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Impartial achievement games for
generating nilpotent groups

Bret J. Benesh, Dana C. Ernst and Nándor Sieben

Communicated by Nigel Boston

Abstract. We study an impartial game introduced by Anderson and Harary. The game is
played by two players who alternately choose previously-unselected elements of a finite
group. The first player who builds a generating set from the jointly-selected elements
wins. We determine the nim-numbers of this game for finite groups of the form T �H ,
where T is a 2-group and H is a group of odd order. This includes all nilpotent and hence
abelian groups.

1 Introduction

Anderson and Harary [2] introduced an impartial combinatorial game in which two
players alternately take turns selecting previously-unselected elements of a finite
group G until the group is generated by the jointly-selected elements. The first
player who builds a generating set from the jointly-selected elements wins this
achievement game denoted by GEN.G/. The outcome of GEN.G/ was determined
for finite abelian groups in [2]. In [3], Barnes provides criteria for determining
the outcome for an arbitrary finite group, and he applies his criteria to determine
the outcome of some of the more familiar finite groups, including cyclic, abelian,
dihedral, symmetric, and alternating groups.

A fundamental problem in game theory is to determine nim-numbers of impar-
tial two-player games. The nim-number allows for the easy calculation of the out-
come of the sum of games. A general theory of impartial games appears in [1,13].
A framework for computing nim-numbers for GEN.G/ is developed in [9], and the
authors determine the nim-numbers for GEN.G/ when G is a cyclic, abelian, or
dihedral group. The nim-numbers for symmetric and alternating groups are deter-
mined in [4] while generalized dihedral groups are addressed in [6].

The task in this paper is to determine the nim-numbers of GEN.G/ for groups of
the form G D T �H where T is a finite 2-group and H is a group of odd order.
These groups have a Sylow 2-direct factor. Finite nilpotent groups are precisely
the groups that can be written as a direct product of their Sylow subgroups, so the
class of groups with a Sylow 2-direct factor contains the nilpotent groups. Note that
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2 B. J. Benesh, D. C. Ernst and N. Sieben

groups with a Sylow 2-direct factor are necessarily solvable by the Feit–Thompson
Theorem [10].

Anderson and Harary [2] also introduced a related avoidance game in which
the player who cannot avoid building a generating set loses. As in the case of the
achievement game, Barnes [3] determines the outcome for a few standard families
of groups, as well as a general condition to determine the player with the winning
strategy. The determination of the nim-numbers for the avoidance game for sev-
eral families of groups appears in [4, 5, 9]. Similar algebraic games are studied by
Brandenburg in [7].

2 Preliminaries

We now give a more precise description of the achievement game GEN.G/ played
on a finite group G. We also recall some definitions and results from [9]. In this
paper, the cyclic group of order n is denoted by Zn. Other notation used throughout
the paper is standard such as in [12]. The nonterminal positions of GEN.G/ are
exactly the nongenerating subsets of G. A terminal position is a generating set S
of G such that there is a g 2 S satisfying hS n ¹gºi < G. The starting position
is the empty set since neither player has chosen an element yet. The first player
chooses x1 2 G, and the designated player selects xk 2 G n ¹x1; : : : ; xk�1º at the
kth turn. A position Q is an option of P if Q D P [ ¹gº for some g 2 G n P .
The set of options of P is denoted by Opt.P /. The player who builds a generating
set from the jointly-selected elements wins the game.

It is well known that the second player has a winning strategy if and only if
the nim-number of the game is 0. The only position of GEN.G/ for a trivial G
is the empty set, and so the second player wins before the first player can make
a move. Thus, GEN.G/ D �0 if G is trivial. For this reason, we will assume that
G is nontrivial for the remainder of this section, and we will not need to consider
trivial groups until Section 4.

The set M of maximal subgroups play a significant role in the game. The last
two authors define in [9] the set

I WD
°\

N W ; 6D N �M
±

of intersection subgroups, which is the set of all possible intersections of maximal
subgroups. We also define J WD I [ ¹Gº. The smallest intersection subgroup is
the Frattini subgroup ˆ.G/ of G.

For any position P of GEN.G/ let

dP e WD
\
¹I 2 J W P � I º
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Impartial achievement games for generating nilpotent groups 3

be the smallest element of J containing the position P . We write dP; g1; : : : ; gne

for dP [ ¹g1; : : : ; gnºe and dg1; : : : ; gne for d¹g1; : : : ; gnºe if g1; : : : ; gn 2 G .
Two positions P and Q are structure equivalent if dP e D dQe. The structure

class XI of I 2 J is the equivalence class of I under this equivalence relation.
Note that the definitions of dP e and XI differ from those given in [4–6, 9], but it
is easy to see that these definitions are equivalent to the originals. We let

Y WD ¹XI W I 2 Jº:

We sayXJ is an option ofXI ifQ 2 Opt.P / for some P 2 XI andQ 2 XJ . The
set of options of XI is denoted by Opt.XI /.

The type of the structure class XI is the triple

type.XI / WD .jI j mod 2; nim.P /; nim.Q//;

where P;Q 2 XI with jP j even and jQj odd. This is well-defined by [9, Proposi-
tion 4.4]. We define the option type of XI to be the set

otype.XI / WD ¹type.XJ / W XJ 2 Opt.XI /º:

We say the parity of XI is the parity of jI j.
The nim-number of the game is the nim-number of the initial position ;, which

is an even-sized subset of ˆ.G/. Because of this, nim.GEN.G// is the second
component of

type.Xˆ.G// D .jˆ.G/j mod 2; nim.;/; nim.¹eº//:

We use the following result of [9] as our main tool to compute nim-numbers.
Note that type.XG/ D .jGj mod 2; 0; 0/. Recall that for a subset A � N [ ¹0º,
mex.A/ is the least nonnegative integer not in A.

Proposition 2.1. For XI 2 Y define

AI D ¹a W .�; a; b/ 2 otype.XI //º; BI D ¹b W .�; a; b/ 2 otype.XI //º:

Then type.XI / D .jI j mod 2; a; b/, where

a WD mex.BI /; b WD mex.AI [ ¹aº/ if jI j is even;

b WD mex.AI /; a WD mex.BI [ ¹bº/ if jI j is odd:

The previous proposition implies that the type of a structure class XI is deter-
mined by the parity of XI and the types of the options of XI . Figure 1 shows an
example of this calculation when XI is odd.
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4 B. J. Benesh, D. C. Ernst and N. Sieben

XI

(1, y, x)

XK

(0, c, d)
XJ

(1, a, b)

B = {b, d}, y = mex(B ∪ {x})
A = {a, c}, x = mex(A)

Figure 1. Example of a calculation for type.XI / if Opt.XI / D ¹XJ ; XKº, where
XI andXJ are odd andXK is even. The ordered triples are the types of the structure
classes.

3 Deficiency

We will develop some general tools in this section. For a finite group G, the mini-
mum size of a generating set is denoted by

d.G/ WD min¹jS j W hSi D Gº:

The following definition, which first appeared in [6], is closely related to d.G/.

Definition 3.1. The deficiency of a subset P of a finite group G is the minimum
size ıG.P / of a subset Q of G such that hP [Qi D G. For a structure class XI

of G, we define ıG.XI / to be ıG.I /.

Note that P � Q implies ıG.P / � ıG.Q/.

Proposition 3.2. If S 2 XI , then ıG.S/ D ıG.I /.

Proof. Let n WD ıG.I / and m WD ıG.S/. Since S � I , it follows as mentioned
above that n � m. Now let h1; : : : ; hn 2 G such that hI; h1; : : : ; hni D G. For
a maximal subgroup M , I �M if and only if S �M since S 2 XI . Then since
hI; h1; : : : ; hni is not contained in any maximal subgroup, we conclude that nei-
ther is hS; h1; : : : ; hni. Thus, hS; h1; : : : ; hni D G and ıG.S/ � ıG.I /, and so we
have ıG.S/ D ıG.I /.

Corollary 3.3. The deficiency of a generating set of a finite group G is 0 and
ıG.;/ D ıG.ˆ.G// D d.G/.

Definition 3.4. Let G be a finite group, E be the set of even structure classes, and
let O be the set of odd structure classes in Y. We define the following sets:

Dm WD ¹XI 2 Y W ıG.I / D mº; D�m WD

[
¹Dk W k � mº;

Em WD E \Dm; E�m WD

[
¹Ek W k � mº;

Om WD O \Dm; O�m WD

[
¹Ok W k � mº:
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Impartial achievement games for generating nilpotent groups 5

Proposition 3.5 ([6, Proposition 3.8 and Corollary 3.9]). Let G be a finite group
and let m be a positive integer. If XI 2 Dm, then XI has an option in Dm�1,
and every option of XI is in Dm [Dm�1. Moreover, if XI 2 Em, then XI has an
option in Em�1, and every option of XI is in Em [ Em�1.

Note that D0 D ¹XGº. Also, Proposition 3.5 implies that nim.P / 6D 0 for all
XdP e 2 D1. In the next lemma, we will use �i to denote the projection of a direct
product to its i th factor.

Lemma 3.6. If G and H are finite groups and S � G �H , then

ıG�H .S/ � max¹ıG.�1.S//; ıH .�2.S//º:

Proof. Let .x1; y1/; : : : ; .xk; yk/ 2 G �H be such that

hS; .x1; y1/; : : : ; .xk; yk/i D G �H:

Then h�1.S/; x1; : : : ; xki D G and h�2.S/; y1; : : : ; yki D H , which yields the
desired result.

Lemma 3.7. If G and H are finite groups and S � G, then

ıG�H .S �H/ D ıG.S/:

Proof. By Lemma 3.6, we have ıG�H .S �H/ � ıG.S/. Now let n WD ıG.S/.
Then there exist g1; : : : ; gn 2 G such that hS; g1; : : : ; gni D G. Then

hS �H; .g1; e/; : : : ; .gn; e/i D G �H:

Thus, ıG.S/ � ıG�H .S �H/.

Lemma 3.8. If G and H are finite groups, then

max¹d.G/; d.H/º � d.G �H/ � d.G/C d.H/:

Proof. We have d.G/ D ıG.¹eº/, so for K 2 ¹G;H º,

d.G �H/ D ıG�H .¹eº � ¹eº/ � ıK.¹eº/ D d.K/

by Lemma 3.6. Hence

max¹d.G/; d.H/º � d.G �H/:

Let nD d.G/ and mD d.H/, and let g1; : : : ; gn 2G such that hg1; : : : ; gni DG

and h1; : : : ; hm 2 H such that hh1; : : : ; hmi D H . Then

h.g1; e/; : : : ; .gn; e/; .e; h1/; : : : ; .e; hm/i D G �H;

so
d.G �H/ � d.G/C d.H/:
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6 B. J. Benesh, D. C. Ernst and N. Sieben

4 The achievement game GEN.T � H /

We now determine the nim-number of GEN.T �H/, where T is a finite 2-group
and H has odd order. We will split the analysis into different cases according to
the parity of jT �H j and the value of d.T �H/.

If T is trivial, then T �H Š H and we can apply the following refinement
of [9, Corollary 4.8].

Proposition 4.1. If jH j is odd, then

GEN.H/ D

8̂<̂
:
�0; if jH j D 1;

�2; if jH j > 1 and d.H/ 2 ¹1; 2º;

�1; otherwise:

Proof. The case where jH j D 1 was done in Section 2. We proceed by structural
induction on the structure classes to show that

type.XI / D

8̂̂̂̂
<̂
ˆ̂̂:
.1; 0; 0/; if XI 2 O0;

.1; 2; 1/; if XI 2 O1;

.1; 2; 0/; if XI 2 O2;

.1; 1; 0/; if XI 2 O�3:

Every structure class in O0 is terminal, so type.XI / D .1; 0; 0/ if XI 2 O0. If
XI 2 O1, we have ¹.1; 0; 0/º � otype.XI / � ¹.1; 0; 0/; .1; 2; 1/º by induction and
Proposition 3.5, which implies type.XI / D .1; 2; 1/. Similarly, if XI 2 O2, then
¹.1; 2; 1/º � otype.XI /� ¹.1; 2; 0/; .1; 2; 1/º, and so type.XI /D .1; 2; 0/. Again,
if XI 2 O3, then ¹.1; 2; 0/º � otype.XI / � ¹.1; 1; 0/; .1; 2; 0//º, and hence we
have type.XI / D .1; 1; 0/. Now if XI 2 O�4, then otype.XI / D ¹.1; 1; 0/º by
induction, so type.XI / D .1; 1; 0/.

Since Xˆ.H/ 2 Od.H/ by [6, Proposition 3.7], the result follows from the fact
that GEN.H/ equals the second component of type.Xˆ.H//.

If T is nontrivial, we handle four cases in increasing complexity: d.T �H/ D 1,
d.T �H/ � 4, d.T �H/ D 3, and d.T �H/ D 2.

Proposition 4.2 ([9, Corollary 6.9]). If T is a nontrivial 2-group andH is a group
of odd order such that d.T �H/ D 1, then

GEN.T �H/ D

8̂<̂
:
�1; if T �H Š Z4k for some k � 1;

�2; if T �H Š Z2;

�4; if T �H Š Z4kC2 for some k � 1:
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Impartial achievement games for generating nilpotent groups 7

Proposition 4.3 ([6, Corollary 3.11]). If jGj is even and d.G/ � 4, then

GEN.G/ D �0:

The following result will be useful in the case where d.T �H/ � 2.

Proposition 4.4 ([6, Proposition 3.10]). If G is a group of even order, then

type.XI / D

8̂̂̂̂
<̂
ˆ̂̂:
.0; 0; 0/; if XI 2 E0;

.0; 1; 2/; if XI 2 E1;

.0; 0; 2/; if XI 2 E2;

.0; 0; 1/; if XI 2 E�3:

Proposition 4.5. If T is a nontrivial 2-group and H is a group of odd order such
that d.T �H/ D 3, then GEN.T �H/ D �0.

Proof. Let g be the element the first player initially selects, so the game position is
¹gº 2 Xdge. IfXdge 2 E�2, then the second player selects the identity e and keeps
the resulting game position ¹g; eº in Xdg;ee D Xdge.

Otherwise, Xdge 2O�2, so g has odd order and can be written as gD .e; h/ for
some h2H . In this case, the second player selects .t; e/ for some involution t 2 T .
Then the resulting position ¹.e; h/; .t; e/º is in Xd.e;h/;.t;e/e D Xd.t;h/e 2 E�2.

In both cases the position after the second move has nim-number 0 since it is in
a structure class with type .0; 0; 2/ or .0; 0; 1/ by Proposition 4.4. Thus, the second
player wins.

Lastly, we consider the case where d.T �H/ D 2. First, we handle the subcase
when ˆ.T / is nontrivial.

Proposition 4.6. If T is a 2-group and H is a group of odd order such that
d.T �H/ D 2 and ˆ.T / is nontrivial, then GEN.T �H/ D �0.

Proof. Becauseˆ.T �H/ Š ˆ.T / �ˆ.H/ by [8, Theorem 2], we conclude that
the order ofˆ.T �H/ is even. Since d.T �H/ D 2, we haveXˆ.T�H/ 2 E2, so
type.Xˆ.T�H// D .0; 0; 2/ by Proposition 4.4, and hence GEN.T �H/ D �0.

Remark 4.7. If d.T �H/ D 2 and ˆ.T / is trivial, it follows from the Burnside
Basis Theorem [11, Theorem 12.2.1] that T is isomorphic to either Z2 or Z2

2.

Lemma 4.8. If T a 2-group and H is a group of odd order, then

hS; .t; h/i D hS; .t; e/; .e; h/i

for all subsets S of T �H , t 2 T of order 2, and h 2 H .
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8 B. J. Benesh, D. C. Ernst and N. Sieben

Proof. Since .t; h/ D .t; e/.e; h/ 2 hS; .t; h/i, we have

hS; .t; h/i � hS; .t; e/; .e; h/i:

Let n be the order of h. Then .t; e/ D .tn; hn/ D .t; h/n 2 hS; .t; h/i since n is
odd. We also have .e; h/ D .t; h/nC1 2 hS; .t; h/i. Hence

hS; .t; h/i � hS; .t; e/; .e; h/i:

Proposition 4.9. If H is a group of odd order and d.Z2 �H/ D 2, then

GEN.Z2 �H/ D �0:

Proof. Since d.Z2�H/ D 2, we have d.H/ D 2. Let g WD .x; y/2Z2�H be the
element the first player initially selects, so the game position is ¹gº 2Xdge 2D�1.
If Xdge 2 D1, then the nim-number of ¹gº is clearly not zero so the next player to
move, which is the second player, wins.

IfXdge 2 E2, then the second player selects the identity element of Z2 �H and
keeps the resulting game position ¹g; eº in Xdg;ee D Xdge. By Proposition 4.4,
type.Xdge/ D .0; 0; 2/. So the second player wins since the nim-number of ¹g; eº
is 0.

It remains to consider the case when Xdge 2 O2, and hence g D .0; y/. In this
case, the second player picks .1; e/ 2 Z2 �H . We show that the resulting game
position P WD ¹.0; y/; .1; e/º is in XdP e 2 E2. This will prove that the second
player wins since again P D �0 by Proposition 4.4.

For a contradiction, assume thatXdP e 2 E1, so h.0; y/; .1; e/; .u; v/i D Z2�H

for some .u; v/ 2 Z2 �H . If u D 0, then by Lemma 4.8,

Z2 �H D h.0; y/; .1; e/; .0; v/i D h.0; y/; .1; v/i:

If u D 1, then we claim that

Z2 �H D h.0; y/; .1; e/; .1; v/i D h.0; y/; .1; v/i:

Clearly, h.0; y/; .1; v/i � h.0; y/; .1; e/; .1; v/i, and .1; e/ 2 h.0; y/; .1; v/i by
Lemma 4.8, so h.0; y/; .1; e/; .1; v/i � h.0; y/; .1; v/i. Thus, the claim holds. In
either case, there is an h 2 Z2 �H such that hg; hi D Z2 �H . This implies that
Xdge 2 O1, which contradicts the assumption that Xdge 2 O2. Thus, we must
have XdP e 2 E2.

Proposition 4.10. If H is a group of odd order such that d.H/ � 1, then

GEN.Z2
2 �H/ D �1:

Proof. Since d.H/ � 1, it follows that Z2
2 �H is abelian and we conclude that

GEN.Z2
2 �H/ D �1 by [9, Corollary 8.16].
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Impartial achievement games for generating nilpotent groups 9

Proposition 4.11. If H is a group of odd order such that d.H/ D 2, then

GEN.Z2
2 �H/ D �1:

Proof. Let G D Z2
2 �H . We have d.G/ D d.H/ D 2 since Z2

2 and H have
coprime orders. Hence D�3 D ;. Let

Oa
2 WD ¹XI 2 O2 W Opt.XI / \ E2 D ;º; Ob

2 WD O2 nOa
2 :

We will show that O1 D ;, and that Em for m 2 ¹0; 1; 2º, Oa
2 , and Ob

2 are non-
empty. Then we will use structural induction on the structure classes to show that

type.XI / D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.0; 0; 0/; if XI 2 E0;

.0; 1; 2/; if XI 2 E1;

.0; 0; 2/; if XI 2 E2;

.1; 1; 0/; if XI 2 Oa
2 ;

.1; 1; 2/; if XI 2 Ob
2 ;

(4.1)

as shown in Figure 2.

E0
(0,0,0)

E1
(0,1,2)

Oa
2

(1,1,0)
E2

(0,0,2)

Ob
2

(1,1,2)
(e,h1)

Figure 2. Structure classes for GEN.Z2
2 �H/ D �1 with d.H/ D 2.

First, we show that O1 is empty. Assume L is an intersection subgroup of odd
order. Then L D ¹eº �K for some subgroupK ofH . Since ıZ2

2
.¹eº/ D 2, we see

that ıG.L/ � 2 by Lemma 3.6. Hence XL 62 O1, and we conclude that O1 D ;.
Now, we show that Em is nonempty for m 2 ¹0; 1; 2º. Let t be a nontrivial

element of Z2
2 and consider K WD d.t; e/e, which has even order. Since .t; e/ is

contained in the maximal subgroups hti �H and Z2
2 �M for every maximal sub-

group M of H , it follows that K is a subgroup of hti �ˆ.H/. Then

2 D d.G/ � ıG.K/ � ıG.hti �ˆ.H// � ıH .ˆ.H// D d.H/ D 2;

by Lemma 3.6 and [6, Corollary 3.3]. Thus, XK 2 E2. Since E2 is nonempty, we
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10 B. J. Benesh, D. C. Ernst and N. Sieben

can conclude that E1 and E0 are nonempty by repeated use of Proposition 3.5.
By Proposition 4.4, the types of structure classes in Em for m 2 ¹0; 1; 2º are as
described in equation (4.1).

We now show that Oa
2 6D ;. If u 2 Z2

2 is nontrivial with t 6D u, then hti �H and
hui �H are both maximal subgroups of G whose intersection is ¹eº �H . Hence
¹eº �H is an intersection subgroup of G with odd order. Any intersection sub-
group I properly containing ¹eº �H must be isomorphic to Z2 �H , so XI 2 E1

by Lemma 3.7. Thus X¹eº�H 2 Oa
2 since O1 D ;.

Next, we show that Ob
2 6D ;. By [8, Theorem 2],

ˆ.G/ D ˆ.Z2
2/ �ˆ.H/ D ¹eº �ˆ.H/;

so ˆ.G/ has odd order. Hence, Xˆ.G/ 2 Od.G/ D O2 by Corollary 3.3. Then

2 � ıG.ˆ.G/ [ ¹tº/ � ıG.Z
2
2 �ˆ.H// D ıH .ˆ.H// D d.H/ D 2

by Lemma 3.7 and Corollary 3.3. So Xdˆ.G/;te 2 E2 by Proposition 3.2. Thus,
Xdˆ.G/;te 2 E2 is an option of Xˆ.G/, so Xˆ.G/ 2 Ob

2 .
It remains to show that

type.XI / D

´
.1; 1; 0/; if XI 2 Oa

2 ;

.1; 1; 2/; if XI 2 Ob
2 .

If XI 2 O2, then XI must have an option in E1 by Proposition 3.5 since O1 D ;,
and so .0; 1; 2/ 2 otype.XI /.

LetXI 2 Oa
2 . We first show thatXI has no option in Ob

2 . Suppose toward a con-
tradiction that XJ 2 Ob

2 is an option of XI , and let XJ have an option XK 2 E2.
Let v 2 K such that v has order 2. Then dI; ve � dJ; ve � K, soXI has an option
XdI;ve 2 E2, which contradicts the definition of Oa

2 . Thus, otype.XI / is either
¹.0; 1; 2/º or ¹.0; 1; 2/; .1; 1; 0/º by induction, so type.XI / D .1; 1; 0/.

Finally, let XI 2 Ob
2 . Then XI has an option in E2 by the definition of Ob

2 . We
will show thatXI also has an option in Oa

2 . Let h1; h2 2H such thatH D hh1; h2i,
and let J WD dI; .e; h1/e. We will show that XJ 2 Oa

2 by showing that XJ 2 O2

and XdI;.e;h1/;.s;x/e 62 E2 for all .s; x/ 2 G. Since I [ ¹.e; h1/º � ¹eº �H and
¹eº �H is an intersection subgroup of odd order, we must have J � ¹eº �H .
Hence XJ 2 O, which implies that XJ 2 O2 since O1 D ;.

Now let .s; x/ 2 G. We will prove that XdJ;.s;x/e 62 E2. If .s; x/ has odd order,
then s D e, so hI; .e; h1/; .s; x/i � ¹eº�H , and thusXdJ;.s;x/e 2 O2 6D E2. Thus,
we may assume that s is nontrivial, and we let w 2 Z2

2 be such that hs; wi D Z2
2.

Then

hI; .e; h1/; .s; x/; .w; h2/i D hI; .e; h1/; .e; h2/; .e; x/; .s; e/; .w; e/i D G
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by two applications of Lemma 4.8, which implies XdI;.e;h1/;.s;x/e 2 E1 6D E2.
Hence XJ 2 Oa

2 . Thus,

¹.0; 1; 2/; .0; 0; 2/; .1; 1; 0/º � otype.XI /

� ¹.0; 1; 2/; .0; 0; 2/; .1; 1; 0/; .1; 1; 2/º;

and so type.XI / D .1; 1; 2/.

The results in this section lead to our main theorem.

Theorem 4.12. If G D T �H , where T is a 2-group and H is a group of odd
order, then

GEN.G/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�1; if jGj is odd and d.G/ � 3;

�1; if G Š Z4k for some k;

�1; if G Š Z2
2 �H with d.H/ � 2;

�2; if G Š Z2;

�2; if jGj is odd and d.G/ 2 ¹1; 2º;

�4; if G Š Z4kC2 for some k � 1;

�0; otherwise:

Proof. Each case of the statement follows from an earlier result we proved. The
following outline shows the case analysis:

(I) jGj is odd (Proposition 4.1).

(II) jGj is even,

(1) d.G/ D 1 (Proposition 4.2),

(2) d.G/ � 4 (Proposition 4.3),

(3) d.G/ D 3 (Proposition 4.5),

(4) d.G/ D 2,

(A) ˆ.T / is nontrivial (Proposition 4.6),
(B) ˆ.T / is trivial,

(i) T Š Z2 (Proposition 4.9),
(ii) T Š Z2

2,
(a) d.H/ � 1 (Proposition 4.10),
(b) d.H/ D 2 (Proposition 4.11).

The two cases for when ˆ.T / is trivial are justified by Remark 4.7.
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Recall that every nilpotent group, and hence every abelian group, can be written
in the form T �H , where T is a finite 2-group T and H is a group of odd order.
As a consequence, Theorem 4.12 provides a complete classification of the possible
nim-values for achievement games played on nilpotent groups. Moreover, Theo-
rem 4.12 is a generalization of [9, Corollary 8.16], which handles abelian groups
only. Note that even in the case when H is not nilpotent, H must be solvable by
the Feit–Thompson Theorem [10].

Example 4.13. The smallest non-nilpotent group that has a Sylow 2-direct factor
is isomorphic to Z2 � .Z7 Ì Z3/, which has order 42.

Example 4.14. The smallest group that does not have a Sylow 2-direct factor is S3.
That is, S3 is the smallest group not covered by Theorem 4.12. However, the possi-
ble nim-values for achievement and avoidance games played on symmetric groups
were completely classified in [4]. The dihedral groups Dn for n � 3 are not cov-
ered by Theorem 4.12 either, but these groups were analyzed in [9].

5 Further questions

We mention a few open problems.

(i) What are the nim-numbers of non-nilpotent solvable groups of even order
that do not have a Sylow 2-direct factor?

(ii) The smallest group G for which nim.GEN.G// has not been determined
by results in [4–6, 9] or Theorem 4.12 is the dicyclic group Z3 Ì Z4. All
dicyclic groups have Frattini subgroups of even order. Hence these groups
have nim-number 0 as a consequence of Proposition 4.4. The smallest group
not covered in the current literature is Z3 � S3. What are the nim-numbers
for groups of the form Zm � Sn for m � 2 and n � 3?

(iii) The nim-numbers of some families of nonsolvable groups were determined
in [4]. Can we determine the nim-numbers for all nonsolvable groups?
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