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ABSTRACT 

The exact formulations for the radiative flux and the emissive 

power are presented for a two-dimensional, finite, planar, absorbing 

and emitting, gray medium in radiative equilibrium. Exact expressions 

are obtained for the medium subjected to the following types of 

boundary conditions: (1) cosine varying diffuse, (2) cosine varying 

collimated, (3) constant temperature strip, and (4) the strip 

illuminated by a uniform collimated flux. The solutions for the 

physically unrealistic cosine varying models are used to construct the 

solutions for the more practical finite strip models. The two­

dimensional equations are reduced to one-dimensional equations by the 

method of separation of variables. This simplification is made 

possible by the cosine form of the boundary radiation. The correspond­

ing equations for the semi-infinite medium are obtained from the equa­

tions for the finite optical thick medium by letting the optical 

thickness become infinite. The reduced one-dimensional equations are 

then solved exactly by techniques from one-dimensional radiative 

theory for the emissive power and radiative flux at the boundaries for 

both the finite and semi-infinite models. A wide range of exact 

numerical data is presented. 

The cosine varying collimated boundary condition generates 

functions which are analogous to the one-dimensional X- and Y­

functions of Chandrasekhar for the finite model and the H-function of 

Chandrasekhar for the semi-infinite model. These generalized 

functions represent the dimensionless emissive power at the boundaries 



i i i 

and appear in the radiative flux and emissive power at the boundaries 

for the cosine varying diffuse model as \vell as for both finite strip 

models. The generalized H-, X- andY-functions are tabulated exactly 

for a wide range of numerical values. 

In addition to the generalized H-, X- and Y-functions, a function 

analogous to the exponential integral function is introduced. Gener­

alized exponential integral functions of the first, second, and third 

order are defined and the recurrence formulas and series expansions 

are developed. The generalized exponential integral functions are 

tabulated for a wide range of numerical values. 
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I. INTRODUCTION 

The one-dimensional model for radiative heat transfer through a 

participating medium has been extensively analyzed. In fact, the 

major portion of the current literature involving radiative heat 

transfer is concerned with the one-dimensional analysis. This is due 

to the mathematical simplification and certainly not because the one­

dimensional model yields the best physical description. The one­

dimensional analysis permits a rigorous mathematical solution as well 

as gives a first approximation to many two-dimensional problems. 

However, recent advances in high temperature technology in the areas 

l 

of gas dynamics, fluid mechanics, and energy exchange between surfaces, 

indicate that much more precision is needed in calculating heat flux 

and temperature. The calculation of two-dimensional radiative trans­

fer is also required in many atmospheric problems. Of principal 

importance in the areas of weather forecasting and meteorology is 

the calculation of the net radiant energy exchange between the earth 

and the atmosphere. Typical problems include the prediction of frost 

and fog, evaporation and melting of snow, and the formation and trans­

port of air masses. 

The present investigation is concerned with two-dimensional 

radiative transfer in a participating medium. The radiative flux and 

temperature thus depend upon two space variables with the flux having 

a component in each direction. The integral equation describing the 

temperature is very complicated and difficult to solve. For this 

reason. the limited two-dimensional development which appears in the 

literature is either highly analytical or approximate in nature. The 

analytical studies have provided only limited numerical results, and 
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the validity of the approximate analyses is yet unknown. The present 

analysis offers an exact analytical formulation of a bm-dimensional 

model with a wide range of numerical data which can be utilized to 

verify the one-dimensional assumption and the validity of various tv'lo­

dimensional approximate solutions. 

The mathematical analysis encountered in solving for temperature 

and heat flux in a two-dimensional medium in which conduction, convec­

tion, and radiation occur simultaneously is very complicated due to 

the interaction of the various modes of heat transfer. If any one 

mode can be considered to be negligible, the mathematics is consider­

ably simplified. For this reason, the present investigation is con­

cerned with two-dimensional gray absorbing and emitting media in which 

energy transport is solely by radiation. A medium under these condi­

tions is said to be in radiative equilibrium and the formulation of 

the problem reduces to the solution of an integral equation for the 

temperature distribution. 

The two-dimensional radiative equilibrium model can be used as a 

standard of comparison whereby the results of the one-dimensional 

radiative equilibrium model can be verified or rejected. A confidence 

interval for the parameters involved can then be obtained within uhich 

the one-dimensional radiative equilibrium assumption can be utilized. 

Such an error bound is very desirable because of the abundance of 

practical problems appearing in the current literature which are 

solved by the one-dimensional radiative equilibrium assumption. The 

radiative equilibrium model can also be used to construct approximate 

solutions to more complex models that involve combined modes of heat 
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transfer. This approximation can be accomplished by regarding the 

total heat flux to be evaluated through superposition of the seoarate 

contributions. Thus, if radiation and conduction occur simultaneously, 

the radiative heat transfer can be calculated as if the conductive 

mode is not present and then added to the heat transfer due to the 

conduction. This procedure has been successful in the one-dimensional 

case, and would provide useful knowledge of the heat transfer process 

if they could be extended to cover two-dimensional models. 

Exact two-dimensional solutions are presented for the radiative 

flux and the emissive power for both the finite and semi-infinite media 

subjected to cosine varying collimated and cosine varying diffuse 

boundary conditions. The solutions for the radiative flux and emissive 

power due to the cosine varying boundary conditions are then used to 

obtain the radiative flux and emissive power due to more realistic 

boundary conditions. In particular, the emissive pm-1er and radiative 

flux for the constant temperature strip and the strip illuminated by a 

uniform collimated flux are expressed in terms of the solutions for 

the cosine varying diffuse boundary and cosine varying collimated 

boundary, respectively. A wide range of exact numerical solutions are 

presented for the emissive power and radiative flux at the boundaries. 

In addition to being suitable for constructing solutions to pro­

blems involving more complex types of boundary conditions, the cosine 

varying boundary conditions are important since this form enables the 

two-dimensional equations to be reduced to one-dimensional equations. 

Hence, the methods of solution which have been successfully applied to 

the one-dimensional theory can be utilized to solve the reduced 
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one-dimensional equations. In fact, the cosine varying collimated 

boundary condition generates functions vJhich are analogous to the one­

dimensional X- andY-functions of Chandrasekhar [l,p.l83] for the 

finite medium and the H-function of Chandrasekhar [l,p.l05] for the 

semi-infinite medium. These generalized functions represent the 

dimensionless emissive power at the boundaries and are shown to appear 

in the solutions for the emissive power and flux at the boundaries for 

the cosine varying diffuse boundary condition and both finite strip 

models. For this reason, a wide range of numerical data is tabulated 

for the generalized functions. 

Chapter II of this investigation reports the current status of 

multidimensional radiative transfer and the analogous problem of 

neutron transport. The formulation of the basic equations for 

emissive power and radiative flux appears in Chapter III. Chapter IV 

is devoted to the emissive pm~er and radiative flux at the boundary of 

a semi-infinite medium. Chapter V is concerned with the finite medium 

and is followed by concluding remarks and suggested future extensions 

of the present work. 
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II. REVIEW OF LITERATURE 

INTRODUCTION 

The development of the theory of radiant energy transfer in a 

participating medium has centered around one-dimensional plane geome­

tries due to the complications involved in solving the transport 

equations. In general, the radiation intensity is a function of posi­

tion, direction, time, and frequency. The solution to such a general 

problem is very complicated. The presence of the source function in 

the transport equation is a contributing factor to the mathematical 

difficulties encountered in a solution. 

For a scattering medium, the source function is an integral over 

the intensity, making the transport equation an integra-differential 

equation. If the medium absorbs and emitts radiation and is in local 

thermodynamic equilibrium, the source function becomes Planck's func­

tion which introduces the unknown temperature into the transport equa­

tion. Hence, the transport equation is a coupled equation in intensity 

and temperature. When the participating media emitts, absorbs, and 

scatters, the transport equation assumes its most complicated form. 

Various simplifying assumptions are then necessary in order to obtain 

a solution to the transport equation. The dependence upon the fre­

quency can be eliminated by the gray medium approximation. This 

approximation means that the absorption coefficient is assumed inde­

pendent of frequency. The transport equation can then be integrated 

over all frequency and the spectral quantities replaced by the total 

integrated quantities. A further mathematical simplification follows 

if the intensity is considered to be time independent. Most of the papers 

cited in this review are time independent unless specifically indicated. 
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In addition to the transport equation, the equation which governs 

the conservation of energy in the system must be satisfied. For a 

general conductive, convective, and radiative participating medium, 

the energy equation relates the temperature to the radiative flux in a 

very complicated manner. Since the radiative flux is an integral over 

solid angle of the intensity of radiation, the transport equation and 

the energy equation are coupled equations. Hov.~ever, neglecting the 

conductive and convective modes of heat transfer reduces the energy 

equation to a form which, when solved simultaneously Hith the trans­

port equation, yields an integral equation for the temperature dis­

tribution. 

The number of space variables considered in a model contributes 

significantly to the degree of the mathematical complexity. A large 

part of the current literature is concerned with the one-dimensional 

model. This assumption limits the temperature distribution to vary in 

a single space variable as opposed to tv.~o space variables required for 

the two-dimensional model. Since the one-dimensional model is less 

difficult to solve, it has found application in the areas of astro­

physics and engineering. The astrophysical development can be found 

in the \llorks of Eddington [2], Rossel and [3], and more recently those 

of Chandrasekhar [1], Kourganoff [4], and Sobolev [5]. Engineering 

oriented applications can be found in Love [6], and also SparroH and 

Cess [7]. 

Since the one-dimensional model is a first approximation, a more 

refined knowledge of the heat transfer process can be obtained from 

the two-dimensional model. This natural extension has been found 

necessary due to the requirement for more precise calculations. The 



following is a summary of associated works in multidimensional 

analysis and the order of presentation is according to the type of 

oarticipating media. The analogous problem of neutron transport is 

nresented last. 

ABSORBING AND EMITTING MEDIA 

7 

The first attempt to solve multidimensional radiative transfer 

problems in nonscattering media was done by assuming the gas to be 

optically thick, thereby permitting the radiation to be thought of as 

a diffusion process. The problem reduces to solving a modified heat 

conduction equation. This approach is known as the Rosseland approxi­

mation which was first introduced by Rosseland [3]. The Rosseland 

approximation yields favorable results when applied at locations 

interior to the optical thick medium. However it fails in the near 

vicinity of boundaries. 

Another approximate method, the differential approximation which 

replaces the general expression for the radiative flux by a differ­

ential equation, has also been used for multidimensional analysis. 

Cheng [8,9] used the spherical-harmonic approximation to study a two­

dimensional radiating, flowing gas. Khosla [10] also applied the 

differential approximation to a two-dimensional high speed gas dynamics 

problem. Glicksman [ll] developed an approximate method similar to 

the differential approximation which is referred to as the method of 

flux summing. Taitel [12] also developed an approximate formulation 

for the radiative flux for a finite two-dimensional medium bounded by 

nonisothermal walls. Taitel 's formulation is shown to approach the 

exact solution in the optically thin limit. Lunardini and Chang [13] 
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used the differential approximation to study the effect of heat conduc­

tion. 

The only exact integral formulations of radiative transfer in an 

absorbing and emitting two-dimensional medium were presented by Olfe 

[14] and Cheng [15]. Olfe considered a semi-infinite medium with a 

nonuniform wall temperature which varied in a sinusoidal fashion and 

presented two-dimensional integral expressions for temperature and flux 

without derivation. The sinusoidal form of the boundary radiation 

enabled the two-dimensional integral equation for the emissive power 

to be reduced to a one-dimensional integral equation. This equation 

was solved numerically by iteration, and graphical results for the 

emissive power at the boundary were presented. However, numerical solu­

tions were difficult to obtain and the emphasis of this work was on 

various schemes for an approximate solution, specifically the modified 

differential approximation. 

Cheng [15], unlike Olfe, considered the temperature of the medium 

to be a known quantity. He formulated exact equations for the radiative 

flux and intensity for the two-dimensional medium bounded by two 

parallel walls with arbitrary discontinuous wall radiation over a 

finite portion of each wall in terms of the assumed temperature of the 

medium. The principle of superposition was employed to obtain expres­

sions for the radiative flux and intensity for the two-dimensional 

rectangular medium bounded by four finite discontinuous radiating 

walls. A similar set of equations were developed by using the differ­

ential approximation. A graphical comparison between the exact solu­

tion and the differential approximation solution was presented for the 

case of an isothermal medium and continuous isothermal walls. 
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SCATTERING t1EIJIA 

The searchlight problem occurs when a narrow pencil of radiation 

(such as a searchlight beam) is incident on an absorbing and scattering 

medium. Chandrasekhar [16] considered the searchlight problem for an 

isotropic scattering semi-infinite medium and obtained with invariance 

principles a nonlinear integra-differential equation in five variables 

for the scattering function. This equation was not solved. 8ellman, 

Kalaba, and Ueno [17] treated the searchlight problem for the tvJo­

dimensional isotropically scattering finite medium. The integra-differ­

ential equation which governs the scattering function was presented 

with the aid of invariant imbedding techniques. No solutions were 

provided for the equation. The more general case of a transient 

searchlight problem was treated by Bellman, Kalaba, and Ueno [18]. 

The formulation \'/as entirely analytical v>~ith no solutions provided. 

Rybicki [19] formulated the searchlight problem for both finite and 

semi-infinite media in terms of an integral equation for the source 

function. Limited results for the source function at the boundary of 

a semi-infinite medium v1ere calculated by means of the kernel approxi­

mation method. 

Smith [20] considered the theoretical development for the source 

function of a t\'io-dirnensional, finite thick, isotropically scattering 

medium illuminated by a call imated flux of cosine magnitude. An 

integral equation was presented for the source function. The corres­

ponding two-dimensional integral equation for the source function of 

the semi-infinite medium \vas reduced to a one-dimensional integral 

equation in a fashion similar to that of Olfe [14]. The solution to 
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the reduced one-dimensional equation was then used to construct a solu­

tion for the finite strip illuminated by a constant collimated normal 

flux. The source function for the finite strip problem was expressed 

in terms of a cosine series the coefficients of which were difficult to 

obtain. Both of these problems were analytical with no numerical solu­

tions presented. 

Smith and Hunt [21] considered a flat beam of constant magnitude 

incident normally on an isotropically scattering semi-infinite medium 

of finite width. A Fourier cosine series was obtained for the source 

function with the use of complex contour integration. The coefficients 

of the series were very complicated and not easily obtained. Hunt [22] 

developed the integral equation for the source function for an axially 

symmetric, isotropically scattering medium illuminated by an incident 

beam of radiation that varied in the radial direction as the zeroth 

order Bessel function of the first kind. The source function was ap­

proximated by a Fourier cosine series. However, the coefficients were 

not evaluated. Hunt [23] considered a finite, three-dimensional, iso­

tropically scattering medium illuminated by a beam of radiation 

obliquely incident on the boundary. The kernel of the integral equa­

tion for the source function was expressed in terms of a singular 

integral equation by utilizing the Green's function. The resulting 

integral equation for the kernel was not solved. 

Only one work is available which treats multidimensional aniso­

tropic scattering of radiation. Hunt [24] considered a finite, three­

dimensional slab with anisotropic scattering and used the first three 

terms in a series of Legendre polynomials for the scattering function. 



The boundary radiation was in the form of a general two-dimensional 

collimated flux incident normally. The intensity of radiation was 

divided into eight components each of which acted over a separate 

region of the medium. A complicated set of integral equations was 

developed which involved each of the components of intensity. No 

solution to this complex system of equations was proposed. 

ABSORBING, EMITTING, AND SCATTERING MEDIA 

11 

Bobco [25] developed a closed form approximate solution for the 

directional emissivity of a finite thick, two-dimensional slab. Solu­

tions were obtained by an approximation based on an iteration of the 

diffusion solution. Love and Turner [26] used Monte Carlo techniques 

to solve the same problem and found a close agreement with Bobco's 

results. Both of these methods are approximate, with the Monte Carlo 

technique being less practical due to the excessive amount of computer 

time required. 

NEUTRON TRANSPORT 

A field of study closely associated with the radiative transfer 

is neutron transport. Since the transport equations for neutrons and 

photons have the same mathematical form, methods applied to multidimen­

sional neutron transport can be used in radiative transfer. Thus, a 

review of two-dimensional neutron transport literature is appropriate. 

Elliott [27] considered an isotropically scattering half space and 

used the Wiener-Hopf technique to obtain a complicated triple integral 

expression for neutron density due to a point source on the boundary. 

An approximate solution was presented which was valid for large dis­

tances away from the source. Erdmann [28] considered a flux due to a 
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point source of neutrons in a two-dimensional, semi-infinite medium and 

solved the transport equation by the Wiener-Hopf technique. The solu­

tion for neutron density was left in integral form and not solved. 

Williams [29] considered the three-dimensional medium inside a 

finite rectangular prism and reduced the three-dimensional transport 

equation to a one-dimensional form. This reduction was accomplished 

by approximating two of the space variables and treating the remaining 

one exactly. The Wiener-Hopf technique was applied to the reduced one­

dimensional form. 

Williams [30] investigated the diffusion of neutrons from a plane 

source in an infinite slab with the source plane perpendicular to the 

faces of the slab. An integral equation approach was utilized to 

formulate the transfer problem with solution by means of Fourier 

transforms. Fourier inversion by complex contour integration was used 

to obtain an integral solution for neutron density. Williams [31] also 

extended the neutron diffusion analysis to an infinite cylinder with 

source plane perpendicular to the axis of the cylinder. Fourier trans­

form techniques were used to formulate the equation for neutron den­

sity, but the equation was not solved. 

Kaper [32] reduced the three-dimensional transport equation to an 

equation of one-dimensional form by treating one of the space variables 

exactly and approximating the other two. The reduced transport equa­

tion was then solved for neutron density in integral form by Fourier 

inversion techniques. The integral solution was not solved. 

Sotoodehnia and Erdmann [33] treated two-dimensional infinite and 

semi-infinite isotropically scattering media with a line source of 
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neutrons. The two-dimensional transport equation was reduced to a 

single dimension by Fourier transform and variable changes. The compli­

cated integrals were not evaluated. 

Garrettson and Leonard [34] treated multidimensional neutron 

transport in an isotropically scattering medium with point, line, or 

plane sources. The three-dimensional transport equation was reduced 

to a one-dimensional integral equation with difference kernel by using 

Fourier and Laplace transforms. Integral solutions were obtained by 

use of Green•s function technique. No numerical results were obtained. 

SUMMARY 

In comparison to the one-dimensional model, there is a definite 

lack of two-dimensional analysis in the current literature. This was 

especially noted for the nongray assumption for which no reference was 

found. Most of the investigations reported deal with scattering or 

neutron transport with only two completely rigorous discussions per­

taining to an absorbing and emitting medium. Virtually no results were 

found to verify the usefulness of the highly analytical formulations or 

the accuracy of the various approximate techniques. All investigations 

assume the medium to be gray, and none of the investigators attempted 

to determine the validity of the one-dimensional model. 

The present investigation attempts to eliminate some of the above 

limitations by (1) considering an exact development for the two-dimen­

sional absorbing and emitting gray medium, and (2) supplying numerical 

data for the radiative flux and the emissive power for a wide range of 

the parameters T0 , s, and a which correspond to the optical thickness, 

the spacial frequency of the incident radiation, and the angle of the 

incident collimated radiation, respectively. 
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III. PHYSICAL r·'lODEL AND GOVERNING EQUATIONS 

A. ASSUMPTIOtJS 

The coordinate system and geometry used in calculating radiative 

heat transfer through a two-dimensional participating medium are shown 

in Figure 3.1. Both finite and semi-infinite media are considered. 

The present investigation is based on the following assumptions: 

1. two-dimensional transfer 

2. steady state temperature and intensity 

3. absorbing and emitting, but non-scattering medium 

4. gray medium 

5. local thermodynamic equilibrium 

6. no conduction or convection; no heat generation 

7. refractive index of unity 

The radiation incident on the boundaries of the medium is either 

co11 imated or diffuse. The collimated boundary condition means that 

radiation is incident upon the boundary from a single direction. This 

kind of boundary condition is often used to simulate solar energy 

striking a planetary atmosphere or an air-sea interface. The diffuse 

boundary condition occurs when the radiation incident on the boundary 

is independent of direction. This kind of boundary condition is often 

used to simulate the radiation incident on the sea from the atmosphere. 

The diffuse boundary condition has many engineering applications since 

it approximates the radiation leaving an opaque surface. 

The present investigation is concerned with two-dimensional radia­

tive transfer produced by spacially varying incident radiation. 

Figures 3.2 and 3.3 exhibit the physical models for the cosine 
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Figure 3.1 Coordinate system 



y, Ty 

Figure 3.2 Cosine varying collimated model 

I 

z ,Tz 

Figure 3.3 Cosine varying diffuse model 

T.: = 0 z z = 0 

T.=O z 
Z=O 
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collimated and diffuse boundary conditions, respectively. The cosine 

boundary conditions are not physically realistic. Their usefulness 

lies in the fact that the solution to other more realistic problems 

can be expressed in terms of the cosine solutions. This is the case 

when the incident radiation is uniform over a finite portion of the 

boundary. Physical models for the finite strip boundary conditions 

are shown in Figures 3.4 and 3.5 for the strip illuminated by a uni­

form collimated flux and the constant temperature strip, respectively. 

Since the boundary radiation is uniform over the entire strip but 

different from that outside the strip, the finite strip models are 

two-dimensional. When the strip width becomes infinite, the finite 

strip models approach the one-dimensional models. 

Figure 3.6 outlines the various solutions which are expressed in 

terms of solutions to other boundary conditions. The notation A-+B 

indicates that A is expressed in terms of B. Figure 3.6 reveals that 

the cosine varying collimated solution is fundamental to that of the 

cosine varying diffuse as ~~ell as the finite strip solutions. Table 

3.1 lists the notation employed throughout this investigation. 

B. FUNDAMENTAL EQUATION FOR EMISSIVE PmJER 

The fundamental equation which governs the transport of radiant 

energy through a medium which satisfies the assumptions previously 

listed can be written as [1 ,pp.8,9] 

di a Tit ds + Kl = K TI ( 3. 1 ) 

where the operator ~s is defined as 



Figure 3.4 Uniform collimated strip model 
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Figure 3.5 Constant temperature strip model 
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COSINE MODULATED 

DIFFUSE 

CONSTANT COLLIMATED 

INCIDENT FLUX 

(FINITE STRIP) 

COSINE MODULATED 

COLLIMATED INCIDENT 

FLUX 

CONSTANT DIFFUSE 

(FINITE STRIP) 

Figure 3.6 Schematic relationship for the emissive power and 
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flux due to collimated and diffuse boundary conditions 



Type of External 
Radiation 

Variable 
Collimated 

Collimated 
Strip 

Variable 
Diffuse 

Diffuse 
Stri·p 

Table 3.1 Notation used in calculating flux and emissive power 

FINITE MEDIA SEMI-INFINITE MEDIA 

Notation Temperature Dimensionless Flux Dimensionless Dimensionless Dimensionless 
Emissive Power Flux Emissive Power Flux 

qzA ,qyA :r;. '~ -
A TA Js qzA Bs 0s'0s 

B TB J qzB qzB ,qyB :"fs B Q 

c Tc tPs qzc qzC'qyC~ tPs Fs 

D To cp qzD qzD'qyo:fo ¢ F 

I':. 
c 
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d . 8 ,..a .. a a ds = Sln COS~ ax + Sln8Sln~ ay + COS6 az (3.2) 

Equations (3.1) and (3.2) are expressed in terms of the cartesian 

coordinate system arbitrarily fixed at the point (x ,y ,z) as shmm in 

Figure 3.1. At every point in the medium, the integration point 

(x' ,y' ,z') is allowed to vary over its entire range of values v;ith 

z'=O on the upper boundary. The polar and azimuthal angles 8 and <P 

and distance s locate the fixed coordinates (x,y,z) with respect to 

the integration coordinates (x',y',z'). 

The steady state conservation of energy requires that 

v·F = o (3.3) 

where the radiative flux vector is defined as 

F = rJ Icosexdw + rJ Icos8ydw + rJ (3 .4) 

~t1T 47T It IT 

with w the solid angle and ex, ey, e2 the angles that the x, y, and z 

axes make \'lith the 1 ine of sight of the intensity vector. 

The quantity Ol 4 appearing in equation (3.1) is the emissive 

poVJer of the medium. The constant absorption coefficient K is 

combined with the distance s by introducing a dimensionless optical 

depth T s bet\'1een the points s=o and s=s 

s 

Ts = J Kds = KS 

0 

(3.5) 

The coordinate systems of Figure 3.1 are converted to optical 

coordinate systems by considering transformations similar to equation 

(3.5). The optical coordinates are defined as 

T = KX • T - KY • T = KZ 
X ' y- ' Z (3.6) 
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and 

T I = KX I ; T I = KY I ; 1 I = KZ I 
X y Z 

(3. 7) 

The optical thickness is measured in a direction normal to the 

boundaries and is given by 

1 = KL 
0 

(3.8) 

Wilen expressed in terms of the optical coordinates, equations (3.1) 

and (3.2) become 

d I + I = o T'+ 
dT If 

(3.9) 
s 

and 

(3.10) 

For simplification of the treatment of the boundary conditions, 

tile intensity is divided into tHo components. The intensity associa­

ted with the direction of increasing 1z is denoted by I+ and that Hith 

the decreasing 1z direction by C. Thus, equation (3.9) can be 
+ -written as two equations, one for I and one for I . The general 

boundary conditions for equation (3.9) can be \'·lritten as 

+ + I (1v,o) = I (T ) 
- 0 y 

(3.11) 

and 

(3.12) 

Application of integrating factor techniques to equation (3.9) 
+ and use of equations (3.11) and (3.12) yields expressions for I and 

I in terms of the unknown emissive power 



vJi th 

and 

T -T 1 

z z -r s = _c_o_s-:-8 = 

T 

1 r z - (L - -r ' ) sec 8 
+ - 1 0 T4 (-r' -r 1 -r )e z z sec8d-r' nJ y' z' o z 

T -T 1 

y y 
sin8sincp 

0 

T ··T I 
X X 

=~---sin8coscp 

T 

(Q < 8 < TI) - 2 
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(3.13) 

(3.14) 

I 
(T -T )sec8 J 0 (-r'--r )sec8 

=I -(-r 1 )e 0 z _l 0 T4 (T',T',-r )e z z seced-r'(3.15) 
0 Y TI y Z 0 Z 

Tz 

with 

T -T I L -T I T -T I 

TS = ~OS~ = sin8;in1cp+n) = sin8~os(cp+n) (3.16) 

The equation governing the emissive power in the medium is 

obtained by ~'lriting the divergence of the flux in the follovJing form 

[35,p.22] 

(3.17) 

Substituting equations (3.3) and (3.9) into equation (3.17) yields an 

expression for the emissive power 

4IT 

Dividing intensity into its two components I+ and I reveals 

2TI TI/ 2 

= J ( J I+ s i ned 8 + 

0 0 

TI 

J I - s i ned 8 J d ¢ 

TI/ 2. 

(3.18) 

(3.19) 
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Substitution of equations (3.13) and (3.15) into the conservation of 

energy equation (3.19) then yields 

+ -L sece J 
I ( T ' ) e z dw + 

0 y 

- (L -L )sece 
I -(L')e 0 z dw 
0 y 

21T 2IT 

T 

f 0 -(T'-T )sece J 
+ a T4 (T',T' ,T )e z z sec8dT' sin8d8d¢ 

y z 0 z (3.20) 

Tz 

with 

T; = TY + (T~-Tz)tanesin¢ ( 3. 21 ) 

Equation (3.20) is of the same form as the emissive pm-1er distribution 

presented by Olfe [14]. 

For numerical computation, the trigonometric dependence will be 

replaced by position dependent functions. The standard substitution 

~ = cose (3.22) 

and the transform pair 

~y = 1 (3.23) 

and 

A~ = ll-iJ2 sin¢ (3.24) 

with Jacobian given by 

(3.25) 
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along with the integral 

(3.26) 

reduces equation (3.20) to the form 

- (T -T )sece + -T sece J 
I (T 1 )e z dw + 
0 y 

- ( ) 0 z I T 1 e dw 
0 y 

27T 27T 

oo oo To 

+ £{ dtJ dT 1 J K [ti(T -T 1 ) 2 +(T -T 1 ) 2 ] a T4 (T 1 T1 T )dT 1 
7T y o z z y y y' z' o z ( 3. 27) 

l -00 0 

where K0 (s) is the modified Bessel function. Equation (3.27) is a 

linear integral equation in the emissive power of the medium and 

agrees with the form given by Smith [20]. Any further reduction in 

form should be preceded by an assumption regarding the behavior of the 

boundary conditions. 

The following sections (1-5) of this chapter are concerned with 

assigning specific forms to the incident radiation and formulating 

general expressions for emissive power. Equation (3.27) is the funda­

mental equation which will be employed with the notation following 

from Table 3.1. 

1. COLLIMATED FLUX .Q£_ COSINE MAGNITUDE 

A variable collimated flux of magnitude ~1+(Ty) is incident on 

the upper boundary T2=0 of the medium from a fixed direction. Uo 

radiation is incident on the lower boundary T2 =T0 • Mathematically, 

the boundary conditions are expressed as 

T =0 z (3.28) 



and 

I -(T ) = 0 
0 y T =T z 0 
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(3.29) 

where o is the Dirac delta function, and ~0 and ~0 specify the fixed 

direction. Equation (3.27) reduces to the integral equation for the 

emissive power 

oo oo To 

+ £J( dtJ d-r•J v [ti(T -T 1 ) 2+(T -T 1 ) 2 ] 0 T4 (T 1 T1 T )dT 1 
~ y r,o z z y y y' z' 0 z (3.30) 

1 -oo 0 

where 

o = sec e = 1 1 11 o ~-"o 
( 3. 31 ) 

and -r; represents -r; at the boundary -r~=O. The product of Dirac delta 

functions in the integrand of the integral in equation (3.27) selects 

the specific direction ~=~0 and ~=~0 so that equation (3.21) reduces 

to 

(3.32) 

In particular, the incident flux varies in a cosine fashion and 

is written in exponential form 
i 13T 

= F e Y 
0 

(3.33) 

where F0 and B are the amplitude and spacial frequency of the incident 

radiation, respectively. Figure (3.2) exhibits the physical system. 

Equation (3.30) then yields 
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(3.34) 

where TA is the temperature of the medium. The complicated term 

arising from the boundary condition is simplified by confining the 

incident radiation to lie in planes that are perpendicular to the y-z 

plane, i.e., cp0 =0 and hence T~=TY. LJith this assumption, equation 

{3.34) reduces to 

(3.35) 
l -oo 0 

The two-dimensional integral equation for the emissive power of 

the medium can now be reduced to a one-dimensional integral equation 

by applying the concept of separation of variables. The geometry of 

the medium permits this reduction since the TY-coordinate is unbounded 

in both positive and negative directions and hence suitable for 

Fourier integral transform theory. The assumption that the emissive 

power can be written as 

(3.36) 

reduces equation (3.35) to an integral equation for JS(Tz,cr,T0 ) 

= e-crTZ + ~JT0~ 1 (IT 2-T~I,S) JS(T~,cr,T0 )dT~ ( 3. 37} 

0 



where & is a generalized exponential integral function defined by 
1 

oo -T ltl+s 2 
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s ( T , f3) = r e z dt 
1 z J It 2+s2 

1 

(3.38) 

In arriving at equation (3.37), the following integral was used 

(3.39) 

Smith [20] obtained a less general form of equation (3.37) by consid-

ering the radiation to be incident from the direction a=l. 

Equation (3.33) reveals that when S=O, the incident radiation on 

the boundary is uniform. Hence, each point on the boundary receives 

the same amount of external radiation and is indistinguishable from 

any other boundary point with respect to heat transfer properties. 

Energy transfer is therefore described by a single space coordinate 

normal to the boundary plane. Thus, S=O corresponds to the one-

dimensional model vJhich has been analyzed extensively. Hmvever, other 

models v.Jhich involve more complex boundary conditions such as the 

finite strip model can be expressed in terms of the cosine varying 

collimated boundary solution by applying the principle of superposi-

tion. 

2. UfHFORt11 COLLir~iATED FLUX STRIP 

This section is concerned with a collimated flux of constant 

magnitude incident on a strip of finite \vidth at the boundary Tz=O. 

The finite strip at the boundary Tz=T0 receives no external radiation. 

Figure 3.4 exhibits the physical system. The finite strip solution 

enables an additional model to be investigated. When the strip width 
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becomes very large, the finite strip solution approaches the one­

dimensional model. The Fourier integral representation of the boundary 

radiation Iw+(TY) is given by 

where 

00 

I +( ) J g(Q)eiSTYds W ,Ty = iJ 

1 r 
g ( S) = 2rr J 

00 

-oo 

-iST 
I +(T )e YdT 

\'J y y 

(3.40) 

(3.41) 

The finite strip model boundary condition is obtained by allmving 
+ Iw (TY) to be constant and nonzero over a finite width of the boundary. 

~1athematically, the boundary condition is expressed as 

0 Ty < -T a 
+ 

Iw (TY) = F -T < T < T 
0 a - Y - a 

0 T > T (3.42) y a 

where Ta is an optical ~ddth related to the half strip width a by the 

usual integral 
a 

Ta = f KdX = Ka 

0 

Integrating equation (3.41) subject to the boundary conditions of 

equation (3.42) yields 

F 
g(B) = ~ sin(ST ) rrS a 

(3.43) 

(3.44) 

Substitution of equation (3.44) into equation (3.40) then gives an 

integral expression for the incident radiation in the form 

(3.45) 
-oo 



The integral equation for the emissive power of the medium 

illuminated by a constant collimated flux can now be obtained from 

equation (3.30). Substituting equation (3.45) into equation (3.30) 

yields 

-oo 
oo oo To 
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+ £ J dtf dT'J K [t/(T -T 1 ) 2+(T -T 1 ) 2 ] 0 T4 (T 1 T1 T )dT 1 w y o z z y y B y' z' o z (3.46) 
-oo 0 

where T8 is the temperature of the medium. Multiplying equation (3.35) 

by sin(STa)dS/wS and integrating from -00 to oo reveals 

Joo sin(STa)dS= ~ Joo sin(STa) eiSTY-0Tz 
4 a TA(Ty,Tz,To) TIS TI s dB 

-oo 

oo oo To 

+ ~ J cttJ dT' r K [t/(T -T') 2+(T -T') 2J TI YJ 0 z z y y 
1 -OO 0 

(3.47) 

Comparing equations (3.46) and (3.47) results in an integral expres­

sion which relates the emissive power of the medium bounded by the 

constant collimated strip to that of the cosine varying collimated 

boundary 

( 3. 48) 

Substitution of equation (3.36) into equation (3.48) yields 
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00 

~: T8(-ry,Tz,-ro) = ~ J (3.49) 
-oo 

By making use of the real part of the exponential function and the 

evenness of the integrand equation (3.49) reduces to 

(3.50) 

where J(-ry,Tz,T0 ) is the dimensionless emissive ~ower for the medium 

bounded by the constant collimated strip 

(3. 51 ) 

3. COSINE VARYING DIFFUSE BOUNDARY CONDITION 

The boundaries of the medium are black walls radiating in a 

nonuniform fashion due to prescribed temperatures. Since black body 

radiation is governed by the Stefan-Goltzmann law, the boundary condi­

tions are given by 

(3.52) 

and 

I - = 0 T4 (T ) 
0 1T 1 y 

(3.53) 

where T1 denotes temperature of the lo~er wall at Tz=-r0 and T2 

temperature at T =0. Substituting equations (3.52) and (3.53) into z 
equation (3.27) yields an integral equation for the emissive pov1er 

-(T -1 )sees 
+ cr T4 (-r')e 0 z ]sin8d8d~ 

1 y 
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oo oo To 

+ 1_2 J dtJ dT'J K [ti(T -T 1 ) 2 +(T -T 1 ) 2 ] a T4 (T 1 T1 T )dT 1 
7T y o z z y y y' z' o z • ( 3. 54) 

1 -oo 0 

The two inhomogeneous terms in equation (3.54) are transformed by 

equations (3.22) to (3.25) and the substitution n=Ty-T; to yield 

Tz Joe a T4 (T -n)S 1 (1T 2+n 2 )dn 
a T4(Ty,Tz,To) = 27T 2 YTz+nz z 

z -oo 

oo oo To 

+ --1 J dtj~ dT 1J K [ti(T -T 1 ) 2+(T -T 1 ) 2 ] a T4(T 1 T 1 T )dT 1 
27T y o z z y y y' z' o z (3.55) 

1 -00 0 

where 

(3.56) 

Note that the 5 1-function can be expressed in terms of integrals 

of the modified Bessel function given by equation (3.26). A standard 

integral representation for the modified Bessel function is, from Luke 

[36,p.30], 

00 

Ky(~) = J e-~cosh~ cosh(y~)d~ • (3. 57) 

1 

The substitution t=cosh~ with y=O reduces equation (3.57) to 

00 

I -~t 
= e dt = 5 (~) 

lt2-l -l 
1 

(3.58) 
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Integrating equation (3.58) tv.Jice vvith respect toE;, over the range 

(t;,,oo) results in 

Joo Joo K (x)dxdy = loo e-~t 
0 J t2 /t2 1 

y=E;, x=y 1 v -

(3.59) 

The right-hand side of equation (3.59) is S1 (E;,) from equation (3.56). 

Hence, S (E;,) becomes 1 . 

00 00 

S1 (E;,) = J J K0 (x)dxdy (3.60) 
y=E;, x=y 

A series of simple substitutions changes the limits of integration of 

equation (3.60) so that a typical term is 

and equation (3.55) reduces to 

00 00 00 

a T4 (-ry,Tz,T0 ) = ;~ J dn J dx J K0 (xyiT;+n 2 ) 0 T~(TY-Tl)xdy 

+ 
(T -T ) 

0 z 
2TT 

T 
00 00 0 

-00 

00 00 00 

( 3. 61 ) 

+ 1TT J dt J dT; J K0 (ti(Tz-T~)2+(1Y-T;) 2 ) a T 4 (T;,T~,T0 )dT~ . (3.62) 
1 -oo 0 

Next, consider walls that radiate in a cosine fashion with the temper-

ature of the medium denoted by Tc. Figure 3.3 shows the physical 

system. As before, the tHo-dimensional problem is reduced to that for 

the one-dimension uy assuming 
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which. along with equation (3.39), reduces equation (3.62) to 

where 

T 
0 

8 = T /T 
1 1 0 

8 = T /T 
2 2 0 

and ~ is a generalized exponential integral function 
2 

A simplified form of equation (3.66) results from defining a 

dimensionless universal function ¢13 as follows 

To 

¢ s ( T z , T 0 ) = 1 g2 (T z ' B ) + 1 I ¢ s ( T ~ ' T 0 ) &' 1 ( I T z- T ~ I ' s ) d T ~ 
0 

Replacement of T 2 by T0 -T 2 in equation (3.70) yields 
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(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 



To 

+ 1 J ~s(To-T~~To) 
0 
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( 3. 71 ) 

By multiplying equation (3.70) by 84 and equation (3.71) by 84 and 
2 1 

adding~ the following expression is obtained 

4 ) 4 14 l 4 8 2~S(Tz'To + 8 1~S(TO-TZ,TO) = 2 8 2~2(TZ,S) + 2 8 1~2(TO-TZ,S) 

To 

+ 1 f t;1 (jT2-T~j ,S)(8:~S(T~,T0 ) + 8:~S(T0 -T~~T0 )]dT~ 
0 

(3.72) 

A comparison of equations (3.66) and (3.72) then yields an expression 

for the dimensionless emissive power 

(3.73) 

4. RELATIONSHIP BETWEEN DIFFUSE AND COLLIMATED CASES 

An integral expression relating the emissive power for the cosine 

varying diffuse boundary condition to the emissive pm~er for the 

cosine varying collimated boundary condition \~ill noH be developed. 

Physically, the diffuse problem should be associated in some manner 

with the collimated since the collimated selects a particular angle 

whereas the diffuse considers all possible directions. As in previous 

development, the technique is to construct an integral equation which 

has the same inhomogeneous term and kernel. Since the call imated 

problem has the simplest inhomogeneous term, it is advantageous to 

start with equation (3.37). Replacement of cr by v't 2+S2 in equation 



(3.37) results in 

Multiplying equation (3.74) by dt/t 2 and integrating from 1 to oo 

yields 

00 

J J 13 (-r2 ,1t 2+S 2 ,-r0 )~~ = G2 (-r2 ,S) 
1 

Comparison of equation (3.70) with equation (3.75) results in the 

following relationship between the emissive power for the cosine 

varying collimated boundary and the emissive power for the cosine 

varying diffuse boundary 

00 

~13(-rz,-ro) = 1 J JB(-rz,ltz+sz,-ro) ~; • 
1 
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(3.74) 

(3.75) 

(3.76) 

The change of variable cr=lt 2 +13 2 reduces equation (3.76) to the 

form 

00 

- 1 f JS(-rz,cr,-ro)crdcr 
~B(TZ,TO) - 2 j 2 2 3/2 

ll+s2 (cr -B ) 
( 3. 77) 

A further reduction is accomplished by letting x=lf+BT/cr to arrive at 



where 

1 

¢s(T2 ,T0 ) = 1 J ~ 1 (x,s)Js(T2 ,~+~ 2/x9T0 )dx 
0 
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(3.78) 

(3.79) 

The ~ -function is presented in graphical form in Appendix C and con­
I 

tributes significantly to the mathematical complications involved in 

the numerical integrations of Chapters IV and V. 

5. CONSTANT TEr~PERATURE STRIP 

The analysis of this section is concerned with obtaining the 

emissive po~Jer for the medium bounded by a pair of constant tempera­

ture strips shown in Figure 3.5. The formulation is similar to that 

for the case of the finite strip i 11 umi nated by a constant flux men­

tioned previously. The emissive power for the variable radiating 

black walls given by equation (3.62) can be rewritten in the follovJing 

form 

00 00 00 

a T4 (-ry,Tz,To) = ;~ J dT~ J dx J Ka(xyv'Ti+hy-T~) 2 ) CJ T:(T~)xdy 
-oo 1 1 

The boundary radiation T4 (T') is expressed by Fourier integral theory 
2 y 

as 

4 
T (T') 

2 y ( 3. 81) 
-oo 
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where 

00 r -i S'T I 

g (S) = LJ T4 (-r 1 )e Y d'T 1 

1 2TI 2 Y Y (3.82) 
-oo 

The constant temperature finite strip theory is developed by allowing 

the lower and upper walls to radiate only over a finite portion of the 

boundaries. In particular, consider constant temperature strips of 

half width a \'>lith the boundary conditions given by 

0 

T:('T~) = T4 
2 

0 

and 

0 

T: ( 'T~) = T4 
1 

0 

'T < -'T Y a 
-'T < 'T < 'Ta a - Y -

'T > 'T y a 

'T < -'T 
Y a 

-'T < T < 'Ta a - Y -

'TY > 'Ta 

vJhere 'Ta is an optical width defined by equation (3.43). 

(3.83) 

(3.84) 

Inserting equation (3.83) into equation (3.82) and integrating 

yields 
4 

T 
g1 (S) =TIS sin(S'Ta) (3.85) 

Next, substitution of equation (3.85) into equation (3.81) results in 

an integral expression for the boundary radiation 
i S'T I 

oo sin(S'T )e Y 
T:('T~) = J T: TISa dS . (3.86) 

In a similar fashion, the emissive power at 'T 2 =0 can be written as 



4 
T (T 1 ) 

1 y 
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(3. 87) 

The integral equation for the emissive power of the medium bounded by 

the constant temperature strips then becomes 

a To4 (T ,T ,T ) = y z 0 

T _ 4100 J~sin(BT ) iST' oo oo 

~aT dT' a e Y ctsJ dxJ K (xyiT 2 +(T -T') 2 )xdy 2n 2 y nS o z y y 

00 00 00 00 

( T -T ) f sin ((3T ) i ST • 
o2n z a T41J dTy'J nS a e Yd.aJ dxJ + ~ K (xyi(T -T ) 2 +(T -T') 2 )xdy 

0 0 z y y 
1 1 

oo oo To 

+ l_2 J dt f dT 1 Jr K [ti(T -T 1 ) 2 +(T -T 1 ) 2 ] a T4 (T 1 T 1 T )dT' TI y o z z y y D y' z' o z (3.88) 
_oo 0 

where T0 is the temperature of the medium. 

Next, consideration is given to variable diffuse walls Hhich 

radiate in a cosine fashion given by equations (3.64) and (3.65) with 

the temperature of the medium denoted by Tc. The integral equation for 

the emissive power of this medium follows from equation (3.80) 

-co 

+ 

-co 1 1 

00 To 

+ --1 J dt f dT' J K [ti(T -T') 2+(T -T') 2 J 0 T4 (T' T' T )dT' 2n ) y o z z y y c y' z' o z . (3.89) 

l -oo 0 



Hhen equation (3.89) is multiplied by sin(STa)dB/ni3 and integrated 

from -co to oo and the resulting expression is compared with equation 
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(3.88), the following integral relationship between the emissive powers 

of the medium bounded by the constant temperature strips and the cosine 

varying diffuse boundary is obtained 

co 

_ 1 J _ 4 sin(BTa)dB 
0 T04 (TY,T2 ,T0 ) -- o T (T ,T ,T ) 13 • 

'TT c y z 0 . (3.90) 
-co 

Inserting equation (3.63) into equation (3.90) yields 

( 3. 91 ) 

Equation (3.91) is expressed in terms of ¢0 (T ,T ) by substituting 
1-' z 0 

equation (3.73) into equation (3.91) to yield 

where 

00 

¢(TY,T2 ,T0 ) = ; I ¢6(T 2 ,T0 )sin(BTa)cos(STY) ~S . 
0 

Substitution of equation (3.78) into equation (3.93) yields an 

(3.92) 

(3.93) 

expression for the dimensionless emissive power of the constant tern-

perature strip in terms of the dimensionless emissive power of the 

cosine varying collimated boundary condition as 

¢(Ty,12 ,T0 ) = 

00 1 

~ J [ I l)J 1 (x,s)J 6 (T 2 ,11+S 2/x,T0 )dx] sin(STa)cos(STY) ~s . 
0 0 

(3.94) 
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C. DIFFERENTIAL EQUATION FOR EMISSIVE PmJER 

The differential equation that the emissive power satisfies for 

the cosine varying co11 imated boundary condition is needed for the 

development of the equations for both the finite and semi-finite media. 

The analysis will be concerned \'lith only the finite medium since tile 

semi-infinite medium is a limiting case. Differentiating equation 

(3.37) with respect to Tz and applying Lebnitz's rule to the integral 

term yields 

T 

1 J 
0 d JQ(T' ,O,T ) & (IT -T' I ,S)dT' + ~ z 0 1 z z z 

20 ~ 
(3.95) 

Replacement of s;1 by its integral form (3.38) yields 

dt 

1 

1 

(3.96) 



Since equation (3.96) is an integral equation for 

d JS(T2 ,a,T0 ) 
~d-

Tz 
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the technique is to construct an integral equation \ihich has the same 

kernel and inhomogeneous term and compare the result Hith equation 

(3.96). Letting a=lt 2+S 2 in equation (3.37), multiplying the result 

by 1 JS(o,a,T0 )dt/lt2+S 2 and integrating the equation from 1 to oo 

yields 

00 

oo -T lt 2+s 2 

f e_z-:::;;::=:;;:~d..:;..t 
lt2+s2 

1 

+ 1 f 
0 

00 

( 3. 97) 

1 

When Tz is replaced by T -T and T1 by T -T', equation (3.37) reduces 0 z z 0 z 
to 

To 

+ 1 J ~1 (IT2-T~!,S)JS(T0-T~,a,T0 )dT~ 
0 

(3.98) 

Next, by 1 etti ng a=ltl+S2 in equation (3. 98), multi plying the result by 



- ~ J 8(T0 ,0,T0 )dt/le-+s 2 and integrating from l to oo, the follov;ing 

expression is obtained 

()() 

To 

+ 1 J S 1 (i"rz-T~!,B) 
0 

()() 
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(3.99) 

Multiplying equation (3.37) by -0 yields 

-0Tz 1 JTO 
-0J 0 (Tz,0,T0 ) = -0 e + -2 & (IT -T 1 I ,S)[-0J 1-"(T• ,0,T )]dT 1 • (3.100) 

~ 1 z z ~ z 0 z 
0 

Equations (3.97), (3.99), and (3.100) are then added to give 

00 
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To oo 

+ 1 J &:(1Tz-T~I,s)[~ Js(o,cr,To) J Js(T~,It2+s2,To) -~-=t:;:~=~s::;;2:­
o 1 

00 

- ~- J(3(To,cr'To) J JB(To-T~,/t2+(32,To) dt 

1 

- crJ 13 (T~,cr,T0 )] dT~ (3.101) 

A comparison of equation (3.101) with equation (3.96) yields the 

desired relationship 

00 

00 

. (3.102) 

The one-dimensional analogue of equation (3.102) is obtained by 

Sobolev [5,p.73]. Letting T0 become infinite in equation (3.102) 

yields an equation simi1ar in form with that obtained by Smith [20] 

for a semi-infinite two-dimensional model. 

D. BASIC EQUATIONS FOR RADIATIVE FLUX 

The radiative heat flux in the x, y, and z-directions are given 
-+ -+ -+ 

by the i, j, and k-components of the radiative flux vector defined by 

equation (3.4). Since this investigation is concerned \'lith two­

dimensional radiative theory, the x-component of flux will be zero in 

accord with the coordinate system of Figure 3.1. The z-component of 
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flux is denoted by q and they-component by q . Substituting the z y 

directional cosines cos82=cose and cos8Y=sin8sin~ into equation (3.4) 

yields 

and 

q2 = I I cosedw 
1+1T 

qy = I I sin8sin~dw 
41T 

( 3.103) 

(3.104) 

After the intensity I is substituted into these equations in its 

positive and negative components given by equations (3.13) and (3.15) 

and the integration is performed over the solid angle, the components 

of the radiative flux are given by 

-(T -T' )sece 
cr r~+(T' T' T )e z z 

y' z' o sec8dT~ 

-(T'-T )sece 
cr T4 (T' T' T )e z z sec8dTz' ] cos es i neded~ y' z' o (3.105) 

and 

-(T -T )sece 
I -(-r')e o z 

0 y 
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(3. 106) 

\\!here 

A= (T -T')/(T -T') = tanesin~ • y y z z (3.107) 

The last two integrals in equation (3.105) and (3.106) can be 

transformed in a manner similar to that mentioned in the previous 

sections. The presence of the additional trigonometric terms in the 

flux equations does not alter the integral form of either but does 

introduce constant multipliers in the z-flux and a variable multiplier 

in the y-flux. The components of flux reduce to 

2rr rr/2 

qz = J J [ 
0 0 

00 Tz 00 00 

+ ; I dn I dT 1 0 Tq(T +n,T',T ) I dx I K [xyi(T -T') 2+n 2 ](T -T''xdy z y z 0 o z z z z' 
-oo 0 1 1 

00 To 

- ; J dn I dT 1 

z 0 T 4 (T Y +n , T ~ , T 0 ) 

-oo Tz 

00 00 

( 3. 108) 

1 1 

and 
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oo T0 co co 

- ; J dn J dT~ J dx J no- T 4 (ly+n,T~,T0 )1C0 [xyi(T 2 -T;) 2+n 2 ]xdy. (3.109) 
-co 0 

Equations (3.108) and (3.109) are the basic equations for compo­

nents of flux which will be used in the following sections (l-5) to 

formulate expressions for flux due to various types of boundary 

radiation. Both components of flux involve the emissive pm1er \rJhich 

has been determined in previous sections. The notation for flux and 

emissive power has been tabulated in Table 3.1. 

l. COLLitv1ATED FLUX OF COSINE r·1AGiJITUDE 

A collimated flux of cosine magnitude is incident on the upper 

boundary as shown in Figure 3.2. Components of flux in they- and 

z-directions are denoted by qyA and qzA' respectively. Boundary con­

ditions for the cosine varying collimated model given by equations 

(3.28), (3.29), and (3.33) reduce equations (3.108) and (3. 109) to the 

form 

F i (3T -0T 
=__£e Y z 

0 

co co co 

+ 7T2 J dn J dT 1 J dx J 0 TA4 (T +n,T 1 ,T )[T -T 1 ]K [xyi(T -T•) 2+n 2 ]xdy z . y z 0 z z 0 z z 
-co 0 1 

oo T0 co co 

- 7T2J dnJ dT 2
1 J dxJ 0 TA4 (T +n,T• ,T )[T 1 -T ]I< [xyi(T -T 1 ) 2+n 2 ]xdy(3.l10) y z 0 z z 0 z z 

-oo TZ 

and 
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oo To oo 

qyA(-rz,o,T0 ) = - ; J dn J dT~ J dx 
-oo 0 1 

()() 

J n o T~(Ty+n,T~,T0 )K0 [xyi(T2-T~) 2+n 2 ]xdy 
1 

(3.111) 

where TA is the temperature of the medium. The application of the 

separation of variable technique with the use of equation (3.36) 

reduces equations (3.110) and (3.111) to 

T -OT Z 

q2 A(-rz,o,T0 ) -- F0 cos(STY) [ e 0 z + 1 J &2 (Tz-T~,S)J 13 (T~,o,T0 )dT~ 
0 

To 

-1 f &2 (T~-T2 ,S)J 13 (T~,o,T0 )dT~] (3.112) 

Tz 

and 

& ( I -rz-T 1 I , (3 )dT 1 ( 3. 113) 
2 z z 

where the derivative in equation (3.113) arises from an operational 

property of equation (3.39) 

(3.114) 

2. UNIFORM COLLH1ATED FLUX STRIP 

Reference to the expressions for radiative flux given by equations 

(3.105) and (3.106) indicates the dependence of the flux upon the 
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emissive power of the medium. Since the emissive power for the 

medium bounded by the finite strip has been expressed in terms of the 

emissive power for the medium subjected to the cosine varying boundary 

condition, the radiative flux for the finite strip should be related 

to the radiative flux of the cosine varying boundary. This section 

is concerned with the collimated flux boundary condition. The main 

interest is in the z-component of radiative flux. 

The boundary conditions for the constant collimated flux incident 

on a strip of half width Ta are given by equation (3.42). Figure 3.4 

shows the physical model. When expressed in terms of the Fourier 

integral representation, the boundary term given by equation (3.42) 

results in the z-component of flux for the constant collimated strip 

of equation (3.108) to attain the form 

co Tz co co 

+ ; J J J J 0 TB(Ty+n,T~,T0 )K0 [xyi(T2 -T~) 2+n 2 ] 
-co 0 1 1 

(T -T• )xdxdydT dn z z z 

-co T 1 z 

(3.115) 



~/hen equation (3.110) is multiplied by sin(f3T )dB/nB and integrated a 
from -oo to oo, the following expression involving the flux for the 

cosine varying collimated boundary is obtained 

oo Tz oo oo 

+ ; J J J J 
-oo 0 1 1 

-oo 

-oo T 1 1 z 
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(3.116) 

The relationship between the emissive power of the media for the 

cosine varying collimated boundary and the constant collimated strip 

boundary has previously been found. Rewrite equation (3.48) in the 

form 

- 4 - 1 roo sin(STa) - 4 
a T8 ( T +n , T , T ) - - 8 a TA ( T +n ;r , T ) dB . ( 3 • 11 7) 

y z 0 If; y z 0 

-oo 

Inserting equation (3.117) into equation (3.115) and comparing the 

result with equation (3.116) yields an integral expression for the 

z-component of flux for the collimated strip boundary in terms of the 

z-component of flux for the cosine varying collimated boundary 
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(3.118) 
-oo 

3. COSINE VARYING DIFFUSE BOUNDARY CONDITION 

Boundary conditions for the cosine varying black surfaces, given 

by equations (3.52) and (3.53) and shown schematically in Figure 3.3 

provide nonhomogeneous terms in equations (3.108) and (3.109) Hhich 

should also be written in terms of the position dependent Bessel 

functions if the previous transforms are to be utilized. The essential 

difference is the introduction of S (~) instead of S (~) defined by 
2 1 

equation (3.56). As with S (~), S (~) can be written as an integral 
1 2 

of the desired Bessel function. Integrating equation (3.59) with 

respect to ~ over the range (~,oo) results in 

00 00 00 

52(~) = J J J 
z=~ y=z x=y 

K (x)dxdydz 
0 

Equations (3.108) and (3.109) then become 

2 co co co co 

q (T T ) = 2-r 2 J J J J o T4 ( T +1l) K [xyzl-r 2 +rl ]y 2 xdxdydzdn z z' o n 2 y o z 
-CO 1 1 

-00 0 

oo T 0 oo oo 

(3.119) 

- 2J J J J a T4 (T +n,T' ,T )K [xyi{T -T 1 ) 2 +n 2](T 1 -T )xdxdydT'dn(3.120) TI y Z 0 0 Z Z Z Z Z 
-ooT 1 1 z 
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and 

2T 00 00 00 00 

qy(Tz,To) = Tfz J I I J a T:(Ty+n)Ko[xyziT~+n 2 ]y 2 xndxdydzdn 
-oo 1 1 1 

oo To oo oo 

-; I I I I a T 4 hy+n,T~,T0 )K0 [xyi(Tz-T~)2+n 2 ]nxdxdydT~dn(3.121) 
-00 0 1 1 

The black surfaces radiate in a cosine fashion given by equations 

(3.64) and (3.65) with the temperature of the medium Tc expressed by 

equation (3.63). These boundary conditions reduce the tvJo-dimensional 

flux equations to those for a single dimension 

-q c(T ,T ) = 2 Tz 642 I z z 0 

1 

00 00 

~ (XT ,S/x)dx- 2(-r -T )6 4 f C (X(T -T ),(3/x)dx {;2 z 0 z 1 v 2 0 z 
1 

Tz To 

+ 2 I f(T~)~2 (Tz-T~,S)dT~- 2 J f(T~)~2 (T~-Tz,S)dT~ (3.122) 
0 

and 

1 1 

(3.123) 

where 

( 3.124) 
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and 

(3.125) 

In view of the standard one-dimensional form for the radiative 

flux, it is desirable to introduce a function analogous to the E (1 )-
3 z 

function. Define a generalized exponential integral function 

00 

& (1 x,s/x)dx • 
2 z (3.126) 

Reca 11 that & reduces to E \-'/hen S=O. Hence, & reduces to an 
2 2 3 

integral of E which is another form of E • Inserting the ~ -
2 3 3 

function into the z-component of flux reduces it to a standard form 

analogous to the one-dimensional result obtained by Sparrow and Cess 

[7,p.224] 

+ 2 
0 

I+ = 2 e 
2 

f(-r•) G (1 -'! 1 S)d'L 1 -z 2 z z' z 

To 

2 J f(L~) {;2 (-r~-'Lz,S)d'L~ • (3.127) 

'Lz 

In a similar fashion, they-component of flux is simplified by intro-

ducing the functions 

(3.128) 

and 

(3.129) 
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This reduces they-component of the flux to 

4 4 qy c h 2 , La) = 2 8 G ( T , S) + 2 d G ( T - T , s) 
2 3 z 130 z 

To 

+ I G ( IT -T I I 'B )f (T I) dT I • 
2 z z z z ( 3.130) 

0 

The components of flux can be expressed in terms of ¢6 by insert­

ing equation (3.73) into equations (3.127) and (3.130) to obtain 

and 

Lz 

= 84 [2 (; (T 2 ,B) + 2 f ¢Q{T 1 ,L ) ~ (L -T 1 ,[3)dT 1 
2 3 f..J z 0 ~2 z z z 

0 

La 

- 2 f ¢f3{T~,T0 ) 62 (T~-T2 ,f3)dT~] 
Lz 

T z 
- 8:[2 G3 (T0 -T 2 ,S)- 2 J ¢ 8 {T0 -T~,T0 ) &'2 (T 2-T~,B)dT~ 

0 

To 

+ 2 f ¢12 (T -T 1 ,T }& (T 1 -T ,f3)dT'](3.131) 
f..J 0 z 0 2 z z z 

To 

qyC (-r z, T 0 ) = 2 8: [ G 3 ( T z, B) + J G 2 ( IT z- T ~ I , S) ¢8 (T ~, T 0 ) d T ~ J 
0 

To 

+ 2 8: [G 3(T0 -T 2 ,B) +f G 2 (!L 2-T~!,S)¢ 8 {T0 -T~,T0 )dT~]. (3.132) 
0 
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A further simplification in form is obtained by defining functions 

Tz 

F2 (T2 ,T0 ) = 2 6 3 (T2 ,S) + 2 J <l>s(T~,T0 )&'2 (T2-T~,S)dT~ 
0 

and 

To 

- 2 J <j>f3(T~,T0 )~2 (T~-Tz,f3)dT~ 
Tz 

To 

FY('rz,T0 ) = 2G 3 (T2 ,S) + 2 J G2 ( jT 2-T~I,S)<J>8 (T~,T0 )dT~ • 
0 

Replacing Tz by T0 -Tz in equations (3.133) and (3.134) yields 

Tz 

Fz(T0 -T2 ,T0 ) = 283 (T0 -Tz,S)- 2 J <J> 8 (T0 -T~,T0 ) 82 (T2-T~,S)dT~ 
0 

and 

To 

+ 2 J <j>f3(T0 -T~,T0 ) ~2 (T~-Tz,S)dT~ 
Tz 

To 

( 3.133) 

( 3.134) 

(3.135) 

FY(T0 -T2 ,T0 ) = 2G 3 (T0 -Tz,S) + 2 J G 2 (jT2-T~j,S)<J> 6 (T0 -T~,T0 )dT~(3.136) 
0 

Hence, equations (3.131) and (3.132) reduce to 

(3.137) 

and 

( 3.138) 
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Both components of flux are expressed in terms of the generalized 

~-function. This fact uncovered a discrepancy in one of the func-
2 

tions defined by Olfe [14] in his analysis for a black wall radiating 

in a sinisodual fashion into a semi-infinite medium. Olfe reduced 

the two-dimensional equations to those for the one-dimension by 

directly utilizing the relationship between the local and fixed coord­

inate systems. A simple trigonometric identity and use of symmetry 

of the ¢-wise integration, along with an integral property of Bessel 

functions led him directly from equations (3.20), (3.105), and (3.106) 

to the reduced forms. Olfe•s reduced temperature and normal flux 

involve fundamental functions ~~ , W , and~~ defined by 
1 2 3 

H (-r ) = n z 

rr/ 2 

f 
-T sece 

e z J0 (BTztane)(cose)n- 2sinede (3.139) 
0 

where J0 is the zeroth order Bessel function. The functions W1 and 

W correspond to the functions & and & of the present analysis. 
2 1 2 

As already indicated, the present development expresses the 

y-component of flux in terms of the derivative of the e -function. 
2 

However, Olfe•s component of flux parallel to the radiating Hall 

involves functions U and U defined by 
2 3 

-T sece n 3 
e z J (BT tane)(cose) - sin 2 8d8 

1 z 

where J is the first order Bessel function. 
1 

(3.140) 

Direct term by term comparisons for both developments indicate 

that s i nee the derivative of the & -function described the y-fl ux, a 
2 

similar differential relationship should exist between the Un- and 
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Wn-functions. In particular, the conclusion is that in order for 

Olfe's development to agree with the present analysis, the following 

relationship should be satisfied 

dW 
- 2 = T U dS z 2 

(3.141) 

Inspection of equations (3.139) and (3.140) reveals that 

equation (3.141) is valid. However, Olfe's initial definition of Un 

did not satisfy equation (3.141) since the exponent of cose v1as (n-2) 

instead of (n-3). 

4. RELATIONSHIP BETWEEN DIFFUSE AND COLLII~ATED CASES 

An integral expression relating the z-component of flux for the 

cosine varying diffuse boundary to the z-component of flux for the 

cosine varying collimated boundary is obtained by writing equation 

(3.112) in the following form 

To 

+ 1 J JS(T~,o,T0 )sign(T2-T~)t;2 ( IT 2 -T~j,S)dT~ 
0 

where q2 A(T 2 ,o,T0 ) is a dimensionless flux defined by 

and 

l -r• < T z z 

sign(T2-T~) = 0 T' = T z z 

-1 T' z > T z 

(3.142) 

( 3.143) 

(3.144) 



Insertion of the sign-function into equation (3.133) reduces a 

portion of the z-component of flux for the radiating wall boundary 

condition to 

To 
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+ 2 J ¢a(T•,T )sign(T -T•)S (iT -T 1 i,B)dT 1 .(3.145) 
~ z 0 z z 2 z z z 

0 

But ¢6 has already been related to J 6 through equation (3.78). Hence, 

equation (3.145) becomes 

F (T ,T ) = 28 (T ,S) z z 0 3 z 

( 3. 146) 

Substituting o=lt2+a 2 in equation (3.142) and solving for the integral 

yields 

0 

(3.147) 

Substitution of equation (3.147) into equation (3.146) results in 

00 

dt ( 3.148) 



Replacement of T2 by T -T in equation (3.148) yields 
0 z 

co 

dt • 

1 
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(3.149) 

Substitution of equations (3.148) and (3.149) into equation (3.137) 

yields the desired relationship beb1een the flux for the cosine vary­

ing diffuse boundary and the flux for the cosine varying collimated 

boundary in the form 

co 

qzC(Lz,To) = e:(2 &'3(Tz,S) + 2 J qzA(Tz,lt2+S2,To) :; 
1 

co 

- 84 [2 & (L -T ,S) + 2 J q A{'r -T ,lt2+S 2 ,T ) dt 
1 3 0 z z 0 z 0 t2 

1 

( 3. 150) 

1 

5. CONSTANT TEMPERATURE STRIP 

The analysis of this section is concerned with expressing the z-

component of flux due to constant temperature strips in ter~s of the 

z-component of flux due to the cosine varying diffuse boundary. 
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Figures 3.3 and 3.5 exhibit these physical models. The z-component of 

flux for the cosine varying diffuse walls, equation (3.120), can be 

\vritten in the following form 

-oo 0 

00 1"0 

- ; J I 
-oo 1" z 

1 1 

00 00 

J J cr T~(-ry+n,-r~,-r0 ) 
1 1 

(3.151) 

By employing the Fourier integral representation of the constant 

temperature strip boundary conditions of equations (3.83) and (3.84) 

in equation (3.120), the z-component of flux for the constant temper­

ature strip is obtained in the form 

00 00 00 00 00 

-oo 1 1 1 -00 
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( 3.152) 

The emissive power relationship betHeen the constant temperature 

strip and the cosine varying diffuse boundary has previously been 

developed and is given by equation (3.90). Hence, multiplying equa­

tion (3.151) by sin(S-ra)dS/TIB, integrating it from -00 to oo, and using 

equation (3.90) results in an expression which when compared with 

equation (3.152) yields 

1 t sin(B-ra) 
qzD(Tz,To) = 1T J B qzC(Tz,To)dB. (3.153) 

-oo 

Equation (3.153) relates the z-component of flux for the constant 

temperature strip to that of the cosine varying diffuse boundary in a 

fashion similar to that of equation (3.118) which connects the con­

stant collimated strip with the cosine varying collimated boundary. 



IV. SEMI-INFINITE MEDIUM 

A. INTRODUCTION 
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This chapter is concerned with the radiative flux and emissive 

power at the boundary of a semi-infinite medium. The fundamental 

equations follow directly from Chapter III as a result of letting 

the optical thickness T0 become infinite. The radiative flux and 

emissive power at the boundary are expressed in terms of the genera­

lized H-function which is analogous to the one-dimensional H-function 

of Chandrasekhar [l,p.l05]. The generalized H-function is the 

emissive power at Tz=O due to a collimated flux of cosine magnitude 

incident on a semi-infinite medium. Since the generalized H-function 

is basic to the emissive power and flux at the boundary, a detailed 

study of its behavior is appropriate. 

The method of successive approximations is used to obtain exact 

numerical data for the generalized H-function at discrete points. 

An interpolation technique is employed whereby intermediate values 

are obtained in terms of the exact values. This eliminates the 

repetitive and time consuming effort involved in calculating the 

generalized H-function by exact methods. The radiative flux and 

emissive power at the boundary for the finite strip models are tabu­

lated for a wide range of the parameters. 

B. EMISSIVE POWER FOR COSINE VARYING BOUNDARY CONDITIONS 

The analysis of this section is concerned with the emissive 

power at the boundary of a semi-infinite medium for cosine varying 

boundary conditions. First consideration is given to the cosine 

varying collimated boundary since it generates the generalized 

H-function. The integral equation that the generalized H-function 
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satisfies is developed and solutions are obtained by exact and approx­

imate techniques. The emissive power for the diffuse \AJa11 radiating 

in a cosine fashion is then expressed in terms of the generalized 

H-function and its moment. Reference will be made to Figures 3.2 to 

3.5 which describe the various physical models for the finite medium. 

However, the models for the semi-infinite medium are obtained by 

letting the optical thickness T0 become infinite. 

1. COLLH1ATED FLUX-FORMULATION OF THE GENERALIZED H-FUNCTION 

Figure 3.2 shows the physical model for the cosine varying colli­

mated boundary condition. When the optical thickness becomes infi­

nite, the integral equation describing the emissive power follows from 

equation (3. 37) 

( 4.1 ) 

where 

(4.2) 

The integra-differential equation for BS(T2 ,cr) is found by 

letting the optical thickness become infinite in equation (3.102) 

(4.3) 

where 

(4 .4) 
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an.d 

00 

= 1 + 12. I € (-r 1 , B) 8 B {'r 1 , a) d T 1 

1 z z z ( 4. 5) 

0 

The emissive pm11er can be found by solving either equat;on (4.1) 

or equation (4.3). However, equation (4.3) is the most suitabl~ 

since the integra-differential equation can be reduced to a sYst~~ of 

ordinary differential equations which are easily solved numerically. 

The initial condition B6(o,o) is also an unknown function wh;ch ~ust 

be determined before equation (4.3) can be solved. Since th;s inves-

tigation is concerned with the behavior at the boundary, the main 

objective of this section is to determine B6(o,o). In part1tular, 

B6(o,o) will be shown to be analogous to the one-dimensional H-func­

tion of Chandrasekhar. Therefore it is appropriate to reca~t 

equation (4.5) into an integral equation of the Chandrasekh(Jt- tyPe· 

When & (T 1 ,S) is replaced in equation (4.5) by its int~qra1 forrn 
1 z 

and the order of integration is interchanged, the following ~~pression 

is obtained 

oo oo -TI/t2+(32 

s6(o,o) = 1 + 1 J (t 2 +S 2 )-~ I s 6 (T~,o)e -z dT~dt • (4.6) 
1 0 

An alternate form for B6(o,o) results from defining a general1<ed 

reflection function 

0 

(4.7) 



which is analogous to the reflection function of Chandrasekhar. 

Inserting equation (4.7) into equation (4.6) yields 
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(4.8) 

Equation (4.8) is further simplified by finding the relationship 

between the reflection function RS(It2+S 2 ,o) and the emissive power at 

the boundary. This relationship is obtained by letting o=lt 2+S 2 in 
-OT 

equation (4.3}, multiplying it by e zdT and integrating from 0 to oo z 
to obtain 

00 

- Bs(o,lt 2+S 2 ) J ~(T2 )e-oTz dT2 = o . 
0 

(4.9) 

Integrating the first term in equation (4.9) by parts and utilizing 

equation (4.7} yields 

(4.10) 

Substitution of equation (4.10) into equation (4.9) then results in 

00 

(o+lt2+S 2)R13(o,lt 2 +S 2 ) = s13 (o,lt 2+s 2 ) [ 1 + J <P(Tz)e-oTz dTz]. (t~.ll) 
0 

An additional simplification is obtained by relating ~(T2 ) to the 

emissive power at the boundary. This simplification is accomplished 
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-crT 
by multiplying equation (4.4) by e z dTz and integrating it from 0 

to oo to obtain 

(4.12) 

After interchanging the order of integration of equation (4.12), the 

following expression is obtained 

(4.13) 

Next, insertion of equation (4.7) into equation (4.13) gives 

(4.14) 

By utilizing the symmetry of the reflection function as shown in 

Appendix C, equations (4.8) and (4.14) can be combined to yield the 

relation 

00 

BS(o,cr) = 1 + J ~(Tz)e-crTz dTz • 

0 

(4.15) 

Substitution of equation (4.15) into equation (4.11) then gives the 

reflection function expressed in terms of the emissive power at the 

boundary as 

(4.16) 

An integral equation for the emissive power at the boundary is 

obtained by inserting equation (4.16) into equation (4.8). This 
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yields 

(4.17) 

The change of variable x =ll+S 2/It 2+s 2 reduces equation (4.17) to 

1 J1 ll+S 2 B8(o,ll+s2/x)dx 
B (o,cr) = 1 +-B (o,cr) • 
S 2 s 11 +s 2 0-x 2 ) (xcr+ll +s2 ) 

0 

(4.18) 

A further transformation with ~=ll+S 2/cr reduces equation (4.18) to 

H(~,S) = 1 + ~H(~,S) 

where 

and 

J1 ~(x,s)H(x,S)dx 
~+x 

0 

is the emissive power at the boundary. 

(4.19) 

(4.20) 

( 4. 21 ) 

Equation (4.19) is of the same form as the integral equation 

which the H-function of Chandrasekhar satisfies. \IJhen S=O, the tHo­

dimensional function H(~,S) reduces to the one-dimensional H-function. 

Therefore H(~,S) will be referred to as the generalized H-function. 

Since the H-function plays a major role in the development of the one­

dimensional analysis for a semi-infinite medium, the generalized 

H-function should also play a major role in the two-dimensional inves­

tigation. The generalized H-function will be shown to appear in the 

emissive power and radiative flux at the boundary for the cosine 



varying diffuse and collimated models as well as for those of the 

finite strip. Hence, a detailed knowledge of the behavior of the 

generalized H-function is necessary. 

2. CALCULATION OF THE GENERALIZED H-FUNCTION 

68 

Two methods of solution are considered in the present investiga­

tion. The first technique is the method of discrete ordinates, and 

the second involves direct iteration on the integral equation. Both 

of these methods have been used by Chandrasekhar [1] in his one-

dimensional development of radiative transfer. Since the generalized 

H-function satisfies a nonlinear integral equation of the Chandrasekhar 

type, all of the theorems relating to the one-dimensional H-function 

should apply to the two-dimensional analysis with corresponding 

restrictions on the weight function ~(~,B). 

a. METHOD OF DISCRETE ORDINATES 

The method of discrete ordinates involves approximating the 

integral in equation (4.19) by a finite sum. This approach results 

in the generalized H-function satisfying the following equation 

n 
H(~,B) = 1 + ~H(~,B) I 

j=l 

a.~(~.,B)H(~.,B) 
J J J 

~+~. 
J 

(4.22) 

where a±j(j=l , ••• n, aj=a-j) and ~±j(j=l , ••• n, ~-j=-~j) are \veights and 

divisions appropriate for a Gaussian quadrature in the interval (-1 ,1). 

Chandrasekhar [l,p.l14] shows that the unique solution of equation 

(4.42) can be represented by 

n 
II ( ].1+~.) 

i = 1 1 
(4.23) n 

II (l+pk. (B)) 
j=l J 
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The disadvantage in using the discrete ordinate method is that a 

high degree of accuracy requires a large order quadrature. Increasing 

the order of quadrature causes the characteristic roots of equation 

(4.24) to become closer and closer together. Hence, the roots are 

difficult to obtain accurately. For this reason, the discrete 

ordinate method was not applied to approximations greater than fourth 

order. 

b. METHOD OF SUCCESSIVE APPROXmATIONS 

The method of successive approximations is a standard iterative 

technique to solve integral equations. The method consists of 

assuming an initial approximation to the unknown function, inserting 

it into the integrand, and performing the integration to yield a new 

approximation. If this technique is repeated with each new approxi-

mation, the result is a sequence of functions which converges to the 

exact sol uti on. Denoting the n-th approximation to the general·ized 

H-function by H (~,S), the (n+l)-th approximation is obtained by n 

solving 

Hn+t(~,B) = 1 + ~Hn+t(~,S) I' w(~',B)Hn(~',B)d~' (4.25) 
~+~ 

0 n= 1 , 2, ••• 

A standard initial approximation to start the iteration procedure \vi th 

is the inhomogeneous term. However, the closer the initial approxi­

mation is to the true value, the fewer number of iterations will be 

required for convergence. 

Iteration on the present form of equation (4.19) is not feasible 

due to the extremely slow rate of convergence. An initial approxima­

tion with an accuracy of two significant digits obtained from the 
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method of discrete ordinates and the use of an IBt4 360 model 50 

computer were not sufficient to warrant the computational time required 

to tabulate H(~,S) to five significant digits. Chandrasekhar [1 ,p.l07] 

has developed an alternate integral equation for the one-dimensional 

H-function which greatly increases the rate of convergence. When 

applied to the specific~ defined by equation (4.20), the modified 

integral equation for the generalized H-function becomes 

1 ( 1 . [ 13 )]~ J1 xw(x,S)H(x,S)dx ":"":"H-r(,.....; ~,-::0....-) = 1 - - arcs 1 n + -·------~ jJ S 11+132 x+~ • 
0 

(4.26) 

When s=O, the square root term in equation (4.26) has the value zero 

which agrees with the one-dimensional result obtained by Chandrasekhar. 

Application of the method of successive approximations to equation 

(4.26) yields 

[ 1 [ )]1/ J1 x~(x,S)Hn(x,S)dx 1( ) = 1 - - arcs i n 13 ,2 + + ( 4 . 27) 
H n+ 1 ~ 's s 11 +s 2 X ~ 

0 n=l,2, ... 

Solutions of equation (4.27) were obtained by using a sixteenth 

order Gaussian quadrature for the integral term and fifteen successive 

approximations. An initial approximation of unity was used to start 

the iterative process. The required number of quadrature points was 

obtained by trial and error. The test criterian was that the H-func­

tion did not change in the fifth decimal place. Iterations were 

performed using quadratures of order nine, sixteen, and twenty-five. 

A twenty-fifth order quadrature produced results which agreed to five 
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significant digits with those obtained from a sixteenth order quadra­

ture. The ninth and sixteenth order results agreed to at least four 

significant digits except for very small ~· Hence, a sixteenth order 

Gaussian quadrature is the most applicable for the range of the para­

meters considered. 

An alternate method of dividing the range of integration into two 

subintervals (0,.9) and (.9,1) was used to further check the previous 

results for the generalized H-function. This technique allows the 

quadrature points to be positioned in the region where they are most 

needed, i.e., in intervals where the function has a sharp peak or 

change of curvature. However, an eighth order quadrature in each sub­

interval produced essentially the same results as obtained from a 

sixteenth order quadrature in the whole interval. The results for a 

sixteenth order quadrature in each subinterval were in close agreement 

with the results from a twenty-fifth order quadrature in the entire 

interval. Thus, this alternate method of partitioning the interval 

was not utilized in tabulating the generalized H-functions. 

Twenty iterations were then performed using the sixteenth order 

quadrature to determine the rate of convergence. The results from 

twenty iterations were compared with those obtained from fifteen and 

found to be in five decimal agreement. Functional evaluation was then 

performed for various values of ~ using fifteen iterations and a 

sixteenth order Gaussian quadrature. Figure 4.1 shows the variation 

of H(~,S) for selected values of~ and s. When s=O, the generalized 

H-function reduces to the one-dimensional H-function of Chandrasekhar. 

Figure 4.1 also reveals that the generalized H-function can be 
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approximated by the simpler one-dimensional H-function for small s. In 

particular, the generalized H-function of S=.lO differs from the one­

dimensional H-function by .01196 at ~=.1, .02763 at ~=.5, and .26014 

at ~=l. Hence, the error in the one-dimensional approximation is 

smallest at small Band~ values and increases with increasing ~· 

Tables D.3 to D.6 exhibit the exact values of H(~,B) and also the 

0 dependent form, H(ll+B 2/0,B). When S=O, H(~,B) agrees to five 

significant digits with the one-dimensional H-function tabulated by 

Chandrasekhar [l,p.l25]. Rybicki [19] uses the exponential kernel 

approximation and tabulates a function which is similar to the genera­

lized H-function and agrees with H(ll+B 2 /0,S) for five significant 

digits. Rybicki's function and H(ll+B 2 /0,S) have reciprocal arguments 

with respect to the 0 parameter. The limited range of B values which 

are available for comparison indicates five significant digits for B 

as large as s=20. 

3. DIFFUSE BOUNDARY 

Figure 3.3 shows the physical model for the cosine varying diffuse 

boundary condition. The emissive power for the corresponding semi­

infinite medium follows from equation (3.78) by letting the optical 

thickness become infinite. This gives 

where 

1 

¢6(Tz) = 1 f W1 (x,S)B6(T 2 ,/l+B 2/x)dx 
0 

(4.28) 

(4.29) 
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The emissive power at the wall T =0 is obtained by inserting equation z 
(4.21) into equation (4.28). This yields an expression involving the 

generalized H-function 

- 1 Jl ¢8(o) = 2 ~ 1 (x,B)H(x,B)dx 
0 

A simplified form of the emissive power results from defining a 

moment of the generalized H-function as 

1 

hn(B) = J xn~ 1 (x,S)H(x,B)dx 
0 

(4.30) 

( 4. 31) 

When the emissive power is expressed in terms of h (B), the following 
0 

expression is obtained 

(4.32) 

Equation (4.32) is analogous to the one-dimensional zeroth moment of 

the H-function. In fact, when s=O, h0 reduces to the one-dimensional 

moment. The function h0 (S) also appears in the constant temperature 

strip analysis of the next section. Thus, a tabulation of this func­

tion at selected values of 8 is useful. 

The presence of~ (x,s) in the integrand of equation (4.31) 
1 

complicates the numerical integration when 8 is large. Figure B.l 

shows that ~ (x,B) has a sharp peak at x=l which becomes progressively 
1 

steeper with increasing s. Therefore the integral (4.31) will require 

much more than a sixteenth order quadrature to obtain five significant 

digits for large s. The method outlined in Appendix B is used to 

smooth out the peak at x=l by subtracting a function from the integrand 
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which causes the integrand to approach zero with increasing s. Since 

the peak occurs at x=l, H(l,S) is a suitable function to subtract and 

later add in its integrated form. Figure B.2 shows how this technique 

redistributes the area under the S curves away from x=l. 

Table 0.7 lists values of h0 (S) obtained from using a sixteenth 

order quadrature on the reduced form of equation (B.l). The data from 

a sixteenth order quadrature agree to five significant digits with 

that obtained by dividing the range of integration into subintervals 

(0,.9) and (.9,1) and using eighth order quadrature in each subinter-

val. Furthermore, the results from an eighth order quadrature in each 

subinterval agree to five significant digits with that obtained from a 

sixteenth order quadrature in each subinterval. Thus, the alternate 

method of dividing the integration into two separate regions was not 

used. 

Figure 4.2 shows the variation of ~8 (o) with s. The dimensionless 

emissive power ¢8(o) has a maximum value of l .0 at S=O and decreases 

to 0.5 as S approaches infinity. The almost constant behavior of the 

emissive power at small B indicates that the two-dimensional emissive 

power can be approximated by the one-dimensional emissive power over 

this range. When s=.OOl, the one-dimensional emissive power and the 

two-dimensional emissive power differ by the value .0006. At S=.Ol, 

this difference increases to .0558. Hence, the error in the one-

dimensional approximation increases with s. Therefore, except for 

small B values, the two-dimensional model must be employed. 

C. EMISSIVE POWER FOR FINITE STRIP MODELS 

The emissive power at the boundary for the constant temperature 

finite strip and the finite strip illuminated by a collimated flux of 
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constant magnitude have been shown to have the same mathematical form. 

The emissive power for each of the finite strip models involves compli­

cated integrals of the product of an oscillating function and the 

generalized H-function or its moment h0 (B). Transformations are per­

formed on the equation for the emissive power of the constant calli­

mated strip model which reduces it to a form favorable for numerical 

computation. The same transforms are then applied to the constant 

temperature strip since it has a similar form. Numerical techniques 

are discussed which reduce the computational time involved in integra­

ting the generalized H-functions. 

1. COLLIMATED FLUX-METHOD OF SOLUTION 

The physical model for a finite strip subjected to a uniform 

collimated flux is shown in Figure 3.4. When the optical thickness 

becomes infinite, the emissive power for this medium is obtained from 

equation (3.50), that is, 

where 

00 

B(Ty,Tz) = ; J B8(Tz,cr)sin(BTa)cos(BTY) ~B 
0 

The emissive power at the boundary Tz=O is given by 

00 

( 4. 33) 

(4. 34) 

(4.35) 

The B dependence of the integrand in equation (4.35) is best exhibited 

by expressing B~(o,cr) in terms of the generalized H-function. Sub­

stituting ~=~+s 2/cr into equation (4.21) yields B8 (o,cr)=H{~+B 2/cr,B). 



Hence, the emissive power at the boundary for the collimated finite 

strip becomes 

00 

79 

B(-ry,o) = ; J H(ll+l3 2/cr,l3)sin(l3-ra)cos(S-ry) ~13 • 
0 

(4.36) 

Equation (4.36) can be put in a form which is more favorable for 

numerical computation by eliminating the cosine term in the integrand. 

Application of the double angle trigonometric formula for sine and 

cosine reduces equation (4.36) to 

00 

B(-ry,o) = ~ J H(ll+s2 /cr,S)[sinl3(-ra+-ry) + sinS(-ra--ry)J ~8 • 
0 

(4.37) 

The solution of equation (4.37) involves integrals of the form 

00 

J~(x)sin(kx)dx/x. The computation of integrals of this type by 
0 

numerical quadrature presents great difficulty when the k parameter is 

large but finite. Increasing k causes the period of the trigonometric 

sine to decrease, thereby increasing the oscillation. Hence, the range 

of integration must be divided into such small increments that standard 

formulas such as Simpson's are impractical to use. Filon [37] devel­

oped a method for integrating trigonometric functions of the above 

form. However, this method proved to be useful only when ~ diminishes 

rapidly. If ~ is a slowly varying function, Filon's method requires 

such a large number of terms that it becomes impractical. Since the 

generalized H-function is a very slowly convergent function, other 

methods must be employed. 
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Since the generalized H-function approaches unity for large 0 

and the trigonometric sine is bounded by ±l, the integrand in equa­

tion (4.37) converges to zero in the manner of B- 1 • Thus, the rate of 

convergence is quite slow at large values of B. If the infinite range 

of integration is to be divided into regions such that all contribu­

tions after an acceptable large Bare to be considered negligible, 

the rate of convergence of the integrand to zero must be increased. 

One such way to accomplish this is to force the numerator portion of 

the integrand to approach zero for large B. Since the generalized 

H-function approaches unity for large S, the function 

P(Vl+S 2/cr,S) = H(Vl+S 2/cr,S) - 1 

approaches zero. Hence, adding and subtracting unity from the 

integrand of equation (4.37) yields 

00 

B(TY,o) =~I [P(Il+S2/cr,s)+l][sinS(Ta+TY)+sinS(Ta-Ty)J ~B • 
0 

00 

(4.38) 

(4.39) 

Application of the integral J sinxdx/x=n/2 reduces equation (4.39) to 
0 

00 

B(TY,o) = 1 +~I P(ll+S 2/.:r.B)[sinS(Ta+TY)+sinS(Ta-Ty)] ~B • (4.40) 
0 

A further simplification in form follows as a result of the substitu­

tion x=S(Ta±Ty). The reduced emissive power is 



+ p X /a, 
T -T 
a Y 
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J §~nx dx (4.41) 

The infinite range of integration of equation (4.41) is divided 

into finite intervals of the type 

X 
T +-r 
a Y 

= kt J'k+l)rr p[ /]+[T ~T ]2 ja, .T ~T J 
x=kn a Y a Y 

_?inx dx 
X 

(4.42) 

When the limits of integration of equation (4.42) are changed and the 

results are substituted into equation (4.41 ), the following series of 

integrals is obtained 

00 

= 1 + l I 
TI k=o 

+ p 

l + rx+kn J 2 
T +T 

' a Y 

I a _?<+kTI l 
' T +T 

a Y 

x+kn ] J sinx dx 
T -T x+kTI 

a Y 
(4.43) 

The emissive power at locations beyond the strip Hidth has a more 

simp1 ified form. For T >T , equation (4.37) can be written as Y a 

B( ) = l ~ (-1 )k JTI[ p[ f+[x+kn ] 2 /a x+kn] Ty ,o 7T L T +-r ' T +-r k=o a y a y 
0 
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- p l+[x+kn ]2 /o, 
T -T 

x+kn ]J sinx dx 
T -T x+kn (4.44) 

Y a Y a 

Equations (4.43) and (4.44) are selected for numerical evaluation 

for the following reasons: (a) the trigonometric function does not 

oscillate over the interval of integration, (b) the range of integra­

tion is finite, and (c) transformations are available for increasing 

the rate of convergence of slowly convergent alternating series. 

Table 4.1 shows the rate of convergence for the first ten terms of 

the series of equation (4.43) for o=l and T =0. For small half strip y 
width Ta the terms decrease quite rapidly in magnitude with the first 

term noticeably larger. However, at Ta=lOO, the convergence is very 

slow. Since the error involved in terminating an alternating series 

is at most equal to the absolute value of the first neglected term, 

ten terms insures three significant digits for Ta=.Ol. For Ta=lOO., 

only one significant digit is apparent. Hence, a large number of 

terms is required to obtain B(T ,o) accurate to five significant y 

digits. In order to make this series practical for numerical use, a 

transformation must be applied whiclt reduces the number of terms 

required for convergence. 

A technique which is suitable for speeding up the convergence of 

an alternating series is the Euler transform [38,p.100]. When applied 

to a series of the form 

00 

I (-l)n Vn ' 
n=o 

the Euler transform yields 
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Tab1e4.1 TermvJise evaluation of t3(T ,o) for a=l and T =0 y y 

TI 

J(r 1+[ x+kw]';a x+kw +P j 1+[ x+h]'/a, x+kw J sin x dx T +T 'T +T T -T T -T x+kn 
0 

a y a y a y a y 

k T =.01 a T = .1 0 a T =1 .0 a Ta=10.0 Ta=100.0 

0 .099871 . 638051 2.911267 6.081897 6.952027 

l -.001510 -.015089 -.147050 -.919206 -1.544883 

2 .000519 .005208 .051400 .399125 .872624 

3 -.000260 -.002628 -.026056 -.221572 -.593770 

4 .000157 .001583 .015733 . 140182 .441444 

5 -.000105 -.001057 -.010520 -.096382 -.345882 

6 .000075 .000755 .007528 .070213 .280651 

7 -.000056 -.000567 -.005654 -.053373 -.233510 

8 .000043 .000441 .004401 .041916 . 198009 

9 -.000035 -.000352 -.003523 -.033777 -. 170427 
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~ (- l ) n v = l v 1 ( 0 ) + 1 ( 02 ) ( -l) P ( P ) ( L n 2 o- 4 vo 8 vo + ... P+l 0 vo + ... 4.45) n=o 2 

h DP+ 1 • d . ff . P+ 1 p p were vn 1s a 1 erence def1ned by 0 vn=D vn+ 1 -D vn. The Euler 

transform can be started at any finite term of the series. In fact, an 

error check involves starting the transform on the n-th term and com­

paring the results with that obtained by starting with the (n+l)-th 

term. In order to demonstrate the Euler transform technique, the data 

appearing in Table 4.1 for La=l is used. The series to be summed can 

be written as 

s = 2.911267- .147050 + .051400- .026056 

+ .015733 - .010520 + .007528 - .005654 

+ .004401 - .003523 + ..• 

Starting the transform on the fifth term, v0 =.015733 from which the 

following difference table is constructed 

Table 4.2 Difference table for the Euler transform 

Dv0 D2 v 03v D4v 05v 
0 0 0 0 

.015733 
-.005213 

.010520 • 002221 
-.002992 -.001103 

.007528 • 001118 .000606 
-.001874 -.000497 .000355 

.005654 .000621 . 000251 
-.001253 -.000246 

.004401 .000375 
-.000878 

.003523 

Hence, applying equation (4.45) with v0 =.015733 to the difference from 

Table 4.2 yields 



s = 2.911267 - .147050 + .051400 - .026056 

1 ( 1 1 + 2 .015733) - 4 (-.005213) + 8 (.002221) 

1 1 1 
- T6 (-.001103) + 3:2 (.000606) - 64 (-.000355) 

= 2. 799101 

Starting the transformation with v0 =.010520 yields 

s = 2.911267- .147050 + .051400- .026056 + .015733 

-[1 (.010520) - l (-.002992) + ~ (.001118) - ~6 (-.000497) 

+ 12 (.ooo251 )] = 2. 799108 
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The very good agreement between the fifth and sixth result of the 

transformed series indicates that ten terms in equation (4.43) are 

sufficient for five significant digits of accuracy. This approach is 

an improvement over the straight forward summation which yields no 

more than three significant digits as shown in Table 4.1. Ten terms 

of equation (4.43) along with the Euler transform are also sufficient 

for five digits for Ta=lOO. This is an increase of three digits of 

accuracy as compared to only two digits obtained from direct summa-

tion of forty terms. 

The computational time required to calculate the emissive power 

for the finite strip model is greatly reduced by the application of 

the Euler transformation to the series of equation (4.43). However, 

each term of equation (4.43) involves integrating the generalized ll­

functions which must also be calculated before the integration can be 

performed. Since a relatively large order quadrature is necessary to 
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tntegrate a function which has a sharp peak as does the P-function, a 

large amount of computational time is spent evaluating the integrand 

at each of the quadrature points. Thus, another method of determining 

the P-function in addition to direct iteration is desired. 

In order to reduce the lengthy and repetitive computations 

required in integrating the H(~+S 2/0,S) functions, an interpolation 

technique is utilized whereby it is sufficient to have exact values of 

H(~+S 2/0,S) only at selected S values. The value of H(Y1+S 2/0,S) at 

intermediate values of S is then approximated in terms of the exact 

values. The number and location of the B values is determined by 

trial and error with the test criterion that the approximation yields 

five significant digits of accuracy. This criterion is met by the 

sixty-four values of B given by Tables 0.5 and 0.6. These sixty-four 

values are distributed somewhat evenly over seven logarithmic cycles 

of the range 0 ~ S ~ 10,000 with the exception of the cycle [1,10]. 

Any value of H(~+s 2/0,S) for which S>lO,OOO is assumed to be unity. 

Inspection of Table 0.6 shows that this is a good approximation. 

H(~+S 2/0,S) is unity to five significant digits for S=lO,OOO. 

2. NUMERICAL AND GRAPHICAL RESULTS 

The emissive power for the finite strip illuminated by a colli­

mated flux of constant magnitude was computed for values of 0=l, 2, 

and 5. The sixty-four values of B listed in Tables 0.5 and 0.6 were 

used in the interpolation approximation of the generalized H-function 

and provided five significant digits for each of the 0 values. Fewer 

than sixty-four data points are probably sufficient for increasing 0 

due to the smoothing effect of the P-curves as shown in Figure 4.3. 
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Tables 0.8 to D.ll were obtained by using the Euler transformation and 

the interpolation method with forty-seventh order Gaussian quadrature 

for the integrations of each of the first ten terms in the series of 

equations (4.43) and (4.44). The relatively high order of quadrature 

is required for the integration of the first term which is more sensi­

tive to the sharp peak of the P-function in the vicinity of 8=0. Half 

strip width Ta was also directly responsible for the magnitude of 

quadrature selected. A small half strip width of Ta=.Ol required 

more quadrature points than did a larger half strip width of Ta=lOO. 

Figure 4.4 shows the variation of the emissive power with half 

strip width Ta for various values of cr. Since the incident radiation 

is uniform over the strip, the solution for large half strip \'Jidth 

must approach the one-dimensional semi-infinite solution. The 

asymptotic behavior of the cr curves at large Ta indicates that the 

finite strip solutions are approaching the one-dimensional solutions. 

In particular, when cr=l and Ta=lOO, the finite strip solution differs 

from the one-dimensional result by .01851. At cr=5, this difference 

has reduced to .00185. Thus, a reasonably good approximation for half 

strip width greater than Ta=lOO can be obtained by solving the much 

simpler one-dimensional model. The effect of decreasing the half 

strip width is shown in Figure 4.5 for direction cr=l. The emissive 

power across the strip decreases with decreasing half strip width and 

is essentially constant for Ta=.Ol. Results for half strip widths 

smaller than Ta=.Ol were not obtained. However, the trend of the 

emissive power profile has been established for the limiting value of 

-ra=O. 
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Figure 4.5 Variation in the emissive power at Tz=O with Ty/Ta for 
various values of Ta for a semi-infinite medium bounded 
by a strip illuminated by a uniform collimated flux of 
magnitude F0 from direction o=l 



Fi_gure 4.6 shows the effect of the change of direction of the 

incident radiation on the emissive power of the medium immediately 

adjacent to a strip of half width Ta=l. The emissive power is a 

maximum at the center and decreases across the strip with largest 

change occurring near the strip edge as shown by the enlarged scale 

in Figure 4.7. A discontinuity in the emissive power occurs at the 

strip edge due to the discontinuity of the incident flux at this 

location. 
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Temperature jumps are common phenomena in pure radiative trans­

port theory where the conduction mode of energy transfer is not 

present to assure the continuity of temperature at the boundary. 

Thus, the temperature of the medium immediately adjacent to the 

boundary differs from the prescribed boundary value as shown in 

Figures 4.5 to 4.7. Physically, this type of temperature jump at the 

interface of the surface and bounding medium is explained by realiz­

ing that the temperature of the medium adjacent to the surface is 

directly affected by all other elements in the medium in addition to 

the surface. 

Recall that a=sece0 where B0 is the angle that the collimated 

flux makes with a normal to the plane of incidence. Figure 4.6 shows 

that the emissive power is a maximum for a=l, i.e., when B0 =0, and 

approaches zero with increasing o. When o~, 80-+'IT/2 and hence no 

energy enters the medium. Thus the temperature becomes constant since 

there is no driving force to produce a temperature difference between 

elements of the medium. Figure 4.6 also shows the effect of position 

away from the strip edge on the emissive power. The emissive power 

decreases with distance away from the strip edge. 
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3. DIFFUSE BOUNDARY 
------....-. ----

figure 3.5 shows the physical model for the uniform temperature 

strip. l~e emissive power for the corresponding semi-infinite medium 

follows bY letting the optical thickness become infinite in equation 

(3. 94) 

<lO 1 

¢(1y'T2) ~}I [I ~ 1 (x,S)B 13 (Tz,ll+S 2/x)dx] sin(STa)cos(STY) ~S (4.46) 
0 0 

where 

(4.47) 

By ~v~luat;ng equation (4.46) at T2=o and utilizing equations (4.21) 

and (4.31), the emissive power at the boundary can be expressed in 

terms of the moJ11ent of the generalized H-function as 

00 

~(Tyso) =} J h0 (s)sin(STa)cos(STY) ~S • 
0 

(4.48) 

tquat;on (4.48) has the same form as the emissive power for the 

finit~ striP illuminated by a uniform collimated flux discussed in 

tile pt-evious section. Since h0 (B) approaches unity as does ll()J,S) for 

large ~ values, a new function can be constructed for h0 (S) that 

corresponds to the P-function. Thus, the method of solution used in 

the previous section iS applicable to the constant temperature finite 

strip pt-oblem. The same computer program was utilized with the 

exception that the interpolation technique \'las performed from the 

data Of Table D.7. 

Table 0.12 lists the variation in the emissive power of the 

medium immediately adjacent to the constant temperature strip as a 



function of half strip width. At large half strip widths T , the 
a 

emissive power for the two-dimensional finite strip approaches the 

emissive power for the one-dimensional semi-infinite medium. This 

asympototic behavior occurs at relatively small Ta values. When 

Ta=20, the finite strip emissive power and the one-dimensional 

emissive power differ by .01835. For T =50, this difference has a 
decreased to .00747 and becomes .00368 when Ta=lOO. Hence, for 

Ta~lOO, the emissive power for the two-dimensional finite strip can 

be reasonably approximated by the simpler one-dimensional result. 
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For small Ta values, the finite strip emissive power approaches 

the value of .50. When Ta=.Ol, these two results differ by only 

.00979. Figure 4.8 and Table D.l3 show the variation of the emissive 

pm'ler with Ta. The behavior of the emissive power for the constant 

temperature strip is similar to that for the finite strip illuminated 

by a uniform flux. The emissive power is maximum at the center of the 

strip and decreases with distance across the strip as shown by the 

enlarged scale in Figure 4.9. A discontinuity in the emissive power 

occurs at the strip edge due to the discontinuity of the boundary 

condition at this location. 

D. FLUX FOR COSINE VARYING BOUNDARY CONDITIONS 

The analysis of this section is concerned with the z-component 

of the radiative flux at the boundary for a semi-infinite medium \'lith 

cosine varying boundary conditions. The z-flux at the boundary due to 

the collimated cosine boundary is expressed in terms of the genera-

lized H-function. This is accomplished by means of the generalized 

reflection function for the semi-infinite medium. The z-flux for the 
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diffuse cosine varying boundary is then expressed in terms of the 

z-flux due to the collimated cosine boundary. 

1. COLLIMATED FLUX 

The physical model for the cosine varying collimated boundary 

condition is shown in Figure 3.2. The z-component of radiative flux 

for the corresponding semi-infinite medium follows from equation 

(3.112) by letting the optical thickness become infinite and 

utilizing equation (4.2). This gives 

00 

- 1 J B8 (T~,a)t; 2 (T~~T 2 ,S)dT~ 
Tz 

where QS(1 2 ,o) is a dimensionless flux defined by 

(4.49) 

Q8(T 2 ,o) = ~i~ [qzA(T2 ,o,T0 )/F0 cos(STY)] = 

0 

Lim q A(T ,o,T ).(4.50) z z 0 

The boundary flux at T =0 becomes z 
00 

T-l-00 
0 

Q8(o,cr) = ~ -1 J B(T~,cr) 82 (T~,S)dT~ 
0 

( 4. 51 ) 

By substituting the definition of &2 (T 2 ,B) into equation (4.51 ), 

interchanging the order of integration, and utilizing equation (4.7), 

an expression for the flux at the boundary in terms of the generalized 

reflection function is obtained 

00 

q8(o,a) = ~ - 1 J R6(1t2+s2 ,a) ~~ (4.52) 

1 
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Insertion of equation (4.16) into equation (4.52) gives a relationship 

between the dimensionless flux and the dimensionless emissive power 

at the boundary 

The change of variable x==II+S 2//t 2 +S 2 introduces the generalized 

H-function into the expression for the flux at the boundary 

(4.53) 

( 4. 54) 

A further simplification in form is obtained by inserting o==/l+S 2/]l 

i n e q u at i o n ( 4 • 54 ) . T h u s 

where 

H(]l,S) 
2 

J1 xljJ (x,S)H(x,s) 
1 dx J x+]l 

0 

( 4. 55) 

( 4. 56) 

Equations (4.54) and (4.55) show that tHo forms are available for 

calculating the z-flux. The a dependent form is tabulated since the 

angle of incidence of the collimated flux is usually specified. 

However, Q13 (o,]l) is used to calculate the flux for the diffuse cosine 

boundary of the next section. 

Tables 0.14 to 0.16 were obtained by dividing the range of 

integration into two intervals and using various order quadrature in 

each subinterval. The order of quadrature and the length of the 
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subinterval vJere obtained by trial and error. An eighth order 

Gaussian quadrature was sufficient for the first subinterval for each 

of the subdivisions considered. The second subinterval required 

special attention due to the sharp peak of lj; (x,S) at x=l for large 
1 

S values. The quadrature and range of integration for the second 

interval are shown in Table 4.3. 

Table 4.3 Order of quadrature and range of integration 
corresponding to values of S 

Quadrature Range of integration Range of 6 

8 (.9,1) 0 < B < 8 - -
1. 6 (.9,1) 8 < 6 < 17.5 - -
25 (.9,1) 17.5 < B =:; 30 -
37 (.95,1) 30 < B < 60 - -
47 (.975,1) 60 < 6 < 10,000 - -

The first range of OsBs8 yields at least five significant digits 

of accuracy for Q8(o,o). The range 8S6S60 results in at least four 

significant digits whereas 8>60 yields at least three significant 

digits for Q8(o,o). Decreasing the length of the second interval 

increases the accuracy but still requires a relatively large number 

of quadrature points. 

Figure 4.10 shows the behavior of Q6(o,o) for the directions 

o=l, 2, and 5. When S=O, the two-dimensional flux reduces to the one­

dimensional result which is zero and independent of cr. Q6(o,o) 

increases with increasing Sand is asymptotic to 1/o at large G 

values. This result is obtained by letting S7oo in equation (4.54). 
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The z-flux at the boundary is obtained by inserting T ~o into equation 
z 

(4.59) and using equation (4.56). This yields 

1 
f 

F6(o) = 1 + 2 J -~ (x,s)rL(o,x)dx + _g_ (l-/l+B 2 ) • (4.60) 
1 ~ 62 

0 

The simplified form of equation (4.60) was made possible by observing 

that & (o,s)=.5 and integrating the integral term. However, when 
3 

Tz~O, both of these terms present an added numerical difficulty. 

Table 0.17 lists values of the flux obtained by dividing the 

range of integration of equation (4.60) into two subintervals in 

accordance with Table 4.3. The numerical accuracy is essentially the 

same as the accuracy for the z-component of flux due to the cosine 

varying collimated boundary condition discussed in the previous 

section. When S=O, F6(o) reduces to the one-dimensional flux which 

is zero. The two-dimensional flux differs from the one-dimensional 

flux by .00133 v1hen 5=.001. At S=.Ol, this difference has increased 

to .01321. Hence, at small B values, F6(o) can be reasonably approxi­

mated by the simpler one-dimensional result. As S approaches infinity, 

F6(o) approaches unity as shown in Figure 4.11. 

E. FLUX FOR FINITE STRIP 

This section is concerned with the z-component of radiative flux 

at the boundary for the finite strip model. The fluxes for the uni-

form temperature strip and the uniform collimated strip are expressed 

in terms of the flux due to the cosine varying diffuse boundary condi­

tion and the cosine varying collimated boundary condition, respective-

ly, and solved in a manner similar to the finite strip emissive power 

of the previous section. 
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1. COLLIWHED FLUX 

The physical model for the finite strip constant collimated flux 

boundary condition is shovm in Figure 3.4. ~~hen the optical thickness 

becomes infinitet the z-component of flux for this medium is obtained 

from equations (3.118) and (4.50) as 

00 

Q(Ty,Tz) = ; J Q6(T 2 to)sin(STa)cos(BTY) ~S 
0 

where Q(Ty,Tz) is a dimensionless flux defined by 

Q(Ty,Tz) = Lim [q 8(T ,o,T )/F ] 
T~ Z Z 0 0 

0 

The flux at the boundary T =0 is 
z 

00 

Q(TY,o) = ; J Q6(o,o)sin(STa)cos(STY) ~S . 
0 

( 4. 61 ) 

(4.62) 

( 4. 63) 

Ir.tegrals of the form of equation (4.63) are converted into a 

slowly converging alternating series by the method applied in calcu­

lating the emissive power of the finite strip of this chapter. The 

Euler transform is then applied to speed up the convergence of the 

resulting series. The success of the method depends on the nonoscil-

lating part of the integrand approaching zero for sufficiently large 

S values. For this reason, functions of the type of the P-function of 

equation (4.38) are constructed. Inspection of Figure 4.10 shows that 

Q6(o,o) + ~ as B + oo. Hence. the analogous P-functions to be used 
1 

are o dependent and defined as P0 - 0 - Q6(o,o). 
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Tables 0.18 to 0.21 list the results of calculations by applica­

tion of the Euler transform and the interpolation technique. The data 

for the interpolation approximation were obtained from Tables 0.14 to 

0.16. Table 0.18 shows the variation of Q(o,o) with half strip width 

Ta at the center of the strip. Figure 4.12 depicts this variation. 

The finite strip flux approaches the one-dimensional value of zero 

as the half strip width becomes infinite. When Ta=20 and a=l, the 

two-dimensional flux and the one-dimensional flux differ by .05308. 

For Ta=lOO, this difference has decreased to .01070. Hence, the two­

dimensional flux can be approximated by the one-dimensional flux when 

T >100. The flux is maximum when a=l which corresponds to the case a-

when the incident radiation is normal to the strip and minimum when 

a is very large. Increasing a has the effect of allowing less energy 

to enter the medium. 

Figure 4.13 shows the variation of the- z-flux with position 

across and extending beyond a strip of half width Ta=l for constant 

collimated radiation from directions a=l ,2, and 5. The flux is 

directed into the medium over the entire strip vJidth. This means 

that the amount of energy originating in the medium and passing 

through T2=0 in an outward direction as shown by the broken curves in 

Figure 4.13 is less than the energy which is incident on the boundary. 

However, a reversal in direction of flux takes place at the strip 

edge. A discontinuity in flux occurs at the strip edge due to the 

discontinuity of the incident radiation.. The flux at locations beyond 

the strip edge is in an outward direction because no external radia­

tion enters the medium at this location. Thus, any energy crossing 
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the boundary must originate from interior of the medi urn. Si nee the 

medium is in radiative equilibrium, there can be no net transfer of 

energy. Hence, the area under the curve for the flux entering the 

medium must be the same as that under the curve for the flux leaving 

the medium. Inspection of Figure 4.13 shows that this trend appears 

to be satisfied. 

Figure 4.13 reveals that for all a values the flux entering the 

medium is a minimum at the center of the strip where the emissive 

power of the medium immediately adjacent to the boundary is maximum. 

Since the emissive power decreases with position across the strip, 

the flux increases to a maximum at the strip edge as shown. The flux 

is maximum at a=l and decreases inversely with a since the area 

normal to the incident ratiation is directly proportional to the co­

sine of the angle of incidence and thus inversely proportional to a. 

Figure 4.14 shows the variation in z-flux with change in half strip 

width for the direction a=l. When T ~o, the net flux entering the a 

medium approaches the maximum value of unity. For Ta=.Ol, the net 

flux entering is almost unity. Hence, the emerging net flux corres-

ponding to T =.01 at locations outside of the strip width must also 
- a 

have the same value as the net flux entering since the medium is in 

radiative equilibrium. This behavior indicates that the emerging 

flux curve must approach zero at a slow rate since the largest value 

the emerging flux attains is .0159 at the strip edge. When Ta-+=' the 

one-dimensional flux of zero is attained. 

2. DIFFUSE BOUNDARY 

Figure 3.5 shows the physical model for the constant temperature 

finite strip. The z-component of flux for the corresponding 
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semi-infinite medium is obtained from equations (3.124), (3.153), and 

(4.58) by letting the optical thickness become infinite. This yields 

00 

F(Ty,T2 ) =; J FS(T2 )sin(STa)cos(STY) ~S 
0 

where F(Ty,Tz) is a dimensionless flux defined by 

The flux at the boundary T =0 is z 
00 

F(TY,o) = ; J FS(o)sin(STa)cos(STY) ~S . 

0 

( 4. 64) 

(4.65) 

(4.66) 

Since FS(o)+l as s~, the function analogous to the P-function of 

equation (4.38) is defined as Ps=l-F6(o). Inserting PS into equation 

(4.66) enables the Euler transformation and interpolation technique 

to be applied in calculating F(T ,o). Table U.22 lists the variation 
y 

of the z-flux with half strip width. The finite strip solution 

approaches the constant temperature, one-dimensional solution of zero 

as the half strip width approaches infinity. Figure 4.15 shows this 

variation. Figure 4.16 and Table 0.23 show the change of flux vdth 

position across and extending beyond strips of various half \'lidths. 

The flux profiles are similar to those obtained for the constant 

collimated strip of the previous section. The broken curves indicate 

energy that is emerging from the medium through the strip. 

F. CONCLUSION 

The limited range of values of Sand half strip width T for a 

which the bJo-dimensional models can be approximated by the simpler 
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one-dimensional models indicates the necessity of the two-dimensional 

analysis. The bJo-dimensional cosine varying models can be approxi­

mated by the one-dimensional models when S<O.l, and the tv.Jo-dimensional 

finite strip models can be approximated by the one-dimensional models 

when Ta>100. Thus, for other values of B or Ta' the two-dimensional 

nodels must be considered. 



V. FINITE MEDIUM 

A. INTRODUCTION 
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The analysis of this chapter is concerned with the radiative flux 

and emissive power at the boundaries of a finite medium. The radia­

tive flux and emissive power at the boundaries are expressed in terms 

of the generalized X- andY-functions which are analogous to the X­

and Y-functions of Chandrasekhar [l,p.l83]. These generalized func­

tions arise as a result of a collimated flux of cosine magnitude inci­

dent on a finite medium. The generalized X- and Y-functions are the 

dimensionless emissive power at the boundaries T =0 and T =T , z z 0 

respectively. The introduction of the generalized X- andY-functions 

parallels the semi-infinite theory which generated a function analogous 

to the H-function of Chandrasekhar. 

A detailed analysis of the generalized X- and Y-functions is 

presented and numerical methods of solution are discussed. Integral 

equations are developed which correspond to the integral equations 

for the one-dimensional X- and Y-functions of Chandrasekhar. The 

integra-differential equations that the generalized X- and Y-functions 

satisfy are developed. The integra-differential form is reduced to a 

system of ordinary differential equations and solved numerically for 

the generalized X- and Y-functions. The behavior of the emissive 

power and radiative flux at the boundaries of the finite medium as a 

function of S and optical thickness T0 is investigated. Bounds on S 

and To are obtained for which the finite model can be approximated 

by the simpler semi-infinite model. The one-dimensional approximation 

is also considered whereby the two-dimensional model can be replaced 

by the one-dimensional model. 
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B. EQUATIONS FOR THE GENERALIZED X- AND Y-FUNCTIONS -- - -- _ __;...c-;..,;:...:.....:;..;;.;_:.::_ 

Since the generalized X- andY-functions are basic to the devel­

opment of the emissive power and flux at the boundaries, the study of 

their behavior is appropriate. In the first section the generalized 

X- and Y-functions are shown to satisfy a pair of coupled integral 

equations of the Chandrasekhar type. In the second section integra­

differential equations, which are more suitable for numerical calcu­

lation, are developed for the generalized X- and Y-functions. The 

integra-differential equations for the generalized X- and Y-functions 

are then transformed into integra-differential equations for the 

moments of the generalized X- and Y-functions. 

l . INTEGRAL EQUATION 

The integral equations for the generalized X- andY- functions 

which correspond to the one-dimensional X- and Y- functions will now 

be developed. These functions satisfy a pair of coupled, nonlinear, 

inhomogeneous integral equations which are difficult to solve and will 

not be utilized. However, this development is important because the 

generalized reflection and transmission functions are introduced. The 

generalized reflection and transmission functions will be used in later 

sections to find the radiative flux at the boundaries. 

The equations describing the finite medium have previously been 

formulated in Chapter III. From equation (3.37), the dimensionless 

emissive power JS(Tz,o,T0 ) satisfies the following integral equation 

( 5. l) 



The integra-differential equation for J 0 (T ,o,T ) is given by 
J...l z 0 

equation (3.102) and can be written as 

where 
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( 5. 2) 

( 5. 3) 

Following the procedure outlined by Sobolev [5,p.74] for the one-

dimensional theory, the generalized reflection function R6 is intro­

duced through equation (5.2). Letting cr=/t2+(:3 2in equation (5.2), 
· -0T 

multiplying the latter bye z dT2 and integrating it from 0 to T0 

yields 

0 

-0T 
¢(T2 ,T0 )e z dTZ 

where R6(a,/t2+(:3 2,T0 ) is analogous to the reflection function of 

Chandrasekhar and is defined as 

To 

RS(a,/t2+sz,To) = J JS(x,/t2+sz,To)e-ax dx 

0 

(5.4) 

( 5. 5) 
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The first term in equation (5.4) is expressed in terms of RB by 

integrating once by parts to obtain 

(5.6) 

Insertion of equation (5.6) into equation (5.4) yields 

(o+lt2+S 2)Ra(o,lt2+a2,T0) = Ja(o,lt2+S 2 ,T0) [ 1 + JT
0

Q(Tz,T0)e-oTz dTz] 

0 

(5. 7) 

A further simplification in equation (5.7) is obtained by relating 

the integral terms involving ~ and JB at the boundaries. The first 

term containing~ is related to JB(o,cr,T0 ) by evaluating equation (5.1) 

at Tz=O. This gives 

To oo -T'It 2+S 2 

Ja(o,o,To) = 1 + ~ J [ J e zlt'+a'dt] Ja(T~,o,To)dT~ (5.8) 

0 1 

After interchanging the order of integration, equation (5.8) becomes 

(5.9) 

The interior integral in equation (5.9) is another form of R8 obtained 

from equation (5.5) by interchanging lt2+S 2 and cr. Therefore, 



utilization of the expression 

T 
0 -T 'lt2+B 2 

J J 13 (T~,cr,T0 )e z dT~ = R13 (1t2 +(3 2 ,cr,T0 ) 

0 

reduces equation (5.9) to 

However, R13 can be related to ~ by multiplying equation (5.3) by 

-crT 
e z dTz and integrating it from 0 to T0 . This yields 

-crT 
~(Tz,T0 )e z dTZ 

By interchanging the order of integration in equation (5.12) and 

utilizing equation (5.5), the following expression is obtained 

1 
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(5.10) 

(5.11) 

(5.13) 

The symmetry of the reflection function R13 with respect to a and 

lt2 +(3 2 is shown in Appendix c. This symmetry enables equations (5.11) 

and (5.13) to be combined to produce the desired relation between~ 

and J 13 (o,cr,T0 ) 

-crT 
~(Tz,T0 )e z dTZ (5.14) 
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Next, substitution of equation (5.14) into equation (5.7) yields 

( 5. 15) 

A similar reduction in the form of equation (5.15) is accomplished 

by expressing the term involving~ as a function of JS(T ,a,T ). This 
0 0 

reduction is accomplished by evaluating equation (5.1) at T =T to z 0 

yield 

An interchange of the order of integration in equation (5.16) yields 

()() 

-aTo 1 J 
= e +-2 (5.17) 

1 

where Sf3(/t2 +(3 2 ,a,T0 ) is a symmetric function which is analogous to 

the transmission function of Chandrasekhar and is defined as 

(5.18) 

The relationship between SS and ~ is found by replacing Tz by T0 -Tz 
-en 

in equation (5.3), multiplying the latter bye z dTz and integrating 

it from 0 to T0 to obtain 



To 

J 
-aT 

~(T -T ,T )e z dTZ 
0 z 0 

0 
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-aT 
e z dT 

z (5.19) 

Next, reversing the order of integration of equation (5.19) and 

utilizing the symmetry of s6 results in the following expression 

JTO -aT 
~(T -T ,T )e z 

0 z 0 

00 

(5.20) 
0 

Finally, insertion of equation (5.20) into equation (5.17) results 

in the following integral relationship bet\Jeen J8 (T0 ,o,T0 ) and <!J 

-aT 
JB(to,a'To) = e o 

To 

+ ¢(T -T ,T )e z dt J 
-OT 

0 z 0 z 
0 

( 5. 21 ) 

Hence, the reflection function is expressed in terms of JB at the 

boundaries as 

R6(a,lt 2+s 2 ,t0 ) 

= J6(o,lt 2+s 2 ,T0 )J6(o,a,t0 )-J6(t0 ,1t 2 +B 2 ,T0 )J 6(t0 ,o,T0 ) 

a+vt 2+6 2 

(5.22) 

When equation (5.22) is substituted into equation (5.11 ), the 

following integral equation for J6(o,o,t0 ) is obtained 

00 



Equation (5.23) is seen to have the same form as equation (4.17). 

Hence, the same transforms can be applied, and equation (5.23) then 

reduces to an integral equation for the generalized X-function 

1 
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X(~,T0 ,S) = 1+~ J~(~~~) [X(~,T0 ,S)X(x,T0 ,S)-Y(~,T0 ,B)Y(x,T0 ,B)]dx(5.24) 
0 

where the generalized X- and Y-functions are defined by 

(5.25) 

and 

(5.26) 

Equations (5.25) and (5.26) define the dimensionless emissive power 

at Tz=O and at Tz=T0 as the generalized X-function and the generalized 

Y-function, respectively. Equation (5.24) reveals that the emissive 

power at the boundary T z =0 can be determined without a knO\vl edge of 

the emissive power within the medium and is completely described by 

the emissive pO\ter at the boundaries. This equation is an improvement 

over the form of equation (5.8) which requires the emissive power 

within the medium to be known before the integration can be performed. 

In a similar fashion, the emissive power at the other boundary rz=T0 

can be obtained from equation (5.16) if the emissive power within the 

medium is known. However, the success in expressing the emissive 

power at T =0 solely in terms of the emissive power at the boundaries z 
by means of the integral equation for the generalized X-function 

indicates that the integral equation for the generalized Y-function 

should also depend only upon the emissive power at the boundaries. 
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Hence, in the next section the integral equation for the generalized 

Y-function will be developed. 

The transmission function s6 can also be expressed in terms of 

J 6 at the boundaries. Replacing Tz by T0 -Tz in equation (5.2) yields 

(5.27) 

By letting cr=lt2+s 2 in equation (5.27), multiplying the latter by 

-crT 
e z dTz and integrating it from 0 to T0 , the following expression 

is obtained 

0 

T 
0 -crT 

I ~(T -T ,T )e z dTZ 
0 z 0 

0 

T 
0 -crT 

- JS(To,lt2+sz,To) I ~(Tz,To)e z dT = 0 • z 
0 

Next, integration of the first term in equation (5.28) by parts 

yields 

(5.28) 



= J S (-co ' It 2 + (3 2 , -c-o ) [ 1 + J 
0 

0 
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(5.29) 

The first integral in equation (5.29) is s6. The two integral terms 

involving cl? are related to J6 at the boundary by means of equations 

(5.14) and (5.21). Hence, equation (5.29) can be reduced to the 

following expression for s6 in terms of J6 at the boundaries 

Ss(o,lt 2+s 2 ,-c0 ) 

= JB(o,lt2+sz,To)JB(-co,o,To) - JB(To,lt2+sz,To)JS(o,o,-co) 

lt 2 +B 2 - a 
(5.30) 

An integral equation for J6(-c0 ,o,-c0 ) is obtained by inserting equation 

(5.30) into equation (5.20) and using equation (5.21) to arrive at 

-OT 
JB(-co,o,-co) = e o 

Since equation (5.31) is of the same form as equation (5.23), the 

same transforms can be used to obtain the integral equation for the 

generalized Y-function. This results in 
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(5.32) 

Equations (5.24) and (5.32) are two coupled integral equations 

for the generalized X- andY-functions. The integral equations for 

the generalized functions have the same form as the one-dimensional 

equations of Chandrasekhar. Since the solutions for the finite model 

must approach those of the semi-infinite model when the optical 

thickness of the medium becomes infinite, the generalized X-function 

approaches the generalized H-function and the generalized Y-function 

approaches zero in the 1 imi t. That is, Lim X(~,T ,S)=H(~,S) and 
T -+oo 0 

0 

;i~ Y(~,T0 ,S)=O. When the optical thickness aporoaches zero, the 
0 

generalized X- andY-functions are equal: Lim X(~,T0 ,S) = 

To-+o 

Lim 
T -+a 

0 

Numerical evaluation of the generalized X- and Y-functions by 

direct iteration in the present form of equations (5.24) and (5.32) 

is not practical due to the extremely slow rate of convergence. This 

same problem was avoided in the semi-infinite theory by transforming 

the standard integral equation for the generalized H-function into a 

reduced form \'lhich v1as more suitable for iteration. However, such a 

form is not available for the generalized X- and Y-functions due to 

the complicated manner in which the two functions are related. Hence, 

an alternate method of calculating the generalized X- andY-functions 
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is developed. This technique involves expressing the generalized X­

and Y-functions by integra-differential form. The advantage of this 

form is that the integra-differential equations can be reduced to a 

system of ordinary differential equations which are more easily 

solved numerically. 

2. INTEGRO-DIFFERENTIAL EQUATIONS 

The integra-differential equations that the generalized X- and 

Y-functions satisfy are formulated in a manner similar to that of 

Sobolev [5,p.77]. This approach involves the integral equation for 

JS(To-Tz,cr'To). 

(5.1) yields 

Replacing T by T -T and T1 by T0 -Tz' in equation z 0 z z 

-(T -T )cr 
J 0 (T -T ,cr,T ) = e O z 

t.J 0 z 0 

To 

+ 1 J &1 ( 1-rz-T~~ ,S)JS(To-T~,a,To)dT~ • 
0 

In obtaining the differential form, the optical thickness is 

considered to be a variable. 

(5.33) 

Differentiating equations (5.1) and (5.33) with respect to T0 

yields 

(5.34) 
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and 

(5.35) 

By letting cr=lt2+S 2 in equation (5.33), multiplying the latter by 

dt/lt 2+S 2 and integrating it from 1 to oo, the following expression is 

obtained 

1 

(5.36) 

When equation (5.36) is multiplied by J8(T0 ,cr,T0 )/2 and the resulting 

expression is compared with equation (5.34), an integra-differential 

equation for J 8(Tz,cr,T0 ) results 

(5.37) 

r~1ultip1ying equation (5.33) by cr and adding the resulting expression 

to equation (5.35) yields 
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(5.38) 

A comparison of equation (5.38) with the expression obtained by 

multiplying equation (5.36) by JS(o,o,T0 )/2 yields an integra-differ­

ential equation for JS(T0 -Tz,cr,T0 ) 

Equations (5.37) and (5.39) are two coupled integro-differentiai 

equations for the emissive power at optical depths Tz and T0 -Tz. 

Before these equations can be solved, the emissive power at the 

boundaries JS(o,cr,T0 ) and JS(T0 ,cr,T0 ) must be determined. 

(5.39) 

To do this, separate integra-differential equations for J6(o,o,T0 ) 

and J (T ,cr,T ) are desirable. Insertion of Tz=O in equations (5.37) s 0 0 

and (5.39) yields 

(5.40) 

and 

(5.41) 

1 
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Equations (5.40) and (5.41) reveal that the emissive power at the 

boundaries can be calculated without a knowledge of the emissive power 

interior to the medium. Since the primary interest is in the emissive 

power at the boundaries, equations (5.40) and (5.41) will be further 

reduced to a more favorable mathematical form. 

The substitutions of x=ll+S2/It 2+s 2 and ~=11+8 2/cr along with the 

use of equations (5.25) and (5.26) reduce equations (5.40) and (5.41) 

to integra-differential equations for the generalized X- and Y-func­

tions in the form 

and 

I1 Y(x,T0 ,S)dx 

xll+S 2 (1-x 2l 
0 

( 5. 42) 

(5.43) 

Equations (5.42) and (5.43) are the basic equations which can be 

reduced to a system of differential equations and solved numerically. 

These solutions can then be used to obtain the cr dependent form of the 

generalized X- andY-functions from equations (5.40) and (5.41). 

Since X(~,T0 ,s)=J 8 (o,ll+S 2/~,T0 ), the substitution cr~ll+S 2 /~ yields 

X(~/cr,T0 ,s)=J 8 (o,cr,T0 ). In a similar fashion, Y(ll+S 2/cr,T0 ,S) 

=J 8(T0 ,cr,T0 ). Thus, inserting ~=ll+S 2/cr into equations (5.42) and 

(5.43) yields 



0 

and 

Y(x,T0 ,B)dx 

xv'l+B 2 (l-x 2 ) 
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(5.44) 

Equations (5.44) and (5.45) can be reduced to a system of differential 

equations and solved in the same manner as the~ dependent form of 

equations (5.42) and (5.43). 

3. MOMENTS OF GENERALIZED X- AND Y-FUNCTIONS 

The emissive power at the boundaries for the cosine varying 

diffuse boundary condition involves moments of the generalized X- and 

Y-functions. The first class of weighted moments are defined as 

and 

an(S,T0 ) " J1 x"~0 (x,S)X(x,T0 ,B)dx 
0 

J1 xn~ (x,B)Y(x,T ,B)dx 
0 0 

0 

where the weight function ~ is defined as 
0 

A second class of useful moments are 

xn~ (x,B)X(x,T .S)dx 
1 0 

(5.46) 

(5.47) 

(5.48) 

(5.49) 



and 

1 

Yn(B,T0 ) = J xn~ 1 (x,S)Y(x,T0 ,S)dx 
0 

where~ has previously been defined by equation (3.79). 
1 
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(5.50) 

The moments a.0 and S0 satisfy a simple identity which can be 

obtained from equation (5.24). By multiplying equation (5.24) by 

~0 (~,S)d~, integrating it from 0 to 1, and utilizing equations (5.46) 

and (5.47), the following expression is obtained 

( 5. 51 ) 

Due to symmetry, ~ and x are interchanged to obtain 

(5.52) 

Adding equations (5.51) and (5.52) and integrating the initial term 

involving ~0 results in the desired relationship between a.0 and S0 

(5.53) 

Equation (5.53) has the same form as the corresponding one-dimensional 

result obtained by Chandrasekhar [l ,p.l89]. When s=O, the two equa-

tions are identical. 
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Differential equations for the moments are obtained by multiply­

ing equations (5.42) and (5.43) by ~0 (~,B)d~ and integrating to yield 

and 

aa (B,T ) 
0 0 

aT 
0 

A similar set of equations involving x0 and y0 follows as 

and 

ax (B,T ) 
0 0 

3T0 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

Since the functions of the finite medium analysis approaches the 

corresponding ones in the semi-infinite theory, x0 is bounded by h0 

and y0 reduces to zero. That is, h0 (B)=Lim x (B,T ) and 
To-7ooo o 

Limy (B,T )=0 where h has been defined by equation (4.31 ). When 
T-+«>0 0 0 

0 

S=O, x0-a0 , Y0 =B0 , y_ 1=6_ 1 , and equations (5.56) and (5.57) are 

identical with equations (5.54) and (5.55). The one-dimensional form 

of equations (5.54) and (5.55) was developed by Heaslet and Warming 

[39]. 

C. EMISSIVE POWER FOR COSINE VARYING COLLIMATED BOUNDARY 

The emissive power at the boundaries of a finite medium illumi­

nated by a collimated flux of cosine magnitude has previously been 
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defined in terms of the generalized X- and Y-functions given by equa­

tions (5.27) and (5.28). The emissive power at the boundary T =0 is 
z 

the generalized X-function and the emissive power at the other 

boundary is the generalized Y-function. Tables E.l to E.l4 list the 

numerical results for the a dependent form of the generalized X- and 

Y-functions. These results are obtained from the computer program 

discussed at the end of this chapter. The~ dependent generalized X­

and Y-functions are not tabulated but are used whenever integrations 

of generalized X- andY-functions are required. The~ dependent form 

is more suitable for numerical integration than the a dependent form. 

However, the a dependent form is tabulated since physically the angle 

of the incident radiation and hence a is usually specified. 

The effect of a on the generalized X-function is shown in Figure 

5.1 for S=l and in Figure 5.2 for S=lO. The generalized X-function is 

maximum when the incident radiation is normal to the boundary, cr=l. 

Increasing a a 11 ows 1 ess energy to enter the medi urn, thereby decreas­

ing the emissive power. Figures SAl and 5.2 show the decrease of the 

generalized X-function to its limiting value of unity as a approaches 

infinity. The generalized X-function levels off and approaches con­

stant values at smaller optical thicknesses with increasing cr. This 

means that the generalized X-function is approaching the generalized 

H-function of semi-infinite theory. A knowledge of the values of o, 

a and T for which the generalized X-function can be approximated by 
1-Jt 0 . 

the generalized H-function is desirable. 

Figure 5.1 reveals that for s=l the generalized X-function levels 

off to the generalized H-function at T0=.8 for cr=5. When a=lO, this 
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asymptotic behavior occurs for optical thicknesses as small as T =.45. 
0 

Figure 5.2 shows that for S=lO the magnitude of the generalized X-

function is considerably smaller than the corresponding values in 

Figure 5.1 for S=l. In addition, the optical thicknesses at which the 

generalized X-function can be approximated by the generalized H­

function are also decreased. In particular, the cr=5 curve now starts 

to level off to a constant value at T =.25. The cr=lO curve exhibits 
0 

asymptotic behavior at optical thickness ofT =.15 for S=lO. Thus, 
0 

increasing S causes a decrease in the value of the optical thickness 

necessary for approximating the generalized X-function by the gener­

alized H-function. 

The values of S and the optical thickness T0 for which the gen­

eralized X-function can be approximated by the generalized H-function 

are shown in Figure 5.3 for cr=l. The value of Sat which the T0 

curves merge into the semi-infinite H-function at T0 =oo yields the 

desired combination of Sand T0 • Figure 5.3 reveals that when T0=.l, 

a value of S=20 is the criterion for the approximation. For T0 =3, 

this approximation can be used when a~.8. In particular, the genera­

lized X-function can be approximated by the generalized H-function for 

any combination of s~.a and T0 ~3. 

The effect of sand optical thickness T0 on the generalized X-

function is shown in Figure 5.4 for cr=l. The generalized X-function 

is bounded by the one-dimensional X-function of Chandrasekhar at S=O 

and unity when s approaches infinity. The generalized X-function 

levels off and approaches the generalized H-function at smaller 

optical thicknesses as S increases. Figure 5.4 and Tables E.l to E.14 
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reveal that the generalized X-function can be approximated by the one-

dimensional X-function at small s. When a=.5 and T =1, the genera­a 
lized X-function and the one-dimensional X-function differ by only 

.0746. At T0 =3, this difference has increased to .2890 and attains a 

maximum of .8959 at the optical thick analysis. Hence, the error in 

the approximation increases with increasing optical thickness. 

Figures 5.5 and 5.6 show the effect of a on the generalized 

Y-function for a=l and s=lO, respectively. In both cases, the gener­

alized Y-function is bounded by cr=l and decreases to zero as a 

approaches infinity. The generalized Y-function also approaches zero 

with increasing optical thickness. This behavior is a result of the 

energy being unable to penetrate to the infinite depth. Hence, the 

emissive power at T =T and thus the generalized Y-function decrease z 0 

with increasing optical thickness. Figures 5.5 and 5.6 reveal that 

the rate of decrease of the generalized Y-function to zero is slower 

than the rate of increase of the generalized X-function to the gener­

alized H-function. In particular, VJhen a=l and cr=5, the generalized 

X-function differs from the optical thick generalized H-function by 

.0131 at T0 =.8 whereas the generalized Y-function has the value .1134. 

At T0=3, this difference has decreased to .0001 for the generalized 

X- and H-functions with the generalized Y-function attaining the value 

.0088. Hence, the generalized Y-function requires a larger optical 

thickness to approximate the optical thick analysis than does the 

generalized X-function. 

Figure 5.7 shows that there is an insufficient amount of data 

present to determine the combination of B and T0 for which the 
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generalized Y-function can be sufficiently approximated by the ortical 

tl1ick value of zero. A comparison of Figures 5.3 and 5.7 reveals that 

larger values of S are required for each constant T curve to merge 
0 .. 

into the optical thick limit for the generalized Y-function than for 

the generalized X-function. Figure 5.7 also shows that the genera­

lized Y-function, unlike the generalized X-function, is not bounded 

by unity and the optical thick value. At small values of sand T0 , 

the generalized Y-function attains values which are greater than those 

corresponding to T0 =0. This same trend occurs for the one-dimensional 

Y-function of Chandrasekhar and hence is not a result \Jhich is char-

acteristic of the two-dimensional analysis. 

The effect of S and T0 on the genera 1 i zed Y -function is shO\m in 

Figure 5.8 for a=l. At small B, the generalized Y-function increases 

to a maximum and then decreases to zero vlith increasing optical thick-

ness. The maximum point shifts to smaller values of optical thick­

ness as S increases. The generalized Y-function also decreases to 

zero when S approaches infinity. Figure 5.8 and Tables E.l to E.14 

show that for small S values the generalized Y-function can be approx­

imated by the one-dimensional Y-function corresponding to G=O. ~Jhen 

s=.5 and T0 =l, the generalized Y-function and the one-dimensional 

Y-function differ by .0717. However, at T =3, this difference has 
0 

increased to .2322. The error in the approximation increases with 

increasing optical thickness. 

D. E~1ISSIVE POWER FOR COSINE VARYING DIFFIJSE BOUfWARY 

The emissive power due to the cosine varying diffuse boundary 

condition can be expressed in terms of the moments of the generalized 
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X- and Y-functions. Evaluating equation (3.78) at T =0 and T =T and z z 0 

utilizing equations (5.25) and (5.26) yields expressions for the 

emissive power for the diffuse wall 

and 

1 

¢S(o,T0 ) = 1 J ~ 1 (x,S)X(x,T0 ,S)dx 
0 

1 

¢S(T0 ,T0 ) = ~ J ~ 1 (x,S)Y(x,T0 ,S)dx 
0 

( 5. 58) 

( 5. 59) 

Substitution of equations (5.49) and (5.50) with n=O into equations 

(5.58) and (5.59) results in the simplified expressions for the 

emissive power at the boundaries in the form 

( 5. 60) 

and 

( 5. 61) 

The differential equations for ¢s(o,T0 ) and ¢s(T0 ,T0 ) follow directly 

from equations (5.56) and (5.57) by utilizing equations (5.60) and 

(5.61) to arrive at 

( 5. 62) 

and 

(5.63) 

Tables E.l5 to E.l8 list the emissive power at the boundaries for 

selected values of s and optical thickness T0 • The results were cal­

culated by the computer program discussed at the end of this chapter. 
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Figure 5.9 shows the emissive power at the boundary T =0 as a function z 
of T0 for various values of s. The emissive power is maximum at s=o 

which corresponds to the one-dimensional model. Increasinq s causes 

the emissive power to decrease and approach the minimum value of one­

half as S becomes infinite. The emissive power levels off and 

approaches constant values at smaller optical thicknesses as s 

increases. This asymptotic behavior indicates that the emissive power 

for the finite medium is approaching the emissive power for the semi­

infinite medium. In particular, when s=lO, an optical thickness as 

small as T0 =.1 may be sufficient to approximate the finite analysis by 

the simpler semi-infinite model. Figure 5.9 and Tables E.l5 to E.l8 

also reveal that approximating the two-dimensional model of sro by the 

one-dimensional model of s=O yields satisfactory results for small B 

values. The error in the approximation increases with increasing 

optical thickness. In particular, when 8=.5 the emissive power differs 

from the one-dimensional emissive power by .02759 at T0=1, .08157 at 

T0 =3, and increases to a maximum of .20445 at the optical thick 

analysis. 

Figure 5.10 and Tables E.l5 to E.l8 show the emissive power at 

T =T as a function of T for various values of s. The emissive power 
z 0 0 

is maximum at s=O and decreases to zero with increasing B or T0 . The 

rate of decrease of the emissive power at Tz=T0 to the semi-infinite 

value of zero is seen to be slower than the rate of increase of the 

emissive power at T =0 to the semi-infinite model. When 8=10 and z 
T =.1, the emissive power at T =T has a value of .17942 whereas the 

0 z 0 

emissive power at T =0 is already near to and approaching the 
z 
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semi-infinite model. Increasing T toT =.5 for S=lO causes the 
0 0 

emissive power at Tz=T0 to reduce to the value .00325. The error 

involved in approximating the emissive power at T =T is of the same 
z 0 

order of magnitude as the one-dimensional approximation for the 

emissive power at T =0 for the range 6<.5 and T <3. When s=.5 and z - o-

T0=l, the emissive power at T =T differs from the one-dimensional z 0 

emissive power at Tz=T0 by .03354 and increases to .06122 at T0=3. 

Figures 5.11 and 5.12 show the emissive power at the boundaries 

Tz=O and Tz=T0 as a function of B for various values of T0. Both 

emissive powers are bounded by the value of 0.5 and that for the semi­

infinite solution corresponding to T0=oo. Figure 5.12 reveals that the 

emissive power at infinity is zero. This follows since no energy has 

penetrated to the infinite depth. Figure 5.11 shows the combination 

of S and optical thickness T0 which are sufficient to approximate the 

emissive power at Tz=O for the finite model by the emissive power at 

Tz=O for the semi-infinite analysis. The apparent value of B at which 

the constant optical thickness curves merge into the semi-infinite 

emissive power curve denoted by T0=oo yields the desired values of ~ 

and T0. Figure 5.11 reveals that when T0=.l, aS value of 10 is the 

criterion for the approximation. For T0=3, this approximation can be 

used when s~.6. In particular, the finite model emissive power at 

Tz=O can be replaced by the simpler semi-infinite emissive power for 

any combination of T >3 and B~.6. a-
Figure 5.12 shows the combination of Band optical thickness T0 

which are sufficient to approximate the emissive power at Tz=T0 for 

the finite model by the zero emissive power for the semi-infinite 
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analysis. The same concept of selecting the value of s which causes 

the constant optical thickness curve to merge into the semi-infinite 

emissive power curve is applied. When T0 =.l, the value of B which 

allows the finite model to be approximated by the semi-infinite 

analysis is seen to be [3=55. Increasing the optical thickness to 

T0 =3 causes the approximation to be valid for a smaller value of s=2. 

Thus, any combination of T0~3 and S~2 permits the finite model 

emissive power at Tz=T 0 to be replaced by the semi-infinite value of 

zero. 

The emissive power at the boundaries of the constant temperature 

finite strip could also be put in a form suitable for use in the 

computer program discussed in the finite strip theory of Chapter IV. 

Recall that this program integrates the product of an oscillating 

trigonometric function and a nonoscillating function. The nonoscil-

lating function for the emissive pOI"'er at Tz=O is the moment of the 

generalized X-function x0 ([3,T0 ). The nonoscillating function for 

the emissive power at T =1 is the moment of the generalized Y-z 0 

function y (S,T ). The semi-infinite theory required the nonoscil-
o 0 

lating function, the generalized H-function, to be known at sixty-four 

values of [3. Hence the finite theory functions x0 (S,T0 ) and y0 (B,T0 ) 

must be known for a large number of S values. The computer program 

at the end of this chapter must be run many times since each computer 

run assigns a specific value to S and calculates x0 (S,T0 ) and y0 (f3,T0 ) 

for the range of optical thickness 1 0 • Thus, the constant temperature 

finite strip analysis for the finite medium will not be solved due to 

the excessive amount of computational effort involved. 
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E. RADIATIVE FJ:.U~ FOR COSiflE VARYING COLLH1ATED BOU~JDARY 

The z-component of flux for the finite medium subjected to a 

collimated flux of cosine magnitude is given by equation (3.112) and 

can be written in the form 

T 
0 

- 1 J J 13 (T~,o,T0 ) &2 (T~-T 2 ,S)dT~ . 

Tz 

(5.64) 

The flux at the boundaries is obtained by evaluating equation (5.64) 

To 

';lfA(o,o,T0 )::: ~ -1 J JS(T~,o,T0 )£2 (T~,S)dT~ 
0 

and 

where the dimensionless flux :CA is defined as 

~A(T2 .o,T0 ) == q2A(T 2 ,o,T0 )/F0 cosSTY = q2A(T 2 ,o,T0 ) 

(5.65) 

(5.66) 

(5.67) 

By inserting the definition of the S -function from equation 
2 

(3.69) into equations (5.65) and (5.66) and interchanging the order 

of integration, the flux at tf1e boundary becomes 
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00 

~A(o,cr,To) = ~ - 1 I (5.68) 
1 

and 

(5.69) 

The interior integrals in equations (5.68) and (5.69) are the genera­

lized reflection function R13 (1t2+s 2 ,cr,T0 ) and transmission function 

s13 (lt 2+S 2 ,cr,T0 ), respectively. Insertion of these functions into 

equations (5.68) and (5.69) yields 

00 

1 

and 

R ( /t2 2 ) dt s v +s ,o,T0 ~~ (5.70) 

( 5. 71) 

The substitution x=l1+13 2/lt2+s 2 further reduces equations (5.70) and 

( 5. 71 ) to 

(5. 72) 

and 

1 
1 -crTo 1 I -~ (1' ~ ,.. ) = ;; e + -2 •1•1 (x,S)S 0 (1l+S 2 /x,cr,T0 )dx • 

,cA o'v'•o v "' ..., 
(5.73) 

0 
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Next, the flux at the boundaries can be related to the emissive power 

at the boundaries by inserting equations (5.22) and (5.30) into 

equations (5.72) and (5.73). This yields 

1 

j:A(o,cr,T0 ) = ~- t J ~ 1 (x,s) 
0 

[Js(o,v1+i3~'/x,T0 )J 6 (o,cr,T0 )-J 6 (T0 ,v'~/x,T0 )J 6 (T0 ,a,T0 ) J dx 

II +s 2/x + a 

and 

[-J 6 ( o , 11 + S 2) x, T 0 ) J s. ( T 0 , cr, T 0 ) - J S ( T 0 , II + 6 2 I x , T 0 ) J S ( o , a , T 0 ) J d x 

~/x- a 

( 5. 74) 

• (5.75) 

Fina11y, the substitution cr=ll+i3 2/]J along with the use of equations 

(5.25) and (5.26) gives a relationship between the boundary flux and 

the generalized X- andY-functions as 

and 

1 x~ (x,s) J 
+ 1 f ~-X [X(x,T0 ,S)Y(]J,T0 ,6)-Y(x,T0 ,S)X(]J,T0 ,S)]dx (5.77) 

0 



156 

where J.A is a ctimensionless flux defined by 

(5.78) 

and 

(5.79) 

Tables E.19 to E.32 list the numerical behavior of the radiative 

flux at the boundaries for the cosine varying collimated boundary 

condition. The results were obtained from the computer program dis­

cussed at the end of this chapter. When s=O, the two-dimensional 

radiative flux reduces to the one-dimensional result. Within compu­

tational limits, the one-dimensional results at T =0 are seen to be 
z 

identical to those at T =T • z 0 

The equality of the one-dimensional fluxes at T =0 and T =T is z z 0 

a result of the assumption of radiative equilibrium which requires 

the divergence of the flux vector to be zero. For the one-dimensional 

analysis, this implies that a single derivative of the magnitude of 

the flux be equal to zero. Thus, the flux must be constant throughout 

the finite medium, depending only on the optical thickness T0 • When 

the optical thickness approaches infinity, the finite model approaches 

the semi-infinite model. Hence, the flux is zero throughout the semi­

infinite medium since no energy can penetrate into the infinite depth. 

In the two-dimensional analysis of s~o, the radiative flux is a 

function of two position vari ab 1 es. Therefore the divergence equation 

nas two independent derivatives and thus becomes a partial differ­

ential equation which does not have the simple form of the one-dimen­

sional model. The result is that the normal component of flux is no 
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longer constant throughout the finite medium. The difference in the 

normal flux at T =0 and the normal flux at T =T is attributed to the z z 0 

weakening of the normal flux by energy transfer into a horizontal 

direction due to the temperature variation in that direction. This 

horizontal transfer of energy is not present in the one-dimensional 

model since there is no horizontal temperature variation. 

The effect of cr on the radiative flux at the boundaries due to 

the cosine varying collimated boundary condition is shown in Figure 

5.13 for S=l and in Figure 5.14 for S=lO. The fluxes at T =0 and z 
-rz=T 0 are presented on the same figure for ease of comparison. Both 

boundary fluxes are maximum at cr=l and decrease to zero with increas-

ing cr. The cr dependence of the boundary flux can be seen in equations 

(5.74) and (5.75). Figures 5.13 and 5.14 show the difference in the 

flux at Tz=O and at Tz=T0 with increasing cr and T0 • The flux at Tz=O 

levels off and approaches the optical thick result at smaller values 

of optical thickness with increasing cr, whereas the flux at Tz=T0 

decreases to the optical thick value of zero with increasing T0 • The 

flux at T =T decreases to zero with increasing optical thickness z 0 

since no energy can penetrate into an infinitely large depth. 

Figures 5.13 and 5.14 along with Tables E.l9 to E.32 also reveal 

that the flux at T =T decreases to the optical thick value of zero z 0 

at a slower rate than the flux at T =0 decreases to the semi-infinite z 

flux. When s=l and cr=2, the flux at Tz=O and the semi-infinite flux 

differ by .02537 at T0=1, whereas the flux at Tz=T0 has the value 

.19657. At -r =3, this difference has decreased to .00040 with the 
0 

flux at T =1" attaining the value .02810. A comparison of Figures z 0 
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5.13 and 5.14 shows that the magnitude of the flux at T =0 is consid-
z 

erably larger for (3=10 than it is for (3=1. Furthermore, the flux at 

Tz=O levels off and approaches the optical thick solution at smaller 

values of T0 • In particular, when (3=10 and cr=2, the flux at Tz=O 

and the optical thick limit differ by only .00027 at T0 =.5 as compared 

to .07395 for S=l. 

Figure 5.15 shows that the flux at Tz=O is bounded above by 

unity and below by the optical thick limit. The values of sat Hhich 

the T0 curves are asymptotic to the semi-infinite flux correspond to 

the values of (3 and T0 for which the finite flux can be approximated 

by the semi-infinite flux for cr=l. WhenQ>l and T >3, the finite flux f.J_ o-

at Tz=O can not differ by more than .00213 from the semi-infinite flux 

at Tz=O. 

The flux at Tz=T0 is bounded above by unity and below by the 

optical thick value of zero as shown in Figure 5.16 for cr=l. A com­

parison of Figures 5.15 and 5.16 reveals that the flux at Tz=T0 

requires larger values of f3 than the flux at Tz=O to approximate the 

finite analysis by the semi-infinite theory. This requirement is 

apparent at small values of T0 where the flux at Tz=T0 is almost 

constant over the range O~S~40. This constant behavior implies a 

small variation from the one-dimensional model (S=O). The flux starts 

to deviate from the almost horizontal one-dimensional constant value 

and decreases to zero at smaller values of f3 as T0 is increased. 

Hence, increasing To decreases the corresponding value of S necessary 

to approximate the finite flux at Tz=T0 by the optical thick value of 

zero. 
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The effect of B and T on the flux at T =0 and the flux at T =T 
0 z z 0 

is shown in Figure 5.17 for o=l. The flux at T =0 is bounded above 
z 

by unity and belo\'J by the one-dimensional flux. The flux at T =T 
z 0 

is bounded above by the one-dimensional flux and belO\'J by the value 

zero. The flux at Tz=O levels off and approaches the optical thick 

limit at smaller values of T0 for increasing values of B, whereas the 

flux at Tz=T0 decreases to zero with increasing B and T0 • Figure 

5.17 reveals that the fluxes at Tz=O and Tz=T0 can be approximated 

by the one-dimensional flux for small B values. The deviation from 

the value of B=O with increasing T0 indicates that the error in the 

one-dimensional approximation increases with increasing T0 • 

F. RADIATIVE FLUX FOR COSINE VARYING DIFFUSE BOUNDARY 

The z-component of flux for the cosine varying diffuse boundary 

condition is related to the z-component of flux for the cosine varying 

collimated boundary through equation (3.150} \'lhich reduces to 

2 C (T ,B) + 
3 z 

1 

where the dimensionless diffuse flux :t'c is defined by 

:tc(Tz,To} = qzc(Tz,To)/e: 

The change of variable x=~/lt2+B 2 along with equation (5.67} 

yields 

(5.80} 

( 5. 81 ) 



1 

~C(TZ,TO) = 2 t; 3 (TZ,S) + 2 f w 1 (x,B)~A(Tz,X,TO)dx 
0 

1 -
2 f -T ll+B2/x 

- _ xt)J (x,s)e z dx 
11 +sz 1 

0 
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(5.82) 

Evaluation of equation (5.82) at T =0 and T =T yields the z-component 
z z 0 

of diffuse flux at the boundaries expressed in terms of the z-compo-

nent of flux due to the collimated boundary in the form 

(5.83) 

and 

(5.84) 

Tables E.33 to E.35 list the numerical behavior of the radiative 

flux at the boundaries for the cosine varying diffuse boundary condi­

tion. The results v.Jere obtained from the computer program discussed 

at the end of this chapter. When S=O, the two-dimensional flux 

reduces to the one-dimensional result. The one-dimensional fluxes at 

Tz=O and T =T are seen to be equa 1 , \'lhereas the t\~o-d i mens ion a 1 
z 0 

fluxes of s~o are different. The equality of the one-dimensional 

fluxes and the inequality of the two-dimensional fluxes at Tz=O and 

T =T follows from the same argument previously discussed in the 
z 0 

section for the flux due to the cosine varying collimated boundary 

condition. 
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Figure 5.18 shows the flux at T =0 and at T =T as a function of z z 0 

optical thickness for various values of B. A comparison of Figures 

5.17 and 5.18 reveals that the flux for the diffuse case and the flux 

for the collimated case exhibit similar trends. The flux at Tz=O for 

the diffuse case is bounded above by unity and below by the one­

dimensional result. The flux at Tz=T0 for the diffuse case is 

bounded above by the one-dimensional result and below by the optical 

thick value of zero. The flux at Tz=O for the diffuse case levels 

off and approaches the optical thick limit at smaller values of T0 

with increasing B. The flux at Tz=T0 for the diffuse case decreases 

to zero with increasing B at a more rapid rate than does the flux at 

Tz=T0 for the collimated case at cr=l. 

The variation in the flux at T =0 and at T =T0 for the diffuse z z 
boundary as a function of B is shown for various values of T0 in 

Figures 5.19 and 5.20, respectively. Except for numerical values, 

the flux at T =0 and at T =T behave in a similar fashion for both z z 0 

the diffuse and collimated boundary conditions. This behavior is 

seen by comparing Figures 5.15 and 5.19 for the flux at Tz=O and 

Figures 5.16 and 5.20 for the flux at T2 =T0 • The flux at T2 =T0 for 

the diffuse boundary is seen to deviate from the nearly constant one­

dimensional effect and decrease to zero at smaller values of B than 

does the flux at T =T for the collimated boundary at cr=l. z 0 

G. NUMERICAL PROCEDURE 

1. DESCRIPTION OF COMPUTER PROGRAM 

The numerical results presented in this chapter are obtained 

from a single computer program. The main portion of the program 
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consists of solving a system of eighty differential equations by a 

fourth order Runge-Kutta routine. The step size depends upon the 

parameterS. A step size of .005 is used for S=O, .1, .5, 1, 2, and 

5. Increasing S necessitates the use of a smaller step size. When 

s=lO, a step size of .0025 is used \tlhich is decreased to .0005 for 

S=40. When S=lOO, the step size is .0001. Thus, for large S the 

small step size limits the magnitude of the optical thickness whicl1 

is practical to attain because of the excessive computational time. 

However, the finite model solutions approach the semi-infinite solu­

tions at very small optical thickness for large S. 

The integral appearing in the integra-differential equations 

(5.42) and (5.43) is divided into two parts: 

0 

e: 
l 

0 

(5.85) 

where O~e: 51. This division is necessary due to the singularity of 
1 

the integrand and to the behavior of 1/J previously discussed in 
1 

Chapter IV. Evaluating the first integral on the right-hand side of 

equation (5.85) by Gaussian quadrature of order n1 with weights W1 k 

and abscissas x and the second integral by Gaussian quadrature of 
lk 

order n with weights w k and abscissas X2 k yields 
2 2 

n1+n2 

I (5.86) 
k=1 

0 
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where wk and xk are weights and abscissas of the Gaussian quadrature 

defined in terms of the weights and abscissas of each interval as 

w = 
k E W k/2 

1 1 
k=l ,2, ... n 

1 

+ (l+E )/2 
1 

k=n +1 ,n +2, ... n +n 
1 1 1 2 

(5.87) 

An evaluation of the integra-differential equations (5.42) and (5.43) 

at discrete values corresponding to the abscissas of the quadrature 

and utilization of the reduced notation of equation (5.87) yield 

2(n 1+n 2 ) ordinary differential equations 

ddY i = - 11 +S z y. lf+S2 X 
+ 2 I,· 

T0 X; 1 

n +n 
1 2 

I 
k= 1 

i = 1 , 2, ... n 1 +n 2 

\tJhere 

X. = X(x.,T ,B) 
1 1 0 

i = 1 , 2, ... n +n 
1 2 

with initial conditions X(xi,o,S) = Y(x1,o,B) = 1. 

The 2(n +n ) values of the generalized X- and Y-functions 
1 2 

(5.88) 

(5.89) 

obtained from solving the system of differential equations (5.88) are 
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sufficient for all of the integrations performed in this chapter with 

the exception of the z-component of flux at Tz=-r0 for the cosine vary­

ing collimated boundary. This exception is due to a singularity at 

lJ=x as seen in equation (5.77). The singularity in the flux can ue 

avoided by performing the integration \'lith quadrature of order n in 
3 

the first interval (O,E ) and quadrature of order n in the second 
2 ~ 

interval (s ,1) where O<s <1. In order to avoid the singularity, n 
2 - 2- 1 

can not be equal to n nor can n and n both be of odd order if 
3 1 3 

E =E. If£ rs 'any combination of n and n is permissible. The 
1 2 1 2 1 3 

same discussion is also true for the quadrature of order n and n . 
2 ~ 

Evaluation of equations {5.42) and (5.43) at the discrete abscissas 

corresponding to the quadratures of order n and n yields an addi-
3 ~ 

tional 2(n +n ) ordinary differential equations 

dXn +n +j 
1 2 

3 ~ 

lf.ii32" 
= 2 yn +n +j 

1 2 

n +n 
1 2 

I 
k=l 

v1+s2 ~ 
- yn +n +j + 2 xn +n +j 
x. 1 2 1 2 
J 

j= 1 , 2, •.• n +n 
3 ~ 

(5.90) 

where the weights wj and abscissas xj are defined in terms of the 

weights ul . and abscissas x . of the interval (0,£ ) and the Heights 
3J 3J 2 

w . and abscissas x . of the interval (s ,1) as 
4J 4J 2 

- 1 ) x. = -2 s (x .+1 
J 2. 3J 

j=l,2, ••• n 
3 



and 

with 

Yn +n +j = Y(xj,-r0 ,S) 
1 2 

j=n +l,n +2, ••. n +n 
3 3 3 4 

j =1 , 2, ••• n +n 
3 4 

initial conditions X(x. ,o,S)=Y(x. ,o,S)=l. 
J J 
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( 5. 91 ) 

(5.92) 

An additional eight differential equations are necessary to 

evaluate the cr dependent form of the generalized X- andY- functions 

corresponding to cr=1,2,5, and 10. These equations are 

II +13 2 
2 J 12 (T ,0 ,T ) 

~-> o m o 

n +n 
1 2 

I 
k= l 

m=l,2,3,4 (5.93) 

where cr =1, o =2, o =5, ando =10 with initial conditions expressed in 
1 2 3 4 

terms of the generalized X- and Y-functions as X(ll+S 2/o,o,S) = 

Y(Y1+13 2/o,o,l3) = 1. 

The two functions X(l ,-r0 ,13) and Y(l ,-r0 ,B) used in integrating 

the emissive power expressions ¢13 (o,-r0 ) and ¢13 (-r0 ,-r0 ) also contribute 

two differential equations of the form 
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n +n 
1 2 

I 
k= 1 

n +n 
1 2 

I 
k= 1 

with initial conditions X(l,o,S) = ~(l,o,S) = 1. 

TvJo more differential equations are required for the moments a 
0 

and S0 • These equations are 

n +n 
1 2 

I 
k= 1 

d ( ) ( ) n +n 
So S,To ;;-;-;:;"2(ao S,To ] 1 2 wki/Jokyk 

dTo = 11 +s 2 - 1 I x 
k=1 k 

(5.95) 

with initial conditions a (B,o) = B (S,o) = 1. 
0 0 

Equations (5.88), (5.90), and (5.93) to (5.95) were solved with 

c =c =.9, n =n =8, and n =n =9. This assumption constitutes a system 
1 2 1 2 3 I+ 

of eightty ordinary differential equations. These values were obtained 

by trial and error. The division of the interval used in calculating 

the generalized X- andY-functions into two parts determined byE =.9 
1 

was selected as the most efficient after comparing the results from 

c =.9 with the values obtained by varying c over a vdde range of 
1 1 

values. Eighth order Gaussian quadrature was used in each interval 

and the results compared with the results of sixteenth order quadra­

ture in each interval. The test criterion was that the generalized 

X- andY-functions did not change in the fifth decimal. Values of 
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n =n =8 and E =.9 generally satisfies the test criterion with the 
1 2 l 

generalized Y-function more difficult to obtain accurately at large 

values of S and T • 
0 

The division of the interval used in calculating the radiative 

flux into two parts determined by E =. 9 \las a 1 so obtai ned by tria 1 
2 

and error. Various orders of quadratures were utilized and the 

results compared. Quadrature of order n =n =9 was found to usually 
3 It 

yield five significant digits of accuracy for the flux. Ninth order 

quadrature, in addition to providing the specified accuracy, also 

fulfilled the requirement of n ~n and n ~n when E =E • Hence, the 
1 3 2 4 1 2 

singularity in the flux due to the diffuse boundary was avoided. At 

the same time, n =n =9 differing from n =n =8 by unity, helped to 
3 4 1 2 

keep the total number of differential equations to a minimum. 

The results listed in Tables E.l to E.14 for the o dependent 

generalized X- andY-functions follow directly as the solution of 

equation (5.93). The emissive power at Tz=O and Tz=T0 for the cosine 

varying diffuse boundary condition is calculated by reducing equations 

(5.58) and (5.59) to the form 

(5.96) 

(5.97) 

Tables E.l5 to E.l8 list ¢s(o,T0 ) and ¢s(T0 ,T0 ) obtained from equa­

tions (5.96) and (5.97). The radiative flux at Tz=O and Tz=T0 for 

the cosine varying collimated boundary condition are calculated from 

the reduced forms of equations (5.74) and (5.75) with quadrature 



given by equation (5.91) 

and 

-a 'T 
ox (T .... 'T ) = _1 e m o 
&>LA 0 'vm' 0 crm 

1 n3+n4 _ _ JS(To' 0m'To)Xn +n +k-JS(o,crm,To)Yn +n +k 
+ 2 I wk1J! (xk,S) ------.:...1---::2 ______ "'""'1~.:::..2_ 

k=1 1 ll+S2/xk .. crm 

176 

(5.99) 

Tables E.l9 to E.32 list the numerical results obtained from equations 

(5.98) and (5.99). The~ dependent form of~A is needed for the 

integration of the cosine varying diffuse flux of equations (5.83) 

and (5.84). Evaluating equations (5.76) and (5.77) at the abscissas 

of the quadrature of equation (5.91} yields 

~A (o ,xi' To) 

and 
--r--T ll+S /x. 

- 0 1 x.e 
1 

(5.100) 

(5.101) 
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The cosine varying diffuse flux is calculated by utilizing equations 

(5.100) and (5.101) and expressing equations (5.83) and (5.84) as 

n +n 
2 3 4 

= 1 + - (1-/i~) + 2 I wk!J! cx·k,S) :l:A(o ,Xk ,T ) 

(32 k= l 1 0 
( 5. 1 02) 

and 

(5.103) 

Tables E.33 to E.35 list the numerical results obtained from equations 

(5.102) and (5.103). The ~-function appearing in equation (5.103) 
3 

is calculated by the method discussed in Appendix A. 

2. CQt,1PARISON OF THE GENERALIZED !:_AND Y-FIHICTIONS 

Since the generalized X- andY-functions reduce to the X- and 

Y-functions of Chandrasekhar when S=O, it is appropriate to compare 

the solutions tabulated in Tables E.l and E.2 vdth results that appear 

in the literature. This comparison will furnish a method of checking 

the numerical technique and provide a degree of confidence in the 

results for S~O for v1hich no known results are available. Recall that 

the generalized X- and Y-functions have arguments that depend upon 

both Sand a \'Jith connecting relationship given by ~=ll+S 2 /o. Thus, 

to compare Chandrasekhar•s X(~,T0 ) function with the generalized X­

function, the argument of the generalized X-function must be evaluated 

at ~=1/a. Hence, to compare X(.5,1) with the generalized X-function 

means that s=O, a=2, and T0 =1. This value would correspond to the 

result in Table E.l. Similar results hold for the generalized Y-

function. 



To 

.l 0 

.20 

.40 

.60 

.80 

1.0 

2.0 

Table 5.1 Comparison of Chandrasekhar•s X- andY-functions with the 
generalized X- andY-functions for S=O 

X(.5;r0 ) I Y(.5;r ) 
0 

PRESENT 
REF. ( 40) REF.(41) REF.(43) r·1ETHOD REF. ( 40) REF.(41) 

1.15277 1.15232 1.1522 .966939 

1.24480 1.24456 1. 24479 1. 2447 .898582 .898214 

1.37252 1.37252 1. 37252 1. 3725 .766758 .766827 

1.46000 1 .46003 1.46000 1 .4600 .657032 .657095 

1. 52442 1. 52443 1. 52442 l . 5244 .569437 .569436 

1. 57404 l. 57403 l. 57403 1. 5740 .500045 .500032 

1 • 71531 1. 71535 1 • 71535 1 . 7153 .310552 .310557 

REF.(43) 

• 966513 

.898584 

.766763 

.657038 

.569443 

. 500051 

.310555 

PRESENT 
METHOD 

.9663 

. 8984 

.7668 

.6570 

.5694 

.5000 

. 3105 

..... 
-.....J 
co 
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In Table 5.1 the X(.5,T ) and Y(.5,T ) results are compared with 0 0 

those of the generalized X- and Y-functions at S=O. Reference is 

made to the works of Carlstedt and f,1ullikin [40], Bellman, et al. 

[41], Sobouti [42], and Crosbie and Viskanta [43]. The results which 

appear in Table 5.1 have previously been compiled by Crosbie and 

Viskanta [43]. It is apparent from the very limited range of the 

parameters that appear in Table 5.1 that the maximum discrepancy 

occurs at small T0 and improves rapidly with increasing T0 • However, 

theY-function, and hence the generalized Y-function, is more sensi­

tive to change in T at very small and also very large values ofT . 0 0 

H. CONCLUSION 

The behavior of the radiative flux and the emissive pm~er with f3 

and the optical thickness T0 for the finite medium indicates that 

there exists values of S and T for which the finite analysis can be 
0 

approximated by the simpler semi-infinite development. In general, 

this approximation can occur either at large T0 and small B or at 

large S and small -r0 • Any combination of s:l and T0 ;::3 enables the 

finite theory functions at T =0 to be replaced by the semi-infinite z 
solution at Tz=O. However, the finite theory functions at Tz=T0 do 

not approach the optical thick limit as rapidly with Sand T0 as do 

the finite theory functions at -rz=O. Hence, the effect at the 

boundary 1: =T is usually significantly different from the optical z 0 

thick solution even though the functions at Tz=O can be replaced by 

those from the semi-infinite analysis. 

The one-dimensional approximation has limited usefulness since 

it is only valid for small values of s. The error in the one-dimen­

sional approximation is smallest at small T0 and increases with 



increasing 1:0 • Except for small values of S, the two-dimensional 

model must be considered. 
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VI. CONCLUSION AND ~ECOMMENDATIONS 

The present investigation treats radiative transfer in a two­

dimensional absorbing and emitting gray medium in radiative equili­

brium. The exact formulations of the equations for the radiative flux 

and emissive power are presented for the finite optical thick media 

subjected to the following types of boundary conditions: (1) cosine 

varying diffuse, (2) cosine varying collimated, (3) constant tempera­

ture strip, and (4) the strip illuminated by a uniform collimated 

flux. The solutions for the cosine varying diffuse and cosine varying 

co 11 imated models are used to construct solutions for the constant 

temperature strip and the strip illuminated by a uniform collimated 

flux, respectively. The two-dimensional equations are reduced to one­

dimensional equations by the technique of separation of variables. 

The corresponding equations for a semi-infinite medium are obtained 

from the finite optical thick equations by letting the optical thick­

ness become infinite. The reduced one-dimensional equations for both 

the finite and the semi-infinite models are solved exactly for values 

of radiative flux and emissive power at the boundaries. A wide range 

of exact numerical data is presented. 

Error bounds are determined whereby the one-dimensional model 

can be utilized to approximate the more complex two-dimensional anal­

ysis. These error.bounds are obtained for the radiative flux and 

emissive power at the boundaries for both the finite and semi-infinite 

models. Error bounds are also determined whereby the b1o-dimensional 

finite model can be approximated by the simpler two-dimensional semi­

infinite analysis. In general, the approximations are of limited use. 
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Chapter•s IV and V indicate that the bm-dimensional cosine vary­

ing models can be satisfactorily approximated by the one-dimensional 

model for S<.l and the finite strip models can be approximated by the 

one-dimensional model for half strip \'lidth T >100. Chapter V reveals a 
that any combination of S~l and T0~3 enables the t\lo-dimensional 

finite model results at the boundary T =0 to be approximated by the z 
two-dimensional semi-infinite results at T =0. The biD-dimensional z 
finite model results at the boundary T =T can be approximated by the z 0 

optical thick value of zero but requires larger values of s and T 
0 

than do the functions at Tz=O. 

The follo\'Jing are recommended for future studies. Fit·st, the 

present investigation can be extended to include the exact numerical 

so 1 uti ons of the rigorously formula ted equations for the y-components 

of flux presented in Chapter III. In fact, both components of the 

radiative flux as well as the emissive power can be evaluated at 

interior points of the medium and not restricted to the behavior at 

the boundaries as in the present analysis. Future consideration can 

also be given to the radiative flux and emissive power for the tHo­

dimensional finite medium bounded by the finite strips. This analysis 

involves obtaining a large number of S solutions to the system of 

differential equations described in the section on numerical proced-

ure of Chapter V. 

The cosine varying solutions obtained in this investigation can 

be extended to construct solutions to problems involving more complex 

kinds of boundary conditions in a fashion similar to the finite strip 

models. Two useful semi-infinite models ~~hich involve uniform 
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collimated radiation over a port,·on of the b d d oun ary an are acceptaule 

for use of the superposition principle are 

and 

These two models cou1d be used to simulate solar energy striking a 

cloud cover in a planetary atmosphere. 

The two-dimensional gray medium assumption can be relaxed to 

account for the more realistic nongray analysis and the effect of 

line or band shape on the radiative transfer studied. This assumption 

involves a frequency dependent absorption coefficient which can be 

approximated by various existing models, such as, rectangular, tri-

angular, and exponential. Other more complex tHo-dimensional config­

urations can be examined for both gray and nongray media. Additional 

models include the rectangular and triangular boxes and the triangular 

\'ledge as shown. Both call imated and diffuse boundary conditions can 

be considered. 



Spherical and cylindrical geometries can also be investigated for 

both gray and nongray two-dimensional media. 
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The concept of separation of variables need be investigated for 

the three-dimensional plane parallel model to determine if the three­

dimensional equations can be reduced to one-dimensional equations. 

In particular, this reduction need be considered for a t\ilo-dimensional 

cosine varying collimated boundary condition in order to determine if 

the analogous three-dimensional generalized H-, X- andY-functions can 

be generated. 
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APPENDIX A 

THE 8' n -FUNCTION 

The & , & , and & -functions are two-dimensional analogs of 
1 2 3 

the exponent i a 1 integra 1 functions E , E , and E • S i nee the b-10 
1 2 3 
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functions are identical when S=O, the &n-function may be considered 

a generalized exponential integral. As with the one-dimensional 

exponential integrals, series expansions and recursive formulas are 

required for the -evaluation of the 8rn-function. 

The functions C, , 8 , and & have previously been defined as 
1 2 3 

00 

8 (T,S) = J e-Titz+sz dt 
l lt2+s2 

(A. 1 ) 

l 

00 

(A.2) 

and 

00 

& (Tt,S/t)dt • 
2 

(A. 3) 

A simple integration by parts of the &1 -function yields 

(A.4) 

where ~ (o,s)=l. Equation (A.4) is the recursion formula which is 
2 

analogous to the one-dimensional case 

(A.5) 

where En(T) are the exponential integrals defined uy 
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00 

(A.6) 

Since G ('r,o)=E (-r) and G (-r,o)=E (-r), equation (A.4) reduces to 
1 1 2 2 

equation (A.S) when B=O. The &3-function can be expressed in terms 

of e by the insertion of equation (A.4) into equation (A.3) 
2 

00 00 00 

8:3(-r,B) = T J e--r/t2+B2 dt- T2 J J x2e--r/t2x2+s2 dxdt 
/t2x2+s2 

1 l 1 

(A. 7) 

The second integral in equation (A.7) can be integrated once by parts 

to yield 

00 

53(-r,B) = T J e-T/ti+B2 dt- T~(-r,B) 
1 

00 00 

J --rit 2x2+B 2 dxdt e -. 
t2 

(A.8) 

1 1 

Since the double integral in equation (A.8) is another form of 6: , 
3 

equation (A.8) can be rewritten as 

(A.9) 

vlhen s=O, equation (A.9) reduces to the standard one-dimensional form 

(A.lO) 

An expression for 5 which depends only upon & and & can l>e 
3 l 2 

obtained by eliminating the integral term in equation (A.9). The 

derivative of & is 
1 
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()() 

J -Tv't2+s 2 
= e dt (A.ll) 

Insertion of equation (A.ll) into equation (A.9) yields 

d 5 h,s) 
2&(T,B)=-T d 1 -T£.(L,S) 

3 T 2 
(A. 12) 

which, along with equation (A.4), enables & to be expressed as a 
3 

function of either & or & . 
l 2 

Si nee neither 8 nor & can be integrated in closed form, a 
l 2 

series representation is necessary. A series expansion for & about 
2 

zero is appropriate for smallS, whereas & is more suitable for 
l 

expansion whenever S is large. A Taylor series expansion of ~2 

about S=O yields 

A series representation of G; for small B can also be obtained 
2 

by Laplace transform techniques. Consideration of the first two 

nonzero terms of a binomial series expansion of the square root 

exponent in the 6 -function results in 
2 

()() 

But 

(A. 14) 
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(A.15) 

Hence, upon interchanging summation and integration operations, the 

following expression is obtained 

~ ~ _(-l)n [Ts2Jn e-1: Joo e-Tt dt 
~- ('r,B) !::! L 

2 n=o n! _ 2 (t+1 )n+z 
0 

(A.l6) 

The integral in equation (A.l6) is recognized as a Laplace transform 

given by 

A second representation for ~ then becomes 
2 

(A. 17) 

(A.18) 

The first two nonzero terms in equations (A.13) and (A.l8) agree 

exactly. A more involved series was obtained by considering the first 

three nonzero terms in the above binomial expansion. The third order 

approximation resulted in a series which also had the same form as 

equation (A.l3) but differed by constant coefficients. 

A series representation for large values of S is best obtained 

from the ~ -function. A substitution t=Ssinh~ reduces the g-
1 1 

function to a recognizable form so that an integral tabulated in Luke 

[36,p.30] can be used. This integral, given by 

Ko(TS) = J e--rBcosh~ d~ 
0 

(A.19) 



reduces the G: -function to the form 
l 

c 
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&lh,S) = Ko(T/3)- J e-TBcosh~ d~ (A.20) 
0 

where c=sinh- 1 (1/B). The integrand in equation (A.20) can now be 

expanded in a series around ~=0 and integrated to yield 

& (T S) = K (x)- c e-xrl- X c2 +·x(3x-l)clt 
l ' 0 3! 5! 

(A. 21 ) 

where x=T/3. 

Tables A.l to A.6 and Figures A.l to A.3 show the numerical and 

graphical behavior of the & , & , and & -functions. Series expan-
l 2 3 

sions given by equations (A.l3) and (A.21) were used to obtain the 

tabulated data. The binomial representation of &2 was not utilized 

since it is the result of an approximation and does not give exact 

results. However, it v1as found to be in excellent agreement Hith the 

exponential series for very small values of 13 and -r. This behavior 

is expected since both have the same form with the first two nonzero 

terms being exactly equal. 

Five terms of equation (A.l3) were used to compute E: for 
2 

Oss::;.5 from \'Jhich el VJas obtained using the recursion equation. The 

results for .5::;13::;10 were obtained from equation (A.21) ~lith six terms 

in the series representation of &. 
1 

The tvJO series representations 
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have exce11ent agreement in a region of overlap .lsss.5 with best 

results for small 1. An agreement of five significant digits was not 

uncommon in this region and in the range 0:::1sl. At large T, the pro­

duct TS is the dominant term in equation (A.21 ). Hence, equation 

(A.21) requires additional terms for large 1. Once the appropriate 

series is selected for the range of s values, the calculation of the 

& -function follows from equation (A.l2). 
3 

The relatively small range of S for \vhich the series representa­

tion of equation (A.21) is valid is due to the presence of the facto­

rial terms. However, for sufficiently small S, the term c=sinh- 1 (1/B) 

becomes dominant. Therefore, additional terms are needed for small 

S values. However, as B grows large, the term c=sinh- 1 (1/B) approach­

es zero quite rapidly, thereby requiring fe~;1er terms. Tile exponential 

series does not have 1 arge factori a 1 terms and hence has s 1 0\Jer con-

vergence. The presence of the exponential integral functions aids in 

the convergence since they become quite small with increasing argu-

ment. 

The results which are reported in this investigation for the 6-
1 

function have been spot-checked with results that appear in reference 

[44] and found to have a favorable agreement. The verification of 

the validity of & is handicapped by the form that reference [44] 
1 

reports the numerical data. Results are tabulated for a function 

E(B,x) defined by 

E(S,x) 
= Jx _(1 - e-/s2+tz)dt 

/tz+sz 
(A.22) 

0 
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It can be shown that E(S,x) is related to & by the follo\'Jing equa­
l 

tion 

6 (-r,S) = K ('rS) - sinh- 1 (1/(3) + E(-rS,T) 
l 0 

(A.23) 
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Table A.l The function & (-r ,13) for various values of -r and 13 
1 

T B=O s=.o5 s= .10 s=.20 !3=.50 

.000 00 00 00 00 00 

.001 .633150+ I .633090+ 1 .632900+ 1 .632160+1 .627420+1 

.002 • 5639 3D+ 1 .563870+ 1 • 563690+ 1 .562950+1 .558200+1 

.003 .523490+ 1 .523430+1 .523240+1 .522500+1 .517750+1 

.004 .494820+ 1 .494760+1 .494570+1 . 493830+ 1 .489090+1 

.005 .472610+1 .472540+1 .472360+1 . 471620+ 1 .466870+ 1 

.010 .403790+1 .403730+1 .403540+1 .402800+1 .398060+ 1 

.015 .363740+1 • 363680+1 . 363490+ 1 .362750+1 .358010+1 

.020 .335470+1 . 335400+1 .335220+1 .334480+1 .329740+1 

.025 • 313650+ 1 . 313580+ 1 .313400+1 .312660+1 • 307930+ 1 

.030 .295910+1 .295840+1 .295660+ 1 .294920+1 .290190+1 

.035 .280980+1 . 280920+1 .280740+1 .280000+1 . 275280+ 1 

.040 .268120+1 . 268060+ 1 .267870+1 .267140+1 .262420+ 1 

.045 .256830+1 .256770+1 .256590+1 .255850+1 .251140+ 1 

.050 .246790+ 1 .246720+1 .246540+1 . 24581 D+ 1 .241100+ 1 

.060 .229530+1 .229460+1 .229280+1 .228550+1 .223850+1 

.070 .215080+1 .215020+1 .214830+ 1 .214110+1 .209420+1 

.080 .202690+ 1 .202630+1 .202440+1 .201720+1 .197050+ 1 

.090 .191870+1 .191810+1 .191630+1 .190900+1 .186260+ 1 

. 100 . 182290+ 1 . 182230+ 1 .182040+1 . 181330+ 1 . 176700+ 1 

.200 • 122260+ 1 . 122200+1 . 122030+ 1 .121340+ 1 . 116930+ 1 

.300 .905670+0 . 905120+0 .903480+0 .897000+0 .855580+0 

.400 .702380+0 . 701860+0 • 700320+0 .694250+0 .655640+0 

.500 .559770+0 .559290+0 .557850+0 .552210+0 .516420+0 

.600 .454380+0 • 453930+0 .452600+0 .447360+0 .414330+0 

. 700 • 373760+0 .373350+0 . 372120+0 . 367280+0 . 336900+0 

. 800 .310590+0 • 31021 D+O .309070+0 .304620+0 .276750+0 

.900 .260180+0 .259830+0 .258780+0 .254680+0 .229170+0 

1.000 .219380+0 .219060+0 .218100+0 .214330+0 .191030+0 

1.250 .146410+0 .146150+0 . 145380+0 . 142350+0 . 123880+0 

1.500 . 100020+0 .998120-1 .991930-1 .967790-1 .822260-1 

1. 750 .694880-1 • 693230-l .688300-1 .669130-1 .555030-1 

2.000 .489000-1 • 487690-1 .483780-1 .468610-1 .379450-1 

3.000 • 130480-1 • 129970-1 . 128460-1 . 122640-1 .900400-2 

4.000 .377930-2 .375990-2 .370250-2 .348350-2 .234590-2 

5.000 .114830-2 .114100-2 . 111940-2 .103790-2 .745190-3 
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Table A.2 The function el (T,S) for various values ofT and s 

T B=l.O S=2.0 S=3.0 S=5.0 S=10.0 

.000 00 00 00 00 00 

.001 .614330+1 .585030+1 .559860+1 .521660+1 .462240+1 

.002 .54511 0+ 1 . 515820+ 1 .490650+1 .452450+1 . 393060+ 1 

.003 .504670+1 .475370+1 .450210+1 .412020+1 .352660+1 

.004 .476000+1 .44671 0+1 .421550+1 .383370+1 .324060+1 

.005 .453790+ 1 . 424500+ 1 .399340+1 .361180+1 .301920+1 

.010 .384980+1 . 35571 0+ 1 . 330590+ 1 .292530+1 .233670+ 1 

.015 • 344940+1 .315700+1 .290630+1 .252710+1 . 194410+ 1 

.020 .316680+1 .287490+1 .262480+1 .224740+1 . 167090+ 1 

.025 .294880+1 .265730+1 .240800+ 1 .203260+1 . 146370+ 1 

.030 .277160+1 .248070+1 • 223220+ 1 .185910+1 .129850+1 

.035 .262260+1 . 233230+ 1 .208470+1 .171420+ 1 .116240+1 

.040 .249420+ 1 .220460+1 . 195800+ 1 .159020+1 .104760+1 

.045 . 238160+ 1 .209270+1 • 184720+ 1 .148220+1 .949300+0 

.050 .228140+1 .199330+1 • 174890+ 1 .138700+1 .863910+0 

.060 .210940+1 . 182300+ 1 .158100+1 .122550+1 . 722780+0 

.070 • 196570+ 1 . 168110+1 .144170+1 .109300+1 .611000+0 

.080 . 184250+ 1 . 155990+ 1 • 132330+ 1 .981690+0 .520540+0 

.090 . 17351 0+ 1 . 145450+1 .122090+ 1 .886590+0 .446200+0 

. 100 • 16401 0+ 1 .136170+1 .113110+1 .804300+0 .384350+0 

.200 . 1 05000+ 1 . 796920+0 .599730+0 .348400+0 . 100420+0 

.300 .744940+0 .519480+0 • 355720+0 .169900+0 .297930-1 

.400 .554020+0 .355690+0 .221960+0 .873540-1 .934320-2 

.500 .423700+0 .250670+0 .142660+0 . 463030-1 .302390-2 

.600 .330150+0 .180080+0 .935040-1 .250390-1 .998970-3 

• 700 . 260760+0 . 131160+0 .621480-1 .137340-1 .334800-3 

.800 .208070+0 .96o410-1 .417440-1 .761420-2 .113420-3 

.900 • 167390+0 . 716400-1 .282710-1 .425630-2 .387420-4 

1.000 . 135540+0 .535140-1 .192740-1 .239510-2 . 133210-4 

1.250 .817610-1 .263850-1 .756210-2 .581610-3 .943940-6 

1.500 .504860-1 .133130-1 .303600-2 . 144480-3 .684000-7 

1. 750 . 316980-l .683020-2 .123900-2 .364760-4 .503510-8 

2.000 .201560-1 . 354800-2 . 511930-3 .932050-5 .374990-9 

3.000 • 358110-2 .280170-3 .161530-4 .429260-7 . 12420-13 

4.000 .689420-3 .239150-4 .549870-6 .212740-9 .44170-18 

5.000 .138320-3 .213490-5 .195520-7 .10990-11 .16330-22 
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Table A.3 The function8"2 (-r,(3) for various values ofT and s 

T (3=0 (3=.05 (3=. 10 (3=.20 (3=.50 

.000 .100000+1 .100000+ l • 100000+ 1 . 100000+ 1 . 100000+1 

.001 .992660+0 .992660+0 .992660+0 .992660+0 .992600+0 

.002 . 986720+0 .986720+0 .986710+0 .986700+0 .986600+0 

.003 .981300+0 .981290+0 .981290+0 .981270+0 .981110+0 

.004 .976210+0 .976210+0 .976200+0 .976170+0 .975970+0 

.005 .971380+0 .971370+0 .971370+0 .971330+0 . 971080+0 

.010 .949670+0 .949660+0 .949640+0 .949570+0 .949070+0 

.015 . 930550+0 .930540+0 .930510+0 .930400+0 .929660+0 

.020 .913100+0 . 913090+0 .913050+0 .912910+0 . 911930+0 

.025 . 896890+0 . 896880+0 .896830+0 .896660+0 . 895450+0 

.030 .881670+0 .881650+0 .881600+0 .881390+0 .879950+0 

.035 . 867250+0 .867230+0 .867170+0 .866930+0 .865270+0 

.040 ,853530+0 .853510+0 .853440+0 .853170+0 .851290+0 

.045 .840420+0 .840390+0 .84031 0+0 .840010+0 .837910+0 

.050 . 827830+0 . 827800+0 . 827720+0 .827380+0 . 825080+0 

.060 . 804040+0 .804010+0 .80391 0+0 .803510+0 .800800+0 

.070 .781830+0 . 781790+0 .781680+0 . 781220+0 . 778120+0 

.080 .760960+0 . 76091 0+0 .760780+0 .760270+0 . 756790+0 

.090 .741240+0 .741190+0 .741050+0 .740480+0 .736640+0 

. 100 .722540+0 . 722490+0 .722330+0 . 721710+0 . 717520+0 

.200 .574200+0 .57411 0+0 .573850+0 . 572800+0 .565750+0 

.300 .469110+0 .469000+0 .468660+0 .467320+0 .458370+0 

.400 . 389360+0 .389240+0 .388850+0 . 387320+0 .377140+0 

.500 .326640+0 .326500+0 .326090+0 .324440+0 .313560+0 

.600 .276180+0 .276040+0 .275610+0 .273900+0 .262680+0 

. 700 .234940+0 .234800+0 .234360+0 .232640+0 .221370+0 

.800 .200850+0 .200700+0 .200270+0 . 198570+0 . 187430+0 

.900 . 172400+0 . 172260+0 . 171840+0 . 170170+0 .159330+0 

1.000 .148490+0 • 148350+0 . 147940+0 . 146330+0 .135890+0 
1.250 . 103480+0 . 103360+0 . 102990+0 . 1 01550+0 .923540-1 
1.500 . 731000-1 . 729940-1 . 726770-1 .714300-1 .635840-1 
1. 750 .521680-1 .520780-1 .518090-1 . 507550-1 . 442120-1 

2.000 .375340-1 . 374580-1 . 372340-1 . 363560-1 . 309880-1 
3.000 .106410-1 .106080-1 .105090-1 .101230-1 .788440-2 
4.000 . 319820-2 .318440-2 .314350-2 .298640-2 .212240-2 
5.000 .996460-3 .990990-3 .974800-3 .913120-3 .592090-3 
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Table A.4 The function ~2(T,B) for various values ofT and s 

T !3=1 .0 !3=2.0 13=3.0 !3=5.0 S=10.0 

.000 .100000+ 1 .100000+1 .100000+1 . 100000+ 1 .100000+ 1 

.001 .992440+0 .991910+0 .991240+0 • 989690+0 .985370+0 

.002 .986270+0 .985220+0 .983880+0 .980800+0 .972240+0 

.003 . 980620+0 .979050+0 .977050+0 .972450+0 . 959720+0 

.004 .975310+0 .973220+0 .970560+0 .964470+0 .947630+0 

.005 .970260+0 .967650+0 .964340+0 .956760+0 . 935890+0 

.010 .947450+0 .94231 0+0 .935810+0 .921030+0 .881010+0 

.015 . 927260+0 .919650+0 .910070+0 .888450+0 .830900+0 

.020 .908770+0 • 898760+0 .886210+0 .858090+0 .784490+0 

.025 . 891540+0 . 879190+0 . 863780+0 . 829490+0 • 741230+0 

.030 . 87531 0+0 .860690+0 .842520+0 .802370+0 .700750+0 

.035 .859910+0 .843080+0 . 822250+0 . 776550+0 .662770+0 

.040 .845230+0 . 826250+0 .802860+0 .751880+0 .627070+0 

.045 .831160+0 .810090+0 .784230+0 . 728260+0 .593480+0 

.050 . 817650+0 .794550+0 .766300+0 .705600+0 .561820+0 

.060 .792070+0 .765060+0 .732310+0 .662890+0 . 503800+0 

.070 • 768140+0 .737430+0 .700500+0 .623310+0 .452080+0 

.080 . 745620+0 . 711400+0 .670610+0 .586490+0 .405890+0 

.090 . 724320+0 .686790+0 .642420+0 .552170+0 .364590+0 
• 100 .704100+0 .663450+0 .615770+0 .520120+0 . 32761 0+0 

.200 .543620+0 . 480020+0 .411330+0 .290980+0 . 113900+0 

. 300 . 430760+0 .355440+0 .280530+0 . 165620+0 .401090-1 

.400 .346360+0 .266560+0 . 193470+0 .951370-1 .142160-1 

.500 .281210+0 .201580+0 .134400+0 .549680-1 .506000-2 

.600 .229950+0 . 153360+0 .938600-1 .318910-1 . 180620-2 

.700 .189060+0 . 117210+0 .658030-1 . 185610-1 .646230-3 

.800 • 156120+0 .899180-1 .462770-1 . 108290-1 .231600-3 

.900 . 129390+0 .691830-1 .326290-1 .633100-2 .831240-4 

1.000 . 107570+0 .533630-1 .230540-1 .370750-2 .298690-4 
1.250 .685040-1 .281280-1 .974720-2 .978690-3 .232140-5 
1.500 .441440-1 .149690-1 .415470-2 .260010-3 .181250-6 
1. 750 • 287010-1 . 802500-2 .178180-2 .694150-4 .141990-7 

2.000 . 187920-1 .432670-2 .767890-3 .186020-4 .111540-8 
3.000 • 362600-2 • 380320-3 .273850-4 .985060-7 .43280-13 
4.000 .735810-3 • 348200-4 . 101090-5 .536070-9 .17120-17 
5.000 . 157680-3 . 327110-5 .381340-7 .29680-11 .68630-22 
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Table A.5 The function ~3 (T,S) for various values ofT and s 

T S=O s=.o5 s= .1o s=.2o s=.5o 

.000 . 500000+0 .500000+0 .500000+0 .500000+0 .500000+0 

.001 .499000+0 . 499000+0 . 499000+0 .499000+0 .499000+0 

.002 . 49801 0+0 . 49801 0+0 .498010+0 .49801 0+0 .498010+0 

.003 . 497030+0 . 497030+0 .497030+0 .497030+0 .497020+0 

.004 .496050+0 .496050+0 .496050+0 .496050+0 .496040+0 

.005 . 495070+0 . 495070+0 .495070+0 .495070+0 .495070+0 

.010 .490270+0 .490270+0 . 490270+0 .490270+0 .490250+0 

.015 .485570+0 .485570+0 .485570+0 .485570+0 .485530+0 

.020 .480960+0 .480960+0 .480960+0 .480950+0 .480890+0 

.025 .476440+0 .476440+0 .476440+0 .476420+0 .476340+0 

.030 . 471990+0 .471990+0 .471990+0 .471970+0 .471850+0 

.035 .467620+0 . 467620+0 .467610+0 .467590+0 .467440+0 

.040 .463320+0 . 463320+0 .463310+0 .463280+0 .463100+0 

.045 .459080+0 .459080+0 .459070+0 .459040+0 .458820+0 

.050 .454910+0 .454910+0 .454900+0 .454860+0 .454600+0 

.060 .446760+0 .446750+0 .446740+0 .446690+0 .446340+0 

.070 .438830+0 .438820+0 .438810+0 .438740+0 .438310+0 

.080 . 431120+0 .431110+0 .431090+0 .431010+0 .430480+0 

.090 .423610+0 .423600+0 .423570+0 .423480+0 .422860+0 
• 100 .416290+0 . 416280+0 .416250+0 .416150+0 .415420+0 

.200 .351940+0 . 351920+0 .351850+0 .351590+0 . 349800+0 
• 300 .300040+0 .300000+0 .299900+0 .299490+0 .296700+0 
.400 .257280+0 .257240+0 .257100+0 .256570+0 .252940+0 
.500 .221600+0 .221550+0 . 221390+0 .220760+0 .216470+0 

.600 . 191550+0 . 191490+0 . 19131 0+0 . 190610+0 .185840+0 
• 700 . 166060+0 . 165990+0 .165800+0 .165050+0 . 159950+0 
. 800 . 144320+0 . 144250+0 . 144050+0 . 143260+0 .137960+0 
.900 . 125700+0 . 125630+0 . 125430+0 . 124620+0 .119220+0 

1.000 . 109690+0 .109620+0 . 10941 0+0 .108600+0 .103200+0 
1.250 . 785720-1 . 785060-1 . 783080-1 .775240-1 . 723850-1 
1.500 . 567390-1 .566780-1 . 564970-1 .557780-1 .511310-1 
1.750 .412390-1 . 411850-1 .410240-1 .403870-1 . 363230-1 

2.000 .301330-1 . 300860-1 .299460-1 .293960-1 .25921 D-1 
3.000 . 893070-2 . 890750-2 .883860-2 .856990-2 .695030-2 
4.000 .276130-2 .275120-2 .272100-2 .260420-2 .193170-2 
5.000 .877800-3 • 873590-3 .861090-3 .813170-3 .547780-3 
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Table A.6 The function &3 ( -r ,13) for various values of -r and s 

T 13= 1 . 0 13=2.0 S=3.0 13=5.0 13=10.0 

.000 .500000+0 .500000+0 .500000+0 .500000+0 .500000+0 

.001 . 499000+0 .498990+0 .498990+0 .498970+0 .498880+0 

.002 .498000+0 . 497990+0 .497970+0 . 497890+0 .497590+0 

.003 • 49701 0+0 .496980+0 .496940+0 .496790+0 .496170+0 

.004 .496030+0 .495980+0 .495900+0 .495650+0 . 494640+0 

.005 .495050+0 .494970+0 .494850+0 .494490+0 .493020+0 

.010 .490180+0 .489930+0 .489540+0 .488380+0 .483760+0 

.015 .485400+0 .484900+0 .484120+0 .481860+0 . 473120+0 

.020 .480680+0 .479880+0 .478640+0 .475060+0 .461560+0 

.025 .476030+0 .474880+0 .473100+0 . 468050+0 .449380+0 

.030 .471450+0 .469900+0 .467540+0 .460870+0 .436780+0 

.035 .466920+0 .464960+0 .461960+0 .453580+0 .423920+0 

.040 .462450+0 .460040+0 .456370+0 .446200+0 .410930+0 

.045 .458040+0 .455150+0 .450770+0 .438770+0 .397900+0 

.050 .453690+0 .450290+0 . 445190+0 .431300+0 .384910+0 

.060 .445140+0 .440690+0 .434070+0 . 416330+0 .359280+0 

.070 • 436800+0 .431240+0 .423040+0 .401420+0 .334410+0 

.080 . 428650+0 .421940+0 .412130+0 .386660+0 . 310520+0 

.090 .420680+0 . 412790+0 .401370+0 . 372130+0 .287760+0 

. 100 .412900+0 .403810+0 . 390770+0 .357870+0 .266210+0 

.200 .343720+0 . 322900+0 .295420+0 .23531 0+0 . 114980+0 

. 300 . 287400+0 .257150+0 .220360+0 . 150050+0 . 467870-1 

. 400 .241070+0 .204340+0 .16311 0+0 .941250-1 .184840-1 

.500 . 202690+0 .162150+0 .120140+0 .584350-1 .717590-2 

.600 . 170760+0 .128560+0 . 881930-1 . 360220-1 .275360-2 

. 700 . 144100+0 . 1 01870+0 .645780-1 .220930-1 . 104790-2 

. 800 . 121770+0 . 806950-1 .471980-1 . 134980-1 .396410-3 

.900 .103020+0 .639000-1 . 344450-1 .822280-2 .149240-3 

1.000 . 872630-1 . 505920-1 .251100-1 .499710-2 .559810-4 

1.250 .578460-1 .282090-l .113510-1 .142770-2 .476600-5 

1. 500 . 385270-1 .157280-l .511370-2 .404760-3 .400860-6 

1. 750 .257590-1 .877170-2 .229840-2 .114160-3 .334400-7 

2.000 .172770-1 • 489400-2 .103150-2 . 320790-4 .277310-8 

3.000 .358270-2 .476730-3 .415500-4 .195830-6 .12650-12 

4.000 • 763900-3 . 468270-4 .166770-5 .117570-8 .56050-17 

5.000 .158800-3 .462990-5 .669750-7 .70080-11 .24450-22 
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T 

Figure A.l Variation in the generalized ~ (T,B)-function with 
T for various values of B 1 
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APPENDIX B 

NUMERICAL PROCEDURE FOR SELECTED INTEGRALS 

The occurrence of the function~ (x,S) defined by equation (3.79) 
1 

in the integrand complicates the numerical integration when s is 

large. An analytical integration of ~ (x,s) over the range O<x<l 
1 • - -

yields unity. However, when the integral is evaluated numerically by 

a ninth order Gaussian quadrature, the resulting sum diverges rapidly 

from unity for values of 13~3. Increasing the order of the quadrature 

does not appreciably increase the range of S for which accurate 

results can be obtained. A thirty-seventh order quadrature yields 

four significant digits for ssS. 

Inspection of Figure B.l shows why merely increasing the order of 

quadrature is not practical when S is large. The area under each B 

curve is unity. For large S, ~ (o,S)-+o and ~ (1 ,S)-+<x>. Hence, the 
• 1 1 

main contribution to the area comes from the small region in the 

immediate neighborhood of the sharp spike at x=l. Therefore, addi­

tional quadrature points are needed in this interval. However, since 

the Gaussian quadrature is distributed over the range -l<x<l, only a 

small portion of the quadrature points will appear in the critical 

interval. Additional quadrature points can be forced into the 

critical region by subdividing the total interval into two parts, 

i.e., (0,.9) and (.9,1). 

An alternate method is employed whereby the area is redistri-

buted over a larger portion of the initial interval. This approach 

is accomplished by subtracting various functions from the integrands 

and later adding the equivalent integrated function. In particular, 



the emissive power for the cosine varying diffuse boundary from the 

semi-infinite theory is written as 

1 
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-- l f l 
<t> 13 (o) = 2 IJ; 1 (x,s)[H(x,B)-H(l,B)]dx + 2 H(l,G) . (B. l ) 

0 

The integrand in equation (B.l) is shown in Figure B.2 which 

exhibits the redistribution of the area away from the end point. 

H(l,S) is selected since the spike occurs at x=l and also because 

H(x,s)-H(l,S) approaches zero for large B values. In a similar 

fashion, the corresponding emissive po\'ler for the finite medium is 

written as 

1 

¢8(o,-r0 ) = 1 J 1); 1 (x,S)[X(x,-r0 ,S)-X(1 ,-r0 ,B)]dx + !- X(l ,T0 ,B) (B.2) 

0 

and 

I 1 l 
¢ (-r ,-r) = 21 1j; (x,B)[Y(x,-r ,S)-Y(l ,T0 ,S)]dx + -2- Y(l,T0 ,B) · s 0 0 1 0 

(lL 3) 

0 
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APPENDIX C 

Sn1r~ETRY OF THE GENERALIZED REFLECTION Arm TRANSr1ISS ION FUfJCTIONS 

When a collimated flux of cosine magnitude is incident upon a 

plane parallel medium of finite optical thickness T from a direction 
0 

o=sece0 , a pair of functions arise which are analogous to the reflec-

tion and transmission functions of Chandrasekhar. Since Chandrasek-

har's functions are symmetric, the generalized functions should also 

be equal when s=O. The desired symmetry is shown in a manner similar 

to that of Kourganoff [4,p.l67] who considered the one-dimensional 

semi-infinite analysis and hence had only to demonstrate the symmetry 

of the reflection function since the transmission function is zero. 

However, the same type of symmetry argument is easily extended to 

include the transmission function. 

Since the semi-infinite theory is the limiting case of the finite, 

it is necessary to exhibit only the symmetry of the generalized 

reflection and transmission functions for the finite medium. The 

generalized reflection function R6(o,s,T0 ) and the generalized trans­

mission function s6(o,s,T0 ) are defined as 

and 

To 

R6(o,s,T0 ) = J J 6(x,s,T0 )e-x0 dx 

0 

To 

SS(o,s,To) = J JS(to-x,s,to)e-xodx 
0 

where the dimensionless emissive power J 6(t2 ,o,t0 ) satisfies the 

following integral equation 

(c. 1 ) 

(C.2) 
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T 

-crT 0 

J 13 (TZ,cr,T0 ) = e Z + ~ J 51 (ITZ-T~~ ,13)J 13 (T~,o,T0 )dT~ . (C.3) 
0 

The kernel appearing in equation (C.3) is the generalized exponential 

integral function ~ which is described in detail in Appendix A. 
1 

First, consideration will be given to demonstrate the symmetry 

of R13 (cr,s,T0 ) in cr and s. Replacing a by s in equation (C.3) yields 

an integral equation for J 13 (Tz,s,T0 ) given by 

(C .4) 

When equation (C.3) is multiplied by J 13 (T2 ,s,T0 )dT2 and integrated 

from o to T0 , the following expression is obtained 

0 0 

To To 

+ J J13 (T2 ,s,T0 )[ ~ J 61 (IT2-T~i,S)J 13 (T~,o,T0 )dT~J dT2 • (C.S) 

0 0 

Similarly, equation (C.4) is multiplied by J13 (T2 ,o,T0 )dr2 and inte-

grated from o to T0 to yield 

To To 

+ J Ja(T2 ,o,,0 ) [ ~ J & 1 ( IT2-T~ I ,a)Jah~,s ,T0 )dT~] dT2 • (C.6) 

0 0 
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Since the left-hand sides of equations (C.5) and (C.6) are equal, the 

right-hand sides are equated to obtain 

0 

To To 

+ I JS( Tz,s,T0) [ 1 I &, ( ITz -T~ I ,8)J 8 (T~,o,T0 )dT~ J dTz 

0 0 

-ST 
J6(T2 ,o,T0 )e 2 dT 2 

To To 

+ J Js(Tz,o,To) [ 1 J ~ (IT -T' I ,6)JQ(T 1 ,S,T )d1" 1 ] dT 
ul z z ~ z o z z 

0 0 

(c. 7) 

The multiple integral terms appearing in equation (C.?) are equal 

since ~ 1 (jT2 -1"~!,6) is symmetric in T2 and T~, thereby permitting T2 

and T1 to be interchanged. Hence, equation (C.7) reduces to 
z 

Finally, utilization of equation (C.l) in equation (C.8) yields 

R6(o,s,T0 ) = R6(s,o,1"0 ) 

which is the desired symmetry relation. 

(c. 8) 

(C.9) 

The symmetry of the transmission function can be obtained in a 

similar fashion. d I b I • 

Replacement of T by ~ -T an T Y T0 -T 2 1n 
z 0 z z 

equations (C.3) and (C.4) yields 
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-O{T -T ) 
= e o z 

To 

+ 1 I 51 (IT~-T 2 I,S)J 13 {T0 -T~,o,T0 )dT~ 
0 

(C.lO) 

and 

To 

+ 1 I 51 ( IT~-T2 1 ,S)J 13 (T0-T~,s,T0 )dT~ • 

0 

(C.ll) 

Multiplication of equation (C.lO) by J 13 {Tz,s,T0 )dTz and integration 

from o to T0 yields 

0 

J 0 (T ,S,T )J 0 (T -T ,O,T )dTZ 
~ z 0 p 0 z 0 

To To 

+ I JB(~z.s'~o> [ ~ I C, u~z-~;I.B)Js(~o -~;.a.~o)d~;] d~z . (C.12) 

0 0 

Similarly, multiplication of equation (C.ll) by J 13 (Tz,o,T0)dTz and 

integration from o to T0 yields 
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The substitution T2=T0-x makes the integral on the left-hand side of 

equation (C.l2) equal to the integral on the left-hand side of equa­

tion (C.13). This operation results in 

0 

To To 

+ J JS(Tz,S,T0 ) [ ~ J &1 ( ~1~-Tzj ,6)J 6 (T0 -T~,o,T0 )dT~J dTZ 

0 0 

To To 

+ J J 6(T2 ,o,T0 ) [ ~ J {i1 ( jT~-T2 j ,S)J 6 (10 -T~,s,T0 )dT~J dtz (C.l4) 

0 0 

Replacement of T2 by -r0 -1 2 and T~ by 10 -T~ in the second term on the 

left-hand side of equation (C.l4) and utilization of the symmetry of 

t;1 ( IT~-T 2 j,S) in T2 and T~ yields 

. (C.l5) 

Equation (C.l5) can be put in a form similar to equation (C.2) by the 

substitution x=T0 -T 2 • This change of variable yields 



To 

I JS(T0 -x,s,T0 )e-ax dx = 
0 

To 

I J6(T0 -x,a,T0 )e-sx dx 

0 

214 

. (C.l6) 

Utilization of equation (C.2) in equation (C.l6) yields finally 

(C.l7) 

which is the desired symmetry. 
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APPENDIX D 

TABLES OF RESULTS FOR THE SH1I- INFIIHTE ~1EDIUf.1 
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Table D.1 Approximate values of the function H(.5,S) 

s FIRST SECOND THIRD FOURTH 
ORDER ORDER ORDER ORDER EXACT 

.00 1 .8660 1.9657 1.9902 1.~995 2.0127 

• 10 1.7773 1 . 8713 I .8942 I .9030 1.9151 

.20 I. 6979 1.7~38 1 .8051 1.8133 I .8246 

• 30 1.6272 1.7047 l. 7243 I. 7319 1. 7424 

.40 I . 5647 1 .6344 1.6522 1.6592 1. 6689 

.50 1.5098 I . 5725 I .5886 I. 5950 1 .6039 

.60 I .5311 1.5183 1.5329 1.5387 1.5469 

.70 1.4196 1 .4711 I .4843 1.4896 1 .4971 

.80 I .3828 1.4300 1 .4420 1 .4468 1.4537 

.90 1.3506 I .3942 I .4051 I .4096 1.4159 

1.00 I .3223 1.3629 1. 3729 1.3770 1. 3828 

2.00 1.1672 I. 1920 I • 1979 I .2001 1 . 2031 

3.00 I . 1087 1.1263 1 • 1310 1.1327 1.1348 

4.00 1 .0796 1 • 0931 1 .0970 I .0985 1 . 1002 

5.00 I .0626 1.0733 1.0767 1.0780 1.0796 

6.00 1.0515 I .0604 1.0632 1.0645 1 .0659 

7.00 I .0437 1.0512 1.0538 1 .0548 1.0562 

8.00 1.0379 I .0445 I .0467 1.0477 1.0490 

9.00 1.0335 1 .0393 1.0413 1.0422 1 .0434 

10.00 1 .0300 I .0351 I .0369 1.0378 1.0390 
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Table D.2 Approximate values of the function H(1,B) 

B 
FIRST SECOND THIRD FOURTH EXACT ORDER ORDER ORDER ORDER 

.00 2.7320 2.8644 2.8886 2.8966 2.9078 

. 10 2.4842 2.6033 2.6246 2.6319 2.6408 

.20 2.2804 2.3838 2.4028 2.4093 ~.4173 

.30 2.1121 2.2013 2.2180 2.2238 2. 2311 

.40 I. 9725 2.0498 2.0646 2.0697 ~.0762 

.50 1.8563 1.9240 1.9370 1.9416 1.9474 

.60 I. 7591 I .8192 1.8307 1 .8348 I .8400 

.70 1.6773 1.7316 l. 7419 1. 7455 1. 7502 

.80 I .60~2 1.6580 1 .6671 1.6704 I .6746 

.90 1.5494 1.5956 1.6039 1.6068 1 .6107 

l.OO I .4992 1.5425 1.5500 1.5527 1.5562 

2.00 1.2434 1.2718 1.2769 1.2783 1.2801 

3.00 1.1546 1.1753 1.1799 1 . 1813 I. 1826 

4.00 l. 1121 1.1278 1.1320 1.1334 1.1347 

5.00 I .0875 1 . 1001 1 .1038 1.1052 I .1 064 

6.00 1.0717 1. 0821 1.0853 1.0866 1.0879 

7.00 I .0606 1.0695 1 .0723 I .0735 1 .0748 

8.00 1.0525 1.0602 1.0627 1 .0638 1 .0651 

9.00 1.0463 1 .0530 1.0553 1.0563 I .0576 

10.00 1.0414 1.0474 1 .0495 1.0504 1 . 0517 
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Table 0.3 The function H(~,13) for various values of~ and 13 

H(~,13) 

~ f3=0 13=.50 13=1. 0 13=2.0 13=5.0 13=10.0 

.00 1 .0000 1 .0000 1.0000 I .0000 1 .0000 1.0000 

.01 1 .0342 1 .0272 1.0203 1 • 0123 1 .0052 1 .0026 

.02 I .0622 1.0487 1.0360 I .0216 1.0091 1 .0046 

.03 1 .0882 1.0682 1.0499 1 .0298 1 .0126 1.0063 

.04 1 .1128 1 .0863 1.0628 1 .0372 1.0157 1.0078 

.05 1.1365 1.1034 1 .0749 1.0441 1.0185 1 .0092 

.06 1.1596 1 .1199 1.0863 l .0507 1.0212 1.0106 

.07 1.1821 1.1357 1 .0972 1.0568 1.0237 1 .0118 

.08 1.2042 1.1510 1.1076 l . 0627 1.0260 1.0130 

.09 1.2259 1.1658 1. 1177 1 .0682 1 .0283 1 .0141 

. 10 1.2473 1 .1802 1.1274 1.0736 1 .0304 1.0152 

. 11 1.2684 1.1943 1.1367 1.0788 1. 0325 1.0162 

. 12 1 .2893 1.2081 1.1458 1.0837 1. 0345 1 .0171 

. 13 1.3100 1 .2215 1.1547 1 .0885 1. 0364 1.0181 

.14 1. 3305 1.2347 1 .1633 1.0932 1.0382 1.0190 

. 15 1. 3508 1.2476 1.1717 1.0976 1.0400 1 .0198 

. 16 1.3709 1.2603 1.1798 1.1020 1.0417 1.0207 

. 17 1.3910 1.2728 1.1878 1.1062 1 .0433 1 .0215 

. 18 1 .4109 1.2850 1.1956 1.1103 1.0449 1.0222 

. 19 1 .4306 1.2971 1 .2032 1 .1143 1. 0464 1.0230 

.20 1.4503 1.3089 1.2107 1.1182 1.0479 1.0237 

.25 1.5473 1.3657 1.2457 1.1363 1. 0548 1 .0271 

.30 1.6425 1.4188 1 .2776 1.1523 1 .0609 1 .0300 

.35 1 . 7364 1.4688 1.3069 1.1668 1.0663 1 .0326 

.40 1 .8292 1.5161 1.3341 1.1800 1 .0712 1.0350 

.45 1.9213 1.5611 1.3593 1 . 1921 1 .0755 1.0371 

.50 2.0127 I .6039 1.3828 1 .2031 1.0795 1 .0390 

.55 2.1036 1.6448 1.4049 1.2134 1.0832 1 .0407 

.60 2.1941 1 .6840 l .4256 1.2229 1 .0866 1.0423 

.65 2.2842 1. 7215 1.4452 1 .2317 1 .0897 1 .0438 

.70 2.3739 l. 7576 1.4636 1.2400 1.0926 1.0452 

.75 2.4634 1. 7922 1.4811 1 . 2477 1 • 0953 1 . 0465 
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Table 0.4 The function H(~,S) for various values of ~ and S 

H(~,S) 

~ S=O (3=.50 (3= l . 0 S=2.0 (3=5.0 (3=10.0 

.80 2.5527 1 .8255 1.4976 1.2550 1 .0978 1.0476 

.85 2.6417 I .8576 1.5134 1 .2618 1 .1 002 1. 0488 

.90 2.7305 1 .8886 1 . 5284 1.2683 1.1024 1.0498 

.95 2.8192 1.9185 I . 5426 1 .2743 1 .1 045 1 .0508 

1.00 2.9078 1.9474 1. 5562 1 .2801 1.1064 1 . 0517 
1.50 3.7876 2.1907 I .6646 1 .3244 1.1212 1 .0586 
2.00 4.6619 2.3738 1.7395 1.3535 1.1306 1. 0629 
2.50 5.5333 2.5171 1.7945 1.3742 1.1372 1 .0660 

3.00 6.4033 2.6324 1 .8367 1.3896 1.1420 1 .0682 
3.50 7.2722 2.7272 I .8701 1 .4015 1 .1457 1. 0699 
4.00 8.1405 2.8066 1 .8972 1.4110 1.1486 1.0712 
4.50 9.0083 2.8741 1 • 9196 1.4188 1.1510 1 . 0723 

5.00 9.8758 2.9322 1. 9385 1 .4253 1.1530 1 .0732 
5.50 10.743 2.9827 1.9546 1.4308 1.1547 1. 0740 
6.00 11.610 3.0271 1.9685 1.4355 1 .1561 1. 0746 
6.50 12.477 3.0663 I .9806 1.4396 1.1573 1.0752 

7.00 13.343 3 .1 012 1 . 9913 1.4432 1 .1584 1 .0757 
7.50 14.210 3.1326 2.0008 1 .4463 1.1593 1 .0761 
8.00 15.077 3.1608 2.0092 1 .4491 I .1602 1.0765 
8.50 15.943 3.1864 2.0168 1.4516 1 . 1609 1.0768 

9.00 16.810 3.2098 2.0237 1.4539 1 .1616 1 .0771 
9.50 17.676 3.2311 2.0299 1.4559 1.1622 1.0774 

10.00 18.543 3.2507 2.0356 1.4578 1.1628 1.0776 
15.00 27.205 3.3838 2.0732 1.4699 1.1663 1. 0793 

20.00 35.867 3.4570 2.0932 1.4763 1.1682 1 .0801 
25.00 44.528 3.5032 2.1056 1 .4802 1.1694 1. 0806 
30.00 53.189 3.5351 2.1141 1.4828 1 . 1701 1.0810 
40.00 70.510 3.5762 2.1248 1. 4862 1.1711 1.0814 

50.00 87.831 3.6016 2.1314 1.4882 1.1717 1.0817 
60.00 105.15 3.6188 2.1358 1.4896 1 .1721 1. 0819 
80.00 139.79 3.6407 2.1414 1.4913 1.1726 1 .0821 

100.00 174.43 3.6540 2.1448 1.4924 1.1729 1.0822 
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Table 0.5 The function H( /l+S 2/o,S) for various values of o and s 

H( /1+f32 /o,S)=Bf3(0,o) 

s o=l.O o=2.0 o=3.0 o=4.0 o=5.0 o=lO.O 

.000 2.9078 2.0127 l. 7052 1.5473 1.4503 l .2473 

.001 2.9049 2.0117 1. 7046 1.5469 1.4500 1 .2472 

.002 2.9020 2.0107 1. 7040 1. 5465 l. 4497 l .2471 

.004 2.8962 2.0087 l. 7029 1.5457 1.4491 1.2468 

.008 2.8~47 2.0047 I . 7007 1 .5442 1.4480 1 .2463 

.010 2.8790 2.0027 1.6995 1.5434 1.4474 1 .2461 

.020 2. 8509 l. 9929 1. 6939 1 .5396 1 .4446 1.2448 

.030 2.8235 1. 9832 1.6884 1. 5359 1.4417 1 .2436 

.040 2. 7966 1.9736 I. 6830 1 . 5321 1.4389 1.2424 

.050 2.7704 1. 9642 l .6776 1 .5284 1.4361 1.2412 

.060 2.7447 1.9549 I .6722 1.5248 1.4334 l .2400 

.080 2.6951 1.9367 l.b618 1.5176 1 .4280 1.2376 

. 100 2.6476 I. 9190 1.6515 1. 5106 1. 4227 1 .2353 

.200 2.4384 1. 8377 1 .6039 1. 4775 1 .3976 1.2244 

. 300 2.2682 I. 7671 I .5616 1 .4479 1.3750 1.2143 

. 400 2.1282 1. 7056 1.5240 1. 4213 l. 3546 1.2052 

.500 2.0119 1 .6520 1.4906 1. 3974 1. 3362 1.1968 

.600 1.9144 1.6051 l . 4608 1 . 3759 1.3196 1.1892 

.800 l . 7616 I .5273 1.4103 l. 3392 1.2908 1.1758 
1.000 1 .6489 1 .4662 1.3696 1.3089 1 .2670 1.1645 

1.250 1.5451 1.4064 1. 3286 1.2782 1.2425 1.1526 

1.500 l .4685 1. 3599 I .2959 1 .2532 1.2224 l . 1427 

1. 750 1. 4100 1.3228 1.2692 1 .2325 1.2056 1.1343 

2.000 1. 3641 1.2926 I .2470 1.2151 1.1914 1.1270 

2.500 1.2969 1.2464 1.2122 1.1875 1.1685 1.1150 

3.000 1.2504 1.2127 1.1862 1.1663 1.1508 1.1054 

3.500 1.2163 1.1872 1. 1660 1.1497 1 .136 7 1 .0975 

4.000 1.1903 1.1672 1.1498 1.1361 1 .1251 1.0909 

4.500 1.1699 1.1510 1 • 1365 1.1249 1.1154 1 .0852 

5.000 l. 1534 1. 1377 1.1254 1.1154 1.1072 1 .0803 

6.000 1.1284 I. 1171 1.1079 1.1003 1.0938 I .0721 

7.000 l. 1104 1.1018 1.0947 1 .0887 1 .0836 1. 0656 
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Table 0.6 The function H( /1+6 2 /o,S) for various values of a and G 

Hl /l+B 2 /o,S)=Bsl0,o) 

s o=l.O a=2.0 a=3.0 a=4.0 a=5.0 o=10.0 

8.0 1.0968 1 . 0901 1 .0845 1 .0796 1 .0753 1 .0602 
9.0 I. 0862 1.0808 1. 0762 1 . 0722 1.0686 l . 0556 

10.0 1 .0777 1 .0733 1.0694 1.0660 1 .0630 1 .0518 
12.5 l . 0623 1.0594 l . 0568 1 .0545 l .0524 1 .0442 

15.0 1.0520 1.0499 1 . 0481 1.0464 l .0448 1 .0386 
17.5 1.0446 1 . 0431 1 . 0417 1.0404 1 .0392 1 . 0343 
20.0 1.0390 1. 0379 1 .0368 1 .0357 1.0348 1 .0308 
25.0 1.0312 l. 0305 l .0298 1 .0291 1 .0285 l .0257 

30 I . 0260 1 .0255 1 .0250 1 .0245 1 .0241 l .0220 
35 I . 0223 1.0219 1 . 02 16 1 . 0212 1 .0209 1.0193 
40 1.0195 1.0192 l . 0189 1.0187 1.0184 l .0172 
60 1 . 0130 1.0129 1.0128 1 .0126 1.0125 l .0119 

80 1 .0098 1.0097 1.0096 1.0095 1.0095 I .0091 
100 1.0078 1. 0077 1 .0077 l . 0077 1 .0076 l. 0074 
125 1. 0062 1. 0062 1.0062 1. 0061 l .0061 1.0060 
150 1.0052 1. 0052 1 . 0051 1. 0051 1 . 0051 1. 0050 

175 1.0044 l. 0044 1. 0044 1.0044 1.0044 1 . 0043 
200 1.0039 1.0039 1 . 0039 1.0038 1.0038 1 .0038 
250 1. 0031 1.0031 l . 0031 l . 0031 1.0031 l. 0030 
300 1.0026 1.0026 1.0026 1 .0026 1. 0025 l . 0025 

400 1.0019 1 . 0019 1 . 0019 l. 0019 1.0019 l . 0019 
500 1.0015 1 . 0015 1 . 0015 l. 0015 1. 0015 l . 0015 

600 1.0013 l .0013 1. 0013 1. 0013 1 .0013 1 .0013 

800 1. 0009 1.0009 1. 0009 1 .0009 1.0009 1 .0009 

1000 1.0007 1 .0007 1.0007 1.0007 1 .0007 1 .0007 

1500 1. 0005 1 .0005 l .0005 1 .0005 1.0005 l .0005 

2000 1.0003 1.0003 1 .0003 1. 0003 l .0003 l . 0003 

3000 I . 0002 1.0002 l. 0002 1.0002 l .0002 l .0002 

4000 1 . 0001 1 . 0001 1 . 0001 1 . 0001 l . 0001 1 .0001 

5000 1 . 0001 1 . 0001 1.0001 1 . 000 l l .0001 l . 000 l 

8000 1.0000 1. 0000 1.0000 1.0000 1.0000 1 . 0000 

10000 I .0000 1 .0000 1.0000 1.0000 1 .0000 l .0000 
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Table 0.7 Moment of the function H(~,B) 

B h0 (S) B h0 (S) 

.000 2.0000 8.0 1.0613 

.001 I. 9988 9.0 1 .0546 

.002 1.9976 10.0 1.0492 

.004 1.9953 12.5 1 .0395 

.008 1.9908 15.0 1.0330 

.010 1.9885 17.5 1 .0283 

.020 I. 9772 20.0 1.0248 

.030 1.9660 25.0 1 .0198 

.040 1.9551 30 1.0165 

.050 1.9442 35 1.0142 

.060 1.9336 40 1.0124 

.080 1 . 9127 60 1.0083 

.100 l .8924 80 1 .0062 

.200 1. 7995 100 1.0050 

.300 I. 7194 125 1 .0040 

.400 1.6504 150 1 .0033 

.500 1.5911 175 1.0028 

.600 1. 5398 200 1.0025 

.800 1.4568 250 1.0020 
1.000 l. 3935 300 1 .0016 

1.250 1.3337 400 1 .0012 
1.500 1. 2887 500 1.0010 
I. 750 1.2539 600 1 .0008 
2.000 1. 2263 800 1.0006 

2.500 1.1855 1000 1.0005 
3.000 l. 1570 1500 1.0003 
3.500 l. 1359 2000 1 .0002 
4.000 l. 1198 3000 1.0001 

4.500 1.1071 4000 1.0001 
5.000 1.0968 5000 1 .0001 
6.000 1 . 0811 8000 1.0000 
7.000 1.0698 10000 1.0000 



Table 0.8 Emi~sive power at Tz=O ~nd.Tz=TQ for a semi-infinite 
med1um bounded by a str1p 1llum1nated by a uniform 
collimated flux of magnitude F0 from directions 
o = 1, 2, and 5 

B(O,O) 

Ta 0 = 1.0 0 = 2.0 0 = 5.0 

.00 1.00000 1 .00000 1.00000 

.01 1.03142 l .02688 1.02152 

.02 1.05592 1.04688 1.03629 

.05 1.11694 1.09467 1.06909 

. 10 1.19941 1.15593 1 .10736 

.20 1 . 33038 1. 24727 1.15861 

.50 1.60451 1.42049 1.24227 

1.00 1. 89099 1. 58084 1.30843 

2.00 2.20948 1. 73794 1.36539 

5.00 2.56350 1. 88818 1.41376 

10.00 2.72660 I. 94916 1.43192 

20.00 2.81582 1. 98082 1.44113 

50.00 2.87072 1.99993 1.44665 

100.00 2.88930 2.00636 1.44850 

00 2. 90781 2.01278 1. 45035 
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Table 0.9 Emissive power at Tz=O for a semi-infinite medium bounded by 
a strip illuminated by a uniform collimated flux of 
magnitude F0 from direction cr=l 

BlT ,0) 

Ty/Ta Ta=.01 T = 10 a . Ta=l .0 Ta=lO.O Ta=lOO.O 

0.00 1. 03142 1.19942 1. 89098 2. 72658 2. 88930 
.20 1.03132 1 .19843 1. 88339 2. 71977 2.88853 
.40 1.03100 1.19537 l. 85971 2.69617 2.88578 
.60 1. 03042 1.1~994 1.81672 2.64203 2.87892 

.80 1. 02947 1.18129 1.74598 2.50757 2.85664 
1.00 1.02796 1.16519 1.60473 1.90788 1 .94929 
1.02 .02778 . 16251 .57901 .74313 .34458 
1.04 .02760 .16033 .56018 .64572 .20389 

1.06 .02744 .15847 . 54393 .57220 .14177 
1.08 .02727 .15678 .52934 . 51329 .10760 
1.10 .02711 .15523 .51596 .46455 .08620 
1.12 .02696 . 15376 .50356 .42340 .07160 

1.14 . 02681 . 15238 .49195 .38814 .06104 
1.16 .02666 . 15107 .48101 .35758 .05306 
1.1B .02652 . 14981 .47066 .33085 .04682 
1.20 .02639 . 14861 . 46081 .30728 . 04181 

1.40 .02529 . 13851 .38198 . 17001 .01924 
1.60 .02446 . 13062 .32513 .11078 .01185 
1.80 .02378 . 12405 . 28124 .07909 .00825 
2.00 .02319 .11838 .24608 .05983 .00616 

3.00 .02104 .09785 . 14074 .02291 .00231 
4.00 .01956 .08415 .09017 .01228 .00123 
5.00 .01843 .07395 .06216 .00768 .00077 
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Table 0.10 Emissive.po~er a~ tt=O for a s~mi-infinite medium bounded 
by a str1p 111um1na ed by a un1form collimated flux of 
magnitude F0 from direction cr=2 

B(1·y,O) 

ty/ta ta=.Ol ta=.10 ta=l.O ta=lO.O ta=lOO.O 

0.00 1.02687 1.15593 1. 58083 1.94915 2.00636 
.20 1.02677 l. 15502 1.57592 1.94660 2.00609 
. 40 1.02647 l. 15219 1.56041 1.93761 2.00514 
.60 1.02592 1.14714 I. 53148 1.91614 2.00276 

. 80 1.02502 1.13903 1.48146 1.85759 1. 99500 
1.00 1.02343 1.12363 1. 36897 1. 49039 1.50480 
1.02 .02322 . 12096 .34655 .36691 .13583 
1.04 .02302 . 11890 . 33096 .30415 .07509 

1.06 .02284 . 11713 .31787 .26027 .05080 
1.08 .02267 .11553 .30637 .22703 .03806 
1.10 .02251 . 1 1405 .29601 .20074 .03028 
1.12 .02235 .11267 .28657 . 17935 .02505 

1.14 .02221 . 11136 .27785 . 16160 .02130 
1.16 .02206 • 11012 .26974 . 14665 .01848 
1.18 .02193 .10894 .26216 . 13388 .01628 
1.20 .02181 . 10781 .25504 . 12287 .01453 

1.40 .02076 .09845 .20063 .06332 .00666 
1.60 .01996 .09127 .16413 .04005 .00410 
1.80 .01929 .08539 . 13744 .02817 .00285 
2.00 . 01871 .08039 . 11699 .02113 .00213 

3.00 .01661 .06292 .06075 .00798 .00080 
4.00 .01518 .05188 .03668 .00426 .00043 
5.00 .01409 .04403 .02429 .00266 .00027 
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Table 0.11 Emissive.po~er a~ T{=O for a s~mi-infinite medium bounded 
by a str1p 1llum1na ed by a un1form collimated flux of 
magnitude F0 from direction cr=5 

BtT ,0) 

Ty_/Ta Ta=.Ol Ta=.10 T =1 0 a • Ta=lO.O Ta=lOO.O 

0.00 1.02152 J. 10736 1.30842 1 . 43191 1 .44850 
.20 1.02142 1.10661 1.30617 J.43115 1.44841 
.40 1. 02112 1.10429 1.29890 1 .42845 1.44814 
.60 1.02059 1.10007 1.28475 1 .42186 1.44745 

. 80 1.01973 1. 09315 1.25817 1 .40273 1.44521 
1.00 1.01814 1.07930 1 . 18269 I .22056 1.22473 
1. 02 .01790 .07677 . J6489 . 14130 .04202 
1.04 . 01769 .07491 .15368 . 11023 .02225 

1.06 .01751 .07332 .14476 .09072 .01485 
1.08 .01734 .07189 . 13724 .07693 .01106 
1.10 .01718 .07057 .J3071 .06656 .00878 
l. 12 .01703 .06936 .12492 .05845 .00725 

1.14 .01689 .06822 . 11971 .05192 .00616 
l. 16 . 01676 .06714 . 11498 .04655 .00534 
1.18 .01664 .06612 .11066 .04207 .00470 
1.20 .01652 .06515 . 10667 .03828 .00419 

1.40 .01551 .05734 .07840 .01886 .00192 
1.60 .01474 .05159 .06133 .01174 .00118 
1.80 .01410 .04704 .04968 .00820 .00082 
2.00 .01354 .04330 .04120 .00613 .00061 

3.00 . 01155 .03110 .01977 .00230 .00023 
4.00 .01023 .02414 .01146 .00123 .00012 
5.00 .00925 .01955 .00741 .00077 .00007 
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Table D. 12 Emissive power at Tz=O and Ty=O for a semi-infinite 
medium bounded by a constant temperature strip 

Ta (j)( 0 '0) Ta ¢(0,0) Ta {j)(O,O) 

.00 .50000 .20 .59946 10.0 .96343 

.01 .50979 .50 .67883 20.0 .98165 

.02 .51732 1.00 .75875 50.0 .99263 

.05 .53588 2.00 .84293 100.0 .99632 

.10 .56065 5.00 .92821 00 1.00000 
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Tab 1 e D. 13 Emissive power at Tz=O for a semi-infinite medium bounded 
by a constant temperature strip 

¢(Ty,O) 

Ty/Ta -r 3=.01 Ta=.10 -ra=1 .0 -ra=10.0 -ra=100.0 

0.00 .50979 .56065 .75874 .96342 .99632 
.20 .50976 .56034 . 75647 .96194 .99616 
.40 .50966 .55937 .74939 .95674 .99562 
.60 .50947 . 55765 .73647 .94435 .99425 

. 80 .50917 .55490 .71505 . 91126 .98979 
1.00 .50866 .54973 . 6 7146 . 74081 .74908 
1.02 .00860 .04885 . 16337 .19117 .07762 
1.04 .00854 .04815 . 15752 . 162 79 .04327 

1.06 .00848 .04756 . 15250 .14182 .02925 
1.08 .00843 .04702 . 1480 l . 12531 . 02189 
1.10 .00837 .04652 . 14392 . 11188 .01740 
1.12 . 00832 .04605 . 14012 . 10071 .01439 

l. 14 . 00827 .04561 . 13658 .09128 .01223 
l. 16 .00~22 .04519 . 13325 . 08321 .01061 
1.18 .00818 .04479 .13011 .07625 .00935 
1.20 .00814 .04441 .12712 . 07018 .00834 

1.40 .00778 .04120 . 10343 .03652 . 00382 
1.60 . 00751 .03871 .08660 .02308 .00235 
1. 80 .00729 .03664 .07379 .01622 .00164 
2.00 . 00710 .03487 .06368 .01215 .00122 

3.00 .00641 .02846 .03435 .00458 .00046 
4.00 .00593 .02421 .02104 .00244 .00024 
5.00 . 00557 .02106 .01403 .00153 .00015 
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Table 0.14 Normal flux at Tz=O for a semi-infinite medium 
illuminated by a collimated flux of cosine 
magnitude from direction o=l 

s Os(O,a) s Os(O,a) 

.000 .00000000 8.0 .94233 

.001 .00167663 9.0 .94832 

.002 .00334890 10.0 .95317 

.004 .00668037 12.5 .96208 

.008 .0132915 15.0 .96815 

.010 .0165713 17.5 .97253 

.020 .0327180 20.0 .97585 

.030 .0484535 25.0 .98055 

.040 .0637906 30 .98371 

.050 .0787419 35 .98600 

.060 .0933192 40 .98774 

.080 .121398 60 .99177 

.l 00 .148113 80 .99381 

.200 .263895 100 .99504 

.300 .355676 125 .99605 

.400 .429387 150 .99674 

.500 .489332 175 .99726 

.600 .538674 200 .99766 

.800 .614364 Z50 .99825 
1.000 .669109 300 .99865 

1.250 .718955 400 .99914 
1.500 . 755571 500 .99942 
1.750 . 783568 600 .99958 
2.000 .805671 800 .99975 

2.500 . 838381 1000 .99984 
3.000 .861479 1500 .99992 
3.500 .878699 2000 .99995 
4.000 . 892051 3000 .99998 

4.500 .902721 4000 .99999 
5.000 .911450 5000 .99999 
6.000 .924889 8000 .99999 
7.000 .934764 10000 .99999 



Table 0.15 Normal flux at Tz=O for a semi-infinite medium 
illuminated by a collimated flux of cosine 
magnitude from direction a=2 

s Qs(O,o) B Q6(o,o) 

.000 .000000000 8.0 .44805 

.001 .000580502 9.0 .45298 

.002 .00115993 10.0 .45705 

.004 .00231557 12.5 .46468 

.008 .00461408 15.0 .47001 

.010 .00575697 17.5 .47393 

.020 .0114085 20.0 .47694 

.030 .0169566 25.0 .48127 

.040 .0224034 30 .48422 

.050 .0277509 35 .48637 

.060 .0330010 40 .48803 

.080 .0432167 60 .49191 

. 100 .0530657 80 .49388 

.200 .0972966 100 .49509 

.300 . 134316 125 .49608 

.400 .165466 150 .49676 

.500 .191843 175 .49727 

.600 .214340 200 .49767 

.800 .250425 250 .49826 
1.000 .277912 300 .49866 

1. 250 .304170 400 .49915 
1.500 .324361 500 .49942 
1. 750 .340416 600 .49958 
2.000 .353532 800 .49975 

2.500 .373790 1000 .49984 
3.000 .388818 1500 .49992 
3.500 .400482 ~000 .49995 
4.000 .409837 3000 .49998 

4.500 .417527 4000 .49999 
5.000 .423973 5000 .49999 
6.000 .434195 8000 .49999 
7.000 .441955 10000 .49999 
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Table 0.16 Normal flux at Tz=O for a semi-infinite medium 
illuminated by a collimated flux of cosine 
magnitude from direction o=5 

(") Gs(O,o) s Q13 {o,o) p 

.000 .000000000 8.0 . 15996 

.001 .000167345 9.0 . 16300 

.002 .000334437 w.o . 16559 

.004 .000667861 12.5 . 17070 

.008 .00133168 15.0 . 17 449 

.010 .00166208 17.5 . 17739 

.020 .00329912 LO.O .17970 

.030 .00491145 25.0 . 18313 

.040 .00649944 30 .18557 

.050 .00806342 35 . 18739 

.060 .00960373 40 .18883 

.080 .0126147 60 . 19228 

. 100 .0155351 80 . 19410 

.200 .0288698 100 .19523 

.300 .0403211 125 . 19617 

.400 .0501766 150 . 19683 

.500 .0586905 175 . 19732 

.600 .0660824 200 . 19771 

.800 .0782135 250 .19828 
1.000 . 0877128 300 . 1986 7 

I. 250 .0970400 400 . 19915 
1.500 . 104422 500 . 19942 
1. 750 .110459 600 . 19958 
2.000 .115529 800 . 19975 

L.500 . 123675 1000 . 19984 
3.000 . 130043 1500 . 19992 

3.500 . 135235 2000 . 19995 

4.000 . 139592 3000 . 19998 

4.500 . 143327 4000 . 19999 

5.000 . 146580 5000 .19999 

6.000 .152000 8000 .19999 

7.000 . 156363 10000 .19999 
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Table 0.17 r~ormal f~ux at T~=O f~r a diffuse wall radiating 
1n a cos1ne fash1on into a semi-infinite medium 

13 F13 (0) 13 Fs(O) 

.000 .00000000 8.0 .93999 

.001 .00133214 9.0 .94642 

.002 .00266188 10.0 .95161 

.004 .00531422 12.5 .96103 

.008 .0105904 15.0 .96735 

.010 .0132143 17.5 .97193 

.020 .0261931 20.0 . 97539 

.030 .0389405 25.0 .98025 

.040 .0514604 30 .98350 

.050 .0637566 35 .98584 

.060 .0758331 40 .98754 

.080 .0993421 60 .99168 

. l 00 .1~2017 80 .99375 

.200 .223892 100 .99499 

.300 .309028 125 .99595 

.400 . 380372 150 .99654 

.500 .440419 175 .99693 

.600 .491239 200 .99718 

.800 .571649 250 .99747 
1.000 .631596 300 .99763 

1.250 .687354 400 .99783 
1.500 . 728898 500 .99798 
1.750 .760896 600 .99813 
2.000 .786235 800 .99838 

~.500 .823727 1000 .99858 
3.000 .850083 1500 .99894 
3.500 .869602 2000 .99915 

4.000 .884632 3000 .99940 

4.500 .896559 4000 .99954 

5.000 .906253 5000 .99962 

6.000 .921052 8000 .99976 

7.000 .931816 10000 .99980 
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Table 0.18 Nor~a1 flux at Tz=O and Ty=O for a semi-infinite 
med1um bounded by a strip illuminated by a uniform 
collimated flux of magnitude F from directions 
0 = l, 2, and 5 ° 

Q(O,O) 

Ta 0 = 1.0 0 = 2.0 0 = 5.0 

.00 1 .00000 .50000 .20000 

. 01 .98191 .48479 . 18825 

.02 .96820 .47393 . 18072 

.05 .93488 .44888 .16500 

. 10 . 89101 .41805 .14796 

.20 . 82328 .37404 . 12685 

.50 . 68580 .29438 . 094 72 

1. 00 .54403 .22176 .06910 

2.00 .38368 . 14789 .04477 

5.00 . 19563 .07057 .02068 

10.00 . 10415 .03655 .01058 

20.00 .05308 .01845 .00532 

50.00 .02135 .00740 .00213 

100.00 .01070 . 00371 .00106 

00 .00000 .00000 .00000 
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Table 0.19 Normal flux at Tz=O for a semi-infinite medium bounded by 
a strip illuminated by a uniform collimated flux of 
magnitude F0 from direction o=1 

----
Q(Ty,O) 

------
Tyh:a Ta=.Ol Ta= .10 Ta=1.0 Ta=10.0 Ta=100.0 
~· 

0.00 . 98191 .89101 . 54403 .10415 .01070 
.20 . 98198 .89160 .54770 . 10796 .01113 
.40 . 98221 . 89341 .55917 . 12111 .01272 
.60 . 98263 .89664 . 58025 .15071 .01668 

. 80 . 98328 . 90181 .61574 .22129 .02951 
1. oo . 98410 . 91164 .69184 .52654 .50267 
1 .02 -.01584 -.08684 -.29341 -.38536 -. 18919 
1.04 -. 01576 -. 08545 -. 28301 -. 33635 -. 11503 

1.06 -.01567 -.08426 -.27419 -.29991 -. 08086 
1.08 -.01558 -.08320 -.26638 -. 27083 -.06166 
1. 10 -.01549 -.08224 -. 259 30 -.24673 -.04952 
1 . 12 -.01540 -. 08135 -.25279 -.22628 -.04119 

l. 14 -.01531 -.08051 -.24675 -. 20866 -.03515 
1 . 16 -.01522 -. 0797L -.24111 -. 19 327 -.03057 
1.18 -.01513 -.07897 -.23579 -. 17972 -. 02698 
1.20 -.01504 -.07825 -. 23077 -.16768 -.02410 

1. 40 -.01430 -.07227 -.19137 -.09550 -.01111 

1. 60 -.01373 -. 06766 -.16362 -. 0629 7 -.00684 
1.80 -. 01326 -.06387 -.14240 -.04521 -. 00476 
2.00 -.01288 -.06064 -. 12546 -.03431 -.00356 

3.00 -.01153 -.04926 -.07418 -.01319 -.00133 
4,00 -.01063 -.04196 -.04874 -.00708 -.00071 
s.uo -.00994 -.03668 -.03420 -.00443 -. 00044 
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Table D.20 Nonnal f~ux.at -r~=O for a semi-infinite medium bounded 
by a str1p 1llum1nated by a uniform collimated flux of 
magnitude F0 from direction cr=2 

Q(-r ,0) 

Ty/Ta -ra=.Ol -ra= .10 -ra=1.0 -ra=10.0 -ra=100.0 

0.00 .48479 .41805 .22176 .03655 .00371 
.20 .48487 .41857 .22388 .03798 .00386 
.40 .48509 .42019 .23064 .04296 .00441 
.60 .48549 .42309 .24344 .05454 .00578 

.80 .48611 . 42779 .~6636 .08418 .01026 
1.00 .48696 .43702 . 32394 .25922 .250!11 
1.02 -.01296 -.06148 -.16352 -.17789 -.07303 
1 .04 -.01286 -.06019 -.15526 -.14889 -.04212 

1.06 -.01277 -.0590H -.14850 -.12905 -.02892 
1.08 -.01267 -.05809 -.14268 -.11404 -.02179 
1.10 -.01258 -.05719 -.13753 -.10210 -.01739 
1.12 -.01249 -.05636 -.13290 -.09228 -.01441 

1.14 -.01240 -.05559 -.12868 -.08402 -.01226 
1.16 -.01231 -.05487 -.12479 -.07697 -.01064 
1.18 -.01223 -.05418 -.12119 -.07088 -.00939 
1.20 -.01215 -.05353 -.11784 -.06555 -.00838 

1.40 -.01144 -.04816 -.09298 -.03534 -.00385 
1.60 -.01088 -.04413 -.07683 -.02271 -.00237 
1.80 -.01043 -.04089 -.06513 -.01609 -.00165 

2.00 -.01005 -.03818 -.05617 -.01211 -.00123 

3.00 -.00875 -.02908 -.03091 -.00459 -.00046 

4.00 -.00789 -.02364 -.01942 -.00245 -.00024 

5.00 -.00724 -.01993 -.01321 -.00153 -.00015 



236 

Table D.21 Normal flux at Tz=O for a semi-infinite medium bounded by 
a strip illuminated by a uniform collimated flux of 
magnitude F0 from direction cr=5 

Q(Ty,O) 

Ty/Ta Ta=.Ol Ta=.lO Ta=l .0 Ta=lO.O Ta=lOO.O 

0.00 . 18825 .14796 .06910 .01058 .00106 
.20 .18832 . 14835 .06990 .01100 .00111 
.40 . 18854 .14956 .07247 .01249 .00127 
.60 . 18892 . 15179 . 07754 .01601 .00166 

.80 . 18951 . 15551 .08755 .02534 .00295 
1.00 • 19036 . 16342 . 12238 . 10266 .10026 
1.02 -.00954 -.03521 -.06813 -. 06079 -.02212 
1.04 -.00945 -.03407 -.06269 -.04880 -.01243 

1.06 -.00935 -. 03311 -.05856 -.04142 -.00844 
1.08 -.00926 -.03226 -.05521 -.03611 -.00633 
1.10 -.00917 -.03150 -.05238 -.03202 -.00503 
1.12 -.00909 -.03082 -.04993 -.02871 -.00416 

1.14 -.00900 -.03018 -.04778 -.02597 -.00354 
1.16 -. 0089Z -.02959 -.04586 -.02366 -.00307 
1.18 -.00884 -.OZ851 -.04413 -.01996 -. 00271 
1.20 -.00B76 -.02851 -.04256 -.01996 -.00241 

1.40 -.00809 -.02438 -.03189 -.01047 -. 00111 
1.60 -.00756 -.0~146 -. 02567 -.00665 -.00068 
1.80 -.00713 -.01923 -.02141 -.00468 -.00047 
2.00 -.00678 -.01745 -.01825 -.00351 - .00035 

3.00 -.00559 -.01201 -.00969 -.00132 -.00013 
4.00 -.00484 -.00917 -. 00596 -.00071 -.00007 
5.00 -.00428 -.00741 -.00399 -.00044 -.00004 
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Table 0.22 Normal flux at Tz=O and Ty=O for a semi-infinite medium 
bounded by a constant temperature strip 

Ta F ( 0 ,0) Ta F(O,O) Ta F (0 ,0) 

.00 1.00000 .20 . 80972 10.0 .08402 

.01 . 98112 .50 .65932 2G.O .04235 

.02 .96660 1.00 .50663 50.0 .01698 

.05 .93094 2.00 .34108 100.0 .00850 

.10 .88356 5.00 . 16270 00 .00000 



Ty/Ta 

0.00 
.~0 
. 40 
.60 

.80 
1.00 
1.02 
1.04 

1.06 
1.08 
1.10 
1.12 

1.14 
1.16 
1.18 
1.20 

1.40 
1. 60 
1.80 
2.00 

3.00 
4.00 
5.00 
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Table 0.23 Normal flux at Tz=O for a semi-infinite medium 
bounded by a constant temperature strip 

·-·-
F(Ly,O) 

Ta=.01 -ra=.lO Ta= 1 .0 Ta=lO.O Ta=lOO.U 

. 98112 .88356 .50663 .08402 .00850 

. 98116 .88417 . 51080 .08733 .00885 

.98129 .88606 .52387 .09886 .010i2 

.98153 . B8941 .54778 . 12572 . 01327 

. 98196 . 89479 .58772 . 19405 .02354 

.98330 .90486 .67054 . 52117 .50210 
-.01637 -. 09307 -. 31391 -.38389 -.16844 
-.01615 -.09186 -. 30271 -.33016 -.09721 

-.01601 -.090B2 -.29315 -.29039 -.06663 
-.01587 -. 08984 -. 28463 -. 25893 -.05016 
-.01574 -.08890 -. 276B5 -.23315 -.03998 
-.01565 -. 08800 -.26968 -.21154 -.03311 

-.01556 -.Ot5714 -.26300 -.19313 -.02817 
-.01547 -.08632 -.25673 -.17725 -.02445 
-.01540 -.08553 -. 25083 -.16342 -.02155 
-.01533 -.08478 -.24522 -.15128 -.01923 

-.01479 -.07852 -.20100 -.08163 -. 00883 
-.01439 -. 07369 -.16973 -.05239 -.00544 
-.01403 -.06968 -.14590 -.03706 -.00379 

-.01370 -.06624 -. 12 700 -.02788 -. 00283 

-.OlZ33 -. 05394 -.07125 -.01056 -.00106 

-.01139 -. 04587 -.04496 -.00564 -.00056 

-.01068 -. 03996 -.03060 -.00353 -. 00035 
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APPENDIX E 

TABLES OF RESULTS FOR THE FINITE MEDIUM 



Table E.l The functions X( /l+S2 /o,T0 ,S) andY( /l+S2 /o,T0 ,S) for various values 
of o and To for S=O 

X( 11+S2/o,T0 ,S) Y( /1+S 2/o,T0 ,S) 

To o=l.O o=2,0 o=5.0 o=lO.O o=l.O o=2.0 o=5 .0 o=lO.O 
-

.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

.01 1.0248 1 .0246 1.0243 1.0237 1.0148 I .0048 .9755 .9285 

.02 1 .0453 1 .0449 1.0437 1 .0417 1 .0254 1 .0055 .9482 .8598 

.03 1 .0631 1.0623 1 .0598 1.0561 1.0334 I .0037 .9197 .7953 

.04 1.0791 1.0778 1 .0738 1 .0679 1 .0396 1.0002 .8909 .7352 

.05 1.0940 1.0920 1 .0863 1 .0780 1.0446 .9957 .8625 .6798 

.06 1 .1080 1.1053 1.0977 1. 086 7 1 .0489 .9905 .8346 .6289 

.07 1.1213 1.1178 1.1081 1.0944 1.0525 .9849 .8076 .5822 

.08 1 . 1342 1.1298 1.1178 1.1012 1 .0557 .9789 . 7814 .5395 

.09 1.1466 1.1412 1.1268 1 . 1073 1.0585 .9727 .7561 .5005 

• 10 1. 1586 1.1522 1.1352 l. 1128 ).0610 .9663 . 7318 .4648 
.12 1.1817 1.1731 1.1506 1.1222 1 .0652 .9532 .6858 .4026 
.14 1.2037 1.1926 1.1643 1.1300 1 .0684 .9397 .6432 .3506 
.16 1. 224 7 1.2110 1 .1766 1 .1364 1 .0709 .9261 .6039 .3072 
.18 1.2449 1 .2283 1.1876 1.1419 1.0728 .9123 .5676 .2710 

.20 1.2644 1.2447 1 . 19 76 1 . 1465 I .0740 .8984 .5341 .2406 

.25 1.3101 1.2821 1.2188 1.1555 1.0750 .8640 .4614 .1843 

.30 1. 3523 1 . 3155 1 .2357 1.1620 1.0736 .8304 .4020 . 1475 

.35 1. 3917 1.3454 1 .2496 1.1669 1.0704 . 7979 .3534 . 1231 

.40 1. 4287 1. 3725 1 .2611 1 .1709 1.0659 . 7668 .3137 .1064 

.45 1. 4637 1. 3972 1.2709 1 . 1742 1 .0602 . 7371 .2811 .0948 N 

.50 1. 4968 1. 4199 1 .2792 1. 1770 l .0537 .7089 .2542 .0864 ~ 
0 



Table E.2 The functions X( /1+(32/cr,T0 ,8) andY( /l+B 2 /cr,T0 ,8) for various values at 
cr and T0 for (3=0 

X( /l+S2 /cr,T0 ,S) Y( /1+(3 2/cr,T0 ,S) 

To cr= 1 .0 cr=2.0 cr=5.0 cr=10.0 cr=l.O cr=2.0 cr=5.0 cr=10.0 
-
.55 1.5283 ·1. 4407 1.2865 1.1795 1.0466 .6822 .2319 .0801 
.60 1.5583 1 .4600 1.2929 1.1817 1.0388 .6570 .2134 .0753 
.65 1. 5869 1 . 4778 I .2986 1.1838 1.0306 .6331 .1979 .0714 
.70 1.6143 1. 4944 l. 3037 1.1856 1.0220 .6106 .1848 .0681 
• 75 1.6406 1.5099 1. 3083 1 . 1873 1.0131 .5894 . 1738 .0654 

.80 1.6658 1.5244 1.3126 1.1889 1 .0040 .5694 . 1643 .0630 

. 85 1.6900 1.5379 1. 3164 1.1904 .9947 .5505 .1561 .0608 

.90 1. 7133 1.5507 1. 3200 1 .1919 .9852 .5327 .1490 .0589 

.95 l. 7357 1 .5627 l. 3234 1 . 1932 .9757 .5159 . 1428 .0572 
1.00 1. 7573 1. 5740 1.3265 1.1944 .9660 .5000 . 1373 .0555 

1.20 1. 8366 1.6135 1.3372 1. 1989 .9271 .4448 . 1204 .0501 
1.40 1.9060 1. 6457 1. 3460 1.2025 .8885 .4006 .1086 .0459 
1.60 I. 9672 1. 6727 1.3533 1.2056 .8510 .3647 .0997 .0424 
1.80 2.0218 1. 6956 1. 3596 1 .2083 .8150 .3351 .0925 .0395 
2.00 2.0706 l. 7153 1. 3651 1. 2107 . 7807 .3105 .0864 .0370 

2.20 2.1146 1. 7326 1. 3699 1.2127 .7482 .2897 .0812 .0348 
2.40 2.1543 1. 7478 1. 3742 1.2146 . 7175 .2719 .0767 .0329 
2.60 2.1905 I. 7614 1. 3780 1.2162 .6885 .2564 .0727 .0312 
2.80 2.2234 1.7735 1.3815 1.2177 .6613 .2429 .0691 .0297 
3.00 2.2535 1. 7846 1.3846 1.2191 .6357 .2309 .0659 .0283 

00 2.9078 2.0127 l .4503 1.2473 .0000 .0000 .0000 .0000 N 
~ _... 



Table E.3 The functions X( /1+SL/a,T0 ,G) andY( /1+S 2 /a,T0 ,S) for various values 
Of a and TO for S=.1 

--
X( /l+S 2 /a,T0 ,8) Y( /1+8 2 /a,T0 ,8) 

To a= 1.0 a=2.0 a=5.0 a=10.0 a=1 .0 a=2.0 a=5 .0 a=10.0 -
.00 1.0000 1.0000 1.0000 1.0000 1 .0000 1.0000 1.0000 1.0000 .01 1 .0248 1.0246 1 .0243 1.0237 1.0148 1 .0048 . 9755 .9285 .02 l. 0453 1. 0449 1 .0436 1.0417 1.0254 1 .0055 .9482 . 8598 .03 1 . 06 31 1.0622 1.0598 1.0560 1.0333 1. 0036 .9196 .7952 .04 I .0791 1.0777 1 .0738 I .0679 1 .0395 1.0001 .8909 .7352 

.05 1.0939 1.0919 1 .0863 1. 0 779 1.0446 .9956 .8624 .6797 .06 l .1 079 I . l 052 1.0976 1 .0866 1.0488 .9904 .8345 .6288 .07 1.1212 1 . 1177 1.1080 1.0943 1. 0524 .9847 .8075 . 5821 .08 1.1340 I . 1296 1 . 1177 1.1011 1 .0556 .9788 .7813 .5394 .09 1.1464 1.1411 1 . 126 7 1.1072 1 .0584 .9726 .7560 .5004 

.10 I . 1584 I . 15L 1 1.1351 1.1127 1 .0608 .9662 . 7316 .4647 . 12 l. 1815 1 . 1729 1.1505 1 . 1221 1 .0650 .9530 .6856 .4024 • 14 1.2035 I. 1924 1 . 1642 1.1298 1 .0682 .9395 .6430 .3505 . 16 1.2245 1. 2107 1.1764 1.1363 1.0706 .9258 .6037 . 3071 . 18 1 .2446 I .2280 1.1874 1.1417 1. 0724 .9120 .5674 .2708 

.20 1 .2640 1.2443 1.1973 1.1463 1.0736 . 8981 .5339 .2404 .25 1. 3096 1.2817 1.2184 1 . 1553 1 . 0745 .8636 . 4611 . 1841 . 30 l. 3517 1 . 3149 1.2353 1.1617 1 .0730 .8298 .4016 . 1473 .35 l . 3909 1.3447 I . 2491 1.1666 1. 0696 . 7972 .3530 . 1228 .40 1. 4278 l. 3717 1.2606 1.1706 1 .0649 .7660 .3132 . 1062 

. 45 l. 4626 1. 3963 1.2703 1 . 1739 1 .0591 .7362 .2805 .0945 .50 1. 4955 1.4188 1.2786 1. 1767 1.0525 . 7079 .2536 .0861 
N 
..j::>, 
N 



Table E.4 The functions X( /l+S 2 /o,T9,s) andY( /l+S2 /o,T ,S) for various 
values of o and T0 for B=. 0 

X( /1+8 2 /o,T0 ,S) v ( /1 +s L 1 o, To, s) 

To o=1.0 o=2.0 o=5.0 o=10.0 o=1 .0 o=2.0 o=5.0 o=10.0 

.55 1.5268 1. 4395 1 .2859 1 . 1 791 1 . 0451 .6811 .2313 .0798 

.60 1.5566 1 . 4586 1.2922 1 . 1814 1 .0372 .6557 .2128 .0749 

.65 1. 5850 1 . 4764 1.2978 1.1834 1 .0288 .6318 . 1972 .0710 

.70 1.6122 1 . 4928 1. 3029 1.1852 1 . 0200 .6091 . 1841 .0678 

.75 1.6383 1. 5082 l. 3075 1 . 1869 1.0109 .5878 . 1730 .0650 

.80 1 . 6632 1.5225 1. 3117 1 . 1885 1 .0016 .5676 .1634 .0626 

. 85 1. 6872 1.5360 1.3155 1.1900 .9920 .5486 . 1552 .0604 

.90 1. 7103 1.5486 1.3190 1.1914 .9823 .5307 . 1481 .0585 

.95 1. 7325 1 . 5604 1. 3223 1.1927 .9725 .5138 . 1418 .0567 
1.00 1 . 7539 1.5716 1 . 3254 1 . 1939 .9627 .4978 . 1363 .0551 

1.20 1. 8320 1. 6105 1 . 3360 1 . 1983 .9228 . 4421 . 1193 .0497 
1.40 1. 9003 1. 6422 1.3445 1.2018 .8832 .3974 . 1075 .0454 
1.60 1.9604 1 .6685 1 . 3517 1.2049 . 8447 .3611 .0984 .0418 
1.80 2.0136 1.6908 1 .3578 1.2075 .8076 . 3311 .0911 .0389 
2.00 2.0612 1.7100 1 . 3631 1 .2097 . 7722 . 3061 .0849 .0363 

2.20 2.1037 1. 7266 1 . 36 77 1.2117 . 7385 .2849 .0796 .0341 
2.40 2. 1421 l. 7413 1 . 3 718 1 . 2135 .7067 .2668 .0750 . 0321 
2.60 2. 1768 1 . 7542 l . 3755 l .2151 .6766 .2508 .0709 .0304 
2. 80 2.2082 1.7658 1.3787 l . 2165 .6483 .2369 .0672 .0288 
3.00 2. 2368 1. 7762 1 . 3817 1.2177 .6215 .2245 .0639 .0274 

00 2.6476 1 . 9190 1. 4227 1 .2353 .0000 .0000 .0000 .0000 N 
~ w 



Table E.5 The functions X( /l+S 2 /cr;r 0 ,6) andY( /l+S 2 /cr,-r0 ,S) for various values 
Of 0 and TO for S=.5 

X( /l+S""/o,-r 0 ,S) Y( /l+S 2/cr,-r0 ,S) 

To o=l.O o=2.0 o=5 .0 cr=lO.O cr=l .0 cr=2.0 o=5.0 cr=lO.O 

.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 l.-0000 -1.0000 

.01 I .0247 1 .0246 1 .0242 1.0237 1.0147 1. 0048 .9754 .9284 

.02 1.0448 I .0444 1.0432 1.0413 1 .0249 1 . 0051 .9477 .8594 

.03 I . 0621 1.0613 1 .0589 1 .0552 1 .0324 1.0027 .9187 .7944 

.04 1.0777 1.0764 1.0725 1. 0667 1 . 0381 .9988 .8896 .7340 

.05 1.0921 1 .0902 1 .0847 1.0765 1 . 0428 . 9938 .8608 .6782 

.06 1.1057 1 .1 031 1 .0957 1 .0850 1 .0466 .9883 .8326 .6271 

.07 1.1187 1 . 1153 1 . 1058 1.0925 1.0499 .9823 . 8053 .5802 

.08 1 . 1311 1.1269 l. 1152 1 . 0991 1.0527 .9760 . 7788 .5373 

.09 l. 1431 1.1379 1 . 1239 I . 1050 1 .0551 .9694 .7533 .4981 

. 10 1.1548 1 . 1486 1 . 1321 1.1103 1 .0572 .9627 . 7286 .4623 

.12 1 . 1770 1.1687 1 . 1469 1.1193 1.0605 .9488 .6821 . 3997 

. 14 1.1981 1.1874 1.1600 l . 126 7 1.0629 .9345 .6390 .3475 

. 16 1.2182 1. 2049 1 . 1 71 7 1 . 1329 1 .0644 .9200 .5991 .3038 

. 18 1. 2373 1.2213 1.1821 1 . 1380 1.0652 .9053 .5622 .2672 

.20 1.2557 1 .2367 1.1915 1.1423 I .0653 .8906 .5281 .2365 

.25 1. 2985 1.2718 1.2112 1. 1506 1 .0634 .8538 .4540 . 1796 

. 30 1 . 33 76 1 . 3026 1.2268 1 . 1565 l .0590 .8177 .3933 . 1423 

. 35 1.3737 1. 3300 1.2394 1. 1609 1.0525 . 7827 .3435 . 1174 

. 40 1. 4072 1 . 3545 1.2497 1.1644 l .0445 .7490 .3027 . 1003 

. 45 1. 4385 1. 3765 1 .2583 1.1672 1.0353 . 7167 .2690 .0883 N 

.50 1 . 4G 77 1 . 3964 1 .2655 1 . 1696 l. 0250 .6860 .2412 .0796 
..f::> 
.p. 

----



Table E.6 The functions X( /l+SL/a,T0 ,S) and Y( ll+S 2/a,T0 ,S) for various values of 
a and TO for 8=.5 

X t 1 , +s L I a 'T 0 's) 

To a=1.0 a=2.0 a=5 .0 a=lO.O a=l.O a=2.0 a=5.0 a=10.0 

.55 1.4952 1.4145 i .2717 1.1717 1.0140 .6567 .2180 .0730 

.60 1.5210 1.4310 1.2771 1.1735 1.0022 .6289 . 1987 .0679 

.65 1. 5454 1 .4460 1.2817 1. 1751 .9899 .6025 .1824 .0637 
.70 1.5684 1 . 4598 1.2858 1.1765 .9771 .5775 .1685 .0602 
.75 1.5901 1 .4725 1.2894 1.1779 .9639 .5538 .1567 .0572 

.80 1 .6107 1.4841 1.2927 1.1791 .9504 .5313 .1466 .0546 

.85 1.6301 1 .4949 1.2956 1 • 1802 .9367 .5099 . 1377 .0522 

.90 1.6486 1.5048 1.2983 1.1812 .9227 .4897 . 1300 .0500 

.95 1.6661 1.5140 1. 3007 1 . 1821 .9086 .4705 . 1232 .0481 
1.00 1 .6827 1.5225 1. 3029 1.1830 .8943 .4523 . 1171 .0462 

1.20 1. 7412 1.5508 1. 3102 1.1859 .8368 .3884 .0982 .0401 
1.40 1. 7890 1.5722 1.3156 1.1881 .7795 .3361 .0847 .0351 
1.60 1 .8282 1 .5886 1.3197 1.1898 . 7236 .2930 .0742 .0310 
1.80 1.8605 1.6013 1.3229 1.1912 .6697 .2571 .0656 .0276 
2.00 1.8871 1.6113 1. 3255 1.1923 .6183 .2268 .0583 .0246 

2.20 1.9090 1.6192 1. 3275 1.1931 .5696 .2010 .0521 .0220 
2.40 1.9271 1.6255 1. 3292 1.1938 .5238 . 1788 .0467 .0197 
2.60 1.9420 1 .6305 1 . 3305 1.1944 .4808 .1596 .0419 .0177 
2.80 1.9544 1 .6346 1.3316 1.1948 .4408 .1428 .0377 .0159 
3.00 1.9645 1 .6378 1. 3324 1.1952 .4035 . 1280 .0339 .0143 

00 2.0119 1.6520 1. 3362 l. 1968 .0000 .0000 .0000 .0000 N 
..c:::. 
0'1 



Table E.7 The functions X( /l+S 2 /a,T0 ,s) and Y( ll+S 2 /a,T0 ,S) for various values of a and 
T0 for S=l 

X( ll+S 2 /a,T 0 ,S) Y( /1+S 2 /a,T0 ,S) 

To a=l. 0 a=2.0 a=5.0 a=lO .0 a=1.0 a=2.0 a=5.0 a=10.0 
-

.00 I .0000 1 . 0000 1.0000 1. 0000 1.0000 1 . 0000 l. 0000 l. 0000 
.01 1 .0L44 I .0243 I .0240 I .0234 I .0145 1 . 0045 .9751 . 9281 
.02 1 . 0436 1 .0432 1.0420 1 .0402 1 .02 37 1 .0038 . 9465 .8582 
.03 1 .0598 I .0591 I .0568 1 .0533 I .0301 1.0004 . 9165 . 7923 
.04 I .0745 1 . 0732 1 .0696 1.0641 l .0349 . 9955 .8865 .7312 

.05 1. 0880 I. 0862 I .0809 I .0733 I .0386 .9898 .8570 .6748 

.06 I . 1007 1 .0982 1 . 0913 1.0812 1 . 0416 .9834 . 8281 . fJ2 32 

.07 1 . 1129 1 . 1109 I . 1007 I .0882 1 .0441 .9767 .8002 .5759 

.08 I. 1245 1 . 1204 1 . 1095 1 . 0943 1 .0460 .9696 . 7731 .5326 

.09 1 . 1356 1. 1307 1. 1176 1. 0998 1 .0476 .9622 .7470 .4930 

. 10 I . 146 3 l . 1405 1.1251 1 . 1046 1 . 0488 .9547 . 7217 .4568 

. 12 1 . 1666 I. 1588 \ . 1386 1.1129 1 .0502 . 9391 .6739 . 3934 

. 14 1 • 1856 1 . 175 7 1.1504 1.1195 1 .0504 . 9229 .6294 .3404 

. 16 1 . 20 35 I. 19 13 I . 160 7 I . 1249 1 . 0498 .9065 .5882 .2960 

. 18 1 .2204 1. 205 7 1 . 1699 1 . 129 3 1.0483 .8898 .5501 .2587 

.20 1 . 2 364 I. 2192 I. 1700 I . 1331 l . 0461 .8731 .5148 .2275 

.25 1 .2730 1 . 2 491 1. 194 7 1. 1400 l .0381 .8312 .4377 . 1692 

. 30 I. 3057 1 . 2 7 48 1. 2075 I. 144 7 1 .0272 .7901 .3744 . 1309 

. 35 1 . 33:JO 1.2969 1 . 21 75 1.1481 1.0141 . 7500 .3224 . 1 CJ52 

.40 I . 3615 I. 3162 I .2255 1 . l S~..1G .'3992 . 7114 .2795 .UL75 

.45 1. Jn)6 1 . 3330 1 .2318 l . 1 526 .'1830 .6743 .2440 .Jl-:>U 
"" .50 1 . 4tJ7'; I. 3477 

I .. , " _ _, 1. L\41 . J65 7 .t388 .2145 . ~_~t 5E A . ...:. j i, 
':'"' -.- ------------------ ---~-~--------- -~- -----------



Table E.8 The functions X( ll+B 2 /o,T0 ,B) and Y( ll+B 2 /o,T0 ,B) for various values of o and T for 
8=1 ° 

X( /l+8 2 /o,T0 ,8) yt /1+8 2 /o,T0 ,8) 

To o=l.O o=2.0 o=5.0 o=lO.O o=l.O o=2.0 o=5.0 o=lO.O 
-

.55 1. 42 75 1. 3607 1.2412 1.1554 .9475 .6049 . 1899 .0588 

.60 l . 445 7 1. 3722 l .2447 l. 1565 .9285 .5726 . 1693 .0533 

.65 1. 4625 1. 3823 1.2476 l. 15 75 .9090 .5419 . 1519 .0488 

.70 1. 4778 1 . 3913 1.2500 1 . 1583 .8891 . 5128 .1370 .0451 

.75 1. 4918 1. 3993 1.2521 1.1590 .8688 .4852 .1244 .0418 

.80 I . 504 7 1 .4063 I .2539 1.1596 .8484 .4590 . 1134 .0390 

.85 1 . 5165 I . 4126 1 .2554 1 . 1601 .8278 .4342 . 1040 .0365 

.90 I. 5273 1 . 4182 I .2568 1 . 1606 . 8071 .4108 .0957 .0342 

.95 l . 53 7 3 I. 4232 1 . 2 5 79 1.1610 . 7864 .3886 .0884 .0321 
1. 00 I . 5464 1. 4277 I. 2589 1.1613 .7657 .3676 .0819 .0302 

1.20 1.5762 I. 4413 1.2619 1 . 162 5 .6847 .2944 .0621 .0239 
1 .40 1. 5974 1. 4499 1.2637 1.1632 .6075 . 2361 .0485 .0191 
1.60 1.6125 1 . 4556 1.2648 l . 16 36 .5356 .1896 .0385 .0154 
1.80 I .6232 1 . 4592 I . 2656 1 .1639 .4697 . 1525 .0309 .0124 
2.00 1 . G 308 1 . 4616 1 . 2660 1.1641 .4099 . 1229 .0249 .0101 

2.20 1 . 6362 l . 4631 l. 2664 l . l G42 . 3563 .0992 .0202 .0082 
2.40 1. 6400 l . 4642 1.2666 1 . 1643 .3086 .0801 .0164 .0066 
2.60 I .6427 1 .4648 1.2667 1.1644 .2665 .0649 .0133 .0054 
2. 80 1 . G446 1 .4G53 1.2668 1 .1644 .2294 .0526 .0109 .0044 
3.00 1 . 6459 l. 4656 1.2669 1.1644 . 1970 .0427 .0088 .0036 

m 1 . 6489 I . 4662 1. 2670 1 . 1645 .0000 .0000 .0000 .OQOQ 
N 
A 
'..1 



Table E.9 The functions X( 11+82 /o,T0 ,8) andY( l~/o,T0 ,8) for various values of o and T0 
for 8=2 

X( /1+8L/cr,T0 ,8) Y( 11+82/o,T0 ,8) 

To o=l.O o=2.0 o=5.0 o=lO.O o=1.0 o=2.0 o=5.0 
-

.00 1.0000 1.0000 1.0000 1.0000 1.0000 1 .0000 1 .0000 

.01 1.0233 1 .0232 1.0229 I .0224 1.0134 1.0034 .9740 

.02 1.0403 1.0399 1.0389 1 .0373 1.0204 1 .0006 .9433 

.03 1.0546 1 .0539 1.0519 1.0488 l .0248 .9952 .9115 

.04 1.0674 I .0663 1.0631 1.0582 1.0278 .9887 .8800 

.05 1.0793 1.0776 1 .0730 1.0662 1.0299 .9813 .8490 

.06 I .0903 I .0881 1 .0819 1 .0731 1.0311 .9733 .8188 

.07 1.1006 1.0978 1.0900 1.0790 1 .0318 .9648 . 7895 

.08 1.1103 I. 1068 1.0973 1.0841 1.0319 .9560 . 7610 

.09 1.1194 1.1152 1 • 1039 1 .0886 1.0314 .9468 .7334 

. 10 1.1281 I. 1232 l. 1100 l .0925 1.0306 .9374 .7067 
• 12 1 .1442 1.1377 1.1206 l .0989 1.0278 .9180 .6561 
.14 1.1589 1.1507 1.1297 1.1039 1.0237 .8980 .6089 
.16 1 . 1723 1.1623 1.1374 1.1079 1.0186 .8777 .5651 
.18 1.1847 1 .1729 1 .1440 1.1111 1.0126 .8572 .5245 

.20 1.1961 1 . 1825 1.1497 1 .1136 1 .0059 .8366 .4870 

.25 1 .2211 1.2029 1.1609 1.1181 .9865 .7855 .4049 

.30 1 . 2421 1 .2192 1.1689 1.1208 .9641 .7355 .3374 
• 35 1.2598 1 .2324 1.1746 1.1226 .9398 .6871 .2819 
.40 1 .2748 1.2432 1.1788 I. 1238 .9139 .6407 .2363 

.45 1 . 2875 1 .2519 1 .1819 1.1246 .8870 .5965 .1988 

.50 1 .2984 1.2591 I. 1842 1. 1251 .8594 .5546 . 1678 

o=10.0 

1 .0000 
.9270 
.8552 
.7876 
.7252 

.6678 

.6151 

.5668 

.5225 

.4820 

.4448 

.3797 

.3251 

.2793 

.2409 

.2086 

.1484 

. 1088 

.0823 

.0641 

.0513 N 
.,J::o. 

.0421 (X) 



Table E.lO The functions X( ll+S 2 /a,-r0 ,S) andY( ll+S 2 /a,-r0 ,S) for various values of a and -r0 
for S=2 

X( /1+S 2 /a,-r0 ,S) Y( /1+13L/a,-r 0 ,S) 

To a=1.0 a=2.0 a=S.O a=10.0 a=1.0 a=2.0 a=5.0 
-

.55 l . 3077 1 . 2650 1 . 1859 1 . 1256 .8315 .5150 .1422 

.60 1.3156 1 . 2698 I. 1872 1 . 1259 .8033 .4777 . 1209 

.65 1. 3224 1.2738 1 • 1881 1 . 1261 .7753 .4427 .1 032 

.70 1. 3283 1.2770 1.1889 1 . 1263 .7474 .4099 .0884 

.75 1.3333 1 . 279 7 I . 1894 1 . 1265 .7198 .3792 .0760 

.80 I. 3376 1 . 2820 1 . 1899 1 . 1266 .6926 .3505 .0656 

.85 l. 3413 I . 2838 1 . 1902 1.1267 .6660 .3238 .0568 

.90 1.3445 1 . 2853 1 . 1905 I . 126 7 . 6399 .2989 .0494 

.95 1. 3472 1 .2866 I. 1907 l. 1268 .6144 .2758 .0430 
1.00 1.3496 1 . 2876 1 . 1908 1.1268 .5896 .2544 .0376 

1.20 1.3561 1.2903 1.1912 1 . 1269 .4973 .1830 .0225 
1.40 1.3597 1.2915 l. 1913 1 . 12 70 .4167 . 1309 .0139 
1.60 1. 3617 1.2921 1.1914 1 .12 70 .3474 .0931 .0088 
1.80 1 . 3628 1 .2923 1.1914 l . 1270 .2886 .0659 .0057 
2.00 1. 3634 I .2925 I .1914 1 . 1270 .2390 .0465 .0037 

2.20 1 . 3637 1.2925 1.1914 1 . 1270 . 1975 .0327 .0024 
2.40 1 . 3639 I . 2925 1.1914 1 . 12 70 . 1629 .0229 .0016 
2.60 1.3640 1.2926 1.1914 1 . 12 70 . 1341 .0160 .0010 
2.80 1. 3640 I .29L6 1.1914 1 .1270 .1103 .0112 .0007 
3.00 1. 3G40 1 .2926 1.1914 1 . 1270 .0907 .0078 .0004 

co 1 . 3641 1.2926 1.1914 1 . 12 70 .0000 .0000 .0000 

a=lO.O 

.0352 

.0299 

.0257 

.0224 

.0196 

.0172 

.0152 

.0135 

.0120 

.0107 

.0069 

.0044 

.0029 

.0019 

.0012 

.0008 

.0005 

.0003 

.0002 

.0001 

.0000 N 
..j:::o 
~ 



Table E.ll The functions X( v'l+B2 /cr,-r0 ,B) and Y( ll+B2 /cr,-r ,B) for various values of 
cr and -r 0 for B=5 o 

X( v'l+B2 /cr,-r0 ,B) Y { 11 +B 2 I cr, -r 0 , B) 

-ro cr=l.O cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 cr=5.0 cr=lO.O 

.00 1 .0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 l .. 0000 

.01 1.0200 1.0199 1.0197 1.0192 I .0100 1.0001 .9708 .9238 

.02 I .0332 1 .0329 1.0321 1 .0308 1.0133 .9935 .9365 .8486 

.03 1 .0441 1.0436 1.0420 1 .0396 1.0143 .9849 .9017 .7784 

.04 1.0535 1.0526 1.0502 1.0464 1.0139 .9750 .8671 .7135 

.05 1.0617 1.0604 1.0570 1.0520 1 .0123 .9641 .8331 .6537 

.06 1 .0689 1.0673 1.0629 1.0565 1 .0098 .9526 .7999 .5987 

.07 1.0754 1 .0735 1 .0680 I .0602 1.0067 .9406 .7676 .5482 

.08 1.0813 l .0789 l .0724 1.0633 1.0029 .9282 . 7363 .5019 

.09 l .086 7 1 .0839 1.0762 1.0658 .9987 .9155 .7059 .4596 

• 10 1.0915 1 .0883 1 .0796 1 .0680 .9941 .9026 .6767 .4208 
. 12 1 • 1001 1.0960 1.0852 1.0713 .9838 .8765 .6211 .3529 
.14 1.1073 1.1024 1 .0896 1.0737 .9723 .8501 .5697 .2960 
.16 1 .1134 1.1077 1.0931 1 .0754 .9601 .8236 .5220 .2485 
.18 1.1187 1.1121 1 .0958 1 .0767 .~471 . 7973 .4781 .2088 

.20 1. 1232 1.1159 1 .0980 1 .0776 .9337 . 7713 .4376 .1756 

.25 1.1320 1.1230 1.1018 1.0790 .8987 .7080 .3500 .1145 

. 30 1 . 1381 1.1277 1 • 1040 1 .0797 .8625 .6481 .2793 .0752 

.35 1.1424 1.1309 1.1053 1 .0800 .8261 .5919 .2225 .0499 

.40 l . 1455 1 . 1330 1 . 1060 1.0801 .7900 .5396 . 1769 .0334 

.45 1.1477 1.1345 1.1065 1. 0802 .7547 .4913 . 1406 .0226 N 

.50 1 . 1492 1.1355 1.1068 1 .0803 .7203 .4468 . 1115 .0155 (.TI 

1.1534 1.1377 1.1072 1 .0803 .0000 .0000 .0000 
0 

00 .0000 



Table E.l2 The functions X{ ll+S2 /cr.T0 ,a) andY{ /l+S2 /cr,T0 ,a) for various values of cr and To 
· for a=lO 

X( ll+a2/cr,T0 ,a) Y( /1+a2 /cr,T0 ,a) 

To cr=l .0 cr=2 .0 cr=5.0 cr=10.0 cr=1.0 cr=2.0 cr=5.0 cr=10.0 

.00 1.0000 1.0000 1.0000 1 .0000 1.0000 1.0000 1.0000 1.0000 

.01 1 .0168 1.0168 1.0165 1.0162 1.0068 .9969 .9676 .9208 

.02 1.0270 1.0268 1.0262 I .0251 1 .0071 .9874 .9305 .8430 

.03 1.0348 1.0344 1.0332 1.0314 1.0050 .9757 .8929 . 7703 

.04 1.0410 I .0404 1.0386 1.0359 I .0014 .9627 .8556 .7030 

.05 1.0461 1.0452 I .0429 1.0394 .9967 .9489 .8190 .6412 

.06 1.0503 1.0493 1 .0463 l .0420 .9913 .9346 . 7834 .5844 

.07 1.0540 1.0527 I .0491 1.0440 .9852 .9199 .7490 .5324 

.08 1.0570 I .0555 1.0514 1 .0456 .9787 .9049 . 7156 .4848 

.09 1.0597 1.0579 1.0533 1.0469 .9718 .8898 .6835 .4414 

.10 1.0619 I .0600 1.0549 1.0479 .9646 .8747 .6526 .4017 
• 12 1.0656 1.0633 I .0572 1.0493 .9495 .8443 .5943 .3325 
. 14 1 .0683 I .0657 1.0589 1.0502 .9338 .8143 .5407 .2750 
. 16 1.0704 1.0675 I .0601 I .0507 .9177 .7847 .4915 .2273 
.18 1 .0720 I .0689 1.0609 l. 0511 .9014 .7558 .4465 .1877 

.20 l .0733 l .0699 I .0615 I .0513 .8850 . 7276 .4054 .1550 

.25 1.0753 I .0715 1.0623 1.0516 .8443 .6607 .3179 .0959 

.30 1 .0764 1 .0724 I .0627 1.0517 .8045 .5992 .2487 .0592 

.35 1 .0769 I .0728 1.0629 1.0518 .7660 .5429 .1944 .0365 

.40 1.0773 l .0730 1.0630 I .0518 . 7291 .4916 . 1518 .0224 

.45 1.0774 I .0731 1.0630 1.0518 .6938 .4451 . 1184 .0138 
1 .0732 I .0630 I .0518 .6601 .4029 ,50 1 .0775 .0924 .0085 

00 1.0777 I .0733 l .0630 1.0518 .0000 .0000 .0000 .0000 

N 
01 __, 



Table E.l3 The functions X( 11+132 /cr,T0 ,13) andY( I'T+W/cr,T0 ,13) for various values of cr and To for 
13=40 

X( /~/cr,T0 ,13) v ( 11 +a' 1 cr , T 0 , a ) 

To cr=l.O cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 o=5.0 o=lO.O 
-

.000 1 .0000 1 .0000 l .0000 1 .0000 1.0000 1.0000 1.0000 1.0000 

.005 1.0068 1 .0068 1.0067 1.0066 1.0018 .9968 .9820 .9578 

.010 I .0103 1.0102 I .0101 I .0099 1.0003 .9904 .9612 .9145 

.015 1.0126 1.0125 1.0123 1.0120 .9976 .9828 .9J98 .8722 

.020 1.0142 1.0141 I .0139 1 . 0134 .9943 .9747 .9183 .8313 

.025 1.0155 1.0153 1. 0150 1.0144 .9906 .9663 .8968 .7920 

.030 1.0164 1.0162 1.0158 1.0151 .9866 .9576 .8756 .7543 

.035 1 . 0171 1.0169 1.0164 1.0156 .9824 .9488 .8547 • 7182 
.040 1.0176 1 .0174 1.0169 1.0160 .9781 .9399 .8341 .6837 
.045 1.0180 1.0178 1 . 0172 1.0163 .9736 .9310 .8140 .6507 

.050 I .0183 I .0181 I . 0175 1 . 0165 .9691 .9220 .7942 .6193 

.055 1.0186 1.0183 1.0177 1 .0167 .9645 .9131 .7748 .5894 

.060 I .0188 I .0185 I .0178 1 .0168 .9599 .9042 .7559 .5608 

.065 1 .0189 1 .0187 1.lll80 1.0169 .9553 .8954 .7374 .5336 

.070 1.0190 I .0188 I .0180 1.0169 .9507 .8866 .7193 .5077 

.075 1.0191 1 .0189 1 .0181 1 .0170 .9460 .8779 .7017 .4831 

.080 I .0192 1 . 0189 I. 0182 l . 0170 .9414 .8693 .6844 .4596 

.085 1.0193 1.0190 1. 0182 1 .0171 .9367 .8607 .6676 .4372 

.090 I .0193 I .0190 1.0182 1.0171 .9321 .8522 .6511 .4160 

.095 1.0194 1 .0191 1 .0183 1 .0171 .9275 .8437 .6351 .3957 

. 100 I .0194 I .0191 I .0183 1 .0 I 71 .9229 .8354 .6195 .3764 
00 1. 0195 1.0192 1 . 0184 1.0172 .0000 .0000 .0000 .0000 

I'\) 
U1 
N 



Table E.14 The functions X( ll+f32 /cr;r0 ,e) andY( /l+f3 2 /cr;r 0 ,e) for various values of a and T0 for (3=100 

X( /1+f32 /cr,T0 ,e) Y( ll+f3L/cr,T0 ,e) 

To cr=l.O cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 cr=5.0 cr=10.0 

.000 1.0000 1.0000 1.0000 1 .0000 1.0000 1.0000 1.0000 1 .0000 

.00 l 1.0017 I .0017 1.0017 I .0017 1.0007 .9997 .9967 .9917 

.002 1.0027 1.0027 1 .0027 1.0027 I .0007 .9987 .9927 .9828 

.003 1.0035 I .00~4 1.0034 I .0034 1.0005 .9975 .9885 .9738 

.004 1.0041 1.0041 1.0040 1.0040 1.0001 .9961 .9842 .9648 

.005 1.0046 1 .0046 1.0045 1.0045 .9996 .9946 .9798 .9557 

.006 1.0050 1.0050 1.0050 1.0049 .9990 .9930 .9754 .9466 

.007 I .0054 1.0053 1.0053 1.0052 .9984 .9914 .9708 .9375 

.008 1.0057 1.0056 1 .0056 1.0055 .9977 .9897 .9663 .9285 
.009 1.0059 1.0059 1.0058 1 .0058 .9969 .9880 .9617 .9195 

.010 1.0061 1.006 I 1 .0061 1 .0060 .9962 .9863 .9572 .9106 

.012 1.0065 1.0065 1.0064 1.0063 .9945 .9827 .9480 .8929 

.014 1.0068 1.0068 1.0067 1.0065 .9928 .9791 .9389 .8755 

.016 1.0070 1 .0070 1.0069 1.0067 .9911 .9754 .9297 .8584 

.018 1 .0072 1.0071 1 .0070 1 . 0069 .9893 .9716 .9207 .8416 

.020 I .0073 1 .0072 1 .0071 1.0070 .9874 .9679 .9116 .8250 

.022 1.0074 1.0073 1 .0072 1.0071 .9855 .9641 .9026 .8088 

.024 I .0075 1.0074 1.0073 1 .0071 .9836 .9604 .8937 . 7928 

.026 1 .0075 1 .0075 1.0074 1 .0072 .9817 .9566 .8849 . 7772 

.028 l .0076 1 .0075 1 .0074 1 .0072 .9798 .95Z8 .8762 . 7619 

.030 1. 0076 1 .0076 1.0074 1.0072 .9779 .9490 .8675 . 7468 
I .0078 1 .0077 1.0076 1 .0074 .0000 .0000 .0000 

N 

00 .0000 0'1 
w 



To 
-

.00 

.01 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

. 10 

. 12 

. 14 

.16 

. 18 

.20 

.25 

. 30 

.35 

.40 

.45 

.50 

Table E.l5 Emissive power at Tz=O and Tz=To for a diffuse wall radiating in a cosine 
fashion into a finite medium 

¢s(O,To) ¢S ho 'To) 

s=o.o S= .10 (3=.50 S=l .0 (3=0.0 (3=. l 0 s=.5o 

.50000 .50000 .50000 .50000 .50000 .50000 .50000 

.51216 .51216 .51212 . 51196 .48783 .48781 .48728 

. 52187 .52186 .52163 .52099 .47812 .47808 .47715 

. 53007 .53005 .5L959 .52844 .46992 .46986 .46857 
. 53729 . 53726 .5J659 .53496 .46270 .46263 . 46096 

.54383 . 54380 .54292 .54087 .45616 .45607 .45399 

. 54989 . 54984 .54879 . 54632 .45010 .44999 .44750 

.55557 .55551 .55428 .55141 .44442 .44429 .44138 

.56095 . 56088 .55947 .55618 .43904 .43890 .43555 

.56607 .56600 .56440 .56068 .43392 .43376 .42998 

.5 7097 . 5 7089 .56911 .56494 .42902 .42884 .42464 

.58019 .58009 .577Y3 . 57283 . 41980 .41958 .41454 

.58876 . 58864 .58607 .57999 . 41123 .41097 .40512 

. 596 77 .59663 . 59362 .58654 .40322 .40293 .39627 

.60430 .60414 .60068 .59255 .39570 .39537 .38793 

. 61139 .61121 .60729 . 59811 .38860 .38823 .38003 

.62757 .62734 .62220 . 61034 .37242 . 37197 .36190 

. 6419 3 .64lb4 .635Z4 .62066 .35806 .35753 .34565 

.65485 .65450 .64680 .62949 .34514 .34452 .33090 

.66661 .6b619 .65716 .63711 .33338 .33269 .31737 

. 6 77 38 .67690 .66651 .64374 .32261 .32183 .30487 

.68733 . 686 78 .67500 .649~3 .31266 . 31181 .29326 

S=l.O 

.50000 

.48593 

.47478 

.46518 

.45651 

.44845 

.44084 

.43360 

.42667 

.42001 

.41360 

.40142 

.38999 

.37920 

.36898 

.35925 

.33676 

.31644 

.29789 

.28084 

.26507 N 

.25043 U1 
~ 



Table E.l6 Emissive power at Tz=O and Tz=T 0 for a diffuse wall radiating in a cosine 
fashion into a finite medium 

¢8(0,To) ¢8(To,To) 

To B=O.O 8= .10 6=.50 6=1.0 8=0.0 8= .10 8=.50 

.55 .69656 .69594 .6827b .65462 .30343 .30251 .28242 

.60 . 70516 . 70447 .68986 .65911 .29483 .29383 .27225 

.65 . 71321 .71245 .69640 .66308 .28678 .28571 .26268 

.70 . 72077 .71993 .70244 .66659 .27922 .27808 .25365 

. 75 .7278~ .72697 .70802 .66971 .27211 .27090 .24511 

.80 .73460 . 73361 .71320 .67249 .26539 .26411 .2370 I 

. 85 .74095 . 73989 .71800 .67497 .25904 .25769 .22931 

.90 .74697 . 74584 . 72248 .67719 .25302 .25160 .22198 

.95 .75270 . 75149 .72665 .67916 .24729 .24581 .21499 
1.00 .75814 .75685 .73055 .68093 .24185 .24030 .20831 

1.20 .77756 . 77595 . 74380 .68636 .22243 .22063 . 18431 
1.40 . 79392 .7919~ .75409 .68990 .20607 .20402 . 16387 
1.60 .80794 .80567 .76218 .69221 . 19205 .18977 . 14623 
1.80 .82011 .81750 . 76859 .69374 . 17988 .17737 .13085 
2.00 .83079 .82784 . 77372 .69476 .16921 .16647 . 11735 

2.20 .84024 .83695 . 77783 .69543 .15975 .15679 . 10543 
2.40 .84868 .84504 . 78114 .69588 . 15131 . 14814 .09485 
2.60 .85626 .85226 . 78382 .69618 .14373 . 14036 .08542 
2.80 . 86310 .85876 .78599 .69638 .13689 . 13330 .07700 
3.00 .86932 .86463 .78775 .69651 .13067 .12688 .06945 

00 1.00000 .94620 .79555 .69675 .00000 .00000 .00000 

s=l.o 

.236~0 

.22406 

.21213 

.20094 

. 19042 

.18052 

. 17120 

. 16240 

. 15410 

. 14626 

. 11890 

.09736 

.07903 

.06454 

.05274 

.04312 

.03526 

.02885 

.02360 

.01931 

.00000 
N 
0'1 
0'1 
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Table E.l7 Emi~si~e P?Wer at :z=O and_T2=T0 for a diffuse wall 
rad1at1ng 1n a cos1ne fash1on into a finite medium 

<Ps(O,To) <Ps(To,To) 

To S=2.0 S=5.0 B=lO.O 13=2.0 13=5.0 13=10.0 

.00 .50000 .50000 .50000 .50000 .50000 .!:>0000 

.01 .51140 .50969 .50801 .48236 .47001 .44838 

.02 .51933 .51566 .51233 .46819 .44439 .40406 

.03 .52579 .52031 .51530 .45551 .42081 .36458 

.04 .53142 .52409 .51745 .44371 .39884 .32920 

.05 . 53645 .52723 .51905 .43256 .37826 .29737 

.06 .54101 .52988 .52026 .42193 .35890 .26870 

.07 .54518 .53214 .52119 .41176 .34065 .24284 

.08 .54900 .53409 .52192 .40200 .32342 .21951 

.09 .55253 .53577 .52248 .39260 .30712 .19844 
• 10 .55580 . 53724 .52292 .38353 .29170 .17942 
. 12 .56167 .53963 .52354 .36630 .26324 .14670 

. 14 .56678 .54148 .52394 .35013 .23766 .11997 

. 16 . 57128 .54292 .52418 .33488 .21464 .09813 
• 18 .57527 .54405 .52434 .32046 . 19389 .08028 
.20 .57882 .54493 .52444 .30679 .17518 .06568 

.25 .58614 .54642 .52457 .27551 . 13603 .03978 

. 30 .59176 .54726 .52461 .24781 . l 0569 .02410 

.35 . 59613 . 54774 .52462 .22314 .08216 .01460 

.40 .59956 .54802 .52463 .20109 .06388 .00885 

.45 .60227 .54818 .52463 . 18134 .04968 .00536 

.50 .60442 . 54827 .52463 . 16361 .03865 .00325 
co .61315 .54840 .52465 .00000 .00000 .00000 
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Tab 1e E. 18 Emissive.po~er ~t Tz=O ~nd Tz=To for a diffuse 
wall rad1at1ng 1n a cos1ne fashion into a finite 
medium 

<PI3(0,To) ¢t3{TO,TO) 

T 13=40 .o 13=100.0 13=40.0 13=100.0 0 

.000 .50000 .50000 .50000 .50000 

.001 .50106 .50081 .47977 .45201 

.002 . 50 175 .50125 .46064 .40882 

.003 .50229 .50155 .44235 .36981 

.004 .50274 .50177 .42483 .33455 

.005 .50314 .50193 .40802 .30266 

.006 .50346 .50205 .39190 .27381 

.007 .50375 .50214 .37643 .24773 

.008 .50401 .50222 .36158 .22413 

.009 .50423 .50227 .34732 .20278 

.010 .50443 .50232 .33364 .18346 

.012 .50476 .50238 .30788 .15018 

.014 .50502 .50242 .28412 .12294 

.016 .50523 .50244 .26220 .1 0065 

.018 . 50541 .50245 .24199 .08239 

.020 .50555 .50246 .22333 .06745 

.022 .50566 .50247 .20612 .05522 

.024 .50576 .50248 .19024 .04521 

.026 .50584 .50248 . 17558 .03701 

.028 .50590 .50248 .16206 .03030 

.030 .50593 .50248 .14958 .02480 
00 .50620 .50250 .00000 .00000 



Table E.l9 Normal flux at -rz=O and -rz=-r0 for a finite medium illuminated by a collimated flux of 
cosine magnitude for S=O 

~A(O ,a ,-ro) c;rA ho ,a' -ro) 

-ro a=1.0 a=2.0 a=S.O a=10.0 a=l.O a=2.0 a=S.O a=lO.O 

.00 1.00000 .50000 .20000 .10000 I .00000 .50000 .20000 • 10000 

.01 .99502 .49504 .19512 .09523 .99502 .49504 . 19512 .09523 

.02 .99009 .49019 .19047 .09092 .99009 .49019 .19047 .09092 

.03 . 98521 .48543 .18605 .08700 .98521 .48543 .18605 .08700 

.04 . 98038 .48076 .18182 .08343 .98038 .48076 . 18182 .08343 

.05 .97559 .47617 .17780 .08018 .97559 .47617 .17780 .08018 

.06 . 97085 .47167 . 17395 .07722 .97085 .47167 .17395 .07722 

.07 .96615 .46725 • 17028 .07451 .96615 .46725 . 17028 .07451 

.08 .96149 .46292 .16677 .07203 .96149 .46292 . 16677 .07203 

.09 .95b88 .45866 .16341 .06977 .95688 .45866 . 16341 .06977 

. 10 .95231 .45447 .16020 .06768 .95~31 .45447 . 16020 .06768 

.12 .94328 .44633 .15419 .06401 .94328 .44633 . 15419 .06401 
• 14 .93442 .43846 .14867 .06089 .93442 .43846 . 14867 .06089 
• 16 . 92571 .43086 .14359 .058~1 .92571 .43086 .14359 .05821 
.18 .91714 .42352 .13892 .05591 .91714 .42352 .13892 .05591 

.20 .90872 .41642 .13460 .05390 .90872 .41642 . 13460 .05390 

.25 . 88828 .399b6 . 12515 .04990 .88828 .39966 .12515 .04990 

.30 .86867 .38419 . 11728 .04689 .86867 .38419 .11728 .04689 

.35 .84983 .36988 . 11065 .04452 .84983 .36988 .11065 .04452 

.40 .83171 .35661 . 10501 .04258 . 83171 .35661 . 10501 .04258 

.45 .81428 .34428 .10014 .04094 .81428 .34428 .10014 .04094 N 

.50 .79749 .33280 .09589 .03950 . 79749 .33280 .09589 .03950 
()'1 
():) 



Table E.20 Normal flux at T =0 and Tz=T0 for a finite medium illuminated by a collimated flux of 
cosine magnitudezfor S=O 

~A(O ,o ,T0 ) ~A(To,O,TO) 

To o=l.O o=2.0 o=5.0 o=lO.O o=l.O o=2.0 o=5.0 o=lO.O 
-

.55 • 78131 .32209 .09215 .03822 .78128 .32209 .09215 .03822 

.60 • 76572 .31208 .08882 .03706 .76568 .31208 .08882 .03706 

.65 .75068 .30270 .08584 .03599 .75064 .30270 .08584 .03599 
• 70 .73615 .29390 .08313 .03501 .73612 .29390 .08313 .03501 
.75 . 7Z21 3 .28563 .08066 .03409 .72210 .28564 .08066 .03409 

.80 . 70858 .27785 .07839 .03322 .70855 .27785 .07839 .03322 

.85 .69547 .27051 .07629 .03241 .69545 .2705 I .07629 .03241 

.90 .68280 .26358 .07434 .03164 .68278 .26358 .07434 .03164 

.95 .67054 .25702 .07251 .03092 .67051 .25702 .07251 .03092 
1.00 .65867 .25081 .07080 .03023 .65864 .25081 .07080 .03023 

1.20 .61476 .22893 .06485 .02778 .61474 .22893 .06485 .02778 
1.40 .57589 .21085 .05995 .02572 .57587 .21086 .05995 .02572 
1.60 .54128 .19565 .05581 .02397 .54126 .19565 .05581 .02397 
1.80 .51032 . 18265 .05224 .02244 .51030 .18265 .05224 .02244 
2.00 .48248 .17140 .04912 .02111 .48247 • J 7140 .04912 .02111 

2.20 .45734 .16153 .04636 .01993 .45733 . 16153 .04636 .01993 
2.40 .43456 . 15281 .04391 .01887 .43455 .15281 .04391 .01887 
2.60 .41383 .14502 .04170 .01793 .41382 .14502 .04170 .01793 
2.80 .39489 . 13802 .039 71 .01707 .39489 .13802 .03971 .01707 
3.00 .37755 . 13168 .03790 .01630 .37755 .13168 .03791 . 01630 

00 .00000 .uoooo .00000 .00000 .00000 .00000 .00000 .00000 N 
(J'l 

<..0 



Table E. 21 Nonnal flux at -rz=O and -rz=-r0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for ~=.1 

:z;A(O,cr,-r0 ) ;eA(T0 ,cr ,-r0 ) 

To cr=l.O cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 cr=5.0 cr=lO. 0 

.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 .I 0000 
.0 I .99502 .49504 .19512 .095Z4 .99502 .49504 . 19512 .09524 
.02 .99009 .49019 .19047 .09092 .99009 .49019 .19047 .09092 
.03 .98522 .48543 . 18605 .08700 .98521 .48543 . 18604 .08700 
.04 . 98038 .48076 .18183 .08343 .98038 .48075 .18182 .08343 

.05 .97560 .47617 .17780 .08018 .97559 .47617 .17779 .08018 

.06 .97085 .47168 . 17396 .07722 .97084 .47167 . 17395 .07721 
.07 .~6616 .46726 . 17029 .07452 .96614 .46725 .17027 .07451 
.08 .96150 .4629Z . 166 78 .07204 .96149 .46291 .16676 .07203 
.09 .95689 .45867 .16342 .06977 .95687 .45865 .16341 .06976 

.10 .95Z32 .4544~ .160Z2 .06769 .952Z9 .45446 .16019 .06768 

.12 .94330 .44634 .15421 .06402 .94326 .44631 . 15417 .06400 

. 14 .93444 .43849 .14869 .06090 .93439 .43844 .14865 .06087 

. 16 .92574 .43089 .14362 .05823 .92567 .43083 . 14357 .05819 

.18 .91719 .42356 .13895 .05593 .91710 .42348 .13888 .05588 

.20 .90878 .41647 .1 ~463 .05393 .90867 .41637 . 13456 .05387 

.25 .88837 . 39973 .12520 .04993 .88820 .39958 .12509 .04986 

.30 .86879 .38429 .11735 .04693 .86854 .38408 . 11720 .04684 

.35 .84999 .37002 .11074 .04457 .84966 .36974 . 11055 .04446 

.40 .83192 .35679 .10511 .04264 .83149 .35643 .10488 .04251 

.45 .81455 .34450 . 10026 .04100 .81400 .34405 .09999 .04086 N 

.50 . 79782 . 33307 .09604 .03957 . 79715 .33253 .09573 .03941 
C'l 

--------~-----------------~------·· ---- 0 



Table E.22 Normal flux at Tz=O and Tf=T0 for a finite medium illuminated by a collimated 
flux of cosine magnitude or 8=.1 

:rA(O ,a ,T 0 ) ZA(T0 ,o ,T0 ) 

To o=l.O o=2.0 o=5.0 o==lO.O o=l.O o=2.0 o=5.0 o=lO.O 

.55 . 78171 .32240 .09232 .03~30 .78090 . 32176 .09196 .03812 

.60 • 766.19 .31244 .0890 I .03715 .76523 .31170 .08861 .03695 

.65 .75123 . 30311 .08604 .03609 .75011 .30227 .08560 .03587 
.70 . 73679 .29437 .08336 .03511 .73550 .29341 .08287 .03488 
.75 . 72286 .28616 .08091 .03420 .72139 .28508 .08038 .03395 

.80 . 70940 .27843 .07866 .03335 .70744 .27724 .07809 .0330~ 

.85 .69639 .27115 .07658 .03255 .69453 .26983 .07597 .03226 

.90 .68383 .26428 .07465 .03179 .68176 .26284 .07400 .03148 

.95 .67167 .25779 .07285 .03107 .66938 .25622 .07215 .03075 
1.00 .65991 .25164 .07116 .03039 .65740 .24994 .07042 .03005 

1.20 .61650 .23004 .06529 .02798 .61300 .22780 .06438 .02757 
1.40 .57~18 .21225 .06049 .02597 .57360 .20947 .05941 .02548 
1.60 .54418 . 19734 .05644 .02425 .53842 . 19400 .05520 .02369 
1.80 .51387 .18465 .05297 .02277 .50685 . 18074 .05156 .02214 
2.00 .48673 . 17371 .04994 .02147 .47839 . 16923 .04837 .02078 

2.20 .46232 . 16417 .04728 .02034 .45262 . 15912 .04555 .01957 
2.40 .44029 . 155 77 .04493 .01933 .42919 .15015 .04303 .01849 
2.60 .42035 . 14831 .04282 .01842 .40780 .14213 .04076 .01751 
2.80 .40223 . 14164 .04093 .01761 .38820 .13490 .03871 .01663 
3.00 .38571 . 13564 .03923 .01688 .37020 . 12833 .03684 .01583 

00 . 14811 .05306 .01553 .00670 .00000 .00000 .00000 .00000 N 
0'1 



Table E.23 Normal flux at Tz=O and Tf=T0 for a finite medium illuminated by a collimated 
flux of cosine magnitude or 8=.5 

~A(O,cr,T0 ) :i'A(T0 ,cr ,T0 ) 

To cr=l .0 cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 cr=5.0 cr=lO .0 

.00 1.00000 .50000 .lOOOO .10000 1.00000 .50000 .20000 . 10000 

.01 .99502 .49505 .19512 .09524 .99502 .49504 . 19511 .09523 

.02 .99011 .49020 .1904~ .09093 .99008 .49018 .19046 .09091 

.03 .98524 .48545 . 18607 .08702 .98519 .48540 .18602 .0~697 

.04 .9~043 .48080 .18187 .08347 .98033 .48071 . 18178 .08339 

.05 .97567 .47625 .17787 .08024 .97552 .47610 . 17773 .08012 

.06 .97096 .47178 . 17405 .07730 .97074 . 47156 .17385 .07713 

.07 .966J0 .46740 .17041 .07462 .96600 .46711 . 17014 .07439 

.08 .9bl69 .46311 . 16694 .07217 .96129 .46272 . 16660 .07189 

.09 .95713 .45890 .16362 .06993 .95662 .45841 . 16320 .06958 

.10 .95262 .45477 .16046 .06788 .95199 .45417 . 15994 .06746 

. 12 .94373 .44675 • 15454 .06427 .94283 .44589 • 15382 .06371 

. 14 .93503 .43903 .14913 .06121 .93379 .43787 .14818 .06050 

.16 .92651 .43160 .14417 .05861 .92489 .43010 . 14296 .05774 

. 18 .91816 .42444 .13962 .05637 .91611 .42256 . 13814 .05534 

.20 .90998 .41754 . 13543 .05444 .90744 .41524 . 13367 .05324 

.25 .89024 .40137 .12634 .05062 .~862~ .39786 .12380 .04899 

.30 . 87147 .38659 .11886 .04779 .86579 .38166 . 11548 .04574 

.35 . 85361 . 37306 . 11265 .04561 .8459J .36652 . 10837 .04314 

.40 .83662 .36065 .10742 .04385 .82665 .35233 .10223 .04096 

.45 .82045 .34925 .10298 .04239 .80791 .33901 .09686 .03909 N 

.50 .80504 .33877 .09917 .04113 .78970 .32647 .09212 .03743 0'1 
N 



Table E.24 Normal flux at -rz=O and -rz=-r0 for a finite medium illuminated by a collimated 
flux of cosine magnitude tor s=.5 

~A(O,o,-ro) zA(-ro' 0 '-ro) 

-ro o=l.O o=2.0 o=5.0 o=lO.O o=l.O o=2.0 o=5.0 

.55 .79037 .32911 .09587 .04004 . 77198 .31465 .08788 
.60 . 77639 .32020 .09298 .03906 .75472 .30347 .08406 
.65 . 76308 .31196 .09044 .O::i818 . 73791 .29289 .08060 
.70 .75038 .30435 .0~817 .03738 . 72152 .28286 .07742 
.75 .73828 .29730 .08615 .03665 .70554 .27334 .07449 

.80 . Tl.674 .29076 .08432 .035Y7 .68994 .26428 .07177 

.85 . 71574 .28469 .082b6 .03535 .67471 .25565 .06923 

.90 .70525 .27905 .0~115 .03477 .65985 .24742 .06685 

.95 .69525 .27381 .07977 .03424 .64532 .23956 .06462 
1.00 .68571 .26892 .07850 .03374 .63113 .23205 .06250 

1.20 .65176 .25246 .07429 .03205 .57746 .20503 .05506 
1.40 .62364 .23988 .07112 .03074 .52833 . 18203 .04884 
1.60 .60036 .23014 .06866 .02972 .48326 .16222 .04353 
1.80 .58107 .22254 .06673 .02890 .44185 . 14500 .03892 
2.00 .56509 .21654 .06519 .02826 .40380 . 12991 .03489 

2.20 .55187 .21178 .06396 .02774 .36883 .11661 .03133 
2.40 .540Y2 .20798 .06297 .02732 .33670 .10483 .02818 
2.60 .53187 .20494 .06217 .02698 .30720 .09435 .02538 
2.80 .52439 .20249 .06153 .02671 .28012 .08501 .02287 
3.00 .51821 .20050 .06100 .02648 .25529 .07665 .02063 

00 .48933 .19184 .05869 .02550 .00000 .00000 .00000 

o=lO.O 

.03594 

.03457 

.03331 

.03213 

.03102 

.02997 

.02898 

.02805 

.02715 

.02630 

.02325 

.02066 

.01843 

.01649 

.01479 

.01328 

.01195 

.01076 

.00970 

.00875 

.00000 N 
Ctl 
w 



Table E.25 Nonnal flux at Tz=O and Tz=T0 for a finite medium illuminated by a collimated 
flux of cosine magnitude tor s=l 

2A(O,o,T0 ) ~A (To ,o ,To) 

To o=1.0 o=2.0 o=5.0 o=lO.O o=l.O o=2.0 o=5.0 

.00 1.00000 .50000 .20000 . 10000 1.00000 .50000 .20000 

.01 .99503 .49506 .19513 .09524 .99501 .49503 019511 

.02 .99014 .49023 0 19051 .09096 .99005 .49015 . 19043 

.03 . 98531 .48552 .18613 .08708 .98512 .48533 . 18595 

.04 .98055 .48092 .18198 .08357 .98021 .48059 . 18166 

.05 .97586 .47643 .17804 .08039 0 97532 .47591 017755 

.06 .97124 .47204 .17429 .07751 .97046 .47129 .17360 

.07 .96668 .46776 . 17073 .07489 .96562 .46674 . 16981 

.08 .96Z18 .46357 .16735 .07250 .96080 .46225 . 16616 

.09 .95775 .45948 .16413 .07033 .95600 .45781 .16266 

. 10 .95338 .45549 .16107 .06836 .95122 .45343 015928 

. 12 .94483 .44777 .15538 .06490 . 94171 .44484 .15290 

.14 . 93651 .44040 .15023 .06200 .93228 .43645 .14697 

. 16 .92844 .43~37 . 14555 .05956 .92292 .42826 .14144 

. 18 .92059 .42665 0 14129 .05748 .91362 .42025 013627 

.20 .91296 .42023 013741 .05572 .90439 .41243 . 13144 

.25 . 89483 .40540 .12914 .05230 .88156 .39360 . 12060 

.30 .87798 .39217 . 12253 .04986 .85909 . 37575 . 11126 

.35 .86230 .38035 . 11719 .04806 .83697 .35877 .10310 

.40 .84774 .36978 .11284 .04667 . 81517 .34261 .09591 

0 45 .83422 .36032 010927 .04557 .79369 .32719 .08951 
.50 .82166 . 35186 .10632 .04466 0 77253 .31249 .08377 

o=lO.O 

• 10000 
.09522 
.09088 
.08691 
.08328 

.07996 

.07691 

.07410 

.07152 

.06913 

.06692 

.06298 

.05956 

.05659 

.05397 

.05165 

.04684 

.04305 

.03993 

.03727 

.03494 N 
0'1 

.03286 ..j::lo 



Table E.26 Normal flux at Tz=O and Tz=To for a finite medium illuminated by a collimated flux of 
cosine magnitude for S=l 

ZA(O,o,T0 ) :CA ho'0 ,To) 

'to o=l.O o=2.0 o=5.0 o=10.0 o=1.0 o=2.0 o=5.0 o=10.0 

.55 .81001 .34429 .10386 .04390 .75168 .29843 .07857 .03097 

.60 .79920 .33751 .1 0180 .04326 .73116 .28501 .07385 .02924 

.65 .78918 .33143 .10005 .04270 .71096 .27217 .06952 .02763 

.70 .77990 .32599 .09856 .04222 .69109 .25989 .06553 .02615 

.75 .77130 .32111 .09728 .04179 .67155 .24814 .06185 .02475 

.80 .76334 .31673 .09618 .04142 .65235 .23690 .05844 .02345 

.85 .75597 .31280 .09522 .04108 .63348 .22614 .05526 .02223 

.90 .74915 .30928 .09439 .04079 .61496 .21585 .05229 .02108 

.95 .74285 .30612 .09366 .04053 .59679 .20600 .04952 .01999 
1.00 .73702 .30328 .09302 .04029 .57897 • 19657 .04691 .01897 

1.20 . 71783 .29454 .09113 .03958 .51130 .16280 .03795 .01541 
1.40 .70392 .28884 .08994 .03912 .44944 .13458 .03084 .01255 
1.60 .69389 .28511 .08918 .03881 .39339 • 11106 .02512 .01023 
1.80 .68669 .28266 .08868 .03861 .34299 .09152 .02049 .00835 
2.00 .68154 .28105 .08835 .03848 .29800 .07532 .01673 .00682 

2.20 .67788 .27999 .08814 .03839 .25808 .06193 .01368 .00558 
2.40 .67528 .27929 .08799 .03834 .22286 .05087 . 01118 .00456 
2.60 .67344 .27882 .08790 .03830 . 19194 .04176 .00914 .00373 
2.80 .67214 .27852 .08784 .03827 .16490 .03426 .00748 .00305 
3.00 .67123 .27831 .08779 .03825 .14137 .02810 .00612 .00249 

00 .66910 .27791 .08771 .03822 .00000 .00000 .00000 .00000 N 
O'l 
0'1 



Table E.27 Normal flux at Tz=O and Tz=T0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for e=2 

:z;A (0 ,a ,T0 ) 2A(To,a,To) 

To a=l.O a=2.0 a=5.0 a=lO.O a=l.O a=2.0 a=5.0 

.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 
.01 .99505 .49508 .19515 .09526 .99499 .49501 .19509 
.02 .99022 .49031 .19059 .09103 .98997 .49007 .19035 
.03 .98550 .48570 .18631 .08724 .98493 .48515 .18578 
.04 .98088 .48124 .18228 .08384 .97988 .48026 .18135 

.05 .97637 .47693 .17849 .08079 .97481 .47540 .17707 

.06 .97197 .47275 .17493 .07805 .96972 .47057 .17293 

.07 .96767 .46871 • 17158 .07559 .96461 .46576 .16891 

.08 .96347 .46481 .16842 .07337 .95949 .46098 .16501 

.09 . 95937 .46103 .16546 .07138 .95435 .45622 .16123 

.10 .95537 .45737 .16266 .06958 .94919 .45149 • 15755 

.12 .94766 .45041 .15755 .06649 .93883 .44209 .15051 

.14 .94031 .44391 .15302 .06397 .92841 .43279 .14386 

.16 .93331 .43783 .14900 .06191 .91793 .42358 . 13755 

.18 .92666 .43214 .14543 .06021 .90740 .41447 . 13157 

.20 .92033 .42683 . 14226 .05880 .89682 .40546 . 12590 

.25 .90583 .41503 .13579 .05622 .87022 .38337 . 11288 

.30 .89308 .40509 .13094 .05456 .84348 .36194 .1 0136 

.35 .88188 .39672 .12730 .05344 .81669 .34121 .09111 

.40 .87206 .38968 . 12456 .05267 .78995 .32121 .08196 

.45 .86345 .38377 .12249 .05212 .76336 .30197 .07379 

.50 .85593 .37881 .12091 .05172 .73699 .28352 .06647 

a=lO.O 

. 10000 

.09520 

.09080 

. 08674 

.08300 

.07953 

.07631 

.07331 

.07052 

.06792 

.06548 

.06105 

.05713 

.05363 

.05049 

.04766 

.04162 

.03671 

.03260 

.02910 

.02606 N 

.02340 m 
m 



Table E.28 Normal flux at Tz=O and T2 =T 0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for 8=2 

~A(0~a~T0 ) :CA(To,a,To) 

To a=1.0 a=2.0 a=5 .0 a=10.0 a=l.O a=2.0 a=5.0 

.55 .84935 .37465 .11970 .05142 .71092 .26587 .05990 

.60 .84361 .37116 .11878 .05119 .68523 .24903 .05400 

.65 .83861 .36824 .11807 . 05101 .65996 .23300 .04870 

.70 .83425 .36580 . 11752 .05087 .63517 .21777 .04394 

.75 .83045 .36376 • 11710 .05077 . 61091 .20333 .03965 

.80 .82715 .36206 .11677 .05068 .58720 . 18967 .03578 

.85 .82428 .36063 .11651 .05061 .56407 . 17677 .03230 

. 90 .82179 .35944 . 11631 .05056 .54156 . 16461 .02917 

.95 .81962 .35845 .11615 .05051 .51967 . 15316 .02634 
1.00 .81774 .35762 .11602 .05048 .49843 . 14241 .02379 

1.20 .81242 .35549 .11573 .05039 .41996 .1 0568 .01585 
1 .40 .80943 .35446 .11561 .05035 .35181 .07769 .01058 
1.60 .80776 .35397 . 11556 .05034 .29338 .05666 .00707 
1.80 .80682 .35374 .11554 .05033 .24378 .04105 .00472 
2.00 .80631 .35363 . 11553 .05033 .20199 .02957 .00316 

2.20 .80602 .35357 . 11553 .05032 . 11698 . 02119 . 00211 
2.40 .80586 .35355 .11553 .05032 .13779 .01513 .00141 
2.60 .80577 .35354 . 11553 .05032 .11353 .01076 .00094 
2.80 .80573 .35353 .11553 .05032 .09343 .00762 .00063 
3.00 .80570 .35353 .11553 .05032 .07682 .00538 .00042 

00 .80567 .35353 .11552 .05032 .00000 .00000 .00000 

a=lO.O 

.02105 

.01896 

.01709 

. 01541 

. 01391 

.01256 

.01135 

.01025 

.00926 

.00837 

.00559 

.00373 

.00250 

.00167 

.00112 

.00074 

.00050 

.00033 

.00022 

.00015 

.00000 N 
0'\ 
'J 



Table E.29 Normal flux at Tz=O and Tz=T0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for S=5 

-
ZA{O,cr,T0 ) 2A(T0 ,cr,T0 ) 

To cr=1.0 cr=2.0 cr=5.0 cr=10.0 cr=1.0 cr=2.0 cr=5.0 cr=10.0 

.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 . 10000 
.01 .99512 .49515 .19522 .09533 .99492 .49494 . 19502 .09514 
.02 .99050 .49059 .19086 .09128 .98969 .48979 .19008 .09054 
.03 .98611 .48631 .18688 .08776 .98431 .48453 .18518 .08618 
.04 .98196 .48230 .18326 .08471 .97879 .47919 .18033 .08205 

.05 .97802 .47853 .17966 .08205 .97314 .47377 .17553 .07811 

.06 .97430 .47500 .17695 .07975 .96736 .46827 .17078 .07438 

.07 .97077 .47169 .17421 .07774 .96147 .46270 .16608 .07082 

.08 .96743 .46858 . 17171 .07600 .95546 .45707 . 16145 .06743 

.09 .96428 .46568 .16944 .07448 .94936 .45140 .15687 .06421 

.10 .96130 .46296 .16737 .07317 .94315 .44568 .15237 .06113 

.12 .95581 .45802 .16377 .07102 .93049 .43414 .14358 .05542 

.14 .95092 .45370 .16079 .06940 .91753 .42250 .13509 .05023 

.16 .94655 .44992 .15832 .06817 .90433 .41083 .12692 .04552 

.18 .94266 .44661 .15628 .06724 .89094 .39916 .11909 .04124 

.20 .93919 .44372 .15459 .06653 .87739 .38754 . 11160 .03736 

.25 .93209 .43798 • 15154 .06542 .84310 .35888 .09441 .02916 

.30 .92679 .43390 .14965 .06485 .80863 .33116 .07936 .02273 

.35 .92284 .43100 .14847 .06456 .77438 .30465 .06635 .01772 

.40 .91991 .42894 .14775 .06441 .74066 .27956 .05520 .01380 

.45 .91772 .42749 .14730 .06433 . 70770 .25600 .04574 .01074 N 

.50 .91610 .42645 • 14702 .06429 .67564 .23401 .03776 .00836 <::1'\ 
(X) 

00 .91145 .42397 .14658 .06424 .00000 .00000 .00000 .00000 



Table E.30 Normal flux at ~z=O and ~z=~0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for S=lO 

--
:rA(O,cr,~o) :CAho,cr ,To) 

To cr=1.0 cr=2.0 cr=5.0 cr=10.0 cr=1.0 cr=2.0 cr=5.0 cr=10.0 

.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 .1 0000 

.01 .99526 .49528 .19535 .09546 .99478 .49481 .19488 .09501 

.02 .99098 .49107 .19132 .09172 .98920 .48930 . 18960 .09008 

.03 .98713 .48731 .18783 .08863 .98328 .48352 .18420 .08525 

.04 .98367 .48396 .18481 .08608 .97706 .47749 .17870 .08053 

.05 .98055 .48098 .18220 .08399 .97058 .47125 . 17315 .07595 

.06 .97775 .47833 .17994 .08226 .96386 .46484 .16758 .07151 

.07 .97523 .47597 .17799 .08084 .95694 .45829 .16201 .06723 

.08 .97297 .47387 .17630 .07967 .94983 .45162 . 15646 .06312 

.09 .97094 .47200 .17485 .07870 .94257 .44485 .15097 .05918 

.1 0 .96912 .47034 .17359 .07791 .93518 .43801 . 14554 .05542 

.12 .96602 .46756 . 17157 .07672 .92007 .42420 .13493 .04844 

.14 .96353 .46536 .17007 .07592 .90465 .41033 .12475 .04217 

.16 .96152 .46363 .16895 .07537 .88902 .39651 .11506 .03658 

.18 .95991 .46226 .16812 .07501 .87330 .38281 .10590 .03163 

.20 .95862 .46119 .16750 .U7476 .85754 .36932 .09728 .02727 

.25 .95639 .45939 .16656 .07444 .81841 .33678 .07815 .01862 

.30 .95510 .45841 .16612 .07431 .78013 .30632 .06231 .01256 

.35 .95436 .45787 . 16591 .07427 .74307 .27813 .04941 .00838 

.40 .95393 .45757 .16581 .07425 .70743 .25224 .03901 .00554 

.45 .95368 .45741 .16576 .07425 .67329 .22859 .03070 .00364 N .50 .95354 .45732 .16574 .07424 .64068 .20705 .02411 .00238 0"'1 
1.0 

00 .95317 .45705 .16559 .07424 .00000 .00000 .00000 .00000 



Table E.31 Normal flux at Tz=O and Tz=T 0 for a finite medium illuminated by a collimated flux 
of cosine magnitude for S=40 

:FAtO,cr,T0 ) 2A( T0 ,cr ,T0 ) 

To cr=l.O cr=2.0 cr=5.0 cr=lO.O cr=l.O cr=2.0 cr=5.0 cr=lO.O 

.000 1 .00000 .50000 ~20000 .10000 1.00000 .50000 .20000 .10000 
.005 .99822 .49822 .19823 .09825 .99679 .49680 • 19682 .09686 
.010 .99677 .49678 .19682 .09690 .99327 .49331 .19340 .09356 
.015 .99558 .49561 .19570 .09584 .98951 .48959 .18981 .09016 
.020 .99462 .49467 .19480 .09501 .98556 .48569 .18609 .08672 

.025 .99383 .49390 .19408 .09437 .98144 .48166 • 18229 .08327 

.030 .99319 .49328 .19351 .09387 .97720 .47752 .17843 .07985 

.035 .99267 .49277 . 19305 .09348 .97286 .47330 • 17456 .07648 

.040 .99225 .49236 .19269 .09318 .96845 .46903 .17068 .07317 

.045 .99191 .49203 .19239 .09294 .96398 .46472 .16682 .06996 

.050 .99162 .49176 .19216 .09276 .95946 .46039 .16299 .06683 

.055 .99140 .49155 .19198 .09262 .95492 .45605 . 15921 .06380 

.060 .99121 .49137 .19183 .09250 .95035 .45171 . 15547 .06088 

.065 .99106 .49123 .19171 .09242 .94578 .44737 .15179 .05807 

.070 .99093 .49111 .19161 .09235 .94119 .44305 .14817 .05537 

.075 .99083 .49102 .19154 .09230 .93660 .43875 .14462 .05277 

.080 .99075 .49094 .19148 .09226 .93202 .43447 .14114 .05028 

.085 .99068 .49088 .19143 .09222 .92744 .43022 .13773 .04790 

.090 .99063 .49083 .19139 .09220 .92288 .42600 .13438 .04562 

.095 .99059 .49079 .19136 .09218 .91832 .42181 • 13111 .04345 

.100 . 99055 .49076 .19134 .09216 .91378 .41765 .12791 .04136 
.18883 .08992 .00000 .00000 

1'\) 

00 .98774 .48803 .00000 .00000 ~ 
0 



Table E.32 Normal flux at T =0 and T2=TB for a finite medium illuminated by a collimated flux 
of cosine magnitfide for S=lO 

~A(O~o~T0 ) ~A(TO,O'TO) 

To o=l.O o=2.0 o=5.0 o=lO.O o=1.0 o=2.0 o=5.0 o=l 0. 0 

.000 1 .00000 .50000 .20000 .10000 1.00000 .50000 .20000 .10000 

.001 .99981 .49981 .19981 .09981 .99918 .49918 • 19919 .09919 

.002 .99964 .49964 .19964 .09964 .99835 .49836 .19836 .09837 

.003 .99949 .49949 .19949 .09949 .99751 .49751 .19752 .09754 

.004 .99935 .49935 .19935 .09936 .99665 .49966 .19668 .09671 

.005 .99922 .49922 .19923 .0992.4 .99578 .49579 .19582 .09587 

.006 .99911 .49911 .19912 .09913 .99490 .49491 • 19496 .09503 

.007 .99901 .49901 .19902 .09903 .99401 .49403 .19409 .09419 

.008 .99892 .49892 .19893 .09895 .99310 .49313 .19321 .09334 

.009 .99883 .49884 .19885 .09887 .99220 .49223 .19233 .09250 

.010 .99876 .49876 .19878 .09880 .99128 .49132 .19145 .09165 

.012 .99863 .49864 .19866 .09869 .98493 .48949 .18967 .08996 

.014 .99853 .49853 .19856 .09859 .98756 .48764 .18789 .08829 

.016 .99844 .49845 .19848 .09852 .98567 .48578 • 18611 .08663 

.018 .99837 .49838 .19841 .09846 .98377 .48391 .18433 .08498 

.020 • 99831 .49832 .19836 .09841 .98187 .48204 .18255 .08335 

.02.2 .99827 .49828 .19832 .09837 .97995 .48016 .18078 .08175 

.024 .99823 .49824 .19828 .09834 .97803 .47828 .17902 .08017 

.026 .99820 .49821 .19825 .09832 .97611 .47641 .17727 .07861 

.028 .99817 .49819 .19823 .09830 .97419 .47453 .17553 .07708 

.030 .99815 .49817 .19821 .09828 .97226 .47266 . 17381 .07558 N 
00 .99504 .49509 .19523 .09815 .00000 .00000 .00000 .00000 ......, 

__. 



Table E.33 Normal flux at Tz=O and Tz=T0 for a diffuse wall radiating in a cosine fashion into 
a finite medium · 

:rc{O ,To) :Cc (-r o 'To ) 

To (3=0 (3= .10 (3=.50 (3=1.0 (3=0 s= .1o (3=.50 (3=1.0 
-

.00 1 .00000 1.00000 1.00000 1.00000 1.00000 1 .00000 1.00000 1.00000 

.01 .99025 .99025 .99026 .99029 .99029 .99028 .99023 .99007 

.02 .98093 .98094 .98097 .98107 .98097 .98096 .98078 .98026 

.03 .97195 .97196 .97203 .97224 .97196 .97195 .97160 .97058 

.04 .96325 .96326 .96339 .96374 .96325 .96322 .96266 .96101 

.05 .95481 .95482 .95502 .95555 .95478 .95475 .95394 .95157 

.06 .94659 .94660 .94689 .94764 .94656 .94651 .94543 .94224 
.07 .93858 .93860 .93898 .93999 .93855 .93849 .93710 .93302 
.08 .93078 .93080 .93129 .93259 .93075 .93067 .92894 .92390 
.09 .92315 . 92318 .92380 .92542 .92313 .92304 .92095 .91489 

.10 .91570 .91574 .91649 .91848 .91569 .91558 .91311 .90598 

.12 .90130 .90134 .90241 .90520 .90129 .90115 .89787 .88845 

.14 .88749 .88755 .88898 .89267 .88750 .88732 .88315 .87129 

.16 .87423 .87431 .87614 .88084 .87424 .87403 .86892 .85450 

.18 .86147 .86157 .86385 .86965 .86148 .86123 .85514 .83807 

.20 .84917 .84929 .85206 .85905 .84919 .84889 .84177 .82197 

.25 .82024 .82042 .82456 .83484 .82025 .81986 .81002 .78316 

.30 .79357 .79383 .79954 .81352 .79358 . 79309 .78037 .74628 

.35 .76886 .76920 .77666 .79466 .76886 .76828 .75256 . 71119 

.40 . 74585 .74627 .75566 .77792 .74584 .74518 .72637 .67779 

.45 . 72434 .72486 .73630 .76303 .72433 .72359 .70164 .64599 
.70416 .70479 .71842 .74975 .70416 .70333 .67821 .61569 

N 
. 50 ....... 

N 



Table E.34 Normal flux at Tz=O and Tz=T0 for a diffuse wall radiating in a cosine fashion into 
a finite medium 

:?'c(O sT0 ) ":!ct-r0 s-r0) 

To 13=0 13= .1 0 13=.50 13=1 • 0 13=0 13= .1 0 13=.50 
-

.55 .68519 .68593 • 70185 .73788 .68519 .68427 .65597 

.60 .66730 .66815 .68647 .72726 .66730 .66628 .63482 

.65 .65039 .65136 .67217 . 71775 .65039 .64927 .61466 

.70 .63437 .63547 .65884 .70923 .63437 .63314 .59542 
• 75 .61918 .62040 .64641 .70157 .61918 .61781 .57702 

.80 .60474 .60609 .63479 .69469 .60474 .60320 .55941 

.85 .59099 .59248 .62392 .68851 .59099 .58927 .54254 

.90 .57788 .57952 .61374 .68294 .57788 .57595 .52635 

.95 .56536 .56715 .60419 .67794 .56536 .56319 .51081 
1.00 .55340 .55533 .59523 .67343 .55340 .55095 .49586 

1.20 .51037 .51292 .56447 .65942 .51037 .50645 .44144 
1.40 .47370 .47691 .54027 .65014 .47370 .46779 .39430 
1.60 .44204 .44594 .52107 .64398 .44204 .43390 .35310 
1.80 .41441 .41901 .50573 .63987 .41441 .40437 .31684 
2.00 .39006 .39539 .49343 .63713 .39006 .37932 .28475 

2.20 .36843 .37451 .48351 .63530 .36843 .35928 .25623 
2.40 .34909 .35592 .47550 .63407 .34909 .34505 .23079 
2.60 .33169 . 33928 .46900 .63325 .33169 .33766 .20804 
2.80 .31595 .32431 .46373 .63270 .31595 -- .18764 
3.00 .30164 .31078 .45945 .63234 .30164 -- .16932 

00 .00000 .12207 .44041 .63159 .00000 .00000 .00000 

13=1.0 

.58681 

.55929 

.53305 

.50802 

.48416 

.46141 

.43970 

.41900 

.39926 

.38044 

.31345 

.25807 

.21233 
• 17458 
• 14345 

.11782 

.09673 

.07938 

.06512 

.05341 

.00000 
N 
""-J 
w 
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Table E.35 Nor~al _flu~ at -r 2=~ and -r ~To ~or a diffuse wall 
rad1at1ng 1n a cos1ne fasfi1on 1nto a finite medium 

Zc(O,T0 ) :lc(To,To) 

To s=2.o !3=5.0 B=lO.O S=2.0 S=5.U S=lO.O 

.00 l .00000 1. 00000 1 .00000 1 .00000 1.00000 1.00000 

.01 .99036 .99061 .99078 . 98950 .98613 .97642 

.02 .98133 .98225 .98356 .97839 .96781 . 93913 

.03 . 97280 . 97477 .97768 .96691 .94679 .89514 

.04 .96472 .96805 . 97290 .95517 .92395 .84776 

.05 .95704 .96202 .96900 .94322 .89988 .79898 

.06 .94974 .95658 .96581 . 93113 .87498 .75008 

.07 .94279 .95169 . 96321 .91893 .84956 .70195 

.08 .93617 .94728 .96109 .90666 . 82386 .65516 

. 09 .92986 .94331 . 95935 .89435 .79807 .61010 

. 10 .92383 . 93972 .95793 .88202 . 77234 .56704 

. 12 .91259 .93357 .95582 .85738 . 72154 .48743 

. 14 .90233 .92856 . 95441 . 83285 .67217 .41676 

. 16 .89295 .92447 .95347 .80854 .62469 .35480 

. 18 .88436 . 92113 .95284 .78452 .57939 .30099 

.20 .87649 . 91841 .95242 . 76086 .53643 .25459 

.25 .85956 . 91360 .95188 .70348 .43970 .165BO 

.30 .84588 .91069 .95168 . 64899 .35786 .10677 

.35 .83480 .90893 .95160 .59763 .28967 .06820 

.40 .82581 .90787 .95158 .54949 .23346 .04328 

.45 . 81851 . 90723 .95157 .50455 . 18749 .02733 

.50 .81256 .90684 .95156 .46276 .15014 .01719 

00 .78623 .90625 .95161 .00000 .00000 .00000 
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