda,delta,x){x*McLLogg(a,b,c,lambda,delta,x)}

,lower=0,upper=q[i],subdivisions=100000,a=a,b=b,c=c,lambda=lambda,delta=delta)$value

}

return(y)

}

# define McLLog Bonferroni

McLLogBonferroni=function(a,b,c,lambda,delta,p){

q=McLLogquantile(a,b,c,lambda,delta,p)

mu=McLLogmoments(a,b,c,lambda,delta,1)$value

y=(McLLogIq(a,b,c,lambda,delta,q))/(p*mu)

return(y)
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}

# define McLLog Lorenz

McLLogLorenz=function(a,b,c,lambda,delta,p){

q=McLLogquantile(a,b,c,lambda,delta,p)

mu=McLLogmoments(a,b,c,lambda,delta,1)$value

y=(McLLogIq(a,b,c,lambda,delta,q))/(mu)

return(y)

}

A.4 The Gamma-Dagum Distribution

# define GD pdf

GDg=function(lambda,beta,delta,alpha,theta,x){

lambda*beta*delta*(xˆ(-delta-1))/((gamma(alpha))*((theta)ˆ(alpha)))

*((1+lambda*((x)ˆ(-delta)))ˆ(-beta-1))

*((-log(1-((1+lambda*((x)ˆ(-delta)))ˆ(-beta))))ˆ(alpha-1))

*((1-((1+lambda*((x)ˆ(-delta)))ˆ(-beta)))ˆ((1/theta)-1))

}

# define GD cdf

# note: pgamma(x,a)=integral 0ˆx tˆ(a-1)exp(-t)dt/gamma(a).

# incomplete gamma function: gamma(a,x)=integral 0ˆx tˆ(a-1)exp(-t)dt,

# i.e., pgamma(x,a)*gamma(a).

GDG=function(lambda,beta,delta,alpha,theta,x){

pgamma(-((theta)ˆ(-1))*(log(1-((1+lambda*(xˆ(-delta)))ˆ(-beta)))),alpha)

}
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# define GD hazard

GDh=function(lambda,beta,delta,alpha,theta,x){

y=GDg(lambda,beta,delta,alpha,theta,x)/(1-GDG(lambda,beta,delta,alpha,theta,x))

return(y)

}

# define GD quantile

# note: qgamma(x,a)

GDquantile=function(lambda,beta,delta,alpha,theta,y){

u=qgamma(y,alpha)

y=((lambda)ˆ(1/delta))*((((1-exp(-theta*u))ˆ(-1/beta))-1)ˆ(-1/delta))

return(y)

}
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