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ABSTRACT 

In spite of numerous studies, the mechanisms for the rifting, uplifting, and 

volcanism on the African plate remain enigmatic. The most popular hypotheses proposed 

for explaining these tectonic phenomena involve edge-driven small-scale mantle 

convection and the thermal or dynamic effects of one or more mantle plumes. In this 

study we use continental scale shear-wave splitting (SWS) measurements to provide 

additional constraints on the various models of rifting, uplifting, and volcanism of the 

Cameroon Volcanic Line (CVL) and the Arabian plate. The splitting of P-to-S converted 

phases at the core-mantle boundary on the receiver side (XKS including PKS, SKKS, and 

SKS) is one of the most effective approaches to constrain convective mantle flow 

patterns. A robust procedure involving automatic and manual batch processing to reliably 

assess and objectively rank shear-wave splitting parameters were used. The resulting 

1532 pairs of splitting parameters show a NNE dominated fast direction. Spatial 

distribution of the splitting parameters in the CVL and Arabia is not consistent with the 

edge-driven small-scale mantle convection hypothesis, the mantle plume hypothesis, 

fossil fabrics formed by past tectonic events, or the fabric-forming process due to the 

absolute plate motion relative to the deep mantle.  

 The research suggests that the progressive thinning of the lithosphere through 

basal erosion by the flow leads to decompression melting is responsible for the formation 

of the CVL, and  olivine lattice preferred orientation in the upper asthenosphere 

associated with the northward motion of the African plate since 150 Ma, most likely 

causes the observed anisotropy across the Red Sea. 
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SECTION 

 

1. INTRODUCTION 

A longstanding problem with our understanding of the tectonics of the African 

plate is the deformation of the lithosphere and its dynamic interaction with the 

asthenosphere. Numerous studies have used different methods to study lithospheric 

deformation, but many fundamental questions regarding the formation of intra-

continental volcanic lines such as the CVL and interaction between moving plates and the 

underlying asthenosphere are still poorly understood (Figure 1.1). 

  

   

Figure 1.1. Major tectonic elements of the Afro-Arabian Rift System and East African 

Rift System. 
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This dissertation undertakes two seismic anisotropy studies using shear-wave 

splitting. The first project examines the upper mantle structure beneath the Cameroon 

Volcanic Line (Figure 1.1). This part of the study proposes a channel flow model that can 

explain the lack of age progression of the volcanoes in the CVL and the formation 

mechanism for both the continental and oceanic sections of the CVL.  

The second part of the study investigates   upper mantle anisotropy across the Red 

Sea (Figure 1.1). It is the first study that utilizes data recorded by the Egyptian National 

Seismic Network. The results suggests that  seismic anisotropy is caused by simple shear 

in the boundary layer between the lithosphere and the asthenosphere associated with 

northward subduction of the African/Arabian plates over the past 150 Ma. 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

PAPER 

 

I. MANTLE SEISMIC ANISOTROPY AND FORMATION OF THE 

CAMEROON VOLCANIC LINE BY LITHOSPHERIC BASAL 

EROSION 

 

Abstract 

The formation mechanism of intraplate volcanism such as that along the 

Cameroon Volcanic Line (CVL) is one of the controversial problems in global tectonics. 

Models proposed by previous studies include re-activation of ancient suture zones, 

lithospheric thinning by mantle plumes, and edge-driven mantle convection. To provide 

additional constraints on the models for the formation of the CVL, we measured shear-

wave splitting parameters at 36 stations in the vicinity of the CVL using a robust 

procedure involving automatic batch processing and manual screening to reliably assess 

and objectively rank shear-wave splitting parameters (fast polarization directions and 

splitting times). The resulting 432 pairs of splitting parameters show a systematic spatial 

variation. Most of the measurements with ray-piercing points (at 200 km depth) beneath 

the CVL show a fast direction that is parallel to the volcanic line, while the fast directions 

along the coastline are parallel to the continental margin. The observations can best be 

interpreted using a model that involves a channel flow at the bottom of the lithosphere 

originated from the NE-ward movement of the asthenosphere relative to the African 

plate. We hypothesize that progressive thinning of the lithosphere through basal erosion 

by the flow leads to decompression melting and is responsible for the formation of the 

CVL. The model is consistent with the lack of age progression of the volcanoes in the 
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CVL, can explain the formation of both the continental and oceanic sections of the CVL, 

and is supported by previous geophysical observations and geodynamic modeling results. 

 

1. Introduction 

Most of the Earth’s magmatism is associated with dehydration of  minerals in 

subducting slabs and with decompression melting along mid-ocean ridges, and thus can 

be well-explained by the theory of plate tectonics [e.g., Turcotte and Oxburgh, 1978; 

Courtillot et al., 2003]. The formation mechanism for intraplate magmatism, on the other 

hand, remains enigmatic. Various models have been proposed to explain intraplate 

magmatism, including those involving mantle plumes [Morgan, 1972; Courtillot et al., 

2003], tensional cracking in the lithosphere [Turcotte and Oxburgh, 1978; Anderson, 

2000], and edge-driven convection (EDC) [King and Anderson, 1998]. 

The African plate is ideal for studying intraplate magmatism. It contains several 

intraplate volcanic segments or centers that are remote from the African plate boundaries 

(Figure 1). One of such segments is the NE-SW oriented Cameroon Volcanic Line 

(CVL), which consists of a continental and an oceanic section. The CVL intercepts with 

the Atlantic coastline at the joint point between the E-W and N-S segments of the 

coastline (Figure 2).  

Many studies proposed that the CVL was the result of the NE-ward movement of 

the African plate over a mantle plume that is currently beneath St. Helena [e.g., Morgan, 

1983] (Figure 1). This model predicts that the age of the volcanoes decreases toward the 

SW. Such an age progression, however, is not observed [e.g., Fitton and Dunlop, 1985].  
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Figure 1. Topographic relief map of Africa showing major interplate volcanic centers and 

cratons [Turcotte and Oxburgh, 1978; Abdelsalam et al., 2011]. Cameroon Volcanic Line 

(CVL); Tanzania Craton (TC). The area inside the red dashed rectangle is shown in 

Figures 2 and 3. The green arrows represent absolute plate motion (APM) vectors 

calculated using the GMHRF model [Doubrovine et al., 2012] and the black arrows show 

APM vectors determined by the HS3-NUVEL1A model [Gripp and Gordon, 2002]. The 

blue arrows indicate the horizontal component of mantle flow predicted at 250 km depth 

[Forte et al., 2010]. Red stars represent the locations of the Atlantic mantle plumes 

[Doubrovine et al., 2012]. 
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Figure 2. Major tectonic elements of western and central Africa showing the main 

geological subdivision units [International Geological Map of Africa, 1990]. The white 

squares and rectangular show the seismic stations used in the study. 

 

Additionally, 3He/4He ratios measured along the CVL are lower than those observed at 

typical hotspots such as Loihi and Iceland [Aka et al., 2004], probably suggesting an 

upper-mantle origin of the magmatism. Other studies concluded that the CVL was due to 

decompression melting beneath re-activated shear zones on the African continent [e.g., 

Fairhead, 1988]. This model, while can explain the lack of age progression, cannot 

satisfactorily explain the existence of the oceanic section of the CVL. The third group of 

studies advocated edge-driven convection as the major cause of the CVL [King and 

Ritsema, 2000; Koch et al., 2012; Milelli et al., 2012]. This model suggests that the 

upwelling flow thins the lithosphere and creates a line of volcanoes parallel to the 

boundary between two areas with contrasting lithospheric thickness.  
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Figure 3. A map of the study area showing locations and ages of the Cameroon Volcanic 

Line (magenta features) [Fitton and Dunlop, 1985; Fitton, 1987] and previous shear-

wave splitting measurements (red and blue bars). The orientation of the bars represents 

the fast direction (the length is proportional to the splitting time), and the red circles 

represent null measurements. The blue bar near the eastern edge of the figure represents 

the measurement from Barruol and Ben Ismail [2001], and the red bars and circles 

represent measurements from Koch et al. [2012]. FSZ, Foumban Shear Zone. CASZ, 

Central African Shear Zone. CFZ, Cameroon Fracture Zone [Meyers et al., 1998; Reusch 

et al., 2010]. OB, Oubanguides Belt. The dashed magenta line represents the northern 

edge of the Congo craton [Schluter, 2006; Reusch et al., 2010]. The red star shows the 

location of the Cameroon mantle plume [Burke, 2001]. The letters in the rectangles 

indicate the name of the sub-area that the stations belong to (see section 5.1). 
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In the study area, the northern edge of the Congo craton is a potential locale for 

the EDC to occur and thus could be responsible for the formation of the continental 

section of the CVL (Figure 2). However, this model cannot explain the orientation of the 

oceanic section of the CVL, because the anticipated strike of the zone of thinned oceanic 

lithosphere should be parallel to the coastline, while the actual CVL has a NE-SW strike. 

In addition, as described below, neither the plume nor the EDC model is supported by 

shear-wave splitting (SWS) measurements. 

Splitting analysis of P-to-S converted phases at the core-mantle boundary on the 

receiver side, including the PKS, SKKS, and SKS (hereinafter collectively referred to as 

XKS) phases, is considered to be one of the most effective tools in measuring seismic 

anisotropy, which is mostly caused by deformational processes in the mantle [see Silver, 

1996, Savage, 1999, and Fouch and Rondenay, 2006 for reviews]. Numerous XKS 

splitting studies demonstrated that the spatial distribution of the two splitting parameters 

Φ, which is the polarization direction of the faster wave, and δt, the splitting time 

between the faster and slower waves, are crucial to understand mantle circulation 

patterns. The fast direction reflects the anisotropy orientation, while the splitting time 

quantifies the magnitude of mantle deformation [Conrad and Behn, 2010; Kreemer, 

2009]. 

The coefficient of anisotropy is defined as (Vfast−Vslow)/Vmean where Vfast 

and Vslow are the fast and slow shear-wave velocities, respectively and Vmean is the 

mean velocity [Birch, 1960; Wolfe and Solomon, 1998]. The global average of the 

splitting time observed using teleseismic XKS waves is 1.0 s, which corresponds to a 

thickness of about 100 km for a 4% anisotropy [Silver, 1996]. Olivine lattice-preferred 
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orientations (LPO) likely forms as a result of dislocation creep deformation, leading to a 

macroscopic anisotropy in the upper mantle [e.g., McKenzie, 1979; Ribe, 1989; Fouch 

and Rondenay, 2006; Conrad et al., 2007]. Numerical modeling and experimental 

mineral physics studies indicate that under uniaxial compression, the olivine a-axis 

rotates to be orthogonal to the maximum compressional strain direction. Under pure 

shear, it becomes perpendicular to the shortening direction; and under progressive simple 

shear, it aligns parallel to the flow direction [Ribe and Yu, 1991; Chastel et al., 1993; 

Zhang and Karato, 1995; Savage, 1999; Liu, 2009]. Therefore, the fast direction may 

reveal the flow direction in the asthenosphere as observed in ocean basins, continental 

rifts, and passive margins [Wolfe and Solomon, 1998; Gao et al., 1994, 1997, 2008, 

2010; Refayee et al., 2013].  

In the lithosphere, Φ is primarily parallel to the trend of past tectonic events, as 

revealed at numerous locales [McNamara et al., 1994; Liu et al., 1995; Silver, 1996; 

Barruol and Hoffmann, 1999; Fouch and Rondenay, 2006; Li and Chen, 2006; Liu, 

2009]. In addition, vertical magmatic dikes in the lithosphere can result in XKS splitting 

with a fast direction parallel to the main strike direction of the dikes [Gao et al., 1997, 

2010]. This mechanism was suggested to explain rift-parallel fast directions detected in 

active continental rifts such as the Baikal rift zone [Gao et al., 1997], the East African rift 

system [Gao et al., 1997, 2010; Kendall et al., 2005], and failed rifts such as the southern 

Oklahoma aulacogen [Gao et al., 2008]. 

2. Geophysical background 

The CVL is an ~1600 km elongated Y-shaped feature of Cenozoic volcanoes 

[e.g., Fitton, 1987; Aka et al., 2004; Tokam et al., 2010; Reusch et al., 2010; Milelli et 
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al.,2012] (Figure 3). It is located between the Congo craton to the south and the 

Oubanguides Belt to the north, which was created by the collision between four different 

terranes including the Sao Francisco and Congo cratons, the West African craton, and a 

Pan-African mobile domain during the formation of the Gondwana [e.g., Castaing et al., 

1994; Toteu et al., 2004; Begg et al., 2009; Tokam et al., 2010]. The land section of the 

CVL includes several major volcanoes such as Mounts Cameroon, Manengouba, 

Bambouto, and Oku, and extends from the Gulf of Guinea all the way to the Chad 

frontier [e.g., Aka et al., 2004] (Figure 2). The oceanic section includes the islands of 

Annobon (formerly called Pagalu), Sao Tome, Principe, and Bioko (Figure 3). The Pan- 

African basement rocks almost cover the entire continental portion of the CVL with more 

than 60 anorogenic ring complexes exposed on the surface of the continental section of 

the CVL. The majority of these ring complexes are concentrated in the southwestern part 

of the continental section. The basement rocks exposed on the CVL are mainly alkaline 

(basalts, basanites, trachytes, and phonolites) with the exception of the nephelinitic lava 

that erupted near Mt. Etinde [Fitton and Hughes, 1981; Fitton, 1987; Lee et al., 1994; 

Aka et al., 2004; Deruelle et al., 1991, 2007].  

Nearly all of the global and regional tomographic models agree that the CVL is 

underlain by upper mantle low-velocity anomalies, while the Congo and West Africa 

cratons are underlain by high-velocity anomalies [e.g., King and Ritsema, 2011; Ritsema 

and Heijst, 2000; Priestley et al., 2008; Reusch et al., 2010]. However, the lateral and 

depth extent of the upper mantle low-velocity anomalies beneath the CVL, which plays 

an important role for understanding the origin of the CVL, is still a subject of 

considerable debate [e.g., Reusch et al., 2010]. King and Ritsema [2000] used numerical 
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modeling constrained by seismic tomography results to understand the origin of African 

and South American intraplate volcanisms. They found relatively high seismic shear 

wave velocities in the mantle transition zone beneath the Congo and West African 

cratons and suggested that EDC from beneath the Congo craton is responsible for the 

formation of the CVL.  

On a local scale, Dorbath et al. [1986] performed inversion of teleseismic P-wave 

travel-time residuals across the Adamawa Plateau and the central African shear zone 

(CASZ) in central Cameroon (Figure 3). They revealed a low-velocity anomaly beneath 

the Adamawa Plateau striking ENE at the depth of ~190 km. Plomerova et al. [1993] 

examined the lithospheric thickness and anisotropy within the upper mantle in the 

Adamawa Plateau using teleseismic P-and PKP-arrival times recorded by a network of 40 

seismic stations deployed along the plateau. They concluded that a thinned lithosphere 

and a 2% low-velocity anomaly beneath the CASZ in Cameroon are caused by mantle 

upwelling. The most recent tomographic imaging using body-waves shows a tabular low-

velocity anomaly beneath the CVL with a depth extension not less than 300 km [Reusch 

et al., 2010]. They argued that the low-velocity anomaly beneath the CVL is consistent 

with a model involving EDC along the northern boundary of the Congo craton.  

Many studies have analyzed crustal structure beneath the study area using a 

variety of techniques including active and passive seismic source analysis [e.g., Stuart et 

al., 1985; Dorbath et al., 1986; Tabod et al., 1992; Plomerova et al., 199139 3; Sandvol 

et al., 1998; Hansen et al., 2009; Obrebski et al., 2010; Tokam et al., 2010; Gallacher 

and Bastow, 2012] and gravity studies [e.g., Fairhead and Okereke, 1987; Djomani et 

al., 1995; Nnange et al., 2000; Toteu et al., 2004; Tadjou et al., 2009]. Tokam et al. 
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[2010] used data from the Cameroon Broadband Seismic Experiment (CBSE) network, 

which consisted of 32 portable broad-band seismometers deployed between January 2005 

and February 2007 across Cameroon, to investigate crustal structure beneath the CVL by 

utilizing P-wave receiver functions (RFs) and surface wave dispersion data. They found a 

thin crust of 26-31 km in thickness beneath the Garoua rift and the coastal plain (Figure 

3), and a thicker crust of 43-48 km with a mafic lower crust beneath the Congo craton. 

The crustal thickness in the CVL and the Oubanguides Belt varies between 35 and 39 km 

(Figure 3). They suggested that the thin crust beneath the coastal plain is caused by the 

opening of the southern Atlantic Ocean, while the formation of the Benue Trough in the 

early Cretaceous thinned the crust in the Garoua rift. The thicker crust in the Congo 

craton was formed as a result of continent-continent collision in the development of the 

Gondwana. Recently, Gallacher and Bastow [2012] applied a RFs stacking technique 

[Zhu and Kanamori, 2000] using the CBSE data to study crustal structure beneath the 

CVL. Most of the crustal thickness measurements by Gallacher and Bastow [2012] are 

comparable with those obtained by Tokam et al. [2010]. 

 

3. Previous seismic anisotropy studies 

During the past two decades, XKS splitting studies provided important constraints 

on various models for the formation, structure, and dynamics of various Cenozoic 

tectonic processes on the African plate including rifting, uplifting, volcanism, and 

lithosphere deformation [e.g., Vinnik et al., 1989; Gao et al., 1997; Barruol and 

Hoffmann, 1999; Silver et al., 2001; Barruol and Ben Ismail, 2001; Gashawbeza et al., 

2004; Walker et al., 2004; Kendall et al., 2005, 2006; Gao et al., 2010; Bagley and 
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Nyblade, 2013]. In our study area, Chevrot [2000] conducted multichannel SKS splitting 

analysis to constrain seismic anisotropy beneath station BGCA (formerly called BNG). 

He suggested that the splitting parameters (Φ = 17 ± 1.0° and δt = 0.74 ± 0.03 s) observed 

at the station are due to the present-day movement of the African plate. For the same 

station, Barruol and Hoffmann [1999] found Φ = 29 ± 4.0° and δt = 0.84 ± 0.11 s. 

Barruol and Ben Ismail [2001] investigated upper mantle anisotropy beneath the African 

plate using data from the Incorporated Research Institutions for Seismology (IRIS) and 

GEOSCOPE stations including BGCA. They obtained a fast direction of 35 ± 2.0° and a 

splitting time of 0.79 ± 0.06 s at BGCA.  

Koch et al. [2012] reported station-averaged SKS and SKKS splitting parameters 

beneath Cameroon (Figure 3) using data from the CBSE and station MSKU. The study 

also used SWS results at station BGCA from Barruol and Ben Ismail [2001]. They 

identified four regions with different splitting parameters. The Congo craton and the 

Garoua rift have NE-SW fast directions and splitting times of about 1.0 s. Spatially 

varying fast directions and splitting times as small as 0.3 s are observed at the northern 

edge of the Congo craton and in the area between the CVL and the craton in central 

Cameroon (Figure 3). Along the CVL, the mean fast direction is about 30°, and the 

splitting times are 0.7 s. They suggested that the observed anisotropy beneath central and 

northeast Cameroon is associated with fossil anisotropy due to past collisional events, 

while most of the observed anisotropy beneath the CVL is related to EDC originated 

from variations in temperature between the Congo craton and the mobile belts that flank 

the northern boundary of the Congo craton [e.g., King and Anderson, 1995; King and 

Anderson, 1998; King and Ritsema, 2000; Koch et al., 2012] (Figure 3). According to 
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this model, the hotter materials beneath the Congo cratonic root propagate northward to 

the mobile belts, leading to mostly N-S fast directions in the CVL. 

In this study, we take the advantage of the recently released broadband seismic 

data in a larger area surrounding the CVL than that in previous studies, including data 

from Cameroon, the Central African Republic, Gabon, and Nigeria, to provide additional 

constraints on the origin of the CVL. We conclude that SWS results favor a model that 

involves a lithospheric channel that developed as a result of gradual basal erosion by the 

underlying asthenosphere on the northern edge of the Congo craton. This mechanism in 

turn causes decompression melting and is responsible for the formation of both the 

continental and oceanic sections of the CVL. 

 

4. Data and Methods 

We use all the broadband XKS data recorded in the study area and archived until 

early 2013 at IRIS Data Management Center (DMC). The seismic events were selected 

based on the following criteria: For PKS, the epicentral distance range is 120-180°, and 

the cutoff magnitude is 5.8; for SKKS, the corresponding values are 95-180° and 5.6; and 

for SKS, they are 84-180° 200 and 5.6. In order to take the advantage of the sharper 

waveforms for all the PKS, SKKS, and SKS phases from deeper events, the cutoff 

magnitude is reduced by 0.1 units for events with a focal depth equal or greater than 100 

km [Liu and Gao, 2009, 2013]. 

Figure 4 shows the distribution of the 204 events that produced at least one well-

defined measurement. The majority of the events are located in the western Pacific and 

Nazca subduction zones. Thirty-six stations were found to produce at least one well-
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defined XKS splitting measurement. One of the stations used in this study, BGCA in 

Central Africa, belongs to GEOSCOPE. This station has been operating since June 1994. 

Stations EKNA, IFE, and YNDE are part of the African Array, while station TORO is a 

Nigerian National Seismic Network station. In addition, we used data from station 

MSKU, which belongs to IRIS/USGS Global Seismographic Network in Masuku Gabon. 

This station belongs to IRIS/USGS Global Seismographic Network in Masuku Gabon, 

and has been operating since March 1999. The rest of the stations are from the CBSE 

[Tokam et al., 2010]. During our shear-wave-splitting analysis, we detected and corrected 

a misidentification of the vertical and E-W components at station IFE. 

 

 

Figure 4. An azimuth equidistant projection map of the Earth showing the distribution of 

earthquakes used in the study (open dots). The radius of the dots is proportional to the 

number of resulting well-defined splitting measurements from the events. Circles and 

corresponding labels show the distance (in degree) to the center of the study area. 
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This study used a procedure for measuring and objectively ranking XKS splitting 

parameters based on the minimization of transverse energy method [Silver and Chan, 

1991; Liu et al., 2008; Gao and Liu, 2009; Liu, 2009; Gao et al., 2010; Liu and Gao, 

2013]. The seismograms were band-pass filtered in the 0.04-0.5 Hz range which is the 

most effective frequency band for enhancing the signal-to-noise ratio (S/N). The optimal 

XKS time window is visually verified and adjusted if necessary to exclude non-XKS 

arrivals [Liu and Gao, 2013]. The uncertainties in the measurements are calculated based 

on the inverse F-test [Silver and Chan, 1991].  

Figure 5 shows examples of the original and corrected waveforms and their 

particle motion diagrams. The quality of the resulting measurements are ranked using the 

S/N on the original radial (Ror), original transverse (Rot), and corrected transverse (Rct) 

components [Liu et al., 2008]. We classified a measurement as a quality A measurement 

when Ror ≥ 10.0, Rot ≥ 2.0, and Rct/Rot ≤ 0.7, that is, outstanding energy on both the 

radial and transverse components is observed, and the resulting parameters were effective 

in reducing the energy on the transverse component [Liu et al., 2008]. For a quality B 

event, the corresponding values are 3.0 ≤ Ror < 10.0, Rot ≥ 2.0, and Rct/Rot ≤ 0.7. The 

ranking was manually screened and adjusted if necessary. 

 

5. Results 

A total of 432 pairs of quality A or B measurements were obtained after manual 

screening of the results (Figure 6). In addition, we observed null measurements at almost 

all of the stations. Null measurements are characterized by the lack of observable energy 

on the transverse component as a result of the backazimuth (BAZ) directions being either 
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parallel or perpendicular to the fast direction, or the media traveled by the XKS phase is  

isotropic [e.g., Silver and Chan, 1991; Liu and Gao, 2013]. Two or more null events with 

non-parallel or orthogonal back-azimuths indicate the paucity of anisotropy. Our results 

demonstrate that clear splitting is observed at all stations in the study area, and thus the 

null measurements are not used in the discussions below. 

5.1. Spatial variations of SWS measurements 

We divided the CVL and the adjacent regions into five sub-areas based on the 

characteristics of the SWS measurements and also on different tectonic provinces 

(Figures 2 and 3). Area A is on the Congo craton and includes stations CM02, 03, 04, 06, 

BGCA and MSKU and contains 208 pairs of SWS measurements. 

  

 

Figure 5. Example of original and corrected XKS radial and transverse components, their 

particle motion pattern, and the error functions. 
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Figure 6. Resulting XKS splitting parameters plotted above ray-piercing points at the 

depth of 200 km (black bars). The color image in the background shows the topographic 

relief of the study area. The white lines represent the boundary of the low-velocity zone 

at the depth of 200 km [Reusch et al., 2010]. 

 

The mean fast direction in this area 44.4 ± 20°, and the mean splitting time is 0.91 

± 0.29 s. Area B lies on the northern edge of the Congo craton and includes stations 

CM07, 11, 12, 17, and YNDE, possessing 34 pairs of SWS measurements. The mean fast 

direction is 14 ±32°, and the mean splitting time is 1.31 ± 0.38 s. This area also includes 

stations CM08 and CM14, but data from these stations cannot be used for SWS analysis 

due to the lack of high-quality waveforms. Area C, the area along the Cameroon 

shoreline, consists of stations CM01 and 05 and contains 10 pairs of SWS measurements 
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with a mean fast direction of 44 ± 22° and a mean splitting time of 0.7 ± 0.2 s. Area D is 

the main part of the CVL and spans from southern Cameroon to the Chad border, and 

includes stations EKNA, CM09, 10, 13, 15, 16, and CM19-CM32 with 163 pairs of SWS 

measurements. Within Area D, we observed a mean fast direction of 52.8 ± 20.7°, which 

is parallel to the general strike of the CVL, and a mean splitting time of 1.0 ± 0.32 s. Area 

E consists of stations IFE, TORO, and CM18 (Figures 2 and 3). These stations are 

located in Nigeria and western Cameroon, wherein we observed a mean fast direction of -

55.9 ±15.9° and a mean splitting time of 1.3 ± 0.39 s from 17 pairs of SWS 

measurements. The fast directions observed in Area E are mostly sub-parallel to the 

African coastline.  

We then examined azimuthal variations of the observed splitting parameters, 

which are diagnostics of complex anisotropy [Silver and Savage, 1994]. None of the 

stations shows periodic variations, suggesting that a single layer of anisotropy with a 

horizontal axis of symmetry is sufficient to explain the observations. There is, however, 

piercing-point dependence of the splitting parameters. For instance, at CM12, two events 

with a BAZ of 117° and 152°, respectively, shows a fast direction of -50° and 14°, 

respectively (Figure 6), and nearly N-S fast directions were obtained from events with a 

BAZ of 26° and 66°, respectively. Similarly, at CM20, we observed fast directions of 15° 

and 62° for events with a BAZ of 28° and 81°, respectively. In general, measurements 

with ray-piercing points (at 200 km depth) beneath the CVL have a fast direction that is 

parallel to the CVL.  
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5.2. Comparison with previous results 

To compare results from this study with station-averaged results of previous 

studies, we calculate the circular mean of the fast direction and the simple mean of the 

splitting times for each of the stations. The major difference between our and previous 

results is that our splitting times are about twice as large as those obtained by previous 

studies at almost all of the stations (Figure 7).  

 

 
 

Figure 7. Comparison between our station-averaged measurements and those from 

previous studies. (A). Fast directions from this study plotted against the latitude. The 

dashed line shows the APM direction from the model of Gripp and Gordon [2012]. (B). 

Splitting times from this study plotted against the latitude. The dashed line represents the 

average splitting time. (C). Fast directions from Barruol and Ben Ismail [2001] (green 

diamond) and Koch et al. [2012] (red triangles) plotted against the latitude. The dashed 

line indicates the APM direction from the model of Doubrovine et al. [2012]. (D). 

Splitting times obtained by Barruol and Ben Ismail [2001] (green diamond) and Koch et 

al. [2012] (red triangles) plotted against the latitude. The dashed line shows the average 

splitting time observed by Koch et al. [2012]. 
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In addition to the obvious differences in most of the splitting time measurements 

between this and previous studies (Figure 7), there are several other notable 

discrepancies. The first is that we did not use data from stations CM08 and CM14 due to 

equipment failures. CM08 did not yield sufficient data for our SWS analysis, while the 

N-S component at CM14 was not working [Tokam et al., 2010; Gallacher and Bastow, 

2012], resulting in a nearly linear particle motion pattern [Liu and Gao, 2013]. Using data 

from this station, Koch et al. [2012] obtained a fast direction of 25° and a splitting time of 

1.1 s at station CM08. At CM14, they obtained a fast direction of -32° and a splitting 

time of 0.35 s.  

The second disagreement is that Koch et al. [2012] obtained null results at stations 

CM07 and CM18, but this study observed a mean fast direction of -42.3° and a mean 

splitting time of 0.9± 0.30 s at station CM07, and a fast direction of -76.2° and a splitting 

time of 1.3 ± 0.5 s at CM18. Third, at station CM20, we obtained a fast direction of 38° 

and a splitting time of 1.1 s while Koch et al. [2012] reported a fast direction of -1° and a 

splitting time of 0.48 s. Also, at station CM23, we observed a fast direction of 54.9° and a 

splitting time of 0.9 s while Koch et al. [2012] obtained a fast direction of -15° and a 

splitting time of 0.53 s. These discrepancies were mostly caused by the differences in the 

standards for data selection and result ranking, and the techniques used to obtain the 

results. 

 

6. Discussion 

In the cratonic environment, seismic anisotropy detectable by XKS splitting 

occurs either by LPO of crystallographic axes of anisotropic minerals (mainly olivine) 
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developed under axis compression and simple shear, or shape-preferred orientation (SPO) 

formed by preferably aligned vertical magmatic dikes. The former can either be resulted 

from shortening of the lithosphere or from flow in the asthenosphere, and the latter is 

mostly found in areas undergone extension  [e.g., Nicolas and Christensen, 1987; Silver, 

1996; Gao et al., 1997, 2010; Savage, 1999; Vauchez et al., 2000; Fouch and Rondenay, 

2006; Nowacki et al., 2010; Refayee et al., 2013]. In the following, we discuss each of 

the possibilities in light of the observed anisotropy and propose a model that explains 

both the SWS observations and the formation and evolution of the CVL. 

6.1. Fossil anisotropy due to Precambrian collisional events 

Many previous studies attributed observed anisotropy to lithospheric fabrics 

created by the last significant collisional tectonic events [e.g., Silver and Chan, 1991; 

Babuska and Plomerova, 1989; James and Assumpcao, 1996; McNamara et al., 1994; 

Silver, 1996; Fouch et al., 2004; Fouch and Rondenay, 2006; Bastow et al., 2011]. 

The observed anisotropy on the Kaapvaal and Zimbabwe cratons as well as on the 

Limpopo belt sandwiched between the cratons was considered as mostly the result of 

lithospheric fabrics [e.g., Silver et al., 2001; Barruol and Ben Ismail, 2001; Fouch et al., 

2004]. Most of the study area lies between the Congo and West Africa cratons which 

consist of several tectonic shields including the Bomu-Kibalian, Nigerian, Gabon-

Cameroon, and Man-Leo Shields developed during the Precambrian [e.g., Begg et al., 

2009] (Figures 2 and 3).  

The N-S fast directions observed in the northern edge of the Congo craton (area 

B) might originate from Precambrian collision events. These converging events include 

the collision between the Gabon-Cameroon Shield and the Bomu-Kibalian Shield to form 
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the northern part of the Congo craton, and the collision between the Congo craton and the 

Oubanguides mobile belt [e.g., Castaing et al., 1994; Toteu et al., 2004; Begg et al., 

2009]. This speculation is in agreement with Koch et al. [2012] who suggested that 

measurements from the northern edge of the Congo craton represent a fossil anisotropy 

resulted from Precambrian collisional events. However, most of our fast directions 

throughout the study area are aligned perpendicular to the suture zones (Figures 3 and 6), 

and consequently, fossil seismic anisotropy, which has remained in the cratonic 

lithosphere since the Precambrian, cannot account for the majority of splitting parameters 

observed in the study. 

6.2. Mantle flow field associated with a mantle plume 

Continental intraplate flood basalt development uplifts, and bathymetric swells in 

Africa were often attributed to one or more mantle plumes [e.g., Morgan, 1972; Burke 

and Dewey, 1973; Nyblade and Robinson, 1994]. Similarly, a mantle upwelling was 

proposed for the formation of the CVL [Van Houten, 1983; Morgan, 1983; Lee et al., 

1994; Ebinger and Sleep, 1998; Burke, 2001]. Burke [2001] suggested that a mantle 

plume, which is located at latitude 7° N and longitude 11.5° E (Figure 3), could be 

responsible for the development of the CVL. Due to the upwelling of the plume material 

and the relative movement between the lithosphere and the asthenosphere, a parabolic 

flow pattern is expected in the vicinity of the plume, as observed in Hawaii and west-

central Europe [Walker et al., 2001, 2005]. Such a parabolic pattern is not observed 

(Figure 6). Directly above a mantle plume, laboratory experiments suggest a complicated 

pattern of splitting parameters and small splitting times in the case of A-type olivine 

fabrics [Karato et al., 2008; Druken et al., 2013], which is not observed either. 
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Therefore, our SWS results do not support an active plume beneath the CVL. This 

conclusion is consistent with the observation that the 3He/4He ratios measured on 

basaltic rocks along the CVL are lower than those observed at typical hotspots such as 

Loihi and Iceland [Aka et al., 2004]. In addition, if a mantle plume was responsible for 

the formation of the CVL, the melt generation, as reflected by the expected higher-than-

normal crustal Vp/Vs, should be much higher than what was observed beneath the CVL 

[Gallacher and Bastow, 2012]. Thus, the mantle potential temperature beneath the CVL 

is significantly lower than that observed in Afar, Iceland, and other typical mantle plumes 

[Gallacher and Bastow, 2012]. Body-wave seismic velocities observed beneath the CVL 

are also higher than those observed beneath the Ethiopia rift [Stuart et al., 1985; Bastow 

and Keir, 2011; Gallacher and Bastow, 2012]. The absence of a deep mantle plume is 

also suggested by a nearly normal transition zone thickness (251 ± 10 km) observed 

beneath the CVL [Reusch et al., 2011]. 

6.3. Edge-driven convective flow 

Geodynamic modeling suggests that variations in lithospheric thickness create a 

lateral contrast in temperature and viscosity near the top of the mantle, and the contrast 

may induce a small-scale convective mantle flow beneath the cratonic margin and could 

lead to uplifting, rifting, and formation of flood basalts [e.g., Anderson, 1994, 2001; King 

and Anderson, 1995, 1998; King and Ritsema, 2000; King, 2007].  

The CVL is flanked by the Congo craton to the south and an area with thinner 

lithosphere to the north (Figure 3), and thus is a preferable location for EDC with a flow 

direction that is approximately perpendicular to the CVL. Several studies [King and 

Ritsema, 2000; Reusch et al., 2010; Koch et al., 2012; Milelli et al., 2012] argued that 
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this small-scale convection system is responsible for the formation of the CVL. This 

model can explain the lack of age progression along the CVL. However, the anticipated 

fast directions associated with the proposed EDC should mostly be NW-SE, which is 

almost orthogonal to the observed fast directions which are dominantly NE-SW along the 

northern edge of the craton and in the CVL (Figure 6).  

Another possible locale for EDC is the boundary between the Congo craton and 

the Atlantic Ocean basin, with a nearly E-W flow direction [Reusch et al., 2010; Koch et 

al., 2012; Milelli et al., 2012]. This EDC system if exists, should produce a volcanic line 

in the Atlantic Ocean that is parallel to the western edge of the Congo craton, with an N-S 

strike, which is not observed. Thus EDC cannot be responsible for the continental or the 

oceanic section of the CVL. 

6.4. APM induced anisotropy 

Numerous studies have suggested that simple shear at the base of the plate can 

lead to LPO oriented in the direction of shear [e.g., Zhang and Karato, 1995; Tommasi et 

al., 1996; Tommasi, 1998; Walker et al., 2004; Liu, 2009]. As a result, a model that 

involves asthenospheric flow induced by a moving plate is used to account for anisotropy 

with fast directions that are parallel to the APM [e.g., Vinnik et al., 1989; Walker et al., 

2004; Marone and Romanowicz, 2007; Liu, 2009]. The APM for the African plate is 

small, which is partially responsible for the poorly constrained plate motion directions 

[e.g., Walker et al., 2004; Barruol and Fontaine, 2013]. The current APM direction of 

the study area based on the HS3-NUVEL1A hotspot model [Gripp and Gordon, 2002] is 

approximately toward the west (260°) (Figure 1), with a rate of 1.7 cm/yr. The majority 

of the observed fast directions in the vicinity of the CVL (Figures 1 and 6) are at a high 
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angle (> 30°) with the APM direction predicted by the HS3-NUVEL1A model. The 

GMHRF model [Doubrovine et al., 2012] predicts that the present-day motion of Africa 

is ENE (68°) at a rate of 1.3 cm/yr (Figure 1). The spatially varying fast directions and 

the large angle between the fast directions and the APM direction from either of the 

models at central and southern Cameroon and in Nigeria (Figures 1 and 6) suggest that 

APM-induced fabrics beneath slow-moving plates such as Africa may not be a major 

contribution to the observed anisotropy. 

6.5. Mantle flow in a lithospheric channel 

The dominantly CVL-parallel fast directions can be explained by NE-ward 

(relative to the lithosphere) mantle flow along a lithospheric channel beneath the CVL 

(Figure 8A). Recent mantle flow models suggest that the lithosphere in the study areas is 

underlain by a NE (relative to the lithosphere) directed flow [Conrad and Behn, 2010; 

Forte et al., 2010]. Forte et al. [2010] studied the mantle flow field at the depth of 250 

km using the joint inversion of mantle rheological structure and density perturbations. 

Forte et al. [2010] suggested that the asthenosphere is moving toward the NE with a 

velocity of 5.0 cm/yr beneath the CVL and the neighboring regions (Figure 1). In 

addition, most seismic tomographic studies of the upper mantle clearly show the 

existence of low-velocity anomalies beneath the CVL relative to the bordering 

cratons/shields [e.g., King and Ritsema, 2000; Reusch et al., 2010]. Reusch et al. [2010] 

used data recorded by the CBSE network to study the upper mantle structure beneath the 

CVL. They found a tabular, low-velocity anomaly underlying both the continental and 

oceanic sections of the CVL with a depth that extends to ~300 km (Figure 6). 
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We propose that the flow is driven by the SW movements of the lithosphere 

relative to the asthenosphere, and the direction of the flow is modulated by the geometry 

of the channel (Figure 8), resulting in fast directions that are dominantly parallel to the 

CVL for measurements with ray-piercing points beneath the CVL. Under this model, 

stations adjacent to the CVL but with non-CVL-parallel fast directions such as CM20 

(Figure 2) and those in Area B (Figure 3) could be interpreted as being located near the 

northern and southern boundaries, respectively, of the lithospheric channel (Figure 6). 

Additionally, the coast-parallel fast directions observed at stations on the Nigerian shield 

could be explained as reflecting the flow deflected by the keel of the African continent. 

Such a deflection was suggested beneath the western [Refayee et al., 2013] and southern 

[Fouch et al., 2000; Gao et al., 2008] edges of the North American craton. 

6.6. Implications on the formation of the CVL 

As detailed above, in spite of numerous geochemical, geophysical, and 

geodynamic investigations, the formation of the CVL remains enigmatic. The lack of a 

clear age progression of the volcanoes in the CVL and the isotopic signatures ruled out a 

plume origin of both the continental and oceanic sections of the CVL. Edge-driven small-

scale mantle convection cannot explain the orientation of the CVL or the formation of its 

oceanic section. Viable hypotheses for its formation should be able to explain the 

linearity, orientation, location, lack of age progression, and possibly its upper-mantle 

origin (as indicated by isotopic studies) of the volcanic line. In this section, we propose a 

hypothesis for the formation of the CVL that can explain most, if not all, of previous 

observations as well as our new shear-wave splitting measurements. 
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Figure 8. (A) Map view of the study area showing station-averaged XKS splitting 

parameters (blue bars), and proposed mantle flow lines (brown bands with arrows).           

(B)  Schematic 3-D view of the land portion of the model. 

 

This hypothesis is based on recent geodynamic modeling results suggesting the 

possibility of thermal-mechanical erosion of the base of the lithosphere by concentrated 

asthenospheric flow [Davies, 1994; Ribe and Christensen, 1994; Sleep, 1994; Artemieva 

and Mooney, 2002; Conrad et al., 2011]. We propose that the CVL was developed by 

A 

B 



29 

 

gradual basal erosion of the underlying lithosphere, along a line with the maximum flow 

intensity originated from the 90° sharp change in the orientation of the western margin of 

central Africa, from E-W north of the CVL to N-S south of the CVL (Figure 2).  

This hypothesis can explain one of the puzzling features of the CVL, i.e., it 

intercepts the African coastline exactly at the joint point between the E-W and N-S 

segments of the coastline, and forms a nearly 45° angle with both segments (Figure 8). 

We suggest that the 90° turn of the continental margin creates a perfect locale for the 

concentration of mantle flow that originates from the SW-ward movement (relative to the 

asthenosphere) of the African lithosphere and is deflected by the cratonic keel (Figure 

8A). Such a relative movement is suggested by geodynamic modeling [Forte et al., 2010] 

(Figure 1). Beneath the Atlantic Ocean, the flow concentration extends toward the SW 

with a gradually decreasing intensity and produces the oceanic section of the CVL. This 

interpretation is consistent with the SW-ward decrease of the size of the volcanoes on the 

ocean floor (Figure 8A). It is also consistent with the suggestion that there is a low-

velocity zone beneath the Prinncipe Island [Meyers et al., 1998] and beneath the rest of 

the oceanic section of the CVL [Reusch et al., 2010].  

This model suggests that the source of magma is at the base of the thinned 

lithosphere which is consistent with isotopic observations [e.g., Aka et al., 2004]. 

According to this hypothesis, the lack of age progression of the eruptions can be 

explained by the fact that volcanic eruptions took place in areas with the maximum 

lithospheric thinning, which is controlled by pre-existing zones of weakness and the 

distribution of mechanical strength in the lithosphere. 
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7. Conclusions 

The CVL and the adjacent areas are tectonically complex regions which includes 

cratons, mobile belts, and shear zones, and active magmatism. Our SWS results suggest 

that the anisotropy beneath the CVL and surrounding areas is mostly located in the 

asthenosphere, although fossilized anisotropy in the northern part of the Congo craton 

cannot be ruled out. Spatial distribution of the splitting parameters in the study area does 

not support the small-scale mantle convection hypothesis nor the mantle plume and APM 

models as a cause for the observed anisotropy. We suggest that the predominant NE 

oriented anisotropy beneath the CVL is from a NE-ward (relative to the lithosphere) 

mantle flow along a lithospheric channel beneath the CVL. This channel is developed due 

to the differential movement of the African plate relative to the underlying asthenosphere 

as suggested by several geodynamic modeling studies. The model attributes coast-parallel 

fast directions north of the CVL to mantle flow deflected by the edge of the Africa 

continent keel. We suggest that the flood basalts along the CVL were formed by gradual 

basal erosion of the lithosphere, as a result of concentration of mantle flow associated 

with the sharp change in the orientation of the continental margin of western Africa. 

Additional shear-wave splitting and other measurements in the coastal areas and on the 

ocean floor in the vicinity of the CVL should be able to test and refine the proposed 

hypothesis. 
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II. SEISMIC ANISOTROPY AND SUBDUCTION-INDUCED MANTLE 

FABRICS BENEATH THE ARABIAN AND NUBIAN PLATES 

ADJACENT TO THE RED SEA 

 

Abstract 

For most continental areas, the mechanisms leading to mantle fabrics responsible 

for the observed anisotropy remain ambiguous, partially due to the lack of sufficient 

spatial coverage of reliable seismological observations. Here we report the first joint 

analysis of shear-wave splitting measurements obtained at stations on the Arabian and 

Nubian plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting 

parameters show dominantly N-S fast orientations at all 47 stations and larger-than-

normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast 

orientations and large splitting times up to 1.5 s are inconsistent with significant 

contributions from the lithosphere, which is about 50-80 km thick beneath the AAD and 

even thinner beneath the Red Sea. The results can best be explained by simple shear 

between the lithosphere and the asthenosphere associated with northward subduction of 

the African/Arabian plates over the past 150 Ma. 

 

1. Introduction 

In spite of numerous shear-wave splitting (SWS) studies, the mechanisms leading 

to observed seismic anisotropy in a given study area are usually ambiguous, and reliable 

interpretation of SWS measurements requires understanding tectonic history, mantle 

structure, plate motions, and results of geodynamic modeling of mantle flow. It is not 

clear whether anisotropy reflects a fossil lithospheric fabric or asthenospheric flow. The 
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region around the Red Sea is well-suited for examining what are the important controls, 

because this is a region with well-characterized plate motions, mantle plume effects, a 

nascent ocean basin, and deformed lithosphere. These competing effects have been 

evaluated using data from Arabia [e.g., Wolfe et al., 1999; Hansen et al., 2006] but 

without constraints from NE Africa, especially Egypt. The recent availability of 

broadband seismic data from Egypt (Figure 1) provides a new opportunity to investigate 

mantle dynamics and anisotropy-forming mechanisms. 

The study area includes most of the Arabian plate and the NE part of the Nubian 

plate. The Red Sea and the Afro-Arabian Dome [AAD; Camp and Roobol, 1992] occupy 

the central part of the study area, and the Arabian-Nubian Shield (ANS) comprises the 

core of the AAD (Figure 1). The basement fabrics of Arabia and northern Nubia formed 

as a single lithospheric tract in Neoproterozoic time associated with accretion of juvenile 

arcs and back arc basins to form the ANS at ~900-630 Ma followed by collision of E and 

W Gondwana about 630-600 Ma, through mostly east-west convergence. In the study 

area (Figure 1), the dominant strike of basement structures including that of the suture 

zones ranges from NE-SW to NW-SE and is mostly N-S on the ANS but is largely 

unknown beneath Egypt due to limited exposure [Berhe, 1990; Stern and Johnson, 2010]. 

The crust of Africa west of the Nile is thought to be reworked older crust of the Saharan 

metacraton [Abdelsalam et al., 2002], followed by orogenic collapse, delamination, and 

north-directed tectonic escape ~600-580 Ma [Stoeser and Camp, 1985; Avigad and 

Gvirtzman, 2009; Stern and Johnson, 2010]. Mantle fabrics formed by Neoproterozoic 

tectonics and magmatism were likely modified by opening of the Red Sea and the uplift 

of flanking regions beginning~30 Ma [Bosworth et al., 2005; Lazar et al., 2012]. 
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Figure 1. A topographic relief map of the study area showing the seismic stations 

(triangles) used in the study, and shear-wave splitting measurements (red bars) plotted 

above ray-piercing points at the depth of 200 km. The orientation of the bars represents 

the fast orientation, and the length of the bar indicates the splitting time. Brown color 

show areas covered by Cenozoic volcanic rocks. The dashed blue line is a great-circle arc 

approximately along the Red Sea axis, the dashed purple line outlines the northern part of 

Afro-Arabian Dome, and the dashed black line outlines the Arabian-Nubian Shield 

[Camp and Roobol, 1992]. The inset shows distribution of earthquakes (blue circles) used 

in the study. 

 

We have some idea of how thick the lithosphere is beneath western Arabia but not 

NE Africa. Hansen et al. [2007] used S-wave receiver functions and GRACE gravity data 

and concluded that the lithosphere thickens from ~50-80 km near the coast and thickens 

to ~120 km beneath the eastern edge of the ANS (see Figures 5 and 6 in Hansen et al., 

2007), which is at a distance of about 500 km from the Red Sea.  

The direction and strength of mantle flow beneath the Red Sea and adjacent 

Arabian and Nubian plates were investigated by a number of seismic anisotropy [Wolfe et 
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al., 1999; Levin and Park, 2000; Schmid et al., 2004; Hansen et al., 2006; Levin et al., 

2006; Kaviani et al., 2011, 2013] and geodynamic modeling [Conrad and Behn, 2010; 

Forte et al., 2010; Faccenna et al., 2013] studies. Figure 2 shows results from the 

previous studies. Except for a few studies [Wolfe et al., 1999; Hansen et al., 2006], most 

previous SWS studies focused on the vicinity of the Dead Sea Transform Fault separating 

the Nubian and Arabian plates. Based on SWS measurements at 8 stations in southern 

Saudi Arabia, Wolfe et al. [1999] reported dominantly N-S fast orientations (measured 

clockwise from the North) with larger-than-normal splitting times. The models that they 

proposed include N-S trending lithospheric fabrics formed by E-W Neoproterozoic 

convergence, northward absolute plate motion (APM) of the Arabian plate, and 

northward asthenospheric flow from a mantle plume beneath Afar. Hansen et al. [2006] 

measured SWS parameters at about 20 stations in Arabia (Figure 2). Similar to Wolfe et 

al. [1999], they found dominantly N-S fast orientations and attributed the observed 

seismic anisotropy to a combined effect of two flow systems: a NE-ward flow from GPS-

determined APM of the Arabian plate [Reilinger et al., 1997], and a NW-oriented flow 

along the strike of the Red Sea from the Afar plume.  

Using SWS parameters and geodetic measurements as constraints, Faccenna et al. 

[2013] investigated mantle flow beneath Arabia and northern Nubia. The model that fits 

the observed seismic anisotropy in Arabia the best invokes slab-pull, upwelling from the 

lower mantle beneath southern Africa, and a N-S oriented zone of thinned lithosphere 

("lithospheric channel") beneath the AAD that directs flow from a mantle plume beneath 

Afar. Other models proposed by Faccenna et al. [2013] use different assumptions about 

the relative roles of slab pull and mantle heterogeneities. Most of these models and others 
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from geodynamic modeling studies [Forte et al., 2010; Conrad and Behn, 2010; 

Kreemer, 2009] predicted that the flow direction beneath southern Arabia is more 

northeasterly than that beneath the northern part, due to the influence of radial flow from 

the Afar mantle flow to the south and the stronger influence of northward subduction in 

the north. In addition, most models predict that the flow direction beneath Arabia is more 

northeasterly than that beneath Nubia, due to the ENE-ward movement of Arabia relative 

to Nubia [DeMets et al., 1994]. Until now, the predictions for mantle flow beneath NE 

Africa could not be tested due to the unavailability of broadband seismic data for Egypt. 

 

2. Data and Methods 

The study uses three seismic phases: SKS which leaves the source as an S-wave, 

converts to a P-wave at the boundary between the mantle and the liquid outer core, and 

converts to an S-wave at the core-mantle boundary on the receiver side; SKKS which is 

similar to SKS but the P-wave bounces back to the outer core; and PKS which leaves the 

source and travels through the outer core as a P-wave and converts to an S-wave at the 

core-mantle-boundary. Hereafter the three phases are collectively called XKS. Data from 

stations located east of the Red Sea were obtained from the IRIS (Incorporated Research 

Institutions for Seismology) DMC (Data Management Center) for the recording period of 

early 1990 to middle 2013. The Egyptian National Seismic Network (ENSN) recorded 

the rest of the data for the period of late 2010 to the end of 2012. The epicentral distance 

used for PKS, 120 SKKS and SKS is 120°-180°, 95°-180°, and 84°-180°, respectively 

[Liu and Gao, 2013]. The splitting parameters were measured and ranked using the 
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procedure developed by Liu [2009] and Liu and Gao [2013] based on the transverse 

component energy minimization technique [Silver and Chan, 1991]. 

 

 
 

Figure 2. Spatially averaged shear-wave splitting parameters from this study (red          

bars). Green bars show station averaged splitting parameters from previous studies [Wolfe 

et al., 1999; Levin and Park, 2000; Schmid et al., 2004; Hansen et al., 2006; Levin et al., 

2006; Kaviani et al.,2011, 2013]. Station averaged splitting parameters to the southeast of 

the gray dashed line are plotted in Figures 3D and 3E. 

 

The seismograms were filtered in the frequency band of 0.04-0.5 Hz, and the 

XKS time window used to compute the splitting parameters starts at 5 s before and ends 

at 20 s after the predicted XKS arrival times. A manual check was applied to adjust the 

XKS window and to verify the automatic-ranking results to ensure that no high quality 

events were ignored and no low quality results were selected [Liu and Gao, 2013]. 
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3. Results 

A total of 1144 well-defined non-null SWS measurements are obtained at 47 

stations (Figure 1). Null measurements are characterized by the lack of observable energy 

on the transverse component as a result of the backazimuth (BAZ) directions being either 

parallel or perpendicular to the fast orientation, or the medium traveled by the XKS phase 

is isotropic [e.g., Silver and Chan, 1991]. Two or more null events with non-parallel or 

orthogonal back-azimuths indicate the paucity of anisotropy. We observed clear splitting 

at all stations in the study area, and thus the null measurements are not used in the 

discussions below. In addition, we do not observe clear systematic variations of the 

splitting parameters as a function of back-azimuth, suggesting that a single layer of 

anisotropy with a horizontal axis of symmetry is adequate to represent the SWS 

measurements. To better visualize the measurements, we compute the coordinates of ray-

piercing points at 150 km depth, and spatially average the SWS parameters in 

consecutive circles with a radius of 1°. The distance between the center of neighboring 

circles is 1°. The resulting spatial distribution of the measurements is shown in Figure 2, 

in which station-average measurements from previous studies are also plotted. 

The station-averaged results are also displayed against the perpendicular distance 

to the Red Sea axis (Figure 3), for the purpose of identifying subtle spatial variations of 

the splitting parameters. The most remarkable feature of the measurements (Figures 2 and 

3) is the almost consistently N-S fast orientations in the entire study area. This is 

especially true for the areas to the NE and SW of the Red Sea (Figure 3d). The splitting 

times are the largest (about 1.5 s) in the study area along the axial region of the AAD 
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(which is centered approximately along the 42° E longitudinal line), and decrease 

gradually toward the NE and SW. 

 

4. Discussion 

The uniform N-S fast orientations and the systematic spatial variation of the 

splitting times have several important implications on mantle flow models and on the 

formation mechanisms of seismic anisotropy beneath the study area.  

1). The uniform N-S fast orientations, large splitting times observed in areas with 

thin lithosphere, and apparently spatially varying dominant orientations of basement 

fabrics [Berhe, 1990; Stern and Johnson, 2010] make it unlikely for the lithosphere to be 

the main source of the observed anisotropy. A lithosphere origin predicts that areas with 

thin lithosphere such as the area between the Red Sea and the axial area of the AAD 

[Hansen et al., 2007; Chang and van der Lee, 2011] should have small splitting times, 

not the observed large splitting times. To produce the 1.5 s splitting time observed on the 

AAD with a commonly-accepted mantle anisotropy of 4% [Mainprice and Silver, 1993], 

the required layer thickness is about 170 km, which is more than 2 times of the thickness 

of the lithosphere beneath the AAD [Hansen et al., 2007]. If we use the shear-wave 

anisotropy value of 2.64% measured from upper mantle kimberlite nodules acquired on 

the Kaapvaal craton [Ben-Ismail et al., 2001], the required thickness is as large as 255 

km. Additionally, spatially varying fast orientations and reduction in splitting times are 

expected beneath the Sahara Metacraton due to disturbance of the accretion related 

lithospheric fabrics by the tectonic reactivation events and lithospheric delamination. 

Such expected changes are not observed. Because fabric directions on a lithospheric scale 
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beneath the study area especially beneath Egypt are poorly known, our data cannot 

completely exclude contributions from the lithosphere to the N-S directed anisotropy.  

2) Magmatic dikes parallel to the Red Sea contribute insignificantly to the 

observed anisotropy. The dikes should lead to Red Sea-parallel fast orientations and large 

splitting times in the Red Sea basin, neither of which is observed (Figure 2). The lack of a 

significant amount of dikes in the lithosphere is consistent with the notion that the Red 

Sea was the product of passive rifting, probably because of slab-pull along the subduction 

zones to the north and northeast [Stern and Johnson, 2010].  

3) Neither the fast orientations nor the splitting times support the existence of a 

flow system along a lithospheric channel beneath the Red Sea. It has been proposed that 

such a channeled flow, when combined with the NE-ward APM of Arabia, could give 

rise to the N-S fast orientations observed on Arabia [Hansen et al., 2006]. In order to 

produce the N-S fast orientations on the AAD, the Red Sea parallel flow system must 

extend beyond the surface expression of the Red Sea, probably on both sides of it. If this 

is the case, one would expect that the fast orientations observed on the Egyptian side 

would be parallel to the strike of the Red Sea, due to a lack of a NE-directed APM- 

driven flow system. Additionally, if the two flow systems produce LPO at different 

depths, azimuthally varying splitting parameters are expected [Silver and Savage, 1994]. 

None of these predictions are consistent with the observed splitting parameters. 

4) Anisotropy with a uniform N-S fast orientation observed beneath the AAD is 

unlikely the result of channeled flow beneath the AAD. The co-existence of N-S directed 

anisotropy and a zone of low-seismic velocity was proposed to be the result of mantle 

flow beneath the thinned AAD lithosphere [Wolfe et al., 1999; Chang and van der Lee, 
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2011]. The fact that N-S fast orientations are also observed outside the AAD in Egypt 

places doubts on this interpretation (unless the off-AAD N-S fast orientations are 

coincidental). In the absence of an existing model that can satisfactorily explain the 

spatial distribution of the SWS parameters, we search for other anisotropy-forming 

mechanisms in the study area that can lead to the observed distribution. Numerous studies 

demonstrated that relative to Eurasia, the African plate has been moving northward since 

at least 150 Ma, most probably driven by the subduction of the Neotethys oceanic slab 

[Dercourt et al., 1986; Reilinger and McClusky, 2011].  

From 59 to 0 Ma, the African plate moved more than 1200 km toward Eurasia 

without significant changes in the direction of motion but with variable plate velocities 

[McQuarrie et al., 2003; Reilinger and McClusky, 2011]. From 59 to 25 Ma, the Nubia-

Arabian plate moved northward at about 32 mm/yr. The rate for Nubia reduced by more 

than 50% since 25 Ma, probably due to the collision of Africa and Eurasia which 

increased resistance to subduction [Jolivet and Faccenna, 2000], or the rifting along the 

Red Sea which reduced the north-northeastward pull on Nubia from the Arabian section 

of the subducting Neotethys slab [Reilinger and McClusky, 2011]. Numerical [e.g., 

Lithgow-Bertelloni and Richards, 1998; Conrad and Hager, 2001; Behn et al., 2004] and 

laboratory [e.g., Funiciello et al., 2006] studies suggest the existence of subduction 

parallel LPO beneath the horizontal portion of subducting plates.  

 The LPO is induced by the relative movement between the partially coupled 

lithosphere and asthenosphere, as well as by trench rollback [Conrad and Hager, 2001]. 

We propose that the observed seismic anisotropy with N-S fast orientations in Arabia and 

northern Nubia represents mantle fabrics induced in the boundary layer by the long-term  
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Figure 3. Cross-section views of surface elevation (A) and station-averaged shear-wave 

splitting parameters (B-E). (B) and (C) are fast orientations and splitting times, 

respectively, of all the measurements, and (D) and (E) are measurements beyond the Red 

Sea, located in the area to the southeast of the Red-Sea-perpendicular line in Figure 2. 

Circles represent data from this study, and triangles from previous studies shown in the 

previous figure. The horizontal lines in (B) and (D) show the mean (central lines) and 

mean plus/minus the standard deviation. 
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northward subduction of the African (before 24 Ma) and Nubian and Arabian plates (after 

24 Ma) beneath Eurasia. Under this model, the large splitting times observed beneath the 

axial area of the AAD can be explained by concentration of LPO associated with 

lithospheric thinning. Such thinning was suggested from numerous seismic tomography 

studies [e.g., Chang and van der Lee, 2011]. The fact that the fast orientations are almost 

perfectly parallel to the direction of subduction implies that beneath the study area, 

subduction- induced LPO is much stronger than that produced by other processes, such as 

westward drift of the Earth’s lithosphere [Doglioni et al., 2007], and the opening of the 

Red Sea, which would lead to a more northeasterly fast orientation on Arabia. 

 

5. Conclusions 

For the first time, shear-wave splitting parameters are measured on both the 

Nubian and Arabian plates adjacent to the Red Sea. Consistently N-S fast orientations are 

observed at virtually all the 47 stations, which, when combined with the systematic 

spatial variation of splitting times, are inconsistent with previously proposed anisotropy-

forming models invoking lithospheric fabrics, radial flow from an active mantle plume 

beneath Afar, or channeled flow from Afar beneath the Red Sea or the Afro-Arabian 

Dome. Conversely, the observations can best be explained by olivine LPO developed at 

the boundary layer between the lithosphere and the asthenosphere induced by the 

northward movement of the African plate since at least 150 Ma. 
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SECTION 

 

2. CONCLUSIONS 

The CVL and the adjacent areas are tectonically complex regions, which includes 

cratons, mobile belts, shear zones, and active magmatism. Our SWS results suggest that 

the anisotropy beneath the CVL and surrounding areas is mostly located in the 

asthenosphere, although fossilized anisotropy in the northern part of the Congo craton 

cannot be ruled out. Spatial distribution of the splitting parameters in the study area does 

not support the small-scale mantle convection hypothesis nor the mantle plume and APM 

models as a cause for the observed anisotropy. We suggest that the predominant NE 

oriented anisotropy beneath the CVL is from a NE-ward (relative to the lithosphere) 

mantle flow along a lithospheric channel beneath the CVL. This channel is developed due 

to the differential movement of the African plate relative to the underlying asthenosphere 

as suggested by several geodynamic modeling studies. The model attributes coast-parallel 

fast directions north of the CVL to mantle flow deflected by the edge of the Africa 

continent keel. We suggest that the flood basalts along the CVL were formed by gradual 

basal erosion of the lithosphere, as a result of concentration of mantle flow associated 

with the sharp change in the orientation of the continental margin of western Africa. 

Additional shear-wave splitting and other measurements in the coastal areas and on the 

ocean floor in the vicinity of the CVL should be able to test and refine the proposed 

hypothesis. 
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For the first time, shear-wave splitting parameters are measured on both the 

Nubian and Arabian plates adjacent to the Red Sea. Consistently N-S fast orientations are 

observed at virtually all the 47 stations, which, when combined with the systematic 

spatial variation of splitting times, are inconsistent with previously proposed anisotropy-

forming models invoking lithospheric fabrics, radial flow from an active mantle plume 

beneath Afar, or channeled flow from Afar beneath the Red Sea or the Afro-Arabian 

Dome. Conversely, the observations can best be explained by olivine LPO developed at 

the boundary layer between the lithosphere and the asthenosphere induced by the 

northward movement of the African plate since at least 150 Ma. 
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STATION LOCATIONS AND AVERAGED SPLITTING 

PARAMETERS RESULTS
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Station Lat. Long. Φ STD Φ δt STD δt 
Number of 

measurements 

BGCA 5.18 18.42 25.85 19.53 0.95 0.04 73 

CM01 2.39 9.83 14.50 4.51 0.98 0.38 2 

CM02 2.70 13.29 53.04 7.05 0.98 0.02 17 

CM03 3.52 15.03 40.94 19.93 0.63 0.09 5 

CM04 2.98 11.96 66.23 7.05 0.99 0.06 18 

CM05 2.94 9.91 51.89 17.69 0.69 0.06 8 

CM06 2.38 11.27 52.32 10.84 0.91 0.04 43 

CM07 3.87 11.46 -42.32 26.36 0.85 0.15 4 

CM09 4.23 9.33 22.50 2.50 1.23 0.03 2 

CM10 4.22 10.62 42.03 7.69 0.91 0.13 6 

CM11 3.98 13.19 24.69 5.86 0.78 0.02 6 

CM12 4.48 11.63 -5.42 39.88 1.13 0.15 6 

CM13 4.59 9.46 10.50 8.78 1.06 0.07 5 

CM15 5.03 9.93 5.22 6.99 1.10 0.15 5 

CM16 5.48 10.57 21.00 13.23 0.85 0.05 2 

CM17 5.55 12.31 25.24 6.00 1.46 0.07 16 

CM18 5.72 9.35 -76.22 4.36 1.32 0.22 5 

CM19 5.97 11.23 15.65 7.81 0.96 0.20 4 

CM20 6.22 10.05 38.50 25.06 1.15 0.25 2 

CM21 6.47 12.62 50.90 13.09 1.10 0.10 13 

CM22 6.48 13.27 72.15 5.83 1.24 0.08 13 

CM23 6.37 10.79 55.00 25.68 0.98 0.48 2 

CM24 6.52 14.29 78.21 6.34 1.27 0.11 13 

CM25 6.76 11.81 62.00 20.92 1.18 0.58 2 

CM26 7.26 13.55 52.91 15.50 0.78 0.06 15 

CM27 7.36 12.67 57.50 2.50 0.65 0.00 2 

CM28 8.47 13.24 58.15 23.56 1.10 0.12 3 

CM29 9.35 13.39 53.57 9.28 1.04 0.05 19 

CM30 9.76 13.95 47.67 9.59 1.20 0.09 16 

CM31 10.33 15.26 61.06 8.01 0.98 0.05 19 

CM32 10.62 14.37 51.44 15.18 1.09 0.09 19 

EKNA 4.23 9.33 19.00 5.00 1.50 0.28 1 

IFE 7.55 4.46 -45.12 9.52 1.27 0.12 9 

MSKU -1.66 13.61 49.30 13.43 0.88 0.04 52 

TORO 10.99 8.12 -54.95 7.10 1.32 0.27 3 

YNDE 3.87 11.46 -33.50 0.50 1.70 0.25 2 

 

 

 

 

 



47 

 

AFIFxx_XI 23.93 43.04 172.956 10.019 1.369 0.076 18 

AMDAxx_HL 22.97 32.33 15.192 4.093 1.156 0.071 16 

BISHxx_XI 19.92 42.69 4 5 2 0.23 1 

BGIOxx_GE 31.72 35.09 1.342 8.99 1.449 0.057 36 

BRNSxx_HL 23.86 34.11 3.871 10.151 1.059 0.066 11 

BRSxxx_HL 23.86 34.11 16.5 4.509 0.975 0.175 2 

DB2xxx_HL 31.05 28.5 8 3.003 1.5 0.05 2 

DRWAxx_HL 23.29 32.66 4.918 6.842 1.312 0.064 12 

EILxxx_GE 29.67 34.95 5.062 8.164 1.271 0.017 288 

FRFxxx_HL 27.15 28.31 178.034 7.933 1.01 0.139 5 

GMRxxx_HL 23.52 32.41 7.301 7.995 1.115 0.053 24 

GRWxxx_HL 23.67 32.79 173.842 9.199 1.016 0.048 25 

HAGxxx_HL 29.95 32.1 9.548 12.586 0.675 0.083 4 

HALMxx_XI 22.85 44.32 2.358 13.729 1.157 0.09 22 

HRGxxx_HL 27.22 33.57 3.608 8.468 1.511 0.084 9 

JERxxx_GE 31.77 35.2 1.618 7.047 1.362 0.033 87 

KEGxxx_MN 29.93 31.83 25.822 17.666 1.021 0.023 159 

KOTxxx_HL 29.93 31.83 26.998 2.946 1.4 0.1 3 

KURxxx_HL 24 32.65 6.84 13.3 0.972 0.092 9 

MADxxx_HL 22.97 32.33 31.5 0.5 1.275 0.025 2 

MANxxx_HL 23.92 33.07 4.121 18.564 1.08 0.12 10 

MATxxx_HL 31.09 27.1 23 8.053 0.7 0.15 2 

MRNIxx_GE 33.12 35.39 2.474 6.002 1.631 0.05 36 

MRSxxx_HL 25.01 34.84 12.028 6.174 1.188 0.103 8 

NADBxx_HL 25.34 34.5 2.896 9.644 1.006 0.135 9 

NAHDxx_HL 23.8 32.78 169.437 9.217 1.127 0.056 22 

NBNSxx_HL 28.62 31.29 2.654 18.437 0.838 0.066 4 

NGALxx_HL 23.42 32.73 1.471 10.832 1.317 0.057 15 

NGMRxx_HL 23.52 32.41 12 7 0.8 0.1 1 

NKLxxx_HL 29.93 33.98 12.258 9.076 1.269 0.183 8 

NKRLxx_HL 23.66 32.72 178.748 4.61 1.212 0.225 4 

NMANxx_HL 23.92 33.07 44 5.5 1.4 0.35 1 

NNALxx_HL 23.29 32.66 8 4.5 1.2 0.12 1 

NNMRxx_HL 23.74 32.56 9.856 16.9 0.787 0.095 12 

NSKDxx_HL 23.66 32.39 23.293 12.763 1.164 0.069 18 

NWKLxx_HL 23.41 32.45 10.801 6.146 1.257 0.041 23 

RAYNxx_II 23.52 45.5 12.069 13.289 1.133 0.023 158 

RAYNxx_XI 23.52 45.5 7.4 2.245 1.16 0.062 5 

RIYDxx_XI 24.72 46.64 9.409 9.443 0.9 0.158 4 

SH2xxx_HL 27.88 34.08 26 19.775 1.325 0.325 2 

SLMxxx_HL 31.49 25.21 19.984 13.636 0.79 0.25 5 

TAMRxx_HL 27.68 30.92 163.65 12.785 1.256 0.179 8 

UOSSxx_II 24.95 56.2 153.553 10.281 1.019 0.024 120 

UQSKxx_XI 25.79 42.36 176.142 1.884 1.45 0.058 7 

WALxxx_HL 23.38 32.58 2.911 9.336 1.495 0.09 11 

YAFxxx_YR 13.87 45.25 63.76 10.333 0.979 0.044 17 
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EVENTS AND PHASES FOR SPLITTING ANALYSIS
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