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UP-CONVERTED EMISSIONS OF Er3+ DOPED Gd2(WO4)3 PHOSPHORS 

by 

GRAYSON L. WIGGINS 

(Under the Direction of Xiao-Jun Wang) 

ABSTRACT 

 In this work, the up-conversion (UC) emissions of Er3+ in a gadolinium tungstate host 

was investigated to analyze the possible processes of up-conversion by 1500 nm and 980 nm 

excitation. Studies were conducted to see how the 4S3/2  4I15/2 transition changed with varying 

current through the excitation source, varying excitation wavelength, and doping concentration. 

Power dependent studies revealed that under 1500 nm excitation the 4S3/2  4I15/2 transition 

needed 3 photons, while 980 nm excitation could do the same transition with 2 photons. It was 

found that 1500 nm could produce more efficient red emission due to the 4I9/2  4I15/2 transition 

only needing 2 photons. Concentration dependence studies revealed many trends of how up-

conversion processes varied with erbium ion separation. The number of photons used to UC 980 

nm decreases as concentration increases, meaning that the mechanism depends on energy 

transfer UC and the inefficiency of green emissions at higher concentration is due to 

concentration quenching. UC of 1500 nm also uses less photons as concentration increases; red 

and green emissions are not as dependent on energy transfer UC as 980 nm UC. Also, as 

concentration increases past the point least photon use, the erbium ions start cross relaxing 

causing the number of photons used to increase rapidly. It was found that even after cross 

relaxation becomes the dominant UC process, the intensity still increases as concentration 

increases until a point where quenching starts to take effect.  

INDEX WORDS: Gadolinium tungstate, trivalent erbium, up-conversion, luminescence 
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CHAPTER 1 

INTRODUCTION 

Luminescence 

This work focuses on studying the processes and mechanisms of a photoluminescent 

phenomenon called photon up-conversion, or multi-photon excitation. Photoluminescence is the 

emission of light as a result of absorption of photons, and is a type of luminescence. 

Luminescence is the emission of light by a substance not resulting from heat and was first 

introduced by Eilhard Wiedermann in 1888 to describe materials that were either phosphorescent 

or fluorescent [1]. After this term was published, the scientific community found a wide range of 

different mechanisms for luminescence; chemiluminescence, electroluminescence, and 

mechanoluminescence [2]. G. G. Stokes introduced the term fluorescence in 1852 [3], and for 

years afterwards, the distinction between fluorescence and phosphorescence was not well 

defined. The difference was based on the duration of emission after the end of excitation; 

fluorescent emissions took tens of nanoseconds, and phosphorescent emissions lasted over a 

millisecond. However, such stipulation is insufficient because there are long-lived fluorescent 

emissions and short-lived phosphorescent emissions whose durations are extremely close, taking 

only hundreds of nanoseconds to relax. In 1929, Francis Perrin stated that the usual condition for 

observing phosphorescence is that the excited species passes through an intermediate state before 

emission [4]. In more precise terms, the spin multiplicity is retained for fluorescence, whereas 

phosphorescence involves a change in spin multiplicity. Another difference is that fluorescence 

is typically a localized phenomenon while phosphorescence is a mobilized luminescence process. 

Materials that are either phosphorescent or fluorescent are known as phosphors. 

Phosphors are mainly solid inorganic crystals, ceramics, or glasses that consist of a host lattice 

with intentionally doped impurities as activators. Incident light is either absorbed via the host 

lattice or the impurities, but the emission almost always originates from the impurities, also 

known as luminescence centers. This signifies that the host material only needs to have minimal 

effect on the luminescence centers, unless transferring energy to the impurities. Therefore, the 

host needs to be chemically and thermally stable, have low phonon energy, and wide band gaps 

allows the emissions from the dopants out without absorption. 
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Fig 1.1: Dieke diagram showing the energy levels of the trivalent rare-earth ions in the host crystal LaCl3, 

compiled by Dieke in 1963 [18]. 
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Energy Levels 

 Figure 1.1 is a diagram of the electronic energy levels of trivalent lanthanide ions, 

complied by Dieke and Crosswhite in 1963. These electronic states are typically denoted by style 

presented by Russell and Saunders: 2S+1LJ, where L is the angular orbital momentum of the state, 

S is the spin momentum, and J is the total angular momentum. In an atom, the electrons travel on 

these energy states, by absorbing or emitting photons. Absorbing photons causes the electrons to 

excite to a higher energy level, while emitting photons causes the electrons to relax to a lower 

energy level. There are many interesting phenomenon going on inside the electron orbitals, but 

this work is mainly concerned with down- and up-conversion processes. 

Down-Conversion & Up-Conversion 

The most general photoluminescence process is down-conversion and happens in nearly 

all phosphors. The phosphor absorbs a high energy photon, blue or UV, and moves to an excited 

state, then, as it decays back to the ground state it emits one or multiple photons of low energy. 

In the case of erbium, a doped phosphor can absorb a blue photon and emit green, red, and even 

infrared photons. It was theorized by N. Bloembergen [5], that this process could be reversed by 

using infrared photons to emit blue photons. Indeed, this process was first observed by F. Auzel 

in 1966 and was named up-conversion [6]. However, due to the lower energy of the excitation 

photons, the host material needs to have low phonon energies in order to keep the impurities 

from emitting non-radiative vibrational energy instead of light. More detail will be put into the 

mechanics of up-conversion in the next chapter. 

Host Crystals & Dopants 

Among different compounds including aluminates, silicates, and borates, phosphors 

utilizing tungstate hosts are very popular because of their high thermal and chemical stability to 

powerful irradiation [7]. Tungstate lattices are also excellent host materials for lanthanide ions 

[8, 9]. MgWO4, CaWO4, SrWO4, and CdWO4 have been thoroughly studied for more than 50 

years because of their great technological importance [10]. In order for the tungstate to 

successfully host trivalent lanthanide ions, it needs to be bonded with another trivalent metal. 

One great candidate is gadolinium, it is a poor absorber of visible and infrared radiation and has 

an atomic size that is comparable to the other lanthanide ions. In addition to causing few 
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distortions to the crystal structure, gadolinium tungstate offers low phonon energy, high 

photochemical stability, and high quantum yield [11]. 

The introduction of trivalent rare-earth ions, especially lanthanides (Ln3+), in host 

matrices as luminescent centers has been an improvement in the field of luminescent materials 

[12]. Lanthanide ions show interesting fluorescence properties due to the optical transitions 

within the 4fn-electronic manifold. The f-electrons are well shielded from the chemical 

environment and therefore, almost retain their atomic characteristics. Usually, when light is 

absorbed by matter, only a small amount get reflected back because the rest is converted into 

vibrational energy due to the chemical bonds. However, the rare-earth ions are bound by 

electrons that do not absorb visible light. Consequentially, the f-f emission spectra consist of 

sharp narrow lines, which creates the possibility of using Ln3+ ions as effective and efficient 

luminescent centers. 

Applications 

In this work, the lanthanide being investigated is trivalent erbium, Er3+, since it’s one of 

the most popular and efficient ions for obtaining near-infrared to visible up-conversion. Erbium’s 

ability to up-convert 1500 nm infrared emission which is useful for optical amplification in fiber 

optics [13] and lasers [14]. Optical up-conversion is very popular in many technologically 

advanced fields. Such fields include infrared indicator cards, bio-labels [15], three-dimensional 

displays [16], and photovoltaics [17, 18]. For photovoltaics, silicon solar cells cannot utilize 

infrared photons, so the use of an erbium phosphor can convert ‘ignored’ photons into usable 

visible photons, increasing the energy efficiency. The prospect of this thesis is to analyze the up-

conversion process of 1500 nm light by trivalent erbium doped gadolinium tungstate 

(Gd2(WO4)3:Er3+) including visible and near infrared spectra, X-ray diffraction characterization, 

and incident power dependence. 

Summary  

 In the next chapter, the various up-conversion processes are introduced and described 

using rate equations. Figures are used to display how the photon number of a transition can be 

used to visualize the different UC mechanisms. Lastly, there is a description of phonon energies 

and a definition of multi-photon excitation and multi-phonon relaxation. 
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 In chapter three, the stoichiometric calculations are carried out in order to illustrate the 

acuity of the synthesis process. Then, a description of the co-precipitation synthesis process is 

presented. Chapter four contains the equipment used in this thesis and a description of the 

experimental spectroscopic setup is given. Also, included is the mathematical transforms that 

were applied to the experimental data during analysis. 

 In chapter five is the complete resulting works of this thesis. X-ray diffractograms are 

presented to state the purity of the synthesized samples. Concentration curves are also included, 

describing how dependent the intensity is on the distance between ions. Power dependent curves 

are shown to illustrate how the double-logarithmic slope changes with concentration. Photon 

number curves are then used to convey the slopes in terms of photons. Lastly, the photon 

numbers are used to discuss the possible mechanisms involved with the UC. In the last chapter, 

conclusions over the results of the data are discussed. The possible mechanisms involved and the 

most efficient up-conversion processes are identified. 
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CHAPTER 2 

PRINCIPLES OF UP-CONVERSION 

2.1 Introduction  

 Fig. 2.1: Six of the most relevant processes that convert long-wavelength light into shorter-wavelength light. The 

processes include (a) anti-Stokes Raman emission, (b) second harmonic generation, (c) cooperative luminescence, 

(d) excited state absorption, (e) energy transfer up-conversion, and (f) sensitized energy transfer up-conversion. The 

dotted lines indicate non-radiative energy transfer processes, the dashed horizontal line indicate virtual states, and 

the arrows indicate excitation or emission transitions. 

 This chapter illustrates the mechanics of up-conversion (UC) processes in phosphors. 

Technically, up-conversion deals with absorbing photons of a certain energy E1 and emitting 

photons with another energy E2, such that E2 > E1. However, there exists many processes that 

result in the conversion of photons of a given wavelength into ones with shorter wavelengths. 

Figure 2.1 shows some examples of these processes, as well as, those considered to be up-

conversion processes. These non-up-conversion processes include anti-Stokes Raman emissions 

(Fig. 2.1(a)), second harmonic generation (b), and cooperative luminescence (c). Figure 2.1(d-f) 

depicts the two-photon, or multi-photon, up-conversions processes that are relevant for the rest 

of this chapter. These processes are excited-state absorption (ESA), energy transfer up-
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conversion (ETU), and sensitized energy transfer up-conversion, respectively [1]. The most 

important difference between up-conversion and the other processes in Fig. 2.1(a-c) is that UC 

depends on a real intermediate state, instead of one that is virtual [2]. This state must be able to 

store an excitation long enough to allow a second excitation photon to further excite the 

phosphor into the higher-lying excited state, typically at least a microsecond. Since UC relies on 

real energy levels only, very high excitation powers are not required in order to observe this 

effect. It is common for experimental data to show UC at excitation powers that are 5-10 orders 

of magnitude lower that those required for second harmonic generation [2]. This chapter will 

describe the photoluminescent processes integral to UC using rate equations, introducing band 

assignment, multi-photon excitation, and multi-phonon relaxation, as well as, deriving the 

erbium ion separation distance that will be used in Chapter 5. 

2.2 GSA, ESA, ETU, and CR  

 The difference between sensitized energy transfer up-conversion and ETU is that in the 

former process the transfer is between two ions of different elements, whereas ETU is between 

two ions of the same element. Due to this distinction, sensitized energy transfer up-conversions 

will not be discussed further as this thesis is only concerned with erbium ions. For the remainder 

of this chapter, five main processes must first be described; ground state absorption (GSA), 

relaxation, ESA, ETU, and cross relaxation (CR), as depicted in Fig. 2.2, respectively. 

2.2.1 Descriptions via Rate Equations  

Fig. 2.2 also shows that UC processes must take place in a system containing at least 

three energy levels. Luminescent processes are generally described using rate equation, where 

the temporal change of the population density of the involved energy levels is formulated. The 

population density of the i-th energy level is defined to be Ni. GSA can cause changes in the 

population of the ground level, N0. The change in the population is proportional to the population 

of the level and a term, G01, describing the probability of this transition. Relaxations from higher 

energy levels can cause further changes to the ground level and their probabilities can be 

described using Einstein coefficients [3]. 

The probability of a transition within a free ion excited by incident radiation can be 

described by time-dependent perturbation theory [4]. The electric dipole transitions are of most  
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Fig. 2.2: The five main processes of concern in the thesis, along with their rate equations. The processes are (a) ground 

state absorption, (b) relaxation, (c) excited state up-conversion, (d) energy transfer up-conversion, and (e) cross 

relaxation. Note the superscript tot on the A coefficient, this is defined as the sum of both radiative and non-radiative 

relaxation processes.  

importance due to the fact that magnetic dipole transitions are orders of magnitude weaker. The 

probability of the electric dipole transition can be derived as: 

𝐺𝑖𝑓 =  
𝜋

3𝑛𝜖0𝑐0ℏ2
 𝐼 |𝝁𝑖𝑓|

2
𝛿(𝜔0),         (2.1) 

𝝁𝑖𝑓 =  ⟨𝜓𝑓|𝑞𝐫|𝜓𝑖⟩,         (2.2) 

where ω0 is the angular frequency, µif is the matrix element of the electric dipole moment, I is the 

intensity of the radiation, n is the refractive index of the absorbing medium, ε0 is the permittivity 

in vacuum, c0 is the speed of light in vacuum, and ℏ is Planck’s constant, h, divided by 2π. In the 

electric dipole moment (Eq 2.2), ψf and ψi are the wavefunctions of the final and initial states, 

respectively, and r is the position of the electron measured from the nucleus, and q is the 

elementary charge. The Dirac delta function δ(ω0) indicated the selectivity of the transition on 

the frequency of the incident light. To express realistic processes this function can be replaced 

with a line shape function g(ω). It can be seen from this that the transition probability is 

dependent on the intensity of the incident radiation, meaning that it is dependent on power. 

 When it comes to relaxation, the general form is: 

𝑁̇ =  𝐴𝑡𝑜𝑡𝑁 = (𝐴𝑟𝑎𝑑 + 𝐴𝑛𝑟)𝑁,        (2.3) 
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where Atot is the total rate of relaxation (decay rate). This includes Arad radiative and Anr non-

radiative types of decay. These coefficients can be found experimentally by studying the decay 

rate of each energy level of interest. Non-radiative decay includes multi-phonon emission, as 

well as, all energy transfer mechanisms leading to the relaxation of the considered energy level 

without direct emission, such as CR. 

 Einstein developed a derivation for the probability of spontaneous radiative transition 

from initial state i to final state f on the basis of thermodynamic considerations [4]: 

𝐴𝑖𝑓
𝑟𝑎𝑑 =  

1

4𝜋𝜖0

4𝑛𝜔0
3

3ℏ𝑐0
3(2𝐽+1)

(
𝑛+2

3
)2|𝝁𝑖𝑓|

2
,     (2.4) 

where ω0 is the mean angular frequency of the emission, (2J+1) is the degeneracy of the initial 

state and n is the refractive index of the surrounding medium. The ((n+2)/3)2 term is the local 

field correction for electric dipole transitions due to the influence of the surrounding crystal 

field [5].  

 The probability for an energy level to change population due to ESA, ETU or CR are 

denoted in terms or wESA, wET, and wCR, respectively. The probability for ESA and ETU are 

derived in 2.3.3 to emphasize how dependent they are on the concentration. 

2.3 Multi-photon Excitation 

 Since all UC processes depend on a real 

intermediate state [2], every time a low energy photon 

is absorbed by an erbium ion, it changes the population 

of two states. Therefore, if the number of excited states 

is known, then the number of photons can be counted. 

In order to appropriately introduce how to count the 

number of photons involved in an atomic transition, the 

concept of the band assignments must be introduced 

first. This reveals a better way to visualize what is 

going on in the ion. The basic procedure is to take an 

excitation spectra that down-converts high energy 

photons into multiple photons of the same lower energy.  

Fig 2.3: Excitation spectra monitoring the 

1532 nm emissions, aligned with the 

energy levels of an erbium ion 
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2.3.1 Band Assignment 

 Figure 2.3 depicts an excitation spectra of one of the erbium doped gadolinium tungstate 

samples, excited from 300-1550 nm and monitored the emission of 1532 nm photons, on the 

right. The left side depicts how the high energy photons can shower down 1532 nm photons 

upon the energy levels. The intensity of the peaks on the right of Fig 2.3 correspond to how 

many 1500 nm photons are emitted: 375 nm makes 4 photons, 528 nm makes 3 photons, and 

978 nm & 1500 nm makes 1 photon.  

 The peaks also point to the energy band to which they are assigned. 375 nm is a GSA to 

the 4G11/2 energy level. 528 nm corresponds to the 2H11/2 level, 978 nm is the 4I11/2, and 1500 nm 

relies on the 4I13/2 energy level.  

2.3.2 1500 nm & 980 nm Up-Conversion 

 Fig. 2.2(a) and (c) show what happens when the ion is excited form is ground state, or 

from an excited state, respectively. The probability of the GSA/ESA up-conversion process is a 

product of the probability of stimulated absorption: 

𝐺01  ≈  w𝐸𝑆𝐴,      (2.5) 

w𝐺𝑆𝐴 𝐸𝑆𝐴⁄ =  𝐺01w𝐸𝑆𝐴  ≈  𝐺01
2 ,     (2.6) 

Since both processes are stimulated absorption, the probability can be approximately equal. This 

process takes place within a single ion without including energy transfer [3]. 

In contrast, energy transfer processes are more complex. When two ions are in an excited 

state, this is when energy transfer up-conversion can take place, as shown in Fig. 2.2(d). Due to 

this process, one of the ions de-excite to a lower energy level, while the second ion is further 

excited to a higher-energy level. By assigning the transfer probability from one ion to the other, 

it can be shown that the probability of the excitation of the highest energy level of the acceptor 

ion is: 

w𝐺𝑆𝐴 𝐸𝑇𝑈⁄ =  𝐺01
2 𝑤𝐸𝑇

2 𝑁0
2,     (2.7) 

This shows that ETU depends quadratically on the density of ions in their ground state, N0, 

which is a measure of the doping concentration. Note that GSA/ESA is independent of N0, but 
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this should not be confused with Ṅ=G01N, which depends linearly on doping concentration [3]. 

The effects of concentration quenching are discussed in Section 2.5. 

 

Fig 2.4(a, b, c, d): Up-conversion schematics of possible processes. GSA, ESA, and ETU processes are labelled for 

both 1500 nm and 980 nm UC. The dotted lined indicate non-radiative processes. In (d) there is only one chance for 

UC via ETU, while in (b) there are 2 possibilities for this transfer. 

 When the down-conversion process from Fig 2.4 is reversed, it becomes Figure 2.4. The 

Fig 2.4 depicts the ways that GSA, ESA, and ETU can give rise to the different emitted types of 

light. Every process is dependent on the initial GSA, this populated excited state can then either 

up-convert via ESA or ETU. Simply, the erbium ions need to be close enough to transfer their 

energies. Inversely, if the ions are too close then they would rather transfer the energy than up-

convert it, via CR. Fig 2.4 states that there are more places for ETU to take place in 1500 nm UC 

than in 980 nm UC. This means that there also more places for cross relaxation to occur also. 
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2.4 Power Dependence 

 In order to measure the power dependence of the up-conversion processes, all of the 

samples’ spectra were taken with varying current passing through the excitation source. When 

the current changed, for instance increased, the power (P) of the light leaving the excitation was 

proportionally increased. The intensity of the emission (I) is proportional to the power raised to a 

whole integer n (Eq 2.8). Taking the log of the two quantities makes the n a scalar rather than a 

power (Eq 2.9). Mathematically, n is the slope of the data in the double-logarithmic plot of 

power versus intensity (Eq 2.10). Physically, n is the number of photons up-converted to produce 

one higher energy photon. These concepts are used in Section 5.3. 

𝐼 ∝ 𝑃𝑛,             (2.8) 

log(𝐼)  ∝  𝑛log(𝑃),         (2.9) 

slope = 𝑛 =  
log (𝐼)

log (𝑃)
= number of photons absorbed to carry out transition (2.10) 

2.5 Concentration Quenching 

Fig. 2.2(e), cross-relaxation, is the fifth 

process depicted and as stated before, it is the 

opposite of ETU: one ion is excited to a higher 

energy state and the other is de-excited. The 

distinction between ETU and cross-relaxation is 

the highest excited state: if, after the process, none 

of the ions is in a higher energy state than either of 

the ions was before the process, this is called cross 

relaxation. If one of the ions are at higher excited 

state than either of them were before, this is energy 

transfer up-conversion. In this work, ETU is a 

desired process and cross relaxation is considered a loss process [2]. Generally, losses caused by 

energy transfer, whose rate constants are dependent on the concentration of the dopant, are called 

concentration quenching. This phenomenon is a result of ions becoming so close together that 

Fig 2.5: The integrated emission intensity of 

Er3+ ions, from 1.5-1.6µm excitation, as a 

function of Er3+ concentration [2]. 
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they start to prefer cross relaxation over ETU, or even ESA. Figure 2.5 illustrates a concentration 

dependence plot of an erbium doped phosphor with 37.5% concentration as its peak. 

2.5.1 Er3+ - Er3+ Separation Distance 

 As the number of luminescent centers that are doped into the host crystal increase, the 

closer the centers become. Therefore, if the crystal structure and doping concentration is known, 

then the average distance between doped ions can be determined. So, if REr is defined to be the 

average radial distance between erbium ions, then: 

𝑅𝐸𝑟  ≅ 2 (
3𝑉

4𝜋𝐶𝐸𝑟𝑁
)

1

3
,           (2.11) 

Where V is the volume of the unit cell in the host crystal, CEr is the doping concentration in 

decimal form, and N is the number of sites that an erbium ion can occupy per unit cell [6]. 

 

Gadolinium tungstate has an orthorhombic crystal structure, meaning that each dimension of its 

unit cell is a different length. The volume of this cell is the product of the length of each 

dimension (Eq 2.12). Above, the volume of the unit cell of Gd2(WO4)3 is determined, and N is 

determined to be 2. 

𝑅𝐸𝑟 ≅ 2 (
3(1876.315Å3)

4𝜋(0.1)(2)
)

1

3
=  26.1673Å, distance for 10% Er3+ concentration.      (2.13) 

Concentration (%) Distance (Å) Concentration (%) Distance (Å) 

15 22.8592 35 17.2347 

20 20.7690 40 16.4844 

25 19.2802 45 15.8497 

30 18.1434 50 15.3027 

 

𝑉 = 𝑎𝑏𝑐            (2.12) 

𝑎 =   7.67Å
[7]

 

𝑏 = 11.41Å
[7]

 

𝑐 = 21.44Å
[7]

 

𝑉 = (7.67Å) ∗ (11.41Å) ∗ (21.44Å) = 1876.315Å3 
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2.8 Phonon Energy 

 As mentioned throughout Chapter 1, the phonon energies of a host lattice can seriously 

affect the luminescence process. This is because if the lattice has a very high phonon energy then 

it is more probable for the excited ion to emit a phonon rather a photon. The vibration of a crystal 

lattice is spoken in terms of phonons: a quanta of vibrational energy. For example, if a doped 

crystal with a phonon energy of 500 cm-1 is excited by radiation with 1000 cm-1, then 2 phonons 

will be released instead of radiation, this is known as multi-phonon relaxation. As the phonon 

energy decreases, however, it becomes less likely that the excited state will emit phonons.  

 The 4I13/2  4I15/2 transition in erbium is a 6500 cm-1 change in energy, it is 10215 cm-1 

for the 4I11/2  4I15/2 transition. The highest phonon energy for Gd2(WO4)3 was found to be 

1901 cm-1 [9]. This means that the GSA 1500 nm transition is 3.4 times the phonon energy and 

the GSA 980 nm transition is 5.4 times the energy. These values indicate that gadolinium 

tungstate has a low enough probability for multi-phonon relaxation to efficiently up-convert near 

infrared light. 
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CHAPTER 3 

SYNTHESIS 

3.1 Chemical Composition 

Erbium doped gadolinium tungstate was prepared via co-precipitation method using 

99.99% pure reagents; Gd(NO3)3∙6H2O, Er(NO3)3∙5H2O, and Na2WO4∙2H2O. The chemical 

reaction equation is given below: 

2Gd(NO3)3 + 3Na2WO4  Gd2(WO4)3 + 6NaNO3        (3.1) 

Where a percentage of the gadolinium is replaced with erbium. From the equation, it can be seen 

that the synthesis relies on a 2:3 molar ratio, so that if one requires a certain amount of 

gadolinium tungstate they would need to mix twice (2) that molar amount of gadolinium nitrate 

with three (3) times the molar amount of sodium tungstate. 

 Approximately 2 grams of gadolinium tungstate is needed. Two grams were by the 

formula weight (FW) of gadolinium tungstate, 1058.013 g/mol, (Eq 3.2). 

2g

1058.013g/mol
= 0.00189mol      (3.2) 

≈ 0.002mol. 

Therefore, 0.004 mol of a gadolinium and erbium nitrate mixture needs to be mixed with 

0.006 mol of sodium tungstate.  

0.006mol ∙ 329.85g/mol of NaWO4,           (3.3) 

 = 1.9791g 

The sodium tungstate was dissolved into 30 mL of deionized water, and was titrated into a 

10 mL mixture of erbium and gadolinium tungstate in deionized water. The erbium and 

gadolinium compounds can be more precisely mixed if they are already in an aqueous solution. 

#mol of Gd + #mol of Er             (3.4) 

 = 0.004mol per 10mL, 

so they can be made into a solution with a concentration of 0.0004 mol/mL. 
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Table 3.1 

% Er mL Gd mL Er Total mL mol Gd mol Er Total mol mL WO4 

0 10 0 10 0.004 0 0.004 30 

10 9 1 10 0.0036 0.0004 0.004 30 

15 8.5 1.5 10 0.0034 0.0006 0.004 30 

20 8 2 10 0.0032 0.0008 0.004 30 

25 7.5 2.5 10 0.003 0.001 0.004 30 

30 7 3 10 0.0028 0.0012 0.004 30 

 

Table 3.1 presents a total amount of milliliters needed, but 50mL of aqueous Gd(NO3)3 

and 15mL of aqueous Er(NO3)3 were made, along with the 180mL of aqueous Na2WO4. 

50mL ∙ 0.0004mol/mL = 0.02mol, 0.02mol ∙ 451.36g/mol = 9.0272g to 50mL gadolinium nitrate. 

15mL ∙ 0.0004mol/mL = 0.006mol, 0.006mol ∙ 443.35g/mol = 2.6601g to 15mL erbium nitrate. 

6samples ∙ 1.9791g per sample = 11.8746g for 180mL sodium tungstate. 

Then, due to insufficient concentration quenching of our samples, 35%, 40%, 45%, & 

50% samples were prepared. 

25mL ∙ 0.0004mol/mL = 0.01mol, 0.01mol ∙ 451.36g/mol = 4.5136g to 25mL gadolinium nitrate. 

20mL ∙ 0.0004mol/mL = 0.008mol, 0.008mol ∙ 443.35g/mol = 3.5468g for 20mL erbium nitrate. 

4samples ∙ 1.9791g per sample = 7.9164g for 120mL sodium tungstate. 

Table 3.2 

Batch 1 

Chemical mL H2O Theoretical (g) Actual (g) 

Gd(NO3)3∙6H2O 50 9.0272 9.027 

Er(NO3)3∙5H2O 15 2.6601 2.663 

Na2WO4∙2H2O 180 11.874 11.876 

Batch 2 

Gd(NO3)3∙6H2O 25 4.5136 4.515 

Er(NO3)3∙5H2O 20 3.568 3.548 

Na2WO4∙2H2O 120 7.9164 7.925 
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3.2 Synthesizing Gd2(WO4)3:Er3+ via Co-Precipitation Method 

Traditionally, tungstates are synthesized by the solid-state reaction method, but this 

process has a few disadvantages. The solid-state method needs high calcination temperatures 

(1100-1200°C), and it produces crystals with a large particle size and irregular morphologies. 

Hydrothermal and Penchini methods also have drawbacks, such as complicated procedure and 

long preparation period. Therefore, the samples were prepared using the co-precipitation method 

due to the ease of synthesis, low annealing temperatures, and consistent crystal morphology. 

In this procedure, Solution A refers to the aqueous mixture of Gd(NO3)3 and Er(NO3)3 in 

the appropriate amounts pertaining to the specified doping concentration. Each step is the same 

for every sample regardless of the percentage of erbium, except for the making of Solution A. 

Solution B, by contrast, is the aqueous solution of Na2WO4, which is identical for all samples. 

1. Solution B is added drip-wise at a rate of 1mL/min (where Solution B is 

30mL) into Solution A under constant stirring. When Solution B contacts 

Solution A, it immediately forms a precipitate, Gd2(WO4)3, and an aqueous 

byproduct, NaNO3, nitratine. The mixture AB is kept under stirring for 

another 30min to ensure that all the chemicals have reacted with each other. 

2. The AB mixture is centrifuged at 1000rpms for 20mins to concentrate the 

solid, insoluble gadolinium/erbium tungstate, but keep it loose enough to 

wash out the nitratine that is trapped in the solid. The mixture is centrifuged 

and washed three (3) times, then centrifuged a final time at 4000rpm for 

20mins. 

3. The precipitate, which should be all that is left, is dried in an oven at 90°C 

for 3hrs. Afterward, the dried precipitate is ground down into a find powder 

in order to mix the erbium tungstate dominate areas with the gadolinium 

tungstate dominate areas. 

4. The powder is placed into a crucible and annealed for 5hrs at 900°C. The 

annealing process energizes the gadolinium tungstate molecules and the 

erbium tungstate molecules and then allows them to cool slowly and the 

erbium to settle into the optical centers surrounded by the gadolinium. After 
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annealing the precipitate is ground again to ensure a homogenous 

distribution. 

5. The annealed erbium doped gadolinium tungstate powder is pushed, as 

opposed to pressed, through a disc pill dye to create a flat disc that can be 

securely placed on optical mounts. If the powder is pressed with any 

substantial pressure, the pill press will leave the disc with an 

inhomogeneous surface; some areas are nice and matte and some have a 

metallic shiny surface, which can throw off optical experiments. Therefore 

the powder in the dye is pushed through to form a disc. After the disc is 

carefully pushed through, in hopes that it doesn’t break, it is annealed again 

to harden the disc form. 

 Even though the same weight of powder is pushed through the pill press, the resulting 

disc might be of varying thickness, due to the difference in densities between different 

concentrations of erbium. However, the thickness doesn’t matter depending to the type of optical 

mount in use. What matters is that the surface be uniformly matte, which it should be as long as 

the metal pill dyes don’t apply too much pressure or torque to the powder. 
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CHAPTER 4 

EXPERIMENTAL METHODS 

4.1 Equipment 

 During synthesis, ACROS Organics Sodium tungstate dehydrate, ACROS Organics 

Erbium(III) nitrate pentahydrate, and Alfa Aesar Gadolinium(III) nitrate hydrate, with a purity of 

99.9% each, were mixed in the processes described in Chapter 3. The aqueous sodium tungstate 

solution was titrated using a Harvard apparatus 11 Plus Syringe Pump. The precipitate was 

centrifuged using a Sorvall Legend XTR Centrifuge. The annealing process was carried out in a 

Zircar Hot Spot 110 Furnace and the discs were formed using a MTI Desk-Top Powder Presser. 

X-ray diffraction studies were performed on a PANalytical X’Pert Pro powder X-ray 

diffractometer with Cu Kα1 radiation (λ = 1.5406Å) at the University of Georgia with the help of 

Dr. Feng Liu. 

 During experimentation, an Opto Engine LLC 1470 nm 800 mW scientific laser with 

PSU-H-LED power supply was used as the external 1500 nm excitation source. The 980 nm 

source was a ThorLabs L975P1WJ Laser Diode mounted onto the ThorLabs LDTCLDM9 

Temperature Controlled laser diode mount, which was controlled using the ThorLabs 

Thermoelectric Temperature Controller (TED200C) and Laser Diode Controller (LDC200C). 

These two sources were used in conjunction with a Jobin Yvon FluorMax-3 Spectrometer, in 

order to conduct visible spectroscopy. A Horiba Jobin Yvon Fuorlog iHR320 Spectrometer was 

used to carry out IR spectroscopy. All spectroscopic data were collected and analyzed using 

Horiba’s FluorEssence 3.5 software. 

4.2 Set-up 

 Up-conversion spectra were gathered by running spectroscopic tests on differently doped 

samples using external laser sources. The samples were swiveled on a mount to find the angle 

that had the most intense emissions. While at this angle, tests were run with various current 

strengths flowing through the sources. This varies the power coming out of the sources. When 

sources or samples are changed, the new, most intense angle had to be found again to ensure that 
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only the most intense light was being studied. 

Down-conversion and IR spectra were obtained 

in the Fluorolog iHR320 spectrometer using 

internal sources and sensors. Figure 4.1 

illustrates the basic setup for conducting 

spectroscopic studies. The samples are placed 

at a certain angle to the excitation beam so that 

the most intense light can fall onto the rotating 

grating. The grating then rotates so that the 

CCD can detect the amount of light per unit of wavelength. The light must pass through an 

optical filter in order to keep from saturating the detector with excitation light. 

4.3 Analytical Methods 

 After acquiring data, certain transforms were applied to it in order to discuss the results in 

more physical terms. Firstly, except for the power dependent studies, the percent concentration 

was transformed into distance per erbium ion. The power dependent studies aren’t dependent on 

concentration so it doesn’t matter if we label them using percentages. As described before, the 

erbium concentration is directly proportional to the average distance between erbium ions, i.e. 

the higher the concentration, the closer 

the erbium ions. Figure 4.2 depicts how 

erbium separation varies with 

concentration. This transform is used to 

make the finding easier to 

conceptualize, but graphs in terms of 

concentration are also provided.  

 Another transform that was 

performed on the double log graphs. 

Instead of them being dependent on the 

log of the power, they are dependent on 

the log of the current passing through 

Fig 4.1: Basic schematic of spectroscopic setup. 

Fig 4.2: Graph depicting how the Er3+ separation distance 

changes with increasing concentration, according to Eq 2.11.  
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the excitation source. This was done because the power was unknown but is proportional to the 

applied current: 

𝐼 ∝ 𝑃𝑛, 𝐼 ∝ 𝐶𝑛, where C is the current   (4.1) 

𝐶 ∝  𝑃,     (4.2) 

It is noted that this might be a source of error, especially concerning the photon count of the red 

emissions from 980 nm excitation (Fig 5.9(d)).  
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CHAPTER 5 

RESULTS 

5.1 Structural Characterization 

 

Fig 5.1(a,b): X-ray diffraction studies of samples of Gd2(WO4)3: Er3+. Fig 5.1(c, d): The peak located just over 

28 degrees shifts as the erbium concentration increase.  

Figures 5.1(a & b) show x-ray diffractograms from the Er3+ doped Gd2(WO4)3 samples 

that were used in this thesis. All of the graphs illustrate that the samples are a match to the XRD 

standard, meaning the crystal structure of our samples are the same as the structure of 

Gd2(WO4)3. Figures 5.1(c & d) focus on the peak located just over 28.0 degrees. These figures 

track the shift the peak goes through as the concentration of erbium was increased. The 

consistent linear shift says that neither the doping nor the labels are incorrect. The peak moved to 

the right due to how much smaller erbium is to gadolinium. Since erbium replaced more and 

more gadolinium as concentration increased, the lattice constants got smaller, causing a shift in 

the graphs. The samples in this thesis are proven to be consistently doped Gd2(WO4)3:Er3+.  
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5.2 Concentration Effects 

 The figures below are drawn to showcase how certain atomic transitions changed in 

intensity when the distance between the luminescence centers were changed. When 

concentration of the luminescent ions are increased, the distance between the ions are decreased, 

when this happens certain transitions occur more often and others less often. Testing for 

concentration dependence can reveal which type of UC processes are taking place. Graphs were 

made in terms of both distance in angstroms and percent erbium concentration.  

 

Fig 5.2(a, b): Depicts the dependence of erbium ion distances on the 980 nm and 1500 nm emissions. (a) shows strong 

dependence on how close the Er3+ ions are to each other, while (b) shows very little change in average intensity. 

 When an erbium ion absorbs a photon with a wavelength of 484 nm, one of its ground 

state electrons is excited to the 4F7/2 energy level and from there can emit at most three (3) 

1500 nm photons or two (2) 980 nm photons. It can be seen from Figure 5.2(a) that less and less 

1500 nm photons are emitted when erbium ions get closer. The down-conversion process 

quenches very rapidly as concentration increases. However, the 980 nm emissions undergo very 

little change, but this is most likely due to the fact that only two photons have to be successfully 

emitted instead of three. 
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Fig 5.3(a, b): Concentration and distance dependent plots of intensity of the 4I13/2  4I15/2 transition when excited 

with 980 nm photons. 

 There is a strong concentration quenching apparent in Figures 5.3(a & b). When they are 

highly concentrated and close to each other, the ions are more likely to CR the energy without 

emitting radiation. Both down-conversion results point towards strong concentration quenching 

connected with 980 nm producing the 4I13/2  4I15/2 transition. 

 Figures 5.4(a & b) and 5.5(a & b) depict UC dependence on erbium ion separation, and 

they look nothing like the four previous graphs. Fig 5.4(a & b) show peaks in their dependence 

curves. These peaks indicate a sweet-spot where the erbium ions are close enough to talk but not 

close enough to cross relax. Fig 5.5(a) shows a peak while Fig 5.5(b) shows a near linear inverse 

relationship. The reason for the stark difference could be due to the power of the polynomial 

describing the line of best fit. The line in Fig 5.5(b) is described with 2nd power polynomial, then 

it might require a 4th power polynomial to accurately describe the best line of fit.  
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Fig 5.4(a, b): Depicts how the intensity of the 4S3/2  4I15/2 transitions under 980nm excitation changes as concentration 

and erbium ion separation are changed. The peak in the graphs indicate the presence of a concentration that spaces the 

erbium ions just far enough away to most efficiently convert 980 nm NIR light into 552 nm green light. 

 

 

Fig 5.5(a, b): The intensity of the 4S3/2  4I15/2 transitions under 1500 nm excitation changes as concentration and 

erbium ion separation are changed. The peak in (a) indicate the presence of a concentration that spaces the erbium 

ions just far enough away to most efficiently convert 1500 nm IR light into 552 nm green light. Fig (b) shows either 

a negative linear relationship or a very narrow peak with a very precise concentration. 
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5.2.1 Spectrographs 

  Below, figures 5.6 and 5.7, examples of the emissions spectra used to characterize 

the concentration dependence. On the next page there are spectrographs comparing the different 

up- and down-conversions under investigation. Figure 5.8 depicts the 900-1700 nm emission 

spectrum of 484 nm DC. The black line shows the full 900-1700 nm spectrum with the entrance 

and exits slits on the spectrometer partially opened. The red line shows the 940-1050 nm range 

of the spectrum with entrance and exit slits all the way open, this magnifies the signal. It can be 

seen that the 1500 nm signal is a lot more intense that the 980 nm signal, even when it is 

magnified the 980 nm signal still pales in comparison. 

 Figure 5.9 compares the 1400-1700 nm range of the emission spectrum of 484 nm and 

978 nm down-conversion. The 978 nm (black) DC produces a more intense 1500 nm emission 

than 484 nm (blue) DC. This is due to 484 nm DC having many different avenues to emit lower 

energy photons, while 978 nm can only DC to 1500 nm. Figure 5.10 compares the 500-800 nm 

range of the emission spectrum of 980 nm and 1500 nm up-conversion. The 980 nm (black) UC 

emission shows a brighter green emission compared to 1500 nm UC, but a dimmer red emission. 

The 1500 nm UC has a more intense red emission due to the 4F9/2 state needing closer to an 

integer number of photons to populate, making it a more probable transition. 

  

Fig 5.6: 500-800 nm 

emissions spectra when the 

samples were excited by 

980 nm and 1500 nm. 

Fig 5.7: First, 900-1700 nm 

emissions spectra when DC 

484 nm photons. Second, 1400-

1700 nm emissions when DC 

978 nm photons. 



39 

 

 

  

Fig 5.8: Compares the intensity of the 980 nm and 1500 

nm transitions when down-converted from 484 nm. Red 

line indicates the 980 nm peak when the spectrometer has 

its entrance and exit slits wide open, magnifying the peak. 

Fig 5.10: Compares the intensity of the range of emitted light (500 nm – 800 

nm) when up converted by 980 nm (black line) or 1500 nm (blue line) light. It 

shows that although 980 nm excitation produces a more intense green 

emission, the red emission is less efficient. 

Fig 5.9: Compares the 1500 nm emissions of down-

converted 484 nm and 980 nm. It shows that 980 

nm produces the most intense emission of 1500 nm 

light. 
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5.3 Power Dependence 

 Figure 5.11 demonstrates how the intensity of the emission spectra is proportional to 

incident power. As described in Section 2.4, the slopes in figures 5.13(a, b, c, & d) represent the 

number of photons used in order to emit a photon from the transition being tested. Data point for 

these graphs were compiled from spectra like the ones in figure 5.11. Figure 5.12 shows a 

sample of the graphs shown on the next page. The samples illustrates that three 1500 nm photons 

are used to produce a 552 nm photons. The 
4S3/2  4I15/2 (552 nm) and the 4F9/2  4I15/2 (670 nm) 

transitions are of importance in Fig 5.13.  As concentration increases, the number of photons 

used by the erbium ion to excite a particular state will change depending on what processes are 

used to UC. The number of photons used for the multi-photon excitation are graphed in the next 

section to shed light on any possible patterns.  

It needs to be noted, though, that Fig 5.13(d) depict results that do not make physical 

sense. The slopes of these graphs fall below 2, saying one low energy can be up-converted to one 

high energy photon, which is impossible. Therefore these results are discussed no further, except 

to point out that the power to current transform might be the cause of the error. 

 

Fig 5.12: A sample double logarithmic graph of 

current versus intensity. Here it is found, the 30% 

erbium concentration sample uses three 1500 nm 

photons to produce a 552 nm photon. 

Fig 5.11: Over-layed spectra showing how emission 

intensity decreases with a decrease in power. 
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Fig 5.13: Double log current versus intensity graphs depicting how the intensity of red or green emission, under 

either 1500 nm or 980 nm excitation, changes with the current applied to the excitation source. The results show 

a linear relationship, and the slope of the line is the number of photons used in the process. Although the results 

from (b) agree that it take two 1500 nm photons to make a red photon, (d) is nonsensical, implying that 1 low 

energy photon can create 1 high energy photon. 
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5.4 Multi-photon Excitation 

 

Fig 5.14: Photon number versus separation distance. Instead of speaking in terms of slopes per concentration, they 

are transformed into number of photons per distance between erbium ions for simplicity. It can be seen that 1500 nm 

excitation has a minimum of photons for green transitions, where 980 nm excitation shows an almost linear increase 

in the number of photons as distance increases. 

 Above, Figure 5.14 compares the photon count of either (a) the same transition under 

different excitations, or (b) the same excitation monitoring different transitions. In Fig 5.14(a), 

the 1500 nm plot shows a minimum at 25% Er3+, while the 980nm plot shows a near linear 

quenching as the ions get further away. Both 1500 nm plots in Fig 5.14(b) contain a minimum. 

When investigating 552 nm emission, the minimum is located at 25%, but when 765 nm is being 

investigated, the minimum is now at 20%. Also, the photon numbers agree with the photon count 

taken earlier in Section 2.5; 3 photons for 1500 nm to emit 552 nm, 2 photons for 1500 nm to 

emit 765 nm, and 2 photons for 980 nm to emit 552 nm. It can be seen in Fig 5.14(a) that, 

depending on the concentration, its take 980 nm either 2 or 3 photons to emit 552 nm, meaning 

that the processes becomes more inefficient as concentration decreases. 1500 nm ranges from 2 

to 3 photons to UC to red, and 3 to 4 photons to up convert to green. Figure 5.16 illustrates 

where these extra photons may be located. 
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5.5 Mechanisms 

Figure 5.16 is the overlaying of 5.4(a) and 5.5(a). Figures 5.16(e & f) showcase how the 

different up-conversion processes can change the number of used photons. Fig 5.16(e) shows 

that the 4I9/2 state non-radiatively decays to the 4I11/2 state where an extra photon is needed to 

excite to 4F9/2. Another non-radiative decay re-populates the 4I9/2 state and then another photon 

brings the electron up to the 2H11/2 state which normally decay to the 4S3/2 state to emit a 552 nm 

photon. Fig 5.16(e) also shows how the extra photon can cause the 765 nm emission to go from a 

2 to a 3 photon process. It can be assumed from (e) that the 4F9/2 energy level (654 nm emission) 

would always need 3 photons to be populated. Fig 5.16(f) depicts the 980 nm process using and 

extra photon unnecessarily between 4I13/2 and 4I9/2. The extra photon illustrates the inefficiency of 

using 3 photons to emit a 552 nm photon. 

Comparing figures 5.14, 5.15 and 5.16, at low concentrations the erbium ions prefer to 

add an inefficient cycle of non-radiative decay, ESA, then non-radiative decay again to the 

starting energy level. These cycles are only interrupted as concentration increases.  It can be seen 

that the UC of 980 nm photons to 552 nm photons uses the most (3) photons when concentration 

is low and Er3+ ions are separated. As Er3+ concentration increases, the number of 980 nm 

photons decreases linearly to 2 photons. This indicates that 980 nm UC depends on the ETU of 

other nearby ions. When considering figure 4, this means that the only reason the intensity 

decreases as concentration increases is due to concentration quenching. 

 1500 nm UC does not show the same trend as 980 nm UC, meaning that it is 

dependent on different mechanisms. The UC of 1500 nm photons starts to use less photons as 

concentration increases to 20-25%, meaning that ETU is the dominant process, then rapidly 

starts using more photon as concentration increases to 50%. This indicates that the ions are close 

enough to no longer prefer to ETU their energy, but rather cross relax it to a lower energy level 

of an excited neighbor, resulting in a loss of energy. Consulting figure 5.15, even though cross 

relaxation become the dominant process, the intensity of the 552 nm emission increases until 

40% erbium concentration, meaning that the increase in number of photons used in UC also 

increases the number of photons emitted.  
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Fig 5.16(a-d): Illustrates the possible ways to UC 1500 nm and 980 nm radiation. Fig 5.16(e, f) shows two 

unnecessary non-radiative decays that cause the UC process to be less efficient. . Fig 5.16(e): Depicts how the 
4S3/2  4I15/2 transition can change between a 3 and a 4 photon processes under 1500 nm excitation.  

Fig 5.16(f):  Depicts how the 4S3/2  4I15/2 transition can change between a 2 and a 3 photon processes under 

980 nm excitation.  

Fig 5.15: Overlay comparison of the concentration dependence on the 552 

nm emissions when UC 980 nm (triangles) and 1500 nm (circles) photons. 



45 

 

CHAPTER 6 

CONCLUSIONS 

 In this thesis, samples of gadolinium tungstate doped with varying amounts of erbium 

ions were structurally and spectroscopically analyzed. The structural data from the XRD studies 

testify to the purity of the crystal structures of the sample due to no phase change being observed 

up to 50% erbium. Also, the shift in the XRD data corresponds to the consistent decrease in the 

lattice constants indicating that erbium is being consistently increased, since more, tinier erbium 

ions are replacing the larger gadolinium ions.    

Though, some error may have been made during experimentation, or during calculations, 

the results are very revealing as to what mechanisms may be involved in the up-conversion 

processes. The efficiency alone quantifies erbium doped gadolinium tungstate as a strong 

contender for applications such as solar cell up-converters. 

 The up-conversion concentration in figures 5.4 & 5.5, showcase peaks that suggest a 

most efficient concentration for up-converting 1500 nm and 980 nm incoming radiation. From 

Fig. 5.4, the maximum of the curve fit hovers around 20% concentration for both (a) & (b). 

Fig 5.5(a) locate its curve maximum near 45%, however, (b) does not showcase any peaks or 

maxima. As stated before Fig 5.5(b) may need a higher power polynomial to adequately describe 

its line of best fit.  

 The power dependent graphs reveal the slopes of each concentration under different 

excitation, monitoring different emissions. The slopes are then plotted by erbium distance versus 

photon number. The 2H11/2 energy level ranged from requiring 3 to 4 1500 nm photons or 2 to 3 

980 nm photons. The 4I9/2 energy level ranged from a 2 to 3 1500 nm photon processes. The 

possible up-conversion mechanisms are illustrated in figure 5.16, showing how the efficiency 

can be undermined if there is too much concentration. As concentration increases, erbium uses 

less 980 nm photons to produce 552 nm photons mainly via ETU, however after 30% 

concentration the 552 nm emission starts becoming quenched. Erbium ions use less 1500 nm 

photons to UC as concentration increases to 25% due to ETU, then dominant process becomes 

cross relaxation. Until 40% erbium concentration, the cross relaxation process still produces 

more 552 nm emissions, when the emissions die due to concentration quenching. 



46 

 

Future work could be done to calculate the lifetime of the excited states and the quantum 

efficiency of the processes. Also, work can be done to derive the power of the excitation sources 

in order to have more precise results. Also, even though the number of photons used in order to 

emit one higher energy photon is known, the number of total photons absorbed by the phosphor 

is not. If we knew the ratio of emitted UC photons to the total number of photons absorbed and 

emitted then the quantum efficiency and energy yield could be calculated. Another experiment to 

be conducted would be a direct solar energy test of the UC capabilities of the phosphor. Then, 

later the phosphors can be tested while applied to a solar cell. Not only could this test how well it 

can UC but to also analyze how much of an improvement is made to the solar cell. 
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