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ABSTRACT 

The decomposition mechanism of acyloxy radicals has been studied by the Density 

Functional Theory (DFT) using B3LYP functional in conjunction with the 6-311++G(d,p) 

and 6-311++G(3df,2p) basis sets. The potential energy profiles for reaction systems were 

generally established. Calculated results indicate that the formation of products including 

hydrocarbon radicals and CO2 molecule is energetically favored. The rate of decomposition 

increases with the number of carbon in non-cyclic saturated acyloxy radicals. Calculated 

enthalpies and Gibbs free energies of reactions well agree with experimental values. This 

study is a contribution to the understanding of the reaction mechanism of decomposition of 

acyloxy radicals in atmosphere and combustion chemistry. 
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1. INTRODUCTION 

In chemical reactions of organic compounds free radicals play a crucial role [1-3]. They are 

involved in almost every reactions in fuel systems, and in the earth’s atmosphere. In particular, 

reactions of the free acyloxyl radical RCOO  has attracted much attention from both theoretical 

and experimental chemists [4-14]. These radicals are readily formed from thermal 

decompositions and photo-decompositions of diacyl peroxides due to the weakness of -O-O- 

bonds. In addition, they can be formed directly in the atmosphere from reactions between 

aldehydes and ketones with reagents such as O2, NO or hydroxyl radical OH . The RCOO  free 
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radicals exist only for a very short time but are crucial for organic synthesis reactions. It has 

been proven experimentally that alkyl free radicals R  and CO2 are the products of 

decompositions of RCOO  radicals [13], in which alkyl radicals R  are important for the 

synthesis of hydrocarbons, and such complex natural products as interiorins, kadsulignans. 

However, to our knowledge there is no theoretical investigation on the mechanisms of 

decompositions of acyloxy free radicals, as well as a rule for these decompositions as the 

numbers of carbon atoms in the radicals increase. Therefore, a theoretical study on the 

mechanism of decompositions of acyloxy radicals RCOO  is important.  

2. MATERIALS AND METHODS 

Geometrical structures of the reactants, intermediates, transition states and products 

considered are optimized by using the method of density functional theory at the B3LYP/6-

311++G(d,p) level [15]. Transition states are confirmed by analyzing the vibrational frequency 

and intrinsic reaction coordinate (IRC) calculations. Relative energies are improved at higher 

level of calculation, being B3LYP/6-311++G(3df,2p). Geometrical structures, energies, 

thermodynamical parameters and energy diagrams for the systems are given in the following 

section. Calculations are performed using the Gaussian 09 package [16]. 

3. RESULTS AND DISCUSSION 

We have investigated the decompositions of 11 acyloxy free radicals RCOO  in which R  is 

a unbranched alkyl radical CnH2n+1 (n = 1-7) or a cycloalkyl CnH2n-1 (n = 3-6) moiety. Reactants, 

intermediates and products of the ith reaction are denoted respectively as RAi, TSi, Pi, whose 

optimized geometries are illustrated in Figure 1. Relative energies of the species are evaluated 

and listed in Table 1. Each reaction pathway goes through a single transition state forming the 

products directly, i.e. the hydrocarbon radical R  and CO2 molecule. All the reaction pathways, 

except for the cyclopropyl-substituted reactant (8
th
 channel), have quite similar trends and are 

shown in the energy diagram in Figure 2. 

For the 8
th
 reaction pathway the relative energy of product P8 is higher than that of the 

reactants due to the formation of a high-energy cyclopropyl radical. Generally, in the structures 

of reactants, the OCO bond angle is in between 111-112
o
. There is an unpaired electron 

delocalized amongst three atoms O-C-O, leading to a symmetric OCO structure with the O-C 

bond length of about 1.250 – 1.260 Å. Each of transition states has only one vibrational mode 

with an imaginary frequency corresponding to the cleavage of the C-C bond while forming the 

second C=O double bond. As a result, a C-O bond is lengthened to about 1.300 Å while the 

other C-O bond is shortened down to about 1.200 Å. The OCO bond angle is widened in order 

to facilitate the formation of a CO2 molecule ( OCO = 180º). The unpaired electron which is 

delocalized amongst three atoms O-C-O gradually transfers onto the C atom of the alkyl group. 

The result is that this latter C atom switches from the sp
3
 hybridization in the reactant to the sp

2 

one in the hydrocarbon radical R . 
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Figure 1. Optimized geometries of reactants, transition states, and products of decomposition of acyloxy               

free radicals at the B3LYP/6-311++G(d,p) level of theory. [Bond length in Å, bond angle in degrees]. 

 

 

 

 

 

 

 

 

Figure 2. Energy diagram of decomposition of acyloxy radical of the i
th

 reaction pathway (I = 1-7; 9-11). 

From Table 1 showing relative energies of the species, we have plotted a graph which 

illustrates the dependence of the barrier heights - the relative energies between reactants and 

transition states - on the numbers of carbon atoms in the alkyl group in the decompositions of 

linear chain acyloxy radicals. The result is represented in Figure 3. 

Table 1. Relative energy (ΔE) of the species available in the decomposition of acyloxy free radicals. 

It can be seen from Figure 3 that in term of kinetics as the numbers of carbon atoms increase, the 

activation energies for the decompositions of straight chain acyloxy radicals decrease, though for 

the cases as radicals with more than 4 carbons the values of barrier heights differ insignificantly. 

This trend could be reasoned as follow: as the numbers of carbon atoms increase, the acyloxy 

radicals become bulky, less stable and more readily decomposable. For the reactions of cyclic 

Species ΔE 

(kcal/mol) 

Species ΔE 

(kcal/mol) 

Species ΔE 

(kcal/mol) 

Species ΔE 

(kcal/mol) 

RA1 0.00 P3 -9.20 TS6 2.81 RA9 0.00 

TS1 4.47 RA4 0.00 P6 -9.06 TS9 1.35 

P1 -6.27 TS4 2.85 RA7 0.00 P9 -9.52 

RA2 0.00 P4 -9.15 TS7 2.78 RA10 0.00 

TS2 3.28 RA5 0.00 P7 -9.00 TS10 2.36 

P2 -9.45 TS5 2.87 RA8 0.00 P10 -13.44 

RA3 0.00 P5 -8.73 TS8 4.25 RA11 0.00 

TS3 2.96 RA6 0.00 P8 1.82 TS11 1.73 

      P11 -11.66 
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acyloxy radicals, the highest activation energy corresponds to the formation of cyclopropyl. This 

radical has a high energy of formation due to the ring strain arising when the radical carbon atom 

transforms from the sp
3
 to sp

2
 hybridization. The activation energies for the decomposition are 

lowest for the cases of forming cyclobutyl and cyclohexyl due to the spatial effect between the 

CO2 group and neighboring hydrogen atoms. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graph represents the dependence of the activation energieson numbers of carbon atoms in 

the alkyl groups of the acyloxy radicals. 

 

Along with the relative energies, thermodynamical parameters of the decompositions are 

also calculated and arranged in Table 2. The results in this Table show that in terms of 

thermodynamics all the investigated reactions could occur spontaneously. Two reaction 

pathways which have highest energy barriers (the 1
st
 pathway, 4.47 kcal/mol, and the 8

th
 

pathway, 4.25 kcal/mol) have the least negative free energy change ΔG
o
298 (-12.96 and -7.74 

kcal/mol, respectively) while for the formation of alkyl groups R (CnH2n+1; n = 2 - 7) the free 

energy change ΔG
o
298 differ insignificantly. The formations of cyclopentyl and cyclohexyl 

radicals are the most kinetically favorable amongst the reactions concerned. The calculated 

results of elthanpy changes of 1
st
, 2

nd
 and 3

rd
 reactions are rather close to experimental values. 

This affirms that the results of our theoretical calculations are reliable. 

Table 2. Thermodynamical parameters for the decomposition of acyloxy free radicals. 

Reaction pathway ΔG
o
 

(kcal/mol) 

ΔH
o
 (kcal/mol) 

 

ΔH
o
 (kcal/mol) 

(Experimental) [17] 

1. CH3CO2 → CH3 + CO2 -12.96 -4.96 -5.18 ± 1 

2. C2H5CO2 → C2H5 + CO2 -18.43 -8.32 -10.54 ± 1 

3. C3H7CO2 → C3H7 + CO2 -18.20 -8.28 -10.34 ± 1 

4. C4H9CO2 → C4H9 + CO2 -18.56 -8.25  

5. C5H11CO2 → C5H11 + CO2 -18.52 -7.81 
 

6. C6H13CO2 → C6H13 + CO2 -18.53 -8.22 
 

7. C7H15CO2 → C7H15 + CO2 -18.41 -8.17  

8. cyc-C3H5CO2 → C3H5 + CO2 -7.74 2.65  

9. cyc-C4H7CO2 → C4H7 + CO2 -19.39 -8.57  

10. cyc-C5H9CO2 → C5H9 + CO2 -22.53 -12.77  

11. cyc-C6H11CO2 → C6H11 + CO2 -21.03 -10.96  
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4. CONCLUSION 

Geometrical structures of intermediates in the decomposition of acyloxy free radicals 

RCOO , in which R are alkyl groups CnH2n+1 (n = 1-7) and cycloalkyl groups CnH2n-1 (n = 3-6), 

have been determined. The potential energy surfaces of these processes have also been 

constructed. Generally, heights of energy barriers of the investigated reactions are quite small. A 

graph was plotted demonstrating the dependence of the activation energies on the number of 

carbon atoms in the acyloxy radicals. For larger unbranched acyloxy radicals, the decomposition 

proceeds more readily as the number of carbon atoms increase. Thermodynamical parameters of 

the reactions including Gibbs free energy changes, enthalpy changes have also been computed. 

All the investigated decompositions of acyloxy radicals are thermochemically favorable and the 

calculated enthalpy changes of the reactions are in good agreement with experimental values. 
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