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ABSTRACT 

Drill stem vibration is a major cause of premature failure of drill stem components 

and drilling inefficiency. In severe cases, drill stem vibration may lead to wellbore 

instability that could lead to increased operational cost. Drill stem vibrations are affected 

by design decisions and the drilling environment. Examples are; bottom hole assembly 

configurations, selection of operational parameters, and frequent changes in lithology. 

Vibration modeling, analysis of vibration data, and specialized vibration reduction tools 

are methods in use to prevent and mitigate severe vibrations. 

A drill stem vibration model was created using nonlinear strain formulation which 

couples the axial, lateral and torsional vibration of the entire drill stem. The model includes 

the effect of geometric stiffening arising from the applied axial load, two new developed 

vibration reduction tools used to reduce drill stem vibrations and fluid flow inside and 

outside the drill stem taking into account two different fluid rheological models. The 

obtained equation of motion was assembled using the finite element analysis which was 

solved numerically in Matlab®.  

The sensitivity analysis using Euler-Bernoulli and Timoshenko models, showed 

that the Euler-Bernoulli assumption is satisfactory when modeling drill stem vibrations at 

typical drilling conditions. Analyzing three adjacent wells in the North Sea with different 

bottom hole assembly and recorded vibration data, revealed that including drill stem 

vibration reduction tools reduces drill stem vibration and decreases stick-slip tendency. 

Including drilling fluid circulation, by imposing dynamic pressures on the inside and 

outside of the drill stem, affect lateral natural frequencies. High flow rate and wrong 

selection of total flow area at the drill bit could lead to vibrations.  
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1. INTRODUCTION 

1.1. OVERVIEW  

To drill a well into the subsurface, a drill bit is rotated to crush and shear the rock 

at the bottom of the well. The drill bit is connected to the surface with steel pipes known 

as the drill stem. At the surface, a drilling rig is used to raise and lower the drill stem. The 

rotation of the drill stem is provided by a rotary table connected to the drill stem or by an 

engine mounted in the mast (top drive). In some situations, a downhole motor powered by 

the circulating drilling fluid is added to the bottom of the drill stem to provide extra torque 

to the drill bit. To provide the necessary axial force for drilling, the drill stem consists of 

heavier weight pipes at the bottom of the drill stem, known as the bottom hole assembly 

(BHA), while regular drill pipe connects the bottom hole assembly to the surface (Figure 

1.1.a).  

 

 

 
Figure 1.1. Schematic of a Drill and Vibration Modes: (a) Drill Stem Including Bottom 

Hole Assembly (BHA) and Drill Pipe (b) Model Configuration (c) Axial Vibration Mode 

(d) Torsional Vibration Mode (e) Lateral Vibration Mode 
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Due to the drill stem weight and fluid buoyancy forces the upper section of the drill 

stem is in tension, while the bottom section is in compression. To decrease lateral 

deflections of the bottom hole assembly stabilizers of larger diameter than the BHA are 

incorporated at multiple locations within the BHA.  

When drilling, a fluid pump is pumping fluids into the drill stem which is circulated 

though the drill bit and back to the surface through the wellbore annulus (i.e. space between 

the drill stem and the wellbore wall) in order to lift rock fragments out of the wellbore, and 

to provide the necessary pressure to keep the wellbore stable while drilling. 

The efficiency of the drilling process is evaluated based on the speed of drilling 

(i.e. rate of penetration in m/h) and the amount of time spent on drilling problems (i.e. non-

productive time). Drill stem vibrations have been recognized as one of the main causes of 

drilling inefficiency. High magnitudes of drill stem vibrations increases dynamic stress per 

cycle leading to premature failure of the drill stem, interference with measurements while 

drilling, and damage to the drill bit (Heisig and Neubert, 2000; Cobern et al. 2007). During 

drilling, the drill stem (Figure 1.1.a) may encounter vibrations due to various reasons such 

as the cutting action of the drill bit, drill stem contact with the wellbore wall, and operating 

at critical speeds.  

Drill stem vibrations can be categorized into axial (Figure 1.1.c), torsional (Figure 

1.1.d), and lateral (Figure 1.1.e) vibration modes. Axial vibration is the up and down 

movement of the drill stem along its vertical axis. Torsional vibration is defined as the 

twisting movement of the drill stem components (drill pipe, BHA and bit) during rotation. 

Lateral vibration is the drill stem movement perpendicular to its neutral axis. While 

drilling, all three modes of vibration occur at the same time, however one mode will be 

more dominant (Dunayevsky et al. 1993). Destructive vibration can occur with each 

vibration mode. These destructive vibration are bit bounce associated with axial vibrations, 

stick-slip associated with torsional vibrations, and forward/backward whirl associated with 

lateral vibrations (Ahmadian et al. 2007). Bit bounce can be described as the drill bit 

repeatedly losing contact with the formation when drilling. Stick-slip occurs when the 

rotation of the drill string is slowed down or stopped at the bottom and released when the 

torque overcomes the friction resisting the drill stem rotation, it is the most severe torsional 

vibration phenomena. Whirl is a special case of lateral vibration defined as an off center 
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rotation of the drill stem, which could either follow or be opposite to the drill stem rotation 

(i.e. forward or backward whirl). 

The drill stem is a complex structure due to the random nature of different dynamic 

forces caused by the changes in rock type and operational parameters. Drill stem vibrations 

are more severe in the bottom hole assembly, since the BHA is in compression (Piovan and 

Sampaio, 2006). The BHA excitation mechanism depends strongly on the type of drill bit 

(Spanos et al. 2002).  

In an attempt to reduce damaging drilling vibrations, both memory (Schen et al. 

2005) and real time (Arevalo and Fernandes, 2012) vibrations measurements are recorded 

to understand the dynamic behavior of the drill stem. Vibration measurement devices 

consisting of accelerometers can be installed at multiple locations within the bottom hole 

assembly to investigate the downhole dynamic environment of the drill stem. Another 

approach to reduce vibration is to include special tools designed to reduce vibrations in the 

BHA (McCarthy et al. 2011; Bouziane et al. 2012; Hutchinson et al. 2013; Gaines et al. 

2013).  

Modeling the drill stem dynamic behaviors are also utilized to avoid severe 

vibrations. Different drill stem vibration models have been introduced to predict resonance 

regions and determine contact points with the wellbore, consequently selecting optimum 

BHA components and operating parameters, such as weight on bit (WOB) and rotational 

speed (RPM) (Dunayevsky et al. 1993).  

 

 

1.2. LITERATURE STUDY 

In simplified form, the drill stem can be modeled as a stationary beam having a 

rigidity of ( ), and linear mass density  (Figure 1.2.a), where  is the Yong’s Modulus 

and  is the moment of inertia. When a force acts on the beam ( ) the amount of deflection 

 is related to the applied force and the beam stiffness; which is a function of Young’s 

modulus, the area moment of inertia of the beam cross-section, length of the beam, and 

beam boundary conditions Fixed-Free boundary conditions shown in Figure 1.2.a.  
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Figure 1.2. Fixed-Free Beam (a) Deflection due to Applied Force (b) Sinusoidal Wave 

with Constant Frequency 

 

 

When the beam is under stress, the ratio of the transverse to axial strain (expansion 

ratio) is defined by the Poisson’s ratio. The beam becomes stiffer under axial load due to 

the axial-transvers coupling, which causes large deformation.  This effect is known as the 

geometric stiffening that is addressed by either simplified coupling of axial force to 

bending strain or by nonlinear stain displacement relationships. If a beam is under stress, 

the beam exhibits multiple forces such as the bending moment, rotary inertia, and shear 

forces. Euler-Bernoulli theories simplifies the beam deflection by assuming negligible 

rotary inertial effect when the beam is under stress. Rayleigh theory extends the Euler-

Bernoulli assumption by including the effect of rotary inertia on the transverse beam 

deflection. The Timoshenko beam theory is a further development of Euler-Bernoulli and 

Rayleigh assumptions, where the bending moment, rotary inertia, and shear force have a 

contribution on the transverse deflection.  

A beam is said to vibrate when the system exhibit an oscillating motion about a 

reference position. The amount of time a complete motion cycle takes place during the 

period of one second is known as the frequency ω (Figure 1.2.b). Frequency is measured 

in hertz (Hz), which is the reciprocal of the period, defined as the time of one cycle to 

complete itself (Figure 1.2.b). A body (beam) oscillating (vibrating) without applied 

external force, the body oscillation is known as the natural frequency.  
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In a static condition, the drilling fluid creates a hydrostatic pressure that acts on the 

drill stem, as the drilling fluid is assumed to be incompressible, the hydrostatic pressure 

becomes a function of the fluid density and the column depth. Drilling fluid can be 

categorized into three categories; oil base, water base, and gas/foam base. Additive 

materials are added to the base fluid to obtain desired density, viscosity, and other desired 

drilling fluid properties. Including multiple additives causes the drilling fluid to have a 

complex rheology. While drilling, the drilling fluid is circulated through the drill stem 

through the drilling bit and outside the drill stem (annulus) back to the surface using high 

pressure drilling fluid pumps. As the fluid is circulated around the wellbore, the fluid 

creates an additional dynamic pressure caused by friction (Mitchell and Miska, 2011). To 

determine the required pump pressure and thus the flow rate required, the determination of 

fluid flow frictional forces becomes an important task. The total pump pressure is obtained 

by describing the fluid motion through the drilling system, by assuming a fluid rheological 

model, in order to determine the frictional viscous forces (Mitchell and Miska, 2011). The 

viscous forces are characterized by the fluid viscosity is defined as the ratio between fluid 

shear stress and fluid shear rate (Figure 1.3).   

 

 

 

Figure 1.3. Shear Stress Versus Shear Rate for Different Fluid Rheological Models 
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When shear stress is directly proportional to the shear rate the fluid viscosity is 

constant, which defines a Newtonian fluid. Drilling fluid usually have a complex fluid 

rheology that does not have a direct relationship between shear stress and shear rate. To 

approximate the drilling fluid behavior a nonlinear relationship between fluid and shear 

stress and shear rate is used. Figure 1.3 shows the shear stress versus shear rate for different 

fluid rheological models.  

For Bingham Plastic fluid model, the fluid will start flowing when the shear stress 

(𝜏) exceeds the yield point value (𝜏0), and as the shear stress exceeds the yield point, the 

shear stress is a constant proportion to the shear rate, known as the plastic viscosity (𝜇𝑝). 

For the Power Law and Herschel Bulkley models, the shear rate and shear stress behavior 

are similar (Figure 1.3). The difference between the two models is the presence of a yield 

point in the Herschel Bulkley model. Different fluid rheological models such as Bingham 

plastic, Power Law and Herschel Bulkley models are used to represent the fluid flow 

behavior of the drilling fluid (Mitchell and Miska, 2011).    

The drill stem is submerged in drilling fluid in the wellbore causing buoyant forces 

acting on it. The Buoyancy force is an upward force applied by the fluid that opposes the 

weight of the immersed drill stem. Under fluid motion, another force rises due to fluid 

flowing around or inside the drill stem (hydrodynamic forces), where the forces acts in 

opposite direction to the body movement similar to a drag force which depends 

significantly on the fluid rheological model. 

Numerous theoretical studies have addressed the behavior of drill stem to avoid 

severe vibration levels (Burgess et al. 1987; Aslaksen et al. 2006). Two different modeling 

approaches, discrete and continuous models, of drill stem vibrations have been carried out 

to avoid harmful vibrations (Yigit and Christoforou, 1998; Heisig and Neubert, 2000; Leine 

et al. 2002; Ahmadian et al. 2007; Navarro-Lopez and Corts, 2007; Ghasemloonia et al. 

2013). The two mechanical systems are shown in Figure 1.4, where  is the Young’s 

Modules,  is the area moment of inertia,  is the linear mass density, and  is the 

lateral displacement. The discrete system (Figure 1.4.a) approach simplifies the continuous 

system (Figure 1.4.b) to an equivalent masses ( ) and an equivalent stiffness ( ) 

with the lateral displacement being . 
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Figure 1.4. Equivalent Discrete System (a) of A Continuous Stepped Beam (b) 

 

 

The equation of motion of a discreted model is describe by a set of ordinary 

differential equations (ODE’s), which are simpler to deal with, while the continuous system 

equation of motion is described by partial differential equations (PDE’s).  

In situations where the differential equation of motion cannot be integrated in a 

closed form (i.e. analytical solution), numerical approach must be used. Several numerical 

integration methods are available to obtain the solution to the equation of motion; some of 

these methods are finite difference, Runge Kutta and Newmark integration method (Rao, 

2001). Numerical integrations are not intended to satisfy the equation of motion at all the 

time but they will satisfy the equation of motion only at a discrete time interval. 

1.2.1. Discrete System Approach.  A discrete system approach (also known as 

lumped mass) is a simplified method where the target system (in this case the drill stem) is 

divided into a number of stages describing its motion by a number of ordinary differential 

equations. A coupled axial-lateral vibrations of the drill stem, including the contact forces 

with the wellbore wall, was addressed by Christoforou and Yigit (1997) using the Rayleigh 

beam theory. The Rayleigh beam theory is an extension of the Euler-Bernoulli beam 

theory, where the Rayleigh theory includes the effect of rotary inertia which is not 

considered in the Euler-Bernoulli theory. Their model took into account only the BHA part 

of the drill stem. The lower portion of the BHA was assumed to be under combined axial 

and lateral motion while the upper portion of the BHA was assumed to exhibit only axial 

motion. They showed that parametric resonance and whirling could occur within the range 

of operating drilling condition due to coupling effect. Yigit and Christoforou (1998) used 

a discrete model to investigate the effect on the drill stem stability when coupling torsional 

and bending modes. The coupled equation of motion between the two modes were obtained 

by applying Newton’s law in polar coordinates and the bit rock interaction force was 
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assumed to be related to the bit motion (coupling term). Their study showed that instability 

may occur at critical speeds that does not consider to be critical when using an uncoupled 

linear model.  

Navvaro-Lopez and Corts (2007) used a discrete vibration model to quantify 

torsional vibrations of the whole drill stem to study the stick-slip phenomena and the 

influence of the weight on bit on torsional vibration stability. The coupling between WOB 

and torsional vibration was introduced by the forces applied at the bottom of the drill stem 

(torque on bit) caused by the contact with the formation. However, axial and lateral motions 

were not considered in their model. They depict that not only applied forces have an effect 

on drill stem behavior, but also the system equilibrium state have changed the drill stem 

dynamic behavior.  

A coupled stick-slip and whirl model was given in Leine et al. (2002) using a 

lumped mass model, including fluid forces as an external interaction force (i.e. 

hydrodynamic force). They concluded that the stick-slip motion is more likely to occur at 

lower angular velocities while backward whirl is more likely to occur at higher angular 

velocities. Melakhessou et al. (2003) modeled lateral and torsional vibrations considering 

only the BHA. For torsional vibrations, the model accounted for the rolling of the BHA 

with and without slip along the wellbore wall. The contact zones were determined using a 

discrete four-degree-of-freedom model. They obtained the equation of motion using the 

Lagrange mechanics and solved the equation of motion numerically using a Runge Kutta 

algorithm. 

Later, Liao et al. (2011) extended the work of Melakhessou et al. (2003) by 

considering the impact of the induced friction between the drill stem and the wellbore wall 

with a discrete model formulation with a qualitative comparison with an experimental 

study. It was concluded that a higher friction coefficient destabilizes the drill stem motion. 

Stick-slip induced by drag bits was modeled using a discrete model that takes into account 

axial and torsional vibration modes by Richard et al. (2007). They concluded that the 

decrease in the rotational speed and applied torque at the bit while drilling was due to the 

drill stem response to the applied forces, rather than being due to the magnitude of the 

contact force of the drill bit and the formation. Despite the increase of applied rotational 

speed caused a decrease in the depth of cut and lower penetration rate. 
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1.2.2. Continuous System Approach.  The continuous system approach is more 

complex, since the motion of the target system (drill stem in this case) is described by 

partial differential equations which are more difficult to solve compared to ordinary 

differential equations. In 1960, Bailey and Finnie introduced the first analytical uncoupled 

dynamic model to obtain the natural frequency of a drill stem. The model was based on an 

elastodynamic (elastodynamic refers to the study of elastic wave with time variation in 

elastic media) non-rotating beam model. Later, additional continuous models were 

developed to study different parameters effect on drill stem vibration (Chen and Geradin 

in 1994; Yigit and Christoforou, 1998; Ahmadian et al. 2007; Ghasemloonia et al. 2012). 

Continuous models can be categorized based on thet hree vibration modes; axial, torsional, 

and lateral modes. With the improvement of computational power, the coupling effect was 

addressed later (i.e. axial-lateral, axial-torsional, torsional-lateral).  

The effect of torque and spatial varying axial loads were addressed by 

Ghasemloonia et al. (2012) using a continuous analytical model. The spatial axial force 

(axial force along the drill stem) was assumed to be in tension for the upper portion of the 

drill stem while the BHA is in compression. The torque was modeled as a bending moment 

force due to the bending curvature. Their study concluded that lateral natural frequencies 

are more sensitive to the change in WOB rather than torque.  A coupled axial-torsional-

lateral vibrations model was developed by Ahmadian et al. (2007) to investigate the 

parametric resonance (resonance due to fluctuation of WOB) of the drill stem. The 

continuous model coupled the axial and lateral vibration modes using nonlinear elastic 

deflections, while the discrete torsional mode was coupled through the applied torque and 

rotary speed. Their model showed that parametric resonance could occur occasionally 

within the safe operating condition of the drill stem due to coupling effects.  

Ghasemloonia et al. (2013) took a different approach to analyze vibration by 

coupling axial and lateral vibrations in the BHA to evaluate if vibrations can improve the 

rock removal by the bit, and hence improve rate of penetration. The use of the Euler-

Bernoulli beam theory was adopted assuming a compressive spatial axial force acting 

throughout the BHA.  It was observed from the study that lateral vibrations are more severe 

in the upper portion of the BHA, while the most severe axial vibrations were located at the 

bottom of the BHA. The model was later modified to include the effect of different axial 
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shock sub designs (Ghasemloonia et al. 2014). The effect of axial load on lateral vibrations 

using a multiple degrees of freedom Euler-Bernoulli beam theory model was analyzed for 

the BHA portion of the drill stem only (Payne, 1992).  The influence of drilling fluid forces 

on the drill stem was included as an added mass. The effect of stress stiffening due to the 

axial forces was included as a constant applied axial force for the entire BHA.  

The influence of the axial force and rotary inertia on the BHA lateral vibrations 

were investigated using Timoshenko beam theory by Chen and Geradin in 1994.  The 

gyroscopic effect was concluded to be negligible due to the low rotation speed. However, 

the conclusion was not supported by a sensitivity analysis or comparison with data.  The 

effect of pre-stress configuration of a rotating drill stem was investigated by comparing an 

uncoupled linear and nonlinear-coupled Euler beam theory (Trindade et al. 2005). Fluid 

forces were not accounted for in their model, while a spatial axial force was applied so the 

BHA is in compression and the drill pipe is under tension. A relatively large difference in 

vibration amplitude was noticed when comparing the uncoupled linear with the nonlinear 

formulation due to the geometric nonlinearity. Ritto et al. (2009) followed the same 

approach as Trindade et al. (2005) in obtaining the geometric nonlinear stiffness from the 

axial loading using Timoshenko beam theory, and including drilling fluid forces. Their 

study showed that the presence of fluid forces changed the dynamic response and amplitude 

of lateral vibrations by comparing the lateral mode shape and drill stem response of the 

cases with no fluid and the case with fluid. 

1.2.3. Effect of Drilling Fluid.  The fluid effect on drill stem vibration has been 

addressed in multiple studies (Jansen, 1991; Chen and Geradin, 1994; Ahmadian et al. 

2007; Ritto et al. 2009; Ghasemloonia et al. 2014). One way of including the influence of 

drilling fluid is by including an added mass and dampening term to the drill stem equation 

of motion. The drilling fluid added mass is included by substituting the drill stem density 

with an effective density based on the fluid mass and a variable volume term defined as the 

ratio of the wellbore diameter to the drill stem outside diameter (Chen and Geradin, 1994; 

Yigit and Christoforou, 1998; Sahebkar et al. 2011). The variable volume term is a 

simplified approach to increase the fluid force acting on the drill stem by reducing or 

increasing the clearance between the drill stem and the wellbore wall (outside annular 

space) with a constant added mass term. The influence of fluid forces exerted in two 
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perpendicular planes (as used in rotor dynamics) was used to account for drilling fluids by 

Leine et al. (2002). 

Paidoussis et al. (2008) included the effect of drilling fluid flowing downward 

inside the drill stem then flowing back in the annulus assuming constant flow velocity, 

linear varying pressure with depth, and zero pressure at the outlet surface (Figure 1.5). 

They concluded that the effect of the internal and annular flow is sensitive to the annular 

space between the drill stem and the wellbore. Jafari et al. (2012) used Paidoussis et al. 

(2008) fluid interaction with the drill stem formulation and concluded that the drilling fluid 

could destabilize the drill stem. Later, Ritto et al. (2009a) adopted Paidoussis et al. (2008) 

fluid formulation to investigate the fluid effect on drill stem dynamics, including its natural 

frequencies. They revealed that fluid flow has a small effect on lateral vibrations, while 

axial and torsional vibrations are not affected. 

 

 

 

Figure 1.5. Fluid Path Model Developed by Paidoussis et al. (2007) 

 

 

1.2.4. Vibration Dampening Tools.  Lately, the industry has been addressing 

vibration by including tools in the drill stem to mitigate vibration. Multiple devices have 
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been developed and used in the BHA to reduce the effect of vibration on the BHA. One of 

the earliest vibration reduction tool was introduced in the 1960’s to reduce axial vibrations 

known as shock subs (Warren and Oster, 1998).  

The Anti-Stall technology (AST), shown in Figure 1.6, is one of the more recent 

vibration reduction tools used while drilling (Selnes et al. 2009). It consists of a mechanical 

hydraulic converter placed in the lower part of the drill stem (Figure 1.6).  

 

 

 

Figure 1.6. Anti-Stall Technology Vibration Reduction Tool used within the Bottom Hole 

Assembly (www.tomax.no, 2012) 

 

 

The tool is placed on top of the BHA and balances the surface torque against the 

reactive torque from the bit (Figure 1.6). Any disturbance in torque, such as a spike caused 

by the cutter being stuck in the formation, will cause a contraction of the tool. This 

contraction instantaneously reduces the weight on the cutters and the contraction continues 

until the weight is reduced enough so that rotation can continue with the available torque. 

As rotation continues the internal spring in the tool will re-apply the initial weight. If the 

torque builds back up the tool will repeat the process. 

The V-Stab is a dampening tool that minimizes both the magnitude and frequency 

of drilling vibrations by inducing forward synchronous whirl (McCarthy et al. 2011). V-

Stab is an asymmetric tool that has two blades with diameter similar to the wellbore 

diameter (Figure 1.7).  
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Figure 1.7. V-Stab Vibration Reduction Tool used within the Bottom Hole Assembly 

(www.nov.com, 2012) 

 

 

1.2.5. Critical Review.  The drill stem vibration models mentioned above have 

different assumptions, use different modeling approaches, and include various vibration 

modes. Some of these models considers axial, torsional or lateral vibration modes (Bailey 

and Finnie, 1960), and others used coupled models such as axial-lateral (Christoforou and 

Yigit, 1997), torsional-lateral (Melakhessou et al. 2003), axial-torsional (Richard et al. 

2007) or fully coupled that includes axial-torsional-lateral (Ritto et al. 2009). Most of the 

coupled models are coupled using either excitation point of contact, forces acting on the 

drill bit, or nonlinear strain energy formulation.  

The modeling techniques used to model the drill stem vibrations are divided into 

discrete and continuous models. The use of the discrete system enables modeling of 

complex system with nonlinear forces in a simplified approach. The use of the discrete 

system gives the advantages of dealing with simplified set of ordinary differential 

equations that provides fast computation of the system equation of motion. However, the 

use of discrete system hinders the ability to include major forcing factors such as the 

distributed axial load due to the weight of drill stem, which cause geometric softening of 

the BHA.  

Different beam theories have been adopted as the basis of several drill stem 

vibration studies that uses continuous system approach. The most widely used theory is 



14 

 

 

Euler-Bernoulli beam theory (Payne, 1992; Ghasemloonia et al. 2012; Spanos et al. 2002). 

Another beam theory that was adopted is Rayleigh beam theory (Christoforou and Yigit, 

1997). In a simple way, Rayleigh beam theory adds the effect of rotational inertia of the 

cross section, which it is neglected in Euler-Bernoulli beam theory. Timoshenko beam 

theory was also adopted in multiple studies (Chen and Geradin, 1994; Ritto et al. 2008). 

The use of Timoshenko beam theory increases the degrees of freedom by including the 

effect of both transverse shear strain and rotary inertia. Table 1.1 summarizes the 

differences between the three beam theories.  

 

 

Table 1.1. Comparison of the Euler-Bernoulli, Timoshenko and Rayleigh Beam Theories 

Beam Models 
Bending 

moment 

Lateral 

displacement 

Shear 

deformation 

Rotary 

inertia 

Euler-Bernoulli    

Timoshenko    

Rayleigh    

 

 

This raises the need to evaluate the difference between the widely used Euler-

Bernoulli’s and Timoshenko’s beam theory under general drill stem forces applied while 

drilling.  

Given that different parts of the drill stem is in compression and tension 

simultaneously, the effect of distributed axial force needs to be modeled. The distributed 

axial load can be modeled with two different methods. The first approach assumes the 

applied WOB to be constant for the whole BHA (Payne, 1992; Chen and Geradin, 1994; 

Heisig and Neubert, 2000). While the second approach use nonlinear coupling between the 

axial and lateral modes to simulate the quasi-static behavior of the drill stem for a given 

applied WOB (Trindade et al. 2005; Ritto et al. 2009). The advantages of using the second 

method, is that the neutral point, where no stress theoretically excited, can be obtained 

directly by performing a static analysis, and the exact deformation for each eleemtn can be 

obtained.  
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Two methods have been used to simulate the effect of drilling fluid on drill stem 

vibrations. The first method treats the fluid as an added mass that uses the effective density 

of the drill stem when submerged in drilling fluid (Payne, 1992; Chen and Geradin, 1994; 

Yigit and Christoforou, 1998; Sahebkar et al. 2011). The forces exerted by the fluid on the 

drill stem were studied by Leine et al. 2002, however, the influence of drilling fluid flowing 

downward inside the drill pipe and upward in the annulus while circulation was not 

considered. Drilling fluid forces acting inside and outside the drill stem were addressed in 

Paidoussis et al. (2008) and Ritto et al. (2009)  models that included the fluid interaction 

assumes the fluid flows axially with constant flow velocity, and the fluid inside the drill 

stem is assumed to be inviscid and the fluid in the annulus is assumed to be viscous. The 

effect of the actual applied hydrostatic pressure acting on the drill stem was neglected in 

all previous models.  

Incorporating vibration dampening tools in the drill stem BHA has been included 

in one study, where the effect of different axial shock sub designs was studied in a coupled 

analytical axial lateral model (Ghasemloonia et al. 2014). However, the modeling effect of 

torsional damping subs or imbalance vibration subs have not been addressed in any study.  

 

 

1.3. RESEARCH OBJECTIVES  

The main objective of this dissertation is to study the effect of drilling fluid and 

drill stem design, including vibration reduction tools, on changing the selection of critical 

drilling operating parameters. The main objective is accomplished by addressing the 

following tasks: 

1. Construct a drill stem vibration model that takes into account the three vibration 

modes using an applicable approach (theory). 

2. Model vibration reduction tools used in the bottom hole assembly to study their 

overall effect on drill stem vibration. 

3. Incorporate the effect of drilling hydraulics and fluid rheology within the drill stem 

vibration model. 

4. Analyze the impact of drill stem vibration on drilling performance.  
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1.4. ORGANIZATION OF THE DISSERTATION  

The dissertation is divided into four chapters, where each chapter addresses the four 

tasks mentioned in the research objectives.  

Chapter 2 addresses one of the main assumptions used to model drill stem 

vibrations (task 1). A parametric study of drill stem vibrations is introduced using Euler-

Bernoulli and Timoshenko beam theories under different drilling conditions. 

The second task investigates the effect of including vibration reduction tools in the 

drill stem. In Chapter 3, analysis of vibration data collected from three wells in the North 

Sea, that includes two vibration reduction tools, is addressed. Vibration reduction tools 

used in the field of study are modeled using the finite element formulation to investigate 

the dynamic behavior of each tool, while the field data are used for the modeling 

verification. 

The third task investigates the effect of drilling hydraulics on the overall drill stem 

vibrations. The effect of the main components of drilling hydraulics such as pressure drop 

across the drill stem and fluid rheology on drill stem vibration is discussed in Chapter 4.  

The final and fourth task is intended to relate drill stem vibration to drilling 

performance. Chapter 5 investigates the effect of drill stem vibration on drilling 

performance through including the drill stem vibrations with drilling efficiency model.   
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2. PARAMETRIC STUDY OF TWO COMMONLY USED BEAM THEORIES IN 

DRILL STEM VIBRATION MODELING  

To investigate drill stem vibration behavior, continuous drill stem vibration models 

use either Euler-Bernoulli or Timoshenko beam theories. The difference between the two 

theories is established for slender beams; however as discussed in Chapter 1.2.5, studies 

on drill stem vibration use either the Euler-Bernoulli or the Timoshenko theory without 

addressing the difference. The objective of this chapter is to compare the Euler-Bernoulli 

and Timoshenko beam theories used for drill stem vibration modeling under different, yet 

realistic, drilling conditions. 

 

 

2.1. INTRODUCTION 

Continuous drill stem models mentioned previously (Ahmadian et al. 2007; 

Ghasemloonia et al. 2013; Ghasemloonia et al. 2012; Payne, 1992; Trindade et al. 2005) 

neglect the shear effect when adopting the Euler-Bernoulli beam theory (EBT) in their 

formulation. The effect of shear forces and rotary inertia is accounted for with the use of 

Timoshenko beam theory TBT (Chen and Geradin, 1994; Ritto et al. 2009). The change in 

vibration behavior using Timoshenko beam theory (TBT) rather than Euler-Bernoulli beam 

theory to model drill stem vibration was not addressed.  

The Euler-Bernoulli’s beam theory assumes that under stress, the plane cross 

section remains plane and normal to the longitudinal axis after deformation (Figure 2.1). 

For Timoshenko beam theory however, under stress the plane section remain plane but not 

normal to the longitudinal axis (Figure 2.1), which results in raising the transverse shear 

strain term accounting for shear deformation. 

This chapter investigates the difference in using nonlinear coupled Euler-Bernoulli 

and Timoshenko beam theories applied to drill stem vibration modeling at typical different 

operating conditions. The finite element formulation is used to solve the coupled Euler-

Bernoulli and Timoshenko models. Uncoupled analytical models of axial, torsional, and 

lateral vibrational modes of the drill stem are then used to verify the finite element 

formulation of both models. Both beam theories are analyzed when changing the 
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magnitude of the main forces applied to the drill stem and for different drill stem 

configurations. 

 

 

 
Figure 2.1. Mechanics of Euler-Bernoulli’s and Timoshenko Beams Theories 

 

 

2.2. DRILL STEM MODEL WITH FINITE ELEMENT FORMULATION 

The drill stem model follows the formulation given in Trindade et al. (2005) and 

Ritto et al. (2009b), where the drill stem is modeled as a rotating cylinder. The equation of 

motion was obtained with the use of the extended Hamilton’s principle (Equation 1) which 

states: 

 

  (1) 

 

Where  is the variation of the system strain energy,  is the variation of the 

kinetic energy, and  is the variation of the work done by the non-conservatives forces. 

2.2.1. Kinetic Energy.  Considering a beam rotating around its neutral axis with 

an inertial Cartesian coordinates fixed to its undeformed position. The system translation 

velocity can be written as:  
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 (2) 

 

Where , , and  are the velocities in , , and  directions respectively. The 

translation velocities and rotation around the -axis are measured from the fixed inertial 

coordinates. The inertial frame is first rotated around its neutral axis ( -axis) by , the 

resulting frame is than rotated around the -axis by , and finally the resulting frame is 

rotated around the -axis by  (Figure 2.2).  

 

 

 
Figure 2.2. Rotation of Orthogonal Strain Axis Coordinate System 

 

 

Hence, the angular velocity of the system can be obtained as:  

 

 (3) 

 

Where,  is the transformation matrix referring back to the inertial frame. Thus, 

the kinetic energy is written in the following form:  
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 (4) 

 

Where,  is the mass density, and  is the cross sectional inertia defined as: 

 

 (5) 

  

Where  is the moment of inertia,  is the polar moment of inertia. 

2.2.1.1 Euler-Bernoulli beam theory.  The Euler-Bernoulli beam theory assumes 

the cross section stays rigid to its own plane resulting in a negligible transverse shear 

strain within the cross section. As a result, the bending angles  and  are defined 

as:  

 

 (6) 

 

The superscript prime refers to the spatial derivative with respect to . Substituting 

Equation 6 into the angular velocity expression in Equation 3 yields: 

 

 (7) 

 

With a few algebraic simplifications and assuming constant rotational speed  and 

neglecting the higher order terms, the kinetic energy can be expressed as:  

 

 (8) 

 



21 

 

 

Where the superscript dot refers to derivative with respect to time. The kinetic 

energy was discretized using the finite element formulation with a linear shape function 

assigned for both the axial  displacement and the twisting angle  and a cubic 

polynomial shape function for lateral displacements ( , ) (Piovan and Sampaio, 2006). 

The displacements can be written in discretized form in term of their shape functions as:  

 

 (9) 

 

Where  is the shape function corresponding to each degree of freedom (listed in 

Appendix A),  is the dimensionless length , and  is the vector of nodal displacement 

of two node element (Figure 2.3) expressed as:  

 

 (10) 

 

 

 
Figure 2.3. Degree of Freedom for One Drill Stem Element 
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Applying Hamilton’s principle in Equation 1, and taking the first variation of the 

kinetic energy, the mass and gyroscopic matrices, assuming constant rotational velocity, 

can be expressed as: 

 

 

 

(11) 

 

  (12) 

 

2.2.1.2 Timoshenko beam theory.  The Timoshenko beam theory takes into 

account the shear force and the shear angle, thus, the drill stem angular velocity is given 

as: 

 

 (13) 

 

Following the same procedure as the Euler-Bernoulli model, assuming constant 

rotational velocity and neglecting the higher order terms, the kinetic energy takes the 

following form: 

 

 (14) 

 

Again, the kinetic energy was discretized using finite element formulation with a 

linear shape function assigned for both the axial ( ) displacement and the twisting angle 

, cubic polynomial shape function for the lateral displacements ( , ) (Ritto et al. 

2009). In addition for Timoshenko beam theory, quadratic polynomial was assigned to the 
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bending angles ( , ). The displacements and rotations are expressed in their discretized 

form, in term of their shape functions, as: 

 

 (15) 

  

Where  is the shape function corresponding to each degree of freedom (listed in 

Appendix A),  is the dimensionless length defined with , and  is the vector of nodal 

displacement of two node element expressed as:  

 

 (16) 

 

Taking the first variation of the kinetic energy, one could express the mass and 

gyroscopic matrices for a constant rotational speed as: 

 

 

 

(17) 

 

 (18) 

 

2.2.2. Strain Energy.  The strain energy is expressed in term of stress and strain 

as:  

 

 (19) 
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Where,  is the strain tensor, and  is the stress tensor. Assuming an isotropic 

material and the deformation gradient in the -direction is much larger than the  and  

directions, the stress and strain components simplifies to: 

 

 

 

As a result, the Lagrangian strain tensor simplifies to: 

 

 (20) 

 

Where the axial strain and shear strain are defined in term of displacements as: 

 

 (21) 

 

2.2.2.1 Euler-Bernoulli beam theory.  Assumption the deformation gradient in 

the -direction is much larger than the deformation in the  and  directions, the Euler-

Bernoulli’s stress tensor reduces to:  

 

 (22) 

 

Where,  and  are the Young’s modulus and shear modulus respectively. 

Substituting Equation 20 and Equation 22 in the strain energy expression Equation 19 

yields:  

 

 (23) 
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The displacement in the undeformed configuration is defined as (Piovan and 

Sampaio, 2006): 

 

 (24) 

 

Upon substituting Equation 21 and Equation 24 into Equation 23 and integrating 

over the area, the strain energy will consist of linear and nonlinear terms. The linear part 

of the strain energy ( ) in term of displacement is: 

 

 (25) 

 

Considering up to the third order products, the simplified nonlinear term of the 

strain energy ( ) is expressed in term of displacement as:  

 

 (26) 

 

Using the finite element to discretize the strain energy, the linear portion of the 

strain energy yields the standard Euler-Bernoulli stiffness matrix ( ), while the nonlinear 

part, when only axial load initially exist, gives the geometric stiffness matrix ( ): 

 

 (27) 

   

 

 

 

  

(28) 
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Where,  in Equation 28 depends on the initial deflection (initial static 

equilibrium configuration).  

2.2.2.2 Timoshenko beam theory.  Following the same assumption made for the 

Euler-Bernoulli formulation, the stress tensor for the Timoshenko beam theory is:  

 

 (29) 

 

Where, , , and  are the Young’s modulus, shear modulus, and the shear factor 

respectively. Substituting Equation 20 and Equation 29 in the strain energy expression 

(Equation 19) yields:  

 

 (30) 

 

The displacement in the undreformed configuration is defined as (Ritto et al. 2009): 

 

 (31) 

 

Upon substituting Equation 31 into Equation 21 then into Equation 30 and 

integrating over the area, the strain energy yields both linear and nonlinear terms. The linear 

part of the strain energy ( ):  

 

 (32) 

 

Considering up to the third order products, the simplified nonlinear term of the 

strain energy ( ) is:  
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 (33) 

 

Using the finite element method to discretize the strain energy, the linear portion of 

the strain energy yields the stiffness matrix , while the nonlinear part yields geometric 

stiffness matrix  that couples the axial, lateral, and torsional modes: 

 

 (34) 

  

 (35) 

 

2.2.3. Forces on the Drill Stem.  The main forces applied to the drill stem 

considered in this chapter are the rotational speed applied by the rotary table on top, gravity 

force, and fluid force. The work done by the gravity force is written as: 
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 (36) 

 

Taking the first variation of Equation 36 followed by discretizing the variation of 

the gravity force equation, the gravity force vector is obtained as: 

 

 (37) 

 

The fluid interaction forces included in this chapter follows Ritto et al. (2009). The 

simplified fluid model assumes the fluid flow inside the drill stem to be inviscid, while the 

fluid outside the drill stem to be viscous and the pressure varies linearly with depth. The 

fluid flow is assumed to be linear with no axial rotation. The discretization of the fluid 

forces yields the added mass matrix ( ), and fluid stiffness ( ) expressed as:  

 

 (38) 

 

 (39) 

 

Where,  is the fluid mass per unit length,  is the fluid density per unit length, 

 is the outside flow area,  is the inside flow area,  and  are the fluid velocity 

inside and outside the drill stem respectively,  is a confinement parameter that’s always 

equal or less than 1 and it’s defined as: 
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 And  are the pressures inside and outside the drill stem defined as:  

 

 (40) 

 

The frictional viscous force  is defined in term of fluid density, viscous 

damping coefficient ( ), outside velocity, and the flow diameter  as: 

 

 

 

The axial force caused by the fluid flow is written as:  

 

 (41) 

 

2.2.4. Equation of Motion.  Applying the extended Hamilton’s principle and 

assembling the element matrices, the equation of motion can be expressed as: 

 

 (42) 

 

Where,  is the reaction force at the bit,  is the system gravitational force,  is 

the system axial fluid force, and  is proportional damping matrix. The proportional 

damping matrix is defined as: 

 

 (43) 

  

To obtain the geometric stiffness matrix, the initial deformation is first solved for 

in static configuration. The time invariant forces in the equation of motion are , , and 

the static reaction force . The drill stem is assumed to be initially at rest with fixed axial 
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and lateral motion on top and at the stabilizer locations, thus the initial deformation ( ) is 

obtained as:  

 

 (44) 

 

For the boundary conditions, the drill stem is assumed to be fixed in the axial and 

lateral motion on top (rotary table) and a constant axial rotational speed is imposed. On the 

bottom (bit), lateral and axial displacements are constrained. To account for added 

stabilizers, the lateral displacements are locked at each stabilizer location. To obtain the 

natural frequencies and mode shape, the generalized Eigenvalue problem is formulated as: 

 

 (45) 

 

Where,  is the eigenvalue and  is the eigenvector. Computational details are 

found in Appendix F.  

 

 

2.3. FINITE ELEMENT MODEL VERIFICATION  

2.3.1. Presentation of Uncoupled Non-Stressed Analytical Models.  Uncoupled 

analytical axial, torsional, and lateral models were used to verify the finite element 

models. Both the Euler-Bernoulli and Timoshenko models were used for the lateral 

model verification. The free axial natural frequencies were obtained by solving the 

equation of motion (Equation 46) obtained using Hamilton’s principle (Appendix B): 

 

 (46) 

 

Where,  is the axial displacement. Up on separating the spatial domain and 

assuming fixed boundary conditions at the top and bottom with enforcing continuity 

boundary conditions, at the interface between drill pipe and drill collar, the axial natural 
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frequencies are obtained. Solution to the equation of motion is located in Appendix F, 

where the equation of motion was solved in MapleSoftTM. 

For the uncoupled analytical torsional model, the free natural frequencies were 

obtained by solving the torsional equation of motion (Equation 47) obtained by Hamilton’s 

principle (Appendix C):  

 

 (47) 

 

Where,  is the torsional displacement. The boundary conditions used to solve for 

the free vibrations natural frequencies were fixed on top and free on bottom with enforcing 

continuity boundary conditions at the drill pipe and drill collar interface, similar to the axial 

mode.  

Using the Euler-Bernoulli theory, the uncoupled transverse equation of motion 

Equation 48 was obtained using Hamilton’s principle as (Appendix D):  

 

 (48) 

 

Where,  is the transverse (lateral) displacement. Fixed boundary conditions were 

assumed at both ends of the drill stem with enforcing continuity boundary conditions at the 

interface between drill pipe and drill collar. Lateral displacement was restricted at the 

stabilizer location, as another boundary condition.  

The formulation presented by Majkut, (2009) was adopted to acquire the uncoupled 

free lateral frequencies of the Timoshenko model. The unforced equation of motion of 

Timoshenko beam theory is written as: 

 

 (49) 
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Where,  is the shear angle,  is the angle due to pure bending, and  is the 

transverse lateral displacement. The equation of motion for the transverse vibration is 

presented in terms of a single equation as:  

 

 (50) 

 

The same boundary conditions used for the Euler-Bernoulli model was also applied 

to the Timoshenko model. 

2.3.2. Verification with Analytical Models.  A simplified drill stem configuration 

consisting of 1600 m drill pipe, 200 m drill collar, and a stabilizer located at 1600 m was 

chosen to compare natural frequencies of Euler-Bernoulli and Timoshenko finite elements 

formulations. Table 2.1 gives a detailed specification of the simplified drill stem geometry 

and materials. 

 

 

Table 2.1. Drill Stem Configuration used for Analytical Comparison 

Component Length (m) OD (m) ID (m) 

Drill pipe 1600 0.127 0.095 

Drill collar 200 0.2286 0.0762 

Stabilizer Location 1600     

Properties  

7850 /   

2 × 1011 Pa  

6/7 (-)  

0.29 (-)   



33 

 

 

For the finite element models, the drill pipe was discretized to 83 elements, with 

the element length being 20 m, while the drill collar was discretized to 108 elements, with 

the element length being 2 m. Figure 2.4 shows the unforced natural frequencies (i.e., 

harmonics) obtained from the finite element models, using Euler-Bernoulli and 

Timoshenko models, compared with the analytical free natural frequencies. 

 

 

 
Figure 2.4. Free Vibration Frequencies Obtained From Finite Element and Analytical 

Models (a) Axial (b) Torsional (c) Lateral 

 

 

Unforced axial natural frequencies obtained with the finite element and analytical 

models are in good agreement (Figure 2.4). Torsional natural frequencies obtained with the 

Euler-Bernoulli model matches the analytical model, while a slight deviation is noticed 

with the frequencies obtained using the Timoshenko model. The Euler-Bernoulli 

frequencies are higher (Figure 2.4.b). For lateral natural frequencies, the finite element and 

the analytical models are well correlated (Figure 2.4.c). 

2.3.3. Verification With Axial Load.  Payne, (1992) used finite element 

formulation to model the drill stem BHA lateral vibration under axial load using the Euler-

Bernoulli beam theory. The effect of axial load on lateral vibration was considered through 

a coupled simplified model in the Payne, (1992) formulation. Both Euler-Bernoulli and 

Timoshenko models were used to calculate the BHA’s lateral natural frequencies to verify 
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the models with axial loads. The BHA configuration used by Payne, (1992) is listed in 

Table 2.2. 

 

 

Table 2.2. BHA Configuration used by Payne (1992) 

Component Length (m) OD (m) ID (m) 

Heavy weight Drill pipe 34.3 0.171 0.071 

Drill collar 16.9 0.203 0.071 

Stabilizer 1 Location 3.8 Pinned Boundary 

Stabilizer 2 Location 23.6 Pinned Boundary 

Stabilizer 3 Location 34.3 Pinned Boundary 

Stabilizer 4 Location 44.9 Pinned Boundary 

Stabilizer 5 Location 49.5 Pinned Boundary 

Properties  

7833 /   

 pa  

6/7 (-)  

0.29 (-)  

Axial load (WOB) 100 KN   

 

 

The boundary conditions for lateral direction were fixed boundary condition at 

surface and free boundary condition at the bit (Payne, 1992). To account of the stabilizers, 

the lateral displacement was restricted at the stabilizer location. The first three lateral 

frequencies are presented in Table 2.3. 

The first lateral natural frequency mode given in Table 2.3 shows that the Euler and 

Timoshenko based FEA results are comparable and 3% lower than reported by Payne, 

(1992). For the 2nd and 3rd lateral natural frequencies all three results are within 1.4 %. 
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Figure 2.5 shows the normalized first three mode shapes along the drill stem length. The 

resulting first three modes obtained from both Euler-Bernoulli and Timoshenko models are 

an exact match. 

 

 

Table 2.3. Calculated Lateral Natural Frequencies using Euler-Bernoulli, Timoshenko 

Models and FEA Results Reported by Payne, (1992) 

Mode 

No. 

(Payne, 1992) 

(Hz) 
Euler (Hz) Timoshenko (Hz) 

1 1.700 1.649 1.648 

2 4.200 4.203 4.200 

3 5.200 5.273 5.268 

 

 

 

Figure 2.5. Normalized First Three Lateral Mode Shapes 

 

 

2.4. PARAMETRIC STUDY OF EULER AND TIMOSHENKO MODELS  

A drill stem with a total length of 1800 m was chosen to perform sensitivity analysis 

on the Euler-Bernoulli and Timoshenko models to analyze lateral, torsional, and axial 
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natural frequencies. The drill stem consist of 1600 m drill pipe, 200 m drill collar, and two 

stabilizers. A detailed specification of the drill stem is listed in Table 2.4. 

 

 

Table 2.4. Drill Stem Configuration used for the Parametric Study 

Component Length (m) OD (m) ID (m) 

Drill pipe 1600 0.095 0.127 

Drill pipe element length 20 - - 

Drill collar 200 0.076 0.229 

Drill collar element length 2 - - 

Borehole 1800 0.3 - 

Stabilizer 1 Location 1780 Pinned Boundary 

Stabilizer 2 Location 1798 Pinned Boundary 

Properties  

7833 /   

1200 /   

0.0125 (-)  

1.5 /   

 Pa  

6/7 (-)  

0.29 (-)  

 9.81 /   

10 /   

Axial load (WOB) 100 KN   

 

 

In this analysis, the first ten modes reported for both the Euler-Bernoulli and 

Timoshenko Finite element models. Figure 2.6 shows the first ten modes (axial, torsional, 

and lateral vibration modes) obtained for the 1800 m base case drill stem geometry (Table 

2.4). 

The same trend obtained from the analytical model (Table 2.1) can also be noticed 

in Figure 2.6 for the axial (Figure 2.6.a) and lateral (Figure 2.6.c) modes. The only 

noticeable difference between the two models is the torsional natural frequencies (Figure 

2.6.b).  
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Figure 2.6. First Ten Natural Frequencies Obtained using Euler-Bernoulli (EBT) and 

Timoshenko (TBT) Finite Element Models (a) Axial (b) Torsional (c) Lateral 

 

 

Using both models, the first and 10th natural frequencies were calculated for the 

same drill stem configuration under varying axial loads. Figure 2.7 shows the effect of axial 

load on the first and 10th axial, torsional, and lateral natural frequencies, where the left axis 

shows the first natural frequencies scale and the right axis shows the 10th natural frequency 

scale in Hertz. 

As the applied axial load increases, the drill stem natural frequency decrease for 

both models (Figure 2.7). For the axial natural frequencies, the first and 10th modes 

obtained, from both models, are equal when varying the axial load. The difference in 

torsional natural frequencies did not change with changing the axial loads for either the 

first or 10th natural frequencies.  

Analyzing the lateral frequencies as weight on bit increases, the percentage 

difference between Euler-Bernoulli and Timoshenko models is increased by only 1%. 

Increasing the axial load up to 400 KN caused a decrease in lateral natural frequency by 

23.5% and 24% at the first mode and 24.25% and 25.2% at the 10th mode for Euler-

Bernoulli and Timoshenko models respectively. On the other hand, axial and torsional 

natural frequencies were not affected (less than 0.05% change).  
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Figure 2.7. First and 10th Natural Frequencies with Varying Axial Load for Euler-

Bernoulli (EBT) and Timoshenko (TBT) Models 

 

 

Figure 2.8 shows the effect on the first and 10th modes when increasing the length 

of the drill pipe while maintaining the same drill stem configuration. The left and right axes 

in Figure 2.8 follows the same conventions as Figure 2.7. 

The increase in the length of drill pipe causes the drill stem first natural frequency 

to decrease (Figure 2.8). At 500 m, the lateral frequency of the Euler-Bernoulli model is 

higher than for the Timoshenko model by 0.8% and 0.95% for the first and 10th mode 

respectively. While at 2700m, the Timoshenko model frequencies are less than those 

predicted by the Euler-Bernoulli model by 1.2% for the first and 10th mode. At higher 

torsional modes, the difference between the two model results increases. For the 10th mode 

at 540 m, the difference between Euler-Bernoulli and Timoshenko model result is 4.135 

Hz, while at 2700 m; the difference is only 0.4 Hz. The change in length of the drill pipe 
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from 500 m to 2700 m have a higher impact on the drill stem frequencies than changing 

the axial load from 0 KN to 400 KN, this is due to the wavelengths are longer compared to 

the thickness of the drill stem. The change in the drill pipe length causes a decrease in 

lateral, torsional, and axial frequencies by 46.5%, 60%, and 78% respectively, for the first 

mode, while for the 10th mode the change in frequencies was 56.5% for the lateral, 77% 

for torsional, and almost 75% for axial.   

 

 

 

Figure 2.8. Length of Drill Pipe Effect on Drill Stem First and 10th Natural Frequencies 

using Euler-Bernoulli and Timoshenko Models 

 

 

Maintaining the same drill stem configuration and the applied load, the effect of 

changing the length of drill collar on the drill stem natural frequencies is shown in Figure 

2.9, where the left and right axes follow the same conventions as Figure 2.7 and Figure 2.8. 
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Figure 2.9. Effect of Drill Collar Length on the Drill Stem’s First and 10th Natural 

Frequencies 

 

 

Increasing the length of drill collar section causes the axial and lateral natural 

frequencies to increase, while torsional natural frequency decreases for the first mode. For 

the 10th mode however, nonlinear relationship between the drill collar length and natural 

frequencies is noticed in Figure 2.9. With 100 m long drill collar, the percentage difference 

between Euler-Bernoulli and Timoshenko models is 2.6%, while with 260 m long drill 

collar, the difference is 0.8% for lateral modes. For torsional modes, the difference between 

the two models at the first and 10th modes is 7.4%. The change in drill collar length from 

100 m to 260 m caused a 20% increase in lateral frequency, a 7.5% increase in axial natural 

frequency, and a 38.5% decrease in torsional frequency. While for the 10th mode, the 
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effects were 9% increase in lateral frequency, 1.7% decrease for both Euler-Bernoulli and 

Timoshenko torsional frequency, and 3.5% decrease in axial natural frequency.  

The same drill stem configuration given in Table 2.4 (base case) is used to 

investigate the influence of fluid density on the drill stem lateral natural frequencies. At 

first, 850 /  density is used representing oil based drilling fluid, then the density was 

increased up to 1700 /  representing weighted water based drilling fluid. (Figure 2.10) 

 

 

 

Figure 2.10. Effect of Fluid Density on the Drill Stem First and 10th Lateral Natural 

Frequencies 

 

 

A 4% decrease of lateral natural frequency is caused by increasing the fluid density 

for the first mode, while 7% decrease for the 10th mode. The difference in lateral frequency 

obtained using Euler-Bernoulli and Timoshenko models is 0.8%, as density increase, the 

difference also increases by 1.8% at 1700 /  for the first mode and for the 10th mode 

the difference was 1% and 2% respectively for each model. 

The sensitivity study of Euler-Bernoulli and Timoshenko models under varying 

weight on bit, length of drill pipe, length of drill collar and fluid density shows an average 

difference of less than 1 RPM for the first mode. For the 10th mode, the difference between 

the two models under varying weight on bit, length of drill collar and fluid density is 

approximately 6 RPM. At a short length of drill pipe the difference between the two models 

was 39.5 RPM difference, which is a nonrealistic situation for drilling operation, however, 

when excluding the short length of drill pipe (540 m drill pipe length), the average 

difference between the under increasing length of drill pipe is approximately 4%.  
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2.5. SUMMARY  

In this chapter, a parametric study was performed using nonlinear six degree of freedom 

node using Euler-Bernoulli and Timoshenko theories for modeling of the drill stem 

vibration. The nonlinear finite element models, including three vibration modes derived 

here, were verified with simplified uncoupled analytical models and one existing finite 

element model. The main conclusions drawn from this chapter are:   

 

 The average difference of the lateral natural frequencies of the first ten modes using 

both models is 1.35% which translates to difference of 1 RPM, due to the 

wavelengths are long compared to the thickness of the drill stem.  

 The parametric study showed that torsional natural frequencies for the Euler model 

are higher than Timoshenko model by an average difference of 7.4% for the first 

ten modes.  

 For axial frequencies no significant change was observed between the two models. 

 The maximum difference between the two models for all vibration modes at normal 

drilling conditions translates to 6 RPM when considering the first ten modes, thus 

at normal operating conditions the use of the nonlinear Euler-Bernoulli’s 

assumptions can be justified.  

 Based on the models formulation and data used in the chapter, the increase in axial 

load reduces the lateral natural frequencies for both models with a small effect on 

axial and torsional natural frequencies.  

 Increasing the axial load and decreasing the length of the drill collar causes the 

difference of the first lateral natural frequencies between the two models to 

increase.  

 Drill stem lateral, axial, and torsional natural frequencies are more sensitive to the 

change of drill pipe length, where the natural frequencies changes dramatically 

under varying length of drill pipe.  

 Increasing the length of drill collar increases both lateral and axial natural 

frequencies and decrease torsional frequencies.  
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 The percentage difference in the first lateral natural frequency increases under 

higher axial load and shorter drill collar length. However, the percentage difference 

in the first torsional natural frequency does not change with the change of any 

parameter.  

 Including fluid forces influences lateral frequencies with a maximum change of 

5.8% at the first mode and 8% at the 10th mode. 
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3. DRILL STEM VIBRATION MODELING AND FIELD DATA ANALYSIS OF 

INCLUDING VIBRATION DAMPENING TOOLS  

To avoid severe vibrations, drill stem vibration models are used to predict and avoid 

resonance regions. In addition to avoiding critical speeds for a given BHA, specialized 

tools, such as shock subs and vibration dampening tools, are used to reduce generated drill 

stem vibrations which can occur while drilling. The axial shock sub uses an axial spring 

that is adjusted to the harmonics produced by the weight on bit fluctuations due to drill bit 

contact with the formation while drilling. The objective of this chapter is to investigate the 

causes of these vibrations as well as the effect of including drill stem vibration mitigation 

tools in the BHA design by analyzing field data and modeling vibrations.    

 

 

3.1. INTRODUCTION 

Based on the conducted literature review in Chapter 1, torsional vibration subs 

(Selnes et al. 2009) and imbalance vibration subs (Gaines et al 2013) are commonly 

deployed in modern BHA design to mitigate drill stem vibration. However limited studies 

on the performance of BHA with vibration reduction tools have been reported.  

Ghasemloonia et al. (2014) studied the effect of different axial shock sub designs 

with a coupled axial-lateral analytical and finite element vibration model. Their model 

included the effect torque, damping due to drilling fluid, spatially varying axial force, 

downhole vibration generator, and drill stem contact with the wellbore wall. The effect of 

axial shock sub was included by considered a discrete spring and dashpot damping 

component. However, they did not address torsional damping subs or imbalance vibration 

subs.  

The main objective of this chapter is to investigate the drill stem vibration, 

including analysis of vibration reduction tools in the BHA design and operating parameters 

selection in order to avoid drill stem vibrations and increase drilling performance. The first 

vibration reduction tool considered in this study is a torsional vibration sub (TVS) and the 

second tool is an imbalance vibration sub (IVS) presented in Chapter 1.2.4.  
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The investigation was carried out in two steps. The first step involved analyzing 

drill stem vibrations collected from three wells. The second step consisted of modeling the 

vibration reduction tools used in two wells. 

 

 

3.2. DRILLING AND VIBRATION FIELD OBSERVATIONS  

Drill stem vibrations were collected from three wells in the North Sea using a 

memory dynamic downhole recorder (Schen et al. 2005). The device measures lateral 

acceleration, root mean square (RMS) of lateral vibration, centripetal acceleration and 

downhole RPM. The lateral vibration measures the peak shocks in unit force g, while 

lateral RMS acceleration is used as a lateral vibration intensity indicator. The 

interpretations of both lateral and lateral RMS vibrations are tabulated in Table 3.1. The 

reservoir section consist of unconsolidated conglomerate and granitic basement. 

 

 

Table 3.1. Classification of Vibration Measurements 

Lateral Acceleration Lateral RMS Acceleration Stick-Slip 

(g’s) Severity Level (g’s) Severity Level ( -) Severity Level 

0-15 Normal 
0-2.5 Normal 

0-0.5 Low 

15-35 Moderate 0.5-1 Moderate 

35+ Severe 2.5+ Severe 1+ Severe 

 

 

The centripetal acceleration was used to evaluate torsional vibrations. Stick-slip 

severity was calculated based on the measured downhole RPM according to McCarthy et 

al. (2011): 

 

 (51) 
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Where,  refers to the difference between maximum and minimum 

downhole RPM measured in one period, which is determined by the data sampling rate, 

and  is the measured surface RPM. The interpretations of stick-slip severity 

are tabulated in Table 3.1. The three wells are located in the same area with similar geology. 

The formations’ depth and their respective thickness of Well A and Well B are listed in 

Table 3.2.   

 

 

Table 3.2. Well A and Well B Formations’ 

Formations 
Start Depth (m) End Depth (m) Thickness 

Well A Well B Well A Well B Well A Well B 

Utsira 773.5 800 869 877 96 77 

Skade 994 940 1188 1007 194 67 

Grid 1499 1276 1552 1350 53 74 

Balder 1767 1350 1778 1387 11 37.5 

Sele 1778 1387 1800 1395 21 8 

Lista 1800 1395 1881 1465 81 69 

Vale 1881 1465 1895 1485 14 20 

 

 

Vibration measurement subs were located at multiple locations in the drill stem. 

For Well A and Well B, vibrations were measured at three locations, while for Well C, 

vibration data was collected at two locations. A torsional vibration sub was used in Well 

A’s BHA, while an imbalance vibration sub was included in Well B’s BHA. Well C was a 

short section, 303 m section, drilled in the reservoir section without any vibration reduction 

tools. To reach the target depth, three bit runs were used in all three wells (Table 3.3). The 

collected drilling and vibration data used in the study were collected based on depth and 

are presented in Appendix E. The vibration measurements sub records minimum, 

maximum and average, vibrations (Schen et al. 2005). The collected data were measured 
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in non-uniform sampling rate, where the measurement subs recorders the vibrations over a 

certain period of time. 

  

 

Table 3.3. Summary of Bit Runs 

Well 

Bit 

size 

(in) 

Length 

(m) 

Damping 

Tool  

Bit 

Type 

MW 

(Sg) 

WOB 

(tons) 

Rotary 

RPM 

A 
12.25 585-1880 TS PDC 1.3 1-12 120-152 

8.5 1976-2150 TS PDC 1.34 6-13 120-150 

B 

12.25 763-1803 AVD PDC 1.3 2-6 138 

8.5 1803-1913 N/A PDC 1.2 5-9 150 

8.5 1961-2020 N/A PDC 1.2 10-12 130 

C 

8.5 2000-2200 N/A 
Roller 

Cone  
1.31 12-15 128 

8.5 2200-2270 N/A PDC 1.33 5-12 50-81 

8.5 2270-2303 N/A PDC 1.33 4-12 40-120 

 

 

Well A was drilled with a torsional vibration sub vibration reduction tool, Figure 

E.1 (Appendix E) shows the depth based data consisting of weight on bit (WOB), torque, 

surface and downhole RPM, gamma ray (GR), sonic log, lateral acceleration, lateral RMS 

acceleration, centripetal acceleration, and stick-slip indication. The first section of Well A 

with BHA 1 shows small downhole RPM fluctuations (+/- 10 RPM) at the start of the 

section (585-758 m) with normal lateral vibration and no lateral shocks (Figure E.1). In the 

Utsira formation (774- 900 m) an increase in stick-slip severity to moderate levels with the 

increase of downhole RPM fluctuations and centripetal accelerations, indicate an increase 

of drill stem torsional oscillations. The increase in stick-slip severity caused small lateral 

shocks to occur when entering the sand rich Utsira formation, as noticed by a decreased of 

GR reading. Lateral intensity (RMS) vibrations reached to the severe levels when drilling 

through this sand. This same behavior was noticed in the Grid sandstone formation as well.   

When reaming out the core section, low lateral and torsional vibration levels were observed 

when drilling with low surface RPM (around 80 RPM). After reaming down to 1975 m and 



48 

 

 

drilling commenced, downhole RPM fluctuations increased with moderate levels of stick-

slip severities for the entire section. The erratic downhole RPM caused an increase in 

torsional oscillations with a severe lateral RMS vibration for the rest of the section.   

For Well B, the first section (800-1800 m) was drilled with the imbalance vibration 

sub (IVS). Figure E.2  (Appendix E) shows the operating drilling parameters and vibration 

log data for the well. While drilling through the sandy formation from depth 800 m to 850 

m and from 950 to 1000 m, downhole RPM fluctuations increased as gamma ray readings 

decreased. At 980 m, the surface RPM was increased to 150 RPM in the sandy formation 

(lower gamma ray readings) without increasing weight on bit, which resulted in an erratic 

downhole RPM and increase in lateral vibration severity. 

The first section of Well C (2000-2200 m) was drilled with a roller cone bit. Low 

stick-slip severity and moderate level of lateral vibrations was achieved due to the bit type 

(Figure E.3 Appendix E). Lateral vibrations intensity (RMS) did not exceed the moderate 

level for the whole section. For the second and third sections of Well C, PDC bits were 

used resulting in a noticeable increase in torsional vibration and stick-slip severity. High 

frequency of erratic downhole RPM suggests torsional vibrations are dominating. Both 

sections had severe stick-slip and lateral vibrations close to the end. The stick-slip severity 

was high at the start of the section and at the end of the section. This increase in stick-slip 

caused lateral vibration to increase to the severe level. 

The influence of geological formation on vibrations were analyzed using box plots. 

Figure 3.1 shows the distribution of lateral RMS accelerations for each geological 

formation of the three wells, while Figure 3.2 shows the distribution of delta RPM 

(difference in downhole and surface RPM) for each formation. 

Figure 3.1 shows that lateral RMS vibrations were lower in every formation when 

using the imbalance vibration sub, while the maximum lateral RMS was encountered in 

the reservoir section with Well A using the torsional vibration sub. The difference in 

surface and downhole RPM (stick-slip indication) in the first formation (Utsira) using the 

torsional vibration sub was lower than the imbalance vibration sub (Figure 3.2). The 

maximum difference between surface and downhole RPM (delta RPM) was encountered 

at the reservoir section without vibration reduction tools in Well C. 
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Figure 3.1. Lateral RMS Vibrations per Formation using the Torsional Vibration Sub 

(TVS), Imbalance Vibration Sub (IVS) and No Vibration Dampening Sub (None) 

 

 

 
Figure 3.2. Difference Between Surface RPM and Downhole RPM (Delta RPM) per 

Formation using the Torsional Vibration Sub (TVS), Imbalance Vibration Sub (IVS) and 

No Vibration Dampening Sub (None) 
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Torsional vibration intensity increased at every sandy formation (below GR reading 

of 65 API), causing an increase in lateral accelerations. Two zones with low and high GR 

readings were chosen in the Grid formation to test whether there is a statistical difference 

in lateral vibrations at both zones using the t-test (Minitab 17, 2010). A high t-value 

(t=17.63) was obtained with low probability (P-value < 0.0001), which resulted in the 

rejecting the null hypotheses and the conclusion that the two samples are different. 

Statistically, the sample with low GR reading (sandy formation) had higher lateral 

vibrations than the sample with higher GR readings.  

The overall vibration data (including lateral and centripetal RMS acceleration), rate 

of penetration (ROP), and rock strength are analyzed in Figure 3.3.  

 

 

 

Figure 3.3. Well A (a) Overall Vibration, ROP, and Rock Strength (b) Isolated Region 

with Constant Rock Strength 

 

 

The rock strength was calculated based on sonic travel time correlations from to 

Hareland and Nygaard, (2007a). A section with constant rock strength was selected to 

normalize the influence of lithology (Figure 3.3a). A scatter plot of ROP and lateral RMS 

acceleration with constant rock strength (Figure 3.3b) shows the influence of lateral 

vibrations on drilling performance. The linear regression line shows a noticeable overall 
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trend, indicating that ROP tends to decrease as lateral vibration increases. Higher ROP 

(above 30 m/hr) was not seen when lateral vibrations were above 1.1 g (Figure 3.3b). 

The torsional vibration of the drill stem near the torsional vibration sub is evaluated 

by analyzing the maximum and minimum downhole RPM with respect to the surface RPM 

and measured centripetal accelerations. Figure 3.4a, b shows the applied surface RPM with 

measured downhole RPM above and below the torsional vibration sub respectively.  

 

 

 

Figure 3.4. Maximum and Minimum Downhole RPM at (a) Below the Torsional 

Vibration Sub (TVS) (b) Above the Torsional Vibration Sub (TVS) 

 

 

Two distinguished shocks (spikes) were identified below the torsional vibration 

sub. Above the TVS sub, only one shock was seen, indicating that the shock was dampened 

due to the TVS sub, and noting that stick-slip severity was in the moderate range (Figure 

3.4). At 2115 m after the second shock, surface RPM was decreased causing stick-slip 

severity to decrease. 

Lateral RMS vibration severity measured near the bit, below and above the 

torsional vibration sub versus weight on bit (WOB) and applied rotary speed is shown in 

Figure 3.5(a, b, c) respectively for Well A. 

The behavior of the lateral RMS vibrations (Figure 3.5 a, b, c) can be divided into 
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during drilling the cored section. When drilling started, lateral RMS vibrations near the bit 

increased to the severe level. Comparing lateral RMS acceleration levels at different 

locations, the highest accelerations were recorded near the bit (Figure 3.5a), while lateral 

vibrations decreased going up the drill stem (Figure 3.5 b and c). 

 

 

 

Figure 3.5. Lateral RMS Vibrations at (a) Near Bit (b) Below TVS Tool (c) Above TVS 

Tool 

 

 

Applied surface RPM with the measured downhole RPM and the corresponding 

measured lateral vibrations using the imbalance vibration sub for Well B are shown in 

Figure 3.6. 
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Figure 3.6. Downhole, Surface RPM and Lateral RMS Vibrations using the IVS Sub 

Measured at 781-808 m 

 

 

Figure 3.6 shows the applied surface RPM with the measured downhole RPM and 

the corresponding measured lateral vibrations using the imbalance sub for Well B. Smooth 

drilling was achieved with 100 RPM at surface, however, when the RPM was increased by 

5 RPM, the downhole RPM increased to almost twice the applied surface RPM, causing 

an increase in lateral vibration. With this increase in downhole RPM for Well B, stick-slip 

severity was still at moderate levels. Using the imbalance vibration sub seems to reduce 

lateral shocks as only a few lateral shocks were observed in the first run. 

 

 

3.3. MODEL FORMULATION AND NUMERICAL SOLUTION  

The drill stem was modeled as a rotating cylinder (Figure 1.1) following the 

approach of Heisig and Neubert, (2000); Ahmadian et al. (2007); Ghasemloonia et al. 
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 (52) 

 

Where  is the drill stem mass matrix,  is the fluid mass matrix,  is the 

damping matrix,  is the gyroscopic matrix,  is the drill stem stiffness matrix,  

is the geometric stiffness matrix,  fluid stiffness matrix,  is the gravity force vector, 

 is the fluid force,  is the reaction force at the bit, and  is the time dependent forces. 

Detailed derivation of the equation of motion using the Euler-Bernoulli’s assumption is 

discussed in Chapter 2 starting from page 18.  

3.3.1. Torsional Vibration Sub (TVS).  The torsional vibration sub is treated as 

a torsional spring with dash-pot damping (Figure 3.7). The axial and lateral element 

properties of the torsional sub are similar to the drill stem properties, while the torsional 

vibration sub stiffness is added to the torsional degree of freedom ( ) with a dash-pot 

damping component added to the element damping matrix. 

 

 

 

Figure 3.7. Simplified Torsional Sub Model 
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The tool stiffness and damping matrix take the form of:   

 

 (53) 

 

 (54) 

 

Where,  is the drill stem element stiffness matrix and  is the added stiffness 

matrix of the torsional vibration sub. The nonzero entries of  in Equation 53 are:  

 

 (55) 

 

And the nonzero entries of  in Equation 54 are: 

 

 (56) 

 

3.3.2. Imbalanced Vibration Sub (IVS).  The imbalanced vibration sub has an off 

center mass that was modeled as an unbalanced force, assuming that the off balance mass 

does not contribute to the element’s flexibility. The unbalance mass is also assumed to be 

a purely concentrated mass, where the moment of inertia and polar moment of inertia are 

both zeros. The stiffness and mass matrices of the imbalance vibration sub were modeled 

as one of the drill stem elements and unbalanced forces are applied at the lateral direction 

of the drill stem (Figure 3.8), where the applied force is located at the center of the 

unbalance mass location within the tool. 

The applied unbalance force at the lateral directions  and  are for the imbalance 

vibration sub:  

 

 (57) 

 

 (58) 
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Where,  is the weight of the unbalanced mass,  is the rotational velocity,  

and  are the distance from the geometric center off mass to the center of the unbalanced 

mass, and  is the time. 

 

 

 

Figure 3.8. Unbalance Mass Force 

 

 

3.3.3. Numerical Integration.  To obtain the critical speeds (natural frequencies) 

and vibration patterns of the drill stem, the generalized Eigenvalue problem is formulated 

according to Equation (45. The model calculates the natural frequencies of each BHA for 

several lengths of drill pipe using the QR algorithm defined in the Matlab® (Appendix F). 

The critical speeds were calculated in 270 m length increments for the three wells.  

The central difference method was used to solve the equation of motion (Equation 

52) of the drill stem. The following algorithm was used to compute the solution of the 

equation of motion (Kwon and Bang, 2000); 

1. Compute the system mass, stiffness, gyroscopic, and stiffness matrices  

2. For each time step ( )   
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a. Compute the acceleration as:  

 

 (59) 

 

b. Compute the velocity from the computed acceleration as: 

 

 (60) 

 

c. Compute the displacement from the computed velocity as:  

 

 (61) 

  

The used central difference method is conditionally stable, where the critical stable 

time step ( ) is defined as:  

 

 (62) 

 

Where,   is the minimum period. The minimum period is obtained from a free 

vibration analysis, where the period is defined as: 

 

 (63) 

 

The input data for each BHA was based on the applied operating parameters for 

each well (Appendix E). Table 3.4 shows the input parameters used for the three wells to 

determine the natural frequencies.  In Table 3.4 refers to the stabilizer location 

measured from the drill bit (Figure 1.1a). For Well A, the torsional vibration sub is located 

45 m above the bit, with a torsional spring stiffness of 7100 KN.m/rad. For Well B, the 

Imbalance vibration sub is located 115 m above the drill bit. The unbalanced mass used for 

the forcing function is 1500 Kg with an off center location of 0.03 and 0.01 m in the lateral 
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directions. The drill pipe and drill collar were discretized with 45 m and 5 m long elements 

for the three wells based on the analytical verification in Chapter 2.3.2 Page 32. 

 

 

Table 3.4. Model Input Parameters 

Common Well A Well B Well C 

 

   

 

 

Where,  is the drill stem mass density,  is the Young Modulus,  is the Poisson’s 

ratio,  is the fluid mass density,  is the fluid discharge coefficient,  is the fluid flow 

velocity,  is the wellbore diameter,  is the drill pipe inside diameter,  is the 

drill pipe outside diameter,  is the drill pipe length,  is the drill collar length,  

is the drill collar inside diameter and  is the drill collar outside diameter. 

 

 

3.4. SIMULATION RESULTS  

The simulations were divided into two parts to understand how each tool affects 

the drill stem vibrations. The first part (Section 3.4.1) evaluates drill stem vibrations’ 

response with and without vibration dampening subs for the same BHA design and applied 

external forces. For the second set of simulations (Section 3.4.2), the actual BHA and 

operating parameters used for Well A, Well B, and Well C were used to validate the model 

with the behaviors seen in the vibration measurements.   
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3.4.1. Evaluation of Vibration Dampening Tools.  The drill stem geometry for 

all the simulations in this section is the same, and consisted of a drill pipe with length of 

1080 m, drill collar of 200 m long and one stabilizer located 100 m above the drill bit. All 

other dimensions and properties are obtained from Table 3.4. For the first scenario, a 

torsional vibration sub was included 30 m above the bit. For the second scenario, the 

torsional vibration sub was replaced with imbalance vibration sub at the same location. The 

third scenario was conducted without a vibration dampening sub in the BHA. The applied 

weight on bit and surface RPM were 150 KN and 100 RPM respectively. 

Figure 3.9 and Figure 3.10 show the lateral and torsional displacements and their 

corresponding accelerations at the middle of drill pipe (540 m) and drill collar (1180 m) of 

the three scenarios respectively. In Figure 3.9 and Figure 3.10, the red solid line represents 

torsional vibration sub (TVS), the dashed blue line is imbalance vibration sub (IVS), and 

black dotted line is for the third scenario with no vibration dampening tool (None).  

 

 

 

Figure 3.9. Drill Stem Response at the Middle of the Drill Pipe. (a) Lateral Displacement 

(b) Lateral Acceleration (c) Torsional Displacement (d) Torsional Acceleration 
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Lateral displacement and acceleration at the middle of drill pipe for the imbalance 

vibration sub scenario was higher than the other two scenarios (Figure 3.9.a, b). At the 

middle of the drill collar (Figure 3.10.a, b), the lateral displacement and acceleration of the 

first and third scenarios are similar and have higher peaks than the second scenario with 

imbalance vibration sub.  

 

 

 

Figure 3.10. Drill Stem Response at the Middle of the Drill Collar. (a) Lateral 

Displacement (b) Lateral Acceleration (c) Torsional Displacement (d) Torsional 

Acceleration 
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the drill collar is more noticeable; however, the torsional acceleration of the imbalance 

vibration sub and no dampening sub is less than the torsional vibration sub scenario (Figure 

3.10.c, d). 

3.4.2. Model Validation with Field Data.  Figure 3.11 shows the calculated 

critical RPM (using Table 3.4 input data) for Well A, B, and C. The calculated critical 

speeds are the solid lines and the actual applied surface RPM are the dashed lines for each 

well in Figure 3.11.  

 

 

 
Figure 3.11. Well A (Black), B (Blue) and C (Red) Critical RPM (Solid Lines) and 

Applied Surface RPM (Dashed Lines) 
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The applied surface RPM in Well A was operated away from critical RPM for most 

of the section. For Well B, the applied surface RPM was 150 RPM at 1550 m, which was 

within the resonance regions of torsional vibration.  

At 1609-1615 m the operating speed for Well B was 135 RPM, which is at one of 

the critical speeds for Well B; this explains the increase in vibrations to the severe level 

seen in the field (Figure E.2). Also at 2020-2100 m, the rotational speed was operated at 

the critical speed, resulting in increased torsional vibration at the section (Figure E.2). 

The input parameters in Table 3.4 were used in the following simulations to 

compare the measured vibrations data with the modeling of the three wells. Figure 3.12 

and Figure 3.13 show the lateral and torsional vibrations at the middle of drill pipe and near 

the bit (5 m above the bit) of the three wells respectively. The same line conventions in 

Figure 3.10 and Figure 3.11 were used in these simulations, where the red solid line 

represents Well A, the dashed blue line is Well B and the black dotted line is Well C.   

 

 

 
Figure 3.12. Drill Stem Response of the Three Wells at the Middle of the Drill Pipe. (a) 

Lateral Displacement (b) Lateral Acceleration (c) Torsional Velocity (d) Torsional 

Acceleration 

0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time (s)

La
te

ra
l D

is
pl

ac
em

en
t 

(m
)

(a)

 

 

Well A at 540m Well B at 675m Well C at 945m

0 10 20 30 40 50
-8

-6

-4

-2

0

2

4

6

8
x 10

-5

Time (s)

La
te

ra
l A

cc
el

er
at

io
n 

(g
)

(b)

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

Time (s)

T
or

si
on

al
 V

el
oc

ity
 (

ra
d/

s)

(c)

0 10 20 30 40 50
-800

-600

-400

-200

0

200

400

600

800

Time (s)

T
or

si
on

al
 A

cc
el

er
at

io
n 

(r
ad

/s
2
)

(d)



63 

 

 

Lateral displacement and acceleration of Well C were the lowest at the middle of 

drill pipe (Figure 3.12.a, b). Near the bit however, the lowest lateral vibrations were with 

Well B using IVS model (Figure 3.13.a, b). Well A and Well C have approximately the 

same lateral vibration magnitude, with Well C being slightly higher. 

Figure 3.12.c, d and Figure 3.12.c, d show the torsional velocity and acceleration 

of the three wells at the middle of the drill pipe and near the bit respectively. The torsional 

velocity at the middle of drill pipe (Figure 3.12.c) is similar for the three wells with a small 

phase shift in the vibration amplitude, while the highest torsional acceleration (Figure 

3.12.d) was at Well A including the TVS. 

 

 

 
Figure 3.13. Drill Stem Response of the Three Wells Near the Bit. (a) Lateral 

Displacement (b) Lateral Acceleration (c) Torsional Velocity (d) Torsional Acceleration 
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the highest torsional velocity and acceleration near the bit. Well A still has the lowest 

torsional velocity when using the torsional vibration sub, while the lowest torsional 

acceleration was noticed with Well B using the imbalance vibration sub (Figure 3.13.d), 

which follows the field observations. 

 

 

3.5. DISCUSSION  

From the measured drilling and vibration data, a correlation between drill stem 

vibration and lithological formations was identified. Torsional vibration tends to increase 

at every sandy formation. As gamma ray readings decreased below 65 API, lateral vibration 

and downhole RPM fluctuations increases, and the lateral-torsional coupling effect is more 

noticeable at these formations. Drill stem vibration and lithological formation also affect 

drilling performance. In similar rock strength, the rate of penetration decreases above a 

thrust hold value of 1.1 g lateral vibrations. Well B (using the imbalance vibration sub) 

showed the lowest lateral vibrations in every matching formation when compared with 

Well A (using the torsional vibration sub). Well C (no dampening sub) had lower lateral 

vibrations than Well A. Stick-slip severity using the torsional vibration sub (TVS) was 

lower in one formation (Utsira) compared to the imbalance vibration sub (IVS). For the 

rest of formations, the IVC was lower than the TVS. Stick-slip severity was lower using 

the TVS than the BHA without the dampening sub.   

Modeling the top section of the drill stem, lateral vibrations were lower with no 

vibration dampening sub (Well C), however, at the BHA lateral vibrations were highest 

with no vibration dampening sub (Well C). The highest torsional vibration was encountered 

in Well C, which was also predicted by the models (Figure 3.13.d).  

Lateral vibrations at the bottom of the drill stem are higher than the top of the drill 

stem. This behavior can be seen from both the vibration measurements (Appendix E) and 

model simulation (Figure 3.12 Figure 3.13). Even though vibration measurements were 

only recorded within the BHA, the lateral vibrations were decreasing while traveling up 

the drill stem. This was used as an indicator of low lateral vibration within the top part of 

the drill stem; however more accurate reading at the top section of the drill stem is needed 

for confirmation.  
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The use of the torsional vibration sub shows lower torsional vibration at the top of 

the drill stem, while the imbalance vibration sub shows lower lateral vibrations at the 

bottom of the drill stem. High torsional velocities were predicted by the model (Figure 

3.13c) in Well C at 2035 m with 127 RPM and 117.5 KN weight on bit. The measured data 

at this location shows elevated torsional and lateral vibrations.  

Vibration results (Figure 3.11) from the field and the modelling are shown to be 

correlated. As the operating surface RPM crosses the calculated critical RPM, drill stem 

vibration increases. The vibration measurements collects statistical data (average, 

maximum, minimum) over a non-uniform period of time which limits the extraction of the 

drill stem natural frequencies, the actual forcing behavior of the bit rock interaction and the 

forcing frequencies, which limits a direct numerical comparison between the field data and 

the numerical simulations.  

As seen in the results and simulation above drill stem vibration dampening subs 

reduces torsional and lateral vibrations; however, even with vibration dampening subs, 

operating the drill stem at critical speeds causes an increase in drill stem vibrations. 

Predicting the critical operating parameters for a given BHA, with or without vibration 

dampening subs, is therefore an essential task that needs to be performed during the design 

phase. 

 

 

3.6. SUMMARY  

The effect of the two drill stem vibration damping subs was addressed in this 

chapter with the use of mathematical modeling and drill stem vibration measurements 

collected from three wells. The following conclusions are drawn: 

   

 The drill stem vibration model was capable of predicting the behavior seen in the 

vibration measurements of the three wells.  

 Lateral vibrations are higher in the bottom hole assembly which is under 

compressional force compared to the drill pipe in tension in contrast to torsional 

vibrations which are higher in the top of the drill stem compared to the bottom of 

the drill stem.  
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 Torsional vibration increases at every sandy formation, causing lateral vibration to 

elevate as gamma ray readings decreases below 65 API; lateral vibration and 

downhole RPM fluctuations increases as well.  

 The rate of penetration (ROP) decreased when lateral vibrations exceed a threshold 

of 1.1 g.  

 Drill stem vibrations increases regardless if vibration dampening tools is included 

when operating at critical speeds, yet including drill stem vibration dampening tools 

reduces drill stem vibration and decreases stick-slip tendency.  

 In this study, the imbalanced vibration sub had the lowest lateral vibration 

compared to the other two cases, no vibration reduction sub and torsional vibration 

sub, respectively. 
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4. EFFECT OF DRILLING HYDRAULICS ON DRILL STEM VIBRATIONS  

Drilling fluids have a complex rheology that needs to meet specific standards to 

maintain a stable wellbore, efficient cutting removal, and lubricate and cool equipment, 

while drilling. Drilling fluid is a complex fluid mixture with a base fluid (water or oil base) 

with different materials and chemical added to the drilling fluid to meet specific properties 

(Bourgoyne et al. 2003). The drilling fluid density have to be higher than the pore pressure, 

to avoid wellbore collapse, and lower than the fracture gradient, to avoid fracturing the 

wellbore and prevent oil and gas from entering the wellbore. pH is another important 

property of the drilling fluid, which needs to be considered to prevent corrosion of drilling 

equipment and prevent chemical instability of shales causes by the drilling fluid. 

Furthermore, the hydraulic system plays a significant role in drilling operation, where 

dynamic pressure becomes very crucial for a narrow operating drilling fluid window. With 

the drilling fluid exhibiting non Newtonian fluid behavior, the viscosity of the drilling fluid 

is influenced by temperature, pressure, and fluid velocity. Thus, the hydraulic system of 

the drilling fluid is modeled with different models such as Bingham Plastic, Power Law, 

and Herschel Bulkley fluid models. This chapter investigates the effect of drilling 

hydraulics and dynamic pressure on drill stem vibrations.  

In this chapter, the drill stem was modeled as Euler-Bernoulli beam and discretized 

using the finite element formulation. The effect of dynamic pressure was included by 

considering the fluid structure interaction with the drill stem.  Two fluid models, Herschel 

Bulkley and Power Law, were used to determine the uncoupled dynamic pressure drop 

across the drill stem in the model formulation.  

 

 

4.1. INTRODUCTION  

As the energy demand keeps increasing by 1%, the oil and gas fuel still remains the 

number one energy contributor, with oil being number one followed by natural gas as of 

2014 (Budley, 2015). To extract oil and gas out of the ground, a well is drilled into the 

subsurface with a rotating drill bit crushing the rock into fragments (cuttings). The drill bit 

is connected to the surface with steel pipes known as the drill stem (Figure 4.1), where the 
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drill stem transmit torque to the drill bit. The drilling fluid is pumped down through the 

drill stem traveling through the drill pipe and the bottom hole assembly (Figure 4.1), the 

drilling fluid leaves the drill stem through the nozzles located at the drill bit traveling 

through the annulus lifting rock fragments out of the wellbore.  

 

 

 

Figure 4.1. Drilling Assembly and Drilling Fluid Circulation System As the Drilling 

Fluid Travels Through the Drill Stem and Back to the Surface Through the Annulus  
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Two methods have been used to simulate the effect of drilling fluid on drill stem 

vibrations. The first method treats the fluid as an added mass that uses the net effective 

density of the drill stem when submerged in drilling fluid (Payne, 1992; Chen and Geradin, 

1994; Yigit and Christoforou, 1998; Sahebkar et al. 2011). In other words the drilling fluid 

density is subtracted from the steel density of the drill stem to give a net effective density 

equal to the buoyant weight. The forces exerted by the fluid on the drill stem were studied 

by Leine et al. 2002, however, the influence of the drilling fluid flowing downward inside 

the drill pipe and upward in the annulus while circulation was not considered.  

The drilling fluid forces acting inside and outside the drill stem were addressed in 

Paidoussis et al. (2007) and Ritto et al. (2009a). The models that included the fluid 

interaction assumes the fluid flows axially with constant flow velocity, the fluid inside the 

drill stem to be inviscid and the fluid in the annulus to be viscous. However, the effect of 

dynamic pressures including the fluid frictional forces on the drill stem was not address. 

The objective of this chapter is to address the effect of dynamic pressure on drill 

stem vibrations, taking into account the frictional fluid force using two fluid rheological 

models. 

 

 

4.2. MODEL FORMULATION  

The fluid model presented by Paidoussis et al. (2008) and modified by Ritto et al. 

(2009a) is extended to include the dynamic and frictional pressure using two fluid models. 

The main assumptions made in the fluid formulation are as follows: 

 The drill stem is concentric 

 The drill stem rotation effect on drilling fluid is neglected 

 The drilling fluid is incompressible, steady and isothermal with constant axial 

velocity across each drill stem element 

 The flow in the annulus is approximated as a flow through a narrow slot, where the 

slot width is  and a gap of  

4.2.1. Fluid Interaction with the Drill Stem.  The forces acting on an element of 

the drill stem due to external and internal axially flowing fluid are shown in Figure 4.2. 
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Figure 4.2. Forces Acting on Drill Pipe Element, Inside and Outside Fluid Element 

Forces 

 

 

Where  is longitudinal tension,  is the transverse shear stress,  is the bending 

moment,  is the mass of the drill stem,  is the mass per unit length of the fluid,  is 

the tangential force due to inlet flow (shear stress),  is the normal force due to inlet 

flow,  is the rate of change of fluid momentum,  is the lateral force due to outside 

pressure,  is the axial force due to outside pressure,  is the lateral hydrodynamic 

force, ,  are the frictional force due to the outside flow, and ,  are the normal 

and tangential hydrodynamic force due to external flow. 

By summing the forces acting on the pipe element in the -direction, the drill pipe 

axial motion can be written as: 

 

 (64) 

 

Where the transverse shear is defined using Euler assumptions as: 

 

 (65) 

 



71 

 

 

Where,  is the Young Modulus and  is the moment of inertial. The sum of forces 

acting on the inside and the outside of the fluid element in the -direction are respectively: 

 

  (66) 

 

  (67) 

 

Where;  

 

  (68) 

 

Where  and  represent the inside and outside area, respectively. Substituting 

Equation 68  in Equation 67  then into Equation 64, followed by substituting Equation 66  

and Equation 65  into Equation 64, produces the coupled axial fluid interaction motion of 

the drill stem written as:  

 

 (69) 

  

Thus, the equation of the axial fluid motion is: 

 

 (70) 

 

Summing the forces acting on the drill stem element in the -direction yields: 

 

 (71) 
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And summing the forces in the -direction acting on the inside of the fluid element 

gives: 

 

 (72) 

 

To find the rate of change of fluid momentum , the fluid velocity is assumed to 

be a plug flow with constant axial velocity, where the flow is incompressible. The velocity 

of the fluid is expressed as:  

 

 (73) 

 

Where the position vector  is expressed in Cartesian coordinates in term of 

displacement as:  

 

 (74) 

 

The material derivation in Equation 73  has two components (Modarres-Sadeghi et 

al. 2006), where the first component is due to the drill stem motion as it vibrates, and the 

second component is due to fluid flow velocity. Thus, the material derivative can be 

rewritten as:  

 

 (75) 

 

Where,  is the mean inlet axial velocity, and  is the unit vector tangential to the 

drill stem motion expressed as:  

 

 (76) 
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Thus, the fluid velocity is written as:  

 

 (77) 

  

Using the velocity in the  -direction from Equation 77 , the rate of change of fluid 

moment  is obtained as: 

  

 (78) 

 

Substituting Equation 78  into Equation 72, the sum of forces in the -direction of 

the inside fluid element becomes:  

 

 (79) 

 

The sum of forces in the -direction of the outside fluid element yields: 

 

 (80) 

 

The hydrodynamic force per unit length  is equal and opposite to the rate of 

change of fluid moment (Paidoussis and Besancon, 1981) and it’s expressed as:  

 

 (81) 

 

Where,  is the outside flow velocity,  is the fluid density, and  is a 

confinement parameter that’s always equal or less than 1 and it’s defined as:  
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 (82) 

 

The total fluid force due to the outside pressure  is equal to (Paidoussis and 

Besancon, 1981):  

 

 (83) 

 

By substituting Equations 79-83 and Equation 65  into Equation 71 , the equation 

of the coupled drill stem motion in the transverse direction is obtained as:  

 

 (84) 

 

Thus, the transverse equation of fluid motion in the -direction is:  

 

 (85) 

 

The pressure inside the drill stem is assumed to be the hydrostatic pressure, which 

is linearly varying with depth, plus the applied pump pressure  written as:  

 

 (86) 
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The outside pressure is obtained by balancing the forces of the system shown in 

Figure 4.3. 

 

 

 

Figure 4.3 Fluid Forces in the Annulus 

 

 

Where,  is the outside flow area (annulus area), which is defined as: 

 

 (87) 

 

The force balance of the system shown in Figure 4.3 yields: 

 

 (88) 

 

The frictional force  is defined according to Rinaldi and Paidoussis, (2012) as:  
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 (89) 

 

Where,  is the total wetted surface area per unit length defined as 

, and  is the total area per unit length of the drill stem written as . 

Substituting Equation 89 into Equation 88 and integrating over the area gives the outside 

pressure expression as:  

 

 (90) 

 

Following Paidoussis, (1975), the frictional viscous forces per unit length are 

defined as:  

 

 (91) 

 

 (92) 

 

Where,  is the dynamic pressure including the pressure losses over each 

element. The dynamic pressure is obtained from hydraulic pressure drop analysis, which is 

discussed in the next section. 

The fluid forces in the -direction are obtained using the same approach as for the 

-direction. 

4.2.2. Fluid Rheology Models.  Power Law and Herschel Bulkley are widely used 

to characterize the rheology of the drilling fluid (Ahmed and Miska, 2008; Kelessidis et al. 

2006). The shear rate and shear stress behavior of both models are similar (Figure 4.4), 

where the difference between the two models is the yield point in Herschel Bulkley model. 

To determine the fluid characteristic of power law fluid model, only two parameters 

are need ( , ) while for the Herschel Bulkley model three parameters are needed ( , , 

).  
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Figure 4.4 Behavior of Herschel Bulkley and Power Law Fluid Models 
 

 

The Power Law model defines the fluid rheology as: 

 

 (93) 

 

Where,  is the shear stress,  is consistency index, and  is the flow behavior 

index.  The fluid consistency index ( ) and the flow behavior index ( ) are found 

graphically using the viscometer readings.  

The Herschel Bulkley model defines the fluid characteristic as:  

 

 (94) 

 

Where  is the yield point. To obtain the yield point , the procedure introduced 

by Verson and Togla (2005) and used by Ochoa (2006) is followed, where the yield point 

is calculated as:  

 

 (95) 
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Where,  is the shear stress corresponding to the geometric mean shear rate ( ), 

where  is defined as:  

 

 (96) 

 

With the use of the mean shear rate ( ), the mean shear stress ( ) is interpolated 

to obtain the yield point ( ). The parameters  and  are obtained graphically by plotting 

 versus the shear rate  of the viscometer reading.  

The equations presented by Merlo et al. (1995), was used to obtain the pressure 

drop across the drill pipe, drill collar, drill bit, drill collar annulus, and drill pipe annulus 

for the Herschel Bulkley model. The pressure drop was calculated for the Power Law 

model flowing Ochoa, (2006). The total pump pressure is then obtained (using both 

models) as the total pressure drop across the system as:  

 

 (97) 

 

The  in Equation 86 is obtained using the total pump pressure obtained in 

Equation 97  plus the hydrostatic pressure subtracted the pressure drop across each element: 

 

 (98) 

 

And the  (in Equation 91 and Equation 92) is obtained the same way where 

 is the pressure drop in the annulus. 

The pressure drop across the bit ( ) is calculated bases on the flow area the bit 

across the nozzles as: (Bourgoyne et al. 2003) 

 

 (99) 
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Where,  is the fluid flow rate,  is fluid discharged coefficient, and  is the 

total flow area (total flow area of the nozzles). Matlab® scripts used for both fluid models 

are located in Appendix F.  

Using the finite element formulation, the fluid equations and force are discretized 

and written in term of displacements. The displacements in discretized form are expressed 

as:  

 

 (100) 

 

Where  is the shape function corresponding to each degree of freedom,  is the 

dimensionless length , and  is the vector of nodal displacement of two node element 

expressed as:  

 

 (101) 

 

Discretizing the fluid forces in the -direction yields, the fluid axial force written 

in discretized form as:  

 

 (102) 

 

The fluid equation of motion in the  and  direction after discretization yields the 

mass, stiffness and damping matrix written as:  

 

 (103) 
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(104) 

 

 

 

(105) 

 

4.2.3. Drill Stem Model and the Equation of Motion.  The drill stem was 

modeled as rotating cylinder with two node element where each node has six degree of 

freedom. Detailed derivation of equation of motion is given in [Chapter 2 starting from 

page 18]. The final equation of motion including the fluid forces effect is:  

 

 (106) 

 

Where  is the drill stem mass matrix,  is the fluid mass matrix,  is the 

structural damping matrix,  is the fluid damping matrix,  is the gyroscopic matrix, 

 is the drill stem stiffness matrix,  is the geometric stiffness matrix,  fluid 

stiffness matrix,  is the gravity force vector,  is the fluid force, and  is the reaction 

force at the bit. 

 

 

4.3. RESULTS  

The natural frequency and mode shape of the drill stem was obtained for the case 

with no fluid, the approach used by Ritto et al. (2009a) (named as the Reference Model 
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herein), dynamic pressure using Herschel Bulkley (HB) and dynamic pressure using Power 

Law (PL) model. Table 4.1 shows the drill stem configuration and properties used to 

compute the natural frequencies and mode shapes for the four different scenarios. 

 

 

Table 4.1. Model Input Parameters 

Component Length (m) OD (m) ID (m) 

Drill pipe 1500 0.127 0.109 

Drill pipe element length 50 - - 

Drill collar 200 0.216 0.054 

Drill collar element length 10 - - 

Borehole 1700 0.3 - 

Casing 900 - 0.445 

Stabilizer Location 1650 Fixed Boundary 

Properties 

7850   

1298   

0.0125 (-)  

0.04   
2.1X10^11 Pa  

Drill bit nozzle sizes 3X18 1/32 inches 

0.29 (-)  
10  

Axial load 100 KN  

Viscometer Readings 

3 RPM 8 °  

6 RPM 10 °  
100 RPM 32 °  

200 RPM 46 °  

300 RPM 58 °  

600 RPM 92 °  

 

 

The first ten lateral natural frequencies of the four scenarios are shown in Figure 

4.5. Where, HB in Figure 4.5 stands for Herschel Bulkley fluid model, PL stands for the 

Power Law model and Ref. Model stands the reference model from Ritto et al. (2009a). 
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Figure 4.5. First Ten Natural Frequencies for the Four Scenarios, No Fluid, Reference 

Model (Ref. Model), Herschel Bulkley (HB), and Power Law Models (PL) 

 

 

The first ten axial and torsional natural frequencies of the four cases are similar, 

however, lateral frequencies differ. The difference in natural frequencies with and without 

fluid can be seen in Figure 4.5, the average difference, considering the first ten modes, 

ranges from 8 to 11% for the three cases including fluid. When including the dynamic 

pressure, the average difference with the reference model is 6% using Herschel Bulkley 

and 18% using the Power Law model. 

If the pressure drop at the bit using the dynamic pressure for both fluid models is 

neglected, the first ten natural frequencies obtained with the use of Herschel Bulkley and 

Power Law models will follow the reference model results, with an average difference of 

less than 1% for the first ten modes.   

Figure 4.6 shows the first three normalized mode shapes of the four cases for the 

lateral direction. 
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Including the fluid structure interaction has a big impact on lateral mode shapes 

(Figure 4.6).  The mode shape including the fluid forces for the three cases are similar with 

small change in amplitude especially at higher mode (mode three in Figure 4.6).  

 

 

 

Figure 4.6. First Three Lateral Mode Shape for the Four Scenarios No Fluid, Reference 

Model (Ref. Model), Herschel Bulkley (HB), and Power Law Models (PL) 

 

 

The effect of drilling fluid density on the drill stem natural frequencies is addressed 

in Figure 4.7, using the reference model, Herschel Bulkley and Power Law models. 
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however, when using the dynamic pressure, the reduction in lateral frequencies is higher 

(24% and 28% for Herschel Bulkley and Power Law models respectively). Lateral 

-1 -0.5 0 0.5 1
0

200

400

600

800

1000

1200

1400

1600

First Mode (-)

L
e
n
g
th

 (
m

)

 

 

No Fluid Ref. Model HB PL Stabilizer

-1 -0.5 0 0.5 1
0

200

400

600

800

1000

1200

1400

1600

L
e
n
g
th

 (
m

)

Second Mode (-)

-1 -0.5 0 0.5 1
0

200

400

600

800

1000

1200

1400

1600

L
e
n
g
th

 (
m

)

Third Mode (-)



84 

 

 

frequencies of the three cases have the same behavior (Figure 4.7), as fluid density 

increases lateral frequencies decreases. 

 

 

 
Figure 4.7. Effect of Drilling Fluid Density on Lateral Frequencies for the Three 

Scenarios 
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Figure 4.8. First Three Mode Shapes for Different Fluid Densities for the Reference 

Model 

 

 

The effects of increasing the flow rate on lateral frequency using the three cases are 

shown in Figure 4.9. Axial and torsional frequencies had an unnoticeable change (less than 

1%) under the chosen flow rates. 

As the flow rate increases, no significant change (less than 1%) in lateral 

frequencies for the reference model scenario is observed. Lateral frequency decreases as 

the flow rate increase with the use of Herschel Bulkley and Power Law models. The 

average different in lateral frequency for the first ten modes using the Herschel Bulkley 

model is 65% decreases. For the Power Law model, the natural frequency becomes 

unstable, with complex frequencies, at a flow rate of 0.057  (900 ). The 

average decrease in lateral frequency for the first ten modes for the Power Law is 25%.  

As only small change (less than 1%) in lateral frequencies using the reference 

model, lateral mode shape does not change as the flow rate increases. However, the lateral 

mode shapes changes using the dynamic pressure (Figure 4.10).   
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Figure 4.9. Lateral Frequencies as Increasing the Flow Rate using the Three Scenarios 

 

 

 
Figure 4.10. Effect of Flow Rate on Later Mode Shape using Herschel Bulkley Model 
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Comparing Figure 4.10 and Figure 4.8, it seems that increasing the fluid flow rate 

have similar impact on lateral mode shape as increasing the fluid density. The mode shape 

of the Power Law model follows the same trend as the Herschel Bulkley model  except 

with higher deflection as fluid reaches  0.057  (900 ). 

The viscosity effect on natural frequencies is addressed by using the plastic 

viscosity as the viscosity measurement. The plastic viscosity is calculated based on 

viscometer reading as: (Fann, 2015) 

 

 (107) 

 

Figure 4.11 shows the effect of fluid viscosity on lateral frequencies of Herschel 

Bulkley and Power Law models.  

 

 

 
Figure 4.11. Lateral Frequency as a Function Fluid Viscosity using Herschel Bulkley and 

Power Law Fluid Models 
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When including the dynamic pressure, lateral frequency, using Herschel Bulkley 

fluid model, decreases with fluid plastic viscosity going from 2 -17 cp, however, going 

from 17 cp up to 136 cp lateral frequencies increases. For the Power Law model, lateral 

frequencies behaves differently while increasing the fluid viscosity, but an overall trends 

shows lateral frequencies decreases with increasing fluid viscosity (Figure 4.11). Fluid 

viscosity have an average effect on lateral frequency of approximately 11% using Herschel 

Bulkley model and 9% using the Power Law model when considering the first 10 natural 

frequencies.   

The largest effect of viscosity on lateral mode shape was using Herschel Bulkley 

model (Figure 4.12). The first lateral model shape using the Power Law model follows the 

same trend as Herschel Bulkley model, however, lateral deflection amplitude as viscosity 

increases is lower. 

 

 

 

Figure 4.12. Herschel Bulkley Mode Shape as a Function of Fluid Viscosity 
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The influence of the annulus area (wellbore diameter) is investigated using the three 

scenarios by varying the wellbore diameter. Figure 4.13 shows the first lateral frequency 

obtained using the three cases as a function of the wellbore diameter. 

 

 

 
Figure 4.13. First Lateral Frequency of the Five Cases as a Function of Wellbore 

Diameter 
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At the first point in Figure 4.14, both models had complex lateral frequency. 

Interestingly, when ignoring the first complex frequency of both models. The total flow 

area at the bit has the same effect on lateral frequency as the wellbore diameter effect 

(Figure 4.13), where when exceeding a specific flow area at the bit, the effect of fluid 

decreases dramatically. The average change in lateral frequency for the first ten modes, 

excluding the complex frequencies, is 17% using Herschel Bulkley model and 25% using 

the Power Law model. 

 

 

 

Figure 4.14. Effect of Bit Flow Area on Lateral Frequency 
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amount of change in lateral vibrations depends strongly on how the fluid forces (mainly 

the fluid viscous forces) are treated (Figure 4.5). The maximum change in lateral 

frequencies when including the fluid forces presented in the reference model is 11% 

compared to the model with no fluid forces. The lateral mode shape of the drill stem 

completely changes its shape when including the fluid forces effect (Figure 4.6), however, 

only the deflection amplitude of the mode shape changes when using different fluid 

models.   

When considering the drill stem hydraulics (dynamic pressure), lateral frequencies 

obtained using both Herschel Bulkley and Power Law fluid models differs from the 

reference model. This is due to the high differential pressure between the inside and outside 

flow of the drill stem caused by high frictional pressure loss at the drill bit.  

Increasing the fluid density decreases lateral vibrations. Only 9% decrease in lateral 

vibration is noticed using the reference model formulation, while using the dynamic 

pressure significantly changes lateral frequencies (Figure 4.7). For the Power Law model, 

a decrease of 28% of lateral frequency is noticed as the fluid density increases and for the 

Herschel Bulkley model, a decrease of 24% is observed. The different in lateral frequencies 

between the Power Law and Herschel Bulkley models is due to the viscous frictional 

forces.  

Ritto et al. (2009a) concluded that the fluid velocity does not have a significant 

effect on lateral vibrations, however using the dynamic pressure the lateral frequencies are 

greatly affected (Figure 4.9). The highest decrease on lateral frequencies were obtained 

using the Power Law fluid model with an average decrease of 25%, also the using the 

Power Law model at higher flow rate (900 gal/min) causes the drill stem to be unstable as 

can be notice from the complex frequencies at that flow rate.  

For the Power Law model, lateral frequencies behave differently when increasing 

the fluid viscosity (Figure 4.11). The maximum total change in natural frequency was, 

using the Herschel Bulkley model, approximately 11% decrease for the first ten natural 

frequencies.  

One of the most significant parameters in the fluid model affecting the drill stem 

lateral frequencies is the wellbore diameter; where up to 50% decrease in lateral 

frequencies could occur at a narrow gap. Interestingly, when the ratio of wellbore diameter 
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to outside diameter of the drill stem is higher than 1.25, no significant changes of lateral 

frequency will be noticed. 

For small nozzle sizes (small flow area through the drill bit), the drill stem becomes 

unstable. The behavior of lateral frequency results from the nozzle size analysis follows 

the same behavior of lateral frequencies under varying wellbore diameter. Above a certain 

flow area through the bit, the effect of flow area on lateral frequencies vanishes.   

 

 

4.5. SUMMARY  

In this chapter, the effect of including the dynamic pressure using two fluid 

rheological models was addressed and compared to a reference model, which does not 

include the drilling dynamic pressure. Including fluid structure interaction to the drill stem 

vibration model have no effect on axial and torsional vibration, however, it does affect 

lateral frequencies. Under the condition used in the comparison, maximum change in 

lateral frequencies was observed with the use of the Power Law fluid model (11% changes).  

The dynamic pressure using both Herschel Bulkley and Power Law fluid models 

have a significant impact on lateral frequencies. High flow rate causes the drill stem to be 

unstable. Also, the wellbore diameter and total flow area at the bit changes the lateral 

frequencies of the drill stem. Wrong selection of total flow area at the bit (nozzle sizes) 

could cause the drill stem to be unstable. 
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5. SELECTING OPTIMUM DRILLING PARAMETERS TAKEN DRILL STEM 

VIBRATIONS INTO ACCOUNT  

To avoid severe vibrations, different drill stem vibration models have been used in 

the previous chapters to predict and avoid resonance regions by selecting bottom hole 

assembly components and operating parameters such as weight on bit and RPM. The 

overall efficiency of the drilling operations is evaluated using either mechanical specific 

energy model or inverted rate of penetration (ROP) models (Dupriest and Koederitz, 2005; 

Warren, 1984; Nygaard et al. 2002).  This chapter addresses the impact of drill stem 

vibrations on the overall drilling performance. The object of this chapter is to provide a 

method to improve drilling efficiency taking drill stem vibrations into account.  

In this chapter, a set of data including vibration data is collected from a section of 

a well drilled in the North Sea to analyze the level of efficiency obtained during drilling 

the section. Based on the level of efficiency obtained for the drilled section, a new 

methodology to increase drilling performance while taking the drill stem vibration into 

account is presented.    

 

 

5.1. INTRODUCTION 

Drilling efficiency is often characterized by the drilling speed (rate of penetration), 

where the rate of penetration is measured in meters drilled per hour (m/hr). Several 

parameters contributes towards the overall rate of penetration such as; weight on bit, 

applied rotational speed, rock strength, drilling hydraulics, and bit wear (Rashidi et al. 

2008). Drilling performance could be improved by increasing ROP through ROP models 

that describes the rate of penetration as a function of drilling and geological parameters. 

To quantify the drilling performance while drilling, mechanical specific energy is used as 

a trending tool (Dupriest and William, 2005).  

Drill stem vibration have a significant role in selecting operational parameters. To 

avoid severe vibrations, drill stem vibration models are used to predict the resonance 

regions to be avoided, which are usually reported as a function of drilled depth. When 

operating the drill stem at the calculated critical speeds, damages to drill bit and bottom 
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hole assembly could occur due to the increase in the dynamic stress per cycle caused by 

the increase in vibration levels.  

In this chapter, a methodology to increasing drilling efficiency is presented with the 

use of ROP model in conjunction with drill stem vibration modelling that provides an 

operating window (RPM, WOB) with the predicted ROP and location of critical speeds to 

be avoided. The drilling performance of a section of a well drilled in the North Sea is first 

analyzed. The collected data is then used to demonstrate and verify the proposed 

methodology. 

 

 

5.2. METHODOLOGY 

The drill stem model used in this chapter is based on the model developed using 

the Euler-Bernoulli’s assumption (Chapter 2.2) including the dynamic pressure with the 

use of Herschel Bulkley fluid model (Chapter 4). The final equation of motion used to 

obtain the critical speeds is:  

 

  (108) 

 

Where the mass matrix  includes the drill stem mass plus the fluid mass,  is 

the gyroscopic matrix,  is the stiffness matrix of the drill stem including geometric 

stiffness matrix and fluid added stiffness, and  are the gravity force, the fluid force 

and the reaction force at the bit (weight on bit) respectively. First, a static analysis is 

performed to solve for the initial deflection ( ), to obtain the geometric stiffness:  

 

  (109) 

 

The natural frequencies are obtained from the equation of motion (Equation 108) 

by converting the equation of motion to the state space form. The state space form is 

formulated by introducing a second order state vector written as:  

 

  (110) 
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Substituting Equation 110  in Equation 108 yields: 

 

  (111) 

 

Where:  

 

 (112) 

 

 (113) 

 

Where,  in Equation 112 and Equation 113 is the identity matrix. Assuming a 

solution of the form: 

 

  (114) 

  

Substituting Equitation 114 in Equation 111 yields:  

 

 (115) 

 

Equation 115 is the reduced Eigenvalue problem, which could be written in a more 

compact form as:  

 

 (116) 

 

Where:  

 

 (117) 
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Where,  in Equation 116 is the complex Eigenvalues vector that composes of a 

real and imaginary component. The imaginary component of the Eigenvalue corresponds 

to the drill stem natural frequencies, while the real part provides information regarding the 

system stability.  

The effect of alternating geology on the drilling performance was taken into 

account using the unconfined compressive strength (UCS). The UCS was calculated using 

the acoustic velocities obtained from logs as (Hareland and Nygaard, 2007b): 

 

  (118) 

 

Where UCS in Equation 118 reads MPa, ,  and  are constants depends on 

lithology and  is compressive travel time in .  

The drilling performance parameter used in this analysis is the mechanical special 

energy (MSE). The MSE is a measure of input energy to output footage drilled. The 

mechanical specific energy is calculated from drilling data as (Teale, 1965; Dupriest and 

Koederitz, 2005):  

 

  (119) 

   

Where,  is the bit diameter in meters,  is rotational speed in revelation per 

minute and  is the resultant torque in KN.m. A high mechanical specific energy value 

indicates inefficient drilling with high-energy waste. The mechanical specific energy 

provides a relative estimate of the drilling efficiency, where the accuracy of this estimates 

increases when combined with UCS by using the adjusted mechanical specific energy 

(Hammoutene, 2012). The MSE was adjusted with a factor of 0.2 to reflect non-

quantifiable energy losses in the drilling system. Laboratory studies has shown this value 

to be in the range of 0.3 to 0.4 (Hammoutene, 2012). However for field studies the value 

is often assumed to be 0.35 (Dupriest and William, 2005) In essence, the ratio of the 
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adjusted mechanical specific energy to the unconfined rock strength  was set so 

the value was around one for the zone with most efficient drilling achieved for this section.  

An inverted rate of penetration model that takes into account all parameters 

affecting the rate of penetration such as WOB, RPM, rock strength, drilling fluid weight, 

and flow rate was used. The inverted ROP model introduced by Warren (1987) and 

modified by Hareland and Nygaard (2007a) is adopted, where the inverted ROP is written 

as: 

 

 (120) 

 

Where  is a function taking the bit wear into account,  hydraulic function 

addressing the drilling fluid properties and flow rate,  is a bit constant,  is the rock 

strength, and  is an experimental constant.   

The section was drilled with a BHA which consisted of a standard PDC bit with 6 

blades, mud motor, and downhole vibration measurements in 4 location within the BHA 

as indicated with red boxes in  Figure 5.1. Table 5.1 provides detailed specification of the 

input parameters used in the model.   

 

 

 

Figure 5.1. BHA Configurations of the 12 ¼” Section 
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Table 5.1. Model Input Parameters 

Component Length (m) OD (m) ID (m) 

Drill pipe - 0.127 0.109 

Drill pipe element length 50 - - 

Drill collar 176 0.2032 0.07145 

Drill collar element length 4 - - 

Heavy weight drill pipe 140 0.127 0.0762 

Heavy weight drill pipe element 

length 
10 - - 

Borehole 3360 0.3 - 

Casing  1800 - 0.315 

Stabilizers location from bit 20, 60 Fixed Boundary 

Properties 

7850   

1650   

0.0125 (-)  

600   

2.1 × 1011 Pa  

Drill bit nozzle sizes 
5 × 18 

4 × 14 
1/32 inches 

0.29 (-)  
Viscometer Readings 

3 RPM 6 °  
6 RPM 7 °  

100 RPM 20 °  

200 RPM 30 °  

300 RPM 40 °  

600 RPM 70 °  

 

 

5.3. RESULTS AND DISCUSSION  

An exploratory well was drilled in the North Sea that consisting of five sections. 

Drilling the 12 ¼” section, a sudden decrease in ROP was observed after drilling the first 

1000 m. After tripping out of the hole, the dull grading of the bit showed an average wear 

of 1 and a plugged nozzle. The 12 ¼” section was drilled with a PDC bit for an interval of 

1500 m. The top interval (approximately from 800 m to 2900 m as indicated from sonic 

log in Figure 5.2) of the 12 ¼” section consisted of mostly claystone and light shales with 
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interbedded marls and sandstone, while the lower interval of the section consisted of 

mainly limestone and chalk. Figure 5.2 shows the operating parameters and ROP obtained 

for this section. The operational parameters shown in Figure 5.2 consists of WOB measured 

in tons, torque measured in KN.m, total RPM applied to the bit, sonic log, and measured 

ROP in m/hr.    

 

 

 

Figure 5.2. Operating Parameters, Sonic Log, and ROP for the 12 ¼” Section 

 

 

The first 1000 m (above redline in Figure 5.2) was drilled with an average ROP of 

50 m/hr, and then the ROP started decreasing.  

Lateral vibration levels measured from the 4 positions within the BHA shows low 

to moderate levels for the first 1000 m, as indicated in Figure 5.3. 
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Figure 5.3. Measured Lateral Vibrations of the 12 ¼” Section 

 

 

Lateral vibration beyond the first 1000 m started increasing specially near the bit. 

The first selected zone in Figure 5.3 shows an abnormal increase in lateral vibrations in 

zone 1, where the highest vibration was encountered near the bit and started decreasing as 

traveling up the drill stem. For zone 2 however, the maximum lateral vibrations, excluding 

near bit, where encountered at the top of the BHA (317m above the bit). It is believed that 

this behavior is connected to the torsional vibration.  

The applied rotation at each sensor position and its corresponding measured 

downhole RPM can be seen in Figure 5.4. 

Low stick-slip severity is noticed at the first 1000 m, where a good ROP in excess 

of 50 m/h was achieved, after the first 1000 m downhole RPM fluctuations started to 
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increase causing an increase in stick/slip severity (Figure 5.4). The highest stick/slip 

severity was encountered in zone 2, where at that interval the BHA was stalling. 

 

 

 

Figure 5.4. Applied and Measured Downhole RPM at 4 Position in the BHA 

 

 

Using the measured well log data (sonic logs) the UCS was obtained and utilizing 

the operational parameters, the mechanical specific was calculated of the section. By 

relating the drilling performance parameter (MSE) to the environment/geological 

parameter (UCS), one can define the produced level of efficiency. Figure 5.5 shows the 

UCS, MSE and the ratio of the adjusted MSE to UCS for the drilled section.   

The ratio of the adjusted MSE to UCS should stay around 1 when drilling efficiently 

(Figure 5.5). However, throughout the run one find this relationship to diverge greatly from 

this value, reaching levels of more than 6, indicating the drilling efficiency being around 

15% of the optimal value. For most of the limestone section the  to UCS ratio was 

found to be between 2 and 6, hence, the drilling efficiency was below 50% all throughout 

this critical section. 
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Figure 5.5. Optimum Drilling Efficiency Obtained from UCS and MSE 
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at critical speeds as seen in Figure 5.6 as the applied RPM cross the critical speeds. The 

selected zones in Figure 5.6 show the locations where the drill stem was operated at those 

critical speeds. Those zones correspond well with the elevated drill stem vibrations 

measured below 2800 m.   

 

 

 

Figure 5.6. Critical Speeds and Applied Rotation as Function of Depth Based on WOB 

and RPM from Well Logs (a) Lateral (b) Axial (c) Torsional 
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dashed lines represent the higher (secondary) lateral speeds, the solid red lines represent 

the axial critical speeds, and the dashed blue lines are torsional critical speeds.    

 

 

 

Figure 5.7. RPM Versus WOB with the Predicted ROP and Critical Speeds for the 1st 

Zone (2800-3100 m) 
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The procedure was repeated for the 2nd zone located between 3200-3360 m. Figure 

5.8 shows the modeled operating window of the 2nd zone.   

The sweet spot for optimum drilling efficiency for the 2nd zone is located between 

172 to 198 RPM and 7 to 20 tons of WOB (Figure 5.8). For the second zone (3200-3360 

m), the average ROP was 5 m/hr with an average WOB and RPM of 8 tons and 190 RPM 

respectively. Analysis of this section revealed an ROP of 15 m/hr could be achieved while 

avoiding vibrations when operating with WOB of 16 tons and 200 RPM.  

 

 

 

Figure 5.8. RPM Versus WOB with the Predicted ROP and Critical Speeds of the 2nd 

Zone (3200-3360 m) 
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5.4. SUMMARY  

In this chapter, drill stem vibration analysis was introduced to enhance drilling 

performance by using drill stem vibration to the inverted ROP model. The drill stem 

vibration model correlates with the measured field data, as the applied rotational speed and 

weight on bit combination crosses the modeled critical speeds drill stem vibrations 

increases.  

The proposed methodology of enhancing drilling performance by selecting a 

combination of weight on bit and applied RPM while avoiding harmful drill stem vibrations 

gives a guideline to increase the rate of penetration while maintaining low axial, torsional 

and lateral vibrations.   
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6.  CONCLUSIONS AND FUTURE WORK  

6.1. SUMMARY AND CONCLUSIONS  

This dissertation discuss multiple parameters effect on drill stem vibrations, 

through modeling and field data verifications, and how to optimize drilling efficiency from 

a vibration point of view. A computational code built in Matlab® with the use of finite 

element formulation was created to be used for different drill stem configurations to 

increase drilling efficiency. 

First, a parametric study was performed using two approaches, Euler-Bernoulli and 

Timoshenko beam theories, to select a model to be used in further investigations. The 

parametric study showed that torsional natural frequencies for the Euler-beam model are 

higher than the Timoshenko beam model by an average difference of 7.4% for the first ten 

modes. For the axial modes, no significant change was observed between the two models. 

The average difference of the lateral natural frequencies of the first ten modes using both 

models is 1.35% which translates to difference of 1 RPM. The maximum difference 

between the two models for all vibration modes at normal drilling conditions translates to 

6 RPM when considering the first ten modes, thus at normal operating conditions the use 

of the nonlinear Euler-Bernoulli’s assumptions can be justified. 

 The analysis showed that drill stem vibrations are sensitive to the change of the 

drill pipe length; axial, torsional, and lateral vibrations change behaviors at different drill 

pipe length. While increasing the length of drill collar increases both lateral and axial 

frequencies and decreases torsional frequencies. Increasing axial load reduces the lateral 

natural frequencies with a small effect on axial and torsional natural frequencies. The 

percentage difference in the first lateral natural frequency increases under higher axial load 

and shorter drill collar length. However, the percentage difference in the first torsional 

natural frequency does not change with the change of any parameter.  

Bases on the previous conclusion, the Euler-Bernoulli beam model was modified 

to include two vibration mitigation tools incorporated in two wells and used to analyze 

vibration field data collected from three wells. The field data showed that torsional 

vibration increases at every sandy formation, causing lateral vibration and downhole RPM 
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fluctuations increases. Furthermore, as drill stem lateral vibration exceed 1.1 g, the rate of 

penetration decreased. 

The drill stem vibration model was capable of predicting the behavior seen in the 

vibration measurements of the three wells. The model simulation and field data showed 

that axial and lateral vibrations are higher in the BHA compared to the drill pipe, while 

torsional vibrations are higher in the drill pipe compared the BHA. 

Including drill stem vibration dampening tools reduces drill stem vibration and decreases 

stick-slip tendency, and based on the collected data and model simulations, the imbalance 

vibration sub had the lowest lateral vibrations. As it was observed from both the field data 

and the model, drill stem vibrations increase both with and without vibration dampening 

tools when operating at critical speeds.  

Fluid structure interaction with the drill stem model had no effect on axial and 

torsional frequencies; however, it do affect lateral frequencies. At the conditions used in 

the parametric study, the maximum change in lateral frequencies was observed with the 

use of the Power Law fluid model. 

The dynamic pressure using both Herschel Bulkley and Power Law fluid models 

have a significant impact on lateral frequencies. High flow rate causes the drill stem to be 

unstable. Also, the wellbore diameter and total flow area at the bit changes the lateral 

frequencies of the drill stem. Wrong selection of total flow area at the bit (nozzle sizes) 

could cause the drill stem to be unstable. 

A methodology was presented to enhance drilling performance by combining 

inverted rate of penetration model with drill stem vibration model. The drill stem vibration 

model correlates with the measured field data, as the applied rotational speed and weight 

on bit combination crosses the modeled critical speeds drill stem vibrations increases. The 

proposed methodology of enhancing drilling performance by selecting a combination of 

weight on bit and applied RPM while avoiding harmful drill stem vibrations gives a 

guideline to increases the rate of penetration while maintaining low axial, torsional and 

lateral vibrations.   
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6.2. FUTURE WORK  

The developed model is only applicable for vertical wells. As directional drilling is 

used more often lately, it would of an interest to modify the model to account for drill stem 

deviation.  

The model presented in this thesis couples all three vibrational modes using non-

linear finite strain relationships. The model was verified for each independent vibration 

mode but the three coupled vibrations were not verified simultaneously. It would therefore 

be valuable to perform an experimental validation of the model. 

The available vibration measurements data is not uniformly sampled, thus a new 

technique to resample the vibration data is needed to extract information to directly 

compare drill stem dynamical data such as natural frequencies with the developed models. 

The modeling and analysis of vibration dampening tools were addressed using a 

simplified approach and with limited data set, even though the field data and modeling 

effort gave similar results further development to of a more complex model of the tools 

and additional data would be beneficial for further verification of the results presented 

herein.  

Another limitation of the developed model is the assumption made with the fluid 

model. The drilling fluid was assumed to be flowing axially with no rotation, however, the 

drilling fluid flows in swirling motions traveling down the drill stem. The developed fluid 

model is inconclusive, experimental studies is required to verify whether Herschel Bulkley 

or Power Law fluid models are more representative of the actual drill stem dynamics.  
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APPENDIX A 

A.FINITE ELEMENT SHAPE FUNCTIONS
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The shape functions used for Euler-Bernoulli’s Model are: 

 

  (121) 

 

Where:  

  (122) 

  

Where  is dimensionless length ( ) and  is the element length. 

The shape functions used for Timoshenko Model are: 

 

  (123) 

 

  Where:  

 

 

              

                            

                                    

                              

 

(124) 

Where,  is the Young Modulus,  is the momonet of inertia,  is the shear 

constent,  is the shear Modulus and  is the cross sectional area.  
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APPENDIX B 

B.ANALYTICAL DERIVATION OF THE UNCOUPLED AXIAL MODEL
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The displacement field of uncoupled longitudinal rod is written as:  

 

  (125) 

 

Where,  is the axial displacement,  and  are the lateral displacements. The strain 

energy is defined as:  

 

  (126) 

 

Where,  is the Young Modulus and  is the strain. Thus, the total strain energy is:  

 

  (127) 

 

The kinetic energy is expressed as: 

 

  (128) 

 

Where  is the linear density per unit length. Using the generalized Hamilton’s 

principle stating: 

 

  (129) 

 

Setting the virtual work ( ) equal to zeros and subsisting Equation 127 and 

Equation 128 in Equation 129 and integrating by parts yields the equation of motion  of the 

uncoupled axial motion as:  
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  (130) 

 

And the boundary conditions are: 

 

  (131) 

 

The solution of the equation of motion (Equation 130) is obtained by separating 

variables (separating the spatial term from the temporal term) as:  

 

  (132) 

 

Substituting Equation 132 in Equation 130 yield:  

 

  (133) 

 

Where: 

 𝛽2 =
𝜔2

𝑐2       𝑐 = √
𝐸

𝜌
   

Where  is the natural frequency. Equation 133 has a solution of the form of:  

 

  (134) 

 

 And  are constants obtained by applying the boundary conditions.  
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APPENDIX C 

C.ANALYTICAL DERIVATION OF THE UNCOUPLED TORSIONAL MODEL
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The displacement field of uncoupled torsional model of a shaft is written as:  

 

  (135) 

 

Where,  is the axial displacement,  and  are the lateral displacements and  is 

the torsional displacement. The strain in the shaft is defined as: 

 

 

 

 

 

(136) 

  

The corresponding stress is: 

 

 

 

 

 

(137) 

 

Where  is the shear modulus. The total strain energy is obtained with the use of 

Equation 136 and Equation 137: 

 

 (138) 

 

Where  is the polar moment of inertia. The kinetic energy is torsional shaft is: 
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 (139) 

 

Using the Hamilton’s principle, the equation of motion and the essential boundary 

condition are:  

 

 (140) 

 

Setting , the equation of motion (Equation 140) is rewritten as:  

 

 (141) 

 

Assuming a separable solution of the form of:  

 

 (142) 

 

Substituting Equation 142 in to the equation of motion (Equation 141) yields: 

 

 (143) 

 

Where 𝛽2 =
𝜔2

𝑐2
 

The solution the spatial domain of the equation of motion (Equation 143) is:  

 

 (144) 

 

The constants  and  are obtained by applying the boundary conditions.  
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APPENDIX D 

D.ANALYTICAL DERIVATION OF THE UNCOUPLED LATERAL MODEL



119 

 

 

The stain energy of Euler-Bernoulli’s beam theory can be written as: 

 

 (145) 

 

The kinetic energy is defined as:  

 

 (146) 

 

Applying Hamilton’s principle yields the equation of motion for lateral motion and 

the essential boundary conditions:  

 

 (147) 

 

Simplifying the equation of motion by letting  and assuming constant 

rigidity yields: 

 

 (148) 

 

After separating the spatial and temporal domains, the spatial equation of motion 

can be written as:  
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 (149) 

 

Where 𝛽4 = 𝜔2/𝑐2 

Equation 149 has a solution of the form of:  

 

 (150) 

 

Where , ,  and  are constants obtained by applying the boundary 

conditions.  
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APPENDIX E 

E.DRILLING AND VIBRATION DATA
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Figure E.1. Well A operating parameters and measured vibration data 
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Figure E.2. Well B operating parameters and measured vibration data 
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Figure E.3. Well C operating parameters and measured vibration data 
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APPENDIX F 

F.COMPUTATIONAL SUMMARY OF THE DEVELOPED ALGORITHMS 
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The finite element formulation developed throughout the dissertation were coded 

into Matlab®, while the analytical formulation used in Chapter 2 were solved in 

MapleSoftTM.  Throughout the dissertations, the Matlab® algorithm included the effect of 

two vibration reduction subs, which was addressed in Chapter 3, and fluid models, 

developed in chapter 4 using both Euler-Bernoulli and Timoshenko beam theories. Figure 

F.1 shows a flow chart of the developed algorithm used in Matlab®.  

 

 

 

Figure F.1. Flow Chart of Matlab® Code Developed Throughout the Dissertation 

 

 

Before entering the input parameters, a selection has to be made regarding how to 

treat fluid flow in the wellbore. The developed code have the ability to either exclude or 

include fluid forces using a non-dynamic fluid model, dynamic using Power Law Model, 

or dynamic using Herschel Bulkley model, where different input parameters are required 

for the each fluid model. Next step is to select if a vibration reduction tool is included in 

the BHA and the type and location of the tool. The option includes three different vibration 

reduction designs, named axial shock sub, torsional vibration sub, and imbalance vibration 
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sub.  The FEA formulation step in Figure F.1 calculates each element stiffness, mass, fluid 

stiffness, fluid mass, gyroscopic matrices and element force vector than assemble them into 

global system matrix. In the initial deformation step, a static analysis is performance to 

obtain the initial deformation of the drill stem to be used to obtain the geometric stiffness 

matrix in the following step.  

Samples of the developed Matlab® codes are listed below, where the samples codes 

includes the input parameter file, sub file of Power Law fluid model , and sub file of 

Herschel Bulkley fluid model. 

 

Input File Script: 

%-------------------------- Input Data File --------------------------% 

%---------------------------------------------------------------------% 

%           Mohammed Al Dushaishi 2015   Missouri S&T                % 

%---------------------------------------------------------------------% 

%----------------------------------------------------------------------

-% 

clear all; clc; 

OPT1=0;  % 1=Delete ux, 2=Delete thetaX, Other: FUll matrix 

OPT2=2;  % 0= No fluid, 1=Linear Fluid Model, 2=Dynamic using Power law, 

         % 3=Dynamic using HB 

OPT3=0;  % 0=No time simulation, 1= CD, 2=Range and Kutt 

OPT4=0;  % 1= Make Movie of trajectory of motion 

OPT5=0;  % 0= NO axial Shock sub, 1=Include axial shock sub, 

         % 2=Include AST, 3=include vstab 

OPT6=0;  % 0= No fluid rotation, 1=with Fluid rotation 

OPT7=1;  % 0=Original Formulation, 1= Modified Formulation 

OPT8=1;  % 0= Only pressure drop across the element, 1= include Ppump 

%--------------------  System Specifications  ------------------------% 

 

% Drill pipe information: 

Ldp=1500;                            % Drill pipe length (m) 

IDdp=0.1087;                        % Drill pipe inside diameter (m) 

ODdp=0.127;                          % Drill pipe outside diameter (m) 

rhodp=7850;                          % Drill pipe density (kg/m^3) 

DPelL=50;                            % Drill pipe Element length(m) 

%---------------------------------------------------------------------% 

                 No_BHA_Components=1;  % Number of BHA Components 

%---------------------------------------------------------------------% 

% BHA Component 1 "Below drill pipe": 

Ldc1 =200;                           % BHA Component 1 length (m) 

IDdc1=0.054;                       % BHA Component 1 inside diameter (m) 

ODdc1=0.216;                       % BHA Component 1 outside diameter (m) 

rho1=7850;                           % BHA Component 1 density (kg/m^3) 

DCelL1=10;                            % BHA Component 1 Element length(m) 

% BHA Component 2 "Below Component 1" 

Ldc2 =10;                            % BHA Component 2 length (m) 
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IDdc2=0.07137;                      % BHA Component 2 inside diameter (m) 

ODdc2=0.17145;                     % BHA Component 2 outside diameter (m) 

rho2=3618;                           % BHA Component 2 density (kg/m^3) 

DCelL2=2;                            % BHA Component 2 Element length(m) 

% BHA Component 3 "Below Component 2" 

Ldc3 =10;                            % BHA Component 3 length (m) 

IDdc3=0.06985;                      % BHA Component 3 inside diameter (m) 

ODdc3=0.1651;                      % BHA Component 3 outside diameter (m) 

rho3=7695;                           % BHA Component 3 density (kg/m^3) 

DCelL3=2;                            % BHA Component 3 Element length(m) 

% BHA Component 4 "Below Component 3" 

Ldc4 =85;                            % BHA Component 4 length (m) 

IDdc4=0.07137;                      % BHA Component 4 inside diameter (m) 

ODdc4=0.17145;                     % BHA Component 4 outside diameter (m) 

rho4=7618;                           % BHA Component 4 density (kg/m^3) 

DCelL4=5;                           % BHA Component 4 Element length(m) 

% BHA Component 5 "Below Component 4" 

Ldc5 =20;                            % BHA Component 5 length (m) 

IDdc5=0.07137;                      % BHA Component 5 inside diameter (m) 

ODdc5=0.17145;                     % BHA Component 5 outside diameter (m) 

rho5=7850;                           % BHA Component 5 density (kg/m^3) 

DCelL5=4;                            % BHA Component 5 Element length(m) 

% BHA Component 6 "Below Component 5" 

Ldc6 =15;                            % BHA Component 6 length (m) 

IDdc6=0.07137;                      % BHA Component 6 inside diameter (m) 

ODdc6=0.17145;                     % BHA Component 6 outside diameter (m) 

rho6=8466;                           % BHA Component 6 density (kg/m^3) 

DCelL6=3;                            % BHA Component 6 Element length(m) 

% BHA Component 7 "Below Component 6" 

Ldc7 =14;                            % BHA Component 7 length (m) 

IDdc7=0.12;                         % BHA Component 7 inside diameter (m) 

ODdc7=0.17145;                     % BHA Component 7 outside diameter (m) 

rho7=1500;                           % BHA Component 7 density (kg/m^3) 

DCelL7=2;                            % BHA Component 7 Element length(m) 

% BHA Component 8 "Below Component 7" 

Ldc8 =3;                             % BHA Component 8 length (m) 

IDdc8=0.07137;                      % BHA Component 8 inside diameter (m) 

ODdc8=0.17145;                     % BHA Component 8 outside diameter (m) 

rho8=2931;                           % BHA Component 8 density (kg/m^3) 

DCelL8=0.3;                          % BHA Component 8 Element length(m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

E1=2.1*10^11;                        %  Elastic Modules (Pa) 

WOB=-150*10^3;                       % Applied axial force (N) 14tons 165 

Rot_speed=2*pi/60*100;               % rad/sec 

pos=0.29;                            % Poisson’s ration (-) 

G1=E1/(2*(1+pos));                   % Shear Modules 

ks=6/7;                              % Shear constant (-) 

g=9.81;                              % Gravitational forces (m/s^2) 

% location of stabilizers (boundaries location): 

STB1= Ldp+150;                % stabilizer location (Ref. surface) (m) 

STB2= Ldp+150;                % stabilizer location (Ref. surface) (m) 

% Axial Shock sub Location and stiffness 
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Axial_sub_L=Ldp+100; % (m) from surface 

ksub=4.205*10^6; % shock sub stiffness (N/m) 

% AST Vibration reduction tool 

AST_Loc=Ldp+100;% (m) from surface 

kAST=4.205*10^6; % AST stiffness (N/rad) 

% V-stab 

V_stab_lo=Ldp+100; % location of V-stab (m) 

Mun=1500; % amount of unbalance mass (Kg) 

Vun=0.03; % distance from G n V-direction (m) 

Wun=0.01; % distance from G n W-direction (m) 

%------------------------ fluid input data----------------------------% 

Db=0.3; % wellbore diameter (m) 

IDCS=0.445;%0.313614;%0.322961; %Casing ID (m) 

DCS=800; % casing shoe depth (m) 

 

rhof1=1297.6; % fluid density (kg/m^3) 

Cf=0.0125; % fluid viscous damping coefficient (-) 

Ppump=0; % pump pressure 

 

% Dynamic Pressure%% 

Q=6.30901964*10^(-5)*600; %m^3/s 

Turb=2100; % Reynolds number for laminar/turbulent flow determination (-

) 

% dial readings (deg) 

R3=8; R6=10; R100=32; R200=46; R300=58; R600=92; 

 

% Nozel sizes 

Nozz1 = 18/(32*39.37); % (m) Nozzle sizes 

Nozz2 = 18/(32*39.37);  Nozz3 = 10/(32*39.37);     Nozz4 =0/(32*39.37); 

Nozz5 = 0/(32*39.37);   Nozz6 = 0/(32*39.37);      Nozz7 = 0/(32*39.37); 

Nozz8 = 0/(32*39.37);   Cd=0.95; %discharge coeff (-) 

 

% Boundary conditions 

%ue=[u1 v1 thetaZ1 w1 thetaY1 thetaX1  u2 v2  thetaZ2  w2  thetaY2 

thetaX2] 

bcdof1 =[1 2 3 4 5 6 STB1Dof-4 STB1Dof-2 sdof-4 sdof-2]; 

%----------------------------- END -----------------------------------% 

 

Power Law Fluid Model Script: 

function 

[PDynamicIN,PDynamicOUT,Vin,Vout,Pf_in,Pf_out]=DynamicPressure(R600,R30

0,le,Q,Ai,IDsys,rhof,... 

Ab,Ao,Hole,ODsys,Cd,At,lengthvector,g,Ldp,Ldc,DCelL,DPelL,OPT8) 

 

%Dynamic Pressure Function is used to calculated the inside and outside 

% 

% pressure across the drill stem using the Power Law fluid Model         % 

 

 

Turb=2100; %Reynolds number for laminar/turbulent flow determination(-) 
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%--------------------- Modified Fluid forces -------------------------% 

 

n=3.32*log(R600/R300); % consistency index(-) 

Kvi=5.11*R600/1022^n*1/0.01*1/10^3; % (pa.s^n) 

 

%                         Pressure Inside the DS                          % 

%---------------------------------------------------------------------% 

% Calculating pressure drop across the DS 

for jj=1:1:length(le) 

Vin(jj)=Q/Ai(jj); % fluid velocity at each segment (m/s) 

muin(jj)=Kvi*(Vin(jj)/IDsys(jj))^(n-1)*(3*n+1/(4*n))^n; % eff. viscosity 

(pa.s) 

Rein(jj)=rhof(jj)*Vin(jj)*IDsys(jj)/muin(jj); % Reynolds (-) 

if (Rein(jj)>Turb)           % If Turbulent Flow 

    a=(log(n)+3.93)/50;    % constant to calculate friction (-) 

    b=(1.75-log(n))/7;     % constant to calculate friction (-) 

    Fricin(jj)=a/(Rein(jj)^b); %Friction factor 

 

else if (Rein(jj)<Turb)      % If Laminar Flow 

        Fricin(jj)=24/Rein(jj); 

    end 

end 

     % Pressure drop across the DS (pa) 

     DeltaPin(jj)=Fricin(jj)*Vin(jj)^2*rhof(jj)/IDsys(jj)*le(jj); 

end 

 

%                         Pressure in the Annulus                         % 

%---------------------------------------------------------------------% 

% Calculating pressure drop across the DS 

for jj=1:1:length(le) 

Vout(jj)=Q/(Ab(jj)-Ao(jj)); % fluid velocity at each segment (m/s) 

muout(jj)=Kvi*(Vout(jj)/(Hole(jj)-ODsys(jj)))^(n-1)*(3*n+1/(4*n))^n; % 

eff. viscosity (pa.s) 

Reout(jj)=rhof(jj)*Vout(jj)*(Hole(jj)-ODsys(jj))/muout(jj); % Reynolds 

(-) 

if (Reout(jj)>Turb)           % If Turbulent Flow 

    a=(log(n)+3.93)/50;    % constant to calculate friction (-) 

    b=(1.75-log(n))/7;     % constant to calculate friction (-) 

    Fricout(jj)=a/(Reout(jj)^b); %Friction factor 

 

else if (Reout(jj)<Turb)      % If Laminar Flow 

        Fricout(jj)=24/Reout(jj); 

    end 

end 

     % Pressure drop across the DS (pa) 

     DeltaPout(jj)=Fricout(jj)*Vout(jj)^2*rhof(jj)/(Hole(jj)-

ODsys(jj))*le(jj); 

end 

%---------------------------------------------------------------------% 

 

% Pressure drop across the nozzles 

Pnozz=rhof(1)*Q^2/(2*Cd^2*At^2); % (pa) 
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% Pump pressure 

PDyn=sum(DeltaPin+DeltaPout)+Pnozz; % (pa) 

 

% Adding pump pressure to the system 

DeltaPtot=[PDyn DeltaPin]; 

 

% Calculating the actual pressure drop at each element inside the DS 

DPelin=zeros(1,length(le)+1); 

DPelin(1)=PDyn; 

for tt=1:length(le) 

    DPelin(tt+1)=DPelin(tt)-DeltaPtot(tt+1); 

end 

 

% Calculating the actual pressure drop at each element in the annulus 

DPelout=zeros(1,length(le)+1); 

DPelout(length(le)+1)=DPelin(length(le)+1)-Pnozz; 

for tt=length(le):-1:1 

    DPelout(tt)=DPelout(tt+1)-DeltaPout(tt); 

end 

 

% The actual Hydrostatic Pressure (pa) 

Phyd=rhof(1)*g*lengthvector(1:end); 

% Total dynamic pressure inside and outside (pa) 

PDynamicIN=Phyd+DPelin; 

PDynamicOUT=Phyd+DPelout; 

 

% Utube length representation 

PDynamicU=[PDynamicIN PDynamicOUT(length(le+1):-1:1)]; 

DeltaPU=[DPelin DPelout(length(le):-1:1)]; 

Ulength=[lengthvector, Ldp+Ldc+DCelL:DCelL:Ldp+Ldc+Ldc,... 

    Ldp+Ldc+Ldc+DPelL:DPelL:Ldp+Ldc+Ldc+Ldp]; 

 

if OPT8==0 

Pf_in=DeltaPin; 

Pf_out=DeltaPout; 

else 

    Pf_in=DPelin(2:end); 

    Pf_out=DPelout(2:end); 

End 

%----------------------------- END -----------------------------------% 

 

Herschel Bulkley Fluid Model Script: 

function 

[PDynamicIN,PDynamicOUT,Vin,Vout,Pf_in,Pf_out]=DynamicPressure_HB(IDsys

,... 

    ODsys, Hole, le, Q, rhof, R3, R6, R100, R200, R300, R600, g,... 

    Cd,At, lengthvector, Ldp, Ldc,DPelL,DCelL,OPT8) 

 

% H-B fluid model for pressure drops 

% Mohammed Al Dushaishi 

%8/26/2015 
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%Convert from m to ft 

ID=3.280839895*IDsys; 

OD=3.280839895*ODsys; 

Holef=3.280839895*Hole; 

le_ft=3.280839895*le; 

% convert flow rate from m^3/s to ft^3/s 

Q_f=35.314667*Q; % Q in ft^3/s 

rhof_f=0.062428*rhof; %rhof in lb/ft^3 

 

 

%------------- obtain H-B fluid model parameters ---------------------% 

 

R=[R3; R6; R100; R200; R300; R600]; % placing viscometer readying in 

matrix 

% converting viscometer readying to field units 

Rf=1.067*R; % lbf/100ft^2 

% converting viscometer speed from RPM to Hz 

SR=1.703*[3; 6; 100; 200; 300; 600]; %1/sec=Hz 

%The geometric mean of the shear rate: 

M_SR=sqrt(min(SR)*max(SR)); % 

%shear stress value the corresponding to the geometric mean shear rate 

tau_s=interp1(SR,Rf,M_SR); % 

%yield stress 

tau0=(tau_s^2-max(Rf)*min(Rf))/(2*tau_s-min(Rf)-max(Rf)); 

%obtain n and k graphically 

LHS=-tau0+Rf; 

cf=polyfit(log10(SR),log10(LHS),1); 

n=cf(1,1); % Flow Behavior index 

kv=10^(cf(1,2)); % Consistence index 

%---------------------------------------------------------------------% 

%                         Pressure Inside the DS                         % 

%---------------------------------------------------------------------% 

% Calculating pressure drop across the DS 

for jj=1:1:length(le_ft) 

Vinf(jj)=Q_f/(pi/4*ID(jj)^2);% fluid velocity at each segment (m/s) 

C_cin(jj)=1-

(1/(2*n+1))*tau0/(tau0+kv*((3*n+1)*Q_f/(n*pi*(ID(jj)/2)^3))^n); 

N_Rein(jj)=2*(3*n+1)/n*... 

    ((rhof_f(jj)*Vinf(jj)^(2-

n)*(ID(jj)/2)^n)/(tau0*(ID(jj)/(2*Vinf(jj)))^n... 

    +kv*((3*n+1)/(n*C_cin(jj)))^n)); 

C1=((log10(n)+3.93)/50); 

C2=((1.75-log10(n))/7); 

N_Re_cin=((4*(3*n+1))/(n*C1))^(1/(1-C2)); 

 

if (N_Rein(jj)>N_Re_cin)           % If Turbulent Flow 

    f1(jj)=C1*(C_cin(jj)*N_Rein(jj))^(-C2); 

    Dp_DL(jj)=f1(jj)*Q_f^2*rhof_f(jj)/(1421.22*ID(jj)^5); 

 

else if (N_Rein(jj)<N_Re_cin)      % If Laminar Flow 

      Dp_DL(jj)=4*kv/(14400*ID(jj))*... 
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          (tau0/kv+(((3*n+1)/(n*C_cin(jj)))*(8*Q_f/(pi*ID(jj)^3)))^n); 

%psi/ft 

    end 

end 

     % Pressure drop across the DS (psi) 

     DeltaPin_psi(jj)=Dp_DL(jj)*le_ft(jj); 

end 

DeltaPin=DeltaPin_psi*6894.744825; %convert to (pa) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                         Pressure in the Annulus                         % 

%---------------------------------------------------------------------% 

% Calculating pressure drop across the DS 

for jj=1:1:length(le_ft) 

Voutf(jj)=Q_f/(pi/4*(Holef(jj)^2-OD(jj)^2));% fluid velocity at each 

segment (ft/s) 

C_cout(jj)=1-(1/(n+1))*... 

    tau0/(tau0+kv*((2*n+1)*2*Q_f/(n*pi*(Holef(jj)/2-OD(jj)/2)*... 

    (((Holef(jj)/2)^2-(OD(jj)/2)^2))))^n); 

N_Reout(jj)=4*(2*n+1)/n*((rhof_f(jj)*Voutf(jj)^(2-n)*... 

    ((Holef(jj)-OD(jj))/2)^n)/(tau0*((Holef(jj)-

OD(jj))/(2*Voutf(jj)))^n+... 

    kv*(2*(2*n+1)/(n*C_cout(jj)))^n)); 

N_Re_cout=((8*(2*n+1))/(n*C1))^(1/(1-C2)); 

 

if (N_Reout(jj)>N_Re_cout)           % If Turbulent Flow 

    f2(jj)=C1*(C_cout(jj)*N_Reout(jj))^(-C2); 

    Dp_DLOut(jj)=f2(jj)*Q_f^2*rhof_f(jj)/... 

        (1421.22*(Holef(jj)-OD(jj))*(Holef(jj)^2-OD(jj)^2)); %psi/ft 

 

else if (N_Reout(jj)<N_Re_cout)      % If Laminar Flow 

         Dp_DLOut(jj)=4*kv/(14400*(Holef(jj)-OD(jj)))*... 

             (tau0/kv+((16*(2*n+1)/(n*C_cout(jj)*(Holef(jj)-

OD(jj))))*... 

             (Q_f/(pi*(Holef(jj)^2-OD(jj)^2))))^n); %psi/ft 

    end 

end 

     % Pressure drop across the DS (psi) 

     DeltaPout_psi(jj)=Dp_DLOut(jj)*le_ft(jj); 

end 

 DeltaPout=DeltaPout_psi*6894.744825; %convert to (pa) 

%---------------------------------------------------------------------% 

% Pressure drop across the nozzles 

Pnozz=rhof(1)*Q^2/(2*Cd^2*At^2); % (pa) 

 

% Pump pressure 

PDyn=sum(DeltaPin+DeltaPout)+Pnozz; % (pa) 

 

% Adding pump pressure to the system 

DeltaPtot=[PDyn DeltaPin]; 

 

% Calculating the actual pressure drop at each element inside the DS 

DPelin=zeros(1,length(le)+1); 

DPelin(1)=PDyn; 
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for tt=1:length(le) 

    DPelin(tt+1)=DPelin(tt)-DeltaPtot(tt+1); 

end 

 

% Calculating the actual pressure drop at each element in the annulus 

DPelout=zeros(1,length(le)+1); 

DPelout(length(le)+1)=DPelin(length(le)+1)-Pnozz; 

for tt=length(le):-1:1 

    DPelout(tt)=DPelout(tt+1)-DeltaPout(tt); 

end 

 

% The actual Hydrostatic Pressure (pa) 

Phyd=rhof(1)*g*lengthvector(1:end); 

% Total dynamic pressure inside and outside (pa) 

PDynamicIN=Phyd+DPelin; 

PDynamicOUT=Phyd+DPelout; 

 

 % Utube length representation 

PDynamicU=[PDynamicIN PDynamicOUT(length(le+1):-1:1)]; 

DeltaPU=[DPelin DPelout(length(le):-1:1)]; 

Ulength=[lengthvector, Ldp+Ldc+DCelL:DCelL:Ldp+Ldc+Ldc,... 

    Ldp+Ldc+Ldc+DPelL:DPelL:Ldp+Ldc+Ldc+Ldp]; 

 

Vin=0.3048*Vinf; 

Vout=0.3048*Voutf; 

 

 

if OPT8==0 

Pf_in=DeltaPin; 

Pf_out=DeltaPout; 

else 

    Pf_in=DPelin(2:end); 

    Pf_out=DPelout(2:end); 

End 

%----------------------------- END -----------------------------------% 

 

A Sample of the analytical solution devolved in MapleSoftTM is listed below. The 

sample of the Maple algorithm solve for axial frequencies for a drill stem including drill 

pipe, drill collar, and one stabilizer. 

 

Frequency and Mode shape of Two Spans Rod   

Mohammed Al Dushaishi  10-24-2014  

The objective is to obtain the Frequency and Mode shape of a Twos pan rod which is shown in Figure.1. 

Where separate coordinates are assumed for each span.  
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Figure Two spans beam 

The Boundary Conditions are Fixed-Pinned-Pinned  conditions and they are:   

X1(0)=0   ,  X1(L1)= X2(0) ,   E1*A1*X1'(L1)=E2*A2*X2'(0) ,   E2*A2*X2'(L2)=0  

 

>  restart:  

with(plots):  

with(Student[Calculus1]):  

with(LinearAlgebra):  

interface(rtablesize=20):  

read "multiroot.mpl"; 

Geometric input   

>  ID1:=0.095:  

OD1:=0.127:  

ID2:=0.0762:  

OD2:=0.22886:  

E:=2.1*10^11:  

rho:=7850: 

>  AR1:=evalf(Pi/4*(OD1^2-ID1^2));  
AR2:= evalf(Pi/4*(OD2^2-ID2^2)); 

 

 

(1) 

Number of modes to include:  

>  n:=10; 

 

(2) 

Length of each span:  
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>  L1:=1600; L2:=200; 

 

 

(3) 

 The Normal Mode of the first span  

>  X1:= unapply(A1*sin(beta*x)+A2*cos(beta*x), x, A1, A2, beta); 

 

(4) 

First derivative of the first span mode equation:  

>  dX1:=unapply(diff(X1(x, A1, A2, beta),x),x, A1, A2, beta); 

  (5) 

The Normal Mode of the second span  

>  X2:= unapply(B1*sin(beta*y)+B2*cos(beta*y), y, B1, B2, beta); 

  (6) 

First derivative of the second span mode equation:  

>  dX2:= unapply(diff(X2(y, B1, B2, beta),y),y, B1, B2, beta); 

 

(7) 

Applying Boundary conditions:  

>  eqns:=simplify([X1(0,A1, A2, beta)=0, X1(L1,A1, A2, beta)=X2(0,B1, 

B2, beta), AR1*dX1(L1,A1, A2, beta)/beta=AR2*dX2(0, B1, B2, 

beta)/beta, X2(L2, B1, B2, beta)=0]); 

 

 
(8) 

> SYS:=GenerateMatrix(eqns, [A1, A2, B1, B2])[1]; 

 

(9) 

Characteristic equation to obtain the natural beta’s:   

>  detSYS:= unapply((Determinant(SYS)), beta): 

>  plot(detSYS(beta),beta=0..20,view=[0..0.1, -0.03..0.03], color=blue, 

thickness=1, labels=[typeset(beta),"Characteristic Equation"], 

labeldirections = [horizontal, vertical], title = "Plot of the 

Characteristic Equation (Eigen function)", titlefont = [Times, bold, 

12], labelfont = [Times, italic, 12], numpoints=1000);  
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Finding the roots of the characteristic equation  

>  omega:= mr(detSYS,0.00001, 1,3000,15,0);  

 

 

 

 

 

 

 

 
… 

 

(10) 

The First few roots   

>  lambda:=omega[1..n]: 

Natural frequencies: (Hz)  

>  Frq:=evalf(seq(lambda[i]*sqrt(E/(rho))/(2*Pi),i=1..n)); 

 

(11) 

Mode Shape  

 Applying Boundary conditions and setting A1=1 for normalization, than placing constants in matrix form: 

>  BCs:=simplify([A1=1, X1(L1,A1, A2, beta)=X2(0,B1, B2, beta), 
dX1(L1,A1, A2, beta)/beta*AR1=dX2(0, B1, B2, beta)/beta*AR2, X2(L2, 

B1, B2, beta)=0]):  

BCsM:=GenerateMatrix(BCs, [A1, A2, B1, B2]);  

 

(12) 
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Solve for the constants A[i] and B[i] using linear solve:  

>  Const:=LinearSolve(BCsM); 

 

(13) 

Extract the constants values from Const matrix and set them as a function of the roots:  

>  AA1:=Const(1):  
AA2:=Const(2):  

BB1:=Const(3):  

BB2:=Const(4): 

Re-writing the second span in term of one axis for plotting:  

>  X2N:=unapply(B1*sin(beta*(x-Li))+B2*cos(beta*(x-
Li)),x,B1,B2,beta,Li); 

 

(14) 

sub the constant's into the solution of the equation of motion for each span:  

>  X1f:=unapply(X1(x, AA1,AA2, beta),beta, x):  
X2f:=unapply(X2N(x, BB1,BB2,beta,L1),beta, x): 

Using Piecewise function to plot Mode shape of the entire beam:  

>  Mode1:=piecewise(x<=L1,X1f(lambda[1],x), 

x<=(L1+L2),X2f(lambda[1],x)); 

 

(15) 

>  Mode2:= piecewise(x<=L1, X1f(lambda[2],x), 

x<=(L1+L2),X2f(lambda[2],x)); 

 

(16) 

>  Mode3:= piecewise(x<=L1, X1f(lambda[3],x), 

x<=(L1+L2),X2f(lambda[3],x)); 

 

(17) 

>  Mode4:= piecewise(x<=L1, X1f(lambda[4],x), 

x<=(L1+L2),X2f(lambda[4],x)); 
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(18) 

>  plot([Mode1,Mode2,Mode3],x=0..L1+L2,color=[red,blue,black],thickn

ess=2, labels=[x (m),"Mode shape"], labeldirections = 

[horizontal, vertical], title = "Mode shape", titlefont = [Times, 

bold, 12], labelfont = [Times, italic, 12],legend=["Mode 1","Mode 

2","Mode 3"],axis=[gridlines=10]); 
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