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NOTATION

A = cross-sectional area

A = constant

A = area of the angles
a

A = area of the platep

a = length of perforation

a = length or width of plate

B = flange width of C-shaped channels

B = constant

b = effective design width

b = length or width of plate

b = distance between perforation and centerline of bolts

b
l = width of outstanding leg at perforation

C =
13(1-]..12)

C = measure of the effectiveness of a plate with respect to

the compressive strength

c = spacing between centerlines of perforations

D = total depth of C-shaped channel and channels

d = diameter of perforation

d = width of restraining flange plate

E = modulus of elasticity

E' = effective modulus based on gross area for a column withp

perforated cover plates

E' = modulus for a solid column with cover platess

F = total width of channel flange

xii

F = maximum allowable compression stress on unstiffened elementsc

F = ultimate tensile strength
u



xiii

F = yield point
y

f = actual stress in the compression element computed on the

basis of the effective design width

f = deflection function

f = maximum stress in compression element
max

h = height of web

h = width of square holess

I = moment of inertia

K = clEO
y

K = axial rigidity factor

K
l

= axial rigidity factor for columns having angles and perforated

plates

K2 = axial rigidity factor for a perforated plate

k = buckling coefficient

k = buckling coefficient for a perforated plate having a central
c

circular hole

k = buckling coefficient for a solid plate
o

k = buckling coefficient for a perforated plate having a central
s

square hole

k - buckling coefficient for a solid plate
co

k = buckling coefficient for a solid plate
so

L = column length

LD = overall depth of simple lip

R, = length of plate

R, = width of distributed load

M = bending moment

M = computed bending moment
comp



xiv

M = test bending moment
test

m = diameter of semi-circle for ovaloid perforations

m = number of half waves

N = actual length of bearing

n = number of perforated plates

P = total load on plate

P = critical buckling load
cr

P = allowable concentrated load to avoid crippling of flat webs
max

of beams

P = maximum column Loadmax

Pult = ultimate load on a simply supported plate

qs = load reduction factor for perforated shear webs

qs = experimental load reduction factor for perforated shear webs
exp
qub = stress reduction factor for unstiffened compression elements

q = experimental stress reduction factor for unstiffened compression
ubexp

elements

quy = stress reduction factor based on yielding of unstiffened

compression elements

Q = buckling load reduction factor for perforated webs
vbs

qwcc = crippling load reduction factor for a web having a circular

perforation

Q = experimental crippling load reduction factor for a web having
vccexp

a circular perforation

qwcs = crippling load reduction factor for a web having a square

perforation

Q = experimental crippling load reduction factor for a web having
vcsexp

a SQuare oerforation



R = inside corner radius

r,rf,rx = radius of gyration

s = thickness of restraining flange plate

t = thickness

w = flat width

w/t = width - thickness ratio

a,f3 = terms for determining the critical buckling load of an

unstiffened plate

a c,f3 c = terms for determining the (w/t)lim ratio for perforated

plates having circular holes

a, , f3 = terms for determining the (w/t)l' ratio for perforateds s l.m

plates having square holes

£ = strain

£ = critical buckling strain

1.1 = Poisson's ratio

(J = critical buckling stresscr

(J = average column stressmax

(J = yield strengthy

xv



1

I. INTRODUCTION

A. General

Since the early 1940's, thin-walled cold-formed steel structural

members have gained increasing use in building construction, especially

for low rise buildings, residences, and for many other different types

of structural framing systems. This trend will continue in the future

because cold-formed steel members can provide an economical design for

relatively light loads or short spans. In addition, unusual sectional

configurations can be easily produced by the cold-forming process, and

a large strength-to-weight ratio can be obtained for cold-formed steel

sections.

In cold-formed steel structural members, holes are sometimes

provided in webs and/or flanges of beams and columns for duct work,

piping, ease of handling, and for other purposes. The presence of such

holes may result in a reduction in strength of individual component

elements and/or the overall strength of the member. The load-carrying

capacity of the cold-formed steel member with perforated elements

depends mainly on the configuration and arrangement of holes, the

material properties, and the cross section of the member.

The analysis and design of cold-formed steel sections with per

forated elements are rather complex especially when the shape of the

holes and their arrangement are unusual. At present, only a limited

amount of information on the analysis and design of relatively heavy

steel sections with perforated elements can be found in several design

guides and specifications (1,2,3,4,5). Such design information has
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been developed on the basis of test results of relatively thick built-

up compression members (6,7,8,9) supplemented by engineering judgement.

This type of design information may not be applicable to the design of

perforated cold-formed steel sections due to the fact that local buckling

is usually a major concern for thin walled structural members.

Presently, no provisions are included in the American Iron and

Steel Institute Specification (10) for the design of this particular

type of cold-formed steel section. When perforated sections are used,

special tests must be conducted and evaluated in accordance with the

test procedures of the AISI Specification to provide design data for use

by engineers. This requirement for testing of perforated sections will

undoubtedly increase the cost of the new products and limit the use of

perforated sections due to lack of design information.

In order to increase the use of perforated cold-formed steel sec

tions, design provisions must be developed on the basis of an extensive

research work. The availability of such design recommendations will

eliminate or minimize the tests presently required by the AISI Speci

fication.

B. Purpose of Investigation

The purpose of this investigation is to study the structural

behavior of cold-formed steel beams and columns with perforated elements.

Based on the analytical and experimental investigations, the following

design recommendations will be developed to extend the design provisions

of the current AISI Specifications:
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a) formulas to determine the effective design width of perforated

stiffened compression elements,

b) formulas to determine the reduction of the load-carrying capacity

of perforated unstiffened compression elements,

c) formulas to determine the allowable shear stresses for perforated

webs, and

d) formulas to determine the maximum load capacity to prevent perforated

webs from crippling.

C. Scope of Investigation

This study includes both the analytical and experimental investi

gations on the structural performance of cold-formed steel members with

perforated elements.

As the first step of this investigation, available publications were

reviewed in detail. Chapter II consists of a summary of the literature

survey. All literatures are divided into six major parts.

Local buckling and post-buckling strength of perforated stiffened

compression elements are studied in Chapter III. In this chapter, the

analytical and experimental results are presented for beams and short

column specimens with perforations. In this study, perforations used

in short column specimen were circular and square in shape. For the

beam specimens, only circular holes were used.

The behavior of unstiffened elements with circular perforations is

discussed in Chapter IV. Experimental results of three series of

column tests are presented along with analytical results.

Investigation of the shear buckling behavior of webs having a

circular hole is presented in Chapter V. Experimental results are
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presented and compared with analytical values of other investigators.

The crippling strength of circular and square perforated webs

is discussed in Chapter VI. The stability of perforated webs subjected

to equal and opposite loads is also discussed.

Finally, Chapter VII summarizes the results of this investigation

and includes the conclusions which have been reached with regard to the

structural behavior of cold-formed steel members with perforated elements.

Recommendations for design are given for perforated stiffened elements,

perforated unstiffened compression elements, perforated shear webs,

and strength of perforated webs subjected to crippling.
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II. REVIEW OF LITERATURE

A. Introduction

Some of the most important work pertaining to buckling and post

buckling strength of plates and members will be discussed first in

this chapter. Results of extensive analytical and experimental studies

on the compressive strength of perforated cover plates are summarized

in Part C.

All available literature pertaining to the stability of perforated

plates are summarized in Part D. The theoretical and experimental

analyses are discussed.

Previous analytical and experimental studies on shear buckling

of perforated plates and members are discussed in Part E.

In Part F, the results of an extensive experimental investigation

of web crippling are summarized. Also in Part F, an analytical approach

to the problem of web stability problem is discussed.

A summary of available data from current specifications and design

guides for steel sections with perforations is given in Part G. The

design suggestions are presented in detail.

B. Strength of Thin Plates in Compression

The stability of thin plates has been investigated by numerous

researchers. These investigations were originally carried out to

improve the design for ship and aircraft structures, in which thin

plate components are often loaded beyond the limits of stability. It

is well known that thin plates will not fail at the load causing local

buckling, but will continue to carry additional load due to the post

buckling strength. For this reason, the "effective width" concept has

been used in design.
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The application of the "effective width" concept seems to have

been initiated by William John in 1877 as noted in an article by

Murray (11). John pointed out that light deck and top sides plating

of ships could not be taken as being fully effective under compression.

He suggested that only a portion of the width of plate be considered

as fully effective if the width of the plate exceeds a certain value.

The National Bureau of Standards in cooperation with the Bureau

of Aeronautics, the Department of Navy, initiated a series of experi

ments for the purpose of determining the strength of plates under edge

compression. In those tests, the ultimate load was found to be inde

pendent of the width and length of the plate, and approximately pro

portioned to the square of the thickness. The results of the experi

ments can be expressed by the following simple formula.

(1)

where K is a constant depending on the physical properties of the mater

ial and t is the pla~ thickness. The question arose as to how the

physical properties of the material enter in the constant K. This

question was answered by von Karman and will be discussed later.

The most celebrated study of von Karman, Sechler, and Donnell (12)

on the strength of thin plates in compression was published in 1932.

An approximate theoretical solution was developed, by which the

"effective width" and the ultimate strength of a thin plate can be

determined.

Dr. von Karman first derived a simple expression for determining

the constant K that was mentioned earlier. It was found that



where

K = C lEo
Y

(2)

7

Using Equations (1) and (2), the ultimate load on a plate simply

supported along the sides can be written as

P 1 :: C YEOu t y
(3)

The "effective width" was to replace the non-uniform stress

distribution which occurs after exceeding the stability limit of

the plate by two rectangular blocks of constant stress as shown in

Fig. 1. In Fig. 1, the solid line is the actual stress distribution

over the entire width of the element and the dashed line represents

the equivalent uniform stress distribution.

Von Karman, Sechler and Donncllproposed a solution of the classical

Bryan elastic buckling equation, to use an effective width b in place

of the actual width w when the following critical local buckling stress,

o ,equals to the yield stress of the material, since experiments had
cr

shown that the ultimate strength of a sheet simply supported at the

edges was independent of the width of the sheet.

ocr
(4)

where 0 = critical buckling stress
cr

E = modulus of elasticity

~ = Poisson's ratio
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t = thickness of the plate

w = flat width of the plate

k = buckling coefficient

If equation (4) is solved for k = 4.0, ~ = 0.3, and b = w, equation

(5) can be obtained as follows:

b
- =
t

1.90 IE/a
y

(5)

Additional experiments were conducted on thin plates by Sechler.

He found that Eq. (5) holds true except that instead of a definite

constant of 1.9, a variable constant C would result in better agree-

ment with his tests. This coefficient C, was found to depend on the

~E/ (i.).parameter 'Il:./a
y w

Karl Marguerre (13) in 1937 presented a very simplified derivation

from the results of an investigation entitled: '~he Load Capacity of

a Plate Strip Stressed in Compression Beyond its Buckling Limit."

Following the discussion of the methods and results of other

investigators, Marguerre suggested an extension of the usual stability

investigation to include the supercritical range. This extension

consists of two parts. Part I considers the buckling form

7TX= f cos cos ~
w

(6)

known from elementary theory, the higher terms in f are preserved and

yields, using the principle of virtual displacements, a relation

which gives the decrease of the apparent strain stiffness at the instant

of buckling. Part II considers a formula containing several arbitrary

values, from which the buckling form, with a greatly exceeded critical



9

point, can be computed, which is shown to be in sufficient agreement

with the actual conditions existing in a zone.

Based on the foregoing extension, the apparent width is convenient

ly calculable.

George Winter has studied the distribution of longitudinal stresses

in the flanges of thin-walled beams of I, T, or Box shape. In his

paper (14), Winter indicated that in wide beams the stress distribution

considerably deviates from uniformity and that for a rational design

of such beams this non-uniformity must be taken into account. Tables

and curves are given by Winter (14), from which the equivalent width

of any given beam flange can be read directly for use in practical

design. The test data was in good agreement with the analytical results.

In 1946, Winter (15) reported the results of, and conclusions

drawn from an extensive experimental investigation conducted at Cornell

University on the strength of thin steel compression flanges. The

strength, general behavior, and deformation of two types of structural

elements (stiffened compression elements and unstiffened compression

elements) were investigated.

In Winter's study the effective width of the compression flange

for each specimen was determined at two different loads: (1) in the

elastic range; and (2) as close as possible to the failure load. In all

beam tests the neutral axis of the cross section was located by strain

gage measurements. With the location of neutral axis known, the

effective width was determined. The coefficients C were computed from

the original von Karman equation.
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Winter's (15) coefficients C have been plotted against the

parameter I E/o (.!.) and compared with the results of Sechler's tests.y w

Even though different methods were used, good agreement has been obtain-

ed from the results of the two independent investigations. The results

of tests have been used to develop formulas and charts by which the

strength and deformation of such members can be predicted under various

loading conditions.

A theoretical and experimental investigation of the compressive

strength of thin plates were also performed by Dwight and Ractliffe (16).

Their work was concerned with individual plates, supported along both

longitudinal edges and loaded in compression. An attempt was made to

develop an accurate theory for predicting the strength of post-buckled

plates, but this method proved to be rather extravagent in computer time

and had to be abandoned in favor of a relatively crude analysis. The

method furnishes a relation between out-of-plane deflection, applied

load, and strain. In this analysis, the following factors have been

taken into account.

(a) initial bow in the plate

(b) residual compressive stress due to welding

(c) strain hardening

The results provided a workable theory for predicting the strength

of plates with simply supported edges.

George Abdel-Sayed (17) presented an approximate theoretical

approach for two cases of plates where the longitudinal edges are

restrained to remain straight or are free to move in the plane of the

plate. The plate is first considered flat, then the effect of initial
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deviation from flatness on the effective width is examined.

The effective width of wide thin plates, under compression was

examined by solving the governing differential equations. The solution

was based on the assumption that, the deflected form at the instant

of buckling is preserved after loading exceeds the buckling limit.

The comparison shows good agreement between a theoretical

formula and Winter's formula.

In 1957, Gerard and Becker (18), prepared a "Handbook of

Structural Stability." This Handbook, under the sponsorship of

the then National Advisory Committee for Aeronautics, presents a com

prehensive review and compilation of theories and experimental data

primarily related to the buckling and failure of plate elements en

countered in aircraft structures.

The factors governing buckling of flat plates are reviewed and

the results are summarized in a comprehensive series of charts and

tables. Numerical values are also presented for buckling coefficients

of flat plates with various boundary conditions and applied loadings.

The effects of plasticity are incorporated in this handbook.

Because of the mechanical behavior of stainless steel and other

factors, existing design procedures for carbon and low alloy steels

may not be adequate for stainless steel design. Johnson and Winter (19)

have conducted an experimental investigation on austenitic stainless

steel members with stiffened and unstiffened compression elements.

The design procedures developed for stainless steel are similar

to those used for carbon steel except that modifications have been made

to account for the pecularities of the mechanical response of stainless
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steel.

Wang, Winter and Errera (20,21) also conducted an experimental

investigation on the behavior of cold-rolled stainless steel members

with stiffened and unstiffened compression elements.

The post-buckling behavior of thin compression elements stiffened

along one or both unloaded edges by thin webs has been found to agree

with von Karman's ( ) relationship as modified by Winter for carbon

steel as a lower bound.

Elastic post-buckling of compressed rectangular flat plates

present state of knowledge was reviewed by Supple and Chilver (22).

The review suggests that the initial phase of elastic post-buckling

of a perfectly flat plate is reasonably well understood. The analysis

for geometrically imperfect plates is complex. Experiments showed

the such plate behavior is extremely sensitive to geometric imper

fections.

Bulson (23) reviewed the state of the knowledge of local buckling

of thin-walled structural sections. Existing theories for flat plates

were reviewed. Next, a generalized analysis for thin-walled sections

was presented.

The exact analysis for upper flanges is outlined and solutions

are given for plates and channels. Interaction between local and column

instability is analyzed using the fundamental equilibrium equations.

C. Compressive Strength of Perforated Cover Plates

In early 1930's, bridge designers started designing compression

members by substituting perforated cover plates for lattice bars or
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batten plates in built-up box type sections based on a very limited

amount of test data.

Due to the great increase in concern of using perforated cover plate~

in built-up box type sections, the National Bureau of Standards (24)

in cooperation with the American Institute of Steel Construction in

1941 conducted tests to determine load-carrying capacity of the per-

forated cover plates.

In this investigation, the following variables were studied to

determine the stiffness and strength of perforated cover plates in

columns: shape of perforation, spacing of perforation, and width of

plate. All specimens were designed to fail in primary column buckling

rather than local buckling.

To limit this investigation to a reasonable number of tests, only

the circular and ovaloid shapes of perforation were used in column

specimens. For each type of specimen, the shape and size of perforations

were the same, but three different spacing of perforations were used.

The plates used in the fabrication of test specimens were the same

thickness with three different widths.

The effective area of the perforated plate with respect to com-

pressive strength was evaluated on the assumption that the average

compression stress at failure on the effective area of the column

containing the perforated plate is the same as a which is themax'

average stress obtained by dividing the maximum load on an unperforated

plate column of the same width by the gross area of the unperforated platt

column. Considering A a as the load carried at failure by thea ~x
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angles of the perforated plate column, and P as the total load atmax

failure, then P - A a is the load carried by the perforatedmax a max

plate at failure. The effective area of the plate is:

P - A amax a max
amax

and C, a measure of the effectiveness of the plate with respect to

the compressive strength is,

Pmax
C = A

p
amax

Aa
A

p
(7)

where A = area of the angles
a

A = area of the platep

The value of C ranged from 0.44 to 0.50 where C for a column with

no perforation is 1.00.

The findings of this study indicated that for the specimen in-

vestigated, from 60 to 80 percent of the cross-sectional area of the

plate, depending on the perforation spacing, was effective in resisting

shortening under compressive load. The value of the maximum stress

was only slightly affected by variation of perforation spacing. The

maximum stresses varied from about 2 to 2.5 times the average stress.

Due to the limited amount of information obtained from the foregoing,

a series of tests on perforated plates were conducted from 1942 through

1946 at the National Bureau of Standards to determine the stiffness

and strength of perforated cover plates. The results of compressive

properties of steel columns having perforated cover plates were summarized

in Reference 8.
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In the NBS investigation (24)~ tests were made on perforated cover

plate columns with perforations of the following shapes:

1) Circular

2) Ovaloid with the load parallel to the long axis

3) Ovaloid with the load parallel to the short axis

4) Elliptical with the load parallel to the major axis

5) Square with the load parallel to the two sides

6) Square with the load parallel to a diagonal

The axial rigidity was represented by a factor~ K, defined as

a ratio of the axial rigidity of a column having perforated plates

to the axial rigidity of an unperforated, but otherwise similar,

column. For computation of the axial deformation of the member, the

rigidity EA may be modified by the factor K, where E is the modulus ofg

elasticity and A is the gross cross-sectional area of the column.
g

The axial rigidity factors determined by the results of tests on

columns having angles and perforated plates, and for the perforated plate

alone are shown in Equations (8) and (9):

Kl = E' IE' (8)p s

E' A A
K2

--..E. a a
(9)= E' (1+-;::-) As p p

where E' is the effective modulus based on gross area for a column
p

with perforated cover plates, E' is the modulus for a solid column of
s

the same material, A is the cross-sectional area of the angles, anda

A is the gross cross-sectional area of the perforated plate.
p

The values of these experimental axial rigidity factors were compared

with the theoretical values given by Greenspan (6,7). The differences
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. between the experimental and theoretical values of K for the columns

investigated were within ± 2%, except for a few scattered values.

Therefore, the axial rigidity factor of columns and of perforated plates

can be closely approximated by the equations given by Greenspan (6,7).

The stress ratios determined by experiments for columns having

a finite cross-sectional area were compared with the theroetical values

derived for an infinite plate. Good agreement between the theoretical

and experimental stress distributions on the edge of the perforation

has been obtained in all cases.

Nomographic charts are given for the determination of the axial

rigidity factor K for all mentioned shapes of perforations.

In 1943, Martin Greenspan (6) developed approximate formulas for the

computation of the axial rigidity of long tension or compression members

containing a plate of constant thickness uniformly perforated with a

series of circular, elliptical, or ovaloid holes. The approximate

formula was verified by an experimental investigation. Greenspan con

cluded that the formula for circular holes gives good results.

In another paper, Greenspan (7) expanded the theory developed in

Reference 6 to other shapes of perforations, including ovaloid and square

holes. The formulas can be used for the computation of the axial rigidity

of a long tension or compression member containing a series of constant

thickness uniformly spaced perforations.

In 1956, White and Thurlimann (9) conducted a complete analytical

and laboratory study of the strength of columns having perforated cover

plates. The laboratory tests made by the National Bureau of Standards

was reviewed in detail.
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In the analytical study, the following problems were considered:

1) Axial rigidity

2) Bending stiffness

3) Buckling load of concentrically loaded columns

4) Yield load of eccentrically loaded columns

5) Design of perforated plates for shear

6) Local buckling of plate elements

7) Stress concentrations due to perforations

By an experimental investigation on three members, it was determined

that K, the axial rigidity factor, contributes very little to the effective

area. For design purposes, it was determined that the net area may be

used with sufficient accuracy in most cases and will be on the safe

side.

From the results of the experimental investigation it was also

determined that the stiffness of the perforated plate can be calculated

using the net section only.

An equation was derived for the determination of the critical

buckling stress which included the effect of shear. This equation was

verified by the experimental investigation, in which the results showed

that the secondary effects due to shear are negligible and no reduction

in the buckling load is necessary.

Since a perforated plate must resist shear if buckling or bending

takes place about an axis perpendicular to the plates, a method for

determining the maximum shear stress in perforated plates was developed

by considering the column as concentrically and eccentrically loaded.
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To prevent local buckling, thin plate elements of which the column

is built up are required to be designed so that no local buckling

is possible prior to the general buckling of the column. This condition

requires that the critical buckling stress of the plate elements be

equal to or greater than the critical buckling stress of the column.

On this basis, the design recommendation against local buckling of

flat elements are:

1) For the outstanding leg of the perforated plate at the per-

foration

Lfor -: -< 60
r -

and

for L > 60
r

where

b
l

= width of outstanding leg at perforation

t = thickness of cover plate

d = width of restraining flange plate

s = thickness of restraining flange plate

L = column length

r = radius of gyration of column

2) For the cover plate between perforations the following relation-

and

ships should be used:

w/t = 48 - l2(td/sw)2 for L < 60
r -



wIt = [0.80 - 0.20(td/sw)2](L)
r

for ~ > 60
r
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where w is the width of cover plate. Other symbols are previously

defined.

Recommendation for the shape and spacing of perforations were also

given in Reference 9. It was pointed out that elliptical or ovaloid

holes with their long axis in the direction of the column axis seem to

be the best suited.

However, no direct answer to the problem of stress concentration

caused by the perforation was given in this reference. The analytical

study is supported by test results.

D. Stability of Perforated Plates

The investigation of the stability of perforated plates seem to

have been initiated by Levy, Woolley, and Kroll (25) in 1947, under the

direction of the National Bureau of Standards. An energy method for

determining the compressive buckling load of a simply supported elastic

square plate having a central circular hole reinforced by a circular

doubler plate and without reinforcement was presented. The energy

method of Timoshenko (26) for determining the buckling load of rectangu-

lar plates of constant thickness under compressive loads was found to

be applicable to plates of variable thickness.

Using the energy method, a numerical procedure was developed for

estimating the buckling stress of simply supported square plates with

circular holes and doubler plate reinforcement. The analysis indicated

that the buckling stress of a square plate is reduced by a small amount

due to the presence of unreinforced holes. For the cases considered,
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the greatest reduction, for a square plate with a hole diameter 0.5

times the width of the plate was found to be 14 percent. The critical

buckling stress for a simply supported square plate,as presented by

Timoshenko (26),was compared with the critical buckling stress of a

square plate with unreinforced holes, having a diameter of 1/8, 1/4

and 1/2 of the width of the square plate. The result shows that the

reduction in buckling load to be only 1, 4, and 14 percent respectively.

Computations indicated that reinforcement by the doubler plate

will cause a marked increase in the buckling stress. The buckling

stress seems to be insensitive to change in shape of reinforcements

for a given volume.

In 1952, Kumai (27) applied the energy method to perform approxi

mate calculations for the critical load of a square plate with a central

circular hole subjected to edge compression, in which he used a more

reasonable assumption on the deflection pattern of the perforated

plate than previous investigators. Moreover, the critical loads

were computed for three cases, i.e., simply supported edge, clamped

edge, and clamped edge with the second mode of buckling. The experi

mental observations on the critical loads for all cases mentioned above

were carried out by model analysis.

From this investigation, the conclusions can be drawn as follows:

1. As the diameter-to-width ratio increases, the critical load,

for the case of the perforated, simply supported square plate,decreases.

The theoretical and experimental values of the critical load, for a

diameter-to-width ratio of 0.5,are 75 and 70 percen~ respectively. The

theoretical value of Levy (22) for the same case is 86 percent.
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2. The minimum critical load exists for a diameter-to-width

ratio of 0.2. For this case, the critical load ratio is 87 percent

for the case of clamped edge with the fundamental buckling mode. When

the diameter-to-width ratio exceeds 0.2, the critical load increases,

and when the diameter of holes reaches to about 34 percent of the

wid~ £he critical load is almost equal to the load of a plate having

no perforation. After the diameter-to-width ratio exceeds this point,

the value of critical load increases rapidly.

Up to 1964, theoretical analyses concerning the elastic buckling

of a simply supported square plate were based on the case of uniform

edge loading along two parallel edges. This approach was considered

to be impractical by Schlack (28) because a uniform load does not

normally occur in practice due to the relative stiffness of the

supported edges of the plate compared to its weakened central portion.

The uniform edge displacement approach utilizing the Ritz energy

method was used by Schlack to determine the critical edge displacement.

Displacement functions assumed for the three components of

middle surface displacements was studied and the results being that the

solutions without singular term was found to be valid for small holes

up to 3/10 of the plate width. Excellent agreement between the experi

mental and theoretical buckling was presented which justifies the

critical edge displacement approach.

In a paper presented by Yoshiki, Fojita, and others (29), the

instability of plates with a circular hole supported at all edges and

subjected to compressive forces was studied. The case investigated was

a square plate with a circular central hole subjected to edge thrust
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simply supported along all edges. The effect of position of the

circular hole was also studied.

The buckling loads were determined by the ~2-method and are

calculated by the energy method. It was proved theoretically and

experimentally that the ~2-method is valid. Theoretical and experi-

mental results showed reasonable agreement.

A method of solution for the complicated buckling problems of

elastic plateswas presented in a paper by Kawai and Ohtsubo (30).

This method utilized the finite element method to determine the initial

stress distribution. Using this distribution the well known Rayleigh

Ritz procedure was used to determine the critical stress.

The method was applied to determine the critical buckling stress

of simply-supported perforated square plates with various boundary

conditions. The results were compared with the results of others.

To the knowledge of the author, Hull (31) is the first to deter

mine the elastic critical buckling stress of a square plate with a

central square perforation. He used the "stability coefficient matrix"

method with the finite element approach.

Hull's paper extended the stability coefficient matrix method to

determine the theoretical critical elastic buckling loads for plates

having non-uniform and unknown membrane stresses.

The examples given by Hull (31) indicated that the stability

coefficient matrix method can be applied to determine critical buckling

loads for plates having unknown in-plane stresses with reasonable

accuracy. However, no experimental results were used to verify the

elastic critical buckling stress of the square plate with a square
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perforation.

Theoretical and experimental results on the compressive buckling

of perforated plate elements was presented by Vann (32).

The results of this study indicated that unless a central

unflanged hole is fairly large, it will have a very small effect on

the buckling load, and that a flange hole can be expected to increase

the buckling load greater than the buckling load of an unpierced plate.

E. Shear Buckling of Perforated Plates and Members

To understand more fully the effect of reinforcements in strengthen

ing and stabilizing the structure around a hole, Kroll (33) in 1949

made a theoretical investigation of the stability of simply supported

square plates with reinforced and unreinforced holes subjected to shear

loading.

The critical shear buckling stresses were determined for five

plates with diameter-to-width ratios of 1/8 and 1/4 using the energy

method formulation presented in Reference 25.

The value given by Timoshenko and Gere (26) for a plain simply sup

ported square plate subjected to shear loading was compared with the

results of this investigation. For unreinforced holes of diameter-to

width ratio of 1/8 and 1/4, the buckling stresses was reduced by 0.2 and

22.6 percent, respectively. Reinforced holes increased the critical

buckling stresses from 55 to 334 percent higher than that for a plate with

the same size unreinforced hole.

Rockey, Anderson, and Cheung (34) conducted a theoretical and

experimental study of the buckling and collapse load of shear webs

having plain and reinforced holes of diameter-to width ratios from
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0.0 to 1/2.

The finite element method was used for the determination of the

critical shear buckling load. Due to symmetry, only one-quarter of

the square plate was used. In this study, 56 elements were used for

the idealization. For a plain square plate clamped along all edges,

the finite element solution value for k was found to be equal to 13.28

as compared with the exact value of 14.71.

The experimental investigation was conducted on shear panels.

These panels were restrained along the edges by very stiff members to

ensure uniform restraint. The shear panels were tested in a universal

testing machine by applying a tensile force across a diagonal. The

buckling load was determined with the aid of dial gages.

The experimental data is shown to be in good agreement with the

theoretical data.

Yoshiki, Fojita, and others (29) also studied the case of an

I-beam supported at both ends and loaded by a concentrated load

at the center, so that the web of the I-beam was subjected to simple

shear and would buckle mainly due to the shearing stress.

The 62-method was also used to determine the critical load. It

was proved theoretically and experimentally that the 6 2-method is

valid for shear buckling.

F. Web Crippling

Zetlin (35) presented a theoretical analysis of the stability of

a plate supported at both ends and loaded over a portion of one of the

edges. The plate edges were simply supported. The total edge load

was applied along the top edge and was distributed over a small width.
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The buckling loads of the flat rectangular plates were obtained by

using the governing partial differential equations with variable

coefficients and application of the energy method.

Results of calculations have been reduced to curves suitable for

design purposes. These curves are given for a wide range of plate

dimensions and loading widths. The theoretical results are compared

with a number of tests.

An extensive experimental investigation on the crushing strength

of thin steel webs was conducted by Winter and Pian (36). This in

vestigation gives the results of 136 web crushing tests carried out

on 18 different types of beams under a variety of loading conditions.

The results of these tests are given in terms of two empirical equa

tions. These equations predict the crushing strength of webs with

reasonable accuracy.

The specimens used in the tests consisted of double and single

webs. Loads were applied over different bearing widths by means of

steel plates. The ultimate load of each specimen was the only observa

tion recorded.

Evaluation of the results indicated that the web depth has no

influence on the crushing strength and a factor of safety of 2.5 may be

used in applying the empirical equation to the design of thin-walled

steel structures.

G. Current Design Provisions for Steel Sections with Perforations

To the author's knowledge, only six specifications and design

guides are generally used for the analysis and the design of perforated

shapes. Each of these specifications will be discussed in the following
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paragraphs. Figure (2) shows the pertinent dimensions used in the

specifications.

The design suggestions included in the Column Research Council

Guide (1) for columns with perforated plates were derived from the

AASHO Specification (3) and based mainly on a study by White and

Thurlimann (9). The design suggestions are:

1. The perforations may be ovaloid, circular, or

elliptical

2. (c-a) > d

3. A and I based upon the net section

4. If a/rf ~ 20, and a/rf < L/3rx ' the permissible load can

be determined by the appropriate specification column

stress applied to the column net section.

5. The net area of web at the perforation should be sufficient

to resist lin times the transverse shear force, where n is

the number of perforated plates.

6. The wit ratio should conform to specification requirement for

plates in main compression members.

The AASHO Specification (3) design suggestions are:

1. a/m ~ 2

2. (c-a) > d

3. The clear distance between the end perforation and the end of

the cover plate shall not be less than 1.25 times the distance

between points of supports.

4. The point of support shall be the inner line of fasteners or

fillet welds connecting the perforated plate to the flanges.
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5. The periphery of the perforation at all points shall have

a minimum radius of 1-1/2 inches.

The AREA Specification (4) design suggestions are:

1. Perforations shall be ovaloid or elliptical

2. a ~ 2m, a/rf < 20, a/r
f

< L/3r.

3. (c-a):: d

4. Thickness of perforation cover plate:

t ~ d/50, t ~ b/12

5. Splices are permitted with limitations

6. The gross section of the plate through the perforation shall

be considered as a part of the area of the member.

The foregoing design suggestions are all based in part on the

results of extensive experimental investigations sponsored by the

National Bureau of Standards, and engineering judgement.

The design suggestions given by the AISC Specification (2) are also

based on the results of National Bureau of Standards results and

engineering judgements. The design suggestions are:

1. Width-to-thickness ratio at access holes is not greater than

317/10
y

2. aim < 2

3. (c-a) > d

4. The periphery of the holes at all points shall have a minimum

radius of 1-1/2 in.

There are no design provisions in the AISI Specification (10)

for the design of cold-formed steel sections with perforated elements.

When section with perforated elements are used, special tests must be
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Specification for design information.

A comparison of the design suggestion of the previous guide and

specifications is given in Welding Research Council Bulletin (41)

Rack Manufacturer's Institute Guide (5) gives design information

for design of industrial steel storage racks. Section II-C of this

guide gives design suggestions for rack posts with perforations.

The foregoing design provisions pertain primarily to the design

of perforated plates loaded in compression.

Suggested design guides for beams with web holes was proposed by

the Subcommittee on Beams with web openings of the Task Committee

on Flexural Members of the Structural Division (38). The proposed

design guides are relatable to the AISC Specification.

In Ref. 38, guides are given for both allowable-stress design and

maximum strength design for members with unreinforced web holes. The

design criteriaweIE developed from the results of numerous tests.

Buckling criteria is presented, but conservative because of inadequate

theoretical and experimental data on the buckling of members with un

reinforced web holes.

28
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III. LOCAL BUCKLING AND POST-BUCKLING STRENGTH OF
PERFORATED STIFFENED COMPRESSION ELEMENTS

A. Analytical Investigation

An analytical method for describing the structural behavior of

stiffened compression elements (compression elements stiffened along

both longitudinal edges) with perforations must consider the buckling

behavior and post-buckling strength of the component elements. These

two subjects will be discussed separately as follows:

1. Local Buckling

Critical buckling loads for perforated plates have been studied

by Levy, Woolley, and Kroll (25), Kumai (27), Schlack (28), Yoshiki,

Fujita, and others (29), Kawai and Ohtsubo (30), and Hull (31) using

the energy method and the finite element method. Since 1964, considera-

tion has been given to two different approaches, i.e., the uniform

displacement approach and the uniform stress approach.

The uniform displacement approach is based on determining the

critical edge displacement of a plate under uniform edge displacement

and the uniform stress approach is based on determining the critical edge

stress of a plate under uniform edge stress.

The uniform displacement approach was used by Schlack (28) in

his study of buckling of perforated square plates. It has been pointed

out that the uniform displacement approach is more practical than the

uniform stress approach used by Levy, Woolley, and Kroll (25) and

Kumai (27) because a uniform load does not normally occur in practice

due to the relative stiffness of the supported edges of the plate as

compared to its weakened central portion.
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a. Simply Supported Square Plate Having a Central Circular Hole

For a simply-supported square plate having a central circular

hole, the critical buckling stress may be determined by Eq. 4a, as

shown below

(J =cr 2 2
12(1-1l )(w/t)

(4a)

where k is the buckling coefficient for a perforated plate having a
c

central circular hole. The value of k varies with the d/w ratioc

(d being the hole diameter and w being the overall width of the plate).

According to the method of Kawai and Ohtsubo (30), the relationship be-

tween the buckling coefficient, k , and the d/w ratio is shown in
c

Fig. 3, in which the uniform stress approach and the uniform displace-

ment approach indicates that when the diameter of a hole is small as

compared with the width of plate, the buckling load of the plate is

reduced by only a small amount due to the presence of a hole. In

Fig. 4a, the actual stress distribution along the loaded edges is

shown for a plate with a large hole. From this figure, it can be

readily seen that when a hole is considerably large in size, it may be

assumed that the applied load is carried by two narrow unstiffened

strips along the side boundaries as shown in Fig. 4b. For this reason,

different structural behavior should be expected for plates having

different sizes of holes. Kawai and Ohtsubo (30) suggested a value

of d/w = 0.7 as the limiting value, above which the applied load of a

circular perforated plate is assumed to be carried by two unstiffened strips.
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b. Simply Supported Square Plate Having a Central Square Hole

The determination of the buckling coefficient for a simply-supported

square plate having a central square hole was accomplished by using a

finite element program. The finite element program used was a modified

version of Yang (40). This finite element program of Yang was formulated

for the stability analysis of doubly curved thin shell structures. Stiff-

ness equations are formulated in representation of the elastic instabil-

ity behavior of a doubly-curved thin shell element. The element is in the

form of a shell of translation of constant thickness and constant princi-

pal radii of curvature. Modification of this finite element program con-

sist of representation of the shell element as a plate element and where

holes are to be represented, elements were deleted completely.

Due to geometric symmetry, only one-quarter of the square plate was

used in the analysis. The idealization of the one-quarter plate for

the cases of h /w ratios (h being the width of the square hole) of 0.0,
s s

0.25, and 0.5, consist of 16, 15, and 12 square elements respectively.

The idealization for the case of h /w of 0.0 is shown in Fig. 5. Elements

16 is deleted from the analysis for the case of h Iw of 0.25 and elementss

11, 12, 15, and 16 are deleted from the analysis of the case of h /w ofs

0.50. The boundary freedoms deleted in this finite element solution are

noted in Table I, all other degrees of freedom are not restrained from

movement. The coordinate system used in this analysis is shown in Fig. 5.

The z axis is perpendicular to the x-y plane and 8x ' 8y ' and 8 z are ro

tations about the x,y, and z axes respectively. Critical buckling loads

were calculated for all three cases. The calculated buckling load for

the case of h /w = 0.0 was compared with the theoretical buckling
s

load. This comparison shows the calculated value to be
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approximately 10 percent lower than the theoretical value.

The buckling coefficient ratio, k Ik (k is the buckling coefficients so so

for a solid plate and k is the buckling coefficient for a perforated plates

having a central square hole), was obtained by comparing the buckling

loads of perforated plates with the buckling loads of the plate having

a h Iw ratio of 0.0 as shown in Table II. The results of this analysiss

are compared with the finite element analysis of Hull (31) as shown

in Fig. 6.

Applying the analogy used for large circular holes, where the

applied load is carried by two narrow unstiffened strips along the side

boundaries, a limiting value from this analogy suggests a limiting

value of h Iw = 0.5 be used for plates with large square holes.
s

A comparison of Figs. 3 and 6 is shown in Fig. 7. This comparison

indicates that if the diameter of a circular hole is the same as the

width of a square hole, the buckling load for the perforated plate

having a square hole is less than that for a perforated plate having a

circular hole. This is due to the difference in stress concentration

and the shape of the two difference types of holes.

2. Post-Buckling Strength

As discussed in Part B of Chapter III, thin plates will not fail

at the local buckling load, but will continue to carry additional

load due to the post-buckling strength. The post-buckling strength

can easily be determined by the well known "effecti.ve width" concept,

which is to replace the non-uniform stress distribution which occurs

after exceeding the stability limit of the plate by two rectangular

blocks as shown in Fig. 1. In this figure, the solid line is the actual

stress distribution over the entire width of the element, and the
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dashed line represents the equivalent uniform stress distribution.

For thin plates without holes, Equation 10 developed by Winter (15)

has long been used by AISI as the basis for determination of the

effective width for stiffened compression elements:

(10)

where b = effective width of the stiffened compression element

t = thickness of steel

E = modulus of elasticity

f = maximum edge stressmax

w = overall width of the element

In 1968, Equation 10 was slightly modified as shown in Equation 11 (38):

b = 1. 9t jf E [1 - 0.415 (~) jf E ]
max max

(11)

For unstiffened compression elements, the effective width may be

determined by using Equation 12 (15) even though this equation has not

been directly used in the AISI Specifications:

b - 0.8t j f E [1 - 0.202~) j f E J
max max

(12)

With regard to perforated plates, previous discussion on local

buckling indicated that the structural behavior of perforated plates

is affected by the size and shape of holes. Consequently, different

equations should be used for plates having circular and square holes

in different sizes.
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The previous discussion on local buckling indicated the buckling

behavior to be different depending on the value of the d/w ratio.

For the range of d/w of 0 to 0.7, the buckling behavior of the perforated

plate is similar to that of a stiffened compression element, therefore

Eq. 11 may be modified to determine the effective width in this range.

The buckling behavior of plates with a d/w ratio equal to or greater than

0.7 was found to behave like two separate and identical unstiffened

compression elements, therefore Eq. 12 may be modified to determine the

effective width in this range.

Modified equations for computing the effective width must take

in account the size of perforation and satisfy the suggested boundary

conditions. The effective width equation for stiffened compression

elements with circular perforations, Eq. 13, is the modified equation.

This equation satisfies the boundary conditions at d/w = 0 and 0.7

and is identical to Eq. 11 for d/w - o. Also, the modified equation

is equal to the modified unstiffened equation for d/w = 0.7. The

effective width equation for unstiffened compression elements, Eq. 12

is modified by replacing w by w', where w' = w-d/2 and the resulting

equation for b is multiplied by 2.0. Eqs. 13 and 14 are the modified

equations for the two ranges discussed.

o < ~ < 0.7
w -

b = 1.9t J/ (lmax
d [ t- 0.226 - ) 1 - 0.415(---d)w w-

jfE (1 - 0.0379 ~)]
max

(13)
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~~ 7o.
w

b = 1.6t j E [1 _ O.202(-.l!.) j E ]
f w-d fmax max

(14)

The foregoing derivations were concerned with only the development

of equations for computing the effective width based on the d/w ratio.

Another factor affecting the effective width is the wit ratio. The

limiting width-thickness ratio (w/t)lim for the range of d/w = 0 to 0.7,

is determined by equating b=w in Eq. 13. (w/t)l" can be computed as
1m

follows:

(15)

in the above,

a = 1.9(1-0.226 ~)
c w

8
c

= 0.788(1-0.226 ~)(1-0.0379 ~)/(l -~)
w w w

The limiting width-thickness ratio, (w/t)l" for the range d/w > 0.7
1m -

is 63.3/~
max

elements.

This value is used by AISI for unstiffened compression

Upon examining Eq. 15, a limiting value for d/w can be obtained by

equating the discriminant in Eq. 15 to zero as follows:

2
a -48 = 0
·c c

making the proper substitutions,
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d/w = 0.11

The addition of the above range of d/w indicates that three ranges

of d/w may be used. On the basis of d/w ratios, the following equa-

tions may be used to determine the effective width of perforated

stiffened compression elements having circular holes: (39)

(A) ~ < 0.11
w -

1. wit < (w/t)lim

b = w (16)

2. wit> (w/t)l"
1m

b = 1.9t J/
max

d [ t(1-0.226 -) 1-0.415(-)
w w-d

(B)

j / (1-0.0379 ~)]
max

0.11 < ~ < 0.7
w

w-dUse Equation 13 provided that --- >
2t

63.3
';-f-

max

(13)

If w-d <
2t

63.3

~max

(C)

b = w - d

d > 0.7
w -

(17)

1.
w-d-->

2t
63.3

I-f-
max



2.

b - lo6t JfE ~-0.202(w=~)
max [

_w_-_d < _6.:...;3;...;;._3
2t-~

max

Use Equation 17

(14)
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where d is the diameter of circular holes, b, t, E, f and w were
max

previously defined.

Based on Equations 13,14,16, and 17, the influence of size of

circular holes on the effective width of stiffened compression elements

can be shown in Fig. 8.

For perforated plates having square holes, a study of local

buckling indicated that a value of 0.5 may be used for the specific
h

s ratio, beyond which the applied load can be assumed to be carried
W

by two narrow unstiffened strips. Consequently, Equations 18 to 21

may be used for the determination of the effective width of perforated

stiffened compression elements having square holes (39):

(A) !!. < 0.11
w -

1. wIt < (wl t)lim

b = w (18)

2. wit > (wIt) I'
~m

b = lo9t j fE (1-0.316 ~JI-0.415(W~h)
max L

j / (1-0.053 ~~
max J (19)



w-h
If __s < 63.3

2t -~
max

(B)

(C)

h
o.11 < --!! < O. 5

w
w-h

U E . 19 id d h S 63.3se quat~on prov e t at -z;- >
~max

b = w - hs
h
....2..>05.
w -

(20)
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b = 1.6t j fE r-0 •202 (...£L)
max w-h

s

w-h
__s_ < 63.3

2t -.;r-
max

1.

2.

w-h
__s_ >

2t
63.3

~max

JE] (21)

Use Equation 20

where h
s

is the width

(w/t)lim = (22)

h
a = 1.9(1-0.316 ....2..)

s w

h h h
S = 0.788(1-0.316 ~)(1-0.053 ....2..)/(1 - ~)

s w w w
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Other symbols were previously defined.

It should be noted that Equations 13 and 19 are the modified

formulas for stiffened compression elements, while Equations 14 and 21

are based on the formula for the effective width of two narrow unstiffen-

ed elements along side boundaries. When "d" or "h II is equal to zero
s

(i.e., for solid plates), Equations 13 and 19 will be identical to

Equation 11.

B. Experimental Investigation

In order to properly verify the effect of holes on the buckling

load and the post-buckling strength of the perforated stiffened elements

as discussed in the analytical investigation, short colunm tests and

beam tests have been conducted in the laboratory of the Department of

Civil Engineering to cover the following parameters:

a) Shape of holes: circular and square holes

b) Overall width-to-thickness ratio: 36.6 to 73.8

c) Hole opening-to-overall width ratio (d/w or h /w):
s

o to 0.722

d) Yield point of steel: 34.4 to 59.3 ksi

The experimental investigation and the evaluation of the results

of tests will be presented in this section. The discussion deals with

the preparation and testing of the specimens. The critical buckling

strains and the post-buckling strength of stiffened compression ele-

ments are analyzed and presented.

1. Colunm Tests

a. Fabrication of Test Specimens

Twenty-eight short column specimens were tested in this study.

The members were selected to give a practical range of the design param-

eters used for perforated stiffened compression elements.
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Test specimens were fabricated by connecting two C-shaped channels

through the simple lips by ten 1/4" ¢ bolts. Dimensions of the test

specimens are listed in Tables III and IV and the cross section of test

specimensis shown in Fig. 9. Each C-shaped channel (6-1/2 x 2-1/2 in.,

nominal size) was cut to a length of 20 in. in accordance with the

Appendix on Compression Testing of the AISI Specification (10). At

the center of each stiffened element, a 1/4-in. hole was drilled.

Next, each specimen was unfastened for ease in making the perforation.

To further assure that the perforations would be centered and true in

shape, 1/4 in. thick plates, machined circular and square were fasten

ed to the stiffened element by 1/4 in. ¢ bolts. Circular and square

holes were then cut in the stiffened element by a sabre saw. After

all perforations were cut, paired C-shaped channels were then re

fastened. Both ends of specimens were ground flat and parallel,

and were perpendicular to the longitudinal axis.

b. Location of strain gages

To properly make the precise measurements required in this type

of an investigation, 1/4 in. foil strain gages were used. Paired

strain gages were placed as close as practicable to the edge of the

perforation. These paired strain gages were used to determine the

critical buckling strains. The single strain gages located at the

edge were used for centering the specimen and determining the post

buckling strength. For determining the critical buckling strains for

the unperforated specimens, paired strain gages were located at mid

height along the centerline of the stiffened element. The strain

gage locations are shown in Fig. 9.
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c. Mechanical Properties

The mechanical properties of steel were determined by using

tensile specimens cut from the center of the unused stiffened elements.

All tensile specimens complied with ASTM Designation A 370-68 (42).

The average values obtained from these tests were used. The mechanical

properties of the steel test specimens are given in Table V.

d. Test Procedure

All column specimens were tested in the 200,000 pound Tinius Olsen

universal testing machine in the flat end condition. Specimens were

placed between two machined plates to insure complete bearing over the

entire area. The test set-up is shown in Fig. 10.

To insure concentric loading, centering of the specimens was

accomplished by using the strain gages located at four corners. During

loading, small increments of load was applied. For each increment,

the load was applied to the desired level, the load and strain gage

readings were recorded and printed out on tape using a 40-channel

Data Acquisition System. Dial gages were used for measurements of

lateral deflection and axial deformation of specimens.

e. Discussion of Results

Based on the results obtained from the short column tests, the

critical buckling strain was determined by using the modified strain

reversal method (19,20). This was done by the application of a pair of

strain gages placed on both sides of the stiffened element along both

edges of perforations. The critical strain was taken as the maximum

compressive strain on the convex side of the buckled stiffened element.

Fig. 11. illustrates a typical load-strain diagram. The buckling
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coefficient ratios were computed from the critical loads as listed

in Table XI and VII. The buckling coefficient ratios for specimens

with circular holes are compared favorably with the uniform stress

approach as shown in Fig. 12. For specimens with square holes~ the

buckling coefficient ratios are close to the theoretical values deter

mined by the modified finite element formulation of Yang (40) as

shown in Fig. 13.

With regard to the post-buckling strength of the perforated stiffen

ed compression elements, the effective width was computed on the

basis of the tested ultimate loads and listed in Table VIII. For a

direct comparison of the test results with the results of Winter and

Sechler (15), the effect of corner properties as proposed by Karren

(43) was neglected. Therefore in the calculation of effective widths,

it was assumed that the stresses in lips, corners, and the 2-1/2 in.

stiffened elements reached to the yield point of steel because their

width-thickness ratios are less than the governing limits for local

buckling and are therefore fully effective. In Fig. 14. the values

of the effective width determined from the column tests are compared

with the results obtained by Winter and Sechler (15).

For test specimens with the wit ratio of 64.8, Fig. 14 indicates

that the test data is in close agreement with the straight-line equation

proposed by Winter (15). Test results of specimens with the wit ratio

of 36.6 are a little conservative when compared with the straight-line

equation. This conservatism can be attributed to neglecting the true

corner properties.
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The difference in failure modes between members with small and

large holes can readily be seen in Fig. 15. The failure mode for the

specimen with the smaller hole is less pronounced than the failure

modes for the specimens with the larger holes.

2. Beam Tests

a. Fabrication of Test Specimens.

Eight beam specimens were tested in this study. The beam specimens

used in the test program were track sections. Dimensions of beam test

specimens are listed in Table IX and shown in Fig. 16. Each track section

was cut to a length of 100 inches. Circular holes ranging from 1 to

4 inches in diameter were cut in the stiffened compression flanges by

Greenlee punches.

b. Location of Strain Gages

1/4-in. foil strain gages were used for determining the critical

buckling strains and the post-buckling strength. For the perforated speci

men, 15 strain gages were used. Paired strain gages for determining the

critical buckling strains were placed close to the edge of the perforation

and along the centerline of the specimen. Strain gages were also placed

at the edge of the stiffened compression flange, on the unstiffened lip,

and on the specimen webs. Strain gage locations are shown in Fig. 16.

c. Mechanical Properties

Tensile tests were conducted to determine the mechanical properties

of the steel specimens. The tensile specimens complied with ASTM

Designation A 370-68 (42). Average values of the mechanical properties

obtained from these tests were used. The mechanical properties

of steel test specimens are also given in Table V.
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d. Test Procedures

The 10,000 pound Tinius Olsen beam testing machine was used to

test all beam specimens. Fig. 17 shows the set-up of beam test. The

specimens were loaded at the quarter points of the span as shown in

Fig. 16. This quarter point loading provided a constant bending

moment in the center half of the beam, thereby providing a uniformally

compressed stiffened compression flange. Bearing plates were provided

at load points and reactions to prevent premature failure by web crip

pling.

During loading strain gage readings were recorded and printed

out on tape by the Data Acquisition System. Deflections were measured

at midspan by dial gages located under each tension flange.

e. Discussion of Results

The buckling loads and bulking coefficient ratios were determined

from the results of tests by using the modified strain reversal method.

These values are listed in Table X and compared with the analytical

results as shown in Fig. 12. The beam test results also compared

favorably with the uniform stress approach.

The effective width was determined from the loads and measured

strains. First, the position of the neutral axis was determined from

the strain readings. With the neutral axis known, the effective width

was calculated from the condition that, in pure bending, the sum of

the axial forces equals zero:

fA adA = 0 (23)
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Knowing the effective width and the location of the neutral axis. the

internal bending moment was calculated:

fA aydA = M (24)

The moment calculated by Eq. 24 provides a check on the computed

effective width. Verification of the method for determining the

effective width was obtained by comparing the calculated moments and

the experimental moments. The results obtained from this investigation

are also compared with the test results of Winter and Sechler in

Fig. 14.

With regard to the verification of the tested yield moments, Eq. 13

and 14 were used to compute the effective widths of the compression

flanges. Good agreement between the computed yield moments and the

tested values were obtained. The comparison is shown in Table XI.

A comparison of the beam-test centerline deflections are shown

in Table XII for different load levels. This comparison indicates

that a beam having a single perforation. regardless of the d/w ratio

has essentially the same deflection. A load deflection curve is shown

in Fig. 18. The straight line is the calculated elastic deflection for

the full section. The experimental load deflection curve in linear for

small loads and becomes non-linear at larger loads. The shape of the

load deflection curve is caused primarily by local buckling. For any

particular load level. the calculated elastic deflection underestimates

the experimental deflection. This illustrates very clearly the

necessity for an analysis method taking this difference into account.
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For determining the deflection of a beam having a single hole,

the effective cross-sectional area may be determined using the unper-

forated section. For a beam with multiple holes, deflection may be

conservatively determined by using the appropriate modified effective

width equation derived in the analytical section to calculate the

effective cross sectional area.

This study does not take in the effect of multiple holes. Multiple

holes will affect the effective width depending on the hole spacing.

Current design specifications and guides discussed in Part G of

Chapter II are based on extensive experimental investigation and

engineering judgement, indicate that the effective width is not affected

as long as the clear distance between perforations is equal to or

greater than the flat width.

According to the AISC design provision (2), the limiting width

thickness ratio, (~)lim' for perforated cover plates is equal to 317/~.

w wWhen the -t ratio of a steel plate is less than or equal (-)1. , the net
t lom

width of the plate at the perforation is to be taken as being fully

effective. Effective widths are computed for test specimens with cir-

cular perforations on the basis of the limiting width-thickness ratio

and the modified effective width equations. A comparison of the com-

puted effective widths and the AISC effective width is given in Table XII]

Good agreement has been obtained for

comparison can be made for specimens

wvalues of - less
t

with values of ~
t

w
than ("t)lim"

greater than

No

The above discussion indicates that design provisions presently

being used are limited and pertains primarily to heavy steel sections.
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The modified effective width equations may be used for a practical

range of width-thickness ratios.

C. Summary

Based on this investigation, the following summary on stiffened

compression elements with circular and square holes may be made from

the analytical and experimental results:

1. The presence of holes may reduce the buckling load of the

stiffened compression elements.

2. The reduction of buckling load of the stiffened compression

elements is more pronounced for square holes than for

circular holes due to the difference in stress concentration

and the shape of holes.

3. Test data indicated that for stiffened compression elements

with circular holes, the uniform stress approach may be

used to predict the buckling load.

4. Winter's effective width equation for solid plates can be

modified for determination of the effective width of perforated

stiffened elements.

5. Even though the buckling load for the perforated stiffened

elements is affected more by the square holes than circular

holes, the post-buckling strength of the elements with

square and circular holes are found to be nearly the same if

the diameter of a circular hole is the same as the width of

a square hole.
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IV. BEHAVIOR OF UNSTIFFENED COMPRESSION ELEMENTS
WITH CIRCULAR PERFORATIONS

In order to properly describe the structural behavior of unstiffen-

ed compression elements (compression flange with only one longitudinal

edge stiffened) with circular perforations, the buckling behavior

must first be known. Previous investigations (15,19,20,41) of plain

unstiffened elements indicated that local distortions of the unstiffened

element severly limited their service load capacity, particularly for

elements with large width-thickness ratios.

Based on these established results of plain unstiffened compression

elements, this study deals primarily with the experimental determination

of the critical buckling stresses for structural members with circular

perforated unstiffened elements. An analytical study was also conducted

to determine the critical buckling stresses for an unstiffened plate

with square perforations.

A. Analytical Investigation

The modified finite element program discussed in Chapter III was

used in this study to determine the critical buckling stresses for an

unstiffened plate with a central square perforation. The unstiffened

plate was idealized by using 16 square elements as shown in Fig. 19.

Only one-half of the plate was used in the finite element analysis

due to geometric symmetry. The idealization for the case of h Iw of
s

0.0 is shown in Fig. 19. For the case of hs/w of 0.5, elements

7,8,11,12 were deleted from the analysis.

The boundary conditions prescribed are based on the displacement

functions given by Timoshenko and Gere (26). The displacement

functions are:



w = f(y) i
mlTxs n-

a
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f(y) = A sinh ay + B sin Sy

The boundary freedoms deleted in this solution are noted in Table XIV.

All other degrees of freedom are not restrained from movements.

The critical buckling coefficient, k, for the case of h /w = 0.0
s

was calculated to be 0.655 as compared with the theoretical value of

0.698 given by Timoshenko and Gere (26). This comparison shows the

calculated value to be about 7 percent lower than the theoretical

value. Since the purpose of this investigation is to determine the

reduction of the critical buckling stress due to a perforation, only

relative values of the critical buckling stresses are of primary

interest.

Stress reduction factor, S.R.F., was calculated by comparing

the critical buckling stress of a perforated plate with the critical

buckling stress of an unperforated plate. The results of this analy-

tical investigation are verified by the experimental investigation.

B. Experimental Investigation

To determine the effect of holes on the buckling strength,

eighteen short column tests have been conducted to cover the following

parameters:

a) Width-to-thickness ratio: 10.7 to 27.4

b) Hole opening to overall width ratio (d/w): 0 to 0.30

c) Yield point of steel: 59.7 psi

d) Column length: 6.0 in. to 12.0 in.
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The experimental investigation and the analysis of the results

of tests will be presented and discussed. The discussion will cover

the fabrication and testing of the specimens and determination of the

critical strains and stresses.

1. Fabrication of Test Specimens

Test specimens were fabricated by connecting identical channels

placed back-to-back. Dimensions of the test specimens are listed in

Table XV and the test specimen cross-section is shown in Fig. 20.

The lengths for all three series of test specimens are determined in

accordance with the Appendix on Compression Testing of the AISI

Specification (10). After channels were cut to the required lengths,

identical channels were fastened back-to-back by 5/32" in diameter

steel rivets spaced 1-1/2 in. apart. Next, circular perforations were

drilled at the center of all four unstiffened compression elements.

2. Location of Strain Gages

Paired foil strain gages, 1/4-in. long were placed as close as

possible to the edge of the unstiffened flange adjacent to the

perforation. Fig. 20 also shows the strain gage locations. These

paired strain gages were used for centering the specimen and determin

ing the critical buckling strains.

3. Mechanical Properties

Tensile tests were conducted to determine the mechanical proper

ties of steel used in this investigation. All tensile specimens com

piled with ASTM designation A 370-69 (42). The average value of the

yield point was found to be 59.7 ksi
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4. Test Procedure

All specimens were tested in the 200,000 pound Tinius-Olsen

universal testing machine in the flat end condition in the same manner

as stiffened compression elements.

Loads and strain gage readings were recorded by a 40-channel Data

Acquisition System.

5. Discussion of Results

Waving of the perforated unstiffened compression elements of the

test specimens were observed. For unstiffened elements with large

width-thickness ratios, waving was observed at loads as low as one-half

of the failure load. For unstiffened compression elements with small

width-thickness ratios, waving was observed just prior to the failure

load.

Figure 21 shows three photographs of the same test specimen

under different magnitudes of load. The width-thickness ratio of the

unstiffened compression elements of the test specimen shown in the

photographs was 27.4. A visual inspection of Fig. 21 indicates that

the test specimen was initially imperfect. The unstiffened elements

started developing waves prior to the critical buckling stress. These

waves were more pronounced in the vicinity of the hole. Waving

became more pronounced as loading continued. When the failure load

was reached, the unstiffened elements wave spread into the web and

the specimen collasped. The failure load was approximately 3 times

the experimental critical buckling load. The behavior described is

typical of structural members which contain perforated unstiffened

compression elements.
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Stress reduction factors were introduced in the analytical in-

vestigation as a means for determining the effect of a hole on the

buckling stresses, therefore stress reduction factors are also used in

this study.

Experimental stress reduction factors were derived on the basis of the

experimental study. The critical buckling strain was determined by

using the strain reversal method (19,20) as described in Chapter III.

The critical buckling loads and stresses were computed from the

critical strains.

Test designed to determine the critical buckling stresses are

quite prone to experimental scatter. The scatter of the experimental

data can be attributed to initial imperfections, residual stresses,

and difficulty in obtaining ideal edge support conditions.

The experimental stress reduction factors, qu~are given in

Table XVI and are compared with the analytical stress reduction

factors in Fig. 22. It can readily be seen in Fig. 22 that the ex-

perimental reduction factors for circular perforated unstiffened com-

pression elements ave in agreement with the analytical stress reduction

factors of the square perforated unstiffened plate. The experimental

reduction factors are:

1. When the design stress is based on yielding

d= (1 - - )
w

2. When the design stress is based on local buckling

= (1 - 0.80 ~ )w

(25)

(26)
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Equation 25 is based on the reduction in cross sectional area and

Equation 26 is derived from the experimental investigation.

Design criteria for plain unstiffened compression elements is given

in the AISI Specification (10). The three equations represent the be-

havior of unstiffened compression elements in the yield, inelastic buck-

ling, and elastic buckling ranges. Width-thickness ratios are used to

define these ranges. Equations 27, 28, and 29 are the AISI design

equations for unstiffened compression elements.

1- For wit ratio not greater than 63.3/~y

F = 0.60 F (27)c y

2. For wit ratio greater than 63.3/~ but not greater thany

l44/~
y

F = F [0.767 - (2.64/l03)(w/t) IF] (28)c y y

3. For wit ratio greater than l4411P- but not greater than 25.
y

F = 8,000/(w/t)2
c

4. For wit ratio from 25 to 60

For angle struts

F = 8,000/(w/t)2
c

For all other sections

F = 19.8 - 0.28 (wit)c

where

(29)

(30)

(31)

F = maximum allowable compression stress on an unstiffened
c

element

F = yield point
y

Based on the results obtained from the analytical and experimental

investigations, the present AISI design Equations 27, 28, 29, 30 and 31

may be modified to take in account the effect of a circular hole. The
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stress reduction factor based on the experimental investigation are used

to modify the design equations. The modified equations are:

1. For wIt ratio not greater than 63.3/~
y

F = 0.60 F (q )c y uy (32)

2. For wIt ratio greater than 63.3/~ but not greater than
y

l44/1F
y

Fc = Fy [0.767-(2.64/l03)(~)/Fy ] (qub) (33)

3. For wIt ratio greater than l44/1F but not greater than 25
y

F = 8,000
(qub)c (wit) 2

4. For wIt ratio from 25 to 60

For angle struts

F = 8,000 (q )
c (wIt) 2 ub

For all other sections

F = [19.8 - 0.28(w/t)] (qub)c

(34)

(35)

(36)

C. Sunnnary

The following sunnnary may be made for unstiffened compression

elements with circular holes based on the analytical and experimental

results:

1. The critical buckling load of unstiffened compression element

may be reduced due to the presence of holes.

2. Present AISI design equations may be modified by using a

stress reduction factor.
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V. BUCKLING BEHAVIOR OF WEBS HAVING A CIRCULAR HOLE

A. General

During the past several years, researchers (44,45,46,47) have

studied the influence of the presence of holes in plates subjected to

shear. Even though much analytical data is available for determining

the changes in the stress distribution due to the presence of a hole,

it was not until the advent of the computer along with the finite

element method that a rigorous analytical solution to the complex

shear buckling of web with perforations problem could be obtained.

Analytical and experimental investigations on the behavior of

perforated shear webs have been conducted by Kawai and Ohtsubo (30),

Kroll (33), and Rockey (34). Kroll (33) conducted only an analytical

investigation. The results of the analytical investigation are

shown in Fig. 23, in which the experimental results were found in

good agreement with the analytical investigations.

The experimental investigation by Rockey, Anderson and Cheung (34)

involved the testing of plates rather than structural members. Hot-

rolled sections were used in the experimental study of Kawai and Ohtsubo

(30). In developing design procedures applicable to cold-formed steel

members, it is desirable to conduct tests of cold-formed members to

determine the effect of the presence of a hole on the critical buckling load.

B. Experimental Investigation

1. Fabrication of Test Specimens

Twelve tests have been conducted for the range of hIt ratios from

66.2 to 99.5 and for d/h ratios from 0 to 0.504. Each specimen was

fabricated by first, cutting the channels to the required length.
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Paired channels were then placed back-to-back and temporarily fastened.

Holes, 1/4-in. in diameter were drilled in the center of the webs at

the quarter points, so that the perforations of each channel would be

aligned properly with each other. The channels were unfastened and

the perforations were cut in the webs. Identical channels were next

placed back-to-back and fastened together with 5/32" in diameter steel

rivets, Fig. 20 shows the cross-section of specimens. The dimensions

of test specimens are given in Table XVII.

2. Test Procedures

Each specimen was tested in the 200,000 pound Tinius Olsen universal

testing machine as a simply-supported beam loaded at the center of the

span as shown in Fig. 24, To prevent premature failure by web crippling,

steel bearing plates were provided at load points.

At small increments of loading, web lateral deflection readings

were recorded by dial gages.

3. Discussion of Results

The critical buckling load was determined by using dial gages and

the experimental method employed by Rockey (34) was applied. In this

method, the buckling load is defined by the intersection of the two

tangents drawn to the load lateral deflection plot as shown in Fig. 25.

The critical loads obtained by this method are shown in Table XVIII.

The experimental results are compared with the analytical result

of Kawai and Ohtsubo (30), Kroll (33), and Rockey (34). As shown in

Fig. 23, it can be seen that the presence of holes will reduce the

shear buckling load. The test data correlated better with the analy

tical solution for the simple support condition.
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Based on the test data plotted in Fig. 23, Eq. 33 is the derived

load reduction factor, q , for shear buckling in the elastic and in
s

elastic ranges.

q = (1.0 - 1.1 d/h)s (35)

where d is the diameter of holes and h is the clear distance between

flanges measured along the plane of the web.

The present design equations used by AISI (10) for shear buckling

in the elastic and inelastic ranges are shown below. The elastic

and inelastic ranges are defined by the hit ratio.

=

1. For

F
v

hit not greater than 547/;ry
152;r-

h/tY with a maximum of 0.40 Fy (36)

2. For hit greater than 547/;r
y

F =v
83200

(h/t)2
(37)

where F = maximum allowable average shear stress on the gross
v

area of the flat web.

The experimental results indicated that holes will reduce the shear

buckling load and that the reduction in load may be determined by using

the load reduction factor, q. Based on the previous statemen4 it
s

seems feasible to modify the present design Equations 36 and 37 used

by AISI (10) for shear buckling in the elastic and inelastic ranges.

The modified equations are:

O < d < 0 5h - •



1- For hIt no greater than 5471IFy

F" = l52fFY ( ) with a maximum of 0.40 Fv hIt qs Y

2. For hIt greater than 5471IFy

Fv = 83,200
(qs)

(h/t)2

(38)

(39)
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C. Summary

The following conclusions can be made for perforated shear

webs.

1.

2.

Holes may reduce the critical web buckling load.

Stress reduction factor, q , may be used for shear bucklings

in the elastic and inelastic ranges.

3. Present AISI design equations may be modified by using a

load reduction factor.
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VI. CRIPPLING STRENGTH OF PERFORATED WEBS

A. General

When thin-walled steel members with perforated webs are subjected

to concentrated loads, failure occurs primarily by the local weakening

of the web adjacent to the load. Previous investigation (36) of the

crippling strength of plain webs indicated that a theoretical investi

gation of the crippling strength is extremely complex, since an

analysis would have to account for:

a) the non-uniform distribution of stresses in the web,

b) elastic and plastic instability due to the non-uniform

distribution of stresses,

c) local yielding in the immediate region of the application of

load, and

d) web bending produced by eccentric application of the load

caused by the curved transition from web to bearing flange.

With the presence of a hole, the analysis becomes even more complex.

Due to the complexity of the problem of web crippling, an

experimental investigation has been carried out to determine the

effect of holes on the crippling strength of perforated webs.

B. Experimental Investigation

In this investigation, twenty tests have been conducted to

cover the following parameters:

a) Shape of holes: circular and square holes

b) Overall height-to-thickness ratio: 66.7 to 101

c) Hole opening to overall height ratio: 0 to 0.642

d) Yield point of steel: 59.7 to 70.7
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1. Fabrication and Testing of Specimen

Test specimens were composed of either back-to-back channels or

two C-shaped channels connected through the simple lips as shown in

Fig. 26. At the center of each specimen, a single hole was cut in

the web. Test specimen dimensions are given in Tables XIX and XX.

The test were confined to the loading condition of a beam that

is continuous over interior supports and/or subject to concentrated

load. This condition was simulated as shown in Fig. 27. The bearing

length, N, was held constant at 3.5 in. The 200,000 pound Tinius-Olsen

universal testing machine was used to test all specimens. Loads were

transmitted from the machine to the steel bearing plates by a roller as

shown in Fig. 27. The ultimate loads at which the specimens failed are

the only recorded results. Ultimate loads are list~d in Tables XXI and

XXII.

2. Discussion of Results.

To properly evaluate the test results, test values of specimens

with plain webs were compared with the results of an extensive experi

mental investigation of Winter and Pian (36). For test specimens

composed of back-to-back channels, the test values were lower than the

values of the case of a beam having a single unreinforced web. This

can be attributed to thin narrow flanges of the test specimens, which

provide essentially no restraint against the rotation of the web. How-

ever, the reduction of load-carrying capacity due to the presence of holes

can be obtained by comparing the relative test results. Test values for

specimens composed of C-shaped channels were found to be higher than the

case of a beam having a single unreinforced web. Comparison of the test

results with the test values of Winter and Pian (36) is given in Table XXIII.
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Bending of the webs out of the vertical plane was unavoidable in

the tests. This was caused by slight eccentricity of the applied load

with respect to the plane of the specimens, for which the corners were

rounded at the web-flange intersection.

The results obtained from the twenty test specimens indicated

that the presence of a hole in a web reduces the web crippling load.

Load reduction factors were derived for steel members with circular

and square perforations. Load reduction factors were derived by

comparing the ultimate loads of perforated webs with the ultimate

load for plain webs. Figures 28 and 29 show the load reduction factors

versus the perforation opening-to-web height ratio for members with

circular and square holes respectively.

The results of tests discussed above prOVide the background in-

formation on development of the following reduction factors to be

used for web crippling:

For webs having circular perforations and when

o < d/h < 0.5

q = (1.0 - 0.6 d/h)
wcc

For webs having square perforations and when

o < h /h < 0.642
s

(40)

(41)



(42)
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A comparison of the foregoing equations and the test data shown

in Figs. 28 and 29 indicates that the reduction of the web crippling

load is more pronounced for square holes than circular holes.

Design equations for plain webs are given in the AISI Specifica-

tion (10) for the test loading condition and are summarized below:

1. Beams having single unreinforced webs for reactions of interior

supports or for concentrated loads located anywhere on the span:

For inside corner radius equal to or less than the thickness

of sheet

P = t 2 [30S+2.30(N/t)-0.009(N/t) (h/t)-O.S(h/t)] x
max

[1.22-0.22(F /33)](F /33)
y Y

For other corner radii up to 4t, the value P given by themax

above equation is to be multiplied by

(1.06 - 0.06 R/t)

For corner radii larger than 4t, tests shall be made in

accordance with Section 6.

2. For I-beams made of two channels connected back-to-back or

for similar sections which provide a high degree of restraint

against rotation of the web, such as I-sections made by welding

two angles to a channel.

For reactions of interior supports or for concentrated load

located anywhere in the span.

Pmax
= t 2F (6.66 + 1.446/N7t )

y
(43)

Pmax
is the load or reaction for one solid web. N is the

actual length of bearing.
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Based on the results obtained from the experimental investigation,

Equations 42 and 43 may be modified to account for the effect of a

hole using the load reduction factors derived. The modified equations

for webs with circular holes are:

o < ~ S 0.5

1. Beams having single unreinforced webs for reactions of interior

supports or for concentrated loads located anywhere on the span:

For inside corner radius equal to or less than the thickness

of sheet

P = t
2

[305+2.30(N/t)-0.009(N/t) (h/t)-0.5(h/t)] xmax

[1.22-0.22(F /33)](F /33){o } (44)
y y vcc

2. For I-beams made of two channels connected back-to-back or

for similar sections which provide a high degree of restraint

against rotation of the web, such as I-sections made by welding

two angles to a channel.

For reactions of interior supports or for concentrated load

located anywhere in the span.

Pmax t 2F (6.66+1.4461N!t ){q }y wcc (45)

For webs with square holes, the modified equations are:

o < h /h < 0.642
s -

1. Beams having single unreinforced webs for reactions of interior

supports or for concentrated loads located anywhere on the span:

For inside corner radius equal to or less than the thickness

of sheet

P = t 2[305+2.30(N/t)-0.009(N/t) (h/t)-0.5(h/t)] xmax

[1.22-0.22(F /33)](F /33){o }
y y vcs (46)



64

2. For I-beams made of two channels connected back-to-back or

for similar sections which provide a high degree of restraint

against rotation of the web, such as I-sections made by welding

two angles to a channel.

For reactions of interior supports or for concentrated load

located anywhere in the span.

P = t 2 (6.66+1.4461N/t){Q }max vcs

C. Summary

(47)

The following conclusions can be made for perforated webs subjected

to failure by web crippling.

1. Holes may reduce the ultimate loads of perforated webs.

2. The stress reduction, ~c' is greater for a web having a square

hole than a web with a circular hole providing hs/h ratio is

the same as the d/h ratio.

3. Present AISI design equations may be modified by using a

stress reduction factor.

4. The modified equations pertain to the loading case for reactions

of interior supports or for concentrated loads located anywhere

on the span.

D. Stability of Perforated Plate Subjected to Equal and Opposite

Point Loads

An analytical study of the elastic stability of a simply-supported

plate loaded at the center by equal and opposite point loads was con-

ducted. The modified finite element program discussed in Chapter III,

was used in this study. The simply-supported plate was idealized by

using 16 square elements as shown in Fig. 30. Due to geometric

symmetry, only one-quarter of the plate was used in the analysis. For
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the case of h /h of 0.25, element 16 was deleted from the analysis.s

Elements 11, 12, 15 and 16 were deleted for the case of h /h of 0.50.
s

No elements were deleted for the case of h /h of 0.0. Deleted boundary
s

freedoms are noted in Table XXIV. Other degrees of freedom are not

restrained.

For the case of h /h = 0, the critical buckling coefficient was
s

calculated to be 6.66 as compared with the theoretical value of 6.00

given by Yamaki (48). The calculated buckling load is about 11 percent

higher than the theoretical value. Only relative values of the critical

buckling loads are of primary interest, since the purpose of this in-

vestigation is to determine the load reduction due to the presence of

a hole.

Load reduction factors, q b ' were computed by comparing the critiw s

cal buckling load for a perforated web with the critical load for plain

webs. The critical buckling loads and load reduction factor are given

in Table XXV.

The case studied is somewhat impracticable, since a point load

does not normally occur in practice. For the case of a simply supported

plate subjected to equal and opposite locally distributed loads, which

is more practicable, the critical buckling load may be determined

by using Fig. 31.
t

The finite element solution was for the case of - = 0 as shown in
a

Fig. 31. The load reduction factors, q b ' obtained in this analysisw s

are shown in Fig. 29 with the experimental results. Inspection of

Fig. 29 reveals that the trend of the analytical results is in good
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VII. SUMMARY AND CONCLUSIONS

The objective of this investigation was to investigate the

structural behavior of beams and columns with perforated elements and

to develop design recommendations for use by engineers.

Summary and design recommendations are presented based on the

investigations in Chapters III through VI.

A. Local Buckling and Post-Buckling Strength of Perforated

Stiffened Compression Elements

The buckling behavior and post-buckling strength of perforated

stiffened compression elements was investigated analytically and

experimentally.

The study on the critical buckling loads of perforated plates

indicated that perforations reduce the buckling load of stiffened

compression elements. Reduction of the critical buckling load was

found to be more pronounced for square holes than for circular holes.

This reduction was attributed to the difference in stress concentration

and the shape of holes. Test results for stiffened compression ele

ments with circular holes compared favorably with the uniform stress

approach. Therefore, the uniform stress approach may be used to

predict the critical buckling load.

The post-buckling strength of stiffened compression elements with

perforations was investigated. The comprehensive experimental investi

gation consisted of testing short columns and beam members. The

results of these tests were compared with the experimental results of

Winter and Sechler (15). Based on the well defined results for plain

stiffened compression elements and the study on perforated stiffened
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compression elements, Winter's effective width equation for plain

plates was modified for the determination of the effective width

of circular and square perforated stiffened elements. Post-buckling

strength of elements with circular and square holes were found to

be nearly the same if the diameter of a circular hole is the same

as the width of a square hole, even though the buckling behavior is

quite different.

B. Behavior of Unstiffened Compression Elements with Circular

Perforations

Critical buckling stresses for perforated unstiffened compression

elements was determined analytically and experimentally. A series of

tests on short compression members containing unstiffened elements was

performed. The results of these tests indicated that for design of

cold-formed steel members with circular perforated unstiffened com

pression flanges, the modified design equations developed in this study

may be used.

C. Buckling Behavior of Webs Having a Circular Hole

An experimental investigation was conducted to determine the effect

of a hole on the critical buckling load. This investigation involved

the testing of structural members instead of plates.

The test data was compared with the analytical results of other

authors and was found to be in good agreement. The test data correlated

best with the analytical solution for the simple support condition.

Test data indicated that for determination of the shear buckling load

in the elastic and inelastic ranges, a load reduction factor,

qs' may be used for designing webs with a circular hole. A
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modified equation for use in design of perforated shear webs is

presented.

D. Crippling Strength of Perforated Webs

The reduction in crippling strength of perforated webs was determined

experimentally. Tests were confined to the loading condition of a

beam that is continuous over interior supports and/or subject to

concentrated load. Test results were verified by comparing the results

of plain webs with results of early studies of crippling strength of

plain webs.

Based on the results of the test, reduction factors for web crip-

pIing were derived for use in the design of square and circular

perforated webs. The reduction factors were used in modifying present

AISI design equations to take into account the effect of circular and

square holes.

Critical buckling loads were determined analytically for a

simply supported plate subjected to equal and opposite point loads

at the center. Load reduction factors, q b ' were derived and compared
w s

favorably with the trend of the load reduction factor, q •
wcc
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Figure 27. Crippling Test Loading Condition
for I-Beams
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Table I. Stiffened Compression Plate Boundary Conditions

Node No. x y z e e 8x y z

1 ( 1) 2 ( 3) 4 5 6
2 ( 7) 8 ( 9) 10 11 12
3 (13) 14 (15) 16 17 18
4 (19) 20 (21) 22 23 24
5 (25) (26) (27) 28 29 30
6 31 32 (33) 34 35 36
7 37 38 39 40 41 42
8 43 44 45 46 47 48
9 49 50 51 52 53 54

10 55 (56) 57 (58) 59 60
11 61 62 (63) 64 65 66
12 67 68 69 70 71 72
13 73 74 75 76 77 78
14 79 80 81 82 83 84
15 85 (86) 87 (88) 89 90
16 91 92 (93) 94 95 96
17 97 98 99 100 101 102
18 103 104 105 106 107 108
19 109 110 111 112 113 114
20 115 (116) 117 (118) 119 120
21 ( 121) 122 (123) 124 125 126
22 (127) 128 129 130 (131) 132
23 (133) 134 135 136 (137) 138
24 (139) 140 141 142 (143) 144
25 (145) (146) 147 (148) (149) (150)

( ) Deleted freedoms
Refer to Fig. 5
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Table II. 'Buckling Coefficient Ratio for a Simply Supported
Square Plate Having a Central Square Hole

Plate hs
h Pcrs

ks/\oDimensions In. w kips

40"x40"xO.l" 0.00 0.00 2.408 1.000

40"x40"xO.l" 10.00 0.25 1.840 0.764

40"x40"xO.l" 20.00 0.50 1.590 0.660
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Table III. Dimensions and Sectional Properties of Column Specimens
with Circular Perforations

Specimen D B LD w t d w w-d A L- - In. 2In. In. In. In. In. In. t t In.

FTFP-1 6.50 2.50 1.125 6.0932 0.094 0.0 64.8 64.8 2.4638 19.85
FTFP-2 6.40 2.50 1.375 5.8612 0.160 0.0 36.6 36.6 4.2192 19.85
FTFC-1 6.50 2.50 1.125 6.0932 0.094 1.30 64.8 51.0 2.2198 19.85
FTFC-2 6.50 2.50 1.125 6.0932 0.094 2.60 64.8 37.2 1.9758 19.85
FTFC-3 6.50 2.50 1.125 6.0932 0.094 3.90 64.8 23.35 1.7318 19.85
FTFC-4 6.40 2.50 1.375 5.8612 0.160 1.30 36.6 28.5 3.8032 19.85
FTFC-5 6.40 2.50 1.375 5.8612 0.160 2.60 36.6 20.4 3.3872 19.85
FTFC-6 6.40 2.50 1.375 5.8612 0.160 3.90 36.6 12.25 2.9712 19.85

Notes:

R = Inside corner radius = 0.1094 in. for all specimens
FTFP = Specimens with no perforations
FTFC = Specimens with circular perforations

Refer to Fig. 9
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Table IV. Dimensions and Sectional Properties of Column Specimens
with Square Perforations

Specimen D B LD w t h w w-h A L- -
In. 2In. In. In. In. In. In. t t In.

FTFS-1 6.50 2.50 1.125 6.0932 0.094 1.30 64.8 51.0 2.2198 19.85
FTFS-2 6.50 2.50 1.125 6.0932 0.094 2.60 64.8 37.2 1. 9758 19.85
FTFS-3 6.50 2.50 1.125 6.0932 0.094 3.90 64.8 23.35 1.7318 19.85
FTFS-4 6.40 2.50 1.375 5.8612 0.160 1.30 36.6 28.5 3.8032 19.85
FTFS-5 6.40 2.50 1.375 5.8612 0.160 2.60 36.6 20.4 3.3872 19.85
FTFS-6 6.40 2.50 1.375 5.8612 0.160 3.90 36.6 12.25 2.9712 19.85

Notes:

R = Inside corner radius = 0.1094 in. for all specimens
FTFS = Specimens with square perforations

Refer to Fig. 9
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Table V. Mechanical Properties of Steel Test Specimens

Average Mechanical
t F F Properties

Specimen y u

In. Ksi. Ksi. Fy Fu E1ong.*
Ksi. Ksi. Percent

1 0.094 34.00 50.00
2 0.094 35.10 50.20 (34.4) (50.4) (32.5)3 0.094 33.50 51.10
4 0.094 35.10 50.30

5 0.160 43.20 56.60
6 0.160 40.70 57.00 (41.9) (57.3) (25.0)7 0.160 41.80 57.10
8 0.160 41.80 58.30

9 0.075 58.70 74.00
10 0.075 60.20 72 .50 (59.3) (72.9)11 0.075 58.70 72 .50
12 0.075 59.70 72 .80

* Based on a 2 in. gage length
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Table VI. Experimental Buckling Coefficient Ratio for
Column Specimens with Circular Perforations

d d
P k

Specimen cr c
In. w Kips kco

FTFP-l 0.00 0.000 61.00 1.000
FTFC-lA 1.30 0.213 55.50 0.910
FTFC-lB 1.30 0.213 55.00 0.900
FTFC-2A 2.60 0.426 54.00 0.886
FTFC-2B 2.60 0.426 50.67 0.031
FTFC-3A 3.90 0.639 38.00 0.624
FTFC-3B 3.90 0.639 47.50 0.779

Table VII. Experimental Buckling Coefficient Ratio for
Column Specimens with Square Perforations

h h P k
Specimen s cr s

In. w Kips kso

FTFP-l 0.00 0.000 61.00 1.000
FTFS-IA 1.30 0.213 48.50 0.795
FTFS-IB 1.30 0.213 49.00 0.803
FTFS-2A 2.60 0.426 41.00 0.672
FTFS-2B 2.60 0.426 42.50 0.697
FTFS-3A 3.90 0.639 37.00 0.607
FTFS-3B 3.90 0.639 39.50 0.650
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Table VIII. Tested Ultimate Loads and Computed Effective
Widths Based on Short Column Tests

Area d or h Ultimate
b*Specimen t Load

In. In. 2 In. In.Kips

FTFP-1A 0.094 2.4638 0.00 69.8 3.781
FTFP-1B 0.094 2.4638 0.00 70.0 3.812
FTFC-1A 0.094 2.2198 1.30 68.2 3.533
FTFC-1B 0.094 2.2198 1.30 67.5 3.425
FTFC-2A 0.094 1. 9758 2.60 66.0 3.193
FTFC-2B 0.094 1. 9758 2.60 67.7 2.992
FTFC-3A 0.094 1. 7318 3.90 61.4 2.482
FTFC-3B 0.094 1.7318 3.90 61.8 2.544
FTFS-1A 0.094 2.2198 1.30 68.1 3.518
FTFS-1B 0.094 2.2198 1.30 70.0 3.812
FTFS-2A 0.094 1. 9758 2.60 65.6 3.131
FTFS-2B 0.094 1.9758 2.60 64.9 3.023
FTFS-3A 0.094 1.7318 3.90 59.4 2.173
FTFS-3B 0.094 1. 7318 3.90 60.5 2.343

FTFP-2A 0.160 4.2192 0.00 179.8 6.952
FTFP--2B 0.160 4.2192 0.00 181.8 7.101
FTFC-4A 0.160 3.8032 1.30 169.0 6.146
FTFC-4B 0.160 3.8032 1.30 172 .1 6.377
FTFC-5A 0.160 3.3872 2.60 155.5 5.138
FTFC-5B 0.160 3.3872 2.60 156.8 5.235
FTFC-6A 0.160 2.9712 3.90 148.1 4.586
FTFC-6B 0.160 2.9712 3.90 149.0 4.653
FTFS-4A 0.160 3.8032 1.30 166.3 5.922
FTFS-4B 0.160 3.8032 1.30 167.2 6.011
FTFS-5A 0.160 3.3872 2.60 156.4 5.205
FTFS-5B 0.160 3.3872 2.60 152.3 4.899
FTFS-6A 0.160 2.9712 3.90 144.0 4.280
FTFS-6B 0.160 2.9712 3.90 143.2 4.220

* For the 0.160 inch thick specimens, the computed effective
width is greater than the actual width.
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Table IX. Dimensions and Properties of Beam Specimens
with Circular Perforations

Specimen D B LD w d w w-d Span,L
In. In. In. In. In. t t In.

FCS-1 6.00 2.50 0.50 5.538 0.00 73.8 73.80 88.00
FCS-2 6.00 2.50 0.50 5.538 1.00 73.8 59.20 88.00
FCS-3 6.00 2.50 0.50 5.538 2.50 73.8 40.50 88.00
FCS-4 6.00 2.50 0.50 5.538 4.00 73.8 20.50 88.00

Notes: R= Inside corner radius = 0.156 in. for all specimens

t - 0.075 for all specimens

Refer to Fig. 16

Table X. Experimental Buckling Coefficient Ratio for
Beam Specimens with Circular Perforations

d d Pcr k
Specimen c

In. w Kips Kco

FCS-1 0.00 0.000 1.150* 1.000*
FCS-2A 1.00 0.181 1.100 0.957
FCS-2B 1.00 0.181 0.950 0.826
FCS-3A 2.50 0.451 0.900 0.783
FCS-3B 2.50 0.451 1.050 0.913
FCS-4A 4.00 0.722 1.000 0.870
FCS-4B 4.00 0.722 1.000 0.870

* Average of two tests
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Table XI. Comparison of the Computed and Tested Yield MOments

Computed Tested
M

Specimen
Yield Moment Yield Moment comp
M In.-K Mt ' In.-K Mcomp' est test

FCS-1A 20.65 21.55 0.96
FCS-1B 20.65 21.85 0.95
FCS-2A 20.42 21. 70 0.94
FCS-2B 20.42 21.80 0.94
FCS-3A 19.94 21.10 0.95
FCS-3B 19.94 20.80 0.96
FCS-4A 18.31 19.45 0.94
FCS-4B 18.31 19.80 0.92

Table XII. Comparison of Centerline Deflections for
Beam Tests
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Table XIII. Comparison of Effective Widths

AISC 1 AISC 2Limiting Value Specimen Effective Width Computed

Specimen for bAISC Effective Width bAISC
. w b. bw -

(-t-) lim t In. In.

FrFP-l 54.0 64.8 -- 4.26
FrFC-1 54.0 64.8 -- 3.94
FTFC-2 54.0 64.8 -- 3.33
FTFC-3 54.0 64.8 -- 2.29

FTFP-2 49.0 36.6 5.86 5.66 1.03
FTFC-4 49.0 36.6 4.56 4.74 0.96
FTFC-5 49.0 36.6 3.26 3.41 0.96
FTFC-6 49.0 36.6 1.96 1.96 1.00

FCS-l 41.0 73.8 -- 2.78
FCS-2 41.0 73.8 -- 2.58
FCS-3 41.0 73.8 -- 2.21
FCS-4 41.0 73.8 -- 1.50

1 (..J!-) = 317//F
t lim Y

2 Computations based on modified effective width equations.
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Table XIV. Unstiffened Compression Plate Boundary Conditions

Node No. x y z e e ex y z

1 ( 1) 2 ( 3) ( 4) ( 5) 6
2 ( 7) 8 ( 9) 10 ( 11) 12
3 (13) 14 (15) 16 ( 17) 18
4 (19) 20 (21) 22 (23) 24
5 (25 ) (26 ) (27) 28 (29) 30
6 31 32 (33) (34) 35 36
7 37 38 39 40 41 42
8 43 44 45 46 47 48
9 49 50 51 52 53 54

10 55 (56 ) 57 58 (59) 60
11 61 62 (63) (64) 65 66
12 67 68 69 70 71 72
13 73 74 75 76 77 78
14 79 80 81 82 83 84
15 85 (86) 87 88 (89) 90
16 91 92 (93) (94 ) 95 96
17 97 98 99 100 101 102
18 103 104 105 106 107 108
19 109 110 III 112 II. 3 114
20 115 (116) 117 118 (119) 120
21 121 122 (123) (124) 125 126
22 127 128 129 130 131 132
23 133 134 135 136 137 138
24 139 140 141 142 143 144
25 145 (146 ) 147 148 (149 ) 150

( ) Deleted freedoms

Refer to Fig. 19
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Table XV. Dimensions of Unstiffened Elements Test Specimens

Specimen
D F t w

wIt
d

dlw L
In. In. In. In. In. In.

UCE 1 4.187 0.75 0.060 0.643 10.7 0.000 0.00 6.0
UCE 2 4.187 0.75 0.060 0.643 10.7 0.000 0.00 6.0
UCE 3 4.187 0.75 0.060 0.643 10.7 0.096 0.145 6.0
UCE 4 4.187 0.75 0.060 0.643 10.7 0.096 0.145 6.0
UCE 5 4.187 0.75 0.060 0.643 10.7 0.193 0.300 6.0
UCE 6 4.187 0.75 0.060 0.643 10.7 0.193 0.300 6.0

UCE 7 6.187 0.75 0.048 0.655 13.65 0.000 0.00 6.5
UCE 8 6.187 0.75 0.048 0.655 13.65 0.000 0.00 6.5
UCE 9 6.187 0.75 0.048 0.655 13.65 0.098 0.150 6.5
UCE 10 6.187 0.75 0.048 0.655 13.65 0.098 0.150 6.5
UCE 11 6.187 0.75 0.048 0.655 13.65 0.196 0.300 6.5
UCE 12 6.187 0.75 0.048 0.655 13.65 0.196 0.300 6.5

UCE 13 4.187 1. 75 0.060 1.643 27.40 0.000 0.000 12.0
UCE 14 4.187 1. 75 0.060 1.643 27.40 0.000 0.000 12.0
UCE 15 4.187 1. 75 0.060 1.643 27.40 0.265 0.161 12.0
UCE 16 4.187 1. 75 0.060 1.643 27.40 0.265 0.161 12.0
UCE 17 4.187 1. 75 0.060 1.643 27.40 0.500 0.304 12.0
UCE 18 4.187 1. 75 0.060 1.643 27.40 0.500 0.304 12.0

Note: R = Inside corner radius = 0.047 in. for all specimens
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Table XVI. Experimental Critical Buckling Loads and
Stress Reduction Factor, qub

exp

p qub qub
Specimen d/w cr exp qub qubKips exp

UCE 2 0.00 16.500* 1.000 1.000 1.000
UCE 3 0.145 13.000 0.788 0.884 1.120
UCE 4 0.145 13.000 0.788 0.884 1.120
UCE 5 0.300 12.000 0.727 0.760 1.045
UCE 6 0.300 13.000 0.788 0.760 0.963

UCE 8 0.00 18.100* 1.000 1.000 1.000
UCE 9 0.150 17.150 0.947 0.880 0.928
UCE 10 0.150 14.200 0.785 0.880 1.120
UCE 11 0.300 13.250 0.732 0.760 1.035
UCE 12 0.300 14.400 0.796 0.760 0.954

UCE 14 0.00 8.929* 1.000 1.000 1.000
UCE 16 0.161 7.575 0.848 0.871 1.025
UCE 17 0.304 7.325 0.820 0.757 0.923
UCE 18 0.304 8.925 0.999 0.757 0.757

* Average of two identical tests
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Table XVII. Shear Buckling Test Specimens Dimensions

Specimen
D F t d h d/h L
In. In. In. In. In. In.

SB 1 4.187 1. 75 0.060 0.00 3.973 0.00 15.00
SB 2 4.187 1. 75 0.060 0.00 3.973 0.00 15.00
SB 3 4.187 1. 75 0.060 1.00 3.973 0.252 15.00
SB 4 4.187 1. 75 0.060 1.00 3.973 0.252 15.00
SB 5 4.187 1. 75 0.060 2.00 3.973 0.504 15.00
SB 6 4.187 1. 75 0.060 2.00 3.973 0.504 15.00

SB 7 6.187 0.75 0.060 0.00 5.973 0.00 20.00
SB 8 6.187 0.75 0.060 0.00 5.973 0.00 20.00
SB 9 6.187 0.75 0.060 1.50 5.973 0.25 20.00
SB 10 6.187 0.75 0.060 1.50 5.973 0.25 20.00
SB 11 6.187 0.75 0.060 3.00 5.973 0.50 20.00
SB 12 6.187 0.75 0.060 3.00 5.973 0.50 20.00

Notes: h = The web height
R = Inside corner radius = 0.047
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Table VXIII. Experimental Shear Buckling Loads and Shear
Buckling Reduction Factor, qsexp

P' qs qs
Specimen d/h cr qs

Kips exp qs
exp

SB 2 0.00 4.975* 1.000 1.000 1.000
SB 3 0.252 4.175 0.840 0.723 0.860
SB 4 0.252 4.500 0.905 0.723 0.798
SB 5 0.504 2.175 0.437 0.446 1.020
SB 6 0.504 2.075 0.417 0.446 1.065

SB 7 0.00 3.825* 1.000 1.000 1.000
SB 9 0.251 2.850 0.745 0.724 0.971
SB 10 0.251 2.825 0.738 0.724 0.981
SB 11 0.502 2.125 0.555 0.448 0.808
SB 12 0.502 2.150 0.562 0.448 0.788

* Average of two identical tests
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Table XIX. Dimensions of Web Crippling Test Specimens
with Circular Perforations

Specimen D F t h d d/h
L

In. In. In. In. In. In.

WC 1 6.187 0.75 0.060 5.973 0.00 0.00 12.00
WC 2 6.187 0.75 0.060 5.973 0.00 0.00 12.00
WC 3 6.187 0.75 0.060 5.973 1.00 0.167 12.00
WC 4 6.187 0.75 0.060 5.973 1.00 0.167 12.00
WC 5 6.187 0.75 0.060 5.973 2.00 0.334 12.00
WC 6 6.187 0.75 0.060 5.973 2.00 0.334 12.00

WC 7 4.187 1. 75 0.060 3.973 0.00 0.00 8.00
WC 8 4.187 1. 75 0.060 3.973 0.00 0.00 8.00
WC 9 4.187 1. 75 0.060 3.973 1.00 0.252 8.00
WC 10 4.187 1. 75 0.060 3.973 1.00 0.252 8.00
WC 11 4.187 1. 75 0.060 3.973 2.00 0.504 8.00
WC 12 4.187 1. 75 0.060 3.973 2.00 0.504 8.00
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Table XX. Dimensions of Web Crippling Test Specimens
with Square Perforations

Specimen D B LD t h hs hs/h
L

In. In. In. In. In. In. In.

WC 13 6.50 2.50 1.125 0.060 6.071 0.00 0.000 19.85
WC 14 6.50 2.50 1.125 0.060 6.071 0.00 0.000 19.85
WC 15 6.50 2.50 1.125 0.060 6.071 1.30 0.214 19.85
WC 16 6.50 2.50 1.125 0.060 6.071 1.30 0.214 19.85
WC 17 6.50 2.50 1.125 0.060 6.071 2.60 0.428 19.85
WC 18 6.50 2.50 1.125 0.060 6.071 2.60 0.428 19.85
WC 19 6.50 2.50 1.125 0.060 6.071 3.90 0.642 19.85
WC 20 6.50 2.50 1.125 0.060 6.071 3.90 0.642 19.85

Note: R = Inside corner radius = 0.1094 in. for all specimens
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Table XXI. Experimental Ultimate Loads and Ultimate Load Reduction
Factor, q for Web Crippling Specimens with Circular
Perforati~g~exp

P qwcc qwcc
Specimen d/h u1t qwcc

Kips exp qwcc
exp

we 2 0.00 5.530* 1.000 1.000 1.000
WC 3 0.167 5.440 0.983 0.900 0.916
WC 4 0.167 5.100 0.922 0.900 0.976
we 5 0.334 4.340 0.785 0.800 1.020
WC 6 0.334 4.270 0.772 0.800 1.035

WC 8 0.00 6.190* 1.000 1.000 1.000
WC 9 0.252 5.170 0.835 0.849 1.015
WC 10 0.252 5.090 0.823 0.849 1.030
WC 11 0.504 4.850 0.784 0.698 0.892
WC 12 0.504 4.670 0.755 0.698 0.925

* Average of two identical tests



Table XXII. Experimental Ultimate Loads and Ultimate Load Reduction
Factor, qwcs for Web Crippling Specimens with Square
Perforationsexp

P qwcs qwcs
Specimen h /h u1t qwcs

s Kips exp qwcs
exp

WC 14 0.000 8.375* 1.000 1.000 1.000

WC 15 0.214 6.750 0.805 0.835 1.035

WC 16 0.214 6.900 0.824 0.835 1.010

we 17 0.428 5.750 0.686 0.670 0.977

we 18 0.428 5.650 0.675 0.670 0.993

we 19 0.642 4.950 0.591 0.505 0.854

we 20 0.642 4.450 0.531 0.505 0.950

* Average of two identical tests
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Table XXIII. Comparison of Test Results with Results
of Winter and Pian (36)

Experimental Winter & Pian
Test Specimen Pu1t PultKips

Kips

WC-2 5.530 6.680

WC-8 6.190 7.04

WC-14 8.375 6.26
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Table XXIV. Boundary Conditions for Perforated Plate

Node No. x y z e e ex y z

1 ( 1) 2 ( 3) ( 4) ( 5) 6
2 ( 7) 8 ( 9) 10 (11) 12
3 (13) 14 (15) 16 (17) 18
4 (19) 20 (21) 22 ( 23) 24
5 (25) (26) (27) 28 (29) 30
6 31 32 (33) ( 34) 35 36
7 37 38 39 40 41 42
8 43 44 45 46 47 48
9 49 50 51 52 53 54

10 55 (56) 57 58 (59) 60
11 61 62 (63) ( 64) 65 66
12 67 68 69 70 71 72
13 73 74 75 76 77 78
14 79 80 81 82 83 84
15 85 (86) 87 88 ( 89) 90
16 91 92 (93) ( 94) 95 96
17 97 98 99 100 101 102
18 103 104 105 106 107 108
19 109 110 111 112 113 114
20 115 (116) 117 118 (119) 120
21 (121) 122 (123) (124) 125 126
22 (127) 128 129 ( 130) 131 132
23 (133) 134 135 ( 136) 137 138
24 (139) 140 141 (142) 143 144
25 (145) (146) 147 (148) (149) (150)

( ) Deleted freedoms

Refer to Fig. 30
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Table XXV. Critical Buckling Loads and Load
Reduction Factor, qwbs

h /h P cr qwbss Kips

0.00 37.7 1.00

0.25 27.9 0.740

0.50 23.9 0.635
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