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ABSTRACT

The exact formulations for the radiative flux and the emissive
power are presented for a two-dimensional, finite, planar, absorbing
and emitting, gray medium in radiative equilibrium. Exact expressions
are obtained for the medium subjected to the following types of
boundary conditions: (1) cosine varying diffuse, (2) cosine varying
collimated, (3) constant temperature strip, and (4) the strip
illuminated by a uniform collimated flux. The solutions for the
physically unrealistic cosine varying models are used to construct the
solutions for the more practical finite strip models. The two-
dimensional equations are reduced to one-dimensional equations by the
method of separation of variables. This simplification is made
possible by the cosine form of the boundary radijation. The correspond-
ing equations for the semi-infinite medium are obtained from the equa-
tions for the finite optical thick medium by letting the optical
thickness become infinite. The reduced one-dimensional equations are
then solved exactly by techniques from one-dimensional radiative
theory for the emissive power and radiative flux at the boundaries for
both the finite and semi-infinite models. A wide range of exact
numerical data is presented.

The cosine varying collimated boundary condition generates
functions which are analogous to the one-dimensional X- and Y-
functions of Chandrasekhar for the finite model and the H-function of
Chandrasekhar for the semi-infinite model. These generalized

functions represent the dimensionless emissive power at the boundaries



and appear in the radiative flux and emissive power at the boundaries
for the cosine varying diffuse model as well as for both finite strip
models. The generalized H-, X- and Y-functions are tabulated exactly
for a wide range of numerical values.

In addition to the generalized H-, X- and Y-functions, a function
analogous to the exponential integral function is introduced. Gener-
alized exponential integral functions of the first, second, and third
order are defined and the recurrence formulas and series expansions
are developed. The generalized exponential integral functions are

tabulated for a wide range of numerical values.
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I. INTRODUCTION

The one-dimensional model for radiative heat transfer through a
participating medium has been extensively analyzed. In fact, the
major portion of the current literature involving radiative heat
transfer is concerned with the one-dimensional analysis. This is due
to the mathematical simplification and certainly not because the one-
dimensional model yields the best physical description. The one-
dimensional analysis permits a rigorous mathematical solution as well
as gives a first approximation to many two-dimensional problems.
However, recent advances in high temperature technology in the areas
of gas dynamics, fluid mechanics, and energy exchange between surfaces,
indicate that much more precision is needed in calculating heat flux
and temperature. The calculation of two-dimensional radiative trans-
fer is also required in many atmospheric problems. Of principal
importance in the areas of weather forecasting and meteorology is
the calculation of the net radiant energy exchange between the earth
and the atmosphere. Typical problems include the prediction of frost
and fog, evaporation and melting of snow, and the formation and trans-
port of air masses.

The present investigation is concerned with two-dimensional
radiative transfer in a participating medium. The radiative flux and
temperature thus depend upon two space variables with the flux having
a component in each direction. The integral equation describing the
temperature is very complicated and difficult to solve. For this
reason, the limited two-dimensional development which appears in the
literature is either highly analytical or approximate in nature. The

analytical studies have provided only limited numerical results, and



the validity of the approximate analyses is yet unknown. The present
analysis offers an exact analytical formulation of a two-dimensional
model with a wide range of numerical data which can be utilized to
verify the one-dimensional assumption and the validity of various two-
dimensional approximate solutions.

The mathematical analysis encountered in solving for temperature
and heat flux in a two-dimensional medium in which conduction, convec-
tion, and radiation occur simultaneously is very complicated due to
the interaction of the various modes of heat transfer. If any one
mode can be considered to be negligible, the mathematics is consider-
ably simplified. For this reason, the present investigation is con-
cerned with two-dimensional gray absorbing and emitting media in which
energy transport is solely by radiation. A medium under these condi-
tions is said to be in radiative equilibrium and the formulation of
the problem reduces to the solution of an integral equation for the
temperature distribution.

The two-dimensional radiative equilibrium model can be used as a
standard of comparison whereby the results of the one-dimensional
radiative equilibrium model can be verified or rejected. A confidence
interval for the parameters involved can then be obtained within which
the one-dimensional radiative equilibrium assumption can be utilized.
Such an error bound is very desirable because of the abundance of
practical problems appearing in the current literature which are
solved by the one-dimensional radiative equilibrium assumption. The
radjative equilibrium model can also be used to construct approximate

solutions to more complex models that involve combined modes of heat



transfer. This approximation can be accomplished by regarding the
total heat flux to be evaluated through superposition of the separate
contributions. Thus, if radiation and conduction occur simultaneously,
the radiative heat transfer can be calculated as if the conductive
mode is not present and then added to the heat transfer due to the
conduction. This procedure has been successful in the one-dimensional
case, and would provide useful knowledge of the heat transfer process
if they could be extended to cover two-dimensional models.

Exact two-dimensional solutions are presented for the radiative
flux and the emissive power for both the finite and semi-infinite media
subjected to cosine varying collimated and cosine varying diffuse
boundary conditions. The solutions for the radiative flux and emissive
power due to the cosine varying boundary conditions are then used to
obtain the radiative flux and emissive power due to more realistic
boundary conditions. In particular, the emissive power and radiative
flux for the constant temperature strip and the strip illuminated by a
uniform collimated flux are expressed in terms of the solutions for
the cosine varying diffuse boundary and cosine varying collimated
boundary, respectively. A wide range of exact numerical solutions are
presented for the emissive power and radiative flux at the boundaries.

In addition to being suitable for constructing solutions to pro-
blems involving more complex types of boundary conditions, the cosine
varying boundary conditions are important since this form enables the
two-dimensional equations to be reduced to one-dimensional equations.
Hence, the methods of solution which have been successfully applied to

the one-dimensional theory can be utilized to solve the reduced



one-dimensional equations. In fact, the cosine varying collimated
boundary condition generates functions which are analogous to the one-
dimensional X- and Y-functions of Chandrasekhar [1,p.183] for the
finite medium and the H-function of Chandrasekhar [1,p.105] for the
semi-infinite medium. These generalized functions represent the
dimensionless emissive power at the boundaries and are shown to appear
in the solutions for the emissive power and flux at the boundaries for
the cosine varying diffuse boundary condition and both finite strip
models. For this reason, a wide range of numerical data is tabulated
for the generalized functions.

Chapter II of this investigation reports the current status of
multidimensional radiative transfer and the analogous problem of
neutron transport. The formulation of the basic equations for
emissive power and radiative flux appears in Chapter III. Chapter IV
is devoted to the emissive power and radiative flux at the boundary of
a semi-infinite medium. Chapter V is concerned with the finite medium
and is followed by concluding remarks and suggested future extensions

of the present work.



IT. REVIEW OF LITERATURE

INTRODUCTION

The development of the theory of radiant energy transfer in a
participating medium has centered around one-dimensional plane geome-
tries due to the complications involved in solving the transport
equations. In general, the radiation intensity is a function of posi-
tion, direction, time, and frequency. The solution to such a general
problem is very complicated. The presence of the source function in
the transport equation is a contributing factor to the mathematical
difficulties encountered in a solution.

For a scattering medium, the source function is an integral over
the intensity, making the transport equation an integro-differential
equation, If the medium absorbs and emitts radiation and is in local
thermodynamic equilibrium, the source function becomes Planck's func-
tion which introduces the unknown temperature into the transport equa-
tion. Hence, the transport equation is a coupled equation in intensity
and temperature. When the participating media emitts, absorbs, and
scatters, the transport equation assumes its most complicated form.
Various simplifying assumptions are then necessary in order to obtain
a solution to the transport equation. The dependence upon the fre-
quency can be eliminated by the gray medium approximation. This
approximation means that the absorption coefficient is assumed inde-
pendent of frequency. The transport equation can then be integrated
over all frequency and the spectral quantities replaced by the total
integrated quantities. A further mathematical simplification follows
if the intensity is considered to be time independent. Most of the papers

cited in this review are time independent unless specifically indicated.



In addition to the transport equation, the equation which governs
the conservation of energy in the system must be satisfied. For a
general conductive, convective, and radiative participating medium,
the energy equation relates the temperature to the radiative flux in a
very complicated manner. Since the radiative flux is an integral over
solid angle of the intensity of radiation, the transport equation and
the energy equation are coupled equations. However, neglecting the
conductive and convective modes of heat transfer reduces the energy
equation to a form which, when solved simultaneously with the trans-
port equation, yields an integral equation for the temperature dis-
tribution.

The number of space variables considered in a model contributes
significantly to the degree of the mathematical complexity. A large
part of the current literature is concerned with the one-dimensional
model. This assumption 1imits the temperature distribution to vary in
a single space variable as opposed to two space variables required for
the two-dimensional model. Since the one-dimensional model is less
difficult to solve, it has found application in the areas of astro-
physics and engineering. The astrophysical development can be found
in the works of Eddington [2], Rosseland [3], and more recently those
of Chandrasekhar [1], Kourganoff [4], and Sobolev [5]. Engineering
oriented applications can be found in Love [6], and also Sparrow and
Cess [7].

Since the one-dimensional model is a first approximation, a more
refined knowledge of the heat transfer process can be obtained from
the two-dimensional model. This natural extension has been found

necessary due to the requirement for more precise calculations. The



following is a summary of associated works in multidimensional
analysis and the order of presentation is according to the type of
narticipating media. The analogous problem of neutron transport is
nbresented last.

ABSORBING AND EMITTING MEDIA

The first attempt to solve multidimensional radiative transfer
problems in nonscattering media was done by assuming the gas to be
optically thick, thereby permitting the radiation to be thought of as
a diffusion process. The problem reduces to solving a modified heat
conduction equation. This approach is known as the Rosseland approxi-
mation which was first introduced by Rosseland [3]. The Rosseland
approximation yields favorable results when applied at locations
interior to the optical thick medium. However it fails in the near
vicinity of boundaries.

Another approximate method, the differential approximation which
replaces the general expression for the radiative flux by a differ-
ential equation, has also been used for multidimensional analysis.
Cheng [8,9] used the spherical-harmonic approximation to study a two-
dimensional radiating, flowing gas. Khosla [10] also applied the
differential approximation to a two-dimensional high speed gas dynamics
probTem. Glicksman [11] developed an approximate method similar to
the differential approximation which is referred to as the method of
flux summing. Taitel [12] also developed an approximate formulation
for the radiative flux for a finite two-dimensional medium bounded by
nonisothermal walls. Taitel's formulation is shown to approach the

exact solution in the optically thin Timit. Lunardini and Chang [13]



used the differential approximation to study the effect of heat conduc-
tion.

The only exact integral formulations of radiative transfer in an
absorbing and emitting two-dimensional medium were presented by 0lfe
[14] and Cheng [15]. O01fe considered a semi-infinite medium with a
nonuniform wall temperature which varied in a sinusoidal fashion and
presented two-dimensional integral expressions for temperature and flux
without derivation. The sinusoidal form of the boundary radiation
enabled the two-dimensional integral equation for the emissive power
to be reduced to a one-dimensional integral equation. This equation
was solved numerically by iteration, and graphical results for the
emissive power at the boundary were presented. However, numerical solu-
tions were difficult to obtain and the emphasis of this work was on
various schemes for an approximate solution, specifically the modified
differential approximation.

Cheng [15], unlike 01fe, considered the temperature of the medium
to be a known quantity. He formulated exact equations for the radiative
flux and intensity for the two-dimensional medium bounded by two
parallel walls with arbitrary discontinuous wall radiation over a
finite portion of each wall in terms of the assumed temperature of the
medium. The principle of superposition was employed to obtain expres-
sions for the radiative fliux and intensity for the two-dimensional
rectangular medium bounded by four finite discontinuous radiating
walls. A similar set of equations were developed by using the differ-
ential approximation. A graphical comparison between the exact solu-
tion and the differential approximation solution was presented for the

case of an isothermal medium and continuous isothermal walls.



SCATTERING MEDIA

The searchlight problem occurs when a narrow pencil of radiation
(such as a searchlight beam) is incident on an absorbing and scattering
medium. Chandrasekhar [16] considered the searchlight problem for an
isotropic scattering semi-infinite medium and obtained with invariance
principles a nonlinear integro-differential equation in five varijables
for the scattering function. This equation was not solved. Bellman,
Kalaba, and Ueno [17] treated the searchlight problem for the two-
dimensional isotropically scattering finite medium. The integro-differ-
ential equation which governs the scattering function was presented
with the aid of invariant imbedding techniques. Ho solutions were
provided for the equation. The more general case of a transient
searchlight problem was treated by Bellman, Kalaba, and Ueno [18].

The formulation was entirely analytical with no solutions provided.
Rybicki [19] formulated the searchlight problem for both finite and
semi-infinite media in terms of an integral equation for the source
function. Limited results for the source function at the boundary of
a semi-infinite medium were calculated by means of the kernel approxi-
mation method.

Smith [20] considered the theoretical development for the source
function of a two-dimensional, finite thick, isotropically scattering
medium illuminated by a collimated flux of cosine magnitude. An
integral equation was presented for the éource function. The corres-
ponding two-dimensional integral equation for the source function of
the semi-infinite medium was reduced to a one-dimensional integral

equation in a fashion similar to that of 01fe [14]. The solution to
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the reduced one-dimensional equation was then used to construct a solu-
tion for the finite strip illuminated by a constant collimated normal
flux. The source function for the finite strip problem was expressed
in terms of a cosine series the coefficients of which were difficult to
obtain. Both of these problems were analytical with no numerical solu-
tions presented. |

Smith and Hunt [21] considered a flat beam of constant magnitude
incident normally on an isotropically scattering semi-infinite medium
of finite width. A Fourier cosine series was obtained for the source
function with the use of complex contour integration. The coefficients
of the series were very complicated and not easily obtained. Hunt [22]
developed the integral equation for the source function for an axially
symmetric, isotropically scattering medium illuminated by an incident
beam of radiation that varied in the radial direction as the zeroth
order Bessel function of the first kind. The source function was ap-
proximated by a Fourier cosine series. However, the coefficients were
not evaluated. Hunt [23] considered a finite, three-dimensional, iso-
tropically scattering medium illuminated by a beam of radiation
obliquely incident on the boundary. The kernel of the integral equa-
tion for the source function was expressed in terms of a singular
integral equation by utilizing the Green's function. The resulting
integral equation for the kernel was not solved.

Only one work is available which treats multidimensional aniso-
tropic scattering of radiation. Hunt [24] considered a finite, three-
dimensional slab with anisotropic scattering and used the first three

terms in a series of Legendre polynomials for the scattering function.
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The boundary radiation was in the form of a general two-dimensional
collimated flux incident normally. The intensity of radiation was
divided into eight components each of which acted over a separate
region of the medium. A complicated set of integral equations was
developed which involved each of the components of intensity. No
solution to this complex system of equations was proposed.

ABSORBING, EMITTING, AND SCATTERING MEDIA

Bobco [25] developed a closed form approximate solution for the
directional emissivity of a finite thick, two-dimensional slab. Solu-
tions were obtained by an approximation based on an iteration of the
diffusion solution. Love and Turner [26] used Monte Carlo techniques
to solve the same problem and found a close agreement with Bobco's
results. Both of these methods are approximate, with the Monte Carlo
technique being less practical due to the excessive amount of computer
time required.

NEUTRON TRANSPORT

A field of study closely associated with the radiative transfer
is neutron transport. Since the transport equations for neutrons and
photons have the same mathematical form, methods applied to multidimen-
sional neutron transport can be used in radiative transfer. Thus, a
review of two-dimensional neutron transport literature is appropriate.

E1liott [27] considered an isotropically scattering half space and
used the Wiener-Hopf technique to obtain a complicated triple integral
expression for neutron density due to a point source on the boundary.
An approximate solution was presented which was valid for large dis-

tances away from the source. Erdmann [28] considered a flux due to a
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point source of neutrons in a two-dimensional, semi-infinite medium and
solved the transport equation by the Wiener-Hopf technique. The solu-
tion for neutron density was Teft in integral form and not solved.

Williams [29] considered the three-dimensional medium inside a
finite rectangular prism and reduced the three-dimensional transport
equation to a one-dimensional form. This reduction was accomplished
by approximating two of the space variables and treating the remaining
one exactly. The Wiener-Hopf technique was applied to the reduced one-
dimensional form.

Witliams [30] investigated the diffusion of neutrons from a plane
source in an infinite sTab with the source plane perpendicular to the
faces of the slab. An integral equation approach was utilized to
formuTate the transfer problem with solution by means of Fourier
transforms. Fourier inversion by complex contour integration was used
to obtain an integral solution for neutron density. Willijams [31] also
extended the neutron diffusion analysis to an infinite cylinder with
source plane perpendicular to the axis of the cylinder. Fourier trans-
form techniques were used to formulate the equation for neutron den-
sity, but the equation was not solved.

Kaper [32] reduced the three-dimensional transport equation to an
equation of one-dimensional form by treating one of the space variables
exactly and approximating the other two. The reduced transport equa-
tion was then solved for neutron density in integral form by Fourier
inversion techniques. The integral solution was not solved.

Sotoodehnia and Erdmann [33] treated two-dimensional infinite and

semi-infinite isotropically scattering media with a 1ine source of
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neutrons. The two-dimensional transport equation was reduced to a
single dimension by Fourier transform and variable changes. The compli-
cated integrals were not evaluated.

Garrettson and Leonard [34] treated multidimensional neutron
transport in an isotropically scattering medium with point, line, or
plane sources. The three-dimensional transport equation was reduced
to a one-dimensional integral equation with difference kernel by using
Fourier and Laplace transforms. Integral solutions were obtained by
use of Green's function technique. No numerical results were obtained.
SUMMARY

In comparison to the one-dimensional model, there is a definite
lack of two-dimensional analysis in the current literature. This was
especially noted for the nongray assumption for which no reference was
found. Most of the investigations reported deal with scattering or
neutron transport with only two completely rigorous discussions per-
taining to an absorbing and emitting medium. Virtually no results were
found to verify the usefulness of the highly analytical formulations or
the accuracy of the various approximate techniques. A1l investigations
assume the medium to be gray, and none of the investigators attempted
to determine the validity of the one-dimensional model.

The present investigation attempts to eliminate some of the above
Timitations by (1) considering an exact development for the two-dimen-
sional absorbing and emitting gray medium, and (2) supplying numerical
data for the radiative flux and the emissive power for a wide range of
the parameters Tys Bs and o which correspond to the optical thickness,
the spacial frequency of the incident radiation, and the angle of the

incident collimated radiation, respectively.
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IIT. PHYSICAL MODEL AND GOVERNING EQUATIONS

A. ASSUMPTIONS

The coordinate system and geometry used in calculating radiative
heat transfer through a two-dimensional participating medium are shown
in Figure 3.1. Both finite and semi-infinite media are considered.
The present investigaticn is based on the following assumptions:

1. two-dimensional transfer
2. steady state temperature and intensity

absorbing and emitting, but non-scattering medium

S W

gray medium
5. Tlocal thermodynamic equilibrium
6. no conduction or convection; no heat generation
7. refractive index of unity
The radiation incident on the boundaries of the medium is either
collimated or diffuse. The collimated boundary condition means that
radiation is incident upon the boundary from a single direction. This
kind of boundary condition is often used to simulate solar energy
striking a planetary atmosphere or an air-sea interface. The diffuse
boundary condition occurs when the radiation incident on the boundary
is independent of direction. This kind of boundary condition is often
used to simulate the radiation incident on the sea from the atmosphere.
The diffuse boundary condition has many engineering applications since
it approximates the radiation leaving an opaque surface.
The present investigation is concerned with two-dimensional radia-
tive transfer produced by spacially varying incident radiation.

Figures 3.2 and 3.3 exhibit the physical models for the cosine
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collimated and diffuse boundary conditions, respectively. The cosine
boundary conditions are not physically realistic. Their usefulness
lies in the fact that the solution to other more realistic problems
can be expressed in terms of the cosine solutions. This is the case
when the incident radiation is uniform over a finite portion of the
boundary. Physical models for the finite strip boundary conditions
are shown in Figures 3.4 and 3.5 for the strip illuminated by a uni-
form collimated flux and the constant temperature strip, respectively.
Since the boundary radiation is uniform over the entire strip but
different from that outside the strip, the finite strip models are
two-dimensional. When the strip width becomes infinite, the finite
strip models approach the one-dimensional models.

Figure 3.6 outlines the various solutions which are expressed in
terms of solutions to other boundary conditions. The notation A-B
indicates that A is expressed in terms of B. Figure 3.6 reveals that
the cosine varying collimated solution is fundamental to that of the
cosine varying diffuse as well as the finite strip solutions. Table
3.1 lists the notation employed throughout this investigation.

B. FUNDAMENTAL EQUATION FOR EMISSIVE POWER

The fundamental equation which governs the transport of radiant
energy through a medium which satisfies the assumptions previously

listed can be written as [1,pp.8,9]

dI
a§—+.<1=K%T‘* (3.1)

where the operator gg is defined as
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Figure 3.6 Schematic relationship for the emissive power and
flux due to collimated and diffuse boundary conditions



Table 3.1 HNotation used in calculating flux and emissive power
FINITE MEDIA SEMI-INFINITE MEDIA
Type of External |[Notation Temperature Dimensionless Flux Dimensioniess | Dimensionless Dimensionless
Radiation Emissive Power Flux Emissive Power Flux
Variable — -
Collimated A Ty JB 9, qu,qu?E’?F BB QB"B
Collimated _
Variable
Diffuse o T ¢ = = T
C 8 9z¢ qzC’qu:EE * "8
Diffuse o _
Strip D Ty ¢ 90 9yp2%ypoEh 9 F
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= sinBcosd o4 sinésing 97'+ coso 9— . (3.2)
X Jy 0Z

Q.lo.
i

Equations (3.1) and (3.2) are expressed in terms of the cartesian
coordinate system arbitrarily fixed at the point (X,v,z) as shown in
Figure 3.1. At every point in the medium, the integration point
(x',y',2') is allowed to vary over its entire range of values with
z'=0 on the upper boundary. The polar and azimuthal angles & and ¢
and distance s Tocate the fixed coordinates (x,y,z) with respect to
the integration coordinates (x',y',z').

The steady state conservation of energy requires that

where the radiative flux vector is defined as

-> -> -> ->
F = 1j Icosexdw + jj Icoseydw + kj Icos6zdw (3.4)

it 47 i

with w the solid angle and ex, 6 ez the angles that the x, y, and z

yv?
axes make with the Tine of sight of the intensity vector.

The quantity oT* appearing in equation (3.1) is the emissive
power of the medium. The constant absorption coefficient « is
combined with the distance s by introducing a dimensionless optical
depth T, between the points s=o0 and s=s

S

T = J kds = ks . (3.5)

0
The coordinate systems of Figure 3.1 are converted to optical
coordinate systems by considering transformations similar to equation
(3.5). The optical coordinates are defined as

T, = KX 3 T =KY 3 T, =Kz (3.6)
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and

I P T e
Ty kx' T ky'soT) kz' . (3.7)

The optical thickness is measured in a direction normal to the
boundaries and is given by

T, " kL . (3.8)

When expressed in terms of the optical coordinates, equations (3.1)

and (3.2) become

5 o
a?s'”-ﬂ (3.9)
and
d _ . 3 S 3
a?;-— sinBcosd 5¥;~+ sinbsing aTy + cosH 5;;— . (3.10)

For simplification of the treatment of the boundary conditions,
the intensity is divided into two components. The intensity associa-
ted with the direction of increasing T, is denoted by I and that with
the decreasing T, direction by I". Thus, equation (3.9) can be
written as two equations, one for r and one for I . The general

boundary conditions for equation (3.9) can be written as

17 (

Ty,O) = I0 Ty) (3.11)

and

I_(Ty,TO) = IO-(Ty) . (3.12)

Application of integrating factor techniques to equation (3.9)

and use of equations (3.11) and (3.12) yields expressions for 1" and

[ in terms of the unknown emissive power
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T
Z 1
4, T sec6 g “_ . -(Tz—rz)sece |
I = Io (Ty)e + ﬁj oT (TQ’TQ’To)e secedrz (3.13)
0
with
T_-1! T -1 T_~T!
-2 Z __ Y Y X X s
s cos8  sinBsing sinbBcoso (0 <6< (3.14)
and
T
) _ (t -1_)secH U = (Té-TZ)SECG
= 1 - — 4 1 1
I I0 (Iy)e wj oT (Ey,TZ,TO)e secedTZ(3.15)
Tz
with
T _=-1! T ~-1! T -1!
1= 2 %= y Y = X _X (<6< (3.16)

s cos6  sinBsin{¢+m) ~ sinbcos(¢+m) 2
The equation governing the emissive power in the medium is
obtained by writing the divergence of the flux in the following form

[35,p.22]

VeF = J al 4 . (3.17)
S

Substituting equations (3.3) and (3.9) into equation (3.17) yields an

expression for the emissive power

e L - ~ \
45T \Ty,Tz,TO) j Idw . (3.18)

L

Dividing intensity into its two components " and 17 reveals

2 M/ 2 m

4 E'T“(TY,TZ,TO) = J [ j ITsinode + J I_sinede]d¢ . (3.19)

c o0 m/ 2
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Substitution of equations (3.13) and (3.15) into the conservation of

energy equation (3.19) then yields

— +, -Tzsece _ oy
40T (Ty,TZ,TO) = j IQ (Ty)e dw + J IO (Ty)e dw
21 21
2m /2 T2
1 _ . -(TZ-T;)SGCB
— ! 1 !
+ ﬂj [ [ j oT (Ty,TZ,TO)e SeCGde
o o o
To
— -(1,-T )seco
] ] 1 3
+ J cT (Ty,TZ,TO)e secedrz]s1n6d6d¢ (3.20)
Tz
with
(- t_ :
VY + (TZ Tz)tanes1n¢ (3.21)

Equation (3.20) is of the same form as the emissive power distribution

presented by Ol1fe [14].

For numerical computation, the trigonometric dependence will be

replaced by position dependent functions.

U = cosb
and the transform pair
py =1
and
o= /1-12 sing

with Jacobian given by

dude = dydr/y3/y2-A2-1

The standard substitution

(3.22)

(3.23)

(3.24)

(3.25)
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along with the integral

[eo] oo

j e 2t _ J K, (s)ds (3.26)

T
1 tv/te-1 5

reduces equation (3.20) to the form

-1_5€ecH

~ Th - o Tt .
407 (Ty,rz,ro) J IO (Ty)e dw + J IO (t!)e dw
2m 27
T
[o o N ¢ o] O
_2_ I ~r1y2 _PY2T T oTh {1
+ ﬂj dtJ dTyJ Ko[t/(rz TZ) +(Ty Ty) ]oT (Ty,TZ,TO)dTZ (3.27)
1 -0 0

where Ko(s) is the modified Bessel function. Equation (3.27) is a
linear integral equation in the emissive power of the medium and
agrees with the form given by Smith [20]. Any further reduction in
form should be preceded by an assumption regarding the behavior of the
boundary conditions.

The following sections (1-5) of this chapter are concerned with
assigning specific forms to the incident radiation and formulating
general expressions for emissive power. Equation (3.27) is the funda-
mental equation which will be employed with the notation following
from Table 3.1.

1. COLLIMATED FLUX OF COSINE MAGNITUDE

A variable collimated flux of magnitude Iw+(ry) is incident on
the upper boundary TZ=0 of the medium from a fixed direction. o
radiation is incident on the Tower boundary T, T, Mathematically,

the boundary conditions are expressed as

I, (1) = 1,7t )6 (iig)s(e-4,) 7,0 (3.28)
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and

Io (Ty) =0 T (3.29)

where § is the Dirac delta function, and ﬁﬁ and ¢o specify the fixed
direction. Equation (3.27) reduces to the integral equation for the

emissive power

. + -01T
40T (Ty,rz,fo) = Rv (Ty)e
_2__ ' _—~1y2 _1y2 L 1 1
+ WJ dtJ dTy{ Ko[t/(T TZ) +(Ty Ty) JoT (Ty,TZ,TO)dT (3.30)
1 B 0
where
o= seceO = 1/uO (3.31)

and ?} represents T} at the boundary Té=0. The product of Dirac delta
functions in the integrand of the integral in equation (3.27) selects
the specific direction ¢=¢  and ﬁ¥ﬁ6 so that equation (3.21) reduces
to

- _
T, STyt thaneos1n¢o . (3.32)

In particular, the incident flux varies in a cosine fashion and

is written in exponential form
1 (t)=Fe 7 (3.33)

where FO and B are the amplitude and spacial frequency of the incident
radiation, respectively. Figure (3.2) exhibits the physical system.

Equation (3.30) then yields
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1B(Ty-rztaneos1n¢o)—orz

— Th _
4 o TA(Ty,TZ,TO) = Foe

T
(o« N ¢ o] O

_2__ 1 1y 2 t\27 L T (1 !

+ HJ dtj dTyJ Ko[t/(TZ T;) +(Ty—Ty) ] o TA(Ty,TZ,TO)dTZ (3.34)

1 ~co 0
where TA is the temperature of the medium. The complicated term
arising from the boundary condition is simplified by confining the
incident radiation to lie in planes that are perpendicular to the y-z
plane, i.e., ¢O=O and hence ?}=Ty. With this assumption, equation

(3.34) reduces to

— 1BTy-OTZ
40 TA(Ty,TZ,TO) = F.e
_2_ 1 4 1) 2 TN 27 T T et !
+ ﬂj dtj dTyj Vo[t/(TZ Téj'KTy Ty) ]o TA(Ty,TZ,TO)dTZ . (3.35)
1 oo 0

The two-dimensional integral equation for the emissive power of
the medium can now be reduced to a one-dimensional integral equation
by applying the concept of separation of variables. The geometry of
the medium permits this reduction since the Ty-coordinate is unbounded
in both positive and negative directions and hence suitable for
Fourier integral transform theory. The assumption that the emissive

power can be written as

4 G 4 _ 1'BTy
F;— TA(Ty,TZ,TO) = JB(TZ,O,TO)E (3.36)
reduces equation (3.35) to an integral equation for JB(TZ,O,TO)
o
=0T, 4
JB(TZ,G,TO) = e +-§j ézl(lTZ—TZI’B) JB(TE,U,TO)dTé (3.37)

0
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where gl is a generalized exponential integral function defined by

o -Tz/%2+82

S 3.38
E;I(TZ,B) | . (3.38)

In arriving at equation (3.37), the following integral was used

o]

. -|g|vtZ+8?
1j g8 T _e g
—=| e *"K [t/r*+&%]dr = (3.39)
m © Vt2+82

-00

Smith [20] obtained a less general form of equation (3.37) by consid-
ering the radiation to be incident from the direction o=1.

Equation (3.33) reveals that when 8=0, the incident radiation on
the boundary is uniform. Hence, each point on the boundary receives
the same amount of external radiation and is indistinguishable from
any other boundary point with respect to heat transfer properties.
Energy transfer is therefore described by a single space coordinate
normal to the boundary plane. Thus, B=0 corresponds to the one-
dimensional model which has been analyzed extensively. However, other
models which involve more complex boundary conditions such as the
finite strip model can be expressed in terms of the cosine varying
collimated boundary solution by applying the principle of superposi-
tion.

2. UNIFORM COLLIMATED FLUX STRIP

This section is concerned with a collimated flux of constant
magnitude incident on a strip of finite width at the boundary TZ=O.
The finite strip at the boundary =T, receives no external radiation.
Figure 3.4 exhibits the physical system. The finite strip solution

enables an additional model to be investigated. When the strip width
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becomes very large, the finite strip solution approaches the one-
dimensional model. The Fourier integral representation of the boundary

e + L
radiation I (Ty) is given by
w iBT
1, (z)) = f g(ele Yds (3.40)

=00

where

[oe]

-iRT
g(B) = %E{ IW+(T e Yd

y T, (3.41)

The finite strip model boundary condition is obtained by allowing
Iw+(1y) to be constant and nonzero over a finite width of the boundary.
Mathematically, the boundary condition is expressed as

0 T < =T
y a
+
Iy (Ty) = Fy Ty ST, ST,
0 Ty > T, (3.42)

where T is an optical width related to the half strip width a by the

usual integral
a

T, ® J kdx = ka . (3.43)

0
Integrating equation (3.41) subject to the boundary conditions of
equation (3.42) yields

F

g(B) = ;%—sin(BTa) X (3.44)

Substitution of equation (3.44) into equation (3.40) then gives an

integral expression for the incident radiation in the form

“ sin(Br.) gt
Iw+(T ) = —QJ ————E-E—-e Ydg . (3.45)
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The integral equation for the emissive power of the medium
illuminated by a constant collimated flux can now be obtained from

equation (3.30). Substituting equation (3.45) into equation (3.30)

yields
F o sin(Br.) -ot_+iBt
4 = 0 o a’ Z Y 4
4 g TB(Ty,TZ,TO) - [ g e dg
o] [ee] TO
_2_ I _rt\2 VY27 5 oTH 1 i 1
v 2 j dt[ dryj Y G R LRI CURTICR ) (3.46)
1 - 0

where TB is the temperature of the medium. Multiplying equation (3.35)

by sin(BTa)dB/ﬂB and integrating from -= to « reveals

. - . sin(BTa)dB FO
J 45 Th(t,1,07y) —p i = 2

-0 - QO

® sin(Br.) iBrt -ot
[t ey

T

(o] [e ] o
1 " [RAWA I
j dtj dTyj Ko[t/(TZ-TZ) +(Ty-Ty
1 - 0

)*]

-+
Afro

w.* . sin(Bra)
j o TA(Ty,TZ,TO) ———EE~—-dBdTZ . (3.47)

Comparing equations (3.46) and (3.47) results in an integral expres-
sion which relates the emissive power of the medium bounded by the

constant collimated strip to that of the cosine varying collimated

boundary
- 1 * sin(BTa) -
a TB(Ty’TZ,TO) - 'I—T‘ J —"_'é"’—'— Y TA(Ty’TZ’TO)dB . (3-48)

-0

Substitution of equation (3.36) into equation (3.48) yields
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1 * sin(BTa) iBT

= L ——a N
y,TZ,TO) - I JB(TZ,O,TO) 7 e dg . (3.49)

45 4
= (1
FO B

-0

By making use of the real part of the exponential function and the

evenness of the integrand equation (3.49) reduces to

o0

2 sin(BTa)cos(Bjy)dB

3eyuyity) = 2 J J(1,00,7,) " (3.50)
0

where J(Ty,TZ,TO) is the dimensionless emissive rower for the medium
bounded by the constant collimated strip

_ 4o 4
J(Ty,TZ,TO) = F;'TB(Ty,TZ,TO) . (3.51)

3. COSINE VARYING DIFFUSE BOUNDARY CONDITION

The boundaries of the medium are black walls radiating in a
nonuniform fashion due to prescribed temperatures. Since black body
radiation is governed by the Stefan-Boltzmann law, the boundary condi-

tions are given by

+ §: "
IO == Tz(Ty) (3.52)
and
- 0 4y .
IO = -’I-'l'_Tl(TV) (3-53)

where T1 denotes temperature of the lower wall at =T, and T,
temperature at TZ=O. Substituting equations (3.52) and (3.53) into
equation (3.27) yields an integral equation for the emissive power
2m /2
1

E-T“(Ty,rz,ro) = Zﬁ'f J [E'T:(Ti)e

-T_5€ech
V4

_ -(TO—TZ)SGCG
+0 Tﬁ(?})e Jsinededo
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T

[e0] o«

.l 1 + [} ] - -1 1 ] -
+ ?E—J dtJ dryj KO[u/(TZ—TZ)2+(Ty-Ty)2] o T“(iy,TZ,TO)dTZ . (3.54)
1 -0 0

The two inhomogeneous terms in equation (3.54) are transformed by

equations (3.22) to (3.25) and the substitution ﬂ=Ty-T§ to yield

e o]

— oy oy areon 2
_ IE.J o Tz(Ty-n)Sl(/%Z+n Ydn
2m

T £+T]—2
Z

-0

(TO—TZ) Jm o Tt —n)Sl(/(TO-TZ)2+ﬂ2)dn

Y
en (TO-TZ)2+n2

-CO

T
(o o] oo 0
l____ ' 1 Y 1y 2 4 1 1
t 5 J dtJ dt j Koft/(rz T )2+ (T Ty) JoT (Ty,TZ,TO)dT (3.55)
1 - 0
where
o) -gt .
R e (3.56)
n "R

1
Note that the S,-function can be expressed in terms of integrals
of the modified Bessel function given by equation (3.26). A standard
integral representation for the modified Bessel function is, from Luke
[36,p.30],

[0}

K (2) = J e 5O cosh(yu)du . (3.57)

1

The substitution t=coshuy with y=0 reduces equation (3.57) to

o -gt

dt
K (£) j e dt_ g (5) . (3.58)
0 AT -
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Integrating equation (3.58) twice with respect to £ over the range

(§,0) results in

(ool [ee] o0

-t
j f Kb(x)dxdy = ( & dt . (3.59)
Y=& X=y
The right-hand side of equation (3.59) is S (&) from equation (3.56).
Hence, Sl(a) becomes

[ee] [ee]

$,(g) = J J K, (x)dxdy . (3.60)
Y=g x=y

A series of simple substitutions changes the limits of integration of

equation (3.60) so that a typical term is

S,(vizm?) 7
— J j Ko(xy¢%2+n§)xdxdy (3.61)

2
T+
Zn 11

and equation (3.55) reduces to

TOO oo oo
= Th(. .z FITTY ToTh (4
oT (-y,TZ,TO) 5 j dn J dx J Ko(xy/%z+n ) o Tz('ry n)xdy
(To-Tz) ) ) ” JT7 TITy T oTh
t [ dn J dx J Ko(xy (LO—TZ) +n?) o T1(1y~n)xdy
T
(o] <o 0
1 I VY2~ _+1)2 L3 | 1
t o j dt [ dry J Ko(t/(rz TZ) +(Ly Ty) YoT (Ty,rz,ro)de . (3.62)
1 et Y

Next, consider walls that radiate in a cosine fashion with the temper-
ature of the medium denoted by TC. Figure 3.3 shows the physical
system. As before, the two-dimensional problem is reduced to that for

the one-dimension by assuming
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iRt
4 = T Y
Tl y’Tz’To) Tof(7,)e (3.63)
4 L 1.BT}/
1<Ty) = Tle (3.64)
and
. . iBTy
Tz(Ty) =T'e (3.65)
which, along with equation (3.39), reduces equation (3.62) to
1
flr,) = 5 80& (1,.8) + 5 8°€ (1,-7,.6)
T
)
] I ) L ]
+ 3 € Ut ary (3.66)
0
where
6 =T/T (3.67)
1 1 O
e2 = Tz/To (3.68)
and gi is a generalized exponential integral function
o -Tz¢t2+82
] - e
£, (1,48 J % (3.69)
1
A simplified form of equation (3.66) results from defining a
dimensionless universal function ¢B as follows
To
= l_ l 1 ! g b
dg(1,37,) =5 & (1,,8) + 5 f 0g(t5515) & UT,-1,18)dr, . (3.70)
0

Replacement of T, by Ty~T in equation (3.70) yields

Z
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¢B(T0-TZ’T0) ='% & (TO-TZ’B)

2
o
+H 05(7g-Ths7o) € (I1,-1il,8)de) . (3.71)
0
By multiplying equation (3.70) by e: and equation (3.71) by 6? and
adding, the following expression is obtained

34

4 4 _ l l n _ o
62¢B(TZ’TO) + elq)B(TO-T s T ) - 2 eng(TZ’B) + > 618’2("[0 Tzsp)

Z° 0

T
0

+ ]7 J g (-1 ,B)[6:¢B(Té,r

0

) + 0% (t -1 1) ldTL L (3.72)

0 18(0

A comparison of equations (3.66) and (3.72) then yields an expression

for the dimensionless emissive power

- l+ b
f(TZ) 2¢ (T 2276 ) + 91¢B(TO-TZ,TO) ) (3.73)

4. RELATIONSHIP BETWEEN DIFFUSE AND COLLIMATED CASES

An integral expression relating the emissive power for the cosine
varying diffuse boundary condition to the emissive power for the
cosine varying collimated boundary condition will now be developed.
Physically, the diffuse problem should be associated in some manner
with the collimated since the collimated selects a particular angle
whereas the diffuse considers all possible directions. As in previous
development, the technique is to construct an integral equation which
has the same inhomogeneous term and kernel. Since the collimated
problem has the simplest inhomogeneous term, it is advantageous to

start with equation (3.37). Replacement of ¢ by vt?+8? in equation
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(3.37) results in

~T_yt2+p2
T2 12 - Z
JB(TZ,/t +8 ,TO) = e
TO
1 ' V2402 .
+—2-[ E Ut -1, 1s8)9 (1), ve24e, 1 )de) . (3.74)
0

Multiplying equation (3.74) by dt/t? and integrating from 1 to
yields
jd (v, /i2%8%,7 )& = £ ()
B Z’ H] 0 t2 2 25
1

T

0] o
1 i) [ o (o ey 4t
+ ) j gl(]TZ TZ"B> J JB(TZ’ te+g ,TO) o dTZ . (3.75)
0 1

Comparison of equation (3.70) with equation (3.75) results in the
following relationship between the emissive power for the cosine
varying collimated boundary and the emissive power for the cosine

varying diffuse boundary

oo}

j 3, AR ) * (3.76)

noj—

;2 To) =

bg(t

1

The change of variable o=vt?+g? reduces equation (3.76) to the

form

* J (1_,0,7_)odo
[ B 270 : (3.77)

(02-p2)%/?

=1
¢B(TZ’TO) m 2
V1+82

A further reduction is accomplished by letting x=/1+8%/0 to arrive at
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1

q)B(TZ’TO) = %J wl(x,B)JB(TZ,ﬂ%z/x,TO)dx (3.78)
0
where
b (x,8) = (1482)/[1+87(1-x?)7*/* (3.79)

The wl-function is presented in graphical form in Appendix C and con-
tributes significantly to the mathematical complications involved in
the numerical integrations of Chapters IV and V.

5. CONSTANT TEMPERATURE STRIP

The analysis of this section is concerned with obtaining the
emissive power for the medium bounded by a pair of constant tempera-
ture strips shown in Figure 3.5. The formulation is similar to that
for the case of the finite strip illuminated by a constant flux men-
tioned previously. The emissive power for the variable radiating
black walls given by equation (3.62) can be rewritten in the following

form

T
E'T“(Ty,rz,ro) = ?E-j dt! J dx J Ko(xy/%§+(r -7

] [ ’ TVZ TYZ T TW(f b 1 1
+ E%-J dt j dTy J ko[t/(TZ-Tz) +(Ty-Ty7V] o T (Ty,TZ,TO)dTZ. (3.80)
1 - 0

The boundary radiation T“(r&) is expressed by Fourier integral theory
2

as

(o]

() = [ g (0)e

- 00

igT!
Y dg (3.81)
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where

91(6) = %E’f Tz(r dT§ . (3.82)

The constant temperature finite strip theory is developed by allowing
the Tower and upper walls to radiate only over a finite portion of the
boundaries. In particular, consider constant temperature strips of

half width a with the boundary conditions given by

0 Ty < -1y
T:(T;) = T: -T, < Ty < T,
0 T, > 1, (3.83)
and
0 Ty <1y
T:(T}) = : T, < T <1y
0 Ty > 1, (3.84)

where T, is an optical width defined by equation (3.43).
Inserting equation (3.83) into equation (3.82) and integrating

yields

I

T

91(6) = ;%-sin(era) . (3.85)

Next, substitution of equation (3.85) into equation (3.81) results in

an integral expression for the boundary radiation
igt!
y sin(BTa)e Y
) = J T ds . (3.86)

2 m3

[ee]

-0

In a similar fashion, the emissive power at rz=0 can be written as
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Tt(r§) - j T a g . (3.87)

The integral equation for the emissive power of the medium bounded by

the constant temperature strips then becomes

y*>'z* o
T ® “sin(gT.) BT’ =7
_2 5 * 8 R - Y ¢ 2 _1\2
=0 sz dTyJ =3 e dsj de ko(xy/%z+(fy ry) ) xdy
(t —TZ) oy * l[-oosin(BTa) iBT; - * . .
e [ I N B O e L C D P
%) [e2] (TO
l__ 1 _—13)2 _r1Y27 T T4 ] 1 1
o J dt J dt J Ko[t/(rz TZ) +(Ty Ty) ]o TD(Ty,TZ,TO)dTZ (3.88)

where TD is the temperature of the medijum.

Next, consideration is given to variable diffuse walls which
radiate in a cosine fashion given by equations (3.64) and (3.65) with
the temperature of the medium denoted by Tc' The integral equation for

the emissive power of this medium follows from equation (3.80)

o . co %}

""T'-i ) _ TZ “'Tl* d 1 -IBT,;/ d f}/ [ / 2+( I)2] d
0 THT 47,7 ) = 5=0 j ' e J X | Ko XyvVt, Ty'Ty xdy

cty’z’o 2T 2 y
=% 1 1
(T—'[') . oo 'IB’]_’ oo [+
0 Z° — ’. 1 y f, ~ 2 _L1y2
t———0 T1 j dTy e J dx JI\O[xy/(TO TZ) +(Ty Ty) Ixdy
- 1 1

s (oo TO

l... ! 1 _+t)2 Y27 T T4 1 | \
+ o f dt ) dTy J Ko[t/(TZ TZ) +(Ty Ty) 1o TC(Ty,TZ,TO)dT (3.89)

1 - 0
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When equation (3.89) is multiplied by sin(BTa)dB/nB and integrated
from -« to « and the resulting expression is compared with equation
(3.88), the following integral relationship between the emissive powers
of the medium bounded by the constant temperature strips and the cosine

varying diffuse boundary is obtained

o

. 1 . sin(pt,)dp
o TD(Ty,TZ,TO) = %~J o TC(Ty,Tz,TO)———E~————- (3.90)
Inserting equation (3.63) into equation (3.90) yields
TA (T ,T_,7.) sin(Bt_)cos{BT )
D 'y Tz 0! _ %.j f(r,) 2 —dp . (3.91)

T'+
0 0

Equation (3.91) is expressed in terms of ¢B(rz,r ) by substituting

0
equation (3.73) into equation (3.91) to yield

TH(T ,T 1)
D' 'y*z’ 0’ _ % 4 _
= 82¢(Ty,TZ,TO) + 91¢(Ty,TO TZ,TO) (3.92)

i
TO

where

o

j 4(7,21,)sin(Be_)cos (Bt
0

¢(Ty,TZ,TO) =

ELN)

dg
y) T - (3.93)

Substitution of equation (3.78) into equation (3.93) yields an
expression for the dimensionless emissive power of the constant tem-
perature strip in terms of the dimensionless emissive power of the
cosine varying collimated boundary condition as

¢(Ty,tZ,To) =

[~}

]

0

dg
) 5 - (3.94)

1
[ f wl(X,B)JB(TZ,/]+BZ/X,TO)dx] sin(BTa)cos(Bty
0
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C. DIFFERENTIAL EQUATION FOR EMISSIVE POWER

The differential equation that the emissive power satisfies for
the cosine varying collimated boundary condition is needed for the
development of the equations for both the finite and semi-finite media.
The analysis will be concerned with only the finite medium since the
semi-infinite medium is a limiting case. Differentiating equation
(3.37) with respect to T, and applying Lebnitz's rule to the integral
term yields

dd_(1_,0,1.) -0T
g*z>’ o’ _ _ z .1
a;;— oe t 5 JB(o,o,ro)éfl(rz,B)

1
b 9500 005) £, 570

. l—[ 0 ¢ JB(T 2,0, TO)EEI(lTZ-T;l,B)dTé ) (3.95)
2 até
0

Replacement of é;l by its integral form (3.38) yields

o - 132
Tz/t R

dJ.(1_,0,7 ) -0T
- Bz o' . se %+ %—J‘(o,o,r ) e dt
TZ b 0 /t2+82
1
o =T -1_)/t2+p?
1 ] ( J e dt
- =Jd (t_,0,7.)
¢ B0t VEPHE

T
0 - -1! :
1 d JB(TZ,O,TO)é;;(ITZ TZI’B)de (3.96)

2 dr; . .

0
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Since equation (3.96) is an integral equation for

d JB(TZ,O,TO)

drz

the technique is to construct an integral equation which has the same
kernel and inhomogeneous term and compare the result with equation
(3.96). Letting o=vt*+g7 in equation (3.37), multiplying the result

by %-JB(O,G,TO)dt/V%2+82 and integrating the equation from 1 to =

yields
1 TTIRT dt
5 J,(0,0,1.) J J.(T_,vt?+R%,1 )
2B 0 1 Bz 0" FTigT
o —Tz/tz+82
= JZ‘JB(O,G,T ) S dt
° /t2+g2
o
] . 1
+ é-J é;l({TZ—TZ[,B)[§-JB(O,O,TO)
0
Ry dt )
J JB(T JVEEHB4, T ) —~—*-*]dT . (3.97)
4 o /t2+62 Z

1

. i - o .
When T, is replaced by T,~T, and T, by T,~Ty» €quation (3.37) reduces

to

g (|t -Tél,B)JB(TO-T;,O,TO)dT; . (3.98)

1
ty z

O
b

Next, by letting o=vt®+R* in equation (3.98), multiplying the result by



21
2
expression is obtained

[o 0]

1 YY) dt
-5 d (_T 50, T ) J J (T =T s’/t2+629T ) I
2 "Bo 0 1 B o z o TigT
o (1 =T _WtF+p?
Loy |
28 0r 0 jere
1

1 o TR dt |
[ 5 JB(TO,O,TO)jJB(TO T, /LB ,TO) T ] dr,
1

Multiplying equation (3.37) by -o yields

T
0
0T

_GJB( z
0

Equations (3.97), (3.99), and (3.100) are then added to give

(o]

1 v nvya dt
-J6(0,0,ro) j JB(TZ,/t B ’To)

2 /t24g?

1
S 1 Y iy S SR L T
5 JB(TO,U,TO) J JB(TO TZ,V% 8 ,TO) e OJG(TZ,O,T
1
w -_yt2+R2
- J—J (O ) e z dJL
2 B 20T,
1 Yt2+p?
o - - 24,2
1 e (TO TZ)/t e dt 0T,
- 7'JB(T 30T ) -0 e

0 0 /—t ) "'“""+BZ
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JB(TO,O,TO)dt//t2+BZ and integrating from 1 to =, the following

(3.99)

T ,o,ro) =ge * +4% j é:l(ITZ—T;l,B)[—OJB(TQ,O,TO)]dTé.(3.100)

)

0
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T
Q 0
l ! l 3 1 7 ] dt
3 j 6i(sz Tzl’B)[z dB(O’G’To) j JB<TZ’V% +3 ’To) -;%giiig—
G 1
Ly o1 FTTRT _dt
5 UB(TO,O,TO) J JB(TO TZ,V% +3 ,TO) o
1
- OJB(TZ,G,TO)] de . (3.101)

A comparison of equation (3.101) with equation (3.96) yields the

desired relationship

d JB(TZ,O,TO)

a;;—- + OJB(TZ,O,TO)
1 - - TTTRT dt
+ 2 JB(LO’G’TO) [ JB(TO Tzs/t +3 ’TO) P
1
1 [ Y] dt -
5 JB(o,G,TO) J JB(TZ,/t HE,T) e 0 (3.102)

The one-dimensional analogue of equation (3.102) is obtained by
Sobolev [5,p.73]. Letting T become infinite in equation (3.102)
yields an equation similar in form with that obtained by Smith [20]
for a semi-infinite two-dimensional model.

D. BASIC EQUATIONS FOR RADIATIVE FLUX

The radiative heat flux in the x, y, and z-directions are given
by the ?, 3, and E—components of the radiative flux vector defined by
equation (3.4). Since this investigation is concerned with two-
dimensional radiative theory, the x-component of flux will be zero in

accord with the coordinate system of Figure 3.1. The z-component of
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flux is denoted by q, and the y-component by qy' Substituting the

directional cosines cosez=cose and cosey=sinesin¢ into equation (3.4)

yields
q, = J I cosbdw (3.103)
wT
and
a, = j I sindsingdw . (3.104)
LT

After the intensity I is substituted into these equations in its
positive and negative components given by equations (3.13) and (3.15)
and the integration is performed over the solid angle, the components

of the radiative flux are given by

o /2 . -7, sect ) -(1,-1,)secs
q, = I [ IO (Ty)e - IO (Ty)e
0
T
1 z . -(1,-7))sect
+ E'J oT (Ty,TZ,TO)e secedrz
0
o
1 _ —(Té-TZ)SECG
- E'J o T“(T&,Ié,To)e secedré]cmsesineded¢ (3.105)
T
z
and
21 T/ 2
+ -7 sech ) —(TO—TZ)SGCG
q, = I "(t!)e -1 7 (t!)e
y 0 Y o Yy
o o
T
1 z — -(TZ-T')SeCG
4 - 1
t = J o T (Ty,TZ,TO)e secedTZ
0
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1 ° — -(ré—Tz)sece L
- E'j oT (Ty,TZ,TO)e secedrz] sin?0sinededo (3.106)
T
z
where
A= (Ty-Ty)/(TZ—TZ) = tandsind . (3.107)

The last two integrals in equation (3.105) and (3.106) can be
transformed in a manner similar to that mentioned in the previous
sections. The presence of the additional trigonometric terms in the
flux equations does not alter the integral form of either but does
introduce constant multipliers in the z-flux and a variable multiplier
in the y-flux. The components of flux reduce to

2m T/ 2

+ -T,5€cH ) -(ro—rz)sece
—_ t ] :
q, = J [ I, (Ty)e - 1 (Ty)e ]coses1neded¢
0 o
o] TZ [oe] [e'e]
+ %—f dn J dt! o TH(~ +n,r',TO) J dx Ko[xy/(rz—r‘)2+n2 (1 -Té)xdy
=0 G 1 1
) T0
2 [ L ]
- J dn J dTZ oT (Ty+n,TZ,TO)
-0 T
z
’ SO WA Iy gy B
j dx f ko[xy/(TZ TZ) +n J\TZ Tz)xdy (3.108)
1 1
and
2w /2 N -T,5ech } —(ro-r )sech
qy = [ I0 (T})e - I0 (T&)e z ]sin2651n¢ded¢
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0o 0 (o] [ee]

J dn J dTé j dx [ n 5'T“(Ty+n,Té,ro)Ko[xy/(rz-ré)2+n2]xdy.(3.]09)

-

SRS

—© 0 ) A

Equations (3.108) and (3.109) are the basic equations for compo-
nents of flux which will be used in the following sections (1-5) to
formulate expressions for flux due to various types of boundary
radiation. Both components of flux involve the emissive power which
has been determined in previous sections. The notation for flux and
emissive power has been tabulated in Table 3.1.

1. COLLIMATED FLUX OF COSINE MAGNITUDE

A collimated flux of cosine magnitude is incident on the upper
boundary as shown in Figure 3.2. Components of flux in the v- and

z-directions are denoted by q , and 9,45 respectively. Boundary con-

yA
ditions for the cosine varying collimated model given by equations
(3.28), (3.29), and (3.33) reduce equations (3.108) and (3.109) to the
form

i3t ~oT
e Y 7

Qio—n

qZA(Tz’O’To) -

[e.0] Z [ee] [e'e]
+ %-j dn j dt! J dx j E-TK(Ty+n,T£,TO)[TZ-Té]KO[Xy/(TZ-Té)2+n2]Xdy

-00 (o] 1 1

")24n2xdy(3.110)

- —f dnj dréJ de 8.TR(Ty+n,Té,TO)[Té—TZ]KO[Xy/(TZ—TZ

- T 1 1
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= T ' W]
f no TA(Ty+n,TZ,TO)KO[Xy/(TZ-TZ) +n° Ixdy (3.111)

1
where TA is the temperature of the medium. The application of the
separation of variable technique with the use of equation (3.36)

reduces equations (3.110) and (3.111) to

- ] 1 1 1
a,4(T,50,T,) = FOCOS(pr)[ — ¥ E’J &, (17152803 (1) 50,7 )dr)
0

T
0
1 . , .
- -gf 52(TZ—TZ,B)JBhZ,c,ro)dTZ] (3.112)
T2
and
F TOJ (t',0,7_)
g1 (1.,007.) = - =2 sin(pr )j Bzio d e ) p)det (3.113)
yAt 'z 0 2 y ! ]TZ-TZT* B 2 7 "zl z

where the derivative in equation (3.113) arises from an operational

property of equation (3.39)

o]

; — -|g[VtP+8?
l"J ne PN K (t/ZFE2)dn = - i g-[e ] X (3.114)
ﬂ 0 Pt T

-0

2. UNIFORM COLLIMATED FLUX STRIP

Reference to the expressions for radiative flux given by equations

(3.105) and (3.106) indicates the dependence of the flux upon the
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emissive power of the medium. Since the emissive power for the
medium bounded by the finite strip has been expressed in terms of the
emissive power for the medijum subjected to the cosine varying boundary
condition, the radiative flux for the finite strip should be related
to the radiative flux of the cosine varying boundary. This section
is concerned with the collimated flux boundary condition. The main
interest is in the z-component of radiative flux.

The boundary conditions for the constant collimated flux incident
on a strip of half width T, are given by equation (3.42). Figure 3.4
shows the physical model. When expressed in terms of the Fourier
integral representation, the boundary term given by equation (3.42)
results in the z-component of flux for the constant collimated strip

of equation (3.108) to attain the form

FO J sin(BTa) iBTy—orZ i

Up(T,00:T) = 5 | —5—e

+%J J | J G Tylr 4,1 ) Do (T, =10) 7]

(TZ—TZ)XdXdydTZdn

] gt

(TZ-TZ)xdxdydTZdn . (3.115)
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When equation (3.110) is multiplied by sin(GTa)dB/nB and integrated
from -« to «, the following expression involving the flux for the

cosine varying collimated boundary is obtained

o ! s1n(81a) 1BTy-OT

a e z dg

F
'”B qu(Tz’O’To)dB = E-T-T-J B

o] -0

[w sin(Bt.)

Ao

0

[J sin(BTa) —

= 3t #1747, )dg] dxdydr i

-0

1
=M
—_—
—
Sy

f K, Doy (e, P Ix (- )

* sin(BTa)__
[ f T Thrnthr,)d0] dedydeldn (3.116)

-00

The relationship between the emissive power of the media for the
cosine varying collimated boundary and the constant collimated strip
boundary has previously been found. Rewrite equation (3.48) in the

form
” sin(Bra) -
g o TA

o0

- 1
o TB(Ty+n,TZ,T ) = =

o (Ty+n,TZ,TO)dB . (3.117)

| ~—

Inserting equation (3.117) into equation (3.115) and comparing the
result with equation (3.116) yields an integral expression for the
z-component of flux for the collimated strip boundary in terms of the

z-component of flux for the cosine varying collimated boundary
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(t_,0,1.) = 1 EEEEEIQE_ (1_,0,1_)dB (3.118)
928\72°% 7 T B 20112297, : .

3. COSINE VARYING DIFFUSE BOUNDARY CONDITION

Boundary conditions for the cosine varying black surfaces, given
by equations (3.52) and (3.53) and shown schematically in Figure 3.3
provide nonhomogeneous terms in equations (3.108) and (3.109) which
should also be written in terms of the position dependent Bessel
functions if the previous transforms are to be utilized. The essential
difference is the introduction of Sz(i) instead of Sl(g) defined by
equation (3.56). As with Sl(g), Sz(g) can be written as an integral
of the desired Bessel function. Integrating equation (3.59) with

respect to £ over the range (£,«) results in

(o] [ee] [oe]

s (£) =J J [ K (x)dxdydz - (3.119)
Z=(£ y=2z X:y
Equations (3.108) and (3.109) then become

212

_ Z = Tk 24 27,,2
qz(rz,ro) = ~E~'J J J J o TZ(Ty+ﬂ)K0[XyZ/TZ+q Jy%xdxdydzdn

-® 1 1 1

. Z(Ti_TZ)ZJ

oo o0 0 o

j J J E'T (t +n)K [xyzv( T~ T )2+n2]y xdxdydzdn
111

[e0}

+ % [ J J j E'T“(Ty+n,Té,To)Ko[xy/(TZ-T;)2+I {1, -7, )xdxdydt dn

J J I j o T¥(t +n Tz O)Ko[xy/(T -Té)z+n2](Té-rz)xdxdydrédn(3.120)
11
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oo o0 o0 [ee]
L
2

2T —
q (t_,1.) = “%E'j J j o T (Ty+n)Ko[xyz/%§+n2]yzxndxdydzdn

2(t -1_) _
- 0 _2 J J [ o Tj(ry+n)Ko[xy/(TO-TZ5W]y2XndXddedn
J

- -7-2; J f f f ki T“(Ty+n,r;_,'fo)Ko[xy/('['z—ré)2+n7]nxdxdydfédn(3.]2])

-0 11

The black surfaces radiate in a cosine fashion given by equations
(3.64) and (3.65) with the temperature of the medium Tc expressed by
equation (3.63). These boundary conditions reduce the two-dimensional

flux equations to those for a single dimension

o0} o

aéC(Tz’To> = 2 T, 6: f é;z(xrz,B/x)dx - Z(TO-TZ)S: J égz(x(ro-rz),B/x)dx
1 1
TZ TO
+ 2 J f(Té)gz(Tz-Té,B)dTé -2 f f(ré)gz(ré—rz,ﬂ)dTé (3.122)
0 T
z
and
[+ _ , d
T ey 20" ffi_é(xrz,B/X)dx o d g [x(7,-1,),8/x]dx
qu z’o 2 | dB 1 | dB
1 1
o £ (v -'].6)
iy d TZ-Té B i
+ ZJ f(TZ) —-—B—[ 2|T T ]dTZ (3.123)
o zZ z
where

—_— k4
qzC(Tz’To) = qzc(rz,ro)/ o TOCOS(BTy) (3.124)
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and
— —_ 4,
Uyc(Tz2Tg) = =ayc(7,57)/ T Tosin(er ) (3.125)

In view of the standard one-dimensional form for the radiative
flux, it is desirable to introduce a function analogous to the Ea(rz)-

function. Define a generalized exponential integral function

(o o]

E,(1,58) =1, J g, (1,%8/x)dx . (3.126)

1
Recall that g;; reduces to E2 when 8=0. Hence, éfs reduces to an
integral of E2 which is another form of Es. Inserting the 3;3-
function into the z-component of flux reduces it to a standard form
analogous to the one-dimensional result obtained by Spérrow and Cess

[7,p.224]

4 4
AuelT,s7,) =26, g,(1,:8) - 2 0 &,(151,8)

'z %o

+ 2 f f(Té) éi(Tz-Té,B)dTé -2 J f(T')E;Z(Té-T ,B)dT; . (3.127)
0 T

In a similar fashion, the y-component of flux is simplified by intro-

ducing the functions

d £ (t_,8)
_ 1 2 zZ
GZ(TZ,B) = —-—TZ P T (3.128)
and
: d€ (1_,8)
_d 21 z
G (1,.8) = a‘éf &, (1,%:8/x)dx = = = : (3.129)
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This reduces the y-component of the flux to

4 4
qu<TZ’TO) =2 82 G3(TZ’B) + 2 @1 63(10_'{2’8)

T
0

+J 6 (Jr,1p [ E)F(x))dTy (3.130)
0

The components of flux can be expressed in terms of qu by insert-

ing equation (3.73) into eguations (3.127) and (3.130) to obtain

T
z
-~ 4 i 1 i
qzC(Tz’To) ) 62 [253(12’8) e J (pB(Tz’To)gz(Tz'Tz’B)de
o)
o
-2 j ‘bB(Té’To) gz(T"TZ,B)dT']
T
z

T
0
t2 J dg (TO-T',TO)Ez(T'-TZ,B)dT;](&]B])
T
z
and
TO
Eyc(rz,ro) =29 [G (1,.8) +I Gz(|TZ-T;I,B)¢B(T£,TO)dT£]
0
T0
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A further simplification in form is obtained by defining functions

T
Z
F(t,,7,) = 2 53(12,8) + 2 J{ 95(15515) € (1,-1,,8)d1]
0]
To
-2 j ¢B(Té,TO)£;2(Té~TZ,B)dTé (3.133)
TZ
and
TO
Fy (%) = 26 (1,8) + 2 [ 6 (i1 B)orhot )y . (3.134)
0

Replacing T, by T,-T, in equations (3.133) and (3.134) yields

T
z
FZ(TO-TZ,TO) = Zésa(TO-TZ,B) -2 f ¢B(TO-Té,TO)é;z(TZ—TZ,B)dTZ
0
TO
+ zf 051,117, €, (T4-T,,8)d1] (3.135)
Tz
and
To
Fy(To-TZ,TO) = ZGa(TO—TZ,B) + 2 J Gz(ITZ-Tél,B)¢B(TO-T2,TO)dTé(3.]36)

0

Hence, equations (3.131) and (3.132) reduce to

u
qZC(TZ,To) = GZFZ(TZ,TO) - elFZ(TO-TZ,TO) (3.137)
and
— o Y
qyc(rz,ro) = Bsz(TZ,TO) + Gle(TO-TZ,TO) . (3.138)
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Both components of flux are expressed in terms of the generalized
éa—function. This fact uncovered a discrepancy in one of the func-
tions defined by O1fe [14] in his analysis for a black wall radiating
in a sinisodual fasinion into a semi-infinite medium. 0lfe reduced
the two-dimensional equations to those for the one-dimension by
directly utilizing the relationship between the local and fixed coord-
inate systems. A simple trigonometric identity and use of symmetry
of the ¢-wise integration, along with an integral property of Bessel
functions Ted him directly from equations (3.20), (3.105), and (3.106)
to the reduced forms. O0lfe's reduced temperature and normal flux
involve fundamental functions Nl, Nz, and w3 defined by

m/2 —Tzsece n-2
W (t.) = e JO(BTZtane)(cose) sinodd  (3.139)

where Jo is the zeroth order Bessel function. The functions w1 and
W_ correspond to the functions é;l and 5;2 of the present analysis.

As already indicated, the present development expresses the
y-component of flux in terms of the derivative of the éfz-function.
However, 0lfe's component of flux parallel to the radiating wall
involves functions U2 and U3 defined by

n/e -T,5ech n-3
U (t.) = e JI(BTZtane)(cose) sin?6de  (3.140)

where J1 is the first order Bessel function.
Direct term by term comparisons for both developments indicate
that since the derivative of the g -function described the y-flux, a
2

similar differential relationship should exist between the Un- and
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Wn—functions. In particular, the conclusion is that in order for
Olfe's development to agree with the present analysis, the following
relationship should be satisfied

dW
aég-= TZU (3.141)

2

Inspection of equations (3.139) and (3.140) reveals that
equation (3.141) is valid. However, Olfe's initial definition of Un
did not satisfy equation (3.141) since the exponent of cos8 was (n-2)
instead of (n-3).

4. RELATIONSHIP BETWEEN DIFFUSE AND COLLIMATED CASES

An integral expression relating the z-component of flux for the
cosine varying diffuse boundary to the z-component of flux for the
cosine varying collimated boundary is obtained by writing equation

(3.112) 1in the following form

~0T
Z

4 p(T,50,T

1
z o) -5 €

T
0

+ %—j JB(Té,O,TO)Sign(TZ-T;)E;;(lTZ-Tél,B)dTé (3.142)
0

where a%A(TZ,O,TO) is a dimensionless flux defined by

A, (1,20575) = a,5(7,,0,70)/F cos (Bt ) (3.143)
and ~
1 Té < T,
Sign(rz-ré) = 0 Té =T,
_;1 Té > T, (3.144)
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Insertion of the sign-function into equation (3.133) reduces a
portion of the z-component of flux for the radiating wall boundary

condition to
Fo(1,070) = 2€ (1,6)

(t!,1 )sign(rz-ré)é;z(lTZ-ré|,B)dTé.(3.145)

z’ 0
But ¢6 has already been related to JB through equation (3.78). Hence,

equation (3.145) becomes

FZ(T ’TO) = 283(T238)

z
+ j i%l:j JB(T;,/t2+BZ,TO)Sign(TZ-T;)égz(ITZ—TEI,B)dTé] . (3.146)
1 0

Substituting o=/t2+B2 1in equation (3.142) and solving for the integral

yields
To
J JB(T;,/t2+BZ,TO)Sign(TZ-T;)252(ITZ-T;i,B)dTé
0
-Tz/t2+62
<0 T TTraZ _2.e _ 1
Z qZA<TZ,\/t +8 ,TO) /t2+6 (3. 47)

Substitution of equation (3.147) into equation (3.146) results in

[ee]

i T (o T &t
Fo(tptg) = 26,(1,08) * 2] (a, BT ) &
1

© -Tz/t§+82

-2 S dt . (3.148)
t2/t24R2
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Replacement of T, by 5T, in equation (3.148) yields

(o]

- = - e 2 p dt
(17T T) = 26, (5g7mnB) * 2 | Tyl P9 &
1
0 - - 2 2
. (TO TZ)/t +R
-2 dt . (3.149)

] t2/t7+g2

Substitution of equations (3.148) and (3.149) into equation (3.137)
yields the desired relationship between the flux for the cosine vary-
ing diffuse boundary and the flux for the cosine varying collimated
boundary in the form

[e o]

T =g" : = NPy dt
qzC(Tz’To) ez[? gi(Tz’B> t2 J qu(Tz’V% B ’To)

- dt] . (3.150)

5. CONSTANT TEMPERATURE STRIP

The analysis of this section is concerned with expressing the z-
component of flux due to constant temperature strips in terms of the

z-component of flux due to the cosine varying diffuse boundary.
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Figures 3.3 and 3.5 exhibit these physical models. The z-component of
flux for the cosine varying diffuse walls, equation (3.120), can be

written in the following form

2 —_ ot 16T}" 2 1\2 2 . ]
qZC(TZ, =-T J J J J o Tze Ko[xyz/rz+(ry-ry) Ixy dxdydszy
11

- 00

B %(To'Tz)2 j y

(o]

ipt!
J J J'E qu yh [xyzv/(T —TZ)2+(T -7 ) ]xyzdxdydzdry
1 1 1

C (t +n, Z,T K [xy/if -T )2 ](t —T xdxdydT dn

z

+
H1ro
g—‘h

8
O Y

~

N
'*—‘*ﬂ
'““"_‘s

—
J o TC(Ty+h,Té,TO)
1

Ko[xy/(TZ—Té)2+n2](1é—12)xdxdydTédn . (3.151)

By employing the Fourier integral representation of the constant
temperature strip boundary conditions of equations (3.83) and (3.84)
in equation (3.120), the z-component of flux for the constant temper-

ature strip is obtained in the form

o 00 O ¢ o0

2, . sin(BTa) iBr&
qZD(Tz’To) =12 J f J J [ J oT e ds]
- 11 1 -

K [xyz/%7+(Ty—r )2 ]xyzdxdydzdr
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(e 9] (e oo o T o 0] oo

g [T 2 g

=® 1 11 -

- 2 _rty)2 2
Ko[xyz/(ro TZ) +(Ty Ty) Ixy dxdydzdr§

Ko[xy/(rz-ré)2+n2](ré-f )xdxdydrédn . (3.152)

Z

The emissive power relationship between the constant temperature
strip and the cosine varying diffuse boundary has previously been
developed and is given by equation (3.90). Hence, multiplying equa-
tion (3.151) by sin(BTa)dB/ﬂB, integrating it from -« to %, and using
equation (3.90) results in an expression which when compared with

equation (3.152) yields
1
T T) =5 )~ AclteTp)dE - (3.153)

Equation (3.153) relates the z-component of flux for the constant
temperature strip to that of the cosine varying diffuse boundary in a
fashion similar to that of equation (3.118) which connects the con-

stant collimated strip with the cosine varying collimated boundary.
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IV. SEMI-INFINITE MEDIUM

A. INTRODUCTIGON

This chapter is concerned with the radiative flux and emissive
power at the boundary of a semi-infinite medium. The fundamental
equations follow directly from Chapter III as a result of Tetting
the optical thickness o become infinite. The radiative flux and
emissive power at the boundary are expressed in terms of the genera-
lized H-function which is analogous to the one-dimensional H-function
of Chandrasekhar [1,p.105]. The generalized H-function is the
emissive power at rz=0 due to a collimated flux of cosine magnitude
incident on a semi-infinite medium. Since the generalijzed H-function
is basic to the emissive power and flux at the boundary, a detailed
study of its behavior is appropriate.

The method of successive approximations is used to obtain exact
numerical data for the generalized H-function at discrete points.

An interpolation technique is employed whereby intermediate values
are obtained in terms of the exact values. This eliminates the
repetitive and time consuming effort involved in calculating the
generalized H-function by exact methods. The radiative flux and
emissive power at the boundary for the finite strip models are tabu-
lated for a wide range of the parameters.

B. EMISSIVE POWER FOR COSINE VARYING BOUNDARY CONDITIONS

The analysis of this section is concerned with the emissive
power at the boundary of a semi-infinite medium for cosine varying
boundary conditions. First consideration is given to the cosine
varying collimated boundary since it generates the generalized

H-function. The integral equation that the generalized H-function
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satisfies is developed and solutions are obtained by exact and approx-
imate techniques. The emissive power for the diffuse wall radiating
in a cosine fashion is then expressed in terms of the generalized
H-function and its moment. Reference will be made to Figures 3.2 to
3.5 which describe the various physical models for the finite medium.
However, the models for the semi-infinite medium are obtained by
letting the optical thickness T become infinite.

1. COLLIMATED FLUX-FORMULATION OF THE GENERALIZED H-FUNCTION

Figure 3.2 shows the physical model for the cosine varying colli-
mated boundary condition. When the optical thickness becomes infi-
nite, the integral equation describing the emissive power follows from

equation (3.37)

-0T
Z 1 1 1
By(r,.0) = e 2+ ﬂ € (7,1} ],8)B,(x},0)de (4.1)
0
where
BB(TZ,G) = iifw JB(TZ,G,TO) . (4.2)
0

The integro-differential equation for BB(TZ,O) is found by
letting the optical thickness become infinite in equation (3.102)

dBB(TZ,G)

dt_
z

0,0)¢(1.) (4.3)

T_,0) = BB( .

+ OBB( .

where

Tz,/f2+82)dt

(4.4)

oo B (
-1 B
@(TZ) =3 j /_._.._.__t2+82

1
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and

[ee]

By(o,) = 1+ % | € (2,88, () 00ty (4.5)
0

The emissive power can be found by solving either equatijon (4.1)
or equation (4.3). However, equation (4.3) is the most suitable
since the integro-differential equation can be reduced to a system of
ordinary differential equations which are easily solved numeérically.
The initial condition BB(O,U) is also an unknown function whjch must
be determined before equation (4.3) can be solved. Since thjs inves-
tigation is conéerned with the behavior at the boundary, the majn
objective of this section is to determine BB(O,O). In particular,
BB(o,o) will be shown to be analogous to the one-dimensional H-fupc-
tion of Chandrasekhar. Therefore it is appropriate to recast
equation (4.5) into an integral equation of the Chandrasekhar type.

When 51(12,6) is replaced in equation (4.5) by its intagral form
and the order of integration is interchanged, the following 8xpréssion
is obtained

-T [ /t2+82

B,(0,0) = 1+ %—j (t24+52)7s J B(t),0)e 2 deldt . (4.6)

) 0
An alternate form for BB(o,c) results from defining a generalized

reflection function

R (o,/fZ¥8%) = J Bo(t)./t7+E)e z dt (4.7)

g
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which is analogous to the reflection function of Chandrasekhar.

Inserting equation (4.7) into equation (4.6) yields

© RB(/t2+82,c)dt

, /t2+g2
1

no|—

Equation (4.8) is further simplified by finding the relationship
between the reflection function RB(/%2+82,0) and the emissive power at
the boundary. This relationship is obtained by letting o=vt2+g82 in

-0T
equation (4.3), multiplying it by e Zdrz and integrating from 0 to «

to obtain
dBB(Tz,/t§+BZ)-OTZ — .
——— 2 2
j de e dTZ + /2R RB(o,Vt +32)
o]
* -0T
- B,(0,/ETFE7) j o(rJe Zdr =0 . (4.9)

0
Integrating the first term in equation (4.9) by parts and utilizing
equation (4.7) yields

dBB(TZ,/t2+BZ) -1,

| & e Zdt, = oR (0,/EE7) - B,(0,/A7F7) . (4.10)
T, z B B

0

Substitution of equation (4.10) into equation (4.9) then results in

00

(0,/E%78Z )[1 + J @(Tz)e_mz dTZ] C(41T)
0

(o+/tZ+R%)R (0,/t2+8%) = B

B B

An additional simplification is obtained by relating @(TZ) to the

emissive power at the boundary. This simplification is accomplished
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-0T
by multiplying equation (4.4) by e % dr, and integrating it from 0

to « to obtain

. -0T * B, (1.,/t%+p2)dt _ -otT
J @(Tz)e z dTZ = J [ %—J B Z — e ? dr, . (4.12)
5 A . vte+p

After interchanging the order of integration of equation (4.12), the

following expression is obtained

oo (o8] oo

0T -0T
j o(r e Zdr, =1 j __dt [j B,(1, /A5 ET)e 7 dTZ] L (4.13)

4 z 2,102
5 1/t +B

Next, insertion of equation (4.7) into equation (4.13) gives

” RB(o,/t2+32)dt

1
Z z 2 s
0 1

(4.14)

By utilizing the symmetry of the reflection function as shown in
Appendix C, equations (4.8) and (4.14) can be combined to yield the

relation

o0

-0T
BB(O,G) =1 + j @(Tz)e z dTZ . (4.15)
0

Substitution of equation (4.15) into equation (4.11) then gives the
reflection function expressed in terms of the emissive power at the
boundary as

B, (0,7t>+8%)B(0,0)

R (0,/t2+p2) = —2 5 : (4.16)
B o + /t2+82

An integral equation for the emissive power at the boundary is

obtained by inserting equation (4.16) into equation (4.8). This



67

yields

8 ( ) : 1 ( ) BB(O,/t§+BZ)dt
0,0} =1+ =B (0,0 [ . 4.17
¢ ¢ 8 (o+/tZ+82) V2442 4-17)

The change of variable x =/1+8%/v/t%+g7 reduces equation (4.17) to

BB<O,G) =1 + %‘BB(O,G)

fl V1+8%2 BB(o,¢1+62/x)dx
JT+32(1-x%) (xo+/1+87)

A further transformation with u=/1+8%/0 reduces equation (4.18) to

(4.18)

1

H01,8) = 1+ wii(u,p) | LLBI0GE)X (4.19)
0
where
b(x.8) = e (4.20)
2V/1+82%(1-x2)
ahd
H(u,B) = BB(o,¢1+62/u) (4.21)

is the emissive power at the boundary.

Equation (4.19) is of the same form as the integral equation
which the H-function of Chandrasekhar satisfies. When B=0, the two-
dimensional function H(u,B) reduces to the one-dimensional H-function,
Therefore H(u,B) will be referred to as the generalized H-function.
Since the H-function plays a major role in the development of the one-
dimensional analysis for a semi-infinite medium, the generalized
H-function should also play a major role in the two-dimensional inves-
tigation. The generalized H-function will be shown to appear in the

emissive power and radiative flux at the boundary for the cosine
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varying diffuse and collimated models as well as for those of the
finite strip. Hence, a detailed knowledge of the behavior of the
generalized H-function is necessary.

2. CALCULATION OF THE GENERALIZED H-FUNCTION

Two methods of solution are considered in the present investiga-
tion. The first technique is the method of discrete ordinates, and
the second involves direct iteration on the integral equation. Both
of these methods have been used by Chandrasekhar [1] in his one-
dimensional development of radiative transfer. Since the generalized
H-function satisfies a nonlinear integral equation of the Chandrasekhar
type, all of the theorems relating to the one-dimensional H-function
should apply to the two-dimensional analysis with corresponding
restrictions on the weight function w(u,8).

a. METHOD OF DISCRETE ORDINATES

The method of discrete ordinates involves approximating the
integral in equation (4.19) by a finite sum. This approach results
in the generalized H-function satisfying the following equation

ajw(uj,B)H(uj,B)

H(usB) = 1 + uH(u,8) 1 T

J

(4.22)

He~13

AJ=1,...n, a.=a . (Jj=1,...n, .==-l.) are weights and
where aiJ(J 1,...n, ay a_J) and UiJ(J Taeoony u_y=-py) are weights
divisions appropriate for a Gaussian quadrature in the interval (-1,1).
Chandrasekhar [1,p.114] shows that the unique solution of equation

(4.42) can be represented by

. aed
.
.

(4.23)

=
=
=
" => II‘;‘:lS

1
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where the kj(B)'s are the non-negative roots of the associated char-

acteristic equation

1-2 § Sops (4.24)
j=1 1-u3k3(e)

Equation (4.22) and its solution (4.23) are valid for all values
u>0. Equation (4.22) requires H(u,B) to be known at discrete ordi-
nates H(uj.B) corresponding to each abscissa ”=“j which are the
divisions of the Gaussian quadrature. The solution to equation (4,22)
does not explicitly contain H(uj,e) but does include the M terms. If
H(u,B) is a smooth and continuous function, equation (4.23) should
approach the exact value as n is increased. Increasing n has the
effect of refining the divisions Hys thereby increasing the number of
roots kj(B) which must be obtained from equation (4.24). Gaussian
quadrature of even order was used to obtain the first four approxima-
tions to the generalized H-function. The first order approximation
means that a Legendre polynomial of second degree was used. In
géneral, the n-th order approximation uses a Legendre polynomial of
degree 2n.

Tables D.1 and D.2 show the rate of convergence of the discrete
ordinate method. The fourth order approximation indicates that two
significant digits are obtained for small values of B. For larger B,
three significant digits are common. The discrete ordinate method
can then be used for a general analysis of the behavior of H(u,B) when
graphical data is required. Computational time involved for the

approximate method is quite less than that by successive approximations.
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The disadvantage in using the discrete ordinate method is that a
high degree of accuracy requires a large order quadrature. Increasing
the order of quadrature causes the characteristic roots of equation
(4.24) to become closer and closer together. Hence, the roots are
difficult to obtain accurately. For this reason, the discrete
ordinate method was not applied to approximations greater than fourth
order.

b. METHOD OF SUCCESSIVE APPROXIMATIONS

The method of successive approximations is a standard iterative
technique to solve integral equations. The method consists of
assuming an initial approximation to the unknown function, inserting
it into the integrand, and performing the integration to yield a new
approximation. If this technique is repeated with each new approxi-
mation, the result is a sequence of functions which converges to the
exact solution. Denoting the n-th approximation to the generalized
H-function by Hn(u,B), the (n+1)-th approximation is obtained by

solving

. w(UlSB)Hn(UI,B)dUI
Hop (18) = 1+ Wi (1,8) J T . (4.25)
0 n=1,2,...

A standard initial approximation to start the iteration procedure with
is the inhomogeneous term. FHowever, the closer the initial approxi-
mation is to the true value, the fewer number of iterations will be
required for convergence.

Iteration on the present form of equation (4.19) is not feasible
due to the extremely slow rate of convergence. An initial approxima-

tion with an accuracy of two significant digits obtained from the
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method of discrete ordinates and the use of an IBM 360 model 50
computer were not sufficient to warrant the computational time required
to tabulate H(u,8) to five significant digits. Chandrasekhar [1,p.107]
has developed an alternate integral equation for the one-dimensional
H-function which greatly increases the rate of convergence. When
applied to the specific y defined by equation (4.20), the modified

integral equation for the generalized H-function becomes

T . 1 : B b xu(x,B)H(x,B)dx
AGLEY - [1 - E—arcs1n{ e J] + [ ey . (4.26)
0

When B=0, the square root term in equation (4.26) has the value zero
which agrees with the one-dimensional result obtained by Chandrasekhar.

Application of the method of successive approximations to equation

(4.26) yields

n

1 1 { 8 J 5t xp(x,B8)H (x,B8)dx (a.27)
= - = i + .

n=1,2,...
Solutions of equation (4.27) were obtained by using a sixteenth
order Gaussian quadrature for the integral term and fifteen successive
approximations. An initial approximation of unity was used to start
the iterative process. The required number of quadrature points was
obtained by trial and error. The test criterian was that the H-func-
tion did not change in the fifth decimal place. Iterations were
performed using quadratures of order nine, sixteen, and twenty-five.

A twenty-fifth order quadrature produced results which agreed to five
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significant digits with those obtained from a sixteenth order quadra-
ture. The ninth and sixteenth order results agreed to at least four

significant digits except for very small u. Hence, a sixteenth order
Gaussian quadrature is the most applicable for the range of the para-
meters considered.

An alternate method of dividing the range of integration into two
subintervals (0,.9) and (.9,1) was used to further check the previous
results for the generalized H-function. This technique allows the
quadrature points to be positioned in the region where they are most
needed, i.e., in intervals where the function has a sharp peak or
change of curvature. However, an eighth order quadrature in each sub-
interval produced essentially the same results as obtained from a
sixteenth order quadrature in the whole interval. The results for a
sixteenth order quadrature in each subinterval were in close agreement
with the results from a twenty-fifth order quadrature in the entire
interval. Thus, this alternate method of partitioning the interval
was not utilized in tabulating the generalized H-functions.

Twenty iterations were then performed using the sixteenth order
quadrature to determine the rate of convergence. The results from
twenty iterations were compared with those obtained from fifteen and
found to be in five decimal agreement. Functional evaluation was then
performed for various values of p using fifteen iterations and a
sixteenth order Gaussian quadrature. Figure 4.1 shows the variation
of H(u,B) for selected values of p and 8. When B=0, the generalized
H-function reduces to the one-dimensional H-function of Chandrasekhar.

Figure 4.1 also reveals that the generalized H-function can be
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approximated by the simpler one-dimensional H-function for small g. In
particular, the generalized H-function of B8=.10 differs from the one-
dimensional H-function by .01196 at u=.1, .02763 at u=.5, and .26014
at p=1. Hence, the error in the one-dimensional approximation is
smallest at small 8 and p values and increases with increasing u.

Tables D.3 to D.6 exhibit the exact values of H(u,R) and also the
o dependent form, H(/Tigiyc,e). When 8=0, H(u,B) agrees to five
significant digits with the one-dimensional H-function tabulated by
Chandrasekhar [1,p.125]. Rybicki [19] uses the exponential kernel
approximation and tabulates a function which is similar to the genera-
lized H-function and agrees with H(/71§57O,B) for five significant
digits. Rybicki's function and H(v/1+8%/0,8) have reciprocal arguments
with respect to the o parameter. The limited range of 8 values which
are available for comparison indicates five significant digits for B
as large as B=20.

3. DIFFUSE BOUNDARY

Figure 3.3 shows the physical model for the cosine varying diffuse
boundary condition. The emissive power for the corresponding semi-
infinite medium follows from equation (3.78) by letting the optical

thickness become infinite. This gives

1
bolt,) = %f v (x,8)Bg (1,5 T+B8%/x)dx (4.28)
0
where
bg(t,) = Lim aglrymg) (4.29)

0
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The emissive power at the wall TZ=0 is obtained by inserting equation
(4.21) into equation (4.28). This yields an expression involving the

generalized H-function

1
500 = 3 [ 0 (808 (4.30)
0
A simplified form of the emissive power results from defining a

moment of the generalized H-function as

n

ny(®) = [ X" (B8N (4.31)
o

When the emissive power is expressed in terms of hO(B), the following
expression is obtained

F50) =5 h (B) . (4.32)

Equation (4.32) is analogous to the one-dimensional zeroth moment of
the H-function. 1In fact, when g=0, hO reduces to the one-dimensional
moment. The function hO(B) also appears in the constant temperature
strip analysis of the next section. Thus, a tabulation of this func-
tion at selected values of B is useful.

The presence of wl(x,s) in the integrand of equation (4.37)
complicates the numerical integration when B is large. Figure B.1
shows that wl(x,B) has a sharp peak at x=1 which becomes progressively
steeper with increasing 8. Therefore the integral (4.31) will require
much more than a sixteenth order quadrature to obtain five significant
digits for large 8. The method outlined in Appendix B is used to

smooth out the peak at x=1 by subtracting a function from the integrand
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which causes the integrand to approach zero with increasing 8. Since

the peak occurs at x=1, H(1,8) is a suitable function to subtract and

later add in its integrated form. Figure B.2 shows how this technique
redistributes the area under the 8 curves away from x=1.

Table D.7 lists values of hO(B) obtained from using a sixteenth
order quadrature on the reduced form of equation (B.1). The data from
a sixteenth order quadrature agree to five significant digits with
that obtained by dividing the range of integration into subintervals
(0,.9) and (.9,1) and using eighth order quadrature in each subinter-
val. Furthermore, the results from an eighth order quadrature in each
subinterval agree to five significant digits with that obtained from a
sixteenth order quadrature in each subinterval. Thus, the alternate
method of dividing the integration into two separate regions was not
used.

Figure 4.2 shows the varijation of $é(o) with 8. The dimensionless
emissive power EE(O) has a maximum value of 1.0 at 8=0 and decreases
to 0.5 as B approaches infinity. The almost constant behavior of the
emissive power at small B8 indicates that the two-dimensional emissive
power can be approximated by the one-dimensional emissive power over
this range. When g=.001, the one-dimensional emissive power and the
two-dimensional emissive power differ by the value .0006. At 8=.01T,
this difference increases to .0558. Hence, the error in the one-
dimensional approximation increases with 8. Therefore, except for
small 8 values, the two-dimensional model must be employed.

C. EMISSIVE POWER FOR FINITE STRIP MODELS

The emissive power at the boundary for the constant temperature

finite strip and the finite strip illuminated by a collimated flux of
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constant magnitude have been shown to have the same mathematical form.
The emissive power for each of the finite strip models involves compli-
cated integrals of the product of an oscillating function and the
generalized H-function or its moment hO(B). Transformations are per-
formed on the equation for the emissive power of the constant colli-
mated strip model which reduces it to a form favorable for numerical
computation. The same transforms are then applied to the constant
temperature strip since it has a similar form. Numerical techniques
are discussed which reduce the computational time involved in integra-
ting the generalized H-functions.

1. COLLIMATED FLUX-METHOD OF SOLUTION

The physical model for a finite strip subjected to a uniform
collimated flux is shown in Figure 3.4. When the optical thickness
becomes infinite, the emissive power for this medium is obtained from

equation (3.50), that is,

o]

_2 - dg
B(Ty,TZ) == { BB(TZ,O)S1H(BTa)COS(BTy) 3 (4.33)
0
where
B(Ty,rz) = ?T«, J(Ty,TZ,TO) ) (4.34)
0
The emissive power at the boundary TZ=O is given by
.2 (e dg
B(Ty,O) = J BB(o,o)s1n(pTa)cos(81y) 5 - (4.35)
0

The B dependence of the integrand in equation (4.35) is best exhibited
by expressing Bp(o,o) in terms of the generalized H-function. Sub-

stituting u=/1+8%/0 into equation (4.21) yields BB(o,o)=H(¢1+BE/o,B).
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Hence, the emissive power at the boundary for the collimated finite

strip becomes

B(1,50) = %-f (T8 e, B)sin (BT, Jeos (7)) &2 (4.36)
0

Equation (4.36) can be put in a form which is more favorable for

numerical computation by eliminating the cosine term in the integrand.

Application of the double angle trigonometric formula for sine and

cosine reduces equation (4.36) to

[ee)

3(r,00) = T | HOATET0,8)[sing(r,r,) + sinslr,- )1 8. (@.37)
0

The solution of equation (4.37) involves integrals of the form

[e0]

J¢(x)sin(kx)dx/x. The computation of integrals of this type by
0

numerical quadrature presents great difficulty when the k parameter is
large but finite. Increasing k causes the period of the trigonometric
sine to decrease, thereby increasing the oscillation. Hence, the range
of integration must be divided into such small increments that standard
formulas such as Simpson's are impractical to use. Filon [37] devel-
oped a method for integrating trigonometric functions of the above
form. However, this method proved to be useful only when ¢ diminishes
rapidly. If ¢ is a slowly varying function, Filon's method requires
such a large number of terms that it becomes impractical. Since the
generalized H-function is a very slowly convergent function, other

methods must be employed.
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Since the generalized H-function approaches unity for large

and the trigonometric sine is bounded by +1, the integrand in equa-
tion (4.37) converges to zero in the manner of 8~ . Thus, the rate of
convergence is quite slow at large values of B. If the infinite range
of integration is to be divided into regions such that all contribu-
tions after an acceptable large B are to be considered negligible,
the rate of convergence of the integrand to zero must be increased.
One such way to accomplish this is to force the numerator portion of
the integrand to approach zero for large B. Since the generalized
H-function approaches unity for large 3, the function

P(V1+8%/0,8) = H(/T+B%/0,B) - 1 (4.38)
approaches zero. Hence, adding and subtracting unity from the

integrand of equation (4.37) yields

[e o]

8(r,0) = + [ [P(/ITE7/0,6)41TLsina(1,+r, +sing(r, -t )]
0

[N

8
el (4.39)

[o0]

Application of the integral j sinxdx/x=n/2 reduces equation (4.39) to
0

[ee]

B(Ty,O) =1 + %-J P(v7+82/d,8)[sinB(Ta+ry)+s1nB(T -T )] gﬁ . (4.40)
0

jo

A further simplification in form follows as a result of the substitu-

tion x=B(Tat1y). The reduced emissive power is

B(Ty,O) =1+ %
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x 12 X sinx
+p ///1+[ X J fo, =2 | ] sime gy (4.41)

The infinite range of integration of equation (4.41) is divided

into finite intervals of the type

2 .
p /]+ X /o, X sinx dx
l [Ta+ty) Ta+Ty X
o (k+1)ﬂ' "
= ) J Pl /14| /o, == 21X d4x . (4.42)
k=0 Ta+Ty Ta+Ty X

x=km

When the 1imits of integration of equation (4.42) are changed and the
results are substituted into equation (4.41), the following series of

integrals is obtained

Xtk 2 X+km sinx
+p| / 1+{;;:;;} fo B | ax . (4.3)

The emissive power at Tocations beyond the strip width has a more

simplified form. For Ty>Ta, equation (4.37) can be written as

s S —

k x+km 12 x+km
B(ry.0) = L 7 (1" [ [ /1+ Kk \® g, xtka
Y k=o : Ta+Ty Ta+Ty

8

3 {-
1l o~
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2 .
- P 1+[l<i‘.<.”_aJ /o, ﬁ;'fza ] e dx (4.44)

Equations (4.43) and (4.44) are selected for numerical evaluation
for the following reasons: (a) the trigonometric function does not
oscillate over the interval of integration, (b) the range of integra-
tion is finite, and (c) transformations are available for increasing
the rate of convergence of slowly convergent alternating series.
Table 4.1 shows the rate of convergence for the first ten terms of
the series of equation (4.43) for o=1 and Ty=0. For small half strip
width Ty the terms decrease quite rapidly in magnitude with the first
term noticeably larger. However, at Ta=100, the convergence is very
slow. Since the error involved in terminating an alternating series
is at most equal to the absolute value of the first neglected term,
ten terms insures three significant digits for Ta=.01. For Ta=100.,
only one significant digit is apparent. Hence, a large number of
terms is required to obtain B(Ty,O) accurate to five significant
digits. In order to make this series practical for numerical use, a
transformation must be applied which reduces the number of terms
required for convergence.

A technique which is suitable for speeding up the convergence of
an alternating series is the Euler transform [38,p.100]. When applied

to a series of the form

the Euler transform yields



Table 4

.1 Termwise evaluation of B(ry,o) for o=1 and Ty=0
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|

0

[»

x+k

T.+71

2
} /0,
y

————

X+kg

sin x
d

x+km

Ta=.01

.099871
.001510
.000519
.000260
.000157
.000105
.000075
.000056
.000043
.000035

Ta=.10

.638051
.015089
.005208
.002628
.001583
.001057
.000755
.000567
.000441
.000352

P /’H_{ x+k1r]2/0’T *

a 'y a
a=1.0 Ta=]0.0
.911267 6.081897
. 147050 -.919206
.057400 .399125
.026056 -.221572
.015733 .140182
.010520 -.096382
.007528 .070213
.005654 -.053373
.004401 .041916
.003523 -.033777

Ta=100.0

6.952027
-1.544883
.872624
-.593770
.441444
-.345882
. 280651
-.233510
. 198009
-.170427
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S 1 ] ] -1)P

O A A AR NCERI ;P+} (0Pv,) + ... (4.45)
P+ . . .

where D 1vn is a difference defined by Dp+lvn=DPvn+1-DPvn. The Euler

transform can be started at any finite term of the series. In fact, an
error check involves starting the transform on the n-th term and com-
paring the results with that obtained by starting with the (n+1)-th
term. In order to demonstrate the Euler transform technique, the data
appearing in Table 4.1 for ra=1 is used. The series to be summed can
be written as

S =2.911267 - .147050 + .051400 - .026056

+ ,015733 - .010520 + .007528 - .005654
+ .004401 - .003523 + ...

Starting the transform on the fifth term, v0=.0]5733 from which the

following difference table is constructed

Table 4.2 Difference table for the Euler transform

2 3 L 5
Dvo D vO D vO D v0 D Vo

.015733

-.005213
.010520 .002221

-.002992 -.001103
.007528 .001118 .000606

-.001874 -.000497 .000355
.005654 .000621 .000251

-.001253 -.000246
.004401 .000375

-.000878
.003523

Hence, applying equation (4.45) with v0=.015733 to the difference from

Table 4.2 yields
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S = 2.911267 - .147050 + .051400 - .026056

" %—(.015733) - %~(-.005213) ¥ %-(.002221)
- L (c.00m103) + 1 (L000606) - L (-.000355)
15 - 37 (-000606) - &7 (-.00037

= 2.799101
Starting the transformation with v0=.010520 yields

S = 2.911267 - .147050 + .051400 - .026056 + .015733

-

(% (.010520) - L (~.002982) + L (.001118) - 1 (-.000497)

—

6

1

* 33

(.000251)] - 2.799108

The very good agreement between the fifth and sixth result of the
transformed series indicates that ten terms in equation (4.43) are
sufficient for five significant digits of accuracy. This approach is
an improvement over the straight forward summation which yields no
more than three significant digits as shown in Table 4.1. Ten terms
of equation (4.43) along with the Euler transform are also sufficient
for five digits for Ta=100. This is an increase of three digits of
accuracy as compared to only two digits obtained from direct summa-
tion of forty terms.

The computational time required to calculate the emissive power
for the finite strip model is greatly reduced by the application of
the Euler transformation to the series of equation (4.43). However,
each term of equation (4.43) involves integrating the generalized H-
functions which must also be calculated before the integration can be

performed. Since a relatively large order quadrature is necessary to
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integrate a function which has a sharp peak as does the P-function, a
large amount of computational time is spent evaluating the integrand
at each of the quadrature points. Thus, another method of determining
the P-function in addition to direct iteration is desired.

In order to reduce the lengthy and repetitive computations
required in integrating the H(/1+B%/0,8) functions, an interpolation
technique is utilized whereby it is sufficient to have exact values of
H(/1+8%/0,8) only at selected g values. The value of H(,/T+8%/5,8) at
intermediate values of B is then approximated in terms of the exact
values. The number and location of the B values is determined by
trial and error with the test criterion that the approximation yields
five significant digits of accuracy. This criterion is met by the
sixty-four values of g given by Tables D.5 and D.6. These sixty-four
values are distributed somewhat evenly over seven logarithmic cycles
of the range 0 < 8 < 10,000 with the exception of the cycle [1,10].
Any value of H(/1+8%/0,B) for which 8>10,000 is assumed to be unity.
Inspection of Table D.6 shows that this is a good approximation.
H(/1+8%/0,B) is unity to five significant digits for 8=10,000.

2. NUMERICAL AND GRAPHICAL RESULTS

The emissive power for the finite strip illuminated by a colli-
mated flux of constant magnitude was computed for values of o=1, 2,
and 5. The sixty-four values of g listed in Tables D.5 and D.6 were
used in the interpolation approximation of the generalized H-function
and provided five significant digits for each of the o values. Fewer
than sixty-four data points are probably sufficient for increasing o

due to the smoothing effect of the P-curves as shown in Figure 4.3,
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Tables D.8 to D.11 were obtained by using the Euler transformation and
the interpolation method with forty-seventh order Gaussian quadrature
for the integrations of each of the first ten terms in the series of
equations (4.43) and (4.44). The relatively high order of quadrature
is required for the integration of the first term which is more sensi-
tive to the sharp peak of the P-function in the vicinity of g=0. Half
strip width T, was also directly responsible for the magnitude of
quadrature selected. A small half strip width of Ta=.01 required
more quadrature points than did a Targer half strip width of Ta=]00.
Figure 4.4 shows the variation of the emissive power with half
strip width T for various values of o. Since the incident radiation
is uniform over the strip, the solution for large half strip width
must approach the one-dimensional semi-infinite solution. The
asymptotic behavior of the o curves at large T, indicates that the
finite strip solutions are approaching the one-dimensional solutions.
In particular, when o=1 and ra=100, the finite strip solution differs
from the one-dimensional result by .01851. At o=5, this difference
has reduced to .00185. Thus, a reasonably good approximation for half
strip width greater than Ta=100 can be obtained by solving the much
simpler one-dimensional model. The effect of decreasing the half
strip width is shown in Figure 4.5 for direction o=1. The emissive
power across the strip decreases with decreasing half strip width and
is essentially constant for ra=.01. Results for half strip widths
smaller than ra=.01 were not obtained. However, the trend of the

emissive power profile has been established for the Timiting value of
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Figure 4.6 shows the effect of the change of direction of the
incident radiation on the emissive power of the medium immediately
adjacent to a strip of half width Ta=l. The emissive power is a
maximum at the center and decreases across the strip with largest
change occurring near the strip edge as shown by the enlarged scale
in Figure 4.7. A discontinuity in the emissive power occurs at the
strip edge due to the discontinuity of the incident flux at this
location.

Temperature jumps are common phenomena in pure radiative trans-
port theory where the conduction mode of energy transfer is not
present to assure the continuity of temperature at the boundary.
Thus, the temperature of the medium immediately adjacent to the
boundary differs from the prescribed boundary value as shown in
Figures 4.5 to 4.7. Physically, this type of temperature jump at the
interface of the surface and bounding medium is explained by realiz-
ing that the temperature of the medium adjacent to the surface is
directly affected by all other elements in the medium in addition to
the surface.

Recall that G=seceO where 60 is the angle that the collimated
flux makes with a normal to the plane of incidence. Figure 4.6 shows
that the emissive power is a maximum for o=1, i.e., when eo=0, and
approaches zero with increasing . When o, 60+ﬂ/2 and hence no
energy enters the medium. Thus the temperature becomes constant Since
there is no driving force to produce a temperature difference between
elements of the medium. Figure 4.6 also shows the effect of position
away from the strip edge on the emissive power. The emissive power

decreases with distance away from the strip edge.
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3. DIFFUSE BOUNDARY

Figure 3.5 shows the physical model for the uniform temperature
strip. The emiSsive power for the corresponding semi-infinite medium
follows by letting the optical thickness become infinite in equation

(3.94)

© 1
¢(Ty.rz) = %-f [ J wl(x,B)BB(TZ,/1+62/x)dx] sin(BTa)cos(BTy) %ﬁ-(4.46)
0 o
where
EKTy,TZ) = kifw ¢(Ty,TZ,TO) . (4.47)
0

By evaluating equation (4.46) at 1,0 and utilizing equations (4.21)
and (4.31), the emissive power at the boundary can be expressed in

terms of the moment of the generalized H-function as

o0

3e,.0) = & [ ho(e)sin(oe, )eos (s,
0

€. (4.48)
Equation (4.48) has the same form as the emissive power for the
finite strip illuminated by a uniform collimated flux discussed in
the previous section. Since hO(B) approaches unity as does H(u,B) for
Jarge B values, a new functicn can be constructed for hO(B) that
corresponds to the P-function. Thus, the method of solution used in
the previous section is applicable to the constant temperature finite
strip problem. The same computer program was utilized with the
exception that the interpolation technique was performed from the
data of Table D.7,
Table D.12 Tists the variation in the emissive power of the

mediym immediately adjacent to the constant temperature strip as a



function of half strip width. At large half strip widths Tye the
emissive power for the two-dimensional finite strip approaches the
emissive power for the one-dimensional semi-infinite medium. This
asympototic behavior occurs at relatively small Ty values. Wnen
ra=20, the finite strip emissive power and the one-dimensional
emissive power differ by .01835. For Ta=50, this difference has
decreased to .00747 and becomes .00368 when Ta=100. Hence, for
Tazloo, the emissive power for the two-dimensional finite strip can
be reasonably approximated by the simpler one-dimensional result.

For small 1 values, the finite strip emissive power approaches
the value of .50. When Ta=.01, these two results differ by only
.00979. Figure 4.8 and Table D.13 show the variation of the emissive
power with Ty The behavior of the emissive power for the constant
temperature strip is similar to that for the finite strip illuminated
by a uniform flux. The emissive power is maximum at the center of the
strip and decreases with distance across the strip as shown by the
enlarged scale in Figure 4.9. A discontinuity in the emissive power
occurs at the strip edge due to the discontinuity of the boundary
condition at this location.

D. FLUX FOR COSINE VARYING BOUNDARY CONDITIONS

The analysis of this section is concerned with the z-component
of the radiative flux at the boundary for a semi-infinite medium with
cosine varying boundary conditions. The z-flux at the boundary due to
the collimated cosine boundary is expressed in terms of the genera-
1ized H-function. This is accomplished by means of the generalized

reflection function for the semi-infinite medium. The z-flux for the
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diffuse cosine varying boundary is then expressed in terms of the
z-flux due to the collimated cosine boundary.

1. COLLIMATED FLUX

The physical model for the cosine varying collimated boundary
condition is shown in Figure 3.2. The z-component of radiative flux
for the corresponding semi-infinite medium follows from equation
(3.112) by letting the optical thickness become infinite and

utilizing equation (4.2). This gives

_ 12_ J B(71:0) § (13-7,58)d7) (4.49)

where QB(IZ,O) is a dimensionless flux defined by

QB(TZ,G) = 11-1?:oo [qu(Tz,o,TO)/Focos(BTy)] = 1%110 CTzA(TZ,o,rO).(lLSO)
0

The boundary flux at Tz=0 becomes

[o0]

- ‘?J B(1,,0) £ (15.8)d7, . (4.51)
o

Q-

QB(o,O') =

By substituting the definition of EEZ(TZ,B) into equation (4.51),
interchanging the order of integration, and utilizing equation (4.7),

an expression for the flux at the boundary in terms of the generalized

reflection function is obtained

Qu(0,0) = L - 5 | R (T o) L

. (4.52)
t2

1
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Insertion of equation (4.16) into equation (4.52) gives a relationship
between the dimensionless flux and the dimensionless emissive power

at the boundary

[oe]

BB(o,q)BB(o,/ETIET)
j dt . (4.53)

t2(o2+/t2+37)

The change of variable x=/1+8%/vt2+R% introduces the generalized

H-function into the expression for the flux at the boundary

dx . (4.54)

B,(0,0) ! xy (x,B)H(x,B)
1 B 1
QB(OSO) - (—j- - 2 f

ox+/T1+p%

A further simplification in form is obtained by inserting o=/1+g%/u

in equation (4.54). Thus

= - _ H(u,B)
QB(O,U) ‘/T:ET [ 1 5 f 1 e dX] (4.55)
0
where
Qg (0,u) = Qg(0,/T+8%/1) . (4.56)

Equations (4.54) and (4.55) show that two forms are available for
calculating the z-flux. The o dependent form is tabulated since the
angle of incidence of the collimated flux is usually specified.
However, ﬁé(o,u) is used to calculate the flux for the diffuse cosine
boundary of the next section.

Tables D.14 to D.16 were obtained by dividing the range of
integration into two intervals and using various order quadrature in

each subinterval. The order of quadrature and the length of the



100

subinterval were obtained by trial and error. An eighth order
Gaussian quadrature was sufficient for the first subinterval for each
of the subdivisions considered. The second subinterval required
special attention due to the sharp peak of wl(x,s) at x=1 for large

8 values. The quadrature and range of integration for the second
interval are shown in Table 4.3.

Table 4.3 Order of quadrature and range of integration
corresponding to values of B

Quadrature Range of integration Range of 8
8 (.9,1) 0<Bc<8
16 (.9,1) 8 < B<17.5
25 (.9,1) 17.5 < B <30
37 (.95,1) 30 < B < 60
47 (.975,1) 60 < g < 10,000

The first range of 0<B<8 yields at least five significant digits
of accuracy for QB(O,O). The range 8<p<60 results in at least four
significant digits whereas B>60 yields at least three significant
digits for QB(O,O). Decreasing the length of the second interval
increases the accuracy but still requires a relatively large number
of quadrature points.

Figure 4.10 shows the behavior of QB(o,o) for the directions
o=1, 2, and 5. When B=0, the two-dimensional flux reduces to the one-
dimensional result which is zero and independent of o, QB(O,U)

jncreases with increasing g and is asymptotic to 1/¢ at large 3

values. This result is obtained by letting B~ in equation (4.54).
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QB(O’O) is maximum at o=1 which corresponds to the case when the
incident radiation is normal to the medium and decreases to zero as ¢
approaches infinity. At small B values, Qs(o,o) can be approximated
by the simpler one-dimensional model. When $=.001 and o=1, QB(o,o)
and the one-dimensional result differ by .00167. At g=.01, this
difference has increased to .01657.

2. DIFFUSE BOUNDARY

Figure 3.3 shows the physical model for the cosine varying
diffuse boundary condition. The z-component of radiative flux for
the corresponding semi-infinite model is obtained by letting the
optical thickness become infinite in equation (3.150) and utilizing

equation (4.50). This results in

o o _Tz/t2+82
= a7y dt e dt (4
Faley) = 2 6,(0,08) + 2 [ Qoo o) Rz [ S s at a.87)
1 1
where
3 — N
Folt,) = t1Tm [a,c(t,p)/8 ] - (4.58)
0

The substitution x=v1+B2/vt2+p2 reduces equation (4.57) to

1
T,)) = ZéES(TZ,B) + 2 J wl(x,B)QB(TZ,/1+82/X)dx
0

o - 242
Tz/t R

=7 | B gt (4.59)
t2/t2+p?
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The z-flux at the boundary is obtained by inserting TZrO into equation

(4.59) and using equation (4.56). This yields

1
0) =1 +2 J b (68)T(0,x)dx + 2 (171767 . (4.60)
5 B
The simplified form of equation (4.60) was made possible by observing
that 653(0,8)=.5 and integrating the integral term. However, when
TZ#O, both of these terms present an added numerical difficulty.

Table D.17 1ists values of the flux obtained by dividing the
range of integration of equation (4.60) into two subintervals in
accordance with Table 4.3. The numerical accuracy is essentially the
same as the accuracy for the z-component of flux due to the cosine
varying collimated boundary condition discussed in the previous
section. When =0, FB(O) reduces to the one-dimensional flux which
is zero. The two-dimensional flux differs from the one-dimensional
flux by .00133 when 8=.001. At B=.01, this difference has increased
to .01321. Hence, at small g values, FB(O) can be reasonably approxi-
mated by the simpler one-dimensional result. As B approaches infinity,
FB(O) approaches unity as shown in Figure 4.11.

E. FLUX FOR FINITE STRIP

This section is concerned with the z-component of radiative flux
at the boundary for the finite strip model. The fluxes for the uni-
form temperature strip and the uniform collimated strip are expressed
in terms of the flux due to the cosine varying diffuse boundary condi-
tion and the cosine varying collimated boundary condition, respective-

ly, and solved in a manner similar to the finite strip emissive power

of the previous section.
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1. COLLIMATED FLUX

The physical model for the finite strip constant collimated flux
boundary conditicn is shown in Figure 3.4. When the optical thickness
becomes infinite, the z-component of flux for this medium is obtained

from equations (3.118) and (4.50) as

o]

:—2—- T 1 .d-[.S_
Q(Ty,TZ) - J QB(‘z’O)S1n(BTa)COS(BTy) z (4.61)
0
where Q(Ty,TZ) is a dimensionless flux defined by
Q(Ty,TZ) = I{Tw [a,g(T,20,T )/F T . (4.62)
0
The flux at the boundary Tz=0 is
Q(t. ,0) = Z,f Q. (o,0)sin(Bt_)cos (BT ) Q§-. (4.63)
ys T B ) a y B
0

Integrals of the form of equation (4.63) are converted into a
slowly converging alternating series by the method applied in calcu-
lating the emissive power of the finite strip of this chapter. The
Euler transform is then applied to speed up the convergence of the
resulting series. The success of the method depends on the nonoscil-
lating part of the integrand approaching zero for sufficiently large
B8 values. For this reason, functions of the type of the P-function of
equation (4.38) are constructed. Inspection of Figure 4.10 shows that

QB(o,o) - %—as B - =, Hence, the analogous P-functions to be used

: =1
are o dependent and defined as P_ = QB(o,o).
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Tables D.18 to D.21 1ist the results of calculations by applica-
tion of the Euler transform and the interpolation technique. The data
for the interpolation approximation were obtained from Tables D.14 to
D.16. Table D.18 shows the variation of Q(o0,0) with half strip width
Ty at the center of the strip. Fiqure 4.12 depicts this variation.
The finite strip flux approaches the one-dimensional value of zero
as the half strip width becomes infinite. When Ta=20 and o=1, the
two-dimensional flux and the one-dimensional flux differ by .05308.
For ta=100, this difference has decreased to .01070. Hence, the two-
dimensional flux can be approximated by the one-dimensional flux when
133100. The flux is maximum when o=1 which corresponds to the case
when the incident radiation is normal to the strip and minimum when
o is very large. Increasing o has the effect of allowing less energy
to enter the medium.

Figure 4.13 shows the variation of the-z-flux with position
across and extending beyond a strip of half width ra=1 for constant
collimated radiation from directions o=1,2, and 5. The flux is
directed into the medium over the entire strip width., This means
that the amount of energy originating in the medium and passing
through TZ=0 in an outward direction as shown by the broken curves in
Figure 4.13 is less than the energy which is incident on the boundary.
However, a reversal in direction of flux takes place at the strip
edge. A discontinuity in flux occurs at the strip edge due to the
discontinuity of the incident radiation. The flux at locations beyond
the strip edge is in an outward direction because no external radia-

tion enters the medium at this location. Thus, any energy crossing
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the boundary must originate from interior of the medium. Since the
medium is in radiative equilibrium, there can be no net transfer of
energy. Hence, the area under the curve for the flux entering the
medium must be the same as that under the curve for the flux Teaving
the medium. Inspection of Figure 4.13 shows that this trend appears
to be satisfied.

Figure 4.13 reveals that for all ¢ values the flux entering the
medium is a minimum at the center of the strip where the emissive
power of the medium immediately adjacent to the boundary is maximum.
Since the emissive power decreases with position across the strip,
the flux increases to a maximum at the strip edge as shown. The flux
is maximum at o=1 and decreases inversely with o since the area
normal to the incident ratiation is directly proportional to the co-
sine of the angle of incidence and thus inversely proportional to o,
Figure 4.14 shows the variation in z-flux with change in half strip
width for the direction o=1. When Ta+O, the net flux entering the
medium approaches the maximum value of unity. For Ta=.01, the net
flux entering is almost unity. Hence, the emerging net flux corres-
ponding to Ta=.01 at locations outside of the strip width must also
have the same value as the net flux entering since the medium is in
radiative equilibrium. This behavior indicates that the emerging
flux curve must approach zero at a slow rate since the largest value
the emerging flux attains is .0159 at the strip edge. When 7% the
one-dimensional flux of zero is attained.

2. DIFFUSE BOUNDARY

Figure 3.5 shows the physical model for the constant temperature

finite strip. The z-component of flux for the corresponding
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semi-infinite medium is obtained from equations (3.124), (3.153), and

(4.58) by Tetting the optical thickness become infinite. This yields

[oo]

Fr,.1,) = Ef Folry)sin(ee, Jeos (g7 ) & (4.64)
(0]

=

where F(ry,rz) is a dimensionless flux defined by

F(t ,7.) = Lin [q..(t_,t )/ 3 T7 . 4.65
y’'z T o zD' "z o zJ ( )
The flux at the boundary TZ=O is

00

J FB(o)sin(BTa)cos(BTy)
0

EXEN)
U){%

F(t ,0) = (4.66)

Y
Since FB(0)+1 as B», the function analogous to the P-function of
equation (4.38) is defined as PB=1—FB(0). Inserting PB into equation
(4.66) enables the Euler transformation and interpolation technique
to be applied in calculating F(Ty,O). Table D.22 Tists the variation
of the z-flux with half strip width. The finite strip solution
approaches the constant temperature, one-dimensional solution of zero
as the half strip width approaches infinity. Figure 4.15 shows this
varjation. Figure 4.16 and Table D.23 show the change of flux with
position across and extending beyond strips of various half widths.
The flux profiles are similar to those obtained for the constant
collimated strip of the previous section. The broken curves indicate
energy that is emerging from the medium through the strip.
F. CONCLUSION
The 1imited range of values of B and half strip width T for

which the two-dimensional models can be approximated by the simpler
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one-dimensional models indicates the necessity of the two-dimensional
analysis. The two-dimensional cosine varying models can be approxi-
mated by the one-dimensional models when B<0.1, and the two-dimensional
finite strip models can be approximated by the one-dimensional models
when Ta>100. Thus, for other values of B or Ty the two-dimensional

rmodels must be considered.
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V. FINITE MEDIUM

A. INTRODUCTION

The analysis of this chapter is concerned with the radiative flux
and emissive power at the boundaries of a finite medium. The radia-
tive flux and emissive power at the boundaries are expressed in terms
of the generalized X- and Y-functions which are analogous to the X-
and Y-functions of Chandrasekhar [1,p.183]. These generalized func-
tions arise as a result of a collimated flux of cosine magnitude inci-
dent on a finite medium. The generalized X- and Y-functions are the
dimensionless emissive power at the boundaries TZ=0 and 5Ty
respectively. The introduction of the generalized X- and Y-functions
parallels the semi-infinite theory which generated a function analogous
to the H-function of Chandrasekhar.

A detailed analysis of the generalized X- and Y-functions is
presented and numerical methods of solution are discussed. Integral
equations are developed which correspond to the integral equations
for the one-dimensional X- and Y-functions of Chandrasekhar. The
integro-differential equations that the generalized X- and Y-functions
satisfy are developed. The integro-differential form is reduced to a
system of ordinary differential equations and solved numerically for
the generalized X- and Y-functions. The behavior of the emissive
power and radiative flux at the boundaries of the finite medium as a
function of B and optical thickness T, is investigated. Bounds on 8
and T, are obtained for which the finite model can be approximated
by the simpler semi-infinite model. The one-dimensional approximation

is also considered whereby the two-dimensional model can be replaced

by the one-dimensional model.
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B. EQUATIONS FOR THE GENERALIZED X- AND Y-FUNCTIONS

Since the generalized X- and Y-functions are basic to the devel-
opment of the emissive power and flux at the boundaries, the study of
their behavior is appropriate. In the first section the generalized
X- and Y-functions are shown to satisfy a pair of coupled integral
equations of the Chandrasekhar type. In the second section integro-
differential equations, which are more suitable for numerical calcu-
lation, are developed for the generalized X- and Y-functions. The
integro-differential equations for the generalized X- and Y-functions
are then transformed into integro-differential equations for the
moments of the generalized X- and Y-functions.

1. INTEGRAL EQUATION

The integral equations for the generalized X- and Y- functions
which correspond to the one-dimensional X- and Y- functions will now
be developed. These functions satisfy a pair of coupled, nonlinear,
inhomogeneous integral equations which are difficult to solve and will
not be utilized. However, this development is important because the
generalized reflection and transmission functions are introduced. The
generalized reflection and transmission functions will be used in later
sections to find the radiative flux at the boundaries.

The equations describing the finite medium have previously been
formulated in Chapter III. From equation (3.37), the dimensionless

emissive power JB(TZ,O,TO) satisfies the following integral equation

] I ] '
B(Tz’O’To) = e 'Z'J & 1(}T7_-TzlsB)JB(TZ,O,TO)dTZ - (5.1)
0
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The integro-differential equation for J TZ,O,TO) is given by

B(
equation (3.102) and can be written as

dJB(TZ,O,TO)
a;;— + OJB(TZ,O,TO) - JB(O,G,TO)®(T2,TO)
+ JB(TO,O,TO)Q(TO-TZ,TO) =0 (5.2)
where
3 (1. ,/t2+82,1 )dt
(77, —H B2 0 (5.3)
‘/t2+62

1

Following the procedure outlined by Sobolev [5,p.74] for the one-
dimensional theory, the generalized reflection function RB is intro-
duced through equation (5.2). Letting o=v/t?+8%in equation (5.2),

=0T
multiplying the latter by e z drz and integrating it from 0 to T,

yields
To 'OTZ
dd . (T ,¢%2+62,T0)e dTZ
J H?ﬁ‘ z + /t2+BZRB(O,/t2+82,TO)
z
0 T
0
-01,
- 2 2
= 3,0, /T8, 1) J o, )e 2o
0
To
I ‘OTZ
2 2 -
- JB(TO,/t +8 ,TO) J @(TO TZ,To)e dTZ (5.4)
0

where RB(o,/tz+82,ro) is analogous to the reflection function of

Chandrasekhar and is defined as

To

T orn? = x2+02 -0X
RB(U,/t2+82,TO) = J JB(x,/t B2 )e T dx . (5.5)
0
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The first term in equation (5.4) is expressed in terms of RB by
integrating once by parts to obtain
T, -oT,
dJB(TZ,/t§+B§,T0)e dTZ -0t
j a"—f—; = e JB(TOs‘/t B ’TO)
0
- JB(O,/t2+B§,TO) + ORB(O,/tz+B§,TO) . (5.6)
Insertion of equation (5.6) into equation (5.4) yields
‘o -0T
(0+/t7+82)RB(O,/%Z+BZ,TO) = JB(O,V%2+82,TO) [1 + J @(TZ,TO)e drz]
0
T
— -0t 0 -0t
NN Y I +j orgrprgle Zd] . (5.7)
0

A further simplification in equation (5.7) is obtained by relating
the integral terms involving ¢ and JB at the boundaries. The first
term containing ¢ is related to JB(O,O,TO) by evaluating equation (5.1)

at TZ=0. This gives

o w -T;¢%2+82

] e dt
J (o,0,T1.) =1+ —-[ [ f ] J (t!,0,7 )dt! . (5.8)
8 0 2 ! JAZigZ B' z 0’z

After interchanging the order of integration, equation (5.8) becomes

w 0 7
- l/t2+82
- .l dt [] TZ ] ]

JB(O,O,TO) =1 + E-J [ J JB(TZ,o,ro)e dTZ . (5.9)

2 2
1 Vte+B 5

The interior integral in equation (5.9) is another form of RB obtained

from equation (5.5) by interchanging /t2+8Z and o. Therefore,
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utilization of the expression

T
0 -T2 /t74B?

J JB(TQ,O,TO)E dTé = RB(/%2+62,0,TO) (5.10)
0

reduces equation (5.9) to

* R (/E%F8Z,0,1_)dt
JB(O,G,T)-"-]'l'JZ—f B 0

p—— (5.11
\/t2+82 )

However, RB can be related to ¢ by multiplying equation (5.3) by
-0T

e ° dTZ and integrating it from 0 to Ty This yields

0 0 0o

d =0T
f HJB(TZ,/t2+32,TO) t ]e 2 dr_.(5.12)
0

/t2+82
1

By interchanging the order of integration in equation (5.12) and
utilizing equation (5.5), the following expression is obtained

0 [ee]

-OTZ 1 Y dt
J o(t_ ot )e Zdr = ff Ry(0,/E7987 7)) =S5 . (5.13)
. Vt2 482

1

The symmetry of the reflection function RB with respect to ¢ and
vt2+3%is shown in Appendix C. This symmetry enables equations (5.11)

and (5.13) to be combined to produce the desired relation between ¢

and J_(o0,0,7_)

B( 0

-0T
_ z
JB(O,O,TO) =1+ J o(t_,T )e dTZ . (5.14)
0
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Next, substitution of equation (5.14) into equation (5.7) yields

(O+/t2+82)RB(O,/t2+82,TO) = JB(o,¢t2+Bz,rO)JB(o,o,ro)
T
-0T, ° -0T,
- JB(TO,/t2+BZ,TO)[ e + f @(TO-TZ,TO)e de] . (5.15)
0

A similar reduction in the form of equation (5.15) is accomplished

by expressing the term involving ¢ as a function of J_(t ,O,TO). This

B( 0
reduction is accomplished by evaluating equation (5.1) at 7T, to

yield
ot Yo @ -(1 -1.)/t7487
_ o, 1 [ e dt] : .
JB(TO,O,TO) e t 5 J s JB(TZ,O,TO)dTZ.(5.16)

0 1
An interchange of the order of integration in equation (5.16) yields

[e e}

- o, 1 Tz dt 17
T 0,7 ) = € + 5 [ SB(/t +B ,o,ro) e (5.17)

1

where SB(/t2+82,O,TO) is a symmetric function which is analogous to
the transmission function of Chandrasekhar and is defined as

T
0

. e
SB(/t2+82,o,ro) = f JB(T -X,0,T )€ XVE+8 dx . (5.18)
0

0 0

The relationship between SB and ® is found by replacing T, by T,
-0T

in equation (5.3), multiplying the latter by e z dTZ and integrating

it from 0 to o to obtain
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° -0T,
J Q(TO—TZ,T )e dTZ
0
o @ oT
= .]__ - 2402 dt h Z
5 J [ f JB(T0 TZ,V% +8 ,TO) - ] e dTZ . (5.19)
o Vt2+82

Next, reversing the order of integration of equation (5.19) and
utilizing the symmetry of SB results in the following expression

[s] ©o

[ 5, (VEET,0,1 ) =3t . (5.20)
0 /t2+82

O Y
LS
Lamn Y
3
]
~1
-
~
~—
4]

1

Q

~i

N
Q.
~
I

| —

1
Finally, insertion of equation (5.20) into equation (5.17) results

in the following integral relationship between JB(TO,O,TO) and ¢

Hence, the reflection function is expressed in terms of JB at the

boundaries as
TTIRT
RB(G,/t *B%,1,)

T ,0,T. )

YA
00, VETFET, 1 )4 550

i 242
0,0,T0)~J (TO,/% +8 ,TO)J

B
gt/ 2+p2

5l

When equation (5.22) is substituted into equation (5.11), the

following integral equation for JB(O,G,TO) is obtained

[ee)

-1+ 4

1
\]B(O,t/t2+82,'[0)\)6<0,0,'[o) - JB(TO,/t +823T0)J8(T030370)

]dt . (5.23)
VEZ+BZ (ot +R%)
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Equation (5.23) is seen to have the same form as equation (4.17).
Hence, the same transforms can be applied, and equation (5.23) then
reduces to an integral equation for the generalized X-function

1

X(us7y5B) = Ty Jw%(;’;-g—)- K (st B)X0x,w 8)=Y (a7, B) Y (X1, 8) Tdx(5. 24)
0

where the generalized X- and Y-functions are defined by

H

X(u,7,58) JB(O,/W%Z/u,TO) (5.25)

and

Y(u,7,,8) = gty 146%/ 1,1 ) (5.26)

Equations (5.25) and (5.26) define the dimensionless emissive power
at TZ=O and at 1,57, as the generalized X-function and the generalized
Y-function, respectively. Equation (5.24) reveals that the emissive
power at the boundary TZ=0 can be determined without a knowledge of
the emissive power within the medium and is completely described by
the emissive power at the boundaries. This equation is an improvement
over the form of equation (5.8) which requires the emissive power
within the medium to be known before the integration can be performed.
In a similar fashion, the emissive power at the other boundary =T,
can be obtained from equation (5.16) if the emissive power within the
medium is known. However, the success in expressing the emissive
power at TZ=0 solely in terms of the emissive power at the boundaries
by means of the integral equation for the generalized X-function

indicates that the integral equation for the generalized Y-function

should also depend only upon the emissive power at the boundaries.
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Hence, in the next section the integral equation for the generalized
Y-function will be developed.

The transmission function SB can also be expressed in terms of

JB at the boundaries. Replacing T, by T, in equation (5.2) yields

dJB(TO-TZ,O,T )

0
a—’—r—z- - ad 0,0,T )(D(T -T,,7 )

- +
To Tz’G’To) JB( 0 o 2’0

B(

B(TO,O,TO)®(TZ,TO) =0 . (5.27)

-J
By letting o=/t?+8% in equation (5.27), multiplying the latter by

-0T
e ° dTZ and integrating it from O to Ty the following expression

is obtained

To -OTZ
j EEEKTO—TZ’V%Z+BE’TO)e de
dt
5 z
T
° -0T,
£ 2102 Y]
- Vte+B J JB(TO-TZ,/t +8 ,To)e de
0
T
0 -0T
T =3
+ JB(O,V% +B ,TO) J (T -1 ,To)e drz
0
T
2432 O B 5.28)
= -
- JB(TO,/t +8 ,TO) J @(TZ,TO)e dr, =0 . (
0

Next, integration of the first term in equation (5.28) by parts

yields
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T

0
- —_— -0T
(o+/t24p2) j JB(TO—TZ,/t2+BZ,TO)e z drz
0
T
° -0T
= JB(TO,/t2+BZ,T )[ 1 + I @(TZ,TO)e Z 4t }
0
-0T ‘o -0T
- JB(O,/t2+62,TO) [e 0 4 J @(TO—TZ,TO)e z dTZ] . (5.29)
0

The first integral in equation (5.29) is SB’ The two integral terms

involving ¢ are related to J, at the boundary by means of equations

B
(5.14) and (5.21). Hence, equation (5.29) can be reduced to the

following expression for SB in terms of JB at the boundaries

SB(o,¢%2+BZ,TO)

TTRT - Z4g?
_ JB(O,/t +R ,TO)JB(TO,O,TO) JB(TO’/t B ’TO)JB(O’O’TO) . (5.30)

VtZ¥R? - o

An integral equation for JB(rO,o,TO) is obtained by inserting equation

(5.30) 1into equation (5.20) and using equation (5.21) to arrive at

-0t
JB(TO,G,TO) = e

0,0,T )

e {272 - Yo+ s J
9 (0327487, 1 )0 (7,0,7 ) g (T /U #E7, g Mg (0,007, ) (5.31)

+ 1
2 JUARZ(/EZFET - )

1

Since equation (5.31) is of the same form as equation (5.23), the

same transforms can be used to obtain the integral equation for the

generalized Y-function. This results in
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-TOV1+B§/U
Y(us7,08) = @

1
eu | OB [ 80V (g 8) - Xy 8)¥xrL8 k. (5.32)

0

Equations (5.24) and (5.32) are two coupled integral equations
for the generalized X- and Y-functions. The integral equations for
the generalized functions have the same form as the one-dimensional
equations of Chandrasekhar. Since the solutions for the finite model
must approach those of the semi-infinite model when the optical
thickness of the medium becomes infinite, the generalized X-function

approaches the generalized H-function and the generalized Y-function

approaches zero in the limit. That is, Lim X(u,TO,B)=H(U,B) and

’[0‘*00
Lim Y(u,ro,6)=0. When the optical thickness approaches zero, the
T >
generalized X- and Y-functions are equal: Lim X(u,TO,B) =
T -0

0

Lim Y(u,TO,B)=].
TO"’O

Numerical evaluation of the generalized X- and Y-functions by

direct iteration in the present form of equations (5.24) and (5.32)

is not practical due to the extremely slow rate of convergence. This
same problem was avoided in the semi-infinite theory by transforming
the standard integral equation for the generalized H-function into a
reduced form which was more suitable for iteration. lowever, such a
form is not available for the generalized X- and Y-functions due to
the complicated manner in which the two functions are related. Hence,

an alternate method of calculating the generalized X- and Y-functions
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is developed. This technique involves expressing the generalized X-
and Y-functions by integro-differential form. The advantage of this
form is that the integro-differential equations can be reduced to a
system of ordinary differential equations which are more easily
solved numerically,

2. INTEGRO-DIFFERENTIAL ENUATIONS

The integro-differential equations that the generalized X- and
Y-functions satisfy are formulated in a manner similar to that of
Sobolev [5,p.77]. This approach involves the integral equation for

. , o .
JB(TO-TZ,O,TO). Replacing T, by 7T, and T, by T,-T, in equation
(5.1) yields

1 i ! '
t s J é;l(|TZ-TZI,B)JB(TO-TZ,O,TO)dTZ . (5.33)
0

In obtaining the differential form, the optical thickness is

considered to be a variable.

Differentiating equations (5.1) and (5.33) with respect to 7,

yields
© . 2402
BJB(TZ,o,TO)_ l.J (e o) e-(ro TZ)/t +8 dt
57[_; - 2 B Z’ ’ 0 ‘/t2+82
1
T
0 3d (t!,0,t. )dt
1 L g z> "0z 5.34
+ 'é*j gl(ITZ Tzi,B) 3T0 ( )
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and
30 (T -T_,0,1.) -(t ~1_)o
__B*0o 'z 0°_ 0o 'z 1
7 =-ge + §-JB(0,U,TO)EEI(TO—TZ,B)
Yo
1 ' BJB(TO-Té,O,T )dt! ‘
+ E[ E (1t til.8) o 0z (5.35)

0
By letting o=/tZ+g7 in equation (5.33), multiplying the latter by

dt/vtZ+8% and integrating it from 1 to =, the following expression is

obtained
oo (1 -1 WETFR2
f JB(TO—TZ’/W’TO) L f e © 7 dt
. /t2+62 1 /t2+82
T
o0 0
.1. dt ! 1 2 2 1
ty J o f 81”"[2 TZ‘,B)JB(TO-TZ,‘/T. +R ,TO)dTZ . (5.36)
1 0

When equation (5.36) is multiplied by JB(TO,O,TO)/Z and the resulting

expression is compared with equation (5.34), an integro-differential

equation for J,. (T ,o,ro) results

B( z

oo

BJB(T 2O,T )

Y4 0 1 YA dt
—— = = J (1 ,0,1 )f J (1 -1_,/t*+R%, 1 ) —— . (5.37)
aro 2 B'o 0 B o 'z 0 /zizgi
1

Multiplying equation (5.33) by o and adding the resulting expression

to equation (5.35) yields

3d (T -T_,0,1.)
B*o 2’7’0 _ -
BTO + OJB(TO TZ,O,TO)

J.(o,0,7. ) & (1 -TZ,B)

B( o 1 O

N —
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T
0
1 : aJ(T -T',G,T )
+ E—J éi(lTZ_TZ"B)[g;f' 0Oz 0T, (TO-TE,O,TO)] dr, . (5.38)

B8
0
A comparison of equation (5.38) with the expressicn obtained by
multiplying equation (5.36) by J,(0,0,7.)/2 yields an integro-differ-
)

ential equation for JB(TO-TZ,G,TO

BJB(TO-T s0,T )

z 0
5;;’ + OJB(TO-TZ,O,TO)
I (1. -1_/t4B2,1 )dt
=%~JB(o,o,ro)f B o 2 0 : (5.39)
vt2+p?

1

Equations (5.37) and (5.39) are two coupled integro-differential
equations for the emissive power at optical depths T, and Ty~ T,
Before these equations can be solved, the emissive power at the
boundaries JB(O,O,TO) and JB(TO,U,TO) must be determined.

To do this, separate integro-differential equations for JB(O,O,TO)

and JB(TO,O,TO) are desirable. Insertion of TZ=O in equations (5.37)

and (5.39) yields

3d ,(0,0,1.)
BT l—J T ,0,T )f J (1 ,v/t2+RZ,1.) dt (5.40)
aro 2 B( 0’0 1 R' o’ 0 JETAg
and
3d (T _,0,1.)
B 0, ’ 0
Crn + GJB(TO,G,TO)
0
~— ] —ﬁ dt [ 4]\
= E-JB(O,O,TO) J JB(TO,/t +B ,TO) oy . (5.41)

1
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Equations (5.40) and (5.41) reveal that the emissive power at the
boundaries can be calculated without a knowledge of the emissive power
interior to the medium. Since the primary interest is in the emissive
power at the boundaries, equations (5.40) and (5.41) will be further
reduced to a more favorable mathematical form.

The substitutions of x=/1+82//t%+8Z and u=/1+82/0 along with the
use of equations (5.25) and (5.26) reduce equations (5.40) and (5.41)
to integro-differential equations for the generalized X- and Y-func-

tions in the form

L Y(x,T_,R)dx

IMX(Wyt sR) ez
= O = ‘/]ZBZ Y (1,1,58) f > (5.42)
T ° X1 +B2(1-x2)
and
¥ (u,7,.8) A7
'8—?‘ + u Y(UsTO,B)
0
1
= 87 ¥ (,r,8) f i Vel (5.43)
2 © x/1+R2(1-x2)

Equations (5.42) and (5.43) are the basic equations which can be
reduced to a system of differential equations and solved numerically.
These solutions can then be used to obtain the o dependent form of the
generalized X- and Y-functions from equations (5.40) and (5.41).

Since X(u,ro,B)=JB(0,¢7:§?7u,TO), the substitution o=/1+82/u yields
X(VT:§770,T0,8)=JB(0,0,TO). In a similar fashion, Y(/Tiéiyo,To,B)

=JB(r o,7.). Thus, inserting u=/1+g2/c into equations (5.42) and
0’ o’°

(5.43) yields
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3d_(0,0,1.) ~—= Vy(x,T_,B8)dx
g;ﬁ' °= l/:1%—6'-'JB(TO,G,TO) 2 (5.44)
0 xv1+R2(1-x2)
and
aJ ("E 30, T ) n2 ' Y(X’T ,B)dx
§?§' ° 07, OJB(TO,O,TO) . /148 JB(O,O,T )J 0 .(5.45)
0 2 0 o xvV1+82(1-x2)

Equations (5.44) and (5.45) can be reduced to a system of differential
equations and solved in the same manner as the u dependent form of
equations (5.42) and (5.43).

3. MOMENTS OF GENERALIZED X- AND Y-FUNCTIONS

The emissive power at the boundaries for the cosine varying
diffuse boundary condition involves moments of the generalized X- and

Y-functions. The first class of weighted moments are defined as

1

an(B,TO) = J xnwo(x,B)X(x,To,B)dx (5.46)
¢
and
1
o (Bs7e) = [ X (X, BIY (07, B) (5.47)
0

where the weight function Y is defined as

1
,8) = —————— . (5.48)
Yo (X 8) FrraRs

A second class of useful moments are

1

i (8rg) = [ X" (8K B0 (5.49)

0
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and

1

Yo (Bs1y) = f X" (x,8)Y(x, 74, 8)dx (5.50)
0

where wl has previously been defined by equation (3.79).

The moments o and 8o satisfy a simple identity which can be
obtained from equation (5.24). By multiplying equation (5.24) by
wo(u,B)du, integrating it from O to 1, and utilizing equations (5.46)
and (5.47), the following expression is obtained

. ot (x,8)v (u,8)
o (By1y) = f Yo (us8)du + %-f J o e -
0 0 0
[X(ustg»8)X(X,7y,8) = Y(1,7,,B8)Y(x,7,,8) Jdxdu . (5.51)

Due to symmetry, u and x are interchanged to obtain

' 1000 %, (x8)u, (1,8)
0o(Bry) = [ wplum)ax + 3 [ At
0 0 O
[X(x,ro,B)X(u,TO,B) - Y(X,TO,B)Y(U,TO,B)ldudx ) (5.52)

Adding equations (5.51) and (5.52) and integrating the initial term

involving wo results in the desired relationship between ag and BO

—

0 (827,) = T aresin [ﬂfs } L [a2(8,7,)-82(6,7)] . (5.53)

Equation (5.53) has the same form as the corresponding one-dimensional
result obtained by Chandrasekhar [1,p.189]. When =0, the two equa-

tions are identical.
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Differential equations for the moments are obtained by multiply-

ing equations (5.42) and (5.43) by WO(U,B)du and integrating to yield

3o (B,T_) T
0 0 /1+
Eﬁi; i 2B Bo (B2 )8 (Byg) (5.54)
and
38 (B,T.) a (B,1.)
00
e - [ 1] 6 ey (5.55)

A similar set of equations involving Xo and Yo follows as

SXO(B,TO) ]/]'*'BZ

E = = B (81 )y, (B51) (5.56)
and
gy (B,1.) x (B,t.)
5?5, ° = 1+g? [_2_§-9—-B_I(B,TO)—y_l(B,TO)] . (5.57)

Since the functions of the finite medium analysis approaches the

corresponding ones in the semi-infinite theory, Xo is bounded by hO

’[—)OOO

0
Lim y0(8,10)=0 where h0 has been defined by equation (4.31). When

T -

0
- - . -
8=0, Xy=Cos Yo=Byo y_,=B_,» and equations (5.56) and (5.57) are

and Yo reduces to zero. That is, hO(B)=L1m X (B,TO) and

identical with equations (5.54) and (5.55). The one-dimensional form

of equations (5.54) and (5.55) was developed by Heaslet and Warming

[39].
C. EMISSIVE POWER FOR COSINE VARYING COLLIMATED BOUNDARY

The emissive power at the boundaries of a finite medium illumi-

nated by a collimated flux of cosine magnitude has previously been
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defined in terms of the generalized X- and Y-functions given by equa-
tions (5.27) and (5.28). The emissive power at the boundary =0 is
the generalized X-function and the emissive power at the other
boundary is the generalized Y-function. Tables E.1 to E.14 list the
numerical results for the o dependent form of the generalized X- and
Y-functions. These results are obtained from the computer program
discussed at the end of this chapter. The u dependent generalized X-
and Y-functions are not tabulated but are used whenever integrations
of generalized X- and Y-functions are required. The u dependent form
is more suitable for numerical integration than the o dependent form.
However, the o dependent form is tabulated since physically the angle
of the incident radiation and hence ¢ is usually specified.

The effect of o on the generalized X-function is shown in Figure
5.1 for B=1 and in Figure 5.2 for B=10. The generalized X-function is
maximum when the incident radiation is normal to the boundary, o=1.
Increasing o allows less energy to enter the medium, thereby decreas-
ing the emissive power. Figures 5.1 and 5.2 show the decrease of the
generalized X-function to its limiting value of unity as o approaches
infinity. The generalized X-function levels off and approaches con-
stant values at smaller optical thicknesses with increasing o. This
means that the generalized X-function is approaching the generalized
H-function of semi-infinite theory. A knowledge of the values of o,
8, and Ty for which the generalized X-function can be approximated by
the generalized H-function is desirable.

Figure 5.1 reveals that for g=1 the generalized X-function levels

off to the generalized H-function at T0=.8 for o=5. When o=10, this
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asymptotic behavior occurs for optical thicknesses as small as ro=.45.
Figure 5.2 shows that for g=10 the magnitude of the generalized X-
function is considerably smaller than the corresponding values in
Figure 5.1 for B=1. In addition, the optical thicknesses at which the
generalized X-function can be approximated by the generalized H-
functien are also decreased. In particular, the o=5 curve now starts
to level off to a constant value at TO=.25. The 0=10 curve exhibits
asymptotic behavior at optical thickness of r0=.15 for 8=10. Thus,
increasing B causes a decrease in the value of the optical thickness
necessary for approximating the generalized X-function by the gener-
alized H-function.

The values of g and the optical thickness T for which the gen-
eralized X-function can be approximated by the generalized H-function
are shown in Figure 5.3 for o=1. The value of 8 at which the T
curves merge into the semi-infinite H-function at T yields the
desired combination of B and Ty Figure 5.3 reveals that when ro=.1,
a value of B=20 is the criterion for the approximation. For T0=3,
this approximation can be used when B>.8. In particular, the genera-
1ized X-function can be approximated by the generalized H-function for
any combination of B>.8 and T023.

The effect of B8 and optical thickness T, On the generalized X-
function is shown in Figure 5.4 for o=1. The generalized X-function
is bounded by the one-dimensional X-function of Chandrasekhar at g=0
and unity when @ approaches infinity. The generalized X-function
levels off and approaches the generalized H-function at smaller

optical thicknesses as B increases. Figure 5.4 and Tables E.1 to E.14
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reveal that the generalized X-function can be approximated by the one-
dimensional X-function at small g8. When B=.5 and ro=1, the genera-
lized X-function and the one-dimensional X-function differ by only
.0746. At ro=3, this difference has increased to .2890 and attains a
maximum of .8959 at the optical thick analysis. Hence, the error in
the approximation increases with increasing optical thickness.
Figures 5.5 and 5.6 show the effect of o on the generalized
Y-function for g=1 and R=10, respectively. In both cases, the gener-
alized Y-function is bounded by o=1 and decreases to zero as o
approaches infinity. The generalized Y-function also approaches zero
with increasing optical thickness. This behavior is a result of the
energy being unable to penetrate to the infinite depth. Hence, the

emissive power at T,5T and thus the generalized Y-function decrease

0
with increasing optical thickness. Figures 5.5 and 5.6 reveal that
the rate of decrease of the generalized Y-function to zero is slower
than the rate of increase of the generalized X-function to the gener-
alized H-function. In particular, when g=1 and o=5, the generalized
X-function differs from the optical thick generalized H-function by
0131 at T0=.8 whereas the generalized Y-function has the value .1134.
At T0=3, this difference has decreased to .0001 for the generalized

X- and H-functions with the generalized Y-function attaining the value
.0088. Hence, the generalized Y-function requires a larger optical
thickness to approximate the optical thick analysis than does the
generalized X-function.

Figure 5.7 shows that there is an insufficient amount of data

present to determine the combination of 3 and T for which the
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generalized Y-function can be sufficiently approximated by the optical
thick value of zero. A comparison of Figures 5.3 and 5.7 reveals that
larger values of 8 are required for each constant T, curve to merge
into the optical thick 1imit for the generalized Y-function than for
the generalized X-function. Figure 5.7 also shows that the genera-
lized Y-function, unlike the generalized X-function, is not bounded

by unity and the optical thick value. At small values of 8 and Ty
the generalized Y-function attains values which are greater than those
corresponding to ro=0. This same trend occurs for the one-dimensional
Y-function of Chandrasekhar and hence is not a result which is char-
acteristic of the two-dimensional analysis.

The effect of B and T, On the generalized Y-function is shown in
Figure 5.8 for o=1. At small B, the generalized Y-function increases
to a maximum and then decreases to zero with increasing optical thick-
ness. The maximum point shifts to smaller values of optical thick-
ness as B increases. The generalized Y-function also decreases to
zero when B approaches infinity. Figure 5.8 and Tables E.1 to E.14
show that for small B values the generalized Y-function can be approx-
imated by the one-dimensional Y-function corresponding to $=0. \hen
B=.5 and TO=1, the generalized Y-function and the one-dimensional
Y-function differ by .0717. ilowever, at T0=3, this difference has
increased to .2322. The error in the approximation increases with

increasing optical thickness.

D. EMISSIVE POWER FOR COSIHE VARYING DIFFUSE BOUNDARY

The emissive power due to the cosine varying diffuse boundary

condition can be expressed in terms of the moments of the generalized
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X- and Y-functions. Evaluating equation (3.78) at Tz=0 and 7T, and
utilizing equations (5.25) and (5.26) yields expressions for the
emissive power for the diffuse wall

) = Jé'f IPI(X’B)X(XsTOsB)dX (5058)
0

<b6(0,"f0

and

1
05 (1qrTe) = 3 | ¥, (80 (x,7guB)ax (5.59)
0

Substitution of equations (5.49) and (5.50) with n=0 into equations
(5.58) and (5.59) results in the simplified expressions for the

emissive power at the boundaries in the form
dg(057y) = x,(8,7.)/2 (5.60)

and

d5(TgoTo) = Yo(BaTy)/2 (5.61)

The differential equations for ¢B(o,r0) and ¢B(TO,TO) follow directly
from equations (5.56) and (5.57) by utilizing equations (5.60) and

(5.61) to arrive at

3 (0,1.) AT
R o/ _ /148
_3"‘(_(‘)- = 5 B-l(B’TO)q)B(TO’TO) (562)
and
Bq)B(TO,TO) 5 ——-——2—
2 == + /1487 y_(B,1,) = V1482 B_ (8,7 )dg(0,To) (5.63)

Tables E.15 to E.18 1list the emissive power at the boundaries for
selected values of B and optical thickness Ty The results were cal-

culated by the computer program discussed at the end of this chapter.
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Figure 5.9 shows the emissive power at the boundary TZ=0 as a function
of T for various values of 8. The emissive power is maximum at g=0
which corresponds to the one-dimensional model. Increasing B causes
the emissive power to decrease and approach the minimum value of one-
half as B becomes infinite. The emissive power levels off and
approaches constant values at smaller optical thicknesses as B
increases. This asymptotic behavior indicates that the emissive power
for the finite medium is approaching the emissive power for the semi-
infinite medium. In particular, when B=10, an optical thickness as
small as r0=.1 may be sufficient to approximate the finite analysis by
the simpler semi-infinite model. Figure 5.9 and Tables E.15 to E.18
also reveal that approximating the two-dimensional model of B8#0 by the
one-dimensional model of B=0 yields satisfactory results for small g
values. The error in the approximation increases with increasing
optical thickness. In particular, when B=.5 the emissive power differs
from the one-dimensional emissive power by .02759 at ro=1, .08157 at
TO=3, and increases to a maximum of .20445 at the optical thick
analysis.

Figure 5.10 and Tables E.15 to E.18 show the emissive power at
T,5T, s a function of T, for various values of 8. The emissive power
is maximum at 8=0 and decreases to zero with increasing 8 or Ty The
rate of decrease of the emissive power at 7T, to the semi-infinite
value of zero is seen to be slower than the rate of increase of the
emissive power at t,=0 to the semi-infinite model. When 8=10 and
TO=.1, the emissive power at 1_=T has a value of .17942 whereas the
emissive power at TZ=O is already near to and approaching the
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semi-infinite model. Increasing T to TO=.5 for B=10 causes the
emissive power at T,7T, to reduce to the value .00325. The error
involved in approximating the emissive power at 5T, is of the same
order of magnitude as the one-dimensional approximation for the
emissive power at TZ=0 for the range B<.5 and 1053. When g=.5 and
TO=1, the emissive power at 5T, differs from the one-dimensional
emissive power at 7T, by .03354 and increases to .06122 at ro=3.

Figures 5.11 and 5.12 show the emissive power at the boundaries
Tz=0 and T,7T, as 2 function of B for various values of Ty Both
emissive powers are bounded by the value of 0.5 and that for the semi-
infinite solution corresponding to Ty Figure 5.12 reveals that the
emissive power at infinity is zero. This follows since no energy has
penetrated to the infinite depth. Figure 5.11 shows the combination
of B and optical thickness T, which are sufficient to approximate the
emissive power at TZ=O for the finite model by the emissive power at
TZ=0 for the semi-infinite analysis. The apparent value of B at which
the constant optical thickness curves merge into the semi-infinite
emissive power curve denoted by Ty™ yields the desired values of (
and Ty Figure 5.11 reveals that when TO=.1, a B value of 10 is the
criterion for the approximation. For T0=3, this approximation can be
used when B>.6. In particular, the finite model emissive power at
TZ=0 can be replaced by the simpler semi-infinite emissive power for
any combination of r023 and B>.6.

Figure 5.12 shows the combination of 8 and optical thickness T,

which are sufficient to approximate the emissive power at 5T, for

the finite model by the zero emissive power for the semi-infinite
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analysis. The same concept of selecting the value of 8 which causes
the constant optical thickness curve to merge into the semi-infinite
emissive power curve is applied. When TO=.1, the value of B which
allows the finite model to be approximated by the semi-infinite
analysis is seen to be 8=55. Increasing the optical thickness to
T0=3 causes the approximation to be valid for a smaller value of B=2.
Thus, any combination of T023 and B>2 permits the finite model
emissive power at T, to be replaced by the semi-infinite value of
zero.

The emissive power at the boundaries of the constant temperature
finite strip could also be put in a form suitable for use in the
computer program discussed in the finite strip theory of Chapter IV.
Recall that this program integrates the product of an oscillating
trigonometric function and a nonoscillating function. The nonoscil-
lating function for the emissive power at TZ=O is the moment of the
generalized X-function XO(B,TO). The nonoscillating function for
the emissive power at 5T, js the moment of the generalized Y-
function yo(s,ro). The semi-infinite theory required the nonoscil-
lating function, the generalized H-function, to be known at sixty-four
values of B. Hence the finite theory functions XO(B,TO) and yO(B,ro)
must be known for a large number of 8 values. The computer program
at the end of this chapter must be run many times since each computer
run assigns a specific value to g and calculates xo(s,ro) and yO(B,TO)
for the rénge of optical thickness Ty Thus, the constant temperature

finite strip analysis for the finite medium will not be solved due to

the excessive amount of computational effort involved.
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E. RADIATIVE FLUX FOR COSIME VARYING COLLIMATED BOUNDARY

The z-component of flux for the finite medium subjected to a
collimated flux of cosine magnitude is given by equation (3.112) and
can be written in the form

(t.,0,7_)/F _cosBt = 1 "tz + 1
G2p\ 17205 T /T COS y ¢ 2

T
0

-l ] ] 1
- E‘J JB(TZ,O,TO) gi(TZ—TZ,B)dTZ . (5.64)
Tz

The flux at the boundaries is obtained by evaluating equation (5.64)

at TZ=O and TZ=T

0
To
= l l. ! i |

:ZfA(o,c,To) =S5 j JB(TZ,O,TO)fiz(TZ,B)dEZ (5.65)

0

and
-oT K
7A(T0’G’TO) = J(; e + 12‘ f JB(T.;_’O’TO) gZ(TO'T;3B)dTé (5.66)
0

where the dimensionless flux :zk is defined as
fEfA(TZ,G,TO) = qu(TZ,O,TO)/FOCOSBTy = qu(TZ,G,TO) . (5.67)
By inserting the definition of the éiz—function from equation

(3.69) into equations (5.65) and (5.66) and interchanging the order

of integration, the flux at the boundary becomes
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T
A 0 T N
11 [ dt . ST R
:E:A(O’O’To) == - E—J ;;-f JB(T ,O,To)e dr! (5.68)
1
and
] o7
EA(TO’G’TO) E e
1 [ dt . -(1g-1 )veiee?
ty J-;Z f JB(T ,o,TO)e dr) . (5.69)
1 0

The interior integrals in equations (5.68) and (5.69) are the genera-
1ized reflection function RB(/t2+Bz,O,TO) and transmission function
SB( to+8 ,O,TO), respectively. Insertion of these functions into

equations (5.68) and (5.69) yields

o]

101 T dt
ZA(O,OsTO) - 8’ = 2 f RB(/t +B sOyTO) t2 (5-70)
1
and
1 —GTO 1 : /'2"'"‘2' dt (5 7-1)
:ZA(TO’G’TO) = E € + 'z SB( te+8 ,O,TO) 't_; . .

1

The substitution x=v1+B2/vt2+82 further reduces equations (5.70) and

(5.71) to
1
11 T
Zp(0,0,7) = 5 - —Z—f v (%BIRy(/148%/X,0,7, )dx (5.72)
0
and
1
-0T 1
Zy(1,50.7,) = %; e O+ -ZJ b (xB)S, (VI+8%/x,0,7  Jdx (5.73)

0
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Next, the flux at the boundaries can be related to the emissive rower
at the boundaries by inserting equations (5.22) and (5.30) into

equations (5.72) and (5.73). This yields

1

['v,(x.8)

0

o] —

EA(O,U,TO) = % -

[JS(O,v1+65/x,ro)JB(o,c,ro)-JB(ro,/]+Bz/x,rO)JB(TO,o,TO)]

dx  (5.74)
JT+%/x + o
and
] 9% 1 [
zA(TosgﬁTo) =35 € * -ZJ wl(X,B)
0
- A+RZ, T s
[26L0n /079051 0076 ) I (1o TP T g0 ] o5 75

/T+8%/% - o
Finally, the substitution o=/1+3%/u along with the use of equations
(5.25) and (5.26) gives a relationship between the boundary flux and

the generalized X- and Y-functions as

X(%7, »B)X (15T B) =Y (X, ,6)¥ (11,7, ,8) 1dx] (5.76)

]J‘xwl(x,s)

Aain2
-To/1+6 /u

2 - __H
Zi (g sus1,) = Fy [e

; %.f ffﬁégifz-[x(x,To,s)Y(u,ro,e)—v(x,ro,s)x(u,To,s)]dx] (5.77)

0
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where :ZA is a dimensionless flux defined by

Zp(0su,1,) = Z, (0, /178%/u,1,) (5.78)
and
?A(TO’U’TO) = ZA(TO,‘/]"'BZ/UsTO) . (5.79)

Tables E.T9 to E.32 1ist the numerical behavior of the radiative
flux at the boundaries for the cosine varying collimated boundary
condition, The results were obtained from the computer program dis-
cussed at the end of this chapter. When 8=0, the two-dimensional
radiative flux reduces to the one-dimensional result. Within compu-
tational 1limits, the one-dimensional results at TZ=0 are seen to be
identical to those at T,y

The equality of the one-dimensional fluxes at rz=0 and T ST, is
a result of the assumption of radiative equilibrium which requires
the divergence of the flux vector to be zero. For the one-dimensional
analysis, this implies that a single derivative of the magnitude of
the flux be equal to zero. Thus, the flux must be constant throughout
the finite medium, depending only on the optical thickness Ty When
the optical thickness approaches infinity, the finite model approaches
the semi-infinite model. Hence, the flux is zero throughout the semi-
infinite medium since no energy can penetrate into the infinite depth.

In the two-dimensional analysis of g#0, the radiative flux is a
function of two position variables. Therefore the divergence equation
has two independent derivatives and thus becomes a partial differ-

ential equation which does not have the simple form of the one~dimen-

sional model. The result is that the normal component of flux is no
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longer constant throughout the finite medium. The difference in the
normal flux at TZ=O and the normal flux at 5T, is attributed to the
weakening of the normal flux by energy transfer into a horizontal
direction due to the temperature variation in that direction. This
horizontal transfer of energy is not present in the one-dimensional
model since there is no horizontal temperature variation.

The effect of ¢ on the radiative flux at the boundaries due to
the cosine varying collimated boundary condition is shown in Figure
5.13 for B=1 and in Figure 5.14 for g=10. The fluxes at TZ=0 and
T,7T, are presented on the same figure for ease of comparison. Both
boundary fluxes are maximum at o=1 and decrease to zero with increas-
ing o. The o dependence of the boundary flux can be seen in equations
(5.74) and (5.75). Figures 5.13 and 5.14 show the difference in the
flux at TZ=0 and at 5T, with increasing o and Ty The flux at TZ=O
levels off and approaches the optical thick result at smaller values
of optical thickness with increasing o, whereas the flux at 7T,
decreases to the optical thick value of zero with increasing Ty The
flux at 5T, decreases to zero with increasing optical thickness
since no energy can penetrate into an infinitely large depth.

Figures 5.13 and 5.14 along with Tables E.19 to E.32 also reveal
that the flux at 5T, decreases to the optical thick value of zero
at a slower rate than the flux at Tz=0 decreases to the semi-infinite
flux. When g=1 and o0=2, the flux at TZ=0 and the semi-infinite flux
differ by .02537 at TO=], whereas the flux at 5T, has the value

.19657. At To=3, this difference has decreased to .00040 with the

flux at 7T, attaining the value .02810. A comparison of Figures
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5.13 and 5.14 shows that the magnitude of the flux at TZ=O is consid-
erably larger for g=10 than it is for B=1. Furthermore, the flux at
TZ=0 levels off and approaches the optical thick solution at smaller
values of Ty In particular, when =10 and o=2, the flux at TZ=0

and the optical thick Timit differ by only .00027 at To=.5 as compared
to .07395 for B=1.

Figure 5.15 shows that the flux at rz=0 is bounded above by
unity and below by the optical thick 1imit. The values of B at which
the T, Curves are asymptotic to the semi-infinite flux correspond to
the values of B8 and T for which the finite flux can be approximated
by the semi-infinite flux for o=1. Wheng>1 and roz3, the finite flux
at rZ=O can not differ by more than .00213 from the semi-infinite flux
at TZ=0.

The flux at 5T, is bounded above by unity and below by the
optical thick value of zero as shown in Figure 5.16 for oc=1. A com-
parison of Figures 5.15 and 5.16 reveals that the flux at 7T,
requires larger values of B than the flux at TZ=O to approximate the
finite analysis by the semi-infinite theory. This requirement is
apparent at small values of T where the flux at 7T, is almost
constant over the range 0<<40. This constant behavior implies a
small variation from the one-dimensional model (B=0). The flux starts
to deviate from the almost horizontal one-dimensional constant value
and decreases to zero at smaller values of B as T/ is increased.
Hence, increasing T, decreases the corresponding value of { necessary

to approximate the finite flux at 1=t by the optical thick value of

zero.
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Figure 5.15 Variation in the normal flux at 1,=0 with 8 for various values of 1, for
a finite medium illuminated by a collimated flux of cosine magnitude
from direction o=1
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The effect of B and T, On the flux at TZ=0 and the flux at =T,

is shown in Figure 5.17 for o=1. The flux at TZ=0 is bounded above
by unity and below by the one-dimensional flux. The flux at TZ=TO
is bounded above by the one-dimensional flux and below by the value
zero. The flux at TZ=O levels off and approaches the optical thick
1imit at smaller values of T for increasing values of B, whereas the
flux at 7T, decreases to zero with increasing B8 and Ty Figure
5.17 reveals that the fluxes at TZ=0 and T,=T, can be approximated

by the one-dimensional flux for small 8 values. The deviation from
the value of B=0 with increasing T, indicates that the error in the
one-dimensional approximation increases with increasing Ty

F. RADIATIVE FLUX FOR COSINE VARYING DIFFUSE BOUNDARY

The z-component of flux for the cosine varying diffuse boundary
condition is related to the z-component of flux for the cosine varying

collimated boundary through equation (3.150) which reduces to

dt
Foligtg) = 26,(5,8) + 2 | Tple /T 7,) &
1
o -1 JETE
-2 e dt (5.80)
t2/t2+p2
1
where the dimensionless diffuse flux Efb is defined by
— 4
Folr,1,) = elr,»70)/8, (5.81)

The change of variable x=/1+p2//t2+B% along with equation (5.67)

yields
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1

Folrpmy) =2 & (5,08 + 2 [ 4 (68 Fy (x,07, )
o

Zz Q 1 z

dx . (5.82)

! -T_v1+8%/x
2 f le (XsB)e z
/1+g% '
0
Evaluation of equation (5.82) at rZ=O and 5T, yields the z-component
of diffuse flux at the boundaries expressed in terms of the z-compo-

nent of flux due to the collimated boundary in the form

1

ooty = 142 [0 (68 Fyl0,x7,)ae + L 0-77) (5.83)
0

and

Zo(1o1) = 2 & (14:8)

! -1 _V1+82%/x

| A -y o X 0
+2 l wl(x’s)[?A(To”‘“o) Vi ] dx . (5.84)

Tables E.33 to E.35 1ist the numerical behavior of the radiative
flux at the boundaries for the cosine varying diffuse boundary condi-
tion. The results were obtained from the computer program discussed
at the end of this chapter. When B=0, the two-dimensional flux
reduces to the one-dimensional result. The one-dimensional fluxes at
TZ=O and T,7T, are seen to be equal, whereas the two-dimensional
fluxes of B#0 are different. The equality of the one-dimensional
fluxes and the inequality of the two-dimensional fluxes at TZ=O and

7T, follows from the same argument previously discussed in the

section for the flux due to the cosine varying collimated boundary

condition.
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Figure 5.18 shows the flux at TZ=O and at TZ=TO as a function of
optical thickness for various values of B. A comparison of Figures
5.17 and 5.18 reveals that the flux for the diffuse case and the flux
for the collimated case exhibit similar trends. The flux at TZ=O for
the diffuse case is bounded above by unity and below by the one-
dimensional result. The flux at 5T, for the diffuse case is
bounded above by the one-dimensional result and below by the optical
thick value of zero. The flux at rz=0 for the diffuse case levels
off and approaches the optical thick Timit at smaller values of Ty
with increasing 8. The flux at T, for the diffuse case decreases
to zero with increasing 8 at a more rapid rate than does the flux at
7T, for the collimated case at o=1.

The variation in the flux at TZ=0 and at 5T, for the diffuse
boundary as a function of g is shown for various values of Ty in
Figures 5.19 and 5.20, respectively. Except for numerical values,
the flux at Tz=0 and at 5T, behave in a similar fashion for both
the diffuse and collimated boundary conditions. This behavior is
seen by comparing Figures 5.15 and 5.19 for the flux at TZ=0 and
Figures 5.16 and 5.20 for the flux at 7,=7,. The flux at 1,°7, for
the diffuse boundary is seen to deviate from the nearly constant one-
dimensional effect and decrease to zero at smaller values of § than
does the flux at 7 =7/ for the collimated boundary at o=1.

G. NUMERICAL PROCEDURE

1. DESCRIPTION OF COMPUTER PROGRAM

The numerical results presented in this chapter are obtained

from a single computer program. The main portion of the program
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consists of solving a system of eighty differential equations by a
fourth order Runge-Kutta routine. The step size depends upon the
parameter 8. A step size of .005 is used for g8=0, .1, .5, 1, 2, and
5. Increasing 8 necessitates the use of a smaller step size. When
=10, a step size of ,0025 is used which is decreased to .0005 for
B=40. When =100, the step size is .0001. Thus, for large B8 the
small step size limits the magnitude of the optical thickness which
is practical to attain because of the excessive computational time.
However, the finite model solutions approach the semi-infinite solu-
tions at very small optical thickness for large B.

The integral appearing in the integro-differential equations
(5.42) and (5.43) is divided into two parts:

£

by (xsB8)
Y(X,TO,B)dX = J "7————‘ Y(X3T09B)dx

0 0

[1 ¢0(X,B)

. Jl ¥, (Xs8)

- Y(x,7,,6)dx (5.85)

€
1
where 058151. This division is necessary due to the singularity of
the integrand and to the behavior of wl previously discussed in
Chapter IV. Evaluating the first integral on the right-hand side of
equation (5.85) by}Gaussian quadrature of order n with weights Wy

and abscissas X K and the second integral by Gaussian quadrature of

order n with weights w K and abscissas x K yields
2 2 2

: N (x, ,8)
Y (st) w P Xk’
f -—0—7(""" Y(XaTO,B)dX = Zl ""‘S'_Q""x—l;—'-'_ Y(Xk’TO’B) (5~86)

0
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where Wy and X, are weights and abscissas of the Gaussian quadrature

defined in terms of the weights and abscissas of each interval as

X, = el(xlk+1)/2
wk = elwlk/Z k=1,2,...n1
-1
X =3 (1 sl)xz(k_nl) + (]+el)/2
e =
W =5 (1 el)wz(k_nl) k n1+1,n1+2,...n1+n2 (5.87)

An evaluation of the integro-differential equations (5.42) and (5.43)
at discrete values corresponding to the abscissas of the quadrature
and utilization of the reduced notation of equation (5.87) yield

2(n1+n2) ordinary differential equations

n_+n

T LT VN N
di, 2 s X
dY Vs ATaT n1+n2 wkw kYk
5= - 1+8 Y. + 26 X ) 0 i=1,2,...n *n, (5.88)
Yo i1 vk X
where

X_| = X(Xi’TO’B)

Yo = Y(x57,,8)

. C
Voi = wo(xi’B) i=1,2,...n (5.89)

with initial conditions X(x.,0,8) = Y(x;,0,8) = 1.
The 2(n1+n2) values of the generalized X- and Y-functions

obtained from solving the system of differential equations (5.88) are



172

sufficient for all of the integrations performed in this chapter with
the exception of the z-component of flux at =T, for the cosine vary-
ing collimated boundary. This exception is due to a singularity at
u=x as seen in equation (5.77). The singularity in the flux can be
avoided by performing the integration with quadrature of order n. in
the first interval (0,82) and quadrature of order n, in the second
interval (ez,l) where 055251. In order to avoid the singularity, n
can not be equal to n nor can n and n, both be of odd order if
€1=€z', If elfez, any combination of n and n, is permissible. The
same discussion is also true for the quadrature of order n2 and n -
Evaluation of equations (5.42) and (5.43) at the discrete abscissas
corresponding to the quadratures of order n3 and n, yields an addi-

tional 2(n3+nk) ordinary differential equations

dX . n +n
Nt /e o2 9o
dt, 2 ntoty gz, Xy
dy . n +n
N AR . /THBT A L S
dt T T 'hon +] 2 n+n 4y L X,
0 Xj 1 2 1 2 =1

j=1,25...n +n

where the weights 55 and abscissas ?& are defined in terms of the

weights waj and abscissas X ; of the interval (0,62) and the weights
3

W ; and abscissas X ; of the interval (82,1) as
L

£ (X .+])

;. =
2 3J

J

roj—

. i=1,2,...0
EzwaJ J=0s 3

gl
Ca.

1l
o[ —
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X.o= A (- 1
%77 X (g ) T 7 (1)
“i T 5-(]—8 )wu(j-ﬂ ) j=n +1,n +2,...n +n (5.91)
3 3 3 3 4

and

Xn +n +J‘ = X(xj,TO’B)

1 2
Yn1+n2+j = Y(Xj’TO,B) j=],2,...n3+n“ (5.92)

with initial conditions X(§5,0,8)=Y(§5,0,8)=1.
An additional eight differential equations are necessary to
evaluate the o dependent form of the generalized X- and Y- functions

corresponding to o=1,2,5, and 10. These equations are

+
dJB(OSOmSTO) ‘/T_;_-é-f n1 n2 wkaKYk
d T JB(TO’Om’To) X
%o k=1 K
dd (1t ,0 ,7)
aTB R GmJB(TO’Gm’TO)
0
e MR
1B k"ok k - 3
+ '—ﬁ—-'ds(o’om’To) L X m=1,2,3,4 (5.93)

where 01=1, 02=2, 03=o, ando“=10 with initial conditions expressed in
terms o% the generalized X- and Y-functions as X(V1+82/0,0,8) =
Y(/1+82/5,0,8) = 1.

The two functions X(],TO,B) and Y(],TO,B) used in integrating
the emissive power expressions ¢B(o,ro) and ¢B(TO,TO) also contribute

two differential equations of the form
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n +n

dX(1,7 ,8)_ /1762 1oz WYy
SOV TRl YI2P v (1,1 ,RB) _KOK K
dr, 2 0 k§1 Xy

n +n
(1,7 ,8) . s TG 1oz Ol
EEQ 0 = - V148 Y(],TO,B) + 28 X(],TO,B) kX —£>§£—5-(5.94)

/:1

with initial conditions X(1,0,8) = Y(1,0,8) = 1.
Two more differential equations are regquired for the moments ey

and By These equations are

da (8,7,) /1482 5 (8.7.) nlgnQ O ok Yk
PRSI, = -,T e ——— e ——————
dro 2 0 o' & Xy
ds_(B,T.) a (B,T.) N W Y
20 - /ﬁé’f[———-———o -1 ] Kok k (5.95)
0 k=1 kK

with initial conditions ao(B,o) = BO(B,O) = 1.

Equations (5.88), (5.90), and (5.93) to (5.95) were solved with
e1=ez=.9, n1=n2=8, and n3=nq=9. This assumption constitutes a system
of eighgrordinary differential equations. These values were obtained
by trial and error. The division of the interval used in calculating
the generalized X- and Y-functions into two parts determined by el=.9
was selected as the most efficient after comparing the results from
el=.9 with the values obtained by varying e over a wide range of
values. Eighth order Gaussian quadrature was used in each interval
and the results compared with the results of sixteenth order quadra-
ture in each interval. The test criterion was that the generalized

X- and Y-functions did not change in the fifth decimal. Values of
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n1=n2=8 and el—.9 generally satisfies the test criterion with the
generalized Y-function more difficult to obtain accurately at large
values of B and Ty

The division of the interval used in calculating the radiative
flux into two parts determined by 82=.9 was also obtained by trial
and error. Various orders of quadratures were utilized and the
results compared. Quadrature of order n3=n4=9 was found to usually
yield five significant digits of accuracy for the flux. Ninth order
quadrature, in addition to providing the specified accuracy, also
fulfilled the requirement of nl#n3 and nZ#nu when € 7€ . Hence, the
singularity in the flux due to the diffuse boundary was avoided. At
the same time, n3=n“=9 differing from h1=n2=8 by unity, helped to
keep the total number of differential equations to a minimum.

The results listed in Tables E.1 to E.14 for the ¢ dependent
generalized X- and Y-functions follow directly as the solution of
equation (5.93). The emissive power at TZ=0 and 5T, for the cosine
varying diffuse boundary condition is calculated by reducing equations

(5.58) and (5.59) to the form

1 g2 1
95(0,75) = 7 kgl wl (X8 X =X(1,15,8)] + 5 X(1,7,,8) (5.96)
n +n

1 2 1 }
NENENES L s (B LY Y (11,8)] + 7 ¥(1hTgae) o (6.97)

Tables E.15 to E.18 Tist ¢B(o,ro) and ¢B(T0,TO) obtained from equa-
tions (5.96) and (5.97). The radiative flux at 7,0 and T_=T, for
the cosine varying collimated boundary condition are calculated from

the reduced forms of equations (5.74) and (5.75) with quadrature
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given by equation (5.91)

1
zA(O ’Om’To) - ’5’{;

+ -
] naan . JB(O’Om’To)Xn1+n2+k JB(TO,Om,TO)Yn m otk
-5 w b (X, ,8 — -2 —(5,98)
2 k=1 SER /1+82/xk + O \
and
Flt h0 1) = LE
A''0’"m* o - ©
m
] na;}'nl+ B (-‘ ) JB(TO’Gm’TO)Xn1+n2+k-JB(o’Om’TO)Yn1+n2+k
+ 5 w, U (X, B — (5.99)
2 K=1 k™1 7k /1+Bz/xk - o

Tables E.19 to E.32 list the numerical results obtained from equations
(5.98) and (5.99). The n dependent form of’:fA is needed for the
integration of the cosine varying diffuse flux of equations (5.83)

and (5.84). Evaluating equations (5.76) and (5.77) at the abscissas

of the quadrature of equation (5.91) yields

:Z‘A(O,Yi,“fo)

2} [ : nl+n2 Xan1+n +1'YkYn1+n2+1
- -2 7w (x.8) ] 5.100

s 2 L KKk 71+Xk ( )
and

_ —Tovq+82/§}
— X.e
- i
ZA(TO’X’PTO) - /H‘Bz
3. n1+n2 NV +n +i Yen 4 +1
i 1 2 1 2 (5.10])
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The cosine varying diffuse flux is calculated by utilizing equations

(5.100) and (5.101) and expressing equations (5.83) and (5.84) as

n +n
:Z%(o,ro) =1 + é;—(]-/TIET) + 2 ;Zlq na k’B j? (o, Xk,T (5.102)
and
Zo(157,) = 2& (1,:8)
nrn, ike—T0/1+62/xk
+ 2 kzl Wb k=5[7A 0 X To) - s ] (5.103)

Tables E.33 to E.35 list the numerical results obtained from equations
(5.102) and (5.103). The é;3-function appearing in equation (5.103)
is calculated by the method discussed in Appendix A.

2. COMPARISON OF THE GENERALIZED X- AND Y-FUNCTIONS

Since the generalized X- and Y-functions reduce to the X- and
Y-functions of Chandrasekhar when g=0, it is appropriate to compare
the solutions tabulated in Tables E.1 and E.2 with results that appear
in the literature. This comparison will furnish a method of checking
the numerical technique and provide a degree of confidence in the
results for 8#0 for which no known results are available. Recall that
the generalized X- and Y-functions have arguments that depend upon
both g and o with connecting relationship given by u=v/1+32/a.  Thus,
to compare Chandrasekhar's X(u,ro) function with the generalized X-
function, the argument of the generalized X-function must be evaluated
at u=1/c. Hence, to compare X(.5,1) with the generalized X-function
means that g=0, ¢=2, and ro=1. This value would correspond to the

result in Table E.1. Similar results hold for the generalized Y-

function.



Table 5.1

Comparison of Chandrasekhar's X- and Y-functions with the

generalized X- and Y-functions for 8=0

X(.5,TO) Y(-S;To)
PRESENT PRESENT
To REF.{40) REF.{41) REF. (43) METHOD REF. (40) REF.(41) REF.(43) METHOD
.10 1.15277 1.15232 1.1522 .966939 . 966513 .9663
.20 1.24480 1.24456 1.24479 1.2447 .8985682 .898214 .898584 .8984
.40 1.37252 1.37252 1.37252 1.3725 . 766758 . 766827 . 766763 .7668
.60 1.46000 1.46003 1.46000 1.4600 .657032 .657095 .657038 .6570
.80 1.52442 1.52443 1.52442 1.5244 .569437 .569436 .569443 .5694
1.0 1.57404 1.57403 1.57403 1.5740 .500045 .500032 .500051 .5000
2.0 1.71531 1.71535 1.71535 1.7153 .310552 .310557 .310555 .3105

8L1
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In Table 5.1 the X(.5,T0) and Y(.S,To) results are compared with
those of the generalized X- and Y-functions at g=0. Reference is
made to the works of Carlstedt and Mullikin [40], Bellman, et al.
[41], Sobouti [42], and Crosbie and Viskanta [43]. The results which
appear in Table 5.1 have previously been compiled by Crosbie and
Viskanta [43]. It is apparent from the very limited range of the
parameters that appear in Table 5.1 that the maximum discrepancy
occurs at small Ty and improves rapidly with increasing Tor However,
the Y-function, and hence the generalized Y-function, is more sensi-
tive to change in T, at very small and also very large values of Ty

H. CONCLUSION

The behavior of the radiative flux and the emissive power with B
and the optical thickness T, for the finite medium indicates that
there exists values of 8 and T for which the finite analysis can be
approximated by the simpler semi-infinite development. In general,
this approximation can occur ejther at large Ty and small B8 or at
large 8 and small Ty Any combination of g>1 and 1033 enables the
finite theory functions at Tz=0 to be replaced by the semi-infinite
solution at TZ=O. However, the finite theory functions at =T, do
not approach the optical thick limit as rapidly with 8 and T, as do
the finite theory functions at TZ=O. Hence, the effect at the
boundary 5T, is usually significantly different from the optical
thick solution even though the functions at TZ=O can be replaced by
those from the semi-infinite analysis.

The one-dimensional approximation has limited usefulness since
it is only valid for small values of 8. The error in the one-dimen-

sional approximation is smallest at small Ty and increases with



180

increasing Ty Except for small values of B, the two-dimensional

model must be considered.
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VI. CONCLUSION AND RECOMMENDATIONS

The present investigation treats radiative transfer in a two-
dimensional absorbing and emitting gray medium in radiative equili-
brium. The exact formulations of the equations for the radiative flux
and emissive power are presented for the finite optical thick media
subjected to the following types of boundary conditions: (1) cosine
varying diffuse, (2) cosine varying collimated, (3) constant tempera-
ture strip, and (4) the strip illuminated by a uniform collimated
flux. The solutions for the cosine varying diffuse and cosine varying
collimated models are used to construct solutions for the constant
temperature strip and the strip illuminated by a uniform collimated
flux, respectively. The two-dimensional equations are reduced to one-
dimensional equations by the technique of separation of variables.

The corresponding equations for a semi-infinite medium are obtained
from the finite optical thick equations by letting the optical thick-
ness become infinite. The reduced one-dimensional equations for both
the finite and the semi-infinite models are solved exactly for values
of radiative flux and emissive power at the boundaries. A wide range
of exact numerical data is presented.

Error bounds are determined whereby the one-dimensional model
can be utilized to approximate the more complex two-dimensional anal-
ysis. These error bounds are obtained for the radiative flux and
t the boundaries for both the finite and semi-infinite

emissive power a

models. Error bounds are also determined whereby the two-dimensional

finite model can be approximated by the simpler two-dimensional semi-

infinite analysis. In general, the approximations are of limited use.
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Chapter's IV and V indicate that the two-dimensional cosine vary-
ing models can be satisfactorily approximated by the one-dimensional
model for g<.1 and the finite strip models can be approximated by the
one-dimensional model for half strip width ra>100. Chapter V reveals
that any combination of g>1 and 1023 enables the two-dimensional
finite model results at the boundary TZ=0 to be approximated by the
two-dimensional semi-infinite results at TZ=0. The two-dimensional
finite model results at the boundary T,T, can be approximated by the
optical thick value of zero but requires larger values of B and T
than do the functions at TZ=O.

The following are recommended for future studies. First, the
present investigation can be extended to include the exact numerical
solutions of the rigorously formulated equations for the y-components
of flux presented in Chapter III. In fact, both components of the
radiative flux as well as the emissive power can be evaluated at
interior points of the medium and not restricted to the behavior at
the boundaries as in the present analysis. Future consideration can
also be given to the radiative flux and emissive power for the two-
dimensional finite medium bounded by the finite strips. This analysis
involves obtaining a large number of B solutions to the system of
differential equations described in the section on numerical proced-
ure of Chapter V.

The cosine varying solutions obtained in this investigation can
be extended to construct solutions to problems involving more complex
kinds of boundary conditions in a fashion similar to the finite strip

models. Two useful semi-infinite models which involve uniform
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collimated radiation over a portion of the boundary and are acceptable

for use of the superposition principle are

A
AN

These two models could be used to simulate solar energy striking a

and

cloud cover in a planetary atmosphere.

The two-dimensional gray medium assumption can be relaxed to
account for the more realistic nongray analysis and the effect of
line or band shape on the radiative transfer studied. This assumption
involves a frequency dependent absorption coefficient which can be
approximated by various existing models, such as, rectangular, tri-
angular, and exponential. Other more complex two-dimensional config-
urations can be examined for both gray and nongray media. Additional
models include the rectangular and triangular boxes and the triangular

wedge as shown. Both collimated and diffuse boundary conditions can

be considered.
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Spherical and cylindrical geometries can also be investigated for
both gray and nongray two-dimensional media.

The concept of separation of variables need be investigated for
the three-dimensional plane parallel model to determine if the three-
dimensional equations can be reduced to one-dimensional equations.

In particular, this reduction need be considered for a two-dimensional
cosine varying collimated boundary condition in order to determine if

the analogous three-dimensional generalized H-, X- and Y-functions can

be generated.
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APPENDIX A
THE & ~FUNCTIOH

The éfl, é%, and Ei-functions are two-dimensional analogs of
the exponential integral functions El, Ez, and E3. Since the two
functions are identical when g=0, the é;n-function may be considered
a generalized exponential integral. As with the one-dimensional
exponential integrals, series expansions and recursive formulas are
required for the.eva]uation of the fsn—function.

The functions éi, 82, and £ have previously been defined as

e}

g (1,8) = j RUCEE dt (A.1)
! vt?+p?
1
E (1,8) = f e'T‘/t2+82 dt (A.2)
2 t2
1
and
53(1,3) =T j( 52(Tt,8/t)dt . (A.3)

A simple integration by parts of the é;l-function yields
RTRT
£ (1,8) = BT 1 € (1,8) (R.4)
2 1

where £ (0,8)=1. Equation (A.4) is the recursion formula which is
2

analogous to the one-dimensional case

E (1) = e " - € (1) (A.5)

2

where En(r) are the exponential integrals defined by
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E (1) = j g X X (A.6)

Since 81(1,0)=E1(1) and gZ(T,o)=E2(T), equation (A.4) reduces to
equation (A.5) when g=0. The 83—funct1‘on can be expressed in terms

of 82 by the insertion of equation (A.4) into equation (A.3)

<«

€ (1,8) = 1 J

1

- o v/t 2y21pn2
T gy L 2 | J 2o WEXTHEE _dxdt o
/t2x2+82
1

—

The second integral in equation (A.7) can be integrated once by parts

to yield
_ -T/EEHRE L
§,(8) =< | e dt - < (,8)
1

A VA .
e-Tl/t X°+R dxdt . (A.B)
t2
1 1

Since the double integral in equation (A.8) is another form of 63’

equation (A.8) can be rewritten as

2 53(’[,8) =T J e TVt B gt - TgZ(T,B) X (A.9)

1

When B=0, equation (A.9) reduces to the standard one-dimensional form

2E (1) = e =~ - TEZ(T) (A.10)

An expression for 63 which depends only upon 81 and 52 can be

obtained by eliminating the integral term in equation (A.9). The

derivative of 51 is
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d & (1,8) ” Y
1 - e—rvi B 4t

Eo(1.8) = - 4 (A.11)

1

Insertion of equation (A.11) into equation (A.9) yields
d £ (1,8)
28 (t,8) = - 1 -+ - ng(r,e) (A.12)
which, along with equation (A.4), enables 53 to be expressed as a
function of either El or &'2.

Since neither El nor 82 can be integrated in closed form, a
series representation is necessary. A series expansion for 52 about
zero is appropriate for small B, whereas E1 is more suitable for
expansion whenever B is large. A Taylor series expansion of 52

about B=0 yields

E (1,8) = E (1) - 587 (x) + § [E (1) + E (08"

2

- gg [T°E (1) + 3t (1) + 3E_(7)]6°

- 3 2 5 8
+ g [T°E_(1) + 6T%E () + 151E (1) + 15F ()18 +....(A3)

A series representation of gz for small R can also be obtained
by Laplace transform techniques. Consideration of the first two

nonzero terms of a binomial series expansion of the square root

exponent in the & -function results in
2

(o]

R2
£ (1,8) = J Tt B2 L (A.14)
2 t
1

But
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_g2 o
e T/t -7 D" 2"
£2 nso M 2 (A.18)

Hence, upon interchanging summation and integration operations, the

following expression is obtained

o o oan [_o)n o eTt
Ees = ] LY g e | o (. 16)

The integral in equation (A.16) is recognized as a Laplace transform
given by

1 _ T )
L[W] = e En+2(’l) . (A.]7)

A second representation for é;z then becomes

g,(1:8) = E (G Fﬂf%n Epn(T) (A.18)

The first two nonzero terms in equations (A.13) and (A.18) agree
exactly. A more involved series was obtained by considering the first
three nonzero terms in the above binomial expansion. The third order
approximation resulted in a series which also had the same form as
equation (A.13) but differed by constant coefficients.

A series representation for large values of 8 is best obtained
from the é;l—function. A substitution t=gsinhf reduces the é;l—

function to a recognizable form so that an integral tabulated in Luke

[36,p.30] can be used. This integral, given by

[eed

(o (e8) = [ e O o (A.19)

0
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reduces the é;l-function to the form

C
§,(1.8) = Ky(18) - | &THOSE g (. 20)
0

where c=sinh_1(1/B). The integrand in equation (A.20) can now be

expanded in a series around £=0 and integrated to yield

- -X x ¢2 | x(3x-1)c*
gl(TQB) KO(X) ~Cce [] Y] + £ )
_ x(15x2-15x+1)c® | x(105x*-210x2+63x-1)c®
7! 91
b 3 2_ 10
_ x(945x 315022205 255x+1)c!® ] (A.21)

where x=18.

Tables A.1 to A.6 and Figures A.1 to A.3 show the numerical and
graphical behavior of the 81, gz, and Sa-functions. Series expan-
sions given by equations (A.13) and (A.21) were used to obtain the
tabulated data. The binomial representation of &i was not utilized
since it is the result of an approximation and does not give exact
results. However, it was found to be in excellent agreement with the
exponential series for very small values of B and t. This behavior
is expected since both have the same form with the first two nonzero
terms being exactly equal.

Five terms of equation (A.13) were used to compute 252 for
0<B<.5 from which gi was obtained using the recursion equation. The
results for .5<p<10 were obtained from equation (A.21) with six terms

in the series representation of 81. The two series representations
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have excellent agreement in a region of overlap .1<g<.5 with best
results for small t. An agreement of five significant digits was not
uncommon in this region and in the range O<t<l. At large 1, the pro-
duct T8 is the dominant term in equation (A.21). Hence, equation
(A.21) requires additional terms for large 1. Once the appropriate
series is selected for the range of B values, the calculation of the
53-funct‘ion follows from equation (A.12).

The relatively small range of g for which the series representa-
tion of equation (A.21) is valid is due to the presence of the facto-
rial terms. However, for sufficiently small B, the term c=sinh'l(1/5)
becomes dominant. Therefore, additional terms are needed for small
B values. However, as B grows large, the term c=sinh™ ' (1/8) approach-
es zero quite rapidly, thereby requiring fewer terms. The exponential
series does not have large factorial terms and hence has slower con-
vergence. The presence of the exponential integral functions aids in

the convergence since they become quite small with increasing argu-

ment.

The results which are reported in this investigation for the 51-
function have been spot-checked with results that appear in reference
[44] and found to have a favorable agreement. The verification of
the validity of é;l is handicapped by the form that reference [44]

reports the numerical data. Results are tabulated for a function

E(8,x) defined by

Jdt (A.22)
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It can be shown that E(B,x) is related to 81 by the following equa-
tion

E (1,8) = K (t8) - sinh™"(1/8) + E(8,7) . (A.23)
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Table A.1 The function 51(’(,8) for various values of T and 83

T g=0 B=,05 B=.10 g=.20 B=.50
.000 ® o o oo 0o
.001 .63315D+1 .63309D+1 .63290D+1 .63216D+1 .62742D+1
.002 .56393D+1 .56387D+1 .56369D+1 .56295D+1 .55820D+1
.003 .52349D+1 .52343D+1 .52324D+1 .52250D+1 .51775D+1
.004 .49482D+1 .49476D+1 .49457D+] .49383D+1 .48909D+1
.005 .47261D+1 .47254D+1 .47236D+1 .47162D+1 .46687D+1
.010 .40379D+1 .40373D+1 .40354D+1 .40280D+1 .39806D+1
.015 .36374D+1 .36368D+1 .36349D+1 .36275D+1 .35801D+1
.020 .33547D+1 .33540D+1 .33522D+1 .33448D+1 .32974D+1
.025 .31365D+1 .31358D+1 .31340D+1 .31266D+1 .307930+1
.030 .29591D+1 .29584D+1 .29566D+1 .29492D+1 .29019D+1
.035 .28098D+1 .28092D+1 .28074D+1 .28000D+1 .27528D+1
.040 .26812D+1 .26806D+1 .26787D+1 .26714D+1 .26242D+1
.045 .25683D+1 .25677D+1 .25659D+1 .25585D+1 .25114D+1
.050 .24679D+1 .24672D+1 .24654D+1 .24581D+1 .24110D+1
.060 .22953D+1 .22946D+1 .22928D+1 .22855D+1 .22385D+1
.070 .21508D+1 .21502D+1 .21483D+1 .21411D+1 .209420+1
.080 .20269D+1 .20263D+1 .20244D+1 .20172D+1 .19705D+1
.090 .19187D+1 .19181D+1 .19163D+1 .19090D+1 .18626D+1
.100 .18229D+1 .18223D+1 .18204D+1 .18133D+1 .17670D+1
.200 .12226D+1 .12220D0+1 .12203D+1 .12134D+1 .11693D+1
.300 .90567D+0 .90512D+0 .90348D+0 .89700D+0 .85558D+0
.400 .70238D+0 .70186D+0 .70032D+0 .69425D+0 .65564D+0
.500 .55977D+0 .55929D+0 .55785D+0 .552210+0 .51642D+0
.600 .45438D+0 .45393D+0 .45260D+0 .44736D+0 .41433D+0
.700 .37376D+0 .37335D+0 .37212D+0 .36728D+0 .33690D+0
. 800 .31059D+0 .31021D+0 .30907D+0 .30462D+0 .27675D+0
.900 .26018D+0 .259830+0 .25878D+0 .25468D+0 ,22917D+0
1.000 .21938D+0 .21906D+0 .21810D+0 .21433D+0 .19103D+0
1.250 .14641D+0 .14615D+0 .14538D+0 .14235D+0 .12388D+0
1.500 .10002D+0 .99812D-1 .99193D-1 .96779D-1 .82226D-1
1.750 .69488D-1 .69323D-1 .68830D-1 .66913D-1 .55503D-1
2.000 .48900D-1 .48769D-1 .48378D~1 .46861D-1 .37945D-1
3.000 .13048D-1 .12997D-1 .12846D-1 .12264D-1 .90040D-2
4.000 .37793D-2 .37599D-2 .37025D-2 .34835D~2 .23459D-2
5.000 .11483D-2 .11410D-2 .11194D-2 .10379D-2 .74519D-3
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Table A.2 The function 81(1,6) for various values of t and B

T p=1.0 g=2.0 g=3.0 B=5.0 g=10.0
.000 o o o o o
.001  .67433D+1 .58503D+1 .55986D+1 .52166D+1 .46224D+1
.002 . 54511D+1 .51582D+1 .49065D+1 .45245D+1 .39306D+1
.003  .50467D+1 .47537D+1 .45021D+1 .41202D+1 .35266D+1
.004  ,47600D+1 .44671D+1 .42155D+1 .38337D+1 .32406D+1
.005 . 45379D+1 .42450D+1 .39934D+1 .36118D+1 .30192D+1
.010  .38498D+1 .35571D+1 .33059D+1 .29253D+1 .23367D+1
.015 . 34494D+1 .31570D+1 .29063D+1 .25271D+1 .19441D+1
.020  .31668D+1 .28749D+1 .26248D+1 .22474D+1 .16709D+1
.025  .29488D+1 .26573D+1 .24080D+1 .20326D+1 .14637D+1
.030  .27716D+1 .24807D+1 .22322D+1 .18591D+1 .12985D+1
.035  .26226D+1 .23323D+1 .20847D+1 .17142D0+1 .11624D+1
040  ,24942D+1 .22046D+1 .19580D+1 .15%02D0+1 .10476D+1
.045  ,23816D+] .20927D+1 .18472D+1 .14822D+1 .94930D+0
.050  .22814D+1 .19933D+1 .17489D+1 .13870D+1 .863910+0
.060  .21094D+1 .18230D+1 .15810D+1 .12255D+1 .72278b+0
.070  .19657D+1 .16811D+1 .14417D+1 .10930D+1 .61100D+0
.080  .18425D+1 . 15599D+1 .13233D+1 .98169D+0 .520540+0
.090  .17351D+1 . 14545D+1 .12209D+1 .88659D+0 .44620D+0
.100  .16401D+1 .13617D+1 .11311D+1 .80430D+0 .38435D+0
.200  .10500D+1 .79692D+0 .59973D+0 .34840D+0 .10042D+0
.300  .74494D+0 .51948D+0 .35572D+0 .169900+0 .29793D-1
.400  .55402D+0 .35569D+0 .22196D+0 .87354D-1 .93432D-2
.500  .42370D+0 .250670+0 .14266D+0 .46303D-1 .30239D-2
.600  .33015D+0 .18008D+0 .93504D-1 .25039D-1 .99897D-3
.700  .26076D+0 .13116D+0 .62148D-1 .13734D-1 .33480D-3
.800  .20807D+0 .96541D-1 .41744D-1 .76142D-2 .11342D-3
.900  .16739D+0 .71640D~1 .28271D-1 .42563D-2 .38742D-4

1.000  .13554D+0 .53514D-1 .19274D-1 .23951D-2 .13321D-4
1.250  .81761D-1 .26385D-1 .75621D-2 .58161D-3 .94394D-6
1.500  .50486D-1 .13313D-1 .30360D-2 .14448D-3 .684000-7
1.750  .31698D-1 .68302D-2 .12390D-2 .36476D-4 .50351D-8
2.000 .20156D-1 .35480D-2 .51193D-3 .93205D-5 .37499D-9
3.000 .35811D-2 .28017D-3 .16153D-4 .42926D-7 .1242D-13
4.000 .68942D-3 .23915D-4 .54987D-6 .21274D-9 .4417D-18
5.000 ,13832D-3 .21349D-5 .19552D-7 .1099D-11 .1633D-22
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Table A.3 The function 52(7,8) for various values of T and 8

T R=0 g=.05 g=.10 B=.20 g=.50
.000 .10000D+1 . 10000D+1 .10000D+1 .10000D+1 . 10000D+1
.001 .99266D+0 .99266D+0 .99266D+0 .99266D+0 .99260D+0
.002 .98672D+0 .986720+0 .98671D+0 .98670D+0 .98660D+0
.003 .98130D0+0 .981250+0 .98129D+0 .98127D+0 .98111D+0
.004 .97621D+0 .97621D+0 .97620D+0 .97617D+0 .97597D+0
.005 .97138D+0 .97137D+0 .97137D+0 .97133D+0 .97108D+0
.010 .94967D+0 .94966D+0 .94964D+0 .94957D+0 .94907D+0
.015 .93055D+0 .93054D+0 .93051D+0 .93040D+0 .92966D+0
.020 .91310D+0 .91309D+0 .91305D+0 .91291D+0 .91193D+0
.025 .89689D+0 .89688D+0 .89683D+0 .89666D+0 .89545D+0
.030 .88167D+0 .88165D+0 .88160D+0 .88139D+0 .87995D+0
.035 .86725D+0 .86723D+0 .86717D+0 .86693D+0 .865270+0
.040 .85353D+0 .85351D+0 .85344D+0 .85317D+0 .85129D+0
.045 . 84042D+0 .84039D+0 .84031D+0 .84001D+0 .83791D+0
.050 .82783D+0 .82780D+0 .82772D+0 .82738D+0 .82508D+0
.060 .80404D+0 .80401D+0 .80391D+0 .80351D+0 .80080D+0
.070 .78183D+0 .78179D+0 .78168D+0 .781220+0 .77812D+0
.080 .76096D+0 ,76091D+0 .76078D+0 .76027D+0 .75679D+0
.090 .74124D+0 .74119D+0 .74105D+0 ., 74048D+0 .73664D+0
. 100 ., 72254D+0 .72249D+0 .72233D+0 72171040 .71752D+0
.200 .57420D+0 .57411D+0 .57385D+0 .57280D+0 .56575D+0
.300 .46911D+0 .46900D+0 .46866D+0 .46732D+0 .45837D0+0
.400 . 38936D+0 .38924D+0 . 38885D+0 .38732D+0 .37714D+0
.500 .32664D+0 .32650D+0 .326090+0 .32444D+0 .313560+0
.6G0 .27618D+0 .27604D+0 .27561D+0 .27390D+0 .26268D+0
. 700 .23494D+0 .23480D+0 .23436D+0 .23264D+0 .22137D+0
.800 .20085D+0 .20070D+0 .20027D+0 .19857D+0 .18743D+0
.900 . 17240D+0 .17226D+0 .17184D+0 .17017D+0 .159330+0

1.000 . 14849D+0 .14835D+0 .14794D+0 .14633D+0 . 13589D+0
1.250 .10348D+0 .10336D+0 .10299D+0 .10155D+0 .92354D-1
1.500 ,73100D-1 .72994D-1 .72677D-1 .71430D-1 .63584D-1
1.750 .52168D-1 .52078D-1 .51809D-1 .50755D-1 .44212D-1
2.000 .37534D-1 .37458D-1 .37234D-1 .36356D-1 .30988D-1
3.000 .10641D-1 .10608D-1 .10509D-1 .10123D-1 .78844D-2
4.000 .31982D-2 .31844D-2 .31435D-2 .29864D-2 .21224D-2
5.000 .99646D-3 .99099D-3 .97480D-3 .91312D-3 .59209D-3




Table A.4 The function 52(T,B) for various values of T and R
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T g=1.0 g=2.0 g=3.0 B=5.0 8=10.0
.000  ,10000D+1 .10000D+1 .10000D+1 10000D+1 10000D+1
.001 .99244D+0 .99191D+0 .99124D+0 .989690+0 .98537D+0
.002  ,98627D+0 .98522D+0 .98388D+0 .98080D+0 .97224D+0
L093  .98062D+0 .97905D+0 .97705D+0 .97245D+0 .95972D+0
.004  ,97531D+0 .97322D+0 .97056D+0 .96447D+0 .94763D+0
.005  ,97026D+0 .96765D+0 .96434D+0 .95676D+0 .93589D+0
.010 . 94745D+0 .942310+0 .93581D+0 .921G3D+0 .88101D+0
015 ,92726D+0 .91965D+0 .91007D+0 .88845D+0 .830900+0
.020  .90877D+0 .89876D+0 .88621D+0 .858090+0 .78449D+0
.025  .89154D+0 .879190+0 .86378D+0 .82949D+0 .74123D+0
.030  .87531D+0 .86069D0+0 .84252D+0 .80237D+0 .70075D+0
.035  .85991D+0 .84308D+0 .82225D+0 .77655D+0 .66277D+0
.040  ,84523D+0 .82625D+0 .80286D+0 .75188D+0 .627070+0
.045  ,83116D+0 .81009D+0 .78423D+0 .72826D+0 .59348D+0
.050  .81765D+0 .79455D+0 .76630D+0 .70560D+0 .56182D+0
.060  .79207D+0 .76506D+0 .732310+0 .66289D+0 .50380D+0
.070  .76814D+0 .73743D+0 .70050D+0 .62331D+0 .45208D+0
.080  .74562D+0 .71140D+0 .67061D+0 .58649D+0 .40583D+0
.090  .72432D+0 .68679D+0 .64242D+0 .55217D+0 .36459D0+0
.100  .70410D+0 .66345D+0 .61577D+0 .52012D+0 .32761D+0
.200  .54362D+0 .48002D+0 .41133D+0 .29098D+0 .11390D+0
.300  .43076D+0 . 35544D+0 .28053D+0 . 16562040 .40109D-1
.400 . 34636D+0 .26656D+0 .19347D+0 .95137D-1 .14216D-1
500  ,28121D+0 .20158D+0 . 13440D+0 .54968D-1 .50600D-2
600  .22995D+0 .15336D+0 .93860D-1 .31891D-1 .18062D-2
.700  .18906D+0 .11721D+0 .65803D-1 .18561D-1 .64623D-3
.800  .15612D+0 .89918D-1 .46277D-1 .10829D-1 .23160D-3
.900  ,12939D+0 .69183D-1 .32629D-1 .63310D-2 .83124D-4

1.000  .10757D+0 .53363D-1 .23054D-1 .37075D-2 .29869D-4
1.250  .68504D-1 .281280-| .97472D-2 .97869D-3 .23214D-5
1.500  .44144D-1 .14969D-1 .41547D-2 .26001D-3 .18125D-6
1.750  .28701D-1 .80250D-2 .17818D-2 .69415D-4 .14199D-7
2.000 .18792D-1 .43267D-2 .76789D-3 .18602D-4 .11154D-8
3.000 .36260D-2 .38032D-3 .27385D-4 .98506D-7 .4328D-13
4.000 ,73581D-3 .34820D-4 .10109D-5 .53607D-9 712D-17
5.000 .15768D-3 .32711D-5 .38134D-7 .2968D-11 .6863D-22




Table A.5

The function é%(T,B) for various values of T and B
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T g=0 B=.05 g=.10 B=.20 £=.50
.000  .50000D+0 .50000D+0 .50000D+0 .50000D+0 .50000D+0
.001 .49900D+0 .49900D+0 .49900D+0 .49900D+0 .49900D+0
.002  .49801D+0 .49801D+0 .49801D+0 .49801D+0 .49801D+0
.003  .49703D+0 .49703D+0 .49703D+0 .49703D+0 .49702D+0
.004  .49605D+0 .496050+0 .49605D+0 .49605D+0 .49604D+0
.005  .49507D+0 .49507D+0 .49507D+0 .49507D+0 .49507D+0
.010  .49027D+0 .49027D+0 .490270+0 .49027D0+0 .49025D0+0
.015  .48557D+0 .48557D+0 .48557D+0 .48557D+0 .48553D+0
.020  .48096D+0 .48096D+0 .48096D+0 .48095D+0 .48089D+0
.025  .47644D+0 .47644D+0 .47644D+0 .47642D+0 .47634D+0
.030  .47199D+0 .47199D0+0 .47199D+0 .47197D+0 .47185D+0
.035  .46762D+0 .46762D+0 .46761D+0 .46759D+0 .46744D+0
.040  .46332D+0 .46332D+0 .46331D0+0 .46328D+0 .46310D+0
.045 . 45908D+0 .45908D+0 .45807D+0 .45904D+0 .458820+0
.050  .45491D+0 .45491D+0 .45490D+0 .45486D+0 .454600+0
.060  .44676D+0 .44675D+0 .44674D+0 .44669D+0 .44634D+0
.070  .43883D+0 .43882D+0 .43881D+0 .43874D+0 .43831D+0
.080  .43112D+0 .43111D+0 .43109D+0 .43101D+0 .43048D+0
.090  .42361D+0 .42360D+0 .423570+0 .42348D+0 .42286D+0
.100  .41629D+0 .41628D+0 .41625D+0 .41615D+0 .41542D+0
.200  .35194D+0 .35192D+0 .35185D+0 .35159D0+0 .34980D+0
.300  .30004D+0 . 30000D+0 .29990D+0 .29949D+0 .296700+0
.400  .25728D+0 .25724D+0 .25710D+0 .25657D+0 .25294D+0
.500  .22160D+0 .22155D+0 .22139D+0 .22076D+0 .216470+0
.600  .19155D+0 .191490+0 .19131D+0 .19061D+0 .18584D+0
.700  .16606D+0 .16599D+0 .16580D+0 .16505D+0 .15995D+0
.800  .14432D+0 .14425D+0 .14405D+0 .14326D+0 .13796D+0
.900  .12570D+0 .12563D+0 .12543D+0 .12462D+0 .119220+0

1.000  .170969D+0 .10962D+0 .10941D+0 .10860D+0 .10320D+0
1.250  .78572D-1 .78506D-1 .78308D-1 .77524D-1 .72385D-1
1.500  .56739D-1 .56678D-1 .56497D-1 .55778D-1 .51131D-1
1.750  .41239D-1 .41185D-1 .41024D-1 .40387D-1 .36323D-1
2.000 .30133D-1 .30086D-1 .29946D-1 .29396D-1 .25921D-1
3.000 .89307D-2 .89075D-2 .88386D-2 .85699D-2 .69503D-2
4.000 .27613D-2 .27512D-2 .27210D-2 .26042D-2 .19317D-2
5.000 .87780D-3 .87359D-3 .86109D-3 .81317D-3 .54778D-3
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Table A.6 The function 83(T,B) for various values of T and 8

T 8=1.0 B=2.0 6=3.0 B=5.0 8=10.0
.000  .50000D+0  .50000D+0  ,50000D+0  .50000D+0  .50000D+0
001 .49900D+0  .49899D+0  .49899D+0  .49897D+0  .49888D+0
002 .49800D+0  .49799D+0  .49797D+0  .49789D+0  .49759D+0
003 .49701D+0  .49698D+0  .49694D+0  .49679D+0  .49617D+0
.004  .49603D+0  .49598D+0  .49590D+0  .49565D+0  .49464D+0
.005  .49505D+0  .49497D+0  .49485D+0  .49449D+0 49302040
.010  .49018D+0  .48993D+0  .48954D+0  .48838D+0  .48376D+0
015 .48540D+0  ,48490D+0  .48412D+0  .48186D+0  .47312D+0
.020  .48068D+0  .47988D+0  .47864D+0  .47506D+0  .46156D+0
025  .47603D+0  .47488D+0  .47310D+0  .46805D+0  .44938D+0
.030  .47145D+0  .46990D+0  .46754D+0  .46087D+0  .43678D+0
.035  .46692D+0  .46496D+0  .46196D+0  .45358D+0  .42392D+0
040 .46245D+0  .46004D+0  .45637D+0  .44620D+0  .41093D+0
045  .45804D+0  .45515D+0  .45077D+0  .43877D+0  .39790D+0
050  .45369D+0  .45029D+0  .44519D+0  .43130D+0  .38491D+0
060 .44514D+0  .44069D+0  .43407D+0  .41633D+0  .35928D+0
070 .43680D+0  .43124D+0  .42304D+0  .40742D+0  .33441D+0
080 .42865D+0  .42194D+0  .41213D+0  .38666D+0  .31052D+0
090 .42068D+0  .41279D+0  .40137D+0  .37213D+0  .28776D+0
100 .41290D+0  .40381D+0  .39077D+0  .35787D+0  .266210+0
200 .34372D+0  .32290D+0  .29542D+0  .235310+0  .11498D+0
300 .28740D+0  .25715D+0  .22036D+0  .15005D+0  .46787D-1
400 .24107D+0  .20434D+0  .16311D+0  .94125D-1  .18484D-1
‘500 .20269D+0  .16215D+0  .12014D+0  .58435D-1  .71759D-2
600 .17076D+0  .12856D+0  .88193D-1  .36022D-1  .27536D-2
700 .14410D+0  .10187D+0  .64578D-1  .22093D-1  .10479D-2
"800 .12177D+0  .80695D-1  .47198D-1  .13498D-1  .39641D-3
‘900 .10302D+0  .63900D-1  .34445D-1  .82228D-2  .14924D-3

1.000  .87263D-1  .50592D-1  .25110D-1  .499710-2  .55981D-4

1250  .57846D-1  .28209D-1  .11351D-1  .14277D-2  .47660D-5

1,500  .38527D-1  .15728D-1  .51137D-2  .40476D-3  .40086D-6

1,750  .25759D-1  .87717D-2  .22984D-2  .11416D-3  .334400-7

2 000  .17277D-1  .48940D-2  .10315D-2  .32079D-4  .27731D-8

3.000  .35827D-2  .47673D-3  .41550D-4  .19583D-6  .1265D-12

4,000  .76390D-3  .46827D-4  .16677D-5  .11757D-8  .5605D-17

5000  .15880D-3  .46299D-5  .66975D-7  .7008D-11  .2445D-22
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APPENDIX B
NUMERICAL PROCEDURE FOR SELECTED INTEGRALS

The occurrence of the function wl(x,B) defined by equation (3.79)
in the integrand complicates the numerical integration when g is
large. An analytical integration of wl(x,B) over the range 0<x<]
yields unity. However, when the integral is evaluated numerically by
a ninth order Gaussian quadrature, the resulting sum diverges rapidly
from unity for values of g8>3. Increasing the order of the quadrature
does not appreciably increase the range of g for which accurate
results can be obtained. A thirty-seventh order quadrature yields
four significant digits for g<b.

Inspection of Figure B.1 shows why merely increasing the order of
quadrature is not practical when g is large. The area under each 8
curve is unity. For large B8, wl(o,6)+o and w1(1,6)+w. Hence, the
main contribution to the area comes from the small region in the
immediate neighborhood of the sharp spike at x=1. Therefore, addi-
tional quadrature points are needed in this interval. However, since
thé Gaussian quadrature is distributed over the range -1<x<1, only a
small portion of the quadrature points will appear in the critical
interval. Additional quadrature points can be forced into the
critical region by subdividing the total interval into two parts,
i.e., (0,.9) and (.9,1).

An alternate method is employed whereby the area is redistri-
buted over a larger portion of the initial interval. This approach
is accomplished by subtracting various functions from the integrands

and later adding the equivalent integrated function. In particular,
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the emissive power for the cosine varying diffuse boundary from the
semi-infinite theory is written as

1

5 (0) = % | ¥ (B IHOLB)-H(1,e) Ik + S 0(1,6) (6.1)
0

The integrand in equation (B.1) is shown in Figure B.2 which

exhibits the redistribution of the area away from the end point.

H(1,B) is selected since the spike occurs at x=1 and also because

H(x,B)-H(1,B) approaches zero for large § values. In a similar

fashion, the corresponding emissive power for the finite medium is

written as
1
$5(0,74) = 5 f b GBI (X, B)-X(T, 7y ,8) Jdx + EH0,7,,8) (8.2)
0
and

1
¢B(T T ) = %J wl(x,B)[Y(x,TO,B)-Y(l,TO,B)]dx + 12 Y(1,1,,8) - (.3)

0



70
50

.05

.01

|

50

0]

.2 4 x .6

Figure B.1 Variation of wl(x,B) with x for various values of B

207



208

10 T T T T 1 T T T T

|
W
"
o

o
I

- i (x, B)[H(X,8)- Hl1, 8)]

o
6]
J

.0l
0 .2 4 .6 .8

Figure B.2 Variation of -wl(x,s)[H(x,B)-H(1,B)] with x for
various values of B

10



209

APPENDIX C
SYMMETRY OF THE GENERALIZED REFLECTION AHD TRANSMISSION FUNCTIONS

When a collimated flux of cosine magnitude is incident upon a
plane parallel medium of finite optical thickness T, from a direction
o=seceo, a pair of functions arise which are analogous to the reflec-
tion and transmission functions of Chandrasekhar. Since Chandrasek-
har's functions are symmetric, the generalized functions should also
be equal when g=0. The desired symmetry is shown in a manner similar
to that of Kourganoff [4,p.167] who considered the one-dimensional
semi-infinite analysis and hence had only to demonstrate the symmetry
of the reflection function since the transmission function is zero.
However, the same type of symmetry argument is easily extended to
include the transmission function.

Since the semi-infinite theory is the 1imiting case of the finite,
it is necessary to exhibit only the symmetry of the generalized
reflection and transmission functions for the finite medium. The
generalized reflection function RB(O,S,TO) and the generalized trans-

mission function SB(O,S,TO) are defined as

To
= X0 c.1
RB(O,S,TO) = J JB(x,s,ro)e dx (C.1)
0
and T,
= - X C.2
SB(O,S,TO) = f JB(T x,s,TO)e dx (C.2)
0

where the dimensjonless emissive power JB(TZ,O,TO) satisfies the

following integral equation
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T
=0T 1 ©
AT S I -A (LR RSN E R EEI (0%}
0

The kernel appearing in equation (C.3) is the generalized exponential

integral function é;l which is described in detail in Appendix A.
First, consideration will be given to demonstrate the symmetry

of RB(O,S,TO) in ¢ and s. Replacing o by s in equation (C.3) yields

an integral equation for J_(T ,s,ro) given by

B( z

To

-ST, . '

JB(TZ, S,T_ ) = e + -,Z[ gl(h -T'ZI,B)JB(T ,S,To)de . (C.4)
0

0 Z Z

When equation (C.3) is multiplied by JB(TZ,S,TO)dTZ and integrated

from o to To the following expression is obtained

T T
0 0 ot
J JB(TZ,O,TO)JB(TZ,S,To)de = J JB(TZ, s,TO)e drz
0 0
%o To
] ] 1 H
+f JB(TZ,S,TO)[EJ 51(|TZ-TZI,s)JB(TZ,o,TO)dTZ]drz . (C.5)
0 0

Similarly, equation (C.4) is multiplied by JB(TZ,O,TO)dTZ and inte-
grated from o to T, to yield

T, T, .
f JB(TZ,O,TO)JB(TZ,S,To)de = J JB(TZ,O,TO)G dTZ
0 0

TO TO

+ J JB(TZ,Q,TO)[-% J f;l(ITZ-Tél,B)JB(TQ,S,TO)dTé] dTZ . (C.6)
0 0
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Since the left-hand sides of equations (C.5) and (C.6) are equal, the

right-hand sides are equated to obtain

o
-0T
f JB(TZ,S,TO)E drz
0
o o
] ] ] 1
+ f JB(T ’S’To)[‘f J é;l([TZ—TZ],B)JB(TZ,G,TO)dTZ] dt
0 0
To
-ST,,
= j JB(TZ,O,TO)E dTZ
0
T0 T0
1 ] 1 1
+ j JB(TZ,O,TO)['z J é;l(ITZ-TZI,B)JB(TZ,S,TO)dTZ] dTZ . (C.7)
0 0

The multiple integral terms appearing in equation (C.7) are equal

. o . s . , s
since éfl(lrz IZ],B) is symmetric in T, and T, thereby permitting 7,
and Té to be interchanged. Hence, equation (C.7) reduces to

T T
0 0
~oT,
J JB(TZ,S,TO)E dTZ = J JB(TZ,O,TO)E

0 0

-STZ
deo (C°8)

Finally, utilization of equation (C.1) in equation (C.8) yields

RB(O,S,TO) = RB(S,G,TO) (C.9)

which is the desired symmetry relation.

The symmetry of the transmission function can be obtained in a
_— . _ o s
similar fashion. Replacement of T, by T2 and T by T,7T, 1N

equations (C.3) and (C.4) yields
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-o(t_-1_)
JB(TO—Tz’O’To) - € ° 7
o
1 . : '
+'2'J &, Ity s8)35(75-1550,75)dT; (c.10)
0
and
-S(TO-TZ)
JB(T -TZ,S,TO) e
To
] i 1 1 ~
+'2‘J & 1y, 1s8)d 1 -15s,1 )dT) (c.11)
0

Multiplication of equation (C.10) by JB(TZ,S,T )drZ and integration

0

from o to T yields

o
_ 'O(To'Tz)
= | JB(TZ,S,TO)E dr,
o
TO TO
1 ] 1 !
+j IRCARR Iy £ (It B3l ot - (C12)
0] 0

Similarly, multiplication of equation (C.11) by JB(TZ,O,TO)dTZ and

integration from o to T, yields

T.
0 o

f JB(TZ,G,TO)JB(TO-TZ,S,TO
0
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T
0] To

1
+ J JB(TZ,O,TO)[:E I é;l(]TZ—T£|,B)JB(TO-TE,S,TO)dT; ] dTZ . (C.13)
0 0

The substitution T,5T X makes the integral on the left-hand side of
equation (C.12) equal to the integral on the left-hand side of equa-

tion (C.13). This operation results in

T
0
-o(t_-1_)
0 z
f JB(TZ,S,TO)E dTZ
0
T, T,
] ] 1 1
+ f JB(TZ,S,TO)[:E-J é;l(ITZ—Tzl,B)JB(TO-TZ,O,TO)dTZ] dTZ
0 0
%o
- _S(TO-TZ)
= { JB(TZ,O,TO)E drz
0
T, T,
1 ] ] |
+ f JB(TZ,O,TO)[ E‘f £;1(ITZ-TZI,B)JB(TO-TZ,S,TO)dTZ] dTZ . (C.14)
o 0

= 1 - ! 5
Replacement of T, by T, T, and T by 1,7, n the second term on the

left-hand side of equation (C.14) and utilization of the symmetry of

1_ : 1oy
81(112 TZI,B) in T, and T yields

‘o ~-o(T _-1_) o -s(t -7_)

0z _ 0 z
J JB(Tz,s,ro)e dTZ = f JB(TZ,O,TO)E dr . (C.15)
0 0

Equation (C.15) can be put in a form similar to equation (C.2) by the

substitution X=T =T This change of variable yields
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Utilization of equation (C.2) in equation (C.16) yields finally

S.(0,s,7.) = S.(s,0,7) (C.17)

B( 0 B( 0

which is the desired symmetry.
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APPENDIX D

TABLES OF RESULTS FOR THE SEMI-INFINITE MEDIUM
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Table D.1 Approximate values of the functionH(5,g)

T T
.00 1.8660 1.9657 1.9902 1.9995 2.0127
.10 1.7773 1.8713 1.8942 1.9030 1.9151
.20 1.6979 1.7838 1.8051 1.8133 [.8246
.30 1.6272 1.7047 1.7243 1.7319 1.7424
.40 1.5647 1.6344 1.6522 1.6592 1.6689
.50 1.5098 [.5725 [.5886 1.5950 1.6039
.60 1.5311 1.5183 1.5329 1.5387 1.5469
.70 1.4196 1.4711 1.4843 1.4896 1.4971
.80 1.3828 1.4300 1.4420 1.4468 1.4537
.90 1.3506 1.3942 1.4051 1.4096 1.4159
1.00 1.3223 1.3629 1.3729 1.3770 1.3828
2.00 1.1672 1.1920 1.1979 1.2001 1.2031
3.00 1.1087 1.1263 1.1310 1.1327 1.1348
4.00 1.0796 1.0931 1.0970 1.0985 1.1002
5.00 1.0626 1.0733 1.0767 1.0780 1.0796
6.00 1.0515 1.0604 1.0632 1.0645 1.0659
7.00 1.0437 1.0512 1.0538 1.0548 1.0562
8.00 1.0379 |.0445 i .0467 1.0477 1.0490
9.00 1.0335 1.0393 1.0413 1.0422 1.0434
10.00 1.0300 1.0351 1.0369 1.0378 1.0390




Table D.2 Approximate values of the function H(1,8)
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FIRST

SECOND

THIRD

FOURTH

& ORDER ORDER ORDER ORDER EXACT
.00 2.7320 2.8644  2.8886 2.8966 2.9078
10 2.4842 2.6033  2.6246 2.6319 2.6408
20 2.2804 2.3838  2.4028 2.4093 2.4173
30 2.1121 2.2013  2.2180 2.2238 2.2311
40 1.9725 2.0498  2.0646 2.0697 2.0762
.50 1.8563 1.9240  1.9370 1.9416 1.9474
60 1.7591 1.8192  1.8307 1.8348 |.8400
70 1.6773 1.7316  1.7419 1.7455 1.7502
.80 1.6082 1.6580  1.6671 1.6704 |.6746
.90 1.5494 1.5956  1.6039 1.6068 1.6107

1.00  1.4992 1.5425  1.5500 1.5527 | .5562
2.00  1.2434 1.2718  1.2769 1.2783 1.2801
3.00  1.1546 1.1753  1.1799 1.1813 |.1826
4.00  1.1121 1.1278  1.1320 1.1334 1.1347
5.00  1.0875 1.J001  1.1038 .1052 .1064
6.00  1.0717 1.0821  1.0853 1.0866 1.0879
7.00  1.0606 1.0695  1.0723 1.0735 1.0748
8.00  1.0525 1.0602  1.0627 1.0638 1.0651
9.00  1.0463 1.0530  1.0553 |.0563 |.0576
10.00  1.0414 1.0474  1.0495 1.0504 1.0517




Table D.3 The function H(u,R) for various values of u and B8
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H(u,B)
u R=0 R=.50 R=1.0 R=2.0 R=5.0 3=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
01 1.0342 1.0272 1.0203 1.0123 1.0052 1.0026
.02 1.0622 1.0487 1.0360 1.0216 1.0091 1.0046
.03 1.0882 1.0682 1.0499 1.0298 1.0126 1.0063
.04 1.1128 1.0863 1.06¢8 1.0372 1.0157 1.0078
.05 1.1365 1.1034 1.0749 1.0441 1.0185 1.0092
.06 1.1596 1.1199 1.0863 1.0507 1.0212 1.0106
.07 1.1821 1.1357 1.0972 1.0568 1.0237 1.0118
.08 1.2042 1.1510 1.1076 1.0627 1.0260 1.0130
.09 1.2259 1.1658 1.1177 1.0682 1.0283 1.0141
.10 1.2473 1.1802 1.1274 1.0736 1.0304 1.0152
1 1.2684 1.1943 1.1367 1.0788 1.0325 1.0162
2 1.2893 1.2081 1.1458 1.0837 1.0345 1.0171
13 1.3100 1.2215 1.1547 1.0885 1.0364 1.0181
.14 1.3305 1.2347 1.1633 1.0932 1.0382 1.0190
.15 1.3508 1.2476 1.1717 1.0976 1.0400 1.0198
.16 1.3709 1.2603 1.1798 1.1020 1.0417 1.0207
A7 1.3910 1.2728 1.1878 1.1062 1.0433 1.0215
.18 1.4109 1.2850 1.1956 1.1103 1.0449 1.0222
.19 1.4306 1.2971 1.2032 1.1143 1.0464 1.0230
.20 1.4503 1.3089 1.2107 1.1182 1.0479 1.0237
.25 1.5473 1.3657 1.2457 1.1363 1.0548 1.0271
.30 1.6425 1.4188 1.2776 1.1523 1.0609 1.0300
.35 1.7364 1.4688 1.3069 1.1668 1.0663 1.0326
.40 1.8292 1.5161 1.3341 1.1800 1.0712 1.0350
.45 1.9213 1.5611 1.3593 1.1921 1.0755 1.0371
.50 2.0127 1.6039 1.3828 1.2031 1.0795 1.0390
.55 2.1036 1.6448 1.4049 1.2134 1.0832 1.0407
.60 2.1941 1.6840 1.4256 1.2229 1.0866 1.0423
.65 2.2842 1.7215 1.4452 1.2317 1.0897 1.0438
.70 2.3739 1.7576 1.4636 1.2400 1.0926 1.0452
.75 2.4634 1.7922 1.4811 1.2477 1.0953 1.0465




Table D.4 The function H(u,R) for various values of u and B

H(u,B)
U B=0 8=.50 3=1.0 £=2.0 8=5.0 8=10.0
.80 2.5527 1.8255 1.4976 1.2550 1.0978 1.0476
.85 2.6417 |.8576 1.5134 1.2618 1.1002 1.0488
.90 2.7305 1.8886 1.5284 1.2683 1.1024 1.0498
.95 2.8192 1.9185 1.5426 1.2743 1.1045 1.0508
1.00 2.9078 1.9474 1.5562 1.2801 1.1064 1.0517
1.50 3.7876 2.1907 | .6646 1.3244 1.1212 1.0586
2.00 4.6619 2.3738 1.7395 1.3535 1.1306 1.0629
2.50 5.5333 2.5171 1.7945 1.3742 1.1372 1.0660
3.00 6.4033 2.6324 1.8367 1.3896 1.1420 1.0682
3.50 7.2722 2.7272 |.8701 1.4015 1.1457 1.0699
4.00 8.1405 2.8066 1.8972 1.4110 1.1486 1.0712
4 .50 9.0083 2.8741 1.9196 1.4188 1.1510 1.0723
5.00 9.8758 2.9322 1.9385 1.4253 1.1530 1.0732
5.50 10.743 2.9827 1.9546 1.4308 1.1547 1.0740
6.00 11.610 3.0271 1.9685 1.4355 1.1561 1.0746
6.50 12.477 3.0663 1.9806 1.4396 1.1573 1.0752
7.00 13.343 3.1012 1.9913 1.4432 1.1584 1.0757
7.50 14.210 3.1326 2.0008 1.4463 1.1593 1.0761
8.00 15.077 3.1608 2.0092 1.4491 1.1602 1.0765
8.50 15.943  3.1864 7.0168 1.4516  1.1609 1.0768
9.00 16.810 3.2098 2.0237 1.4539 1.1616 1.0771
9.50 17.676 3.2311 2.0299 1.4559 1.1622 1.0774
10.00 18.543 3.2507 2.0356 1.4578 1.1628 1.0776
15.00 27.205 3.3838 2.0732 1.4699 1.1663 1.0793
20.00 35.867 3.4570 2.0932 1.4763 1.1682 1.0801
25.00 44 .528  3.5032 2.1056 1.4802  1.1694 1.0806
30.00 53.189 3.5351 2.1141 1.4828 1.1701 1.0810
40.00 70.510 3.5762 2.1248 1.4862 1.1711 1.0814
50.00 87 .831 3.6016 2.1314 1.4882 1.1717 1.0817
60.00 105.15 3.6188 2.1358 1.4896 1.1721 1.0819
80.00 139.79 3.6407 2.1414 1.4913 1.1726 1.0821
100.00 174.43 3.6540 2.1448 1.4924 1.1729 1.0822




Table D.5 The function H( v/1+8%/5,8) for various values of o and B
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H( /1+Bz/0,8)=88(0,0)

B8 0=1.0 0=2.0 0=3.0 0=4.0 0=5.0 0=10.0
.000 2.9078 2.0127 1.7052 1.5473 1.4503 1.2473
.001 2.9049 2.0117 1.7046 1.5469 1.4500 1.2472
.002 2.9020 2.0107 1.7040 1.5465 1.4497 1.2471
.004 2.8962 2.0087 1.7029 1.5457 1.4491 1.2468
.008 2.8847 2.0047 1.7007 1.5442 1.4480 1.2463
.010 2.8790 2.0027 1.6995 1.5434 1.4474 1.2461
.020 2.8509 1.9929 1.6939 1.5396 1.4446 1.2448
.030 2.8235 1.9832 1.6884 1.5359 1.4417 1.2436
.040 2.7966 1.9736 1.6830 1.5321 1.4389 1.2424
.050 2.7704 1.9642 1.6776 1.5284 1.4361 1.2412
.060 2.7447 1.9549 1.6722 1.5248 1.4334 1.2400
.080 2.6951 1.9367 1.6618 1.5176 1.4280 1.2376
.100 2.6476 1.9190 1.6515 1.5106 1.4227 1.2353
.200 2.4384 1.8377 1.6039 1.4775 1.3976 1.2244
.300 2.2682 1.7671 |.5616 1.4479 1.3750 1.2143
.400 2.1282 1.7056 1.5240 1.4213 1.3546 1.2052
.500 2.0119 1.6520 |.4906 1.3974 1.3362 1.1968
.600 1.9144 1.6051 1.4608 1.3759 1.3196 1.1892
.800 1.7616 1.5273 1.4103 1.3392 1.2908 1.1758

1.000 1.6489 1.4662 1.3696 1.3089 1.2670 1.1645
1.250 1.5451 |.4064 1.3286 1.2782 1.2425 1.1526
1.500 1.4685 1.3599 |.2959 1.2532 1.2224 1.1427
1.750 1.4100 1.3228 1.2692 1.2325 1.2056 1.1343
2.000 1.3641 1.2926 1.2470 1.2151 1.1914 1.1270
2.500 1.2969 |.2464 1.2122 1.1875 1.1685 1.1150
3.000 1.2504 1.2127 |].1862 1.1663 1.1508 1.1054
3.500 1.2163 1.1872 1.1660 1.1497 1.1367 1.0975
4.000 1.1903 1.1672 1.1498 1.1361 1.1251 1.0909
4.500 1.1699 1.1510 1.1365 1.1249 1.1154 1.0852
5.000 1.1534 1.1377 1.1254 1.1154 1.1072 1.0803
6.000 [.1284 1.1171 1.1079 1.1003 1.0938 [.0721
7.000 1.1104 1.1018 1.0947 1.0887 1.0836 1.0656
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Table D.6 The function H( /1+B%/o,8) for various values of ¢ and G

H( 7/ 148%/0,8)=Bg(0,0)

R o=1.0 0=2.0 0=3.0 0=4.0 0=5.0 0=10.0
8.0 1.0968 1.0901 1.0845 1.0796 1.0753 1.u602
9.0 1.0862 1.0808 1.0762 1.0722 1.0686 1.0556
10.0 1.0777 1.0733 1.0694 1.0660 1.0630 1.0518
12.5 1.0623 1.0594 1.0568 1.0545 1.0524 1.0442
15.0 1.0520 1.0499 1.0481 1.0464 1.0448 1.0386
17.5 1.0446 1.0431 1.0417 1.0404 1.0392 1.0343
20.0 1.0390 1.0379 1.0368 1.0357 1.0348 1.0308
25.0 1.0312 1.0305 1.0298 1.0291 1.0285 1.0257
30 1.0260 1.0255 1.0250 1.0245 1.0241 1.0220
35 1.0223 1.0219 1.0216 1.0212 1.0209 1.0193
40 1.0195 1.0192 1.0189 1.0187 1.0184 1.0172
60 1.0130 1.0129 1.0128 1.0126 1.0125 1.0119
80 1.0098 1.0097 1.0096 1.0095 1.0095 1.0091
100 1.0078 1.0077 1.0077 1.0077 1.0076 1.0074
125 1.0062 1.0062 1.0062 1.0061 1.0061 1.0060
150 1.0052 1.0052 1.0051 1.0051 1.0051 1.0050
175 1.0044 1.0044 1.0044 1.0044 1.0044 1.0043
200 1.0039 1.0039 1.0039 1.0038 1.0038 1.0038
250 1.0031 1.0031 1.0031 1.0031 1.0031 1.0030
300 1.0026 1.0026 1.0026 1.0026 1.0025 1.0025
400 1.0019 1.0019 1.0019 1.0019 1.0018 1.0019
500 1.0015 1.0015 1.0015 1.0015 1.0015 1.0015
600 1.0013 1.0013 1.0013 1.0013 1.0013 1.0013
300 1.0009 1.0009 1.0009 1.00069 1.0009 1.0009
1000 1.0007 1.0007 1.0007 1.0007 1.0007 1.0007
1500 1.0005 1.0005 1.0005 1.0005 I.0005 1.0005
2000 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003
3000 |.0002 1.0002 1.0002 1.0002 1.0002 1.0002
4000 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001
5000 1.0001 1.0001 1.0001 1.0001 1.0001 1.0001
8000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table D.7 Moment of the function H(u,B)

B ho(8) B ho(8)
.000 2.0000 8.0 1.0613
.001 1.9988 9.0 1.0546
.002 1.9976 100 1.0492
.004 1.9953 12.5 1.0395
.008 1.9908 15.0 1.0330
.010 1.9885 7.5 1.0283
.020 1.9772 20.0 1.0248
.030 1.9660 25.0 1.0198
.040 1.9551 30 1.0165
.050 1.9442 35 1.0142
.060 1.9336 40 1.0124
.080 1.9127 60 1.0083
.100 1.8924 80 1.0062
.200 1.7995 100 1.0050
.300 1.7194 125 1.0040
400 1.6504 150 1.0033
.500 1.5911 175 1.0028
.600 1.5398 200 1.0025
.800 |.4568 250 1.0020

1.000 1.3935 300 1.0016
1.250 1.3337 400 1.0012
1.500 1.2887 500 1.0010
1.750 .2539 600 1.0008
2.000 1.2263 800 1.0006
2.500 1.1855 1000 1.0005
3.000 1.1570 1500 1.0003
3.500 1.1359 2000 1.0002
4.000 1.1198 3000 1.0001
4.500 1.1071 | 4000 1.0001
5.000 1.0968 5000 1.0001
6.000 1.0811 8000 1.0000
7.000 1.0698 10000 1.0000
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Table D.8 Emissive power at 1,=0 and t,=1, for a semi-infinite
medium bounded by a strip illuminated by a uniform
collimated flux of magnitude F, from directions
c=1,2, and 5

B(0,0)

T3 c=1.0 c=2.0 g=5.0
.00 1.00000 1.00000 1.00000
.01 1.03142 1.02688 1.02152
.02 1.05592 1.04688 1.03629
.05 1.11694 1.09467 1.06909
.10 1.19941 1.15593 1.10736
.20 1.33038 1.24727 1.15861
.50 1.60451 1.42049 1.24227
1.00 1.89099 1.58084 1.30843
2.00 2.20948 1.73794 1.36539
5.00 2.56350 1.88818 1.41376
10.00 2.72660 1.94916 1.43192
20.00 2.81582 1.98082 1.44113
50.00 2.87072 1.99993 1.44665
100.00 2.88930 2.00636 1.44850

® 2.90781 2.01278 1.45035
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Table D.9 Emissive power at 7,0 for a semi-infinite medium bounded by

a strip illuminated by a uniform collimated flux of

magnitude F, from direction o=1

B ,0
(Ty )

Ty/Ta Ta=.01 Ta=.lO Ta=1.0 Ta=10.0 = 100.0
0.00 1.03142 1.19942 1.89098 2.72658 2.88930
.20 1.03132 1.19843 1.88339 2.71977 2.88853
.40 1.03100 1.19537 1.85971 2.69617 2.88578
.60 1.03042 1.18994 1.81672 2.64203 2.87892
.80 1.02947 1.18129 1.74598 2.50757 2.85664
.00 [.02796 1.16519 1.60473 1.90788 1.94929
1.02 .02778 .16251 .57901 .74313 34458
1.04 .02760 .16033 .56018 .64572 20389
1.06 .02744 .15847 .54393 57220 14177
1.08 .02727 .15678 .52934 .51329 10760
1.10 02711 .15523 .51596 .46455 08620
1.12 .02696 .15376 .50356 .42340 07160
1.14 .02681 .15238 .49195 .38814 06104
1.16 .02666 .15107 .48101 .35758 05306
1.18 .02652 . 14981 .47066 .33085 04682
1.20 .02639 .14861 .46081 .30728 04181
1.40 .02529 .13851 .38198 .17001 01924
1.60 .02446 .13062 .32513 .11078 01185
1.80 .02378 . 12405 .28124 .07909 00825
2.00 02319 .11838 .24608 .05983 00616
3.00 .02104 .09785 . 14074 .02291 00231
4.00 .01956 .08415 .09017 .01228 00123
5.00 .01843 .07395 .06216 .00768 00077




Table D.10 Emissive power at 1
by a strip illumina

magnitude F, from direction o=2
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=0 for a semi-infinite medium bounded
%ed by a uniform collimated flux of

B(Ty,O)

Ty/Ta Ta=.01 Ta=.10 Ta=1.0 14=10.0 Ta=100.0
0.00 1.02687 1.15593 1.58083 1.94915 2.00636

.20 1.02677 1.15502 1.57592 1.94660 2.00609

.40 1.02647 1.15219 1.56041 1.93761 2.00514

.60 1.02592 1.14714 [.53148 1.91614 2.00276

.80 1.02502 1.13903 1.48146 1.85759 1.99500
1.00 1.02343 1.12363 1.36897 1.49039 1.50480
1.02 .02327 .12096 . 34655 .36691 . 13583
1.04 .02302 . 11890 .33096 .30415 .07509
1.06 .02284 11713 .31787 .26027 .05080
1.08 .02267 .11553 .30637 .22703 .03806
1.10 .02251 . 11405 .29601 .20074 .03028
1.12 .02235 11267 .28657 .17935 .02505
1.14 .02221 .11136 .27785 .16160 .02130
1.16 .02206 11012 .26974 . 14665 .01848
1.18 .02193 .10894 .26216 .13388 .01628
1.20 .02181 . 10781 .25504 .12287 .01453
1.40 .02076 .09845 .20063 .06332 .00666
1.60 .01996 .09127 .16413 .04005 .00410
1.80 .01929 .08539 .13744 .02817 .00285
2.00 .01871 .08039 .11699 .02113 .00213
3.00 .01661 .06292 .06075 .00798 .00080
4.00 .01518 .05188 .03668 .00426 .00043
5.00 .01409 .04403 .02429 .00266 .00027
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Table D.11 Emissive power at 1,=0 for a semi-infinite medium bounded
by a strip 111umina%ed by a uniform collimated flux of
magnitude FO from direction o=5

B(t,,0
(ty )

Ty/Ta Ta=.01 Ta=.10 Ta=1.0 Ta=10.0 Ta=100.0
0.00 1.02152 1.10736 1.30842 1.43191 1.44850

.20 1.02142 1.10661 1.30617 1.43115 1.44841

.40 1.02112 1.10429 1.29890 1.42845 1.44814

.60 1.02059 1.10007 1.28475 1.42186 1.44745

.80 1.01973 1.09315 1.25817 1.40273 1.44521
1.00 1.01814 1.07930 1.18269 [.22056 1.22473
1.02 .01790 07677 . 16489 .14130 .04202
1.04 .01769 .07491 .15368 .11023 .02225
1.06 .01751 .07332 .14476 .09072 .01485
1.08 .01734 .07189 .13724 .07693 .01106
1.10 .01718 .07057 . 13071 .06656 .00878
1.12 .01703 .06936 .12492 .05845 .00725
1.14 .01689 .06822 11977 .05192 .00616
1.16 .01676 .06714 .11498 .04655 .00534
1.18 .01664 .06612 .11066 .04207 .00470
1.20 .01652 .06515 . 10667 .03828 .00419
1.40 .01551 .05734 .07840 .01886 .00192
1.60 .01474 .05159 .06133 01174 .00118
1.80 .01410 .04704 .04968 .00820 .00082
2.00 .01354 .04330 .04120 .00613 .00061
3.00 .01155 .03110 01977 .00230 .00023
4.00 .01023 .02414 .01146 .00123 .00012
5.00 .00925 .01955 .00741 .00077 .00007




Table D.12
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Emissive power at 1,=0 and 1y=0 for a semi-infinite

medium bounded by a constant” temperature strip

T4 $(0,0) Ty $(0,0) T4 $(0,0)
.00 .50000 .20 .59946 10.0 .96343
.01 .50979 .50 .67883 20.0 .98165
.02 51732 1.00 . 75875 50.0 .99263
.05 .53588 2.00 .84293 100.0 .99632
.10 .56065 5.00 .92821 0 1.00000
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Table D.13 Emissive power at 7,=0 for a semi-infinite medium bounded

by a constant temperature strip

¢(1y,0)
Ty/T Ta=.01 Ta=.10 Ta=1.0 Ta=10.0 Ta=100.0
0.00 .50979 .56065 75874 .96342 .99632
.20 .50976 .56034 75647 .96194 .99616
.40 .50966 .55937 74939 .95674 .99562
.60 .50947 .55765 73647 .94435 .99425
.80 .50917 .55490 71505 .91126 .98979
1.00 .50866 .54973 67146 .74081 .74908
1.02 .00860 .04885 16337 .19117 .07762
1.04 .00854 .04815 15752 .16279 .04327
1.06 .00848 .04756 15250 .14182 .02925
1.08 .00843 .04702 14801 .12531 .02189
1.10 .00837 .04652 14392 .11188 .01740
1.12 .00832 .04605 14012 .10071 .01439
1.14 .00827 .04561 13658 .09128 .01223
1.16 .00822 .04519 13325 .08321 .01061
1.18 .00818 .04479 13011 .07625 ,00935
1.20 .00814 .04441 12712 .07018 .00834
1.40 .00778 .04120 10343 .03652 .00382
1.60 .00751 .03871 08660 .02308 .00235
1.80 .00729 .03664 07379 .01622 .00164
2.00 .00710 .03487 06368 .01215 .00122
3.00 .00641 .02846 03435 .00458 .00046
4.00 .00593 .02421 02104 .00244 .00024
5.00 .00557 .02106 01403 .00153 .00015
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Table D.14 Normal flux at 1,=0 for a semi-infinite medium
illuminated by a collimated flux of cosine
magnitude from direction o=1

B 0(0,0) 5 05(0,0)
.000 .00000000 8.0 .94233
.001 .00167663 9.0 .94832
.002 .00334890 10.0 .95317
.004 .00668037 12.5 .96208
.008 .0132915 15.0 .96815
.010 .0165713 17.5 .97253
.020 .0327180 20.0 .97585
.030 .0484535 25.0 .98055
.040 .0637906 30 .98371
.050 .0787419 35 .98600
.060 .0933192 40 .98774
.080 .121398 60 .99177
.100 .148113 80 .99381
.200 .263895 100 .99504
.300 .355676 125 .99605
.400 .429387 150 .99674
.500 .489332 175 .99726
.600 .538674 200 .99766
.800 .614364 250 .99825

1.000 .669109 300 .99865
1.250 .718955 400 .99914
1.500 .755571 500 .99942
1.750 .783568 600 .99958
2.000 .805671 800 .99975
2.500 .838381 1000 .99984
3.000 .861479 1500 .99992
3.500 .878699 2000 .99995
4.000 .892051 3000 .99998
4.500 .902721 4000 .99999
5.000 .911450 5000 .99999
6.000 .924889 8000 .99999
7.000 .934764 10000 .99999
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Table D.15 Normal flux at 1,=0 for a semi-infinite medium
illuminated by a collimated flux of cosine
magnitude from direction o=2

B8 QB(O’O) B QB(OSO)
.000 .000000000 8.0 .44805
.001 .000580502 9.0 .45298
.002 .00115993 10.0 .45705
.004 .00231557 12.5 .46468
.008 .00461408 15.0 .47001
010 .00575697 17.5 .47393
.020 .0114085 20.0 .47694
.030 .0169566 25.0 .48127
.040 .0224034 30 48422
.050 .0277509 35 .48637
.060 .0330010 40 .48803
.080 .0432167 60 .49191
.100 .0530657 80 .49388
.200 .0972966 100 .458509
.300 L134316 125 .49608
.400 .165466 150 .49676
.500 .191843 175 .49727
.600 .214340 200 49767
.800 .250425 250 .49826
1.000 .277912 300 .49866
1.250 .304170 400 .49915
1.500 .324361 500 .49942
1.750 .340416 600 .49958
2.000 .353532 800 .49975
2.500 .373790 1000 .49984
3.000 .388818 1500 .49992
3.500 .400482 2000 .49995
4,000 .409837 3000 .49998
4,500 .417527 4000 .439999
5.000 .A423973 5000 .49999
6.000 .434195 8000 .49999
7.000 .441955 10000 .49999




Table D.16 Normal flux at 7,=0 for a semi-infinite medium
1]1um1nated by a collimated flux of cosine
magnitude from direction o=b

8 Qs(0,0) B Qg(0,0)
.000 .000000000 2.0 .15996
.001 .000167345 9.0 .16300
.002 .000334437 10.0 . 16559
.004 .000667861 2.5 .17070
.008 .00133168 15.0 .17449
.010 .00166208 17.5 17739
.020 .00329912 20.0 .17970
.030 .00491145 25.0 .18313
.040 .00649944 30 . 18557
.050 .00806342 35 .18739
.060 .00960373 40 .18883
.080 .0126147 60 .19228
.100 .0155351 80 .19410
.200 .0288698 160 .19523
.300 .0403211 125 .19617
.400 .0501766 150 .19683
.500 .0586905 175 .19732
.600 .0660824 200 .19771
.800 .0782135 250 .19828

1.000 .0877128 300 .19867
1.250 .0970400 400 .19915
1.500 .104422 500 .19942
1.750 .110459 600 .19958
2.000 .115529 800 .19975
2.500 .123675 1000 .19984
3.000 .130043 1500 .19992
3.500 .135235 2000 .19995
4,000 .139592 3000 .19998
4,500 .143327 4000 .19999
5.000 .146580 5000 .19999
6.000 .152000 8000 .19999
7.000 .156363 10000 .19999
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Table D.17 HNormal flux at 1,=0 for a diffuse wall radiating
in a cosine fashion into a semi-infinite medium

B Fe(0) 3 Fi(0)
.00 .00000000 8.0 .93999
.001 .00133214 9.0 .94642
.002 .00266188 10.0 .95161
.004 .00531422 12.5 .96103
.008 .0105904 15.0 .96735
.010 .0132143 17.5 .97193
.020 .0261931 20.0 .97539
.030 .0389405 25.0 .98025
.040 .0514604 30 .98350
.050 .0637566 35 .98584
.060 .0758331 40 .98754
.080 .0993421 60 .99168
.100 .122017 80 .99375
.200 .223892 100 .99499
.300 .309028 125 .99595
.400 .380372 150 .99654
.500 .440419 175 .99693
.600 .491239 200 .99718
.800 .571649 250 .99747
1.000 .631596 300 .99763
1.250 .687354 400 .99783
1.500 .728898 500 .99798
1.750 .760896 600 .99813
2.000 .786235 800 .99838
2.500 .823727 1000 .99858
3.000 .850083 1500 .99894
3.500 .869602 2000 .99915
4,000 .884632 3000 .99940
4,500 .896559 4000 .99954
5.000 .906253 5000 .99962
6.000 .921052 8000 .99976
7.000 .931816 10000 .99980
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Table D.18 Hormal flux at 7,=0 and 14=0 for a semi-infinite
medium bounded by a strip illuminated by a uniform
collimated flux of magnitude F_ from directions
=1, 2, and 5 °

Q(0,0)

T4 o =1.0 c=2.0 c=25.0
.00 1.00000 .50000 .20000
.01 .98191 .48479 .18825
.02 .96820 47393 .18072
.05 .93488 .44888 .16500
.10 ~.89101 .41805 14796
.20 .82328 .37404 .12685
.50 .68580 .29438 .09472
1.00 .54403 .22176 .06910
2.00 .38368 .14789 .04477
5.00 .19563 .07057 .02068
10.00 .10415 .03655 .01058
20.00 .05308 .01845 .00532
50.00 .02135 .00740 .00213
100.00 .01070 .00371 .00106

® .00000 .00000 .000G0
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Table D.19 Normal flux at t,=0 for a semi-infinite medium bounded by
a strip illuminated by a uniform collimated flux of
magnitude Fy from direction o=1
Q(7y,0)

Ty/Ta Ta=.01 4= 10 Ia=1.0 1,10.0 14=100.0
0.00 .98191 .89101 .54403 .10415 .01070

.20 .98198 .89160 .54770 .10796 .01113

.40 .98221 .89341 .55917 1211 .01272

.60 .98263 . 89664 .58025 15071 .01668

.80 .98328 .90181 .61574 .22129 .02951
1.00 .98410 91164 .69184 .52654 .50267
1.02 -.01584 -.08684 -.29341 -.38536 -.18919
1.04 -.01576 -.08545 -.28301 -.33635 -.11503
1.06 -.01567 -.08426 -.27419 -.29991 -.08086
1.08 -.01558 -.08320 ~.26638 -.27083 -.06166
1.10 -.01549 -.08224 -.25930 -.24673 -.04952
1.12 -.01540 -.08135 -.25279 -.22628 -.04116
1.14 -.01531 -.08051 -.24675 -.20866 -.03515
1.16 -.01522 -.0797¢ -.24111 -.19327 -.03057
1.18 -.01513 -.07897 -.23579 -.17972 -.02698
1.20 -.01504 -.07825 -.23077 -.16768 -.02410
1.40 -.01430 -.07227 -.19137 -.09550 -.0111
1.60 -.01373 -.06766 -.16362 -.06297 -.00684
1.80 -.01326 -.06387 -.14240 -.04521 -.00476
2.00 -.01288 -.06064 -.12540 -.03431 -.00356
3.00 -.01153 -.04926 -.07418 -.01319 -.00133
4,00 -.01063 -.0419%6 -.04874 -.00708 -.0007
5.00 -.00994 -.03668 -.03420 -.00443 -.00044
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Table D.20 Normal flux at 1,=0 for a semi-infinite medium bounded
by a strip illuminated by a uniform collimated flux of
magnitude F, from direction o=2

Q(Ty,O)
Ty/Ta Ta=.01 Ta=.10 Ta=].0 Ta=10.0 14=100.0
0.00 .48479 .41805 .22176 .03655 .00371
.20 .48487 .41857 .22388 .03798 .00386
.40 .48509 .42019 .23064 .04296 .00441
.60 .48549 .42309 .24344 .05454 .00578
.80 .48611 42779 .26636 .08418 .01026
1.00 .48696 .43702 .32394 .25922 .25091
1.02 -.01296 -.06148 ~-.16352 -.17789 -.07303
1.04 -.01286 -.06019 -.15526 -.14889 -.04212
1.06 -.01277 -.05908 -.14850 -.12905 -.02892
1.08 -.01267 -.05809 -.14268 -.11404 -.02179
1.10 -.01258 -.05719 -.13753 -.10210 -.01739
1.12 -.01249 -.05636 -.13290 -.09228 -.01441
1.14 -.01240 -.05559 -.12868 -.08402 -.01226
.16 -.01231 -.05487 -.12479 -.07697 -.01064
1.18 -.01223 -.05418 -.12119 -.07088 -.00939
1.20 -.01215 -.05353 -.11784 -.06555 -.00838
1.40 -.01144 -.04816 -.09298 -.03534 -.00385
.60 -.01088 -.04413 -.07683 -.02271 -.00237
1.80 -.01043 -.04089 -.06513 -.01609 -.00165
2.00 -.01005 -.03818 -.05617 -.01211 -.00123
3.00 -.00875 -.02908 -.03091 -.00459 -.00046
4,00 -.00789 -.02364 -.01942 -.00245 -.00024
5.00 -.00724 -.01993 -.01321 -.00153 -.00015




Table D.21

236

Normal flux at 1,=0 for a semi-infinite medium bounded by

a strip illuminated by a uniform collimated flux of

magnitude Fy from direction o=5

Q(ty,0)
Ty/'fa Ta-.01 Ta=.10 Ta=].0 Ta=10.0 Ta=]O0.0
0.00 18825 .14796 .06910 .01058 .00106
.20 18832 . 14835 .06990 .01100 0011
.40 18854 . 14956 07247 .01249 ,00127
.60 18892 .15179 .07754 .01601 .00166
.80 18951 . 15551 .08755 .02534 .00295
1.00 19036 .16342 .12238 . 10266 .10026
1.02 -.00954 .03521 -.06813 .06079 02212
1.04 -.00945 .03407 -.06269 .04880 .01243
1.06 -.00935 .03311 -.05856 .04142 .00844
1.08 -.00926 .03226 -.05521 .03611 .00633
1.10 -.00917 .03150 -.05238 .03202 ,00503
1.12 -.00909 .03082 -.04993 .02871 .00416
1.14 -.00900 .03018 -.04778 .02597 .00354
1.16 -.00892 .02959 -.04586 .02366 .00307
1.18 -.00884 .02851 -.04413 .01996 .00271
1.20 -.00876 .02851 -.04256 .0199¢6 .00241
1.40 -.00809 .02438 -.03189 .01047 L0011
1.60 -.00756 02146 -.02567 .00665 .00068
1.80 -.00713 .01923 -.02141 .00468 .00047
2.00 -.00678 .01745 -.01825 .00351 .00035
3.00 -.00559 .01201 -.00969 00132 .00013
4.00 -.00484 .00917 -.00596 .00071 .00007
5.00 -.,00428 .00741 -.00399 .00044 .00004
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Table D.22 Normal flux at t,=0 and t,=0 for a semi-infinite medium
bounded by a constant temperature strip

T, F(0,0) T, F(0,0) Ta F(0,0)
.00 1.00000 .20 80972 10.0 .08402
.01 .98112 .50 65932 26.0 04235
.02 . 96660 1.00 .50663 50.0 .01698
.05 .93094 2.00 .34108 100.0 .00850
.10 88356 5.00 16270 o .00000
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Table D.23 Normal flux at 1,=0 for a semi-infinite medium
bounded by a conStant temperature strip
F(Ty 90)

Ty/Ta 4= .01 T4=-10 Ta=1.0 14°10.0 T4=100.0
0.00 .98112 88356 .50663 .08402 .00850

.20 .98116 88417 .51080 .08733 .00885

.40 .98129 88606 .52387 .09886 .010172

.60 .98153 88941 .54778 .12572 .01327

.80 .98196 89479 .58772 .19405 .02354
1.00 .98330 90486 .67054 52117 .50210
1.02 -.01637 -.09307 .31391 -.38389 -. 16844
1.04 -.01615 -.09186 .30271 -.33016 -.09721
1.06 -.01601 -.09082 .29315 -.29039 -.06663
1.08 -.01587 -.08984 .28463 .25893 .05016
1.10 -.01574 -.08890 .27685 .23315 -.03998
1.12 -.01565 -.08800 .26968 .21154 -.03311
1.14 -.01556 -.08714 .26300 .19313 .02817
1.16 -.01547 -.08632 .25673 17725 .02445
1.18 -.01540 -.08553 .25083 .16342 .02155
1.20 -.01533 -.08478 .24522 .15128 .01923
1.40 -.01479 -.07852 .20100 .08163 -.00883
1.60 -.01439 -.07369 .16973 .05239 -.00544
1.80 -.01403 -.06968 . 14590 .03706 -.00379
2.00 -.01370 -.06624 .12700 .02788 -.00283
3.00 -.01233 -.05394 07125 -.07056 -.00106
4.00 -.01139 -.04587 .04496 -.00564 -.00056
5.00 -.01068 -.03996 .03060 .00353 -.00035
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APPENDIX E

TABLES OF RESULTS FOR THE FINITE MEDIUM




Table ©.1 The functions X(,/1+BZ/0,T0,B)

of o and T for g=0

and Y({ /7482 O,TO,B) for various values

X( VT+8%/0,7,,.8)

Y { /1+82/0,r0,8)

To 0=1.0 o=2.0 g=5.0 0=10.0 0=1.0 0=2.0 0=5.0 5=10.0
.00 1.0000 1,0000 1.0000 1.0000 1.00600 1.0000 1.0000 1.0000
01 1.0248 1.0246 1.0243 1.0237 1.0148 1.0048 .9755 .9285
.02 1.0453 1.0449 1.0437 1.0417 1.0254 1.0055 .9482 .8598
.03 1.0631 1.0623 1.0598 1.0561 1.0334 1.0037 .9197 .7953
.04 1.0791 1.0778 1.0738 1.0679 1.0396 1.0002 .8909 .7352
.05 1.0940 1.0920 1.0863 1.0780 1.0446 .9957 .8625 .6798
.06 1.71080 1.1053 1.0977 1.0867 1.0489 .9905 .8346 .6289
Q7 1.1213 1.1178 1.1081 1.0944 1.0525 .9849 .8076 .5822
.08 1.1342 1.1298 1.1178 1.1012 1.0557 .9789 .7814 .5395
.09 1.1466 1.1412 1.1268 1.1073 1.0585 9727 .7561 .5005
.10 1.1586 1.1522 1.1352 1.1128 1.0610 L9663 .7318 .4648
.12 1.1817 1.1731 1.1506 1.1222 1.0652 .9532 .6858 .4026
.14 1.2037 1.1926 1.1643 1.1300 1.0684 .9397 .6432 .3506
.16 1.2247 1.2110 1.1766 1.1364 1.0709 .9261 .6439 .3072
.18 1.2449 1.2283 1.1876 1.1419 1.0728 L9123 .5676 2710
.20 1.2644 1.2447 1.1976 1.1465 .0740 .8984 .5341 .2406
.25 1.3101 1.2821 1.2188 1.15655 1.0750 .8640 .4614 .1843
.30 1.3523 1.3155 1.2357 1.1620 1.0736 .8304 .4020 .1475
.35 1.3917 1.3454 1.2496 1.1669 1.0704 .7979 .3534 L1231
.40 1.4287 1.3725 1.2611 1.1709 1.0659 . 7668 .3137 . 1064
.45 1.4637 1.397¢ 1.270¢9 1.1742 1.0602 L7371 2811 .0948
.50 1.4968 1.4199 1.2792 1.1770 1.0537 .7089 .2542 .0864
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Table E.2 The functions X(

o and o for =0

/1+BZ/0,TO,B) and Y(;/]+BZ/G,TO,B) for various values at

X( /1+B /031096)

Y( /T+6%/0,74,8)

2.0

Tg o= 0=5.0 0=10.0 g=1.0 o=2.0 c=5.0 c=10.0
.55 1.5283 1.4407 7.2865 1.1795 1.0466 .6822 .2319 .0801
.60 1.5583 1.4600 1.2929 1.1817 1.0388 .6570 .2134 .0753
.65 1.5869 1.4778 1.2986 1.1838 1.0306 .6331 .1979 .0714
.70 1.6143 1.4944 1.3037 |.1856 1.0220 .6106 .1848 .0681
.75 1.6406 1.5099 1.3083 1.1873 1.0131 .5894 .1738 .0654
.80 1.6658 1.5244 1.3126 |.1889 1.0040 .5694 .1643 .0630
.85 1.6900 1.5379 1.3164 1.1904 9947 .5505 L1561 .0608
.90 1.7133 1.5507 1.3200 1.1919 9852 .5327 . 1490 .0589
.95 1.7357 1.5627 1.3234 1.1932 9757 .5159 . 1428 .0572

1.00 1.7573 1.5740 1.3265 1.1944 9660 .5000 .1373 .0555

1.20 1.8366 1.6135 1.3372 1.1989 L9271 .4448 .1204 .0501

1.40 1.9060 1.6457 1.3460 1.2025 . 8885 .4006 .1086 .0459

1.60 1.9672 1.6727 1.3633 1.2056 .8510 .3647 .0997 .0424

1.80 2.0218 1.6956 1.3596 1.2083 .8150 . 3351 .0925 .0395

2.00 2.0706 1.7153 1.3651 1.2107 .7807 .3105 .0864 .0370

2.20 2.1146 1.7326 1.3699 1.2127 7482 .2897 .0812 .0348

2.40 2.1543 1.7478 1.3742 1.2146 L7175 .2719 .0767 .0329

2.60 2.1905 1.7614 1.3780 1.2162 .6885 .2564 .0727 .0312

2.80 2.2234 1.7735 1.3815 1.2177 .6613 .2429 .0691 .0297

3.00 2.2535 1.7846 1.3846 1.2191 .6357 .2308 .0659 .0283
w 2.9078 2.0127 1.4503 1.2473 0000 .0000 .0000 .0000
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Table E.3 The functions X{/ 1+8%/a, T, ,6) and Y( /1

of o and o

for R=.

1

T+8% /0 To,b) for various values

X( /HBZ/U,TO,B)

(/]+B /0 TOsB)

o=1.0

c=2.0

0=5.0

c=10.0 o=1.0 g=2.0 0=5.0 0=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.01 1.0248 1.0246 1.0243 1.0237 1.0148 1.0048 L9755 .9285
.02 1.0453 1.0449 1.0436 1.0417 1.0254 1.0055 .9482 .8598
.03 1.0631 1.0622 1.0598 1.0560 1.0333 1.0036 .9196 .7952
.04 1.0791 1.0777 1.0738 1.0679 1.0395 1.0001 .8909 .7352
.05 1.0939 1.0919 1.0863 1.0779 1.0446 .9956 .8624 .6797
.06 1.1079 1.1052 1.0976 1.0866 1.0488 .9904 .8345 .6288
.07 1.1212 1.1177 1.1080 1.0943 1.0524 .9847 .8075 .5821
.08 1.1340 1.1296 1.1177 1.1011 1.0556 .9788 L7813 .5394
.09 1.1464 1.1411 1.1267 1.1072 1.0584 .9726 .7560 .5004
.10 1.1584 1.1521 1.1351 1.1127 1.0608 .9662 L7316 L4647
12 1.1815 1.1729 1.1505 1.1221 1.0650 .9530 .6856 L4024
.14 1.2035 1.1924 1.1642 1.1298 1.0682 .9395 .6430 .3505
.16 1.2245 1.2107 1.1764 1.1363 1.0706 .9258 .6037 L3071
.18 1.2446 1.2280 1.1874 1.1417 1.0724 L9120 .5674 .2708
.20 1.2640 1.2443 1.1973 1.1463 1.0736 .8981 .5339 .2404
.25 1.3096 1.2817 1.2184 1.1553 1.0745 .8636 L4611 . 1841
.30 1.3517 1.3149 1.2353 1.1617 1.0730 .8298 .4016 .1473
.35 1.,3909 1.3447 1.2491 1.1666 1.0696 L7972 . 3530 .1228
.40 1.4278 1.3717 1.2606 1.1706 1.0649 .7660 .3132 .1062
.45 1.4626 1.3963 1.2703 1.1739 1.0591 L7362 .2805 .0945
.50 1.4955 1.4188 1.2786 1.1767 1.0525 .7079 .2536 .0861

ve



Table E.4 The functions X( /1+g%/0,1_,8)

values of o and T, for B=,

and Y( /1+82/0,TO,6) for various

X( /1+8%/0,14,8)

Y( /]+BZ/53T0 »3)

Tg 0=1.0 0=2.90 0=5.0 0=10.0 o=1.0 o=2.0 0=5.0 0=10.0
.55 1.5268 1.4395 1.2859 1.1791 1.0451 .6811 .2313 .0798
.60 1.5566 1.4586 1.2922 1.1814 1.0372 .6557 .2128 .0749
.65 1.5850 1.4764 1.2978 1.1834 1.0288 .6318 L1972 .0710
.70 1.6122 1.4928 1.3029% 1.1852 1.0200 .6091 . 1841 .0678
.75 1.6383 1.5082 1.3075 1.1869 1.0109 .5878 L1730 .0650
.80 1.6632 1.5225 1.3117 1.1885 1.0016 .5676 .1634 .0626
.85 1.6872 1.5360 1.3155 1.1900 .9920 .5486 .1552 .0604
.90 1.7103 1.5486 1.3190 1.1914 .9823 .5307 . 1481 .0585
.95 1.7325 1.5604 1.3223 1.1927 L9725 .5138 .1418 .0567
1.00 1.7539 1.5716 1.3254 1.1939 .9627 .4978 L1363 .0551
1.20 1.8320 1.6105 1.3360 1.1983 .9228 .4421 .1193 .0497
1.40 1.9003 1.6422 1.3445 1.2018 .8832 .3974 .1075 .0454
1.60 1.9604 1.6685 1.3517 1.2049 . 8447 .3611 .0984 .0418
1.80 2.0136 1.6908 1.3578 1.2075 .8076 L3311 091 .0389
2.00 2.0612 1.7100 1.3631 1.2097 L7722 .3061 .0849 .0363
2.20 2.1037 1.7266 1.3677 1.2117 .7385 .2849 .0796 .0341
2.40 2.1421 1.7413 1.3718 1.2135 L7067 .2668 .0750 .0321
2.60 2.1768 1.7542 1.3755 1.2151 .6766 .2508 .0709 .0304
2.80 2.2082 1.7658 1.3787 1.2165 .6483 .2369 .0672 .0288
3.00 2.2368 1.7762 1.3817 1.2177 .6215 .2245 .0639 .0274
o 2.6476 1.9190 1.4227 1.2353 .0000 L0000 .0000 L0000
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Table E.5 The functions X(/T+8%/o,t

of ¢ and T for p=.5

O,B) and Y{ /]+52/6,T0,B) for various values

X( /1484 /0,14,8)

Y(/ T+8%/0,1,,8)

Tg o=1.0 c=2.0 g=5.0 o=10.0 o=1.0 g=2.0 0=5.0 0=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.01 1.0247 1.0246 1.0242 1.0237 1.0147 1.0048 .9754 .9284
.02 1.0448 1.0444 1.0432 1.0413 1.0249 - 1.0051 .9477 .8594
.03 1.0621 1.0613 1.0589 1.0552 1.0324 1.0027 .9187 .7944
.04 1.0777 1.0764 1.0725 1.0667 1.0381 .9988 . 8896 .7340
.05 1.0921 1.0902 1.0847 1.0765 1.0428 .9938 .8608 .6782
.06 1.1057 1.1031 1.0957 1.0850 1.0466 .9883 .8326 .6271
.07 1.1187 1.1153 1.1058 1.0925 1.0499 .9823 .8053 .5802
.08 1.1311 1.1269 1.1152 1.0991 1.0527 .9760 .7788 .5373
.09 1.1431 1.1379 1.1239 1.1050 1.0551 .9694 .7533 .4981
.10 1.1548 1.1486 1.1321 1.1103 1.0572 .9627 .7286 .4623
12 1.1770 1.1687 1.1469 1.1193 1.0605 .9488 .6821 .3997
14 1.1981 1.1874 1.1600 1.1267 1.0629 .9345 .6390 .3475
.16 1.2182 1.2049 1.1717 1.1329 1.0644 .9200 .5991 .3038
.18 1.2373 1.2213 1.1821 1.1380 1.0652 .9053 .5622 .2672
.20 1.2557 1.2367 1.1915 1.1423 1.0653 .8906 .5281 .2365
.25 1.2985 1.2718 1.2112 1.1506 1.0634 .8538 L4540 .1796

.30 1.3376 1.3026 1.2268 1.1565 1.0590 .8177 .3933 .1423

.35 1.3737 1.3300 1.2394 1.1609 1.0525 .7827 .3435 L1174

.40 1.4072 1.3545 1.2497 1.1644 1.0445 . 7490 .3027 .1003

.45 1.4385 1.3765 1.2583 1.1672 1.0353 .7167 .2690 .0883

.50 1.4677 1.3964 1.2655 1.1696 1.0250 .6860 .2412 .0796
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Table E.6 The functions X( /]+BZ/G,TO,B) and Y( /1+62/0,T0,B) for various values of

g and T for 8=.5

X( ! 1+B‘/U’To 58)

Y( /1467 /0,14 ,R)

To o=1.0 c=2.0 0=5.0 g=10.0 0=1.0 g=2.0 0=5.0 c=10.0
.55 1.4952 1.4145 i.2717 1.1717 1.0140 .6567 .2180 .0730
.60 1.5210 1.4310 1.2771 1.1735 1.0022 .6289 .1987 .0679
.65 1.5454 1.4460 1.2817 1.1751 .9899 .6025 .1824 .0637
.70 1.5684 1.4598 1.2858 1.1765 L9771 5775 .1685 .0602
.75 1.5901 1.4725 1.2894 1.1779 .9639 .h538 L1567 .0572
.80 1.6107 1.4841 1.2927 1.1791 .9504 .5313 .1466 .0546
.85 1.6301 1.4949 1.29566 1.1802 .9367 .5099 L1377 L0522
.90 1.6486 1.5048 1.2983 1.1812 .9227 .4897 . 1300 L0500
.95 1.6661 1.5140 1.3007 1.1821 .9086 .4705 .1232 . 0481
1.00 1.6827 1.5225 1.3029 1.1830 .8943 .4523 17 .0462
1.20 1.7412 1.5508 1.3102 1.1859 .8368 .3884 .0882 .0401
1.40 1.7880 1.6722 1.3156 1.1881 L1795 .3361 .0847 .0351
1.60 1.8282 1.5886 1.3197 1.1898 L7236 .2930 .0742 .0310
1.80 1.8605 1.6013 1.3229 1.1912 .6697 2571 .0656 G276
2.00 1.8871 1.6113 1.3255 1.1923 .6183 .2268 .0583 .0246
2.20 1.9090 1.6192 1.3275 1.1931 .5696 .2010 L0521 .0220
2.40 1.9271 1.6255 1.3292 1.1938 .5238 .1788 .0467 .0197
2.60 1.9420 1.6305 1.3305 1.1944 .4808 .1596 .0419 0177
2.80 1.9544 1.6346 1.3316 1.1948 .4408 .1428 .0377 .0159
3.00 1.9645 1.6378 1.3324 1.1952 L4035 . 1280 .0339 .0143
o 2.0119 1.6520 1.3362 1.1968 .0000 .0000 . 0000 .0000
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Table E.7 The functions X{ v1¥8%/0,14+8) and Y(

T for B=1

/]+82/0,T0,6) for various values of ¢ and

X( V1+6%/0,74.8)

Y ( /1+Bz/o,ro,8)

To 0=1.0 0=2.0 0=5.0 0=10.0 o=1.0 o=2.0 0=5,0 0=10.0
.00 i .0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
01 1.0244 1.0243 1.0240 1.0234 |.0145 1.0045 .9751 .9281
.02 1.0436 1.0432 1.0420 1.0402 1.0237 1.0038 .9465 .8582
.03 1.0598 |1.0591 1.0568 1.0533 11,0301 1.0004 L9165 L7923
.04 1.0745 1.0732 1.0696 1.0641 1.0348 .9955 .8865 .7312
.05 1.0880 1.0862 1.0809 1.0733 1.0386 .9898 .8570 .6748
.06 1.1007 1.0982 1.0913 1.0812 1.0416 .9834 .8281 L0232
.07 1.1129 1.1109 1.1007 1.0882 1.0441 .9767 .8002 .5759
.08 1.1245 1.1204 1.1095 1.0943 1.0460 .9696 7731 .5326
.09 1.1356 1.1307 1.1176 1.0998 1.0476 .9622 .7470 .4930
.10 1.1463 1.1405 1.1251 1.1046 1.0488 .9547 L7217 L4568
12 1.1666 |.1588 1.1386 1.1129 1.0502 L9391 .6739 L3934
.14 1.1856 1.1757 1.1504 1.1195 1.0504 .9229 .6294 .3404
.16 1.2035 1.1913 1.1607 1.1249 1.0498 L9065 .5882 .2960
.18 1.2204 1.2057 1.1699 1.1293 1.0483 .8898 L5501 .2587
.20 1.2364 1.2192 }.1780 1.1331 1.0461 .873] .5148 L2275
.25 1.2730 1.2491 1.1947 1.1400 1.0381 .8312 4377 .1692
.30 1.3057 1.2748 1.2075 1.1447 1.0272 L7901 .3744 . 1309
.35 1.335%0 1.2969 1.2175 1.1483% 1.9141 L7500 .3224 L1052
.40 1.3615 i.3162 1.2255 1.1536 .J392 L7114 .2785 VI
.45 1.3606 1.3330 1.2318 1.1326 .4830 .6743 .244Q0 YAV
.50 1.4n7% 1.3477 1.2377 1.1541 3657 €388 L2145 Y
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Table E.8 The functions X( v1+3%/0,14,B) and Y(/ T+B%/

O,TO,B) for varjous values of o and g for

g=1
X( /1+BZ/0,TO,B) Y{ /1+82/G,T0,B)
Tq a=1.0 g=2.0 g=5.0 0=10.0 g=1.0 0=2.0 0=5.0 g=10.0
.55 1.4275 1.3607 1.2412 1.1554 .9475 .6049 .1899 .0588
.60 1.4457 1.3722 1.2447 1.7565 .9285 .b726 .1693 .0533
.65 1.84625 1.3823 1.2476 1.1575 .9090 .5419 .1519 .0488
.70 1.4778 1.3913 1.2500 1.1583 . 8891 .b128 .1370 .04517
.75 1.4918 1.3993 1.2521 1.1590 .8688 .4852 1244 .0418
.80 | .5047 1.4063 1.2539 1.1596 .8484 L4590 1134 .0390
.85 1.5165 1.4126 1.2554 1.1601 8278 .4342 .1040 .3365
.90 1.5273 1.4182 1.2568 1.1606 .8071 .4108 .0957 .0342
.95 1.5373 1.4232 1.2579 1.1610 .7864 .3886 .0884 .0321
1.00 |.5464 1.4277 1.2589 1.1613 .7657 .3676 .0819 .0302
1.20 1.5762 1.4413 1.2619 1.1625 .6847 .2944 .0621 L0239
1.40 1.5974 1.4499 1.2637 1.1632 .6075 .2361 .0485 L0191
1.60 1.6125 1.4556 1.2648 1.1636 .5356 .1896 .0385 L0154
1.80 1.6232 1.4592 1.2656 1.1639 4687 .1525 .0309 L0124
2.00 1.6308 1.4616 1.2660 1.1641 .40499 . 1229 .0249 .0101
2.20 1.6362 1.4631 1.2664 1.1G42 .3563 L0992 L0202 .0082
2.40 1.6400 1.4642 1.2666 1.1643 .3086 L0801 .0164 .0066
2.60 1.6427 1.4648 1.2667 1.1644 .2665 .0649 L0133 L0054
2.80 1.6446 1.4653 1.2668 1.1644 .2294 .0526 .010¢ .0G44
3.00 1.6459 1.4656 1.2669 1.1644 .1970 .0427 .0088 .J036
1.6489 |.4662 1.2670 1.1645 L0003 L0000 .00G3a .0000
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Table E.9 The functions X{( /1+Bz/o,ro,6) and Y( /1+BZ/O,TO,B) for various values of o and T,

for B=2

X(/ TFB%/o 7, ,8)

Y( /1+8%/0,14,8)

To o=1.0 0=2.0 0=5.0 0=10.0 o=1.0 g=2.0 0=5.0 0=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.01 1.0233 1.0232 1.0229 1.0224 1.0134 {.0034 .9740 .9270
.02 1.0403 (.0399 1.0389 1.0373 1.0204 1.0006 .9433 .8552
.03 1.0546 1.0539 1.0519 1.0488 1.0248 .9952 L9115 .7876
.04 1.0674 1.0663 1.0631 1.0582 1.0278 .9887 .8800 .7252
.05 1.0793 1.0776 1.0730 1.0662 1.0299 .9813 .8490 6678
.06 1.0903 1.0881 1.0819 1.0731 1.0311 .9733 .8188 L6151
.07 1.1006 1.0978 1.0900 1.0790 1.0318 .9648 .7895 .5668
.08 1.1103 1.1068 1.0973 1.0841 1.0319 .9560 L7610 .5225
.09 1.1194 1.1152 1.1039 1.0886 1.0314 .9468 .7334 .4820
.10 1.1281 1.1232 1.1100 1.0925 1.0306 .9374 .7067 .4448
.12 1.1442 1.1377 1.1206 1.0989 1.0278 .9180 .6561 .3797
14 1.1589 1.1507 1.1297 1.1039 1.0237 .8980 .6089 .3251
.16 1.1723 1.1623 1.1374 1.1079 1.0186 .8777 5651 .2793
18 1.1847 1.1729 1.1440 1.111 1.0126 .8572 .5245 .2409
.20 1.1961 1.1825 1.1497 1.1136 1.0059 .8366 .4870 .2086
.25 1.2211 1.2029 1.1609 1.1181 .9865 .7855 .4049 .1484
.30 1.2421 1.2192 1.1689 1.1208 .9641 .7355 .3374 .1088
.35 1.2598 1.2324 1.1746 1.1226 .9398 .6871 .2819 .0823
.40 1.2748 1.2432 1.1788 1.1238 L9139 .6407 .2363 .0641
.45 1.2875 1.2519 1.1819 1.1246 .8870 .5965 .1988 .0513
.50 1.2984 1.259 1.1842 1.1251 .8594 .5546 .1678 .0421
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Table E.10 The functions X{ /T+%/0,14,8) and Y(P/I+BZ/G,TO,B) for various values of o and T

for R=2
X( v/ 1+#8%/0,14,8) Y(/T+8%/0,1,8)

To o=1.0 g=2.0 g=5.0 0=10.0 o=1.0 o=2.0 0=5.0 0=10.0
.bh 1.3077 1.2650 1.1859 1.1256 .8315 5150 .1422 .0352
.60 1.3156 1.2698 1.1872 1.1259 .8033 4777 .1209 .0299
.65 1.3224 1.2738 1.1881 1.1261 L7753 .4427 .1032 .0257
.70 1.3283 1.2770 1.1889 1.1263 .7474 .4089 .0884 .0224
A 1.3333 1.2797 1.1894 1.1265 .7188 .3792 .0760 .0196
.80 1.3376 1.2820 1.1899 1.1266 .6926 .3505 .0656 0172
.85 1.3413 |.2838 1.1902 1.1267 .6660 .3238 .0568 L0152
.90 1.3445 1.2853 1.1905 1.1267 .6399 .2989 .0494 .0135
.95 1.3472 1.2866 1.1907 1.1268 6144 2758 .0430 L0120
1.00 1.3496 1.2876 1.1908 1.1268 .5896 .2544 .0376 .0107
1.20 1.3561 1.2903 1.1912 1.1269 L4973 .1830 .0225 .0069
1.40 1.3597 1.2915 1.1913 1.1270 L4167 .1309 .0139 .0044
1.60 1.3617 1.2921 {.1914 1.1270 .3474 .0931 .0088 .0029
1.80 1.3628 1.2923 1.1914 1.1270 .2886 .0659 .0057 .0019
2.00 1.3634 1.2925 i.1614 1.1270 .2390 .0465 .0037 L0012
2.20 1.3637 1.2925 1.1914 1.1270 L1975 .0327 .0024 .0008
2.40 1.3639 |.2925 1.1914 1.1270 .1629 .0229 .0016 .0005
2.60 1.3640 1.2926 1.1914 1.1270 L1341 .0160 L0010 .0003
2.80 1.3640 1.2926 1.1914 1.1270 L1103 0112 .0007 .0002
3.00 1.3640 1.292¢ 1.1914 1.1270 .0907 .0078 .0004 .0001
" 1.3641 1.2926 1.1914 1.1270 .0000 .0000 .0000 .0000
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Table E.11 The functions X({ /1+52/0,T0,8) and Y{ /1+B‘/G,TO,B) for various values of
o and 1, for g=5

X( VTFEZ/0 7, ,8)

M /1+BZ/G,TO,B)

To 0=1.0 6=2.,0 0=5.0 0=10.0 0=1.0 0=2.0 0=5.0 0=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.01 1.0200 1.0199 1.0197 1.0192 1.0100 1.0001 .9708 .9238
.02 1.0332 1.0329 1.0321 1.0308 1.0133 .9935 19365 8486
.03 1.0441 1.0436 1.0420 1.0396 1.0143 .9849 .9017 L7784
.04 1.0535 1.0526 1.0502 1.0464 1.0139 .9750 .8671 .7135
.05 1.0617 1.0604 1.0570 1.0520 1.0123 .9641 .8331 .6537
.06 1.0689 1.0673 1.0629 1.0565 1.0098 .9526 .7999 .5587
.07 1.0754 1.0735 1.0680 .0602 1.0067 .9406 .7676 .5482
.08 1.0813 1.0789 1.0724 1.0633 1.0029 .9282 .7363 .5019
.09 1.0867 1.0839 1.0762 1.0658 .9987 .9155 .7059 .4596
.10 1.0915 1.0883 1.0796 1.0680 .9941 .9026 6767 .4208
12 1.1001 1.0960 1.0852 1.0713 .9838 .8765 6211 .3529
14 1.1073 1.1024 1.0896 1.0737 .9723 .8501 .5697 .2960
.16 1.1134 1.1077 1.0931 1.0754 .9601 .8236 .5220 .2485
.18 1.1187 1.1121 1.0958 1.0767 .9471 .7973 .4781 .2088
.20 1.1232 1.1159 1.0980 1.0776 .9337 7713 4376 1756
.25 1.1320 1.1230 1.1018 1.0790 .8987 .7080 .3500 .1145
.30 1.1381 1.1277 1.1040 1.0797 .8625 .6481 .2793 .0752
.35 1.1424 1.1309 1.1053 1.0800 .8261 .5919 .2225 .0499
.40 1.1455 1.1330 1.1060 1.0801 .7900 .5396 .1769 .0334
.45 1.1477 1.1345 1.1065 1.0802 .7547 .4913 .1406 .0226
.50 1.1492 1.1355 1.1068 1.0803 .7203 .4468 1115 .0155
o 1.1534 1.1377 1.1072 1.0803 .0000 .0000 .0000 .0000
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Table E.12 The functions X{ vV1+8%/0,15,8) and Y( /1+82/c,10,8) for various values of o and 1,
- for B=10

X( /T+87/3,14,8)

Y(/T48%/0,74,8)

Tg 0=1.0 =2 .0 0=5.0 0=10.0 s=1.0 0=2.0 0=5.0 0=10.0
.00 1.0000 1.0000 1.0000 1.0000 1.3000 1.6000 1.0000 1.0000
.01 1.0168 1.0168 1.0165 1.0162 1.0068 .9969 L9676 .9208
.02 1.0270 1.0268 1.0262 }.0251 1.0071 .9874 .9305 .8430
03 1.0348 1.0344 1.0332 1.0314 1.0050 L9757 .8929 L7703
.04 1.0410 .0404 1.0386 1.0359 1.0014 .9627 .8556 L7030
.05 1.0461 1.0452 1.0429 1.0394 .9967 .9489 .8190 .6412
.06 1.0503 1.0493 1.0463 1.0420 L9913 .9346 .7834 .h844
.07 1.0540 1.0627 1.0491 1.0440 L9852 9199 .7490 5324
.08 1.0570 1.0555 1.0514 1.0456 .9787 .9049 L7156 L4848
.09 1.0597 1.0579 1.0533 1.0469 .9718 .8898 .6835 4414
.10 1.0619 { .0600 1.0549 1.0479 .9646 .8747 .6526 L4017
A2 1.0656 1.0633 1.0572 1.0493 .9495 .8443 5943 .3325
14 1.0683 1.0657 1.0589 1.0502 .9338 .8143 .5407 2750
.16 1.0704 1.0675 1.0601 |.0507 9177 . 7847 .4915 .2273
.18 1.0720 1.0689 1.0609 1.0511 L9014 .7558 L4465 1877
.20 1.0733 1.0699 1.0615 |.0513 .8850 L7276 .4054 . 1550
.25 1.0753 1.0715 1.0623 1.0516 .8443 .6607 L3179 .0959
.30 1.0764 1.0724 1.0627 1.0517 .8045 .5992 .2487 .0592
.36 1.0769 1.0728 1.0629 1.0518 . 7660 .5429 .1944 .0365
.40 [.0773 1.0730 1.0630 1.0518 .7291 L4916 L1518 .0224
.45 1.0774 i.0731 1.0630 1.0518 .6938 L4451 .1184 .0138

50 1.0775% 1.0732 1.0630 1.0518 L6601 .4029 .0924 .0085
o 1.0777 1.0733 1.0630 1.0518 .0000 .0000 .0000 .0000
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Table E.13 The functions X( /1+BZ/0,TO,B) and Y(/ i+82/o,ro,8) for various values of ¢ and 1, for
B=40

X( /]+B /G:TQsB)

Y{ /1+B‘/05T0;B)

To o=1.0 0=2.0 0=5.0 0=10.0 0=1.0 o=2.0 0=5.0 0=10.0
.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.005 1.0068 1.0068 1.0067 1.0066 1.0018 .9968 .9820 .4578
010 1.0103 1.0102 1.0101 I .,0099 1.0003 L9904 9612 L9145
.015 1.0126 1.0125 1.0123 1.6120 .G976 .9828 .9398 .8722
.020 1.0142 1.0141 1.0139 1.0134 .9943 .9747 L9183 .8313
.025 1.0155 1.0153 1.0150 1.0144 .9906 .9663 .8968 .7920
.030 1.0164 1.0162 1.0158 1.0151 .9866 L9576 .8756 .7543
.035 1.017 1.0169 1.0164 1.0156 .9824 .5488 .8547 .7182
.040 1.0176 1.0174 1.0169 1.0160 .9781 .9399 .8341 .6837
.045 1.0180 1.0178 1.0172 1.0163 .9736 L9310 .8140 .6507
.050 {.0183 1.0181 1.0175 1.0165 .9691 .9220 .7942 .6143
.055 1.0186 1.0183 1.0177 1.0167 .9645 .9131 .7748 .5894
.060 1.0188 1.0185 1.0178 1.0168 .9599 .9042 .7559 .5608
.065 1.0189 1.0187 1.0180 1.0169 L9553 .8954 7374 .5336
070 1.0190 1.0188 1.0180 1.0169 L9507 .8866 L7193 5077
.075 1.0191 1.0189 1.0181 1.0170 .9460 .8779 L7017 .4831
.080 1.0192 1.0189 1.0182 1.0170 .9414 .8693 .6844 L4596
.085 1.0193 1.0190 1.0182 1.6171 .9367 .8607 .b676 L4372
.090 1.0193 £.07190 1.0182 1.0171 .9321 .8522 6511 .4160
.095 1.0194 1.0191 1.0183 1.0171 L9275 .8437 .635] .3957
. 160 1.G194 1.0191 1.0183 1.9171 .9229 .8354 .6195 .3764
% 1.0195 1.0192 1.0184 1.0172 .0000 .0000 ~0000 10000
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Table E.14 The functions X( \/1+82/o,10,8) and Y( /TTBT/G,IO,B) for various values of o and 1, for 8=100

X(V 1+8%/0,14,8) Y(VT+6%/0,1,,8)

To o=1.0 0=2.0 5=5.0 ¢=10.0 o=1.0 5=2.0 5=5.0 0=10.0
.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.001 1.0017 1.0017 1.0017 1.0017 1.0007 .9997 L9967 .9917
.002 1.0027 1.0027 1.0027 1.0027 [.0007 .9987 .9927 .9828
.003 1.0035 1.0034 1.0034 |.0034 1.0005 .9975 .9885 .9738
.004 1.0041 1.0041 1.0040 1.0040 1.0001 .9961 .9842 .9648
.005 1.0046 1.0046 1.0045 1.0045 .9996 .9946 .9798 .9557
.006 1.0050 1.0050 1.0050 1.0049 .9990 .9930 .9754 .9466
.007 | .0054 1.0053 1.0053 1.0052 .9984 .9914 .9708 .9375
.008 1.0057 1.0056 1.0056 1.0055 9977 .9897 .9663 .9285
.009 1 .0059 1.0059 1.0058 1.0058 .9969 .9880 .9617 .9195
.010 1.0061 1.0061 1.0061 1.0060 .9962 .9863 .9572 .9106
.012 1.0065 1.0065 1.0064 1.0063 .9945 .9827 .9480 .8929
014 1.0068 1.0068 1.0067 1.0065 .9928 .9791 .9389 .8755
.016 1.0070 1.0070 1.0069 1.0067 9971 .9754 .9297 .8584
.018 1.0072 1.0071 1.0070 1.0069 .9893 .9716 .9207 .8416
.020 1.0073 1.0072 1.0071 1.0070 .9874 .9679 .9116 .8250
022 1.0074 1.0073 1.0072 1.0071 .9855 .9641 .9026 .8088
.024 1.0075 1.0074 1.0073 1.0071 .9836 .9604 .8937 .7928
.026 1.0075 1.0075 1.0074 1.0072 .9817 .9566 .8849 7772
.028 1.0076 1.0075 1.0074 1.0072 .9798 .9528 .8762 .7619
.030 1.0076 1.0076 1.0074 1.0072 .9779 .9490 .8675 .7468
o 1.0078 1.0077 1 .0076 1.0074 .0000 .0000 .0000 -0000
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Table E.15 Emissive power at 1,=0 and t1,=15 for a diffuse wall radiating in a cosine
fashion into a finite medium

9g(0,74) 98(19s7,)
Tp £=0.0 B=.10 g=.50 g=1.0 8=0.0 g=.10 g=.50 g=1.0
.00 .50000 .50000 .50000 .50000 .50000 .50000 .50000 .50000
.01 .51216 .51216 .51212 .51196 .48783 . 48781 .48728 .48593
.02 .52187 .52186 .52163 .52099 .478712 .47808 47715 .47478
.03 .53007 .53005 .5¢959 .52844 46992 .46986 46857 .46518
04 .53729 .53726 .5365% .534%6 .46270 .46263 .46096 .45651
.05 .54383 .54380 .54292 .54087 .45616 45607 .45399 .44845
.06 .54989 .54984 .54879 .54632 .45010 .44999 44750 .44084
.07 .55557 .55551 .55428 55141 .44442 .44429 .44138 .43360
.08 .56095 .56088 .55947 .55618 .43904 .43890 43555 42667
.09 .56607 .56600 .56440 .56068 .43392 .43376 .42998 42001
10 .57097 .57089 .56911 .56494 .42902 .42884 42464 .41360
12 .58019 .58009 57793 .57283 .41980 .41958 .41454 40142
.14 .58876 .58864 .58607 .57999 41123 .41097 40512 .38999
.16 .59677 .59663 .59362 .58654 .40322 .40293 .39627 .37920
18 .60430 60414 .60068 59255 .39570 .39537 .38793 36896
.20 61139 61121 .60729 .59811 38860 .38823 .38003 .35925
.25 .62757 62734 .62220 .61034 .37242 .37197 .36180 .33676
.30 64193 64164 63524 .62066 .35806 .35753 38565 .31644
.35 65485 65450 .64680 62949 .34514 34452 -33090 .29789
.40 66661 .66619 65716 63711 .33338 .33269 31737 .28084
.45 67738 .67690 66651 .64374 32261 .32183 .30487 .26507
.50 68733 68678 67500 164953 .31266 .31181 .29326 .25043
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Table E.16 Emissive power at 7,=0 and 1,=1
fashion inte a finite medium

o for a diffuse wall radiating in a cosine

(bB(O’TO) ¢B(T0!To)

To g=0.0 g=.10 8=.50 £=1.0 B=0.0 =,10 g=.50 £=1.0
.55 .69656 .69594 .68276 .65462 .30343 .30251 .28242 .23680
.60 .70516 .70447 .68986 65911 .29483 .29383 .27225 .22406
.65 .71321 71245 .69640 .66308 .28678 .28571 .26268 21213
.70 .72077 .71993 .70244 .66659 .27922 .27808 .25365 .20094
.75 .72788 .72697 . 70802 .66871 27211 .27090 .24511 .19042
.80 . 73460 . 73361 .71320 .67249 .26539 .26411 .23701 .18052
.85 . 74095 . 73989 . 71800 .67497 .25904 .25769 .22931 .17120
.90 . 74697 .74584 . 72248 .67719 .25302 .25160 .22198 .16240
.95 .75270 .75149 .72665 .67916 24729 .24581 .21499 .15410
1.00 .75814 .75685 . 73055 .68093 .24185 .24030 .20831 .14626

1.20 77756 .77595 . 74380 .68636 .22243 .22063 . 18431 .11890
1.40 .79392 .79188 . 75409 .68990 .20607 .20402 .16387 .09736
1.60 .80794 .80567 .76218 .69221 . 19205 .18977 .14623 .07903
1.80 .82011 .81750 .76859 .69374 .17988 17737 .13085 .06454
2.00 .83079 .82784 .77372 .69476 .16921 .16647 11735 .05274
2.20 .840¢24 .83695 .17783 .69543 15975 .15679 .10543 .04312
2.40 .84868 .84504 78114 .69588 .15131 .14814 .09485 .03526
2.60 .85626 .85226 .78382 .69618 .14373 . 14036 .08542 .02885
2.80 .86310 .85876 . 78599 .69638 .13685 .13330 .07700 .02360
3.00 .86932 .86463 . 78775 .69651 .13067 .12688 .06945 .01931

w© 1.00000 .94620 . 79555 .69675 .00000 .00000 .00000 .00000
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Table E.17 Emigsiye power at 7,=0 and 7=t  for a diffuse wall
radiating in a cosine fashiofl into a finite medium

¢6(0,7,) $a(10:7)
To B=2.0 B=5.0 8=10.0  B=2.0  8=5.0 8=10.0
.00 .50000 .50000 .50000 .5G000 .50000 .50000
.01 51140 .50969 .50801 .48236 .47001 .44838
.02 .51933 .51566 .51233 .46819 .44439 .40406
.03 .52579 .52031 .51530 .45551 .42081 .36458
.04 .53142 .52409 .51745 44371 .39884 .32920
.05 .53645 52723 .51905 43256 .37826 .29737
.06 .54101 .52988 .52026 42183 .35890 .26870
.07 .54518 .53214 .52119 41176 .34065 .24284
.08 .54900 .53409 52192 .40200 .32342 .21951
.09 .55253 .53577 .52248 .39260 .30712 .19844
.10 .55580 .53724 .52292 .38353 .29170 17942
12 56167 .53963 .52354 .36630 .26324 .14670
.14 .56678 54148 .52394 .35013 .23766 11997
.16 57128 .54292 .52418 .33488 .21464 .098613
.18 .57527 .54405 .52434 .32046 .19389 .08028
.20 .57882 .54493 .52444 .30679 .17518 .06568
.25 .58614 .54642 .52457 .27551 .13603 .03978
.30 59176 54726 .52461 .24781 . 10569 .02410
.35 59613 54774 .52462 .22314 .08216 .01460
.40 .59956 .54802 .52463 .20109 .06388 .00885
.45 .60227 .54818 .52463 .18134 .04968 .00536
.50 .60442 54827 .52463 .16361 .03865 .00325
e .61315 .54840 .52465 .00060 .00000 .00000
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Table E.18 Emissive power at 1,=0 and 1,=1¢ for a diffuse
wall radiating in a cosine fashion into a finite

medium
(bB(OsTO) ¢B(TO,TO)

TO g=40.0 8=100.0 B=40.0 5=100.0
.000 .50000 .50000 .50000 .50000
.001 .50106 .50081 47977 .45201
.002 50175 .50125 .46064 .40882
.003 .50229 .50155 44235 .36981
.004 50274 50177 .42483 .33455
.005 .50314 .50193 .40802 .30266
.006 .50346 .50205 .39190 .27381
.007 .50375 50214 .37643 248773
.008 50401 .50222 .36158 .22413
.009 .50423 .50227 .34732 .20278
.010 .50443 .50232 .33364 .18346
012 .50476 .50238 .30788 .15018
014 .50502 .50242 28412 .12294
016 .50523 .50244 .26220 .10065
018 .50541 .50245 .24199 .08239
.020 .50555 .50246 .22333 .06745
022 .50566 .50247 .20612 .05522
.024 .50576 .50248 .19024 .04521
.026 .50584 .50248 .17558 .03701
.028 .50590 .50248 .16206 .03030
. .50593 .50248 .14958 .02480
Ozp .50620 .50250 .00000 .00000




Table E.19

cosine magnitude for 8=0

Normal flux at t,=0 and 1,7, for a finite medium illuminated by a collimated flux of

ZA(O,G,TO) 'ZA(TO 05T y)

To o=1.0 c=2.0 0=5.0 0=10.0 o=1.0 g=2.0 0=5.0 0=10.0
.00 1.00000 .50000 .20000 .10G600 |.00000 .50000 .20000 . 10000
.01 99502 .49504 .19512 .09523 .99502 .49504 .19512 .09523
.02 .99009 49019 .19047 .09092 .99009 .49019 .19047 .09092
.03 .98521 .48543 .18605 .08700 .98521 .48543 .18605 .08700
.04 .98038 .48076 .18182 .08343 .98038 .48076 .18182 .08343
.05 .97559 47617 17780 .08018 .97559 A7617 17780 .08018
.06 .97085 47167 . 17395 07722 .97085 .47167 .17395 .07722
07 .96615 .46725 .17028 .07451 .96615 46725 .17028 07457
.08 96149 46292 .16677 .07203 .96149 46292 .16677 .07203
.09 .95688 .45866 16341 .06977 .95688 .45866 .16341 .06977
10 .95231 .45447 .16020 .06768 95231 .45447 .16020 .06768
12 .94328 .44633 .15419 .06401 .94328 .44633 .15419 .06401
4 .93442 .43846 .14867 .06089 .93442 .43846 .14867 .06089
.16 92571 .43086 .14359 .05821 .92571 .43086 .14359 .05821
.18 91714 .42352 .13892 .05591 .91714 .42352 .13892 .05591
.20 .90872 .41642 .13460 .05390 .90872 41642 .13460 .05390
.25 .88828 .39966 .12515 .04990 .88828 .39966 .12515 .04590
.30 .86867 .38419 11728 .04689 .86867 .38419 .11728 .04689
.35 .84983 .36988 .11065 .04452 .84983 .36988 .11065 .04452
.40 .83171 .35661 .10501 .04258 .83171 .35661 .10501 .04258
.45 .81428 .34428 .10014 .04094 .81428 .344¢8 .10014 .04094
.50 .79748 .33280 .09589 .03950 .79749 .33280 .09589 .03950
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Table E.20 Normal flux at TZ=0 and 1,=1, for a finite medium illuminated by a collimated flux of
cosine magnitude”for B=0

Zn0,0,70) Zp(t5,0,7,)
To o=1.0 0=2.0 0=5.0 0=10.0 g=1.0 o=2.0 0=5.0 0=10.0
.55 .78131 .32209 .09215 .03822 .78128 .32209 .09215 .03822
.60 .76572 .31208 .08882 .03706 .76568 .31208 .08882 .03706
.65 . 75068 .30270 .08584 .03599 . 75064 .30270 .08584 .03599
.70 73615 .29390 .08313 .03501 .73612 .29390 .08313 .03501
.75 72213 .28563 .08066 .03409 .72210 .28564 .08066 .03409
.80 .70858 .27785 .07839 .03322 . 70855 27785 .07839 .03322
.85 .69547 27051 .07629 03241 .69545 27051 .07629 .03241
.90 .68280 .26358 .07434 .03164 .68278 .26358 .07434 .03164
.95 .67054 .25702 U7251 .03092 57051 .25702 .07251 .03092
1.00 .65867 .25081 .07080 .03023 .65864 .25081 .07080 .03023
1.20 .61476 .22893 .06485 .02778 .61474 .22893 .06485 .G2778
1.40 .57589 .21085 .05995 .02572 .57587 .21086 .05995 02572
1.60 .54128 . 19565 .05581 .02397 .54126 .19565 .05581 .02397
1.80 .51032 . 18265 .05224 02244 .51030 .18265 .05224 .02244
2.00 .48248 17140 04912 02111 .48247 . 17140 .04912 02111
2.20 .45734 16153 .04636 .01993 .45733 16153 04636 .01993
2.40 .43456 .15281 .04391 .01887 .43455 .15281 .04391 .01887
2.60 .41383 . 14502 .04170 .01793 .41382 . 14502 .04170 .01793
2.80 .39489 . 13802 .03971 .01707 .39489 .13802 .03971 .01707
3.00 .37755 .13168 .03790 .01630 .37755 .13168 .03781 .01630
-~ .000090 .U0000 .08G00 .000300 .00000 .00000 .00000 .00000
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Table E.21

Normal flux at 7_=0 and t,=1, for a finite medium illuminated by a collimated flux
1

of cosine magnitude for B=.

zA(O sC 5—50) zA(TO sC ’TO)

Tg o=1.0 0=2.0 0=5.0 c=10.0 0=1.0 0=2.0 0=5.0 0=10.0
.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 . 10000
01 .99502 .49504 .19512 .09524 .99502 .49504 .19572 .09524
.02 .99009 .49019 .19047 .09092 .99009 .49019 .19047 .09092
.03 .98522 .48543 .18605 .08700 .98521 .48543 .18604 .08700
.04 .98038 .48076 .18183 .08343 .98038 48075 .18182 .08343
.05 .97560 47617 .17780 .08018 .97559 47617 17779 .08018
.06 .97085 .47168 17396 .07722 .97084 .47167 .17395 07721
.07 .96616 46726 .17029 .07452 .96614 .46725 17027 .07451
.08 .96 150 .46292 .16678 .07204 .96149 .46291 16676 .07203
.09 .95689 .45867 .16342 .06977 .95687 .45865 16341 .06976
.10 .95232 .4544Y .16022 .06769 .95229 .45446 .16019 .06768
.12 .94330 .44634 .15421 .06402 .94326 .44631 . 15417 .06400
14 .93444 .43849 . 14869 .06090 .93439 .43844 .14865 .06087
.16 .92574 .43089 .14362 .05823 .92567 .43083 . 14357 .05819
.18 91719 .42356 . 13895 .05593 91710 .42348 .13888 .05588
.20 .90878 .41647 .13463 .05393 .90867 .41637 . 13456 .05387
.25 . 88837 .39973 . 12520 .04993 .88820 .39958 . 12509 .04986
.30 .86879 .38429 11735 .04693 .86854 .38408 11720 .04684
.35 .80999 .37002 11074 .04457 84966 .36974 .11055 .04446
.40 .83192 .35679 10511 .04264 .83149 .35643 . 10488 .04251
.45 .81455 . 34450 .10026 .04100 .81400 .34405 09999 .04086
.50 .79782 .33307 .09604 .03957 79715 .33253 .09573 .03941
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Table E.22

Normal flux at 1,=0 and t,=71,
flux of cosine magnitude %or B

for a finite medium illuminated by a collimated

=1

ZA(O sC ’TO) ?A(Tg »C ’TO)
To 0=1.0 0=2.0 ag=5.0 0=10.0 c=1.0 0=2.0 g=5.0 c=10.0
.55 78171 .32240 09232 .03830 .78090 .32176 .09196 .03812
.60 .76619 .31244 .08301 .03715 .76523 .31170 .08861 .03695
.65 .75123 .30311 .08604 .03609 .75011 .30227 .08560 .03587
.70 .73679Y .29437 .08336 03511 .73550 .29341 .08287 .03488
.75 .72286 .28616 .08091 .03420 .72139 .28508 .08038 .03395
.80 .70940 ,27843 .07866 .03335 .70744 .27724 .07809 .03308
.85 .69639 27115 .07658 .03255 .69453 .26983 .07597 .03226
.90 .58383 .26428 07465 .03179 .68176 .26284 .07400 .03148
.95 67167 .25779 07285 .03107 .66938 .25622 07215 .03075
1.00 .65991 .25164 07116 .03039 .65740 .24994 07042 .03005
1.20 .61650 23004 .06529 .02798 .61300 .22780 .06438 .02757
1.40 .57818 21225 .06049 .02597 .57360 .20947 .05941 .02548
1.60 .54418 .19734 .05644 .02425 .53842 .19400 .05520 .02369
1.80 51387 .18465 .05297 02277 .50685 .18074 .05156 .02214
2.00 .48673 L7371 .04994 02147 .47839 .16923 .04837 .02078
2.20 .46232 .16417 .04728 .02034 .4526¢ L1591 .04555 .01957
2.40 .44029 .15577 .04493 .01933 .42919 .15015 .04303 .01849
2.60 .42035 .14831 .04282 .01842 .40780 .14213 .04076 01751
2.80 .40223 . 14164 .04093 .01761 .38820 .13490 .03871 .01663
3.00 .38571 .13564 .03923 .01688 .37020 . 12833 .03684 .01583
. .14811 .05306 .01553 .00670 .00000 .00000 .00000 .00000
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Table E.23

Normal flux at 1,=0 and 1,1,
flux of cosine magnitude %or

for a finite medium i1Tuminated by a collimated

8=.5
Zal0,0,14) Zalt,.0.1,)
Tg c=1.0 5=2.0 0=5.0 0=10.0 o=1.0 5=2.0 0=5.0 ¢=10.0
.00 1.00000 .50000 .20000 . 10000 1.00000 .50000 .20000 . 10000
01 .99502 49505 .19512 .09524 .99502 .49504 . 19511 .09523
.02 .99011 .49020 . 19048 .09093 .99008 .49018 .19046 .09091
.03 .98524 .48545 .18607 .08702 .98519 .48540 .18602 .08697
.04 .98043 .48080 .18187 .08347 .98033 .48071 .18178 .08339
.05 .97567 .47625 17787 .08024 97552 47610 17773 .08012
.06 .97096 .47178 .1744Q5 .07730 .97074 47156 .17385 07713
.07 .96630 .46740 17041 07462 96600 L46711 17014 .07439
.08 .96169 46311 .16694 07217 .96129 46272 . 16660 .07189
.09 .95713 .45890 .16362 .06993 .95662 .45841 . 16320 .06958
.10 .95262 .45477 .16046 .06788 .95199 .45417 .15994 .06746
.12 94373 .44675 .15454 .06427 .94283 . 44589 .15382 .06371
.14 .93503 .43903 14913 06121 .93379 .43787 .14818 .06050
.16 .92651 .43160 14417 .05861 .92489 .43010 .14296 .05774
.18 .91816 .42444 .13962 .05637 91611 L42256 .13814 .05534
.20 .90998 .41754 .13543 .05444 .90744 .41524 .13367 .05324
.25 .89024 .40137 .12634 .05062 .88628 .39786 .12380 .04899
.30 .87147 .38659 .11886 .04779 .86579 .38166 .11548 .04574
.35 .85361 .37306 .11265 .04561 .84593 .36652 .10837 .04314
.40 .83662 .36065 10742 .04385 .82665 .35233 .10223 .04096
.45 .82045 . 34925 .10298 .04239 .80791 .33901 .09680 .03909
.50 .80504 .33877 .09917 .04113 .78970 .32647 .09212 .03743
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Table £E.24 Normal flux at 1,50 and 1,715 for a finite medium illuminated by a collimated
flux of cosine magnitude %or B=.5

ZA(O:G’T()) EA(TO’O’TO)
T, 5=1.0 5=2.0 6=5.0 ¢=10.0 o=1.0 0=2.0 0=5.0 5=10.0
.5b . 79037 .32911 .09587 .04004 .77198 .31465 .08788 .03594
.60 .77639 .32020 .09298 .03906 .75472 .30347 .08406 .03457
.65 .76308 .31196 .09044 .03818 .73791 .29289 .08060 .03331
.70 .75038 .30435 .08817 .03738 .72152 .28286 .07742 .03213
.75 .73828 .29730 .08615 .03665 .70554 .27334 .07449 .03102
.80 72674 .29076 .08432 .03597 .68994 .26428 07177 .02997
.85 .71574 .28469 .08266 .03535 .67471 .25565 .06923 .02858
.90 .70525 .27905 .08115 .03477 .65985 24742 .06685 .02805
.95 .69525 .27381 07677 .03424 .64532 .23956 .06462 02715
1.00 .68571 .26892 .07850 .03374 63113 .23205 .06250 .02630
1.20 .65176 .25246 .07429 .03205 .57746 .20503 .05506 .02325
1.40 .62364 .23988 07112 .03074 .52833 .18203 .04884 .02066
1.60 .60G36 .23014 .06866 02972 .48326 .16222 .04353 .01843
1.80 .58107 .22254 06673 .02890 .44185 . 14500 .03892 .01649
2.00 .56509 .21654 .06519 .02826 .40380 .12991 .03489 .01479
2.20 .55187 21178 .06396 02774 .36883 .11661 .03133 .01328
2.40 .54092 .20798 .06297 .02732 .33670 .10483 .02818 01195
2.60 .53187 .20494 .06217 .02698 .30720 .09435 .02538 01076
.80 .52439 .20249 06153 .02671 .28012 .08501 .02287 .00870
.00 .51821 .20050 .06100 .02648 .25529 .07665 .02063 .0G6875
© .48933 .19184 .05869 .025590 .00000 .00000 .00000 .0G000

£92



Table E.25 Normal flux at 1,70 and = =T,
flux of cosine magnitude %or B

for a finite medium iliuminated by a collimated

=1

ZA(ansTO) IA(ToscsTo)
To 0=1.0 0=2.0 6=5.0 6=10.0  ¢=1.0 0=2.0 0=5.0 0=10.0
.00 1.00000 .50000 .20000 . 10006 1.00000 .50000 .20000 . 10000
.01 .99503 .49506 19513 .09524 .99501 .49503 19571 .09522
.02 .99014 .49023 .19051 .09096 .99005 .49015 . 19043 .09088
.03 .98531 .48552 .18613 .08708 .98512 .48533 . 18595 .08691
.04 .98055 .48092 .18198 .08357 .98021 - .48059 . 18166 .08328
.05 .97586 47643 .17804 .08039 .97532 47591 7755 .07996
.06 97124 47204 17429 .07751 .97046 47129 .17360 .07691
.07 .96668 46776 .17073 .07489 .96562 46674 . 16981 .07410
.08 .96218 46357 .16735 .07250 .96080 .46225 .16616 .07152
.09 95775 .45948 .16413 .07033 .95600 .45781 .16266 .06913
.10 .95338 .45549 .16107 .06836 .95122 .45343 .15928 .06692
.12 .94483 .44777 .15538 .06490 94171 .44484 .15290 .06298
.14 .93651 .44040 .15023 .06200 .93228 .43645 . 14697 .059856
.16 .92844 43337 .14555 .05956 .92292 .42826 .14144 .05659
.18 .92059 .42665 . 14129 .05748 91362 .42025 .13627 .05397
.20 .91296 .42023 .13741 .05572 .90439 .41243 .13144 .05165
.25 .89483 .40540 .12914 .05230 .88156 .39360 .12060 .04684
.30 .87798 .39217 .12253 .U4986 .85909 .37575 11126 .04305
.35 .86230 . 38035 11719 .04806 .83697 .35877 .10310 .03993
.40 .84774 .36978 .11284 .04667 .81517 .34261 .09591 .03727
.45 .83422 .36032 .10927 .04557 .79369 .32719 .08951 .03494
.50 82166 .35186 .10632 .04466 .77253 .31249 .08377 .03286
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Table E.26 Normal flux at 7,=0 and 7,=15 for a finite medium illuminated by a collimated flux of
cosine magnitude for 8=1

ZA(O’U’TQ) zA(TO’G’TO)
To o=1.0 g=2.0 0=5.0 0=10.0 o=1.0 c=2.0 0=5.0 0=10.0
.55 .81001 .34429 .10386 .04390 .75168 .29843 .07857 .03097
.60 .79920 .33751 .10180 .04326 .73116 .28501 .07385 .02924
.65 .78918 .33143 . 10005 .04270 .71096 27217 .06952 .02763
.70 .77990 .32599 .09856 04222 .69109 .25989 .06553 02615
.75 L77130 32111 .09728 .04179 .67155 .24814 .06185 .02475
.80 .76334 31673 .09618 .04142 .65235 .23690 .05844 .02345
.85 .75597 .31280 .09522 .04108 .63348 .22614 .05526 .02223
.80 .74915 .30928 .09439 .04079 .61496 .21585 .05229 .02108
.95 .74285 .30612 .09366 .04053 .59679 .20600 .04952 .01999
1.00 .73702 .30328 .09302 .04029 .57897 .19657 .04691 .01897
1.20 .71783 .29454 .09113 .03958 .51130 .16280 .03795 .01541
1.40 .70392 .28884 .08994 .03912 .44944 .13458 .03084 .01255
1.60 .69389 .28511 .08918 .03881 .39339 .11106 .02512 .01023
1.80 .68669 .28266 .08868 .03861 .34299 .09152 .02049 .00835
2.00 .68154 .28105 .08835 .03848 .29800 .07532 .01673 .00682
2.20 .67788 .2799¢ .08814 .03839 .25808 06193 .01368 .00558
2.40 .67528 .27929 .08799 .03834 .22286 .05087 .01118 .00456
2.60 .67344 .27882 .08790 .03830 .19194 .04176 .00914 .00373
2.80 .67214 .27852 .08784 .03827 . 16490 .03426 .00748 .00305
3.00 67123 .27831 .08779 .03825 .14137 .02810 .00612 .00249
I .66910 2779 .08771 03822 .00000 .00000 .00060 .00000
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Table E.27 Normal flux at Tz=0 and t_=T

o for a finite medium illuminated by a collimated flux
of cosine magnitude for B=2

Z5(0,0,70) Fpl1450,7,)
o o=1.0 g=2.0 g=5.0 0=10.0 o=1.0 o=2.0 0=5.0 g=10.0
.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 .10000
.01 .99505 48508 .19515 .09526 .99499 .49501 .19509 .09520
.02 .99022 .49031 .19059 .09103 .98997 .49007 .19035 .09080
.03 .98550 .48570 .18631 .08724 .98493 .48515 .18578 .08674
.04 .98088 48124 .18228 .08384 .97988 .48026 .18135 .08300
.05 .97637 .47693 .17849 .08079 .97481 .47540 17707 .07953
.06 .97197 47275 .17493 .07805 .96972 .47057 .17293 .07631
.07 96767 46871 .17158 .07559 .96461 46576 .16891 .07331
.08 .96347 .46481 .16842 .07337 .95949 .46098 .16501 .07052
.09 .95937 .46103 16546 07138 .95435 45622 .16123 .06792
.10 .95537 A5737 .16266 .06958 .94919 45149 .15755 .06548
12 94766 .45041 .15755 .06649 .93883 44209 .15051 .06105
J4 .94031 443N . 15302 .06397 .92841 43279 . 14386 .05713
.16 .93331 .43783 . 14900 .06191 .91793 42358 .13755 .05363
.18 .92666 43214 14543 .06021 .90740 41447 .13157 .05049
20 .92033 .42683 14226 .05880 .89682 .40546 . 12590 04766
.25 .90583 .41503 . 13579 .05622 .87022 .38337 .11288 04162
.30 .89308 .40509 .13094 .05456 .84348 .36194 .10136 03671
.35 .88188 .39672 12730 .05344 .81669 .34121 09111 .03260
.40 .87206 .38968 . 12456 .305267 .78995 .32121 .08196 .02910
L45 .86345 .38377 .12249 .05212 .76336 .30197 07379 .02606
.50 .85593 .37881 .12097 .05172 .73699 .28352 06647 .02340
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Table E.28 Normal flux at 1,=0 and 1_=1, for a finite medium illuminated by a collimated flux

of cosine magnitude for 552

ZA(0,0,14) Fn(1,50T0)
To o=1.0 g=2.0 0=5.0 o=10.0 o=1.0 0=2.0 0=5,0 g=10.0
.55 .84935 .37465 .11970 .05142 .71092 .26587 .05990 .02105
.60 .84361 .37116 11878 .05119 .68523 .24903 .054090 .01896
.65 .83861 .36824 .11807 .05101 .65996 .23300 .04870 .01709
.70 .83425 .36580 11752 ,05087 .63517 21777 .04394 .01541
.75 .83045 .36376 11710 .05077 .61091 .20333 .03965 .01391
.80 .82715 .36206 1677 .05068 .58720 .18967 .03578 .01256
.85 .82428 .36063 11651 .05061 .56407 17677 .03230 .01135
.90 .82179 .35944 11631 .05056 .54156 .16461 .02917 .01025
.95 .81962 .35845 11615 .05051 .51967 .15316 02634 .00926
1.00 .81774 .35762 .11602 .05048 .49843 14241 .02379 .00837
1.20 .31242 .35549 11573 .05039 .41996 .10568 .01585 .00559
1.40 .80943 .35446 11561 .05035 .35181 .07769 .01058 .00373
1.60 .80776 .35397 .11556 .05034 .29338 .05666 .00707 .00250
1.80 .80682 .35374 .11554 .05033 .24378 .04105 ,00472 .00167
2.00 .80631 .35363 .11553 .05033 .20199 .02957 .00316 .00112
2.20 . 80602 .35357 11553 .05032 .11698 02119 .00211 .00074
2.40 .80586 .353565 .115853 .05032 13779 .01513 .001A .00050
2.60 .80577 .35354 .11553 .05032 .11353 .01076 .00094 .00033
2.80 .80573 .35353 11553 .05032 .08343 .00762 .00063 .00022
3.00 .80570 .35353 .11553 .05032 .07682 .00538 .00042 .00015
w0 .80567 .35353 11552 .05032 .00000 .00000 .00000 .00000
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Table E.29 Normal flux at v,=0 and 1,51, for a finite medium illuminated by a collimated flux
of cosine magnitude for B=5

‘:Z;A(O,U,To) zA(TO’GaTO)

To o=1.0 c=2.0 0=5.0 0=10.0 o=1.0 0=2.0 0=5.0 c=10,0
.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 . 10000
01 .99512 .49515 .19522 .09533 .99492 .49494 .19502 .08514
.02 .99050 .49059 .19086 .09128 .98969 .48979 .19008 .09054
.03 .98611 .48631 .18688 .08776 .98431 .48453 .18518 .08618
.04 .98196 .48230 .18326 .08471 .97879 47919 .18033 .08205
.05 .97802 .47853 .17966 .08205 97314 47377 .17553 .07811
.06 .97430 .47500 .17695 .07975 .96736 .46827 .17078 .07438
.07 97077 47169 7421 07774 .96147 .46270 .16608 .07082
.08 .96743 .46858 A7 .07600 .95546 .45707 .16145 .06743
.09 .96428 .46568 .16944 .07448 .94936 .45140 .15687 .06421
.10 .96130 46296 .16737 07317 .94315 .44568 .15237 .06113
.12 .95581 .45802 16377 07102 .93049 43414 .14358 .05542
4 .95092 .45370 .16079 .06940 .91753 42250 .13509 .05023
.16 .94655 .44992 .15832 .06817 .90433 .41083 .12692 .04552
.18 .94266 .44661 .15628 .06724 .89094 .39916 .11909 .04124
.20 .93919 .44372 .15459 .06653 .87739 .38754 .11160 .03736
.25 .93209 43798 .15154 .06542 .84310 .35888 .09441 .02916

.30 .92679 .43390 . 14965 .06485 .80863 33116 .07936 .02273
.35 .92284 .43100 .14847 .06456 .77438 .30465 .06635 01772

.40 .91991 .42894 14775 .06441 .74066 .27956 .05520 .01380

.45 91772 42749 . 14730 .06433 .70770 .25600 .04574 .01074

.50 .91610 .42645 .14702 .06429 .67564 .23401 03776 .00836

oo .911745 .42397 .14658 .06424 .00000 .00000 .00000 .00000
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Table E.30 Normal flux at ,=0 and T,=T
of cosine magnitude for 8210

o for a finite medium illuminated by a collimated flux

2A(0’U3T0) ZA(TOaOsTo)

To o=1.0 o=2.0 g=5.,0 c=10.0 o=1.0 0=2.0 o=5.0 o=10.0
.00 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 .10000
01 .99526 .49528 .19535 .08546 .99478 ,49481 .19488 .09501
.02 .99098 ,49107 .19132 09172 .98920 .48930 .18960 .09008
.03 .98713 48731 .18783 .08863 .98328 .48352 . 18420 .08525
.04 .98367 .48386 .18481 .08608 .97706 .47749 .17870 ,08053
.05 .98055 .48098 .18220 .08399 .97058 47125 17315 .07595
.06 97775 .47833 17994 .08226 .96386 46484 . 16758 .07151
.07 .97523 47597 17799 .08084 .95694 .45829 .16201 .06723
.08 .97297 47387 17630 .07967 .94983 .45162 .15646 .06312
.09 .97094 47200 17485 .07870 .94257 .44485 .15097 .05918
.10 .96912 .47034 .17359 L0779 .93518 .43801 . 14554 .05542
12 .9660? .46756 17157 07672 .92007 42420 . 13493 .04844
.14 .96353 46536 .17007 .07592 .90465 .41033 .12475 L04217
.16 .96152 46363 . 16895 .07537 .889072 .39651 .11506 .03658
.18 .95991 46226 .16812 .07501 .87330 .38281 .10590 .03163
.20 .95862 .46119 16750 .U7476 .85754 .36932 .09728 .02727
.25 .95639 .45939 .16656 .07444 .81841 .33678 .07815 .01862
.30 .95510 .45841 .16612 07431 .78013 .30632 .06231 .01256
.35 .95436 .45787 . 16591 07427 .74307 .27813 .04941 .00838
.40 .95393 .45757 .16581 .07425 .70743 .25224 .03901 .00554
.45 .85368 45741 .16576 .07425 .67329 .22859 .03070 .00364
.50 .95354 45732 16574 07424 .64068 .20705 .02411 .00238
I .95317 .45705 .16559 07424 .00000 .00000 .00000 .00000
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Table E.31

Normal flux at 1,=0 and T,=T
of cosine magnitude for g=40

o for a finite medium illuminated by a collimated flux

Fal0,0,14) ZA(To,o,TO)

To o=1.0 0=2.0 0=5.0 0=10.0 o=1.0 c=2.0 0=5.0 0=10.0
.000 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 .10000
.005 .99822 .49822 .19823 .09825 .99679 .49680 . 19682 .09686
010 99677 49678 .19682 .09690 .99327 .49331 .19340 .09356
.015 .99558 .49561 19570 .09584 .98951 .48959 . 18981 .09016
.020 .99462 .49467 .19480 .09501 .98556 .48569 . 18609 .08672
025 .99383 .49390 .19408 .09437 .98144 .48166 .18229 .08327
.030 .99319 .49328 .19351 .09387 97720 47752 .17843 .07985
.035 .99267 49277 . 19305 .09348 .97286 .47330 .17456 .07648
.040 .99225 .49236 .19269 .09318 .96845 46903 .17068 07317
.045 99191 .49203 .19239 .09294 .96398 .46472 .16682 .06996
.050 .99162 .49176 .19216 .00276 .95946 .46039 .16299 .06683
.055 .99140 49155 19198 .092672 .95492 45605 .15921 .06380
.060 99121 49137 .19183 .09250 .95035 45171 . 15547 .06088
.065 .99106 .49123 9171 .09242 94578 .44737 15179 .05807
.070 .99063 49111 .19161 .09235 94119 .44305 .14817 .05537
.075 .99083 .48102 .19154 .09230 .93660 .43875 .14462 .05277
.080 99275 .49094 .18148 .09226 .93202 43447 .14114 .05028
.085 .99068 .49088 .19143 .09222 .92744 .43022 13773 .04790
.090 .99063 .49083 .19139 .09220 .92288 .42600 .13438 .04562
.095 .99059 .49079 19136 .09218 .91832 .42181 L4311 .04345
.100 .99055 49076 .19134 .09216 91378 41765 12791 .04136

- .98774 .48803 . 18883 .08992 .00000 .000600 .00000 .00000
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Table E.32

Normal flux at TZ=0 and T,=T
of cosine magnitlde for B=108

for a finite medium illuminated by a collimated flux

ZA(O »0 ’TO) yA(TO,GsTO)

To o=1.0 o=2.9 0=5.0 0=10.0 g=1.0 0=2.0 g=b.0 g=10.0
.000 1.00000 .50000 .20000 .10000 1.00000 .50000 .20000 . 10000
.001 .99981 .49981 .19981 .09981 .99918 .49918 .19919 .09919
002 .99964 .49964 .19964 .09964 .99835 .49836 .19836 09837
.003 .99949 .49949 . 19949 .09949 .99751 .49751 .19752 .09754
.004 .99935 .49935 ,19935 .09936 .99665 .49966 .19668 .08671
.005 .99922 .49922 .19923 .09924 .99578 .49579 .19582 .09587
.006 .99911 .49911 .19912 .09913 .99490 .49493 . 19496 .09503
.007 .99901 .49901 .19902 .09903 .99401 .49403 .19409 .09419
.008 .99892 . 49892 .19893 .09895 .99310 .49313 .19321 .09334
.009 .99883 .49884 .19885 .09887 .99220 .19223 .19233 .09250
.010 .99876 .49876 .19878 .09880 .99128 .49132 .19145 .09165
012 .99863 49864 .19866 .09869 .98493 .48949 .18967 .08996
014 .99853 .49853 . 19856 .09859 .98756 .48764 .18789 .08829
.016 .99844 49845 .19848 .09852 .98567 .48578 18611 .08663
.018 .99837 49838 . 19841 .09846 .98377 .48391 .18433 .08498
020 .99831 .49832 .19836 .09841 .98187 .48204 .18255 .08335
022 .99827 .49828 .19832 .09837 .97995 .48016 .18078 .0817%
.024 .99823 .49824 .19828 .09834 .97803 .47828 .17902 .08017
.026 .99820 .49821 .19825 .09832 .97611 47641 7727 .07861
.028 .99817 49819 .19823 .09830 .97419 .47453 .17553 .07708
.030 .99815 .49817 .19821 .09828 .97226 .47266 .17381 .07558

o .99504 .49509 .19523 .09815 .00000 .00000 .00000 .00000
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Table E.33 Normal flux at 1,=0 and t,=1, for a diffuse wall radiating in a cosine fashion into
a finite medium

F.(0,10) Fcltg1g)

To 8=0 B=.10 B=.50 B=1.0 B=0 B=.10 B=.50 B=1.0

.00 1.00000 1.00000 1.00000 1.00G600 1.00000 1.00000 1.00000 1.00000
.01 .99025 .99025 .99026 .99029 .99029 .99028 .99023 .99007
02 .98093 .98094 .98097 .98107 . 98097 .98096 .98078 . 98026
.03 .97195 .97196 .97203 97224 .97196 .97195 97160 .97058
.04 .96325 .96326 .96339 .96374 .96325 .96322 .96266 .96101
.05 .95481 .95482 .95502 .95555 .95478 .95475 .95394 .95157
.06 .94659 .94660 .94689 .94764 .94656 .94651 .94543 94224
.07 .93858 .93860 .93898 .93999 .93855 .93849 .93710 .93302
.08 .93078 .93080 .93129 .93259 .93075 .93067 .92894 .92390
.09 .92315 .92318 .92380 .92542 .92313 .92304 .92095 .91489
.10 .91570 91574 .91649 .91848 .91569 .91558 91311 .90598
A2 .90130 90134 .90241 .90520 .90129 .90115 .89787 . 88845
.14 .88749 .88755 .88898 .89267 .88750 .88732 .88315 .87129
.16 .87423 .87431 .87614 .88084 .87424 .87403 .86892 .85450
.18 .86147 .86157 86385 .86965 .86148 .86123 .85514 .83807
.20 .84917 .84929 .85206 .85905 .84919 .84889 .84177 .82197
.25 .82024 .82042 .82456 .83484 .82025 .81986 .81002 .78316
.30 .79357 .79383 .79954 .81352 .79358 .79309 .78037 .74628
.35 .76886 .76920 .77666 .79466 .76886 .76828 .75256 71119
.40 .74585 .74627 .75566 77792 .74584 .74518 .72637 67779

.45 .72434 .72486 .73630 .76303 .72433 .72359 .70164 .64599

.50 .70416 .70479 .71842 .74975 .70416 .70333 .67821 61569
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Table E.34 Normal flux at t_=0 and 7,77, for a diffuse wall radiating in a cosine fashion into
a finite medium

Z.(0,70) Feltyst,)
To B=0 B=.10 B=.50 p=1.0 8=0 8=.10 B=.50 8=1.0
.55 68519 68593 .70185 .73788 68519 .68427 65597 58681
.60 .66730 .66815 68647 72726 .66730 66628 .63482 .55929
.65 .65039 .65136 67217 71775 .65039 64927 61466 .53305
.70 63437 63547 65884 70923 .63437 63314 .59542 .50802
75 .61918 .62040 .64641 70157 .61918 .61781 .57702 .48416
.80 60474 .60609 .63479 69469 .60474 .60320 55941 46141
.85 .59099 59248 162392 68851 .59099 .58927 .54254 .43970
.90 57788 .57952 61374 68294 .57788 .57595 .52635 .41900
.95 56536 56715 60419 .67794 .56536 156319 .51081 .39926
1.00 55340 155533 159523 67343 55340 -55095 49586 .38044
1.20 51037 51292 56447 65942 51037 .50645 44144 .31345
1.40 147370 47691 54027 65014 47370 46779 .39430 25807
1.60 44204 44594 52107 164398 144204 143390 135310 21233
1.80 41447 .41901 .50573 63987 41441 .40437 .31684 17458
2.00 .39006 139539 149343 163713 .39006 137932 28475 14345
2,20 .36843 .37451 .48351 63530 36843 .35928 25623 11782
2.40 .34909 135592 47550 63407 .34909 34505 23079 .09673
2.60 .33169 133028 146900 63325 133169 .33766 .20804 .07938
2.80 31595 132431 146373 63270 .31595 -- .18764 06512
3.00 .30164 131078 145945 163234 130164 -- 16932 .05341
. .00000 12207 844047 63159 .00000 .00000 .00000 .00000
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Table E.35 Normal flux at 1,=0 and 1=t

nal ' =1, for a diffuse wall
radiating in a cosine fasﬁi

o . LY
on into a finite medium

E:(0,75) FACAERN
To g=2.0 8=5.0 8=10.0 g=2.0 B=5.0 8=10.0
.00  1.00000 1.00000 1.00000 1.00000 1.60000 1.00000
.01 .99036 .99061 .99078 .98950 .98613 .97642
.02 .98133 .98225 .98356 .97839 .96781 193913
.03 .97280 .97477 .97768 .96691 .94679 .89514
.04 .96472 .96805 .97290 .95517 .92395 .84776
.05 .95704 .96202 .96900 .94322 .89988 .79898
.06 .94974 .95658 .96581 .93113 .87498 .75008
.07 .94279 .95169 .96321 .51893 .84956 .70195
.08 .93617 .94728 .96109 .90666 .82386 .65516
.09 .92986 .94331 .95935 .89435 .79807 .61010
.10 .92383 .93972 .95793 .88202 77234 .56704
12 .91259 .93357 .95582 .85738 .72154 .48743
.14 .90233 .92856 .95441 .83285 67217 .41676
.16 .89295 .92447 .95347 .80854 .62469 .35480
.18 .88436 .92113 .95284 .78452 .57939 .30099
.20 .87649 .91841 .95242 .76086 .53643 .25459
.25 .85956 .91360 .95188 .70348 .43970 .16580
.30 .84588 .91069 .95168 .64899 .35786 10677
.35 .83480 .90893 .95160 .59763 .28967 .06820
.40 .82581 .90787 .95158 .54949 .23346 .04328
.45 .81851 .90723 .95157 .50455 .18749 .02733
.50 .81256 .90684 .95156 46276 .15014 .01719
% .78623 .90625 .95161 .00000 .00000 .00000
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