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ABSTRACT

The main purpose of this study is to apply a computationally efficient

uncertainty quantification approach, Non-Intrusive Polynomial Chaos (NIPC) based

stochastic expansions, to robust aerospace analysis and design under mixed (aleatory

and epistemic) uncertainties and demonstrate this technique on model problems

and robust aerodynamic optimization. The proposed optimization approach utilizes

stochastic response surfaces obtained with NIPC methods to approximate the

objective function and the constraints in the optimization formulation. The objective

function includes the stochastic measures which are minimized simultaneously

to ensure the robustness of the final design to both aleatory and epistemic

uncertainties. For model problems with mixed uncertainties, Quadrature-Based and

Point-Collocation NIPC methods were used to create the response surfaces used

in the optimization process. For the robust airfoil optimization under aleatory

(Mach number) and epistemic (turbulence model) uncertainties, a combined Point-

Collocation NIPC approach was utilized to create the response surfaces used as the

surrogates in the optimization process. Two stochastic optimization formulations

were studied: optimization under pure aleatory uncertainty and optimization under

mixed uncertainty. As shown in this work for various problems, the NIPC method

is computationally more efficient than Monte Carlo methods for moderate number of

uncertain variables and can give highly accurate estimation of various metrics used

in robust design optimization under mixed uncertainties. This study also introduces

a new adaptive sampling approach to refine the Point-Collocation NIPC method

for further improvement of the computational efficiency. Two numerical problems

demonstrated that the adaptive approach can produce the same accuracy level of the

response surface obtained with oversampling ratio of 2 using less function evaluations.
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1. INTRODUCTION

In this section, first the motivation for efficient uncertainty quantification

(UQ) in aerospace analysis and design is given. The following section gives the

literature review which focuses on uncertainty quantification and robust design. Next,

objectives of this PhD study and contribution of the current work to the literature

are presented. Finally, an overview of the sections in this dissertation is presented.

1.1. MOTIVATION FOR UNCERTAINTY QUANTIFICATION

Uncertainties are general ubiquitous in analysis and design of highly complex

engineering systems, such as aerospace analysis and design. Uncertainties can arise

due to the ignorance, lack of knowledge and incomplete information in physical

modeling (e.g., epistemic uncertainty in turbulence models) and from inherent

variations in the systems (e.g., aleatory uncertainty in operating conditions). It

is important to consider these uncertainties in applications such as robust design

and reliable design of aerospace systems. Reliability design is to seek a design that

achieves a required probability of failure (less than some acceptable and constant

small value) and therefore ensures that the conditions that lead to disaster are highly

unlikely. Robust design is a design methodology for improving the quality of a

product by minimizing the impact of uncertainties on the product performance. The

objective of robust design is to optimize the mean performance while minimizing the

variation of performance caused by various uncertainties. In this study, uncertainties

are mainly considered in applications of the robust design. One application is the

robust aerodynamic shape optimization under aleatory and epistemic uncertainties.

In the context of aerodynamic shape optimization, robust design implies that the

performance (such as the lift-to-drag ratio) of the final configuration should be
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insensitive to the uncertainties in the operating conditions (e.g., free-stream Mach

number). Furthermore, the final design should be relatively insensitive to the

physical modeling uncertainties in the computational tools used for aerodynamic

analysis such as the computational fluid dynamics (CFD) codes. One very important

component of robust design is the uncertainty quantification (UQ), which may

increase the computational expense of the design process significantly compared to

the computational work of deterministic optimization, especially when high-fidelity

analysis tools are used to improve accuracy. Therefore, it is important to develop

and implement computationally efficient robust design methodologies while keeping

the desired accuracy level in the optimization process.

1.2. LITERATURE REVIEW

The following literature review includes two main topics. The first topic is a

review of previous studies on uncertainty quantification. The second topic contains a

review of various studies that have been conducted on robust design optimization.

1.2.1. UQ Methods. The goal of uncertainty quantification is to

determine how random variation (aleatory) and lack of knowledge (epistemic) affect

the sensitivity, performance, or reliability of the system that is being modeled. Various

studies have been made on the topic of propagating aleatory uncertainty through

Monte Carlo Simulation (MCS) [1, 2, 3, 4, 5], expansion-based methods (e.g., Taylor

series [6, 7, 8, 9] and perturbation method [10, 11, 12]) and Non-Intrusive Polynomial

Chaos (NIPC) Expansions [13, 14, 15] and propagating epistemic uncertainty through

interval analysis and evidence theory [16, 17, 18, 19, 20, 21].

The MCS is the most comprehensive but expensive uncertainty quantification

approach for evaluating statistical moments, reliability and quality of system response.

It is a method for iteratively evaluating a deterministic model using sets of random

numbers as inputs. This method is often used when the model is complex, nonlinear,
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or involves large number of uncertain parameters. Maurice G. Cox et al. [3] worked

on using MCS to determine the probability density function (PDF) of the output

quantities. Zhao, L.Y et al. investigated uncertainty quantification of a flapping

airfoil with stochastic velocity deviations by using a classic Monte Carlo method

to numerically investigate the responses of the time-averaged thrust coefficient and

the propulsive efficiency with respect to a stochastic flight velocity deviation under

Gaussian distributions [4, 5]. Y. P. Ju et al. conducted studies on multi-point

robust design optimization of wind turbine airfoils under geometric uncertainty where

the MSC technique was used for simulating the geometric uncertainty in the robust

optimization [22]. Although, MCS is the most popular sampling based method, it

requires thousands of computational simulations (e.g., CFD, finite element analysis

(FEA)) for obtaining accurate results. It is considerably expensive and can not be

affordable for complex engineering simulations so that it is often used as benchmark

for verification of uncertainty quantification analysis when other methods are used.

The expansion-based UQ is used to estimate the statistical moments (e.g., mean,

variance, etc.) of the system response with a small perturbation to simulate the effect

of the input uncertainty. The Taylor series and perturbation method are two main

expansion-based UQ approaches. The Taylor series is a series expansion of a function

about a point and used to approximate a function with a Taylor polynomial. For

example, first order reliability method (FORM) uses the first order Taylor expansion

(linearization) to approximate the uncertainty in the output [6]. There have also been

some studies on Taylor series expansion techniques and applications in physics [7, 8, 9].

The perturbation method is used to find an approximate solution to a problem which

cannot be solved by traditional analytical methods. It allows the simplification of

complex mathematical problems [10, 11, 12]. Both Taylor series and perturbation

methods have advantages when dealing with relatively small input variability and

outputs that do not express high nonlinearity. However, most real-life problems
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require much more difficult mathematical models, such as non-linear differential

equations. Therefore, Taylor series and perturbation methods will not be a good

option for uncertainty propagation in such cases.

The NIPC expansion is a spectral based technique for uncertainty quantification,

which has been used recently for numerous physical models, such as elasticity and fluid

mechanics [23, 24, 25]. Some studies conducted by Eldred et al. [14, 15] introduced

efficient stochastic expansions based on NIPC for uncertainty quantification. In their

study, they used Legendre and Hermite orthogonal polynomials to model the effect

of uncertain variables described by uniform and normal probability distributions,

respectively, and used Legendre orthogonal polynomials to model the effect of

epistemic uncertainties. The accuracy and the computational efficiency of NIPC

method applied to stochastic problems with multiple uncertain input variables were

investigated by Hosder et al. [26, 27, 28].

The non-probabilistic approaches which are used for epistemic uncertainty

quantification include interval analysis and evidence theory. There have been several

previous studies conducted on epistemic uncertainty propagation [16, 17, 18]. The

simplest way for epistemic uncertainty propagation is by interval analysis [19, 20, 21].

In interval analysis, it is assumed that nothing is known about the uncertain input

variables except that they lie within certain intervals. L.P. Swiler and Thomas L.

Paez [19, 20] examined three methods in propagating epistemic uncertainty including

interval analysis, Dempster-Shafer evidence theory and Second-Order Probability

and demonstrated examples of their use on a problem in structural dynamics and

also examined the use of surrogate methods in epistemic analysis, both surrogate-

based optimization in interval analysis and use of polynomial chaos expansions to

provide upper and lower bound approximations. From their studies, it was proved

that interval analysis can be effective in the quantification of epistemic uncertainty.

Recently, there have been some studies investigating the topic of the mixed (aleatory
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and epistemic) uncertainty propagation. Eldred and L.P. Swile et al. [29] proposed

using Second-Order Probability for estimating the effect of mixed uncertainties. This

method was used to separate the aleatory and epistemic uncertainties into inner

and outer sampling loops, respectively. Moreover, they also applied this method to

a cantilever beam design problem which was represented by two simple analytical

functions. They utilized these analytical functions to represent ideal test cases since

it was inexpensive to evaluate. Therefore, this study provided an analytical reference

for validating codes used for mixed aleatory and epistemic uncertainty quantification.

Bettis and Hosder applied the NIPC approach to the propagation of mixed uncertainty

in hypersonic reentry problems [28, 30]. Du et al. [31] studied reliability-based

design with a mixture of aleatory and epistemic variables input uncertainties. They

introduced a method for dealing with a mixture of aleatory and epistemic input

uncertainties by considering the reliability under the “worst case” combination of

the epistemic variables. Moreover, they proposed an efficient methodology for the

reliability-based design process with mixed input uncertainties such that the entire

analysis process was not more computationally expensive than the reliability-based

analysis involving only aleatory input uncertainties. Du and Guo [6, 32] also extended

a unified uncertainty analysis framework to reliability analysis for multidisciplinary

systems involving aleatory and epistemic as input uncertainties. They first applied

proposed approach to a single disciplinary system and then extended the unified

reliability analysis framework to multidisciplinary systems by proposing several

algorithms. These algorithms were then applied to two different example problems,

including a mathematical example and a low-speed aircraft wing design application.

1.2.2. Robust Design. Robust Design is a design methodology [33, 34]

for improving the quality of a product by minimizing the impact of uncertainties

on the product performance. Mathematically, the objective of robust design is

to optimize the mean performance while minimizing the variation of performance
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caused by various uncertainties. In practical applications, robust design is considered

in many engineering fields to obtain high-performance products. Many studies of

robust design have been investigated in the past decades [35, 36, 37, 38, 39, 40, 41,

42, 43, 44]. A comprehensive survey of robust optimization approaches is given by

Beyer and Sendhoff [45]. Most of the previous stochastic design studies focused

on optimization under aleatory uncertainties which utilized different approaches

for uncertainty propagation. Among these studies, Eldred [46] formulated and

investigated design under aleatory uncertainty with stochastic expansions. Dodson

and Parks utilized polynomial chaos expansions for robust airfoil design under

aleatory input uncertainties [47]. Byeng Dong Youn and K. K. Choi also developed a

robust design optimization with epistemic uncertainty. For the epistemic uncertainty,

the maximum likely value and equivalent variation were employed to define the new

metric for the product quality loss in three different types of robust objectives [48].

There have been a number of robust design studies which considered both aleatory

and epistemic uncertainties such as the work by Eldred [49], and Du et al. [50], who

used a double-loop Monte Carlo sampling approach to determine the statistics of the

response given in their model problems. None of the above studies investigated robust

design under mixed uncertainties using the NIPC apporach. Moreover, the methods

used within these studies were applied to various problems but none of them included

aerodynamic optimization under mixed uncertanties. One of the main goals of this

study was to implement stochastic expansions based on NIPC in robust optimization

under mixed (aleatory and epistemic) uncertainties for aerodynamic shape design in

transonic flow regime.

1.3. OBJECTIVES OF THE CURRENT STUDY

The primary objective of this study was to implement stochastic expansions

based on NIPC in robust optimization under mixed (aleatory and epistemic)
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uncertainties. This approach utilized stochastic response surfaces obtained with

NIPC methods to approximate the objective function and the constraints in the

optimization formulation. Both aleatory and epistemic uncertainties were considered

in robust design. The objective function includes the stochastic measures, which

are minimized simultaneously to ensure the robustness of the final design both to

aleatory (inherent) and epistemic (model form) uncertainties. The computational

efficiency and accuracy of stochastic optimization approach were demonstrated on

aerodynamic optimization as well as model problems. To demonstrate the proposed

approach for robust aerodynamic optimization under aleatory (Mach number) and

epistemic (turbulence model) uncertainties, the NIPC response surfaces were used as

surrogates in the optimization process. To create the surrogates, a combined NIPC

expansion approach was utilized, which is a function of both the design and uncertain

variables. Two stochastic optimization formulations were studied: (1) optimization

under pure aleatory uncertainty and (2) optimization under mixed (aleatory and

epistemic) uncertainty.

Besides the robust optimization approach with stochastic expansions, a new

adaptive sampling approach was also introduced to refine Point-Collocation NIPC by

using an over sampling ratio (OSR) between 1 and 2 based on the convergence check

of the reduction of the total response surface error to further improve computational

efficiency. The proposed adaptive sampling based Point-Collocation NIPC was

implemented for pure aleatory uncertainty and mixed (aleatory and epistemic)

uncertainty quantification, respectively. For adaptive sampling based Point-

Collocation NIPC approach under mixed uncertainties, Second-Order Probability

method was used with outer sampling for epistemic variables and inner sampling

for aleatory variables both using the stochastic response surface approximation to

generate the CDF curves of the output. Two numerical test problems demonstrated

that the adaptive sampling based Point-Collocation NIPC approach can produce the
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same accuracy level of the response surface obtained with over sampling ratio (OSR)

of 2 using less number of function evaluations.

1.4. CONTRIBUTIONS OF THE CURRENT STUDY

The current study has three significant contributions to robust design

optimization in aerospace and mechanical engineering. The first contribution is to

apply the stochastic expansions based on NIPC to robust optimization problems with

mixed uncertainties. The stochastic response surfaces were used to propagate the

mixed aleatory and epistemic uncertainties through a “black-box simulation code in

the optimization process. This proposed approach is much more efficient compared to

traditional double loop MCS, since the function evaluation of the stochastic response

surface is computationally less expensive than the traditional MCS.

The second contribution is the development of the adaptive sampling for Point-

Collocation NIPC. To further improve computational efficiency, adaptive sampling

approach was introduced to refine Point-Collocation NIPC based on the convergence

check of the difference of total response surface error. Two different schemes, which

include fixed check point and updated check point approaches for the calculation of

the check points where the response surface error values are calculated for convergence

check were also introduced. Based on this method, one can use probability

level information of output performance for estimating the response surface more

accurately and efficiently with less number of function evaluations. This approach was

also demonstrated on two numberical model problems. The results were compared to

the results that utilized double-loop MCS for the propagation mixed uncertainties for

the validation of the methodology and demonstration of its computational efficiency.

The third contribution of this study is to implement and propagate a mixture

of aleatory (inherent) and epistemic (model-form) uncertainties in transonic flow

simulations and demonstrate robust airfoil optimization in this flow regime. The
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topic of using combined stochastic expansions to propagate mixed uncertainties in

transonic flows for robust optimization has not been investigated before. Therefore,

the current research study can provide a detailed description on the implementation

of combined stochastic expansions for mixed uncertainty propagation in transonic

flow simulations for any future work on stochastic aerodynamic optimization.

1.5. DISSERTATION OUTLINE

This dissertation is composed of seven sections. In the second section, the

uncertainty quantification with stochastic expansions will be presented which begins

with an explanation of different types of uncertainties and different uncertainty

modeling techniques. Then the theory of Polynomial Chaos, NIPC approaches and

the detail description of the procedure for adaptive sampling based Point-Collocation

NIPC approach will also be included in this section. The demonstration of NIPC

approaches and adaptive sampling based Point-Collocation NIPC for UQ in model

problems is given in Section 3. In Section 4, robust design with stochastic expansions

will be discussed including the formulation of the robustness measures under different

types of uncertainty and utilization of stochastic expansion for robust design with

different polynomial expansion formulations. The applications of robust optimization

to model problems and aerodynamic shape optimization are presented in Sections 5

and 6, respectively. Finally, all relevant conclusions and a discussion on future work

will be given in the last section.
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2. UNCERTAINTY QUANTIFICATION APPROACH

The purpose of this section is to describe the details of the methodology and

approach used to propagate uncertainty through general computational simulations

with stochastic expansions. In this section, an efficient approach will be described

for mixed (aleatory and epistemic) uncertainty propagation by utilizing the NIPC

method. It is important to first describe different types of uncertainty in aerospace

simulations and the fundamental uncertainty quantification methods so that they

can be later applied to applications in robust design optimization, as discussed in the

following sections.

2.1. TYPES OF UNCERTAINTY IN AEROSPACE SIMULATIONS

In practical engineering applications, there are two types of input uncertainty

that has to be considered in robust aerodynamic design studies: inherent (aleatory)

uncertainty and model-form (epistemic) uncertainty [19, 51]. Aleatory uncertainty

is classified as objective and irreducible uncertainty with sufficient information on

input uncertainty data, whereas epistemic uncertainty is a subjective and reducible

uncertainty that stems from lack of knowledge on input uncertainty data.

2.1.1. Aleatory Uncertainty. Aleatory uncertainty, which is probabilistic

and irreducible, describes the inherent variation associated with a physical system

(e.g., the free stream velocity, Mach number, angle of attack and operating

conditions). Aleatory uncertainty is due to the random nature of input data and

can be mathematically characterized by a probability density function (PDF) if

there is enough information on the type of the distribution. Common examples of

statistical distribution types are uniform, normal (Gaussian), lognormal, and Gamma

distributions. The typical plots for these distributions are shown in Figure 2.1.
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Figure 2.1. Sample probability density functions of common statistical distributions

Selecting the most appropriate and accurate distribution types for random input

variables is important because it can have a significant impact when propagating

the input uncertainty to the uncertainty in the output variable of interest. Aleatory

uncertainty is sometimes referred as irreducible uncertainty because the uncertainty

will be prevalent in the physical system because of the stochastic behavior of the

input parameter. Depending upon the application, there may be numerous sources

of aleatory uncertainty within a physical system. The variation of the free stream

velocity, angle of attack, or manufacturing tolerances can be given as examples for

aleatory uncertainty in a stochastic external aerodynamics problem.

2.1.2. Epistemic Uncertainty. Epistemic uncertainty stems from a

lack of knowledge, incomplete information or ignorance in any phase or operation

of a design process (e.g., turbulence models used in CFD simulations). The key
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feature of this definition is that the primary cause is incomplete information of some

characteristics of the system. Therefore, an increase in knowledge or information can

lead to a decrease in the epistemic uncertainty. As a result, epistemic uncertainty

is described as reducible uncertainty. Epistemic uncertainty fundamentally differs

from aleatory uncertainty in the sense that epistemic uncertainty can be reduced

and aleatory uncertainty cannot be reduced. For the characterization of epistemic

uncertainty, the statistical distribution types are not suitable to be used to describe

the nature of the epistemic parameter due to the lack of knowledge or information

about the uncertainty. Studies conducted by Oberkampf [51] and Helton [52] show

that the modeling of epistemic uncertainty with probabilistic approaches may lead to

inaccurate predictions in the amount of uncertainty in the responses, due to the lack of

information on the characterization of uncertainty as probabilistic. One approach to

model the epistemic uncertainty is to characterize it with intervals. In this approach,

the upper and lower bounds on the uncertain variable can be prescribed using either

limited experimental data or expert judgment. All values within this interval are

equally likely to occur due to the fact that it is not appropriate to assign a statistical

distribution to epistemic uncertain variables. Examples of epistemic uncertainties

associated with aerodynamic simulations can include the value of turbulence modeling

parameters and fluid transport quantities.

2.1.3. Mixed Uncertainty. In many real-life engineering problems, the two

types of uncertainties exist simultaneously. The problems with mixed uncertainties

can have a large number of input variables and there can be many sources of aleatory

and epistemic uncertainties. As a result, it is important to account for all these

uncertainties in order to obtain accurate predictions of the uncertainty in the output

variables of interest. For mixed uncertainty quantification, formulations that combine

probabilistic methods and interval approach are sought. To such a case, the output

response (e.g., the drag coefficient in an aerodynamic optimization problem) should



13

be in form of the combination of probability distribution due to the effect of aleatory

input uncertainty and interval distribution that indicates the effect of the epistemic

uncertainty.

2.2. THEORY OF POLYNOMIAL CHAOS

Polynomial Chaos, also called “Wiener Chaos expansion”, is a spectral method

to propagate uncertainty in a system, when there is aleatory uncertainty in the system

parameters. An important aspect of spectral representation of uncertainty is that

one may decompose a random function (or variable) into separable deterministic and

stochastic components. The stochastic response output can be approximated by a

series of orthogonal polynomials basis from Askey scheme [53] associate dwith random

inputs. For example, for any random variable (i.e., R ) such as velocity, density or

pressure in a stochastic fluid dynamics problem, one can write,

R(~x, ~ξ) =
∞∑
j=0

αj(~x)Ψj(~ξ) (1)

where, αj(~x) and Ψj(~ξ) are the polynomial expasions coefficients (deterministic

component) and random basis function corresponding to the jth mode, respectively. In

the most general case, αj(~x) can be a function of deterministic independent variable

vector ~x and the n-dimensional standard random variable vector ~ξ = (ξ1, ..., ξn).

Each of the Ψj(~ξ) are multivariate polynomials which involve products of the one-

dimensional polynomials.

In practice, the infinite expansion can be truncated at a finite number of random

variables (n) and a finite expansion oder (p) :

R(~x, ~ξ) ∼=
P∑
j=0

αj(~x)Ψj(
−→
ξ ) (2)
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where the total number of expansion terms Nt in a complete polynomial chaos

expansion of any order p for a response function with n uncertain input variables

is given by

Nt = 1 + P =
(n+ p)!

n!p!
(3)

which is a function of the order of polynomial chaos (p) and the number of random

dimensions (n). The basis function ideally takes the form of multi-dimensional

Hermite Polynomial to span the n-dimensional random space when the input

uncertainty is Gaussian (unbounded), which was first used by Wiener [54] in his

original work of polynomial chaos. To extend the application of the polynomial chaos

theory to the propagation of continuous non-normal input uncertainty distributions,

Xiu and Karniadakis [55] used a set of polynomials known as the Askey scheme to

obtain the “Wiener-Askey Generalized Polynomial Chaos”. Table 2.1 gives commonly

used Hermite, Legendre, and Laguerre polynomials and the associated probability

density functions (PDF) included the Askey scheme. Huyse et al. [56] have shown that

Legendre, Hermite and Laguerre polynomials are optimal basis functions for uniform,

normal and exponential input uncertainty distributions respectively, in terms of the

convergence of the statistics. The optimality of the selection of these basis functions

derives from the inner product weighting functions that correspond to the PDFs of the

continuous input uncertainty distributions represented in standard form. In Table 2.1,

Table 2.1. Relationship between standard forms of continuous probability
distributions and Askey scheme of continuous polynomials

Input Density Polynomials Weight Support
Distribution Function f (ξ) Name Function ρ (ξ) Range (R)

Uniform 1
2

Legendre Pn (ξ) 1 [−1, 1]

Norm 1√
2π
e

−ξ2
2 Hermit Hen (ξ) e

−ξ2
2 [−∞,∞]

Exponetial e−ξ Laguerre Ln (ξ) e−ξ [0,∞]
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the constant factor between the density and the weighting functions originate due to

the requirement that the integral of the probability density function over the support

range is one. Eldred et al. [14] described the detailed process of how the multivariate

basis functions can be derived from the product of univariate orthogonal polynomials.

Take a multivariate Hermite polynomial of order n as an example, it can be defined

from

Hen(ξi1 , · · · , ξin) = e
1
2
~ξT ~ξ (−1)n

∂n

∂ξi1 · · · ∂ξin
e−

1
2
~ξT ~ξ (4)

which can also be shown as a product of one-dimential Hermite polynomials ψmji
(ξ)

by using the multi-index mj
i , as described in Equation (5) :

Hen(ξi1 , · · · , ξin) = Ψj

(
~ξ
)

=
n∏
i=1

ψmji
(ξ) (5)

For example, the first few multivariate Hermit Polynomials of a two-dimensional case

(including zeroth, first, and second order terms) are obtained as:

Ψ0(~ξ) = ψ0 (ξ1)ψ0 (ξ2) = 1

Ψ1(~ξ) = ψ1 (ξ1)ψ0 (ξ2) = ξ1

Ψ2(~ξ) = ψ0 (ξ1)ψ1 (ξ2) = ξ2

Ψ3(~ξ) = ψ2 (ξ1)ψ0 (ξ2) = ξ2
1 − 1

Ψ4(~ξ) = ψ1 (ξ1)ψ1 (ξ2) = ξ1ξ2

Ψ5(~ξ) = ψ0 (ξ1)ψ2 (ξ2) = ξ2
2 − 1

(6)

If the probability distribution of each random variable is different, then the optimal

multivariate basis functions can be again obtained using Equation (5) by employing

the optimal univariate polynomial at each random dimension. This approach requires

that the input uncertainties are independent standard random variables, which

also allows the calculation of the multivariate weight functions by the product
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of univariate weight functions associated with the probability distribution at each

random dimension. The program listing for the polynomial chaos expansion is given

in Appendix A. The generalized polynomial chaos approach can be applied to the

propagation of any independent random variable included in the Askey scheme. The

detailed information on polynomial chaos expansions can be found in Walters and

Huyse, [57] Najm, [58] and Hosder and Walters [59]. The primary objective of the

stochastic methods based on polynomial chaos is to determine the coefficient of each

term (αj(~x), (j = 0, 1, .., P )) in the polynomial expansion given by Equation (2).

The statistics of the response can then be calculated using the coefficients and the

orthogonality of basis functions. The mean of the random solution is given by

µR = E[R(~x, ~ξ)] =

∫
Ω

R(~x, ~ξ)ρ(~ξ)d~ξ = α0 (7)

which indicates that the zeroth mode of the expansion corresponds to the expected

value or the mean of R(~ξ). Similarly, the variance of the distribution can be obtained:

σ2
R = V ar[R(~x, ~ξ)] =

∫
Ω

(R(~x, ~ξ)− µR)2ρ(~ξ)d~ξ (8)

or

σ2
R =

P∑
j=1

[α2
j (~x) < Ψ2

j >] (9)

In the above equations, 〈Ψj〉 = 0 for j > 0 and 〈ΨiΨj〉 =
〈
Ψ2
j

〉
δij, where the

inner product expression < .. > represents

〈
f(~ξ)g(~ξ)

〉
~ξ

=

∫
Ω

f(~ξ)g(~ξ)ρ(~ξ)d~ξ (10)
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written in terms of two generic functions f(~ξ) and g(~ξ) in the support region Ω of ~ξ

with ρ(
−→
ξ ) being the weight function.

2.3. NON-INTRUSIVE POLYNOMIAL CHAOS

To model the uncertainty propagation in computational simulations via

polynomial chaos with the intrusive approach, all dependent variables and random

parameters in the governing equations are replaced with their polynomial chaos

expansions. Taking the inner product of the equations yields P + 1 times the

number of deterministic equations which can be solved by the same numerical

methods applied to the original deterministic system. Although straightforward in

theory, an intrusive formulation for complex problems can be relatively difficult,

expensive, and time consuming to implement. To overcome such inconveniences

associated with the intrusive approach, NIPC formulations have been considered for

uncertainty propagation. The main objective of the NIPC method is to obtain the

polynomial coefficients without making any modifications to the deterministic code.

This approach treats the deterministic code as a “black-box” and approximates the

polynomial coefficients with formulas based on deterministic code evaluations. The

“ideal” non-intrusive method would predict the polynomial coefficients with minimum

number of deterministic evaluations at the desired accuracy level for a given stochastic

problem. The Quadrature-Based and Point-Collocation based NIPC are the two

main NIPC approaches used for uncertainty quantification in this study. A detailed

description of these two approaches is given in the following sections.

2.3.1. Quadrature-Based NIPC. To find the polynomial coefficients αj =

αj(~x), (j = 0, 1, .., P ) in Equation (2) using the NIPC methods based on spectral

projection, the equation is projected onto the jth basis:

〈
R(~x, ~ξ),Ψj(~ξ)

〉
=

〈
P∑
k=0

αk(~x)Ψk(~ξ),Ψj(~ξ)

〉
(11)
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By the virtue of orthogonality of the basis polynomials, the polynomials coefficients

can obtianed by 〈
R(~x, ~ξ),Ψj(~ξ)

〉
= αj(~x)

〈
Ψ2
j(
~ξ)
〉

(12)

αj(~x) =

〈
R(~x, ~ξ),Ψj(~ξ)

〉
〈

Ψ2
j(
~ξ)
〉 =

1〈
Ψ2
j(
~ξ)
〉 ∫

Ω

R(~x, ~ξ)Ψj(~ξ)ρ(~ξ)d~ξ (13)

The objective of the spectral projection methods is to predict the polynomial

coefficients by evaluating the numerator (
〈
R(~x, ~ξ),Ψj(~ξ)

〉
) in Equation (13), since

the term in the denominator (
〈

Ψ2
j(
~ξ)
〉

) can be computed analytically for multivariate

orthogonal polynomials. With this non-intrusive approach, the multi-dimensional

integral in the numerator term of Equation (13) is evaluated with numerical

quadrature [60, 61, 14, 62]. For the integration of one-dimensional problems, the

straightforward approach will be to use Gaussian quadrature points, which are

zeros of orthogonal polynomials that are optimal for the given input uncertainty

distribution (i.e., Gauss-Hermite, Gauss-Legendre, and Gauss-Laguerre points for

normal, uniform, and exponential distributions respectively). The extension of this

approach to multidimensional problems can be achieved via tensor product of one-

dimensional quadrature formulas. For one-dimensional integral, if the polynomial

chaos expansion degree is p, then the minimum Gaussian points required for the

exact estimation of the integral will be p + 1, because p-point Gaussian Quadrature

rule will yield an exact result for polynomials degree of 2p − 1 or less and the

polynomial degree of the product of function estimation and the basis polynomials in

numerator in Equation(13) will be 2p. Therefore, the number of response evaluations

will be (p+ 1)n when the Quadrature-Based NIPC is used to construct the response

surface as a function of n expansion variables. An alternative approach for more

efficient evaluation of the multidimensional integrals will be to use sparse tensor

product spaces instead of full-tensor product of Gauss quadrature points to cover the
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multidimensional random space. The concept of sparse grids was first proposed by

Smolyak [63] and recently implemented by many researchers for efficient solution of

stochastic problems [64, 65, 66, 67]. As shown by Eldred et al. [14], using sparse grids

can provide significant gains in terms of efficiency for the solution of smooth functions

in random space with moderate number of input uncertain variables. The program

listing for Quadrature-Based NIPC is given in Appendix B.

2.3.2. Point-Collocation NIPC. The Point-Collocation NIPC method

starts with replacing the uncertain variables of interest with their polynomial

expansions given by Equation (14). Then, Nt = P + 1 vectors (~ξj =

{ξ1, ξ2, ..., ξn}j , j = 0, 1, ..., P ) are chosen in random space for a given polynomial

chaos expansion with P + 1 modes and the deterministic code is evaluated at these

points. With the left hand side of Equation (14) known from the solutions of

deterministic evaluations at the chosen random points, a linear system of equations

can be obtained

R(~x, ~ξ0)

R(~x, ~ξ1)

...

R(~x, ~ξP )


=



Ψ0(~ξ0) Ψ1(~ξ0) · · · ΨP (~ξ0)

Ψ0(~ξ1) Ψ1(~ξ1) · · · ΨP (~ξ1)

...
...

. . .
...

Ψ0( ~ξP ) Ψ1( ~ξP ) · · · ΨP ( ~ξP )





α0(~x)

α1(~x)

...

αP (~x)


(14)

The coefficients (αj(~x)) of the stochastic expansion are obtained by solving the

linear system of equations given above. The solution of the linear problem given by

Equation (14) requires Nt deterministic function evaluations. If more than Nt samples

are chosen, then the over-determined system of equations can be solved using the

Least Squares approach. Hosder et al. [68] investigated this option on model stochastic

problems by increasing the number of collocation points in a systematic way through

the introduction of over sampling ratio (OSR) defined as the number of samples
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divided by Nt. In the solution of stochastic model problems with multiple uncertain

variables, they have used OSR = 1, 2, 3, and 4 to study the effect of the number

of collocation points (samples) on the accuracy of the polynomial chaos expansions.

Their results showed that using OSR of 2 gives a better approximation to the statistics

at each polynomial degree. Increasing the number of collocation points help reduce

the error between the polynomial chaos response surface approximation with the

Point-Collocation NIPC and the representation with the exact chaos expansion. It

should be noted that the Point-Collocation NIPC with OSR of 2 which required

N = 2(n+p)!/(n!p!) deterministic evaluations will be significantly more efficient than

the full tensor product quadrature with N = (p + 1)n for larger problems [68]. The

Point-Collocation NIPC has the advantage of flexibility on the selection of collocation

points. With the proper selection of collocation points, it has been shown that

Point-Collocation NIPC can produce highly accurate stochastic response surfaces

with computational efficiency. For the model problems considered in Section 5, Latin

Hypercube sampling with the OSR of 1 or 2 were used to choose the collocation points.

In robust airfoil optimization design problems, Latin Hypercube sampling with the

OSR of 2 was used to select the collocation points to obtain more accurate solution.

The number of response evaluations will be OSR × Nt when the Point-Collocation

NIPC is used to construct the stochastic response surface. The program listing for

Point-Collocation NIPC is given in Appendix C.

2.3.3. Mixed UQ with Stochastic Expansions. With the introduction

of non-probabilistic variables ~s (epistemic uncertain variables or deterministic design

variables) and aleatory uncertainty (~ξa), a bounded domain ~sL ≤ ~s ≤ ~sU (with no

implied probability content) was assumed for the nonprobabilistic variables and a

Legendre chaos basis would be appropriate for each of the dimensions in ~s within a

polynomial chaos expansion. A combined stochastic expansions of R can be written:
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R
(
~ξa, s

(
~ξs

))
∼=

P∑
j=0

αjΨj

(
~ξa, s

(
~ξs

))
(15)

In Equation (15), ~ξa is the standard aleatory random variable vector corresponding

to aleatory uncertainties, whereas ~s are the epistemic uncertain variables in interval

[ ~sL, ~sU ], which are mapped from the associated standard variables in interval [-1,1],

~s =
~sU − ~sL

2
· ~ξs +

~sU + ~sL
2

(16)

where, ~ξs are the standard epistemic variables (or deterministic design variables) in

interval [-1,1]. For this combined variable expansion, the mean and variance are

calculated by performing the expectations over only the aleatory uncertainties, which

eliminates the polynomial dependence on ~ξa, leaving behind the desired polynomial

dependence of the moments on ~s.

µR (~s) =
P∑
j=0

αj

〈
Ψj

(
~ξa, ~s

)〉
~ξa

(17)

σ2
R (~s) =

P∑
j=0

P∑
k=0

αjαk

〈
Ψj

(
~ξa, ~s

)
Ψk

(
~ξa, ~s

)〉
~ξa
− µ2

R (~s) (18)

2.3.4. Second Order Probability. Second-Order Probability [20, 69]

utilizes an inner loop and an outer sampling loop as described in Figure 2.2 to

propagate mixed (aleatory and epistemic) uncertainty. In the outer loop, a specific

value for epistemic variable is prescribed and then passed down to inner loop.

Any aleatory uncertainty propagation method may be used to perform aleatory

uncertainty analysis in the inner loop for the specified value of the epistemic uncertain

variable. The Second-Order Probability will produce interval bounds for the output

variable of interest at different probability levels. Each iterations of the outer loop

will generate one cumulative distribution function (CDF) based on the aleatory

uncertainty analysis in the inner loop. As an example, 1000 different CDF curves
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Outer Loop 

(Epistemic Sampling) 

Inner Loop 

(Aleatory UQ) 

 

“Black Box” 

Simulation 

Figure 2.2. Diagram of the second-order probability sampling strategy

will be generated if there are 1000 samples in the outer loop. The main advantage

of Second-Order Probability is that it is easy to separate and identify the aleatory

and epistemic uncertainties. On the other hand, the double sampling loops will

make this method computationally expensive, especially when traditional sampling

techniques, such as MCS, are used for uncertainty propagation. Since this study

is mainly focused on efficient uncertainty quantification, the NIPC method will be

used to create a stochastic response surface for the output quantity of interest as

a function of both aleatory and epistemic uncertain variables. The Second-Order

Probability was used to determine the bounds at specified probability levels of the

output in mixed uncertainty studies using stochastic expansions.

2.4. ADAPTIVE SAMPLING FOR POINT-COLLOCATION NIPC

As discussed in Section 2.2.2, Point-collocation NIPC with OSR of 2 gives a

better approximation to the statistics at each polynomial degree. The error between

the polynomial chaos response surface approximation with the Point-Collocation

NIPC and the representation with the exact chaos expansion will be reduced by
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increasing of the number of collocation points. To further improve computational

efficiency and obtain the same accuracy level of the OSR= 2 results with less numbers

of function evaluations, an adaptive sampling approach is introduced to refine Point-

Collocation NIPC by using the OSR between 1 and 2 based on the convergence check

of the difference of total response surface error. Two different schemes are considered

for the calculation of the check points where the response surface error values are

calculated for convergence check, including fixed check point and updated check point

approaches. The fixed check points are calculated at the first iteration (OSR=1) and

are not updated. The updated check points are modified in an automated way so that

the response values evaluated at these points represent more accurately the probability

levels where the response surface error values are intended to be calculated.

The procedure of adaptive sampling for the Point-Collocation NIPC approach

is illustrated in Figure 2.3 with eight steps and the details will be discussed for pure

aleatory uncertainty and mixed (both aleatory and epistemic) uncertainty in the

following sections.

 

N 

Y 

IInniittiiaall  ssaammppllee  sseett  and  pprroobbaabbiilliittyy  lleevveell  iinnffoo 
 

Create PC response surface 

with OSR=1 
 

Accuracy check 

 (use fixed or updated 

 check points)  

 
 

AAddddiittiioonn  ooff    

mmoorree  ssaammppllee  ppooiinnttss  

SSttoopp 
 

MMooddiiffiieedd  ssaammppllee  sseett 
 

AAppppeenndd  eexxiissttiinngg  vveeccttoorr 
 

UUppddaattee  ooff  PPCC  rreessppoonnssee  ssuurrffaaccee  

((OOSSRR>>11)) 

 

FFuunnccttiioonnss  eevvaalluuaattiioonnss  

aatt  nneeww  ssaammppllee  ppooiinnttss 
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2 

3 

4 

5 

6 
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8 

Figure 2.3. Schematic of adaptive sampling based Point-Collocation NIPC
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2.4.1. Adaptive Sampling Approach for Pure Aleatory Uncertainty

Propagation. As can be seen in Figure 2.3, there are eight steps in the procedure.

The details of each step are described as follows:

Step 1: Generate Ntotal random samples (Ntotal � N0
sample) on aleatory

uncertain variable design space using Latin Hypercube sampling and specify the

probability levels for check point calculations. The N0
sample represents the number

of collocation points used for creating the initial response surface.

Step 2: Select N0
sample samples from initial sample set Ntotal, which are used

to calculate the polynomial expansion coefficients and construct the initial response

surface using Equantion (14).

The number of samples N0
sample can be calculated by:

N0
sample = Nt ·OSR0 =

(n+ p)!

n!p!
·OSR0 (19)

where, Nt is the total number of expansion terms which is a function of polynomial

expansion order p and number of uncertain variables n. OSR0 is the initial OSR,

which can be any number greater than or equal to 1 ( for example, OSR0 = 1 in this

proposed approach).

Step 3: Check the convergence of total response surface error which includes

four procedures given below:

(1) Generate the CDF curve of the output as shown in Figure 2.4 using Na
sample

number of samples for aleatory uncertainty variables using the stochastic response

surface approximation obtained in step 2, where, i = 1, ..., ncheck and ncheck is the

total number of probability levels.

(2) Calculate the output value at each specified probability level based on

the CDF results. For pure aleatory uncertain variable case, the output at specific

probability level is single value as shown in Figure 2.4.
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(3) Obtain the check points which are corresponding to the output values at

specified probability levels by solving multi-variable non-linear equations. To solve

the multi-variable non-linear equations, Trust-Region Dogleg Method was applied

and implemented through Matlab code in this study. As discussed before, there

are two different schemes to implement this step which are fixed check point and

update check point approaches. The fixed check points are calculated at the initial

iteration (OSR=1) and are not updated. The updated check points are modified in an

automated way so that the response values evaluated at these points represent more

accurately the probability levels where the response surface error values are intended

to be calculated. The updated check points are modified based on the reduction

value ∆Ek
RT of total probability error Ek

RT at kth iteration (Flow chart of check point

update procedure is shown in Figure 2.5) :
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Figure 2.4. CDF curve of output from NIPC response surface showing the specified
probability levels for accuracy evaluation

(i = 1, ..., ncheck; ncheck: number of probability levels)
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if

∆Ek
RT > ε : update check points

∆Ek
RT 6 ε : STOP updating check points

where, ε is the user specified convergence criterion value (e.g. 0.1 represents 10%

reduction). The total error reduction value ∆Ek
RT of total probability level error is

calculated by

∆E0
RT = E0

RT (Initial setup)

∆Ek
RT =

∣∣Ek
RT − Ek−1

RT

∣∣ , k = 1, 2, 3 · · · (20)

where k corresponds to iteration number.
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Figure 2.5. Flow chart for check point update
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The local response surface error and total response surface error are computed

by Equation (21) and Equation (22), respectively:

ekRi =

∣∣∣∣Rk
si
−Rk

i

Rk
i

∣∣∣∣ (i = 1, ..., ncheck) (21)

and

Ek
RT =

√√√√ncheck∑
i=1

(
ekRi
)2

(22)

where, i represents probability level. Rk
si

and Rk
i are the output value obtained from

response surface and exact function at check points corresponding to ith probability

level at kth iteration, respectively.

(4) Check error of total response surface by calculating the difference between

the actual function (deterministic code) and the response surface at check points that

correspond to the output at specified probability level. Two different convergence

criteria are considered in this approach including sample size criterion and error

convergence criterion. Sample size convergence criterion limits the maximum sample

size for response surface approximation to OSR of 2 as shown in Equation (23).

Nk
sample 6 2 ·Nt (23)

Error convergence criterion includes the definition of a predefined small tolerance

value (Tol) and check if the difference of total response surface error (∆Ek
RT ) in

successive iterations satisfy the following inequality

∣∣∆Ek
RT

∣∣ 6 Tol (24)

If either of above convergence criteria is satisfied, then the procedure stops and

the results are obtained. Otherwise, continue to step 4.
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Step 4: Add Nadd samples from previous ( Ntotal − Nt · OSRk−1 ) subsample

set, which are used to update the response surface in order to improve the accuracy

of approximation.

Step 5: Modify sample set by appending the additional samples to the previous

sample set. The number of samples and OSR at kth iteration are given as:

Nk
sample = Nt ·OSR0 + k ·Nadd (25)

OSRk =
Nk
sample

Nt ·OSR0
(26)

where, k is the iteration number (k = 1, 2, 3, ...).

Step 6: Evaluate the function (deterministic code) at the added sample points.

Step 7: Append new function evaluations to the existing vector and construct

new polynomial expansions matrices which were created to apply Point-Collocation

NIPC as in Equantion (14).

Step 8: Evaluate the polynomial expansion coefficients based on the updated

matrice and obtain the updated response surface. Perform accuracy check according

to step 3 using the updated response surface.

Repeat step 3 to 8 until accuracy criteria is satisfied.

2.4.2. Adaptive Sampling Approach for Mixed Uncertainty

Propagation. For Mixed uncertainty propagation, The same procedure can be

implemented as shown in Figure 2.3.

Step 1: Generate Ntotal random samples (Ntotal � N0
sample) on both aleatory

and epistemic uncertain variable design space using Latin Hypercube sampling and

specify the probability levels for check point calculations.

Step 2: Select N0
sample samples from initial sample set Ntotal, which are used

to calculate the polynomial expansion coefficients and construct the initial response

surface. For mixed uncertainty propagation, the response surface is created based on
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Equantion (15) and Equantion (14). The number of samples N0
sample can be calculated

using Equation (19).

Step 3: Check the convergence of total response surface error which also

includes four procedures given below:

(1) Generate the CDF curves of the output as shown in Figure 2.6, where,

i = 1, ..., ncheck and ncheck is the total number of probability levels. Due to the effect

of epistemic uncertainty, the output value is an interval at specific probability level.

Second-Order Probability method was utilized with N e
sample samples for epistemic

variables (outer sampling) and Na
sample samples for aleatory variables (inner sampling)

both using the stochastic response surface approximation obtained in step 2 to

generate the CDF curves of the output.

(2) Calculate the output value at each specified probability level based on the

CDF results. For mixed uncertain variable case, the output at specific probability

level is an interval. An example of CDF curves (p-box) is given in Figure 2.6. For
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mixed uncertainty case, since the output value at specified probability level is an

interval, check points can be calculated based on different output value such as, the

maximum value of output Rmax
si , minimum value of output Rmin

si , or average of output

value Rav
si .

The average output value at ith specified probability level is calculated based on

stochastic response surface approximation using Equation (27).

Rav
si =

(Rmin
si +Rmax

si )

2
(27)

(3) Obtain the check points which are corresponding to the output values at

specified probability levels. The same approach was utilized to solve the multi–

variable non-linear equations. As discussed in Section 2.4.1, two different schemes

(fixed check point and update check point) can be used to obtain the check points.

(4) Check error of total response surface by calculating the difference between

the actual function (deterministic code) and the response surface at check points that

correspond to the output at specified probability level. Sample size criterion and error

convergence criterion are also used as convergence criteria.

If either of these convergence criteria is satisfied, then the procedure stops and

the results are obtained. Otherwise, continue to step 4.

Step 4: Add Nadd samples from previous ( Ntotal − Nt · OSRk−1 ) subsample

set, which are used to update the response surface in order to improve the accuracy

of approximation.

Step 5: Modify sample set by appending the additional samples to the previous

sample set.

Step 6: Evaluate the function (deterministic code) at the added sample points.

Step 7: Append new function evaluations to the existing vector and construct

new polynomial expansions matrices.
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Step 8: Evaluate the polynomial expansion coefficients with the updated

matrice based on Equation (14) and Equantion (15), and obtain the updated response

surface. Perform accuracy check according to step 3 using the updated response

surface.

Repeat step 3 to 8 until accuracy criteria is satisfied.

The program listing for adaptive sampling based Point-Collocation NIPC is

given in Appendix D.
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3. APPLICATIONS OF UNCERTAINTY QUANTIFICATION METHOD

Before application to design, the demonstrations of the UQ methods described

in the previous section on two model problems are given in this section. Since

the main purpose of this study is to apply a computationally efficient uncertainty

quantification approach to robust design optimization under mixed (aleatory and

epistemic) uncertainties, both model problems include mixed uncertainties (aleatory

and epistemic). First, the application of Quadrature-Based and Point-Collocation

based NIPC to an engineering model problem is presented, and then a numerical

problem is used to demonstrate the efficiency of the adaptive sampling for Point-

Collocation NIPC approach.

3.1. MODEL PROBLEM 1: SHAFT DESIGN

In this section, Quadrature-Based and Point-Collocation based NIPC approach

are applied to the uncertainty quantification of a model problem (Figure 3.1), which

indicates limit-state function of a shaft in a speed reducer:

Figure 3.1. Shaft in a speed reducer used for model problem
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g = S − 16

πd3

√
4F 2l2 + 3T 2 (28)

where d = 39 mm is the diameter of the shaft, l = 400 mm is the length of the shaft,

F is the external force, T is the external torque and S is the yield strength. The

limit-state function represents the difference between the strength and the maximum

equivalent stress, which has to be positive (or greater than a specified positive value)

for a safe system. To demonstrate the uncertainty quantification under mixed input

uncertainties, the external force F was treated as epistemic uncertainty as described in

Table 3.1, external torque T and yield strength S as aleatory uncertain variables with

normal distribution. The distributions of aleatory uncertain variables are given in

Table 3.2. It is important to realize that the accuracy of the uncertainty propagation

Table 3.1. Limits of epistemic uncertain variable

Varibles FL FU

F 1800 N 2200 N

Table 3.2. Distribution of aleatory uncertain variables

Varibles µ σ Distribution

T 450 N·m 50 N·m Normal
S 250 Mpa 30 Mpa Normal

approach is dependent upon the polynomial expansion order (p) used within the NIPC

method. Moreover, the number of function evaluations increases with the polynomial

expansion order (p). Therefore, it is important to intelligently select an appropriate

expansion order p. An optimal expansion order p would be high enough to estimate

accurate results while taking the smallest number of required function evaluations. To
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find the optimal expansion order p, convergence studies were implemented where the

mean and standard deviation of the limit-state function was analyzed as a function of

polynomial order. Figure 3.2 shows the computational results for increasing expansion

orders for each of the coefficient estimation approach. From Figure 3.2, it is obvious

that a 2nd order polynomial chaos was sufficient for convergence of the NIPC response

surface. This can be seen from the fact that there is no obvious changes in both mean
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Figure 3.2. Convergence of NIPC for increasing expansion orders for shaft speed
reducer case

(P-C: Point-Collocation, OSR: over sampling ratio, Q-B: Quadratured-Based)
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and standard deviation of the limit-state function for expansion order p higher than

two. Therefore, a 2nd order polynomial was selected along with Quadrature-Based

and Point-Collocation with the OSR of 1 and 2 which corresponded to a total of

27, 10 and 20 function evaluations needed to construct the NIPC response surface.

For the Point-Collocation approach, the sample points were selected according to

the respective statistical distribution of each stochastic input variable. After the

convergence study had been completed, the next step was to perform the mixed

aleatory-epistemic uncertainty propagation for the limit-state function. For the UQ

analysis, five probability levels (2.5%, 20%, 50%, 80%, 97.5% ) are considered. For

this problem, Second Order Probability was used to obtain the cumulative probability.

A random sample of size 100 was used for the outer loop (epistemic) sampling and

2,000 samples were utilized for the inner loop (aleatory) sampling to produce the

CDF curves from the stochastic response surface. Moreover, the results obtained by

direct MCS for the original function that utilized the same samples were compared to

the results that were obtained by NIPC approach. The comparison of average output

value at specified probability levels are shown in Table 3.3. The relative error results

are given in Table 3.4, which indicate that Quadrature-based and Point-Collocation

Table 3.3. Comparison of average output values at specified probability level

P-C, OSR1 P-C, OSR2 Q-B MCS

2.5% 3.1810×107 3.3860× 107 3.3883×107 3.3880×107

Probability 20% 7.0322×107 7.0724×107 7.0716×107 7.0722×107

Level 50% 9.7080×107 9.7150× 107 9.7146×107 9.7154×107

80% 1.2303×108 1.2360× 108 1.2358×108 1.2360×108

97.5% 1.5768×108 1.5856× 108 1.5854×108 1.5854×108

Number of
FE 10 20 27 200000

(P-C: Point-Collocation, Q-B: Quadrature-Based, OSR: Over Sampling Ratio, FE:
Function Evalustions, MCS: Monte-Carlo Sampling)
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Table 3.4. Relative error results for each method

Probability Level P-C, OSR1 P-C, OSR2 Q-B

2.5% 6.1088 0 .0579 0.0099
20% 0.5657 0.0027 0.0086
50% 0.0758 0.0038 0.0079
80% 0.4596 0.0015 0.0146

97.5% 0.5456 0.0095 0.0031

( P-C: Point-Collocation, Q-B: Quadrature-Based, OSR: Over Sampling Ratio)

with OSR of 2 are more accurate compared to Point-Collocation approach with OSR

of 1. The relative error for each method at ith probability level can be calculated by

Error =

∣∣∣∣Ri
NIPC −Ri

MCS

Ri
MCS

∣∣∣∣× 100 (29)

This result is further verified by Figure 3.3 which gives the p-box plots for

Quadrature-Based, Point-Collocation NIPC and MCS approaches. Since the error is

relatively small for this problem, these results are shown for probability level between

0% and 10% to make this difference easy to identify. As can be seen from the figure,

the p-box plots of Quadrature-Based and Point-Collocation NIPC with OSR of 2 are

overlapped and much closer to the plots obtained from MCS which indicates that

Quadrature based and Point-Collocation NIPC with OSR of 2 give slightly more

accurate approximation compared to the Point-Collocation NIPC with OSR of 1.

3.2. MODEL PROBLEM 2: SOBOL FUNCTION

In this section, the adaptive sampling approach for Point-Collocation NIPC is

demonstrated on two numerical examples including Sobol function problem with 8

variables and 20 variables, respectively.
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Figure 3.3. Comparison of P-box plot for NIPC and MCS

3.2.1. Sobol Function with 8 Variables. Sobol function is a common

test problem in uncertainty quantification and polynomial chaos studies [70]. The

expression of the function is given as follows:

Y =
n∏
i=1

|4xi − 2|+ ai
1 + ai

(30)

where, xi are the input uncertain variables, i = 1, 2, ..., n and ai are nonnegative

constant values. For numerical application, n = 8 is selected together with ~a =

[1, 2, 5, 10, 20, 50, 100, 500] following the example in [70]. For mixed uncertainty case,

xi (i = 1, 3, 5, 7 ) are treated as aleatory uncertainty following uniform distribution

with [0, 1] and xi (i = 2, 4, 6, 8 ) are considered as epistemic uncertainty which

falls in the interval [0, 1]. The application example is carried out using polynomial

chaos expansion of degree 2 (p = 2) and the initial response surface was created by

using Point-Collocation based NIPC with OSR of 1 (OSR0 = 1). A total number

of 1000 (Ntotal = 1000) Latin Hypercube sampling were generated on the variable
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design space. The mixed uncertainty results for the response at five probability levels,

2.5%, 20%, 50%, 80% and 97.5% were analyzed following the discussion in Section

2.4.2. Two different accuracy check procedures were used which included the fixed

check point and updated check point approaches. The number of check points at

each iteration was corresponding to the total number of specified probability levels.

Additional samples (Nadd = 9) were added after each iteration to update the response

surface. For mixed uncertainty case, Second Order Probability approach was used to

compute the output of response surface at the specified probability levels. A random

sample size of 500 was used for the outer loop (epistemic) and 2,000 samples were

utilized for the inner loop (aleatory) to produce CDF results from the response surface.

Moreover, the other CDF results obtained by direct MCS approach that utilized the

same samples were used as benchmark to compare the results that were obtained

by adaptive sampling based Point-Collocation NIPC approach. For updated check

point approach, the convergence criterion value (ε) of total error reduction value was

specified as 0.1 for this problem. Results obtained from these two accuracy check

procedures are reported in Table 3.5 and Table 3.6. For fixed check point method,

the check points were calculated only once based on the estimation of initial response

surface and the total number of function evaluations for check points calculation is

constant which equals to the number of specified probability levels. For the updated

check point method, the check points were updated based on the total probability

Table 3.5. Probability Level Error Results at fixed check points for 8 variable case

Probability OSR0 OSR1 OSR2 OSR3 OSR4 OSR5

Level = 1 = 1.2 = 1.4 = 1.6 = 1.8 = 2.0

2.5% 1.818 0.4342 0.6296 0.3695 0.5655 0.4091
20% 0.2205 0.1490 0.4019 0.4393 0.3201 0.3932
50% 0.2767 0.2128 0.0026 0.01899 0.0409 0.0542
80% 0.3790 0.1327 0.022 0.0212 0.0524 0.0239

97.5% 1.3610 0.0201 0.0650 0.1247 0.04706 0.0392
Ek
RT 2.3296 0.5235 0.7514 0.5881 0.6549 0.5718
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Table 3.6. Probability Level Error Results at updated check points for 8 variable case

Probability OSR0 OSR1 OSR2 OSR3 OSR4 OSR5

Level = 1 = 1.2 = 1.4 = 1.6 = 1.8 = 2.0

2.5% 1.8182 0.1781 0.1056 0.0777 0.0843 0.1115
20% 0.2205 0.2838 0.1824 0.1380 0.1607 0.2372
50% 0.2768 0.1586 0.0183 0.0288 0.0911 0.1712
80% 0.3790 0.0748 0.1328 0.1314 0.1248 0.0796

97.5% 1.3610 0.0309 0.0014 0.0251 0.0146 0.0467
Ek
RT 2.3296 0.3795 0.2497 0.2093 0.2387 0.3264

error reduction value ∆Ek
RT which was calculated using Equation (20). The total

function evaluations of both fixed and update check point methods are given in Table

3.7. It can be seen that the total number of function evaluations for check points

calculation is 10 for updated check point method in this 8 variables case. Figure 3.4

also shows the iteration history of total probability level error Ek
RT for both fixed

and updated check points methods. For both approaches, the total probability level

error started converging at the first iteration and the convergence of error achieved at

iteration 2. The relative error of output value at ith probability level at kth iteration

can be calculated by Equation (31) and the comparison results are shown in Figure 3.5.

Table 3.7. Number of function evaluations for 8 variable case

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 Total

Fixed NRS 45 9 9 9 9 9 90
Ncheck 5 0 0 0 0 0 5

Updated NRS 45 9 9 9 9 9 90
Ncheck 5 5 0 0 0 0 10

(k: iterations, NRS: number of function evaluations for response surface, Ncheck:
number of function evaluations for check point)



40

 
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

 

 

FCP

UCP

Figure 3.4. Iteration history for total probability level error for the “8 variable” sobol
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(FCP: Fixed Check Point approach, UPC: Updated Check Point approach)

Errorki =

∣∣∣∣∣R
i,k
adpt −R

i,k
MCS

Ri,k
MCS

∣∣∣∣∣× 100 (31)

It is obvious to see that both adaptive sampling approaches with fixed check point and

updated check point converge at the second iteration at all specified probability levels

which indicated that adaptive sampling based Point-Collocation approach requires

much less function evaluations when compared with the Point-Collocation with OSR

of 2 and can provide the same level of accuracy. The results obtained with the updated

check point approach are more accurate and stable than that of fixed check points,

and give a more accurate representation of the response at specified probability level.

The results shown in Figure 3.6 are the p-box plots for Point-Collocation with OSR

of 1 and 2, adaptive sampling based Point-Collocation at 2nd iteration and MCS

apporaches. As can be seen from this figure, the p-box plots of adaptive sampling
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Figure 3.5. The error of the response with respect to MCS at specified probability
levels for the “ 8 variable ” sobol function problem

( FCP: Fixed Check Point approach, UPC: Updated Check Point approach)

based Point-Collocation at 2nd iteration and Point-Collocation with OSR of 2 are

much closer to the CDF results obtained from exact function evaluations compared

to OSR of 1.
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Figure 3.6. Comparison of P-box plot for NIPC and MCS methods for the 8 varible
case

3.2.2. Sobol Function with 20 Variables. To demonstrate proposed

adaptive sampling approach to a problem with large number of uncertain variables,

the sobol function was modified by increasing the number of uncertain variables to

20 with ~a = [1, 2, 5, 10, 15, 20, 30, 45 : 5 : 105]. For mixed uncertainty case, every xi

with an odd i was treated as aleatory uncertainty following uniform distribution with

[0,1] and the even ones were considered as epistemic uncertainty which falls in the

interval [0,1]. The application example was also carried out using polynomial chaos

expansion of degree 2 (p = 2) and the initial response surface was created by using

Point-Collocation based NIPC with OSR of 1 (OSR0 = 1). A total number of 1000

(Ntotal = 1000) Latin Hypercube sampling were generated on the uncertain variable

design space. The mixed uncertainty results for the response at five probability levels:

2.5%, 20%, 50%, 80% and 97.5% were also analyzed. Additional samples (Nadd = 46)

was added after each iteration to update the response surface. A random sample size
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of 500 was used for the outer loop (epistemic) and 2,000 samples were utilized for the

inner loop (aleatory) to generate the CDF curves from the stochastic response surface.

Moreover, the results obtained by direct MCS for the original function that utilized

the same samples were used as reference to compare the results that were obtained

by adaptive sampling based Point-Collocation NIPC approach. For updated check

point approach, the convergence criterion value (ε) of total error reduction value was

specified as 0.12 for this case. Results obtained from these accuracy check procedures

are given in Table 3.8 and Table 3.9. The total function evaluations of both fixed

and update check point methods are given in Table 3.10. For updated check point

Table 3.8. Probability Level Error Results at fixed check points for 20 variable case

Probability OSR0 OSR1 OSR2 OSR3 OSR4 OSR5

Level = 1 = 1.2 = 1.4 = 1.6 = 1.8 = 2.0

2.5% 5.1127 0.4622 0.3486 0.3359 0.3886 0.2520
20% 2.2076 0.0409 0.1906 0.3403 0.4044 0.4269
50% 0.2713 0.5046 0.4197 0.2744 0.2526 0.2062
80% 0.6114 0.1295 0.1749 0.1965 0.1959 0.1935

97.5% 1.9134 0.1200 0.0567 0.1083 0.1498 0.1245
Ek
RT 5.9264 0.7079 0.6065 0.5952 0.6627 0.5842

Table 3.9. Probability Level Error Results at updated check points for 20 variable
case

Probability OSR0 OSR1 OSR2 OSR3 OSR4 OSR5

Level = 1 = 1.2 = 1.4 = 1.6 = 1.8 = 2.0

2.5% 5.1127 0.0422 0.2621 0.3129 0.1982 0.2179
20% 2.2076 0.3714 0.3745 0.3353 0.3037 0.3002
50% 0.2713 0.0965 0.1175 0.0339 0.0411 0.0106
80% 0.6114 0.0216 0.0313 0.1358 0.1188 0.1241

97.5% 1.9134 0.0475 0.0442 0.0362 0.0403 0.0016
Ek
RT 5.9264 0.3896 0.4751 0.4809 0.3859 0.3913
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Table 3.10. Number of function evaluations for 20 variable case

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 Total

Fixed NRS 231 46 46 46 46 46 461
Ncheck 5 0 0 0 0 0 5

Updated NRS 231 46 46 46 46 46 461
Ncheck 5 5 0 0 0 0 10

(k: iterations, NRS: number of function evaluations for response surface, Ncheck:
number of function evaluations for check point)

approach, the check points were updated only once for this 20 variables case which

indicated that the total number of function evaluations was 10. Figure 3.7 also gives

the iteration history of total probability level error Ek
RT for both fixed and updated

check point methods. For both approaches, the total probability level error started

converging at 2nd iteration and the convergence of error achieved at first iteration. The
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Figure 3.7. Iteration history for total probability level error for the “20 variable” Sobol
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( FCP: Fixed Check Point approach, UPC: Updated Check Point approach)
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comparison of the relative error of the output value at specified probability levels are

shown in Figure 3.8. It is obvious to see that both adaptive sampling approaches

with fixed check points and updated check points converged at 2nd iteration at

all specified probability levels which indicated that adaptive sampling based Point-
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Figure 3.8. The error of the response with respect to MCS at specified probability
levels for the “ 20 variable ” sobol function problem

( FCP: Fixed Check Point approach, UPC: Updated Check Point approach)
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Collocation approach requires much less function evaluations when compared with

the point-collocation with OSR of 2 and can provide the same level of accuracy.

Figure 3.9 gives the p-box plots for Point-Collocation with OSR of 1 and 2, adaptive

sampling based Point-Collocation at 2nd iteration and MCS approaches. As can be

seen form this figure, the p-box plots of adaptive sampling based Point-Collocation

at converged iteration and Point-Collocation with OSR of 2 are much closer to the

CDF obtained from exact function evaluations compared to OSR of 1, which indicate

that the adaptive sampling based Point-Collocation NIPC can improve the accuracy

of response surface approximation with less function evaluations.
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Figure 3.9. Comparison of P-box plot for NIPC and MCS methods for the 20 variable
case

3.3. SUMMARY OF THE RESULTS

In this section, NIPC based stochastic expansions approach was applied to model

problems under mixed uncertainties to demonstrate the application of Quadrature,
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Point-Collocation and adaptive sampling based Point-Collocation approach in mixed

uncertainty quantification. The UQ results for the first test problem demonstrated

that Quadrature-Based and Point-Collocation NIPC approach are efficient techniques

for highly accurate mixed uncertainty quantification using relatively low-order

polynomial chaos expansions. The Quadratue-based NIPC is more accurate than

the Point-Collocation with OSR of 1. The Quadratue-Based approach can be the

preferred method when analyzing problems with less number of uncertain variables.

On the other hand, the Point-Collocation method is more affordable for problems

with large number of uncertain variables and can give the desired accuracy level with

careful selection of the number of collocation points and the polynomial expansion

order. The results of model problem 2 show that adaptive sampling approach

significantly enhances the efficiency of the Point-Collocation method. Two numerical

test problems demonstrate that the adaptive approach can produce the same accuracy

level of the response surface obtained with OSR of 2 using significantly less numbers

of function evaluations.
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4. ROBUST DESIGN WITH STOCHASTIC EXPANSIONS

In this section, the details of robust design with stochastic expansions are

described. First, different robustness measures for a system depending on the input

uncertainty type are given following the discussion given by Du et al. [50]. The

utilization of stochastic expansions in robust optimization is presented in Section 4.2.

4.1. FORMULATION OF THE ROBUST OPTIMIZATION

In this section, different robustness measures for a system are described

depending on the input uncertainty type following the discussion given by Du

et al. [50]: (1) purely aleatory (inherent) input uncertainty, (2) purely epistemic

(model-form) input uncertainty, and (3) mixed (aleatory and epistemic) input

uncertainty:

4.1.1. Aleatory Uncertainties Only. If there are only aleatory

uncertainties as input variables, the response R can be described as a function of

~Sa = (Sa1 , Sa2 , ...SaNa ) which is the vector consisting of Na aleatory uncertainties

and can include both aleatory design variables ( ~Xa) and aleatory parameters (~Pa).

In this study, the aleatory uncertainty is imposed to the design variables through

the statistical distribution parameters that define them (e.g., mean and variance),

which vary in the design space. Figure 4.1 shows the propagation of input aleatory

uncertainties through the simulation code and the uncertainty of the response,

R = f(~Sa). For probabilistic output uncertainty, the mean and the variance of R

can be calculated by

µR = E(R) =

∫
Ω

R( ~Sa)ρ( ~Sa)d ~Sa (32)

σ2
R = E[(R− µR)2] =

∫
Ω

(R( ~Sa)− µR)2ρ( ~Sa)d ~Sa (33)
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Figure 4.1. Robustness estimation of response in the presence of aleatory uncertainties
only

where ρ( ~Sa) represents the joint probability function (PDF) of ~Sa and Ω stands for

the support region of ~Sa. For this case, the variance (or the standard deviation, σ)

of R is considered as the robustness measure.

4.1.2. Epistemic Uncertainties Only. If there are only epistemic

uncertainties as input, the response will be a function of epistemic uncertainty

vector ~Se = (Se1 , Se2 , ..., SeNe ), which may include epistemic design variables ( ~Xe)

and epistemic parameters (~Pe) in general. In this study, the epistemic uncertainty is

imposed to the design variables through the parameters that define them (e.g., average

and the limits of the interval), which vary in the design space. The relationship

between input epistemic uncertainties and response R = f(~Se) is shown in Figure 4.2.

The midpoint (R) and width (δR) of interval R are the most relevant statistics of

response R for this case, and given by

R =
1

2
(RL +RU) (34)

δR = RU −RL (35)
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Figure 4.2. Robustness estimation of response in the presence of epistemic
uncertainties only

respectively, where RU and RL represent the upper bound and lower bound of R. For

this case, the robustness of the response is assessed by δR. For robust optimization,

δR should be as low as possible, while R is equal to the desired value.

4.1.3. Mixed Uncertainties (Aleatory and Epistemic). When

both aleatory uncertainties ~Sa = (Sa1 , ..., SaNa ) and epistemic uncertainties ~Se =

(Se1 , Se2 , ..., SeNe ) exist as input variables, the response R becomes a function of

both types of uncertainty, R = f(~Sa, ~Se) as shown in Figure 4.3. For this case, the

uncertainty of R will be in the form of a family of probability distributions each due to

the aleatory input uncertainties at a fixed value of epistemic input uncertainty vector.

The intervals at each probability level will reflect the effect of epistemic uncertainties

on R. The average mean value of R will be calculated by,

µR =
1

2
(µmaxR + µminR ) (36)
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Figure 4.3. Robustness estimation of response in the presence of mixed uncertainties
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where µmaxR and µminR are the maximum and minimum means of response R,

respectively. The average value of the standard deviation of R (σR) will be obtained

by

σR =
1

2
(σmaxR + σminR ) (37)

where σmaxR and σminR are the maximum and minimum standard deviations of response

R, respectively. The difference between σmaxR and σminR will be computed by,

δσR = σmaxR − σminR (38)

In this study, the average standard deviation σR will be used as a robustness measure

for aleatory input uncertainties (~Sa), whereas we will utilize the standard deviation

difference δσR as the robustness measure for epistemic uncertainties (~Se). It should

be noted that one may also consider alternative measures for robustness to aleatory

input uncertainties in the presence of mixed uncertainties. One approach will be to

consider the maximum value of the standard deviation as a conservative measure,

which in turn can be used in the robust optimization formulation described below.

4.1.4. Robust Optimization Formulation Under Mixed Uncertainties.

To achieve a robust design in the presence of aleatory and epistemic uncertainties,

both a lower value of σR and a lower value of δσR are desired. To illustrate this,

let us consider two designs (A and B) with performances (i.e., responses) having two

different families of probability distributions represented by one blue and one red

curve in Figure 4.4. From these distributions, it is obvious that σR of design A is less

than that of design B, which indicates that design A is more robust than design B

when only randomness of the input is considered. Now comparing δσR of two designs,

it can be seen that design A has smaller difference between the distribution variances

indicating that it is also more robust to epistemic uncertainties. In the light of above

discussion and following the formulation of Du et al. [50], a composite (weighted sum)
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Design A 
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Design B 

 Figure 4.4. Robustness assessment of mixed uncertainty design

objective function for robust optimization under mixed uncertainties can be written

as

F ( ~Xd, ~Sa, ~Se) = w1µR + w2σR + w3δσR (39)

where ~Xd is the deterministic design variable vector, ~Sa =
{
~Xa, ~Pa

}
, and ~Se ={

~Xe, ~Pe

}
. The values of the weight factors w1, w2, and w3 should be chosen based

on the emphasis on the contribution of each term to the objective function by also

considering the order of magnitude of each term. While minimizing F, a feasible

design should also satisfy the inequality constraints gi( ~Xd, ~Sa, ~Se), (i = 1, 2, ..., Ng)

and the side constraints for aleatory design variables ~Xa (specified by the lower and

the upper limits of the mean of the each aleatory variable), epistemic design variables

~Xe (specified by the lower and the upper limits of the epistemic variable), and the

deterministic design variables ~Xd. Under mixed uncertainties, a conservative form

of the satisfaction of the inequality constraints can be written as µmaxgi + βσmaxgi ≤ 0

where µmaxgi
and σmaxgi

are the maximum of the mean and the maximum of the standard

deviation of the constraint function gi, respectively. Here βi is a positive constant,

which denotes the probability of constraint satisfaction.
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In summary, the overall formulation for robust design optimization under

aleatory and epistemic uncertainties can be written as:

Minimize w1µR + w2σR + w3δσR

S.t. µmaxgi
+ βiσ

max
gi
≤ 0, i = 1, 2, ..., Ng

XL
dj
≤ Xdj ≤ XU

dj
, j = 1, 2, ..., Nd

XL
ek
≤ Xek ≤ XU

ek
, k = 1, 2, ..., Ne

µLXam ≤ µXam ≤ µUXam ,m = 1, 2, ..., Na (40)

4.2. STOCHASTIC EXPANSIONS FOR ROBUST DESIGN

In this proposed methodology, the optimization is performed on the stochastic

response surfaces obtained with NIPC methods described above. While constructing

the stochastic response surfaces, a combined expansion approach will be utilized,

which will expand the polynomials as a function of uncertain design variables and

parameters (aleatory and epistemic) as well as the deterministic design variables. The

combined expansion approach and robust optimization with stochastic expansions will

be described in the following sections.

4.2.1. Formulation with Combined Expansions. With the introduction

of deterministic design variables ( ~Xd), design variables with epistemic uncertainty

( ~Xe), parameters with epistemic uncertainty (~Pe), design variables with aleatory

uncertainty ( ~Xa), and parameters with aleatory uncertainty (~Pa), a combined

stochastic expansions of R is obtained by ultilizing the Equation (15):

R(Xa(~ξxa), Pa(~ξpa), Xe(~ξxe), Pe(~ξpe), Xd(~ξd))

=
P∑
j=0

αjΨj(~ξxa, ~ξpa, ~ξxe, ~ξpe, ~ξd) (41)
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In this approach, multi-dimensional basis functions Ψj are derived from the

tensor product of one-dimensional optimum basis functions for the aleatory uncertain

parameters and design variables (~Pa and ~Xa) selected based on their input probability

distributions (e.g., Hermite polynomials for normal uncertain variables), the Legendre

polynomials for the epistemic uncertain parameters and design variables (~Pe and

~Xe), and the Legendre polynomials for the deterministic design variables ( ~Xd). The

selection of the Legendre polynomials as basis functions for the epistemic uncertainties

and the design variables are due to their bounded nature (~PL
e ≤ ~Pe ≤ ~PU

e , ~XL
e ≤

~Xe ≤ ~XU
e , and ~XL

d ≤ ~Xd ≤ ~XU
d ) and should not be interpreted as a probability

assignment to these variables. In Equation (41), ~ξxa and ~ξpa correspond to standard

aleatory random variable vectors associated with ~Xa and ~Pa, whereas ~ξxe, ~ξpe, and ~ξd

are the standard variables in interval [-1,1], which are mapped from the associated

intervals of ~Xe, ~Pe, and ~Xd via

~ξxe =

(
~Xe − (

~XL
e + ~XU

e

2
)

)
/

(
~XU
e − ~XL

e

2

)
(42)

~ξpe =

(
~Pe − (

~PL
e + ~PU

e

2
)

)
/

(
~PU
e − ~PL

e

2

)
(43)

~ξd =

(
~Xd − (

~XL
d + ~XU

d

2
)

)
/

(
~XU
d − ~XL

d

2

)
(44)

Using the combined expansion given in Equation (41), the mean and the variance

of the output response are obtained by evaluating the expectations given in

Equations (7) and (8) over the standard aleatory uncertain variables (including

standard aleatory design variables (~ξxa) and standard aleatory parameters (~ξpa)),

µR(~ξxe, ~ξpe, ~ξd) =
P∑
j=0

αj

〈
Ψj(~ξxa, ~ξpa, ~ξxe, ~ξpe, ~ξd)

〉
~ξxa,~ξpa

(45)
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σ2
R(~ξxe, ~ξpe, ~ξd) =

(
P∑
j=0

P∑
k=0

ajak 〈ΨjΨk〉~ξxa,~ξpa

)
− µ2

R (46)

which will become the functions of standard epistemic design variables (~ξxe), standard

epistemic parameters (~ξpe), and standard deterministic design variables (~ξd).

4.2.2. Robust Design Based On Stochastic Expansions. The flowchart

of robust optimization under mixed uncertainties based on combined stochastic

expansions is shown in Figure 4.5.
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Figure 4.5. Flow chart of the robust optimization process under mixed uncertainties
with combined stochastic expansions
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From Equations (45) and (46) given in the previous section, it can be clearly

seen that the mean and standard deviation of the response R (i.e., objective function

F or constraint gi) at a given design point is characterized by two bounds due

to epistemic uncertainties with specified interval bounds [ ~XL
e ,
~XU
e ] and [~PL

e ,
~PU
e ].

In other words, the mean and standard deviation of output (response) will also

be bounded by its maximum and minimum values. In this approach, µmaxR , µminR ,

σmaxR and σminR are calculated at a given design point through optimization using

the analytical expressions of response statistics obtained with Equation (45) and

Equation (46). Then, these values are used in robust optimization formulation given

by Equation (40), which is performed with Sequential Quadratic Programing (SQP)

method [71]. The whole procedure is repeated until the convergence is achieved.

It should be noted that when at least one design variable is uncertain (aleatory

or epistemic), the stochastic response surfaces for the objective function and the

constraints (if necessary) have to be re-constructed at each optimization iteration

since the uncertain design variables and the associated statistics are updated at

each iteration changing the bounds on which the response surfaces are created. On

the other hand, if all design variables are deterministic and the uncertainties are

associated with the problem parameters, only a single stochastic response surface

for the objective function and a single response surface for each constraint function

has to be constructed, since the bounds on the statistics of uncertain parameters

and the bounds on the design variables are fixed and do not vary during the entire

optimization process.
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5. APPLICATION OF ROBUST OPTIMIZATION: MODEL PROBLEMS

The robust optimization methodology described in the previous section is

demonstrated on two model problems: (1) the robust design of a slider-crank

mechanism and (2) robust design of a beam problem.

5.1. MODEL PROBLEM 1: ROBUST DESIGN OF A SLIDER-CRANK

This design problem is taken from Du et al. [50], who also used the same problem

to demonstrate their robust optimization approach under aleatory and epistemic

uncertainties. The design problem includes a slider-crank mechanism (Figure 5.1)

to be designed such that, for crank angles of θ = 10◦ and θ = 60◦, the slider distance

s should be 3.5 cm and 2.5 cm, respectively. The length of the crank is a, the length

of the connecting rod is b and the offset is e. Since different installation positions

of the slider are needed, the offset distance e is specified within a tolerance. The

robust optimization problem for two cases will be formulated and solved based on the

classification of a, b, and e.

 

s 

e 

a 

b 
  

  

Figure 5.1. Slider-crank mechanism used in model problem 1
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5.1.1. Case 1. This case corresponds to the original robust optimization

problem used by Du et al. [50]. In this case, a and b are considered as design variables

with aleatory uncertainty ( ~Xa = {a, b}) modeled with normal distributions following

N(µa, 1%µa) and N(µb, 1%µb), respectively. The offset distance e is treated as an

epistemic design variable ( ~Xe = {e}) with an average value (e) and specified tolerance

within [e − 5%e, e + 5%e]. Due to the uncertainties in a, b, and e, there will be an

error in the slider distance s at crank angles θ = 10◦ (Z(10◦)) and θ = 60◦ (Z(60◦))

given by

Z(10◦) = [acos10◦ +
√
b2 − (e+ asin10◦)2]− 3.5 (47)

Z(60◦) = [acos60◦ +
√
b2 − (e+ asin60◦)2]− 2.5 (48)

To ensure robustness of the design at these two crank angles under aleatory and

epistemic uncertainties of design variables, the average standard deviation σZ and

difference between the maximum and minimum standard deviation δσZ should be

minimized at these angles. The design is also subject to inequality constraints given

by

g1 = e− (b− a) ≤ 0 (49)

g2 = (e+ a)− bsin45◦ ≤ 0 (50)

Here the first constraint ensures the existence of the crank and the second constraint

imposes that the transmission angle is greater than 45◦. For robust design, the worst

case of these constraints should be satisfied with a chosen β value of 3. The error of

actual displacements at 10◦ and 60◦ at the mean values of aleatory design variables and

average value of epistemic design variables are also treated as two equality constraints.

Combining all these, the robust design formulation for the this problem is written as
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min
~Xa, ~Xe

w1σZ(10◦) + w2δσZ(10◦) + w3σZ(60◦) + w4δσZ(60◦)

s.t. µmaxgi
+ 3σmaxgi

≤ 0 i = 1, 2

h1( ~Xa, ~Xe) = µacos10◦ +
√
µ2
b − (e+ µasin10◦)2 − 3.5 (51)

h2( ~Xa, ~Xe) = µacos60◦ +
√
µ2
b − (e+ µasin60◦)2 − 2.5

0.1 ≤ µa ≤ 20 0.1 ≤ µb ≤ 20 0.1 ≤ e ≤ 20

The weight factors in the multi-objective function are used to normalize (scale)

each objective and correspond to the inverse of the mean value of the associated

term evaluated at the deterministic optimal solution reported in Du et al. [50] (i.e.,

w1 = 33.88, w2 = 4.48 × 103, w3 = 29.53, and w4 = 1.03 × 103). Following the

methodology described in the previous section, the robust optimization was performed

with stochastic response surfaces representing the objective function obtained with the

NIPC approach that have utilized a 2nd order polynomial expansion over aleatory and

epistemic design variables. Two methods, Point-Collocation and Quadrature-Based

approach were implemented to obtain the stochastic response surfaces for comparison.

The Point-Collocation NIPC method was evaluated with the OSR of 1 and 2 to

study the effect of OSR on the accuracy of the results. The number of original

function evaluations required to construct a single response surface was 10 for the

Point-Collocation with OSR of 1, 20 for OSR of 2, and 27 for the Quadrature-Based

method. For this case, two response surfaces were constructed to represent the multi-

objective function at each optimization iteration, corresponding to the error in the

slider distance at crank angles θ = 10◦ and θ = 60◦. No response surface was necessary

for the inequality constraints in this problem due to their linear nature, which were

evaluated analytically. Besides the stochastic response surface based approach, robust

optimization was also performed with double-loop MCS, which was the approach used

by Du et al. [50] to propagate the mixed uncertainties and obtain the maximum and
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minimum value of the response statistics used in the robust optimization formulation.

Following a convergence study for the double-loop MCS, the desired accuracy level was

obtained by using 200 samples in the outer loop for the interval (epistemic) variables

and 10000 samples in the inner loop for aleatory variables at each epistemic variable

value. This procedure was repeated at each optimization iteration to determine

the bounds of the statistics used in the multi-objective function, which required

a separate double-loop Monte-Carlo sampling for the error at each crank angle.

(i.e., 4 × 106 response evaluations per optimization iteration). Table 5.1 gives the

values of the optimum design variables obtained with different methods. In this

table, the total number of function evaluations to obtain the optimal solution with

Monte Carlo method is the product of the original function simulations per iteration

and the number of iterations required for convergence. All methods give the same

optimum design variable values validating the stochastic response surface based robust

optimization approach. Compared to MCS, total number of function evaluations

required to create the stochastic response surfaces are significantly less indicating the

computational efficiency of the approach. Although the Point-Collocation NIPC with

OSR = 1 is more efficient than the Point-Collocation with OSR = 2 and Quadrature-

Based NIPC in terms of the response evaluations for this problem, an OSR of 1.0 for

Point-Collocation NIPC may not be accurate in general for most stochastic problems.

The robustness measures that construct the multi-objective function (i.e., mean of the

standard deviation and the difference in standard deviation) at the optimum design

are reported on Table 5.2. These values are approximately the same for all methods

and their small values indicate the robustness of the design to both aleatory and

epistemic uncertainties considered in this problem.
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Table 5.1. Optimum design results of the slider-crank problem for Case 1

Method {µa, µb, e} # of
(cm) FE

MCS {1.32, 2.22, 0.10} 8× 107

Q-B {1.32, 2.22, 0.10} 1,080
P-C OSR=1 {1.32, 2.22, 0.10} 800
P-C OSR=2 {1.32, 2.22, 0.10} 1,600

(MCS: Monte-Carlo Sampling, Q-B: Quadrature-Based, P-C: Point-Collocation,
OSR: Over Sampling Ratio, FE: Function Evaluations)

Table 5.2. Robustness assessment of slider-crank problem for Case 1

Method { σZ(10◦) ,σZ(60◦)} {δσZ(10◦),δσZ(60◦)}
MCS { 2.60, 2.70} ×10−2 {0.81, 10.23 } ×10−5

Q-B { 2.58, 2.69 }×10−2 {0.81, 10.31 } ×10−5

P-C OSR=1 { 2.58, 2.69 }×10−2 { 0.87, 13.28 } ×10−5

P-C OSR=2 { 2.58, 2.69 }×10−2 { 0.81, 10.30 } ×10−5

(MCS: Monte-Carlo Sampling, Q-B: Quadrature-Based, P-C: Point-Collocation,
OSR: Over Sampling Ratio, FE: Function Evaluations)

5.1.2. Case 2. For this case, the original model problem presented in

Case 1 is modified to include only a single design variable, b (the length of the

connecting rod), which is considered as deterministic ( ~Xd = {b}). In addition, the

length of the crank a is now assumed as an aleatory parameter ((~Pa = {a})) modeled

with normal distribution using N(1.2, 0.012) and the offset distance e is an epistemic

parameter (~Pe = {e}) specified with a tolerance between [0.095, 0.105]. The purpose

of this modification on the model problem is to demonstrate the robust optimization

approach for a case when all design variables are deterministic and uncertainties

are associated with the problem parameters, which will require the construction of a

single stochastic response surface (for the objective function), since the bounds on the
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statistics of uncertain parameters and the bounds on the design variables parameters

are fixed and do not vary during the optimization process.

The objective function for this case is also modified such that the robustness

of the error is now desired only at a single crank angle, θ = 10◦ to ensure a feasible

solution for the modified problem. The same inequality constraints of case 1 also apply

to this problem. Since only one crank angle is considered, the equality constraint is

written for this angle. With the addition of the bound on the deterministic design

variable, the robust optimization statement for Case 2 is written as

min
~Xd

w1σZ(10◦) + w2δσZ(10◦)

s.t. µmaxgi
+ βσmaxgi

≤ 0 i = 1, 2

h(Xd, Pa, Pe) = µacos10◦ +
√
b2 − (e+ µasin10◦)2 − 3.5

2 ≤ b ≤ 20 (52)

The results for this case were again obtained with two robust optimization

approaches as in Case 1 (optimization with stochastic response surfaces and

optimization that utilize double-loop Monte Carlo). The same sample size reported

in Case 1 was used for performing the double-loop MCS, which were used as reference

to test the accuracy of the NIPC approaches. For this case, convergence of the NIPC

response surfaces with respect to the polynomial order were performed at the optimum

design point obtained with the double-loop Monte Carlo approach. Figure 5.2 shows

the average standard deviation (σ (10◦)) values obtained with Point-Collocation NIPC

with OSR = 1 and OSR = 2, and Quadrature-Based NIPC at expansion orders up to

5. As can be seen from Figure 5.2, the Point-Collocation NIPC with OSR = 1 does

not exhibit convergence whereas both the Quadrature-Based and Point-Collocation

NIPC with OSR = 2 seem to be accurate for all polynomial degrees. Figure 5.3 shows

the standard deviation difference (δσ (10◦)) values at the same expansion orders. From
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Figure 5.2. Convergence of NIPC results for σ (10◦) as a function of expansion order
for model problem 1, case 2
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Figure 5.3. Convergence of NIPC results for δσ (10◦) as a function of expansion order

for model problem 1, case 2

this figure, it can be seen that all NIPC methods seem to converge at a polynomial

order of 2. For this metric, the most accurate method is the Quadrature-Based

approach, followed by the Point-Collocation with OSR = 2. Although the number
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of function evaluations required for the construction of second-order NIPC expansion

with Quadrature-Based approach is greater than the number required by the Point-

Collocation NIPC (27 vs.20), a better accuracy level is achieved with the quadrature

approach.

Following the convergence study, the optimization was performed with Point-

Collocation NIPC (with OSR of 1 and 2 ) and Quadrature-Based approach using an

expansion order of 2.0. As can be seen from Table 5.3, all methods give the same

optimum value of the design variable. The computational cost of the optimization

with stochastic response surface is significantly lower than the Monte Carlo approach

especially considering the fact that only a single response surface is used for the

whole stochastic optimization process. Table 5.4 shows the robustness measures that

construct the multi-objective function (i.e., mean of the standard deviation and the

difference in standard deviation) at the optimum design. For this case, the robustness

measures obtained with each method is very small, however the results obtained with

the Quadrature-Based NIPC method is closer to those obtained with the Monte-Carlo

approach compared to the Point-Collocation NIPC results verifying the observations

made in the convergence study.

Table 5.3. Optimum design results of the slider-crank problem for Case 2

Method b FE Total number of
(cm) per RS FE

MCS 2.339 −− 3× 107

Q-B 2.339 27 27
P-C OSR=1 2.339 10 10
P-C OSR=2 2.339 20 20

(MCS: Monte-Carlo Sampling, Q-B: Quadrature-Based, P-C: Point-Collocation,
OSR: Over Sampling Ratio, FE: Function Evaluations)
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Table 5.4. Robustness assessment of slider-crank problem for Case 2

Method σZ(10◦) δσZ(10◦)

MCS 1.09× 10−2 8.40× 10−6

Q-B 1.16× 10−2 2.61× 10−6

P-C OSR=1 2.12× 10−2 1.16× 10−2

P-C OSR=2 1.39× 10−2 1.35× 10−3

(MCS: Monte-Carlo Sampling, Q-B: Quadrature-Based, P-C: Point-Collocation,
OSR: Over Sampling Ratio, FE: Function Evaluations)

5.2. MODEL PROBLEM 2: ROBUST DESIGN OF A BEAM

In this model problem, which includes the uncertainties in both design variables

and parameters, the robust design of a cantilever beam shown in Figure 5.4 is

considered with length l, width b, and height h. The beam is subjected to a torque T

and an external force F acting normal to horizontal axis of the beam at its free end.

The objective is to reduce the volume (V = lbh) of the beam while satisfying a stress

constraint given by

g =

√(
6FL

bh2

)2

+ 3

[
T

b2h
(3 +

1.8b

h
)

]2

− S 6 0 (53)
 

 

beam fig 

T 

b 

h 

F 

l 

Figure 5.4. Schematic of the beam design problem of model problem 2
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This equation represents the difference between the maximum equivalent stress of the

beam and the yield strength S, which has to be less than or equal to zero for a safe

design. In this design problem, the external force F is considered as a parameter

with epistemic uncertainty and the length of the beam l is treated as an epistemic

design variable (Table 5.5). The external torque T and yield strength S are treated

as parameters with aleatory uncertainty, whereas the width b and the height h of the

beam are modeled as aleatory design variables with statistics given in Table 5.6.

Table 5.5. Design variables (DV) and parameters (P) with epistemic uncertainty for
model problem 2

DV / P lower limit upper limit

l (DV) l − 0.1l l + 0.1l
F (P) 270 lb 330 lb

Table 5.6. Design variables (DV) and parameters (P) with aleatory uncertainty for
model problem 2

DV / P Mean Standard deviation Distribution

h (DV) µh 1%µh Normal
b (DV) µb 1%µb Normal
S (P) 100 kpsi 10 kpsi Normal
T (P) 450 lb− in 50 lb− in Normal

To ensure robustness of the design under epistemic and aleatory uncertainties,

the objective function, which is the weighted sum of the average mean of the volume

(µV ), the average standard deviation of the volume (σV ), and the standard deviation
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difference of the volume (δσV ) should be minimized. The inequality constraint given

by Equation (53) should be satisfied at the worst case with a specified β value of 3.

The robust design formulation for this problem is given as

min
d

w1µV + w2σV + w3δσV

s.t. µmaxg + βσmaxg ≤ 0

0.1 ≤ µh ≤ 0.8

0.1 ≤ µb ≤ 0.4

2 ≤ l ≤ 20 (54)

Considering the magnitude of µV , σV , and δσV , the weights in the multi-objective

function are chosen as w1 = 1, w2 = 100, and w3 = 500 to ensure equal contributions

to the objective function from each term (i.e., scaling them to approximately the same

order of magnitude). For this problem, the double-loop MCS results were again used

as reference to check the accuracy of the results obtained with two NIPC approaches.

After performing a convergence study based on the inner and outer loop samples,

the desired accuracy with the double-loop Monte Carlo sampling approach for the

robustness measures was obtained with 500 epistemic variable samples in the outer

loop and 105 aleatory variable samples in the inner loop. The convergence of the

performance and robustness measures used in the objective function (µ̄V , σ̄V , and

δσV ) obtained with Quadrature-Based and Point-Collocation NIPC with OSR = 1

and OSR = 2 were studied for different polynomial expansion orders at the optimum

design point obtained with the Monte Carlo approach (Figure 5.5). For the same

robustness measures, the error values relative to the Monte-Carlo results at each

polynomial order are shown in Figure 5.6. It is evident that the convergence is

rapid for µV and achieved by the first order expansion for all NIPC methods. The

convergence for σV and δσV are obtained at 2nd order expansion. From Figure 5.6, it



68

 

1 2 3 4 5
35.169

35.1695

35.17

35.1705

35.171

35.1715

35.172

35.1725

 

 

P-C,OSR1

P-C,OSR2

Q-B

MCS

x 10
2

(a) Average mean of beam volume, µ̄V

 

1 2 3 4 5
4.5

5

5.5

6

6.5

7

7.5

8
x 10

-3

 

 

P-C,OSR1

P-C,OSR2

Q-B

MCS

(b) Average standard deviation of beam volume,
σ̄V

 

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

 

 

P-C,OSR1

P-C,OSR2

Q-B

MCS

(c) Difference of standard deviation of beam
volume, δσV

Figure 5.5. Convergence of NIPC results as a function of expansion order for model
problem 2

can be seen that the Quadrature-Based NIPC is more accurate than Point-Collocation

based approach in terms of the error levels (especially for δσV ) observed at the

second-order expansion. Based on the convergence results, the robust optimization

was performed with stochastic response surfaces representing the objective function
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Figure 5.6. Error convergence of NIPC results as a function of expansion order for
model problem 2

and the inequality constraint obtained with the NIPC approach that have utilized

a 2nd order polynomial expansion over aleatory and epistemic design variables and

parameters. Two NIPC methods, Point-Collocation and Quadrature-Based approach

were implemented to obtain the stochastic response surfaces for comparison. The
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Point-Collocation method was performed with the OSR of 1 and 2. The number of

original function evaluations required to construct a single response surface was 28 for

the Point-Collocation Method withOSR = 1 and 56 withOSR = 2. The Quadrature-

Based method required 729 function evaluations. For this case, two response surfaces

were constructed at each optimization iteration, one for the objective function and

the other for the inequality constraint. The optimum design variable values obtained

with stochastic response surface based optimization again compare well with the

result of the approach utilizing the double-loop Monte-Carlo sampling (Table 5.7)

at a significantly reduced cost in terms of the total number of function evaluations,

which include both the objective and constraint functions. The Point-Collocation

NIPC is more efficient than the Quadrature-Based NIPC for this problem since the

number of expansion variables (n = 6) is greater than the number of variables in

the previous model problem (n = 3) and the computational cost of the Quadrature-

Based NIPC increase exponentially with the number of expansion variables for a

given polynomial degree. An alternative approach to reduce the computational

expense of the Quadrature-Based approach will be to implement sparse grid and

cubature techniques, which may improve the computational efficiency significantly

while retaining the accuracy of the original tensor product quadrature method.

Table 5.7. Optimum design results of the beam problem

Method {µh, µb, l} Total # of
(in) FE

MCS {0.548, 0.327, 2.0} 23.5× 108

Q-B {0.542, 0.323, 2.0} 96,228
P-C,OSR=1 {0.543, 0.324, 2.0} 3,696
P-C,OSR=2 {0.542, 0.323, 2.0} 6,720

(MCS: Monte-Carlo Sampling, Q-B: Quadrature-Based, P-C: Point-Collocation,
OSR: Over Sampling Ratio, FE: Function Evaluations)
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Table 5.8 presents the average mean, average standard deviation, and the standard

deviation difference of the beam volume at the optimum design point, which are

approximately the same for all the methods.

Table 5.8. Robustness assessment of the beam problem

Method µV σV δσV

MCS 3.55× 10−1 5.06× 10−3 1.01× 10−3

Q-B 3.50× 10−1 4.96× 10−3 9.91× 10−4

P-C,OSR=1 3.52× 10−1 4.97× 10−3 9.86× 10−4

P-C,OSR=2 3.50× 10−1 4.94× 10−3 9.88× 10−4

The convergence histories of these terms are given in Figure 5.7 for the

optimization process with stochastic expansions. As can be seen from this figure,

all three quantities are minimized simultaneously and converge to the same final

values, which validate the stochastic response surface based robust optimization

approach described. Another important observation made from the same figure is

that the Quadrature-Based approach seem to converge to the optimum robust design

in terms of all measures at less number of iterations and in a more stable manner

compared to the Point-Collocation based methods, especially the one with OSR = 1.

This emphasizes another aspect of the importance of the accuracy of the stochastic

response surfaces used in the robust optimization approach in terms of the number

of iterations to converge, which may influence the computational efficiency of overall

stochastic optimization process. The program listing for robust optimization under

mixed uncertainties (for beam model problem) is given in Appendix E.



72
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

10
-0.7

10
-0.5

10
-0.3

10
-0.1

 

 

P-C, OSR1

P-C, OSR2

Q-B

(a) Average mean of beam volume, µ̄V

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
10

-3

10
-2

10
-1

 

 

P-C, OSR1

P-C, OSR2

Q-B

 

(b) Average standard deviation of beam volume,
σ̄V

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
10

-4

10
-3

10
-2

 

 

P-C, OSR1

P-C, OSR2

Q-B

 

(c) Difference of standard deviation of beam volume,
δσV

Figure 5.7. The convergence history of average mean, average standard deviation, and
the standard deviation difference of the beam volume for the optimization
process with stochastic expansions

5.3. SUMMARY OF THE RESULTS

In this section, a computationally efficient and accurate approach for robust

optimization under mixed (aleatory and epistemic) uncertainties using stochastic

expansions that are based on NIPC method is introduced. This approach utilizes
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stochastic response surfaces obtained with NIPC methods to represent the objective

function and the constraints in the optimization formulation. The objective

function includes a weighted sum of the stochastic measures, which are minimized

simultaneously to ensure the robustness of the final design both to inherent and

epistemic uncertainties. When mixed uncertainties were propagated through a

simulation code, the output response is in the form of a family of distributions

described by the associated statistics (e.g., mean and the standard deviation) due

to the epistemic uncertainties. In the objective function, the average of the standard

deviation of the response was used as the robustness measure to aleatory uncertainties,

while the difference between the maximum and the minimum value of the standard

deviation is used as the robustness measure to epistemic uncertainties. In this study, a

combined stochastic expansion approach was utilized to obtain the response surfaces

as a function of uncertain design variables, uncertain parameters, and deterministic

design variables.

The optimization approach was demonstrated on two model problems: (1)

the robust design optimization of a slider-crank mechanism and (2) robust design

optimization of a beam. Both problems included aleatory and epistemic uncertainties

associated with design variables and problem parameters, which required the

consideration of robust optimization under mixed uncertainties. The stochastic

expansions were created with two different NIPC methods, Point-Collocation and

Quadrature-Based approach. The Point-Collocation approach was implemented with

the OSR of 1 and 2 to study the effect of this parameter on the accuracy and

efficiency of the optimization process. The optimization results were compared to

another robust optimization approach that utilized double-loop Monte Carlo sampling

for the propagation of mixed uncertainties. The final designs obtained with two

different optimization approaches agreed well in both model problems, however the

number of function evaluations required for the stochastic expansion based approach
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was much less than the number of function evaluations required in the Monte-Carlo

based approach. This demonstrated the potential and the computational efficiency

of the application of stochastic expansions to robust optimization problems with

mixed uncertainties, especially to optimization problems which require the evaluation

of computationally expensive high-fidelity deterministic simulations for improved

accuracy.

For each model problem, the convergence of the robustness measures (statistics)

used in the objective function with respect to the polynomial expansion order was

studied for different NIPC methods. For the model problems considered in this

section, a second order expansion was sufficient for convergence. The convergence

study also indicated that the Quadrature-Based NIPC was the most accurate

approach at a fixed expansion order. The accuracy of Point-Collocation NIPC with an

OSR of 2 was also in desired level but the number of response function evaluations

was less compared to the tensor product quadrature approach, especially for the

second model problem with relatively large number of uncertainty sources. Since

the number of response function evaluations for the tensor product quadrature grows

significantly with the number of uncertain variables, an alternative approach to reduce

the computational expense would be to implement sparse grid or cubature techniques

in this approach. It has also been observed that the accuracy of the stochastic response

surfaces used in robust optimization approach may reduce the number of iterations to

converge to the optimum, which may influence the computational efficiency of overall

stochastic optimization process. All these findings also suggest the importance of

conducting convergence studies at selected design points prior to the optimization

process to determine the most appropriate NIPC method and the expansion order in

terms of efficiency and accuracy for robust optimization under mixed uncertainties

with stochastic expansions.
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6. ROBUST OPTIMIZATION FOR AERODYNAMIC DESIGN

The objective of this section is to introduce a computationally efficient approach

for robust aerodynamic optimization under aleatory (inherent) and epistemic (model-

form) uncertainties using stochastic expansions that are based on Point-Collocation

NIPC method. The deterministic computational fluid dynamics (CFD) simulation

and airfoil shape model used in the optimization studies are described in Section

6.1. Then, the robust aerodynamic optimization formulations are given in Section

6.2. The utilization of stochastic expansions in robust optimization is described in

Section 6.3. The optimization results are presented in Section 6.4 and the sunmmary

of results are given in Section 6.5.

6.1. CFD AND AIRFOIL SHAPE MODEL

In this section, the elements of the CFD model are described including the

governing equations, numerical solution of the governing fluid flow equations (flow

solver) along with the airfoil shape model and meshing of the solution domain used

in our optimization studies.

6.1.1. Governing Equations. For all the optimization studies considered

in this study, the flow is assumed to be steady, two-dimensional, compressible, and

turbulent. The steady Reynolds-Averaged Navier-Stokes (RANS) equations are taken

as the governing fluid flow equations. The fluid medium is air, assumed to be an

ideal gas, with the laminar dynamic viscosity (µ) described by Sutherland’s formula

(see, e.g., Reference [72]). For modeling the turbulent kinematic eddy viscosity (νt),

the turbulence model by Spalart and Allmaras [73] is used. The Spalart-Allmaras

model, designed specifically for aerodynamic wall-bounded flows, is a one-equation

model that solves a single conservation partial differential equation for the turbulent
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viscosity. This conservation equation contains convective and diffusive transport

terms, as well as expressions for the production and dissipation of νt. The Spalart-

Allmaras model is economical and accurate for attached wall-bounded flows, and flows

with mild separation and recirculation. However, the model may not be accurate for

massively separated flows, free shear flows, and decaying turbulence. As described

later, the turbulent viscosity is multiplied by a factor k to introduce the epistemic

uncertainty in our robust optimization under mixed uncertainties problem. This

is implemented in the solution through a user defined function (UDF) which is

dynamically loaded with the flow solver (described below) for each CFD simulation.

The whole procedure is executed automatically through scripts. The program listing

for CFD simulation journal file setup is given in Appendix F.

6.1.2. Flow Solver. The flow solver is of implicit density-based formulation

and the fluxes are calculated by an upwind-biased second-order spatially accurate

Roe flux scheme. Asymptotic convergence to a steady state solution is obtained for

each case. Automatic solution steering is employed to gradually ramp up the Courant

number and accelerate convergence. Full multigrid initialization is used to get a good

starting point. Numerical fluid flow simulations are performed using the computer

code FLUENT [74].

The iterative convergence of each solution is examined by monitoring the overall

residual, which is the sum (over all the cells in the computational domain) of the L2

norm of all the governing equations solved in each cell. In addition to this, the lift

and drag forces are monitored for convergence. The solution convergence criterion

for the CFD runs is the one that occurs first of the following: a maximum residual of

10−6, or a maximum number of iterations of 1000.

6.1.3. Airfoil Geometry. In this work, the NACA airfoil shapes are used.

In particular, the NACA four-digit airfoil parameterization method are used, where

the airfoil shape is defined by three parameters: c (the maximum ordinate of the
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mean camberline as a fraction of chord), lc (the chordwise position of the maximum

ordinate as a fraction of the chord) and t (the thickness-to-chord ratio). The airfoils

are denoted by NACA mpxx, where xx represents (100× t), m is equal to (100× c),

and p is (10 × lc). The shapes are constructed using two polynomials, one for the

thickness distribution and the other for the mean camber line. The full details of the

NACA four-digit parameterization are given in Abbott and Doenhoff [75]. A typical

NACA 4-digit airfoil section is shown in Figure 6.1. The free-stream flow is at Mach

number M∞ and at an angle of attack αA relative to the chord axis.
 

 

M


 Chord  

 

thickness 

 

Mean camberline 
 

Figure 6.1. A typical NACA 4-digit airfoil section is shown

6.1.4. Grid Generation. The solution domain boundaries are placed at 25

chord lengths in front of the airfoil, 50 chord lengths behind it, and 25 chord lengths

above and below it. The computational meshes are of structured curvilinear body-

fitted C-topology with elements clustering around the airfoil and growing in size with

distance from the airfoil surface. The non-dimensional normal distance (y+) from the

wall to the first grid point is roughly one. The free-stream Mach number, angle of

attack, static pressure, and the turbulent viscosity ratio are prescribed at the farfield

boundary. An example computational grid is shown in Figure 6.2. The computer

code ICEM CFD [76] is used for the mesh generation.
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Figure 6.2. An example computational grid for the NACA0012 airfoil

6.2. ROBUST AIRFOIL OPTIMIZATION FORMULATION

In this section, robust aerodynamic optimization with stochastic expansions will

be demonstrated with two cases: (1) optimization under pure aleatory uncertainty

and (2) optimization under mixed (aleatory and epistemic) uncertainty. Below the

optimization formulation is given for each case.

6.2.1. Optimization under Pure Aleatory Uncertainty. Based on the

robustness measures discussed in Section 4, robust airfoil optimization under pure

aleatory uncertainty is formulated as:
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min µCd + σCd (55)

subject to µCL ≥ C∗L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14

where Cd = Cd( ~Xd, ~Pa) is the profile drag coefficient, which is a function of the

deterministic design variable vector ~Xd and aleatory input uncertainty vector ~Pa.

Similarly, the lift coefficient is CL = CL( ~Xd, ~Pa). In current optimization study, the

deterministic design variable vector ~Xd = {c, lc, t} is used to control airfoil shape.

Note that this vector can contain the control points as the design variables when

the airfoil shape is parametrized with different spline fitting techniques. The free-

stream Mach number (M∞) is treated as aleatory (inherent) input uncertainty (i.e.,

~Pa = {M∞}) and represented as a uniform random variable with bounds (0.7 ≤

M∞ ≤ 0.8). As can be seen from the Mach number range, the transonic flow regime

is considered, where the drag coefficient is very sensitive to the changes in the Mach

number due to the lambda shock originating on the top surface of the airfoil. This

minimization is subject to satisfying a desired profile lift coefficient (C∗L) value or

higher by the mean value of the lift coefficient adjusted by changing the angle of attack

for a given design variable and uncertain variable vector value. The optimization

also include geometric constraints for the profile shape, which bound the thickness,

maximum camber, and the maximum camber location (note that lc is taken as zero

when c = 0.0). The drag coefficient and other aerodynamics characteristics of the

airfoil for a given design variable vector and aleatory uncertain variable value are

obtained from the CFD simulations that solve steady, two-dimensional, Reynolds-

Averaged Navier-Stokes equations with Spalart-Allmaras turbulence model.
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6.2.2. Optimization under Mixed Uncertainty. Robust airfoil

optimization under mixed (aleatory and epistemic) uncertainties is formulated as:

min w1µCd + w2σCd + w3δσCd (56)

subject to µminCL
≥ C∗L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14

where the profile drag coefficient Cd( ~Xd, ~Pa, ~Pe) is now a function of the deterministic

design variable vector ~Xd, aleatory input uncertainty vector ~Pa, and the epistemic

input uncertainty vector ~Pe. Similarly, the lift coefficient, CL( ~Xd, ~Pa, ~Pe), is now a

function of the same variables. In the multi-objective function w1, w2, w3 are the

weights whose sum is equal to 1.0. In this study, equal weights are used, however one

can choose different weights depending on the emphasis on each term.

In this optimization problem, airfoil shape parameters are again considered

as deterministic design variable vector ( ~Xd = {c, lc, t} and the free-stream Mach

number as the aleatory (inherent) input uncertainty (~Pa = {M∞}) with bounds

(0.7 ≤ M∞ ≤ 0.8). The kinematic eddy viscosity (νt) obtained from the Spalart-

Allmaras turbulence model used in RANS simulations is modeled as an epistemic

(model-form) input uncertainty (i.e., ~Pe = {νt}) through the introduction of a factor

k as shown below:

νt = kνtSA (57)

where νtSA is the turbulent viscosity originally obtained with the Spalart-Allmaras

model. The range of this factor k is chosen between 0.5 and 2.0 to mimic the model-



81

form uncertainty due to the use of different turbulence models in RANS calculations.

Figure 6.3 shows the pressure distributions of NACA2412 airfoil at M∞ = 0.75,

 

Figure 6.3. The pressure distributions of NACA2412 at M∞=0.75, αA = 1◦

αA = 1◦ with different k values. From this figure, it can be seen that the “ k ”

factor thus the turbulence model has considerable effect on the pressure distribution,

especially on the shock location. This optimization is again subject to satisfying

a desired profile lift coefficient (C∗L) value or higher by the minimum of the mean

value of the lift coefficient adjusted by changing the angle of attack for a given design

variable and uncertain variable vector value. The optimization also includes geometric

constraints for the profile shape, which bound the thickness, maximum camber, and

the maximum camber location.

6.3. STOCHASTIC RESPONSE FOR ROBUST OPTIMIZATION

In this robust optimization methodology, a stochastic response surface obtained

with Point-Collocation NIPC method is adopted for the propagation of aleatory and
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epistemic uncertainties due to its computational efficiency and accuracy as shown

in the previous studies [77, 30]. While constructing the stochastic expansions, a

combined expansion approach will be utilized, which will expand the polynomials as a

function of both uncertain variables (aleatory and epistemic) and deterministic design

variables. The description of the Point-Collocation NIPC and combined expansion

approach were given in Section 2. The utilization of the stochastic response surface

in robust optimization was mainly described in this section.

Since the angle of attack has to be adjusted to satisfy the lift coefficient

constraint in both optimization problems, three separate stochastic response surfaces

are created with the Point-Collocation NIPC at three angles of attack (αA0 = 0.0◦,

αA1 = 1.0◦, and αA2 = 2.0◦). Then Lagrange interpolation is applied to create a

composite response surface using these three response surfaces, which is continuous

and quadratic in αA between αA = 0.0◦ and αA = 2.0◦ for all design variables, aleatory

uncertain variables (i.e., M∞), and the epistemic uncertain variables (i.e., k). This

composite response surface R̂ (i.e., Cd or CL), which is now a function of αA, Pa(~ξpa),

Pe(~ξse), Xd(~ξd) can be written as:

R̂(αA, Pa(~ξpa), Pe(~ξpe), Xd(~ξd)) ∼=
nαA∑
k=0

R(Pa(~ξpa), Pe(~ξpe), Xd(~ξd))αAkLnαA ,k(αA) (58)

Based on the equation above, Equations (45) and (46) can be slightly modified

to calculate the mean and variance from R̂:

µR̂ = µR̂(αA, ~ξpe, ~ξd) =

nαA∑
k=0

P∑
j=0

αj (αAk)LnαA ,k(αA)
〈

Ψj(~ξpa, ~ξpe, ~ξd)
〉
~ξpa

(59)

σ2
R̂

=

{nαA∑
k=0

nαA∑
l=0

P∑
i=0

P∑
j=0

LnαA,k (αA)Lnα,l (αA)αi (αAk)αj (αAl) 〈ΨiΨj〉~ξpa

}
− µ2

R̂

(60)
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where αA is the angle of attack, nαA = 2 is the degree of interpolation in αA, and

Lnα,k is the Lagrange polynomial at αAk given by

LnαA,k(αA) =

nαA∏
i=0,i 6=k

(
αA − αAi
αAk − αAi

)
. (61)

Note that the introduction of αA to the problem with the above approach indicate

that it is in fact considered as a deterministic design variable within R̂. An alternative

approach to involve αA in the response surface would be to include it among the other

deterministic design variables during the original construction.

Above formulations and previous discussion in Section 4.1 clearly show that the

mean and the standard deviation of response variables at a design point and angle of

attack are characterized by two bounds due to epistemic uncertainties with specified

interval bounds [~PL
e , ~P

U
e ]. In other words, the mean and standard deviation of

response R (i.e., Cd, or CL) at a design point and angle of attack will also be bounded

by its maximum and minimum values. Once we create the composite stochastic

response surface (Equation (58)), we can use Equations (59) and (60) to calculate

the mean and the standard deviation and use any standard optimization technique

to determine µmaxcd
, µmincd

, σmaxcd
and σmincd

at a given design point and angle of attack.

Then, these values are used in robust optimization formulations given in Section 6.2.

With the combined expansion approach, it will be straightforward to calculate

the total number of CFD simulations (NCFD) required to create the composite

response surface R̂ that will be used in the entire optimization process:

NCFD = OSR×Nt × (nαA + 1) (62)

where, Nt is calculated from Equation (3), and nαA is the degree of interpolation in

αA used in the creation of composite response surface. It is important to note that
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NCFD will be the computational cost of the described optimization approach since

once the response surface is created, the numerical evaluations at each optimization

step will be computationally cheap due to the polynomial nature of the stochastic

surrogate. It should be noted that for a stochastic optimization problem with few

number of design variables (i.e., Nd ≤ 3), the combined expansion approach described

above is going to be computationally very efficient since a single response surface

(a surrogate) is created which is a function of the design, aleatory and epistemic

uncertain variables. The optimization can be performed using this single response

surface. On the other hand, in optimization problems with large number of design

variables, one can choose an alternative approach which is based on the expansion

of polynomial chaos surface only on the uncertain (aleatory and epistemic) variables.

With this approach a separate stochastic response surface should be created at each

design point, which will increase the computational cost, however the accuracy of the

response surface approximation will increase due to the reduction in the number of

expansion variables.

6.4. RESULTS AND DISCUSSION

The robust airfoil optimization approach with NIPC stochastic response surface

has been demonstrated on two cases: (1) optimization under pure aleatory input

uncertainty and (2) optimization under mixed (aleatory and epistemic) uncertainty.

The results for each case are presented below.

6.4.1. Optimization Results for the Pure Aleatory Uncertainty Case.

As described with the optimization formulation in Section 6.2.1, the free stream

Mach number is the only uncertain variable for this case and modeled with a

uniform probability distribution between M∞ = 0.7 and M∞ = 0.8. The objective

(Equation (55)) is to reduce the mean and the standard deviation of the drag

coefficient simultaneously to obtain an airfoil shape with minimum drag that is least
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sensitive to the change in Mach number in the specified range. Besides the side

(geometric) constraints on the design variables, the minimization is performed such

that the mean lift coefficient obtained with the optimum design is greater than or

equal to 0.5. The stochastic response surfaces for the drag and the lift coefficients

were created with Point-Collocation NIPC method using a quadratic polynomial

expansion with OSR of 2 for 4 variables (3 deterministic design variables and 1

uncertain variable). The total number of CFD evaluations required for this case

was NCFD = 90 as can be calculated using Equation (62) along with Equation (3).

It should be noted that this number is considerably low compared to the cost of

alternative robust optimization formulations, which utilize Monte Carlo simulations

for the calculation of the statistics. After the stochastic response surfaces for the

drag and lift coefficients are created, the robust optimization is performed using the

approach described in the previous section. The robust optimization was performed

starting from two different initial airfoil geometries (NACA2412 and NACA0012). As

can be seen from Table 6.1, both optimization runs converged to the same optimum

airfoil shape with t = 0.08, c = 0.0195, and lc = 0.7 (Figure 6.4). The optimum airfoil

has the minimum thickness allowable and the camber is located as aft as possible to

reduce the drag while satisfying the required CL, which are typical characteristics

of airfoils designed to operate at transonic speeds (e.g., supercritical airfoils). The

camber value is the optimum to produce the required lift at an optimum angle of

attack.

Table 6.1. Optimization results for the pure aleatory uncertainty case

Initial Airfoil Optimized airfoil

c lc t c lc t
NACA2412 0.020 0.40 0.120 0.0195 0.70 0.080
NACA0012 0.0 0.0 0.120 0.0195 0.70 0.080
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The pressure distributions of NACA2412 and optimum airfoil at M∞=0.75 are

shown in Figure 6.5 from which can be seen, at M∞ = 0.75, NACA2412 airfoil has a

shock wave on the top surface, whereas no shock wave exits on the optimized airfoil,

due to the increase in minimum suction pressure (i.e., the decrease of the maximum

value of −Cp) and the reduction in the maximum velocity value on the top surface

giving a more flat pressure distribution. The aft camber compensates the lift that is

lost in the suction region by loading the airfoil in the aft region. The optimization

history of the mean and the standard deviation of the drag coefficient is given in

Figure 6.6, which shows that both quantities are minimized simultaneously regardless

of the initial airfoil chosen, which confirms the robust optimization approach used.
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Figure 6.5. The pressure distributions of NACA2412 and optimum airfoil atM∞=0.75
for the pure aleatory uncertainty case
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This result is further verified by Figure 6.7, which gives drag vs Mach number

over the uncertain Mach number range for the NACA2412 and optimized airfoil at a

lift coefficient value of 0.5. As can be seen from this plot, the drag-rise of NACA2412

is significant, whereas the optimum airfoil maintains a low drag coefficient value over

the uncertain Mach number range with no significant variation. The drag coefficient

and L/D values for both airfoils are reported in Table 6.2, which quantifies the better

aerodynamic performance of the optimum airfoil compared to NACA2412.
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Figure 6.6. The optimization history of the mean and the standard deviation of the
drag coefficient for the pure aleatory uncertainty case started from two
initial airfoil shapes (NACA2412 and NACA0012)
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Figure 6.7. The drag coefficients of NACA2412 and optimized airfoil at C∗L=0.5

The drag characteristics of both airfoils can also be explained by examining the

Mach number contours given in Figure 6.8. As the Mach number increases, the shock

wave on the top surface of NACA2412 airfoil gets stronger and eventually induces the

boundary layer separation at a free-stream Mach number of 0.8 increasing the drag

significantly. On the other hand, the delayed shock formation on the top surface of

the optimum airfoil shape prevents a significant drag rise over the uncertain Mach

number range considered. The pressure distributions of NACA2412 and optimum

airfoil at M∞= 0.7, 0.75, 0.8 are shown in Figure 6.9. It can be seen that at M∞=

0.7, 0.75, NACA2412 airfoil has a shock wave on the top surface, whereas no shock

Table 6.2. Drag coefficient and L/D values for NACA2412 and optimum airfoil at
various Mach numbers for pure aleatory uncertainty case

Cd L/D
M NACA2412 Optimized NACA2412 Optimized

0.7 0.0110 0.0086 45.45 58.14
0.75 0.0242 0.0088 20.66 56.82
0.8 0.0727 0.0126 6.88 39.68
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(a) M∞ = 0.7, NACA2412 (b) M∞ = 0.7, Optimum airfoil

(c) M∞ = 0.75, NACA2412 (d) M∞ = 0.75, Optimum airfoil

(e) M∞ = 0.8, NACA2412 (f) M∞ = 0.8, Optimum airfoil

Figure 6.8. Mach number contours for the NACA2412 and optimum airfoil shape for
the pure aleatory uncertainty case
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wave exits on the optimized airfoil. At M∞ = 0.8, the shock wave on the optimized

airfoil is much weaker compared to the shock on the NACA2412 airfoil.
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Figure 6.9. The pressure distributions of NACA2412 and optimum airfoil at M∞=0.7,
0.75, 0.8 for the pure aleatory uncertainty case

6.4.2. Optimization Results for the Mixed Uncertainty Case. As

described with the optimization formulation in Section 6.2.2, the free stream Mach

number is taken as the aleatory uncertain variable for this case and modeled with

a uniform probability distribution between M∞ = 0.7 and M∞ = 0.8, the same
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as the pure aleatory case. The k factor which is multiplied with the turbulent

eddy-viscosity coefficient of the Spalart-Allmaras turbulence model is the epistemic

uncertain variable defined with the interval [0.5, 2.0]. The objective of the robust

optimization under mixed uncertainties (Equation (56)) is to reduce the average of the

mean (µ̄Cd), the average of the standard deviation (σ̄Cd) and the standard deviation

difference of the drag coefficient (δσCd) simultaneously to obtain an airfoil shape with

minimum drag that is least sensitive to the change in Mach number and the k factor

(i.e., the turbulence model) in the range specified for each variable. Besides the side

(geometric) constraints on the design variables, the minimization is performed such

that the minimum of the mean lift coefficient obtained with the optimum design

is greater than or equal to 0.5. The stochastic response surfaces for the drag and

the lift coefficients were again created with Point-Collocation NIPC method using a

quadratic polynomial expansion with an OSR of 2 for 5 variables (3 deterministic

design variables, 1 aleatory uncertain variable, and 1 epistemic uncertain variable).

The total number of CFD evaluations required for this case was NCFD = 126 as

can be calculated using Equation (62) along with Equation (3). Considering the fact

that the propagation of an aleatory and epistemic uncertain variable are considered

simultaneously, this number signifies the computational efficiency of the proposed

optimization approach. After the stochastic response surfaces for the drag and lift

coefficients are created, the robust optimization is performed using the approach

described in the previous section.

As the result of the optimization under mixed uncertainties, the same optimum

airfoil shape of the pure aleatory uncertainty case is obtained (Table 6.3). This

optimum has been verified by starting the optimization from two different initial

profile shapes (NACA2412 and NACA0012). This result is somehow expected since

the flow field around the optimum airfoil shape does not include complex flow features

such the strong shocks and shock induced separation over the range of Mach numbers
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Table 6.3. Optimization results for the mixed uncertainty case

Initial Airfoil Optimized airfoil

c lc t c lc t
NACA2412 0.020 0.400 0.120 0.019 0.700 0.080
NACA0012 0 0 0.120 0.019 0.700 0.080

considered to make the effect of the turbulence model (i.e., the k factor) significant on

different aerodynamic quantities including the drag coefficient. Figure 6.10 gives the

convergence history of average mean, average standard deviation, and the standard

deviation difference of the drag coefficient for the mixed uncertainty case started from

two initial airfoil shapes (NACA2412 and NACA0012). Regardless of the initial airfoil

geometry used, all three quantities are reduced compared to their starting values and

converge to the same final values. On the other hand, the reduction in the average

mean and the average standard deviation of the drag coefficient is larger compared

to the reduction in the standard deviation difference, which has already a small value

for the initial airfoil shapes considered. This observation may imply that for this

optimization problem, the contribution of the epistemic uncertainty (i.e., k factor)

is not as much as the contribution of the aleatory uncertainty (Mach number) to

the total uncertainty in the drag coefficient. Since the optimization is performed at

a relatively low lift coefficient value (C∗L = 0.5), one may also expect to see more

contribution of the epistemic uncertainty at higher lift coefficients. Figure 6.11,

which shows a carpet plot of the drag coefficient over the range of M∞ and k factor

considered also verify that the aerodynamic characteristics of the optimum airfoil

is better compared to the characteristics of NACA2412 (one of the airfoils used to

initiate the optimization) in the case of mixed uncertainties and no significant drag-

rise (i.e., variation) is observed with the optimum geometry. This plot also shows that

the uncertainty in the Mach number is the main contributor to the overall uncertainty
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Figure 6.10. The optimization history of average mean, average standard deviation,
and the standard deviation difference of the drag coefficient for the mixed
uncertainty case started from two initial airfoil shapes (NACA2412 and
NACA0012)

and variation in the drag coefficient, which can be quantified by the results tabulated

in Table 6.4.

6.5. SUMMARY OF THE RESULTS

The objective of this section was to introduce an efficient approach for robust

aerodynamic optimization under aleatory (inherent) and epistemic (model-form)
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Figure 6.11. Drag coefficient values of the optimized airfoil and NACA2412
(for M∞=[0.7,0.75 ,0.8], and k=[0.5,1.25,2.0] at C∗L=0.5 )

Table 6.4. Drag coefficient and L/D values for NACA2412 and optimum airfoil at
various Mach numbers and k values for the mixed uncertainty case

Cd L/D
K M∞ NACA2412 Optimized NACA2412 Optimized

K = 0.5 0.7 0.0171 0.0131 29.22 38.17
0.75 0.0401 0.0136 12.48 36.76
0.8 0.0819 0.0189 6.11 26.48

K = 1.25 0.7 0.0233 0.0184 21.46 27.21
0.75 0.0427 0.0190 11.71 26.37
0.8 0.0798 0.0248 6.26 20.16

K = 2.0 0.7 0.0277 0.0201 18.07 24.88
0.75 0.0474 0.0224 10.55 22.32
0.8 0.0817 0.0286 6.12 17.51

uncertainties using stochastic expansions based on Point-Collocation Non-Intrusive

Polynomial Chaos method. The stochastic surfaces were used as surrogates in the

optimization process. To create the surrogates, a combined NIPC expansion approach

was utilized, which is a function of both the design and the uncertain variables. In this
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study, two stochastic optimization formulations were given: (1) optimization under

pure aleatory uncertainty and (2) optimization under mixed (aleatory and epistemic)

uncertainty. The formulations were demonstrated for the aerodynamic optimization

of NACA 4-digits airfoils at transonic flow. The deterministic CFD simulations were

performed with the Fluent Code to solve steady, 2-D, compressible, turbulent RANS

equations.

For the pure aleatory uncertainty case, the objective was to reduce the mean

and the standard deviation of the drag coefficient simultaneously to obtain an airfoil

shape with minimum drag that is least sensitive to the change in Mach number in

the specified range (0.7 ≤ M∞ ≤ 0.8). Besides the side (geometric) constraints on

the design variables, the minimization is performed such that the mean lift coefficient

obtained with the optimum design is greater than or equal to 0.5. For the mixed

uncertainty case, in addition to the aleatory uncertainty in the Mach number, a k

factor which is multiplied with the turbulent eddy-viscosity coefficient of the Spalart-

Allmaras turbulence model is introduced to the problem as the epistemic uncertain

variable defined with the interval [0.5, 2.0]. The objective of the robust optimization

under mixed uncertainties was to reduce the average of the mean, the average of

the standard deviation, and the standard deviation difference of the drag coefficient

simultaneously to obtain an airfoil shape with minimum drag that is least sensitive

to the change in Mach number and the k factor (i.e., the turbulence model) in the

range specified for each variable. Besides the side (geometric) constraints on the

design variables, the minimization is performed such that the minimum of the mean

lift coefficient obtained with the optimum design is greater than or equal to 0.5.

The results of both optimization cases confirmed the effectiveness of the robust

optimization approach with stochastic expansions by giving the optimum airfoil shape

that has the minimum drag over the range of aleatory and epistemic uncertainties.

The optimization under pure aleatory uncertainty case required 90 deterministic CFD
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evaluations, whereas the optimization under mixed uncertainty case required 126 CFD

evaluations to create the stochastic response surfaces, which show the computational

efficiency of the proposed stochastic optimization approach.

Although the robust aerodynamic optimization approach described in this

section was demonstrated on the NACA 4-digit airfoils, the methodology described

is general in the sense that it can be applied to aerodynamic optimization problems

that utilize more sophisticated shape parameterization techniques. Depending on

the number of design variables a combined stochastic expansion approach or an

alternative approach which is based on the expansion of polynomial chaos surface

only on the uncertain (aleatory and epistemic) variables can be used.
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7. CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS

The main objective of this study was to apply a computationally efficient

uncertainty quantification approach, NIPC based stochastic expansions, to robust

aerospace analysis and design under mixed (aleatory and epistemic) uncertainties and

demonstrate this technique on model problems and robust aerodynamic optimization.

Before the implementation of the stochastic expansions to robust optimization,

the uncertainty quantification approach was applied to a model problem to

demonstrate that the NIPC method is computationally more efficient than traditional

Monte Carlo methods for moderate number of uncertain variables and can give highly

accurate estimation of various metrics used in robust design optimization under

mixed uncertainties. The proposed optimization approach utilized stochastic response

surface obtained with NIPC methods to approximate the objective function and the

constraints in the optimization formulation. The objective function includes the

stochastic measures, which are minimized simultaneously to ensure the robustness

of the final design to both aleatory and epistemic uncertainties. The optimization

approach was first demonstrated on two model problems with mixed uncertainties:

(1) the robust design optimization of a crank beam mechanism and (2) robust

design optimization of a beam. The stochastic expansions are created with two

different NIPC methods, Quadrature-Based and Point-Collocation Based NIPC. The

optimization results are compared to the results of another robust optimization

technique that utilized double loop Monte Carlo sampling for propagation mixed

uncertainties. The optimization results obtained with two different optimization

approaches agreed well in both model problems, however the number of function

evaluations was much less than the number of required by Monte Carlo based
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approach, indicating the computational efficiency of the optimization technique

introduced.

For robust aerodynamic optimization under aleatory (Mach number) and

epistemic (turbulence model) uncertainties, the NIPC response surface was also used

as surrogates in the optimization process. To create the surrogates, a combined

Point-Collocation NIPC approach was utilized, which is a function of both the

design and uncertain variables. Two stochastic optimization formulations were

studied: (1) optimization under pure aleatory uncertainty and (2) optimization under

mixed (aleatory and epistemic) uncertainty. The formulations were demonstrated

for the drag minimization of NACA 4-digit airfoils described with three geometric

design variables over the range of uncertainties at transonic flow conditions. The

deterministic CFD simulations were performed to solve steady, 2-D, compressible,

turbulent RANS equations. The pure aleatory uncertainty case included the Mach

number as the uncertain variable. For the mixed uncertainty case, a k factor

which is multiplied with the turbulent eddy-viscosity coefficient is introduced to

the problem as the epistemic uncertain variable. The results of both optimization

cases confirmed the effectiveness of the robust optimization approach with stochastic

expansions by giving the optimum airfoil shape that has the minimum drag over the

range of aleatory and epistemic uncertainties. The optimization under pure aleatory

uncertainty case required 90 deterministic CFD evaluations, whereas the optimization

under mixed uncertainty case required 126 CFD evaluations to create the stochastic

response surfaces, which show the computational efficiency of the proposed stochastic

optimization approach. The stochastic optimization methodology described in this

study is general in the sense that it can be applied to aerodynamic optimization

problems that utilize different shape parameterization techniques.

To further improve computational efficiency, an adaptive sampling approach

was introduced to refine Point-Collocation NIPC by using an over sampling ratio
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between 1 and 2 based on the convergence check of total response surface error.

Two different schemes (fixed check point and updated check point) were considered

for the calculation of the check points where the response surface error values

were calculated for the convergence check. The proposed adaptive sampling based

Point-Collocation NIPC was implemented for mixed (both aleatory and epistemic)

uncertainty quantification. Second-Order Probability method was used with outer

sampling for epistemic variables and inner sampling for aleatory variables (for a

fixed value of epistemic uncertain variable) both using the stochastic response surface

approximation to generate the CDF curves of the output. The adaptive sampling

approach was demonstrated on two model problems. The results were compared

to the results that utilized double-loop Monte Carlo sampling for the propagation

mixed uncertainties for the validation of the methodology and demonstration of its

computational efficiency.

7.2. FUTURE WORK

There may be some potential topics that can be conducted as future work in the

area of uncertainty quantification and robust design for aerospace applications. First,

for mixed uncertainty quantification, one can consider alternative, more sophisticated

approaches such as the Dempster-Shafer evidence theory and utilize Non-Intrusive

Polynomials Chaos to represent the response in those approaches for computational

efficiency. Another potential study may involve the development of a methodology

which will implement global sensitivity analysis based on Sobol indices that can

be calculated from NIPC expansions to reduce the number of uncertain variables

by ranking the contributions of each variable to the overall output response and

ignoring some uncertain variables which have least contributions. Once the number

of input variables is reduced, then the robust design on the reduced problem will be

computationally more efficient.
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For our current study, the adaptive sampling based Point-Collocation NIPC was

used just for mixed uncertainty quantification. The implementation of this approach

in robust aerospace design will be one of our future works.

The refinement of the UQ/design methodology introduced here for application

to the robust design of multi-disciplinary aerospace systems under mixed uncertainties

should be also investigated. The integration of multi-fidelity and robust optimization

methodologies should be studied for efficient and accurate stochastic design of

aerospace systems.

Finally, more general shape parameterization approaches for airfoils and wings

should be considered in the future robust aerodynamic shape optimization studies.



APPENDIX A

MATLAB SOURCE CODE: POLYNOMIAL CHAOS EXPANSION
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%============================================================
% t h i s program i s to obta in the combination polynomial
% wri t tend by y i zhang
% modi f i ed 03/18/2010
%=============================================================

func t i on po=polynomial combine (X, Dis Ord , index )

dimension=s i z e ( Dis Ord , 1 ) ;

index==2; %tota l−t enso r

P tota l expand=Dis Ord ( 1 , 2 ) ;

% c a l c u l a t e the # terms o f polynoimal expansion

Nt=f a c t o r i a l ( P tota l expand+dimension )/ ( f a c t o r i a l ( P tota l expand ) ∗ . . .
f a c t o r i a l ( dimension ) ) ;

% s e l e c t b a s i s polynomial from the f i s t v a r i a b l e save them in c e l l−matrix

w=1;

f o r i =1: dimension
V{ i}=po lynomia l ba s i s (X( i ) , Dis Ord , i ) ;

end

% obta in the combination o f the polynomial b a s i s

f o r p=0: Dis Ord (1 , 2 )

% obta in the combination o f the polynomial b a s i s

[M, Nt]= bas ic expand matr ix main ( s i z e ( Dis Ord , 1 ) , Dis Ord ( 1 , 2 ) ) ;

[ row , column]= s i z e (M) ;

po=ones (1 , Nt ) ;

i Nt =1;

f o r i =1:row

f o r j =1:column

po ( i Nt )=po ( i Nt )∗V{ j }(M( i , j )+1) ;

end

i Nt=i Nt +1;

end

end



APPENDIX B

MATLAB SOURCE CODE: UNCERTAINTY QUANTIFICATION WITH
QUADRATURE-BASED NIPC



104

%========================================================================
% This program i s used to obta in the s t o c h a s t i c expansion c o e f f i c i e n t s by
% us ing Quadratured based NIPC approach
% wr i t t en by Yi Zhang
% Modif ied on 11−10−2009
%========================================================================

func t i on [ coe , Nt , Dis Ord ]=coe R (Nd,Nu, Na , dis Xr , k , index , expand index , X 0 )

Ne=Nu−Na ;

i f expand index==2 %%combined expansion

dis X expand=dis Xr ( 1 : Na+Nd+Ne ) ;

e l s e i f expand index==1%uncer ta in expansion

dis X expand=dis Xr ( 1 : Na ) ;

end

%%%determin expas ion in fo rmat ion%%%

dim var i=length ( dis X expand ) ;

f o r i =1: d im var i

Dis Ord ( i , : ) = [ dis X expand ( i ) , P order ] ;

end

N tota l=s i z e ( Dis Ord , 1 ) ;

[ Root int , Weight int ]= Root legend ( Dis Ord ) ;

[XR]= R r e s p o n d i n i t i a l p o i n t s ( X 0 , Root int , Dis Ord ,Nu,Nd, Na ) ;

%%%c a l c u l a t e the expansion sample po in t s

i f expand index==1

N expand=Nd+Nu;

e l s e i f expand index==2

N expand=Nu;

end

i f index==1 % t a i l o r e d t e n s o r

Nt=1;
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f o r i =1:N expand

Nt=Nt∗( Dis Ord ( i , 2 )+1) ;

end

e l s e i f index==2 %tota l−t enso r

P tota l expand=Dis Ord ( 1 , 2 ) ;

%c a l c u l a t e the terms o f polynoimal expansion

Nt=f a c t o r i a l ( P tota l expand+N expand )/ ( f a c t o r i a l ( P tota l expand ) . . .
∗ f a c t o r i a l ( N expand ) ) ;

end

[ number gauss ian point , number expand var ible ]= s i z e ( Root int ) ;

%s t a r t Gauss−Quadrature i n t e r g r a t i o n

num fun=2;

f o r k=1:num fun

p o l y n o m i a l b a s i c i n t e g r a l =0;

p o l y n o m i a l p o b a s i c i n t e g r a l =0;

R b a s i c i n t e g r a l =0;

f o r i =1: number gauss ian point ˆ number expand var ible

po lynomia l ba s i c=polynomial combine ( r oo t s ( i , : ) , Dis Ord , index ) ;

po lynomia l po bas i c=po lynomia l ba s i c . ˆ 2 ;

polynomial R (k , : )= po lynomia l ba s i c .∗ fun ( [ R values ( i , : ) , X 0 ] , k ) ;

w e i g h t t o t a l =1;

f o r j =1: number expand var ible

w e i g h t t o t a l=w e i g h t t o t a l ∗weights ( i , j ) ;

end
p o l y n o m i a l b a s i c i n t e g r a l=p o l y n o m i a l b a s i c i n t e g r a l+w e i g h t t o t a l . . .

∗ po lynomia l ba s i c ;

p o l y n o m i a l p o b a s i c i n t e g r a l=p o l y n o m i a l p o b a s i c i n t e g r a l + . . .
w e i g h t t o t a l ∗ po lynomia l po bas i c ;
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R b a s i c i n t e g r a l=R b a s i c i n t e g r a l+w e i g h t t o t a l ∗polynomial R (k , : ) ;

end

coe (k , : )= R b a s i c i n t e g r a l . / p o l y n o m i a l p o b a s i c i n t e g r a l ;

end



APPENDIX C

MATLAB SOURCE CODE: UNCERTAINTY QUANTIFICATION WITH
POINT-COLLOCATION BASED NIPC



108

%==========================================================================
% This program i s used to obta in the s t o c h a s t i c expansion c o e f f i c i e n t s by
% us ing Point−Co l l o ca t i on based NIPC approach
% wr i t t en by Yi Zhang
% Modif ied on 03−10−2010
%==========================================================================
format long ;

c l e a r a l l ;

c l o s e a l l ;

c l c ;

rand ( ’ s t a t e ’ , 0 )

% boundary in fo rmat ion f o r des ign v a r i a b l e s

l b o r =[0.000005 0 .3 0 . 0 8 ] ;% lower bound o f a l e a t o r y

ub or =[0.05 0 .7 0 .14 ] ;% lower bound o f a l e a t o r y

% boundary f o r a l e a t o r y : M, a l e a t o r y parameter M˜U( 0 . 7 , 0 . 8 )

Pa lb or = [ 0 . 7 ] ;% lower bound o f a l e a t o r y

Pa ub or =[0.8 ] ;% upper bound o f a l e a t o r y

% boundary f o r ep i s t emic : k , [ 0 . 5 , 2 . 0 ]

k mu lb or =0.5 ;% lower bound o f ep i s t emic

k mu ub or =2.0 ;% upper bound o f ep i s t emic

% gene ra l format o f parameters

P lb o r =[ Pa lb or , k mu lb or ] ;

P ub or =[Pa ub or , k mu ub or ] ;

% p order : expansion order

P order =2;

% expansion approach :2− t o t a l ;1− t a i l e d ;

index =2;

% expansion method f o r v a r i a b l e s :2−combined ; 1−a l e a t o r y uncer ta in ;

expand index =2;

% # of d e t e r m i n i s t i c des ign
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Nd=3;

% #of a l e a t o r y parameter
Na=1;

% #of ep i s t emic parameter
Ne=1;

% d i s t r i b u t i o n o f d e t e rm i n s t i c v a r i a b l e s and a l e a t o r y parameter . . .
2−uniform : Na Na and ep i s t emic :−uniform

di s Xr = [ 2 , 2 , 2 , 2 , 2 ] ;

% Over sampling r a t i o f o r point−c o l l o c a t i o n NIPC

r a t i o =2;

%========================================================================
% NACA a i r f o i l d e f i n i t i o n s

alpha = 0 ; % Angle o f at tack [ deg ]
c = 1 . 0 ; % A i r f o i l chord l ength [m]
p = 43765; % Atmospheric s t a t i c p r e s su r e [ Pa ]
T = 300 ; % Atmospheric s t a t i c temperature [K]
tm = ’ s−a ’ ; % Turbulence model : ’ s−a ’ or ’kw−s s t ’
m = [ 7 200 200 200 100 80 10E−6∗c ] ;% [ALE AUS ALS Wake BL IL ymin ]
N i tde r = 600 ;

%=======================================================================

%Response s u r f a c e c o e f f i c i e n t s c a l c u l a t i o n s

[ coe , Nt , Dis Ord ,CL, Cd,Cp]= l i n e a r r e g r e s s i o n (Nd, Na , Ne , lb o r , ub or , . . .
P lb or , P ub or , dis Xr , P order , index , expand index , r a t i o ,m, N itder , . . .
alpha , c , p ,T, tm ) ;

%========================================================================
% subfunct ion : P o in t Co l l o c a t i o n NIPC approach to obta in es t imate
% c o e f f i c i e n t s o f RS
%=========================================================================

func t i on [ coe , Nt , Dis Ord ,CL, Cd,Cp]= l i n e a r r e g r e s s i o n (Nd, Na , Ne , lb , ub , . . .
P lb , P ub , dis Xr , P order , index , expand index , r a t i o ,m, N itder , alpha , . . .
c , p ,T, tm)

i f expand index==2 %%combined expansion

dis X expand=dis Xr ( 1 : Na+Nd+Ne ) ;

e l s e i f expand index==1%uncer ta in expansion

dis X expand=dis Xr ( 1 : Na ) ;

end
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%%%determin expas ion in fo rmat ion%%%
dim var i=length ( dis X expand ) ;

f o r i =1: d im var i

Dis Ord ( i , : ) = [ dis X expand ( i ) , P order ] ;

end

%%%%determine sample number%%
N tota l=s i z e ( Dis Ord , 1 ) ; % t o t a l expand v a r i a b l e s

i f index==1 %% t a i l o r e d t e n s o r

Nt=1;

f o r i =1: N tota l

Nt=Nt∗( Dis Ord ( i , 2 )+1) ;

end

e l s e i f index==2 %% tota l−t enso r

P tota l expand=Dis Ord ( 1 , 2 ) ;

%c a l c u l a t e the terms o f polynoimal expansion

Nt=f a c t o r i a l ( P tota l expand+N tota l )/ ( f a c t o r i a l ( P tota l expand ) . . .
∗ f a c t o r i a l ( N tota l ) ) ;

end

S=r a t i o ∗Nt ; %% s e t the # of samples

[ Ba ic po int s , R input po int s ]= i n p u t i n i t i a l v a l u e s (Nd, Na , Ne , lb , ub , P lb , . . .
P ub , dis Xr , P order , index , expand index , S ) ;

[ p o i n t s v a r i a b l e s , number var ib le s ]= s i z e ( Ba i c po in t s ) ;

%s u b s t i t u t e sample po in t s in to expansion formulas and respond formula

f o r i p =1: p o i n t s v a r i a b l e s

% bas i c po in t s f o l l o w standard d i s t r i b u t i o n

p o l y b a s i c ( i p , : )= polynomial combine ( Ba i c po in t s ( i p , : ) , Dis Ord , index ) ;
end

f o r i =1: p o i n t s v a r i a b l e s

i i t e r=i

M=R input po int s (Nd+Na , i ) ;
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K=R input po int s (Nd+Na+Ne , i ) ;

R= RANS( R input po int s ( 1 :Nd, i ) ’ ,M, alpha , c , p ,T, tm ,K,m, N itder , i ) ;

CL( i ,1)=R. Cl ;

Cd( i ,1)=R.Cd ;

Cp( i ,:)=−R.Cp ;

respond out =[CL,Cd ] ;
end

f o r i d im =1:2

coe ( : , i d im)= r e g r e s s ( respond out ( : , i d im ) , p o l y b a s i c ) ’ ;

end



APPENDIX D

MATLAB SOURCE CODE: ADAPTIVE SAMPLING BASED
POINT-COLLOCATION NIPC
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%=================================================================
%Adaptive Sampling based Point−Co l l o ca t i on NIPC method
%wr i t t en by y i zhang
%Date :02/07/2012
%=================================================================
c l e a r a l l ;

c l o s e a l l ;

format long

% Def ine g l o b a l parameters

g l o b a l Sample point p s i r and

% Input date

t i c ;
% Total expansion ( a l l the expanded v a r i b l e s expand at the same order )

index =2;

% # of epstemic uncer ta in and a l e a t o r y v a r i a b l e s , r e s p e c t i v e l y
Npe=4;

Npa=4;

Nd=0;

Nda=0;

Nde=0;

% Def ine the d i s t r i b u t i o n o f expand v a r i a b l e s 1==hermit ;2==Legendre ; . . .
% length o f vec to r denotes the dimension o f v a r i a b l e s

d i s Xr =[2∗ ones (1 ,Npa) ,2∗ ones (1 , Npe ) ] ;

% Expand way:2==combined expansion ;1== a l e a t o r y uncer ta in expansion
expand index =2;

% uncet ra in parameters ’ d i s t r i b u t i o n : Pa lb (mean or lower bounds ) and . . .
% Pa ub ( std or upper bounds )

P l b o r i g =[0∗ ones (1 ,Npa ) , 0 . 0∗ ones (1 , Npe ) ] ;

P ub or ig =[1∗ ones (1 ,Npa) ,1∗ ones (1 , Npe ) ] ;

% Def ine the p r o b a b i l i t y l e v e l

P r o l e v e l = [ 0 . 0 2 5 , 0 . 2 , 0 . 5 , 0 . 8 , 0 . 9 7 5 ] ;

% Expand order
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P order =2;

Nadd=9;

N dimension=Npe+Npa+Nd+Nda+Nde ;

% # of samples o f a l e a t o r y v a r i a b l e s
N a leatory =15000;

% # of i n t e r v a l s o f ep i s t emic v a r i a b l e s
N epis temic =0;

% Total number o f samples
N tota l =500;

% i n i t i a l i z e d OSR( over sampling r a t i o )
OSR(1)=1;

f o r i =1: l ength ( P r o l e v e l )
w e i g h t s p r o l e v e l ( i )=1/ length ( P r o l e v e l ) ;

end

rand ( ’ s t a t e ’ , 0 )

% Total standard samples f o r Ep and dete rmins t i c−−maxmin
p s i r a n d L H S o r i g i n a l=l h s d e s i g n ( N tota l , Nda+Npa+Nde+Npe+Nd, ’ c r i t e r i o n ’ , . . .

’ maximin ’ ) ;

psi rand LHS=p s i r a n d L H S o r i g i n a l ;

err R =1;% I n i t i a l i z e the stop c r i t e r i o n parameter

Tol =10ˆ(−6);% Stop c r i t e r i o n

p o l y b a s i c = [ ] ;

respond out = [ ] ;

A temp=0;

i t e r =0;

i t =0; % used f o r update l i n e a r r e g r e s s i o n matrix

[ coe , Nt , Dis Ord , po ly bas i c , respond out ]= l i n e a r r e g r e s s i o n ( dis Xr , Nda , . . .
Nde ,Nd, Npa , Npe , P lb , P ub , expand index , index , r a t i o , P order , . . .
p s i r a n d t o t a l ) ;

whi l e err R>Tol
%======================================================================
% Calcu la te check po in t s at s p e c i f i e d p r o b a b i l i t y l e v e l
% Step1 1 : NIPC method to c a l c u l a t e the es t imate re sponse s u r f a c e
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% obta in c o e f f i c i e n t s o f re sponse s u r f a c e us ing P−T method
%======================================================================

i f i t ˜=0
[ coe , po ly bas i c , respond out ]= l i n e a r r e g r e s s i o n u p d a t e (Nda , Nde ,Nd , . . . ,

Npa , Npe , Dis Ord , Nt , N tota l , P lb o r i g , P ub or ig , expand index , . . . ,
index , r a t i o , P order , po ly bas i c , respond out , i t , Nt I te r , i t e r , . . . ,
Nadd , p s i r a n d t o t a l , A IX , RS check points ) ;

[ R estimate , X S , X U]= sampl ing coe R (Nda , Nde ,Nd, Npa , Npe , . . .
P lb o r i g , P ub or ig , N aleatory , N epistemic , S ,U, coe , Dis Ord , Nt , index ) ;

end

% STEP2 : f i n d out the output bounds va lue s at s p e c i f i e d p r a b a b i l i t y l e v e l

i f i t e r==0

[ R estimate , X S , X U]= sampl ing coe R (Nda , Nde ,Nd, Npa , Npe , P lb o r i g , . . . ,
P ub or ig , N aleatory , N epistemic , S ,U, coe , Dis Ord , Nt , index ) ;

% Ca lcu la te the Output at s p e c i f i e d p r o b a b i l i t y l e v e l
% Second order p r o b a b i l i t y approach

f o r j =1: N epis temic

R es t imate order= s o r t ( R est imate ( j , : ) ) ’ ;

f o r m = 1 : N a leatory

R po int e s t imate (m, j ) = R est imate order (m) ;

cd f R es t imate (m, j ) = m/ N aleatory ;

end

f o r i =1: l ength ( P r o l e v e l )

f o r j =1: N epis temic

R( i , j )= inte rp1q ( cd f R es t imate ( : , j ) , R po int e s t imate ( : , j ) , . . .
P r o l e v e l ( i ) ) ;

end

R out bounds ( i , : ) = [ min (R( i , : ) ) , max(R( i , : ) ) ] ;

R a v e r a g e p r o l e v e l ( i )= ( min (R( i , : ) ) +max(R( i , : ) ) ) / 2 ;

end

f o r p r o i =1: l ength ( P r o l e v e l )

f o r i =1: N epis temic
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f o r j =1: N a leatory

d i f f R ( i , j )=abs ( R est imate ( i , j )−R a v e r a g e p r o l e v e l ( p r o i ) ) ;

end

end

min d i f f R=min( min ( d i f f R ) ) ;

[ row , column]= f i n d ( d i f f R==min d i f f R ) ;

S c h e c k i n i t i a l ( p ro i , : ) = [ S( column ( 1 ) , : ) ,U( row ( 1 ) , : ) ] ;

end

end

% Calcu la te the i n i t i a l input v a r i a b l e s at s p e c i f i e d p r o b a b i l i t y l e v e l
% f i n d out the check po in t s by s o l v i n g non l in ea r equat ions

i f i t e r==0

f o r p r o i =1: l ength ( P r o l e v e l )

opt ions=opt imset ( ’ Display ’ , ’ o f f ’ ) ;% opt ion to d i s p a l y output

[ SU check , f v a l ]= f s o l v e ( ’ check coe R ’ , S c h e c k i n i t i a l ( p ro i , : ) ’ , [ ] , Nda , . . .
Nde ,Nd, Npa , Npe , P lb o r i g , P ub or ig , coe , Dis Ord , Nt , index , . . .
R ave rage p ro l eve l , p ro i , opt ions ) ;

S check po in t s ( p ro i , : )= SU check ;

x check=S t ra n s f e r X ( SU check , Nda , Nde ,Nd, Npa , Npe , P lb o r i g , P ub or ig , . . .
Dis Ord ) ;

RS check points ( p ro i , : )= x check ’ ;

R exact check ( p r o i )=fun ( x check ) ;

e r r c h e c k ( p r o i )=abs ( ( R exact check ( p r o i )−R a v e r a g e p r o l e v e l ( p r o i ) ) . . .
/ R exact check ( p r o i ) ) ;

end

R e s t i m a t e f i x c h e c k { i t e r +1}=R a v e r a g e p r o l e v e l ;

e l s e

f o r p r o i =1: l ength ( P r o l e v e l )

R est imate check update ( p r o i )=check coe R update . . .
( RS check points ( p ro i , : ) ’ , Nda , Nde ,Nd, Npa , Npe , P lb , P ub , . . . ,
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coe , Dis Ord , Nt , index , R ave rage p ro l eve l , p r o i ) ;

e r r c h e c k ( p r o i )=abs ( ( R exact check ( p r o i ) − . . .
R est imate check update ( p r o i ) )/ R exact check ( p r o i ) ) ;

end

R e s t i m a t e f i x c h e c k { i t e r +1}=R est imate check update ;

end

% Update the in fo rmat ion f o r add i t i on o f more sample po in t s
i t e r=i t e r +1;

i t=Nt∗ r a t i o+i t e r ∗Nadd ;

i f i t >2∗Nt

break

end

toc



APPENDIX E

MATLAB SOURCE CODE: ROBUST OPTIMIZATION UNDER MIXED
UNCERTAINTIES (For Beam Molde Problem)
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%=======================================================================
%Beam case : unce r ta in des ign and parameter u n c e r t a i n t i e s Robust
%opt imiza t i on des ign
%wr i t t en by y i zhang
%Date :09/06/2010
%case 1 −−− a l e a t o r y des ign , ep i s t emic des ign , three unce r ta in parameters
%=======================================================================
c l e a r a l l ;

c l o s e a l l ;

format long

% Expansion order

k=2;

% Def ine the d i s t r i b u t i o n o f expand v a r i a b l e s 1==hermit ;2==Legendre ;

d i s Xr =[1 1 1 1 2 2 ] ;

% expansion opt ion : 1− t a i l e d ;2− t o t a l

index =2;

% # of d e t e r m i n i s t i c , unce r ta in and a l e a t o r y v a r i a b l e s , r e s p e c t i v e l y

Nd=0;

Ndu=3;

Nda=2;

Npa=2;

Npe=1;

% expansion way:1==combined expansion ;2== a l e a t o r y uncer ta in expansion

expand index =1;

% mean and std o f a l e a t o r y unce t ra in parameters

Pa mean=[ 450 100 e3 ] ; Pa std =[50 10 e3 ] ;

% Bound o f ep i s t emic parameter

Pe lb =270; Pe ub =330;

% h−b−l%i n i t i n a l input des ign v a r i a b l e

X 0 =[0.6 0 .4 5 ] ;

% Bounds o f des ign v a r i a b l e s



120

lb =[0.1 0 . 1 2 ] ;

ub =[0.8 0 .4 2 0 ] ;

%==================outer opt imiza t i on loop========================

opt ion=optimset ( ’ d i s p l a y ’ , ’ i t e r ’ , ’ Algorithm ’ , ’ sqp ’ ) ;

[ X optim , f o b j ]= fmincon ( ’ ob j r obus t ’ , X 0 , [ ] , [ ] , [ ] , [ ] , lb , ub , . . .
’ c o n s t r a i n t r o b u s t ’ , option , dis Xr , Nda , Ndu ,Nd, Npa , Npe , Pa mean , Pa std , . . .
Pe lb , Pe ub , expand index , index , k )

%=========================================================
% Subfunct ion : o b j e c t i v e func t i on f o r beam case
%========================================================

func t i on obj=ob j robus t ( X optim , dis Xr , Nda , Ndu ,Nd, Npa , Npe , Pa mean , . . .
Pa std , Pe lb , Pe ub , expand index , index , k )

i f u n =1;

% Obtain c o e f f i c i e n t s o f r e sponse s u r f a c e o f o b j e c t i v e func t i on

[ coe , Nt , Dis Ord ]=coe R (Nd, Ndu , Nda , Npa , Npe , Pa mean , Pa std , Pe lb , Pe ub , . . .
d is Xr , k , index , expand index , X optim , i f u n ) ;

% Spec i f y input des ign v a r i a b l e s

X e0=X optim (Nda+1:Ndu ) ;

l b ep=X e0−X e0 /10 ; ub ep=X e0+X e0 /10 ;

% I n i t i a l i z e the ep i s t emic v a r i a b l e s

X ep0 = [ 0 . 0 , 0 . 0 ] ;

lb Xep =[ lb ep , Pe lb ] ; ub Xep=[ub ep , Pe ub ] ;

% Inner optimal loop

opt ion=opt imset ( ’ d i s p l a y ’ , ’ i t e r ’ , ’ Algorithm ’ , ’ sqp ’ ) ;

[ X ep , obj std max ]= fmincon ( ’ fun max std ’ , X ep0 , [ ] , [ ] , [ ] , [ ] , lb Xep , . . .
ub Xep , [ ] , option , X optim , coe , Dis Ord , Nt , 1 , lb Xep , ub Xep ) ;

[ X ep , ob j s td min ]= fmincon ( ’ fun min std ’ , X ep0 , [ ] , [ ] , [ ] , [ ] , lb Xep , . . .
ub Xep , [ ] , option , X optim , coe , Dis Ord , Nt , 1 , lb Xep , ub Xep ) ;

% Ca lcu la te o b j e c t i v e s : obta in the maximin and minimum va lues o f o b j e c t i v e

average mean obj=X optim (1)∗X optim (2)∗X optim ( 3 ) ;

max std obj=−obj std max ;
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min std ob j= obj s td min ;

a v e s t d o b j =(max std obj+min std ob j ) / 2 ;

s d i f f o b j=max std obj−min std ob j ;

obj =1∗average mean obj +100∗ a v e s t d o b j +500∗ s d i f f o b j ;

%=========================================================
% Subfunct ion : c o n s t r a i n t s func t i on f o r beam case
%=========================================================

func t i on [ c , ceq ]= c o n s t r a i n t r o b u s t ( X optim , dis Xr , Nda , Ndu ,Nd, Npa , Npe , . . .
Pa mean , Pa std , Pe lb , Pe ub , expand index , index , k )

i f u n =2;

ceq = [ ] ;

% Obtain c o e f f i c i e n t s o f r e sponse s u r f a c e o f c o n s t r i a n t s

[ coe , Nt , Dis Ord ]=coe R (Nd, Ndu , Nda , Npa , Npe , Pa mean , Pa std , Pe lb , Pe ub , . . .
d is Xr , k , index , expand index , X optim , i f u n ) ;

X e0=X optim (Nda+1:Ndu ) ;

l b ep=X e0−X e0 /10 ; ub ep=X e0+X e0 /10 ;

% I n i t i a l i z e the ep i s t emic v a r i a b l e s
X ep0 = [ 0 , 0 ] ;

lb Xep =[ lb ep , Pe lb ] ; ub Xep=[ub ep , Pe ub ] ;

% Inner optimal loop

opt ion=opt imset ( ’ d i s p l a y ’ , ’ i t e r ’ , ’ Algorithm ’ , ’ sqp ’ ) ;

[ X ep , con mean max]= fmincon ( ’ fun max mean ’ , X ep0 , [ ] , [ ] , [ ] , [ ] , lb Xep , . . .
ub Xep , [ ] , option , X optim , coe , Dis Ord , Nt , 2 , lb Xep , ub Xep ) ;

[ X ep , con std max ]= fmincon ( ’ fun max std ’ , X ep0 , [ ] , [ ] , [ ] , [ ] , lb Xep , . . .
ub Xep , [ ] , option , X optim , coe , Dis Ord , Nt , 2 , lb Xep , ub Xep ) ;

k=3; % d e f i n e the worst case p r o b a b i l i t y index

% obta in the maximin va lue s o f c o n s t r a i n t s

g1 mean max=−con mean max ;

g1 std max=−con std max ;

c=g1 mean max+k∗g1 std max ;



APPENDIX F

MATLAB SOURCE CODE: CFD SIMULATION JOURNAL FILE SETUP
(Modified from the original code provided by Dr. Leifur Thor Leifsson)
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%=========================================================================
%The purpose o f the program i s to setup matlab j o u r n a l f i l e f o r CFD
%running . After CFD runs , the ouput va lue s can be used as re sponse s u r f a c e
%c a l c u l a t i o n by us ing Point−Co l l o ca t i on based NIPC approach .
%=========================================================================
% Def ine Parameters
%=========================================================================
% NACA a i r f o i l
alpha = 0 ; % Angle o f at tack [ deg ]
c = 1 . 0 ; % A i r f o i l chord l ength [m]
p = 43765; % Atmospheric s t a t i c p r e s su r e [ Pa ]
T = 300 ; % Atmospheric s t a t i c temperature [K]
tm = ’ s−a ’ ;
% Turbulence model : ’ s−a ’ or ’kw−s s t ’
m = [ 7 200 200 200 100 80 10E−6∗c ] ; % [ALE AUS ALS Wake BL IL ymin ]
N i tde r = 600 ; % convergence i t e r a t i o n s f o r CFD run
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x 0 or =[0.02 0 .4 0 . 1 2 ] ; % i n i t i a l i z e a i r f o i l shape parameters
t i c ;
f unc t i on R = RANS(x ,M, alpha , c , p ,T, tm ,K,m,N, i )
a i r f o i l (x , c ) ; % Generate a i r f o i l shape
icemcfd (m, c ) ; % Generate mesh
[X,Y, Cp, Cf ] = fluent RANS (M, c , alpha , p ,T,N, tm ) ;
% Solve f low and get data
R = aero (M, p ,T, c , alpha , x ,X,Y, Cp, Cf ) ;% Ca lcu la te aerodynamic c h a r a c t e r i s t i c s
toc ;

%=======================================================================
%The matlab code below i s to run CFD ( Solve f low and get data )
%=======================================================================

func t i on [ x , y , Cp, Cf ] = fluent RANS (M, c , alpha , p ,T,N, tm ,K, i )

% Generate f l u e n t j o u r n a l f i l e

f luent RANS journal (M, c , alpha , p ,T,N, tm ,K, i ) ;

% Fluid f low a n a l y s i s

system ( ’ de l a i r f o i l . cp ’ ) ;
system ( ’ de l a i r f o i l . xy ’ ) ;
system ( ’ de l a i r f o i l . c f ’ ) ;
system ( ’ de l a i r f o i l . tke ’ ) ;
system ( ’ de l a i r f o i l . omg ’ ) ;
system ( ’ de l a i r f o i l d r a g . f rp ’ ) ;
system ( ’ de l a i r f o i l l i f t . f r p ’ ) ;
system ( ’ de l a i r f o i l . cas ’ ) ;
system ( ’ f l u e n t 2ddp −hidden − i f l u e n t . jou ’ ) ;

% Read output

[ x , y , Cp, Cf ] = f l u e n t r e a d o u t p u t ;
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%=========================================================================
%Fluent RANS j o u r n a l f i l e generator .
%=========================================================================
func t i on f luent RANS journal (M, c , alpha , p ,T,N, tm ,K, i )

% Input : M − Mach number .
% c − A i r f o i l chord l ength [m] .
% alpha − Angle o f at tack [ deg ] .
% p − Atmospheric s t a t i c p r e s su r e [ Pa ] .
% T − Atmospheric s t a t i c temperature [K] .
% N − Number i f i t e r a t i o n s .
% tm − Turbulence model : ’ s−a ’ or ’kw−s s t ’
% K − Turbulent v i s c o s i t y f a c t o r
% Output : Fluent j o u r n a l f i l e f l u e n t . jou .

f i d = fopen ( ’ f l u e n t . jou ’ , ’w+’ ) ;

f p r i n t f ( f i d , ’ ;FLUENT Journal F i l e \n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;
f p r i n t f ( f i d , ’ ; Read in the mesh f i l e \n ’ ) ;
f p r i n t f ( f i d , ’ f i l e read−case a i r f o i l . msh\n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

f p r i n t f ( f i d , ’ / d e f i n e /models / s o l v e r dens i ty−based−i m p l i c i t \n ’ ) ;
f p r i n t f ( f i d , ’ ; Enable dens i ty−based−i m p l i c i t s o l v e r ? [ yes ]\n ’ ) ;
f p r i n t f ( f i d , ’ yes \n ’ ) ;
f p r i n t f ( f i d , ’ ; No change .\n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

switch tm
case ’ s−a ’

f p r i n t f ( f i d , ’ ; Spec i f y modeling approach .\n ’ ) ;
f p r i n t f ( f i d , ’ / d e f i n e /models / v i s c ou s spa la r t−a l lmaras \n ’ ) ;
f p r i n t f ( f i d , ’ yes \n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

f p r i n t f ( f i d , ’ / d e f i n e /models / v i s c ou s sa−a l t e rna t e−prod\n ’ ) ;
f p r i n t f ( f i d , ’ ; S t ra in / v o r t i c i t y product ion f o r S−A model? [ yes ]\n ’ ) ;
f p r i n t f ( f i d , ’ yes \n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ˜ isempty (K)

f l u e n t t u r b v i s c (K) ;
f p r i n t f ( f i d , ’ / d e f i n e / user−de f ined in t e rp r e t ed−f u n c t i o n s \n ’ ) ;
f p r i n t f ( f i d , ’ ;UDF Source F i l e Name [ ” . . \ t u r b v i s c . c ” ]\n ’ ) ;
f p r i n t f ( f i d , ’ t u r b v i s c . c\n ’ ) ;
f p r i n t f ( f i d , ’ ;CPP Command Name [ ” cpp ” ]\n ’ ) ;
f p r i n t f ( f i d , ’ ”cpp”\n ’ ) ;
f p r i n t f ( f i d , ’ ; v i r t u a l machine s tack s i z e [ 10 000 ]\n ’ ) ;
f p r i n t f ( f i d , ’ 10000\n ’ ) ;
f p r i n t f ( f i d , ’ ; d i s p l a y assembly code l i s t i n g ? [ yes ]\n ’ ) ;
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f p r i n t f ( f i d , ’ yes \n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

f p r i n t f ( f i d , ’ / d e f i n e /models / v i s c ou s user−de f ined \n ’ ) ;
f p r i n t f ( f i d , ’ ; Viscous user−de f ined f u n c t i o n s : ( ” none” ” user mu t ”)\n ’ ) ;
f p r i n t f ( f i d , ’ ; Enter turbu l ent v i s c o s i t y func t i on [ ” none ” ]\n ’ ) ;
f p r i n t f ( f i d , ’ ” user mu t ”\n ’ ) ;
f p r i n t f ( f i d , ’ ; Enter TKE Prandtl number func t i on [ ” none ” ]\n ’ ) ;
f p r i n t f ( f i d , ’ ”none”\n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

end
. . . . . .
. . . . . .
. . . . . .

f p r i n t f ( f i d , ’ ; Write case and data f i l e s .\n ’ ) ;
f p r i n t f ( f i d , ’ f i l e write−case−data\n ’ ) ;
f p r i n t f ( f i d , ’ ; case f i l e name [ ” ” ] \ n ’ ) ;
s t r = [ ’ a i r f o i l ’ , num2str ( i ) , ’ . cas ’ ] ;
f p r i n t f ( f i d , s t r , ’ \n ’ ) ;
f p r i n t f ( f i d , ’ \n ’ ) ;
f p r i n t f ( f i d , ’ ; Exit Fluent .\n ’ ) ;
f p r i n t f ( f i d , ’ e x i t \n ’ ) ;

f c l o s e ( f i d ) ;
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