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PUBLICATION THESIS OPTION

This dissertation has been prepared in the form of 
two papers ready for publication. The format for each 
paper is in the style of the Journal of the American 
Statistical Association. This dissertation will be 
submitted as two separate papers consisting of pages 
1 - 3 8  and 39 - 79, respectively.
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ABSTRACT

This dissertation is presented in publication form 
and consists of two articles. The first article con­
siders inferential procedures on the shape parameter 
of a gamma distribution from censored sampling. Mo­
ments for the statistic T = logCx^/x^) are found and 
used to derive a two-moment chi-square approximation 
for T. This approximation is then used for testing, 
estimating, and setting confidence bounds on the shape 
parameter of a gamma distribution. The second article 
concerns the Cramer-Rao lower bounds for the variances 
of estimators, where the estimators are based on cen­
sored data. Convenient techniques are derived to 
evaluate the lower bounds in the presence or absence of 
nuisance parameters.
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ABSTRACT

Various techniques are used to find the first two- 
moments of the statistic T = log (x^/x^) , where x^ and 
x^ are, respectively, the Windsorized arithmetic and 
geometric means based on censored data from a gamma 
distribution. A two-moment chi-square approximation is 
then derived for T and used for testing, estimating, 
and setting confidence bounds on the shape parameter 
of a gamma distribution. Power comparisons are made 
between optimum tests and the corresponding tests 
based on T.

KEY WORDS: Gamma distribution; Censored sampling;
Tests of hypothesis; Confidence bounds;
Median unbiased estimation.
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1. INTRODUCTION

Let xn < x0 < ••• < x denote the order statistics 1 2  n
of a random sample of size n from the two-parameter 
gamma distribution having density function

f(x;$,0) = [ ( 0 ) 1exp[-x/3], 

x > 0 ,  3 > 0, 9 > 0 .

The gamma distribution, of which the chi-square and 
exponential distributions are particular cases, pro­
vides a useful population model in many areas of 
statistics such as life tests, reliability, and accept­
ance sampling based on life tests (Barlow and Proschan 
1965, Gupta 1960, and Gupta and Groll 1961). In 
particular, a significant property of the gamma 
distribution is that the hazard rate function, h(x) = 
f(x)/[1-F(x)], is increasing (decreasing) if 0 > 1 
(0 < 1) and converges to 1/3 as x ■> °°. If 0 = 1 then 
the distribution is exponential and h(x) = 1/3 for all 
x > 0 .

In this paper we are interested in inference pro­
cedures for 0 when only the first r out of n order 
statistics, x]_ < x 2 < *'* <xr ’ ar>e available. The statis­
tic that we shall base our procedures on is
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T = log(xr/xr), where xp = (E^T^xj_+(n-r )xr)/n and
x = [ (n-TiX-) (x n r) ]^n . We note that x and x are r l-l 1 r r r
the Winsorized arithmetic and geometric means, respec­
tively. The Windsorization method, as discussed by 
Engelhardt (1975a), substitutes the nearest available 
observation for the censored observations, in either 
extreme. Under the full sample case (r=n) various 
authors have considered inference procedures for 0
based on the statistic S = log(x /x ), where x and xn n n n
are, respectively, the arithmetic and geometric means.
It has been shown that the uniformly most powerful 
scale invariant and the uniformly most powerful unbias­
ed hypothesis tests concerning 0 can be based, in the 
full sample case, solely in terms of S (Glaser 1976, 
Linhardt 1965, and Shorack 1972).

In this article we derive a two-moment chi-square 
approximation for the distribution of W = 2n0T. A 
similar procedure has been done for the full sample 
case, W = 2n0S, by Bain and Engelhardt (1975). In 
this case it was possible to derive the exact mean and 
variance for any choice of n and 0, and comparisons 
could be made with a limited number of exact percentage 
points given by Bishop and Nair (1939). But in the cen­
sored sample case (r < n) it has been necessary to find
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the mean, variance, and distribution of W, for various 
values of 6, n, and r, by Monte-Carlo techniques. We 
do, however, find the exact expectation and the exact 
variance for W when 0 = 1 ,  the exponential case, for 
various values of n and r. The exact asymptotic mo­
ments, as n oo with r/n -»• p > 0, for different censor­
ing levels, and techniques to find the exact moments as 
0 «>, for different censoring levels, are also given.

The chi-square approximation can be easily obtained 
from the tables provided. A table comparing exact and 
approximate percentage points is given, along with 
tables indicating the accuracy of the Monte-Carlo re­
sults. A power comparison is also given, comparing the 
power of the test based on W to the power of the Neyman- 
Pearson test of the simple hypothesis H:0 = 0g versus 
the simple alternative K:0 = 0^. Even though the test 
based on W is a composite test, that is we need only 
know if 0^ > 0q or if 0^ < 0q , we show that its power 
is extremely close to the most powerful test. Finally 
the usefulness of the approximation is illustrated in 
setting up hypothesis tests on 0, confidence bounds on 
0, and in finding a median unbiased estimate for 0.
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2. THE CHI-SQUARE APPROXIMATION

To obtain a two-moment chi-square approximation 
for the distribution of W = 2n0T we set

c(0,n,r) = 2E(W)/Var(W)

and

v(0,n,r) = 2[E(W)]2/Var(W),

where E(W) and Var(W) are the expected value and the 
variance of W, respectively. Thus, an approximate 
chi-square distribution with correct first and second 
moments is given by

c(0,n,r)W ~ X 2Cv(0,n,r)].
t i.Tabulated expected values of 0T and variances of n 20T 

can be found in Table 1 that cover a wide range of 0, 
censoring levels r/n = .3, .5, .7, .9 plus the full 
sample case, and n = 10, 20, 40, <». In Table 1 inter­
polation on r/n, on 1/n, and on 1/0 is excellent for 
0E(T) and n02Var(T).

The values in Table 1 for the full sample case, 
along with the chi-square approximation for the full 
sample case, can be found in Bain and Engelhardt (1975).
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The tabulated values pertaining to the censored cases, 
except for the asymptotic results and the values 
obtained where 9 = 1 ,  the exponential case, are Monte- 
Carlo results. The details of the Monte-Carlo simula­
tion and the accuracy of the results are discussed in 
Section 4.

The methods of Chernoff, Gastwirth, and Johns 
(1967) are applied to find the asymptotic joint distri­
bution of xp and log x^. Then proposition (ii), 6a.2 of 
Rao (1965) is applied to find the asymptotic normal 
distribution of T. For each n, define random variables
Tn and T0 as follows:In 2n

r
T, = (1/n) Y x_. + [(n-r)/n]x In ^ x r

and

r
T2n = (1/n)  ̂log(x^) + [(n-r)/n]log x^,

where < x2 < ••• < x are the ordered gamma random 
variables. If r/n -*■ p as n °°, say r = [np] + l, where 
[np] is the largest integer not exceeding np, then 
(n-r)/n 1-p.
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Corollary 3 of Chernoff et al. (1967) is applied
with h-̂ (x) = x, H^(u) = F 'L(u), a^ = (1-p), J^u) = 1
if 0 < u < p and 0 if u > p for the random variable
T, . The notations F(-) and f(*) are used to signify in
the cdf and the density of the gamma distribution, 
respectively. For the random variable T2n we apply the 
methods of Chernoff et al. (1967) with h2(x) = log x, 
H2(u ) = log(F-^(u)), a2 = (1-p), J2(u) = 1 if 
0 < u < p and 0 if u > p. T„ and T0 can be shown 
to have the same asymptotic distributions as

n
T, ' = (1/n) 7 J.. (i/(n+1) )x. + a, x In .u_ 1 l 1 ri = l

and

n
T2n' = (1/n) \ J2(i/(n+l))log x^ + a2log x̂

respectively.
The asymptotic mean for T^n’ is

U- - 1 ,J-^(u)H^(u)du + a-̂ h-̂ (F (p))

P ,-l - 1 ,F (u)du + (l-p)F (p)
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and the asymptotic variance is a1 /n where

al
2 2 (u)du,

with a^Cu) = 0 if u > p and

a^Cu) [l/(l-u)]{ (w)(l-w)dw + 9(1-p) H1 '(p)}

if u _< p, where denotes the derivative of
Finally

V1 = Qp + (l-p)F-1(p) - f(F-1(p))

and

a12 = 2(1-p)(l-p-0p)F-1(p)

+ F“1(p)f(F'1(p))(20p-e-l)

- [F“1(p)]2[f(F"1(p))32

+ [F_1(p)]2[f(F"1(p))](l-2p)

- 20(l-p)2p/[f(F_1(p))]

+ 0p(0-0p+l)

+ (l-p)p[F"1(p)+(l-p)/f(F"1(p))]2.
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The asymptotic mean for T2n' is

1
y. - l ,J2(u)H2(u)du + a2h2(F- (p))

fP log(F-1(u))du + (l-p)log(F-1(p))

and the asymptotic variance is <3̂  tn where

a2 (u)du,

with a2(u) = 0 if u > p and

a2(u) = [l/(l-u)]{ rPH2’(w)(l-w)dw + (1-p)2H2'(p)}
u

if u < p. Finally

y9 = log(F 1(p)) -
F_1(p)

F(w)/wdw

and

c22 = {21og(F 1(p))+2(l-p)2/[F"1(p)]f(F 1(p))} 

rF_1(p)
• F(w)/wdwJ 0
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F 1(p)
f(w)logz(w) dw

- plog2(F_1(p)) - [
F_1(p)

F(w)/wdw]
0

+ p(l-p)3/[F_1(p)]2[f(F_:L(p))]2.

The asymptotic covariance of T.^1 and T2nT is
a-̂ 2/n where

1
12 ai(u)a2 Cu) d\i,

with a-̂ Cu) and a2(u) defined as before. Finally we have

ai2 = i-p(i-p>+p(i-p)2cF"1(p>-0+(1-p>/f(F'1(p>n

+ {(l-p)F"1(p)-[F"1(p)]f(F"1(p))-6(l-p)

+ (l-p)2/f(F-1(p))}
F-1(p)

F(w) /wdw.
0

The above quantities were found numerically and 
the results were applied to proposition (ii), 6a.2 of 
Rao (1965), with g(Tln>T2n) = l°g(Tln>-T2n. Thus, the 
asymptotic mean of T was found to be log(y1)-y2 and 
the asymptotic variance of T was found to be
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When 0 = 1, the exponential case, the exact 
moments of T can be found since x^ is then a complete 
and sufficient statistic for 3 (Mann, Schafer, and 
Singpurwalla 1974). Using the fact that T is distrib­
uted independently of 3 it follows, by the results of 
Basu (1955), that x^ and T are independent statistics. 
Likewise, exp(-T) = x^/x^ and xr are independent 
statistics. Considering the moment generating function 
of -T = log(xr/xr), M_T(t) = E[(x^/x^)^], we apply the 
independence of (x^/x^) and x . Thus, E[(x /xp)t(x )t]
= EC(xr/xr)t]E[(xr)t] and E[ (x^x^*(xp) = E[(xr)t]. 
Combining these results we have M_T(t) = E[(x^^l/Et(x^). 
Using the methods of Engelhardt (1975b) to find E[(xr)"t] 
and using the fact that, in the exponential case, nx^/3 
has a gamma distribution with scale parameter 1 and shape 
parameter r (Mann et al. 1974) we take the first two 
derivatives of M_T(t), set t equal to zero, and thus find 
the exact moments of T when 0 = 1  (see Appendix for 
details).

For the asymptotic moments of W, as 0 00, we use
Taylor's formula for functions of several variables.
Using the notations of Apostol (1957) we set



f(x1,-**,xr ) = log(xr/xr )

= -log(n)+log[x^+•••+x^ ^+(n-r+Dx^]

-(l/n)[log x^+'^'+log x (n-r+1)log

and let x = (x^,*,’,xr) and a = Applying
Taylor’s formula we have

2 o
f(x)-f(a) = l (1/k!)dKf(1;x-l) + (1/3!)dJf(z;x-l) 

k=l

Evaluating the above derivatives we get

f(x> = d/2) y y c.. (x.-D(x.-i) 
i = l j=l 1=1 1 3

r r r
+ (1/6) I I I  D. f (z) (x.-D(x.-l) (x, -1) i = l j=l k = l 1]JC i D k

where

= (l-l/n)/n if i=j/r,

= -1/n2 if i/j, i/r, and j/r,

= (n-r+1)(1-r)/n2 if i = j =r,

= (r-n-1)/n2 otherwise.
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Since log(x^/xri) = log[ (x^/0 ) / (x^/0 ) ] , we can write

W = 2n0f(x)

V V
= n S l c..[8^(x./0-l)][0\x./0-l)] 

i=i 5=1 13 1 3

+ (n/3) T y y D. .. f (z) [0^(x./0-1) ] 
i=i 5=i k=i 13K 1

• lQhu./Q-i)nehu,/e-±)l/Qh.J k

It can be easily shown, using the moment generating
function, that 0'2(x^/0-l) converges in distribution to 
z^, the ith ordered standard normal random variable.
Consequently, E(W) -»■ n)t_-^j =]_cj _ zizj 3 an<3 Var(W) ->

n2h  = lXj=lJk=l^m=lcij0kmE(zizjzkz1Ii) - [E(W)]2' Tables 
of E(z^Zj) can be found in Sarhan and Greenberg (1962)
and E(z^ZjZj;.zm ) can be found numerically.

Monte-Carlo percentage points of T have been used 
to study the accuracy of the chi-square approximation 
for various a levels. The comparison of the approximate 
and exact levels, for various values of 0, n, and r/n, 
is given in Table 2. Upper and lower a levels are pro­
vided to indicate the usefulness of the chi-square 
approximation in hypothesis testing and for confidence



bounds on 9. The a level at .5 is given to show the 
accuracy of the approximate median unbiased estimator 
of 9 discussed in Section 3.

16

3. APPLICATIONS OF THE APPROXIMATION

Since 2n0c(0,n,r)T has an approximate chi-square 
distribution with v(0,n,r) degrees of freedom we can 
construct convenient approximate tests of hypothesis.
An approximate unbiased a level test for H:0<0q versus
the alternative K:0>0O would reject H if T < t , where

2 2 2 ta = Xa Cv(0Q,n,r)]/2n6gC(0g,n,r) and P[x (v) < xa ^v ) ̂ = a .
Other approximate unbiased tests of hypotheses can be 
appropriately constructed using the chi-square approxima­
tion. For example, an approximate unbiased level a test 
for H:0=0q versus the alternative K:0^0q can be obtained 
by following the method outlined by Guenther (1972).
This test would fail to reject H if D, < 2n0nc(0n,n,r)T

2£ T>2 > where and are solutions to P{D-L<x Cv(0Q,n,r)] 
<D2  ̂ = l-ot and P{D-^<x^Cv (0q ,n,r) + 2]<D2} = 1-a. Several 
authors have numerically solved for D-̂ and D2 and have 
tabulated their results (Pacharas 1961, Tate and Klett 
1959, and Lindley, East, and Hamilton 1960). These 
tests can be used to find approximate 1-a level lower 
(or upper) unbiased confidence bounds and confidence
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intervals for 0. An approximate 1-a level unbiased
lower confidence bound, say 0^, is found by finding 0^

2 .such that 2n0^c(0^,n,r)T = Xa[v(0k>n,r)], where T is
observed. To find an approximate 1-a level unbiased 
confidence interval for 0, say [0^ 0^], we find 0^ and 
0^ such that 2n0jjc(0^,n,r)T = D-̂  and 2n0yC(0y,n,r)T 
— D2 •

The chi-square approximation also permits a con­
venient median unbiased point estimate of 0. This is 
achieved by finding the .5 level approximate lower 
bound (or upper bound) for 0.

To illustrate the above we use the simulated life- 
test data of 40 ordered observations from a three- 
parameter gamma distribution found in Harter and Moore 
(1965). The scale and shape parameters given are 
3 = 100 and 0 = 2 .  In addition, they have a location 
parameter n = 30. To test the hypothesis H:0=1 versus 
K:0>1 we assume 0 = 30 is known and is subtracted from 
each x^, but that 3 is unknown. Assuming that only the 
first 30 observations are available we have x ^q = 
162.375, x3Q = 135.566, and T = log(162.375/135.566)
= .180. From Table 1, under 0 = 1, we obtain E(T) = 
.398 and 40 Var(T) = .477 and consequently c(l,40,30)
= .890 and v(l,40,30) = 28.350. For a = .01 we have
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t oi = X q^[28.35]/(80)(.89) = .194, so H is rejected.
To determine the power of the approximate test for a 
particular 0^ > 6g we evaluate P{x Cv(0-^,n,r)] <
2n0^c(0^,n,r)ta>. For the alternative K:0=2 the power 
is approximately P(x^(27.17)<(80) (2)(.943)(.194)} = .64. 
Then for a .99 lower confidence bound for 0 we find 0^ 
such that (8O)(0l )c (0l ,4O,3O)(.18) = X2Q1tv(0L,40,30)]. 
Iterating on 0^ we find 0^ = 1.06. To find an approxi­
mate median unbiased point estimate for 0 using the 
same data we find 0^ such that (80) (0^0(0^,40,30) (.18)
= x^5 E v( s 30) ] . Iterating we find 0^ = 1.95.

Power comparisons for tests of hypothesis based 
on T versus tests based on the Neyman-Pearson ratio are 
given in Table 3. The hypothesis H:0=1 versus K:0=2 
and the hypothesis H:0=2 versus K:0=1 were selected 
since the Neyman-Pearson ratio can be conveniently 
evaluated in these cases (see Section 4). The tables 
are rounded to two significant figures, and even though 
they agree in several instances, we do not mean to imply 
that the powers are equal. This is clearly not the case 
since the test based on T is a composite test applied 
to these hypotheses while the test based on the Neyman- 
Pearson ratio is the most powerful test for these 
hypotheses. The values are so close that sometimes,
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through Monte-Carlo variations, the tabulated power 
based on T may be slightly larger than the power based 
on the Neyman-Pearson ratio. Thus, very little power 
is lost using tests based on the statistic T.

4. MONTE-CARLO SIMULATION

The one-parameter gamma distribution,

f(x;0) = Cr(e)]_1x0_1e_x, x>0, 8>0,

was used when simulating results based on T, since T 
is distributed independently of the scale parameter, 
g. The details of the Monte-Carlo simulation are as 
follows:

(i) A random sample from the one-parameter gamma 
distribution was generated for each of eight values of 
0, 0 =.5, 1, 1.5, 2, 3, 5, 10, 20. These were obtained 
by either taking the negative of the natural logarithm 
of a uniform (0,1) random variable to obtain a random 
variable which is gamma distributed with 0=1, or taking 
one-half of the square of a standard normal random 
variable to obtain a random variable which is gamma 
distributed with 0=1/2. Using the reproductive prop­
erty of the gamma distribution these were suitably 
added to attain a gamma random variable with the
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desired value of 0 (0 a multiple of 1/2). The uniform 
(0,1) random variable and the standard normal random 
variable were generated by the packaged routines GGUBF 
and GGNOR from International Mathematical and Statisti­
cal Libraries (1977). All simulation work was done on 
an IBM 370/58/68 in double precision.

(ii) For each 0 value three sample sizes were 
generated, n = 10, 20, 40.

(iii) For each value of n the first r order 
statistics were kept for five values of r correspond­
ing to r/n = .3, .5, .7, .9 and 1.0. These r order 
statistics were then used to evaluate the statistic
T = log(xr/xp).

(iv) Twenty thousand random samples were generated 
for each set of 0, n, and r. The empirical cumulative 
distribution of T for each group of 0, n, and r was 
compiled using these 20,000 random samples. The 
expected value of T and the variance of T, given in 
Table 1, were also found using these random samples.

(v) An Aitken-Lagrange interpolation technique 
(Hildebrand 1956) was used on the empirical cumulative 
distribution of T to obtain the power of the tests of 
hypothesis based on T, which are provided in Table 3.
To obtain the power of the hypothesis tests based on the
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Neyman-Pearson ratio we consider the joint probability 
density function of the first r order statistics, using 
the two-parameter gamma distribution,

f(x, ,•••,x ) = (n!)3"n0( II x. ) 0-^exp(- £ x-/S) 
x r i=l 1 i=l 1

x0-^exp(-x/3)dx]/[(n-r)!(r(6))n],

0>O, 3>0, x^>0, i=l,***,r.

Making the transformation y^ = x^/x^, i=l,***,r-l, and
y = x /$ we have Jr r

f(y1,***,yr) = (n!)yrr0-1( n yi)0-1exp[- I yiyr-yr]
i=l i=l

[

9-1 -y , nn-r y e -My] ,
Jy,
C

9>0, y^>0, i=l,***,r.

This transformation eliminates the dependency on 3. 
Setting 0=1 and integrating out yr we have

r-1
f (y-j_ s * * * >yr_i I 9 = 1) = (n! ) T (r) / { (n-r ) I [ £ y. + (n-r+l) ]r} .

i=l
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Doing the same with 9=2, we have

f Cyn > * • * >y.i5 r-l
r-1

I 0 = 2 ) = (n! ) C n yi)
i = l

*{ z 
0

2r-l -ze (1+z/C £ y^+(n-r+l)])dz}
i = 1

i = l

The integration contained in this last joint probability 
distribution can be expanded by using the binomial 
expansion and integrated term by term. However, the 
integrations contained in the joint probability distrib­
utions for other values of 9 make other hypothesis tests 
less tractable. The ratio

was calculated for n = 10, 20, 40 and r/n = .3, .5, .7, 
.9, 1. The empirical cumulative distribution for this 
Neyman-Pearson ratio, using the 20,000 random samples 
described above, for the situation when 9=1 and when 0=2



23

was thus compiled. The Aitken-Lagrange interpolation 
technique (Hildebrand 1956) was then used to obtain the 
powers associated with the Neyman-Pearson based 
hypothesis tests of H:0=1 versus K:0=2 and H:0=2 versus 
K :0=1.

(vi) The accuracy of the Monte-Carlo simulations 
was checked in different ways. Since the full sample 
case was simulated along with the censored case we 
compared the simulated values of E(T) and nVar(T) to 
the exact values provided by Bain and Engelhard! (1975). 
These full sample comparisons are found in Table 4.
For the case 0=1, E(T) and nVar(T) were both simulated 
and found exactly (see Section 2). The comparisons of 
these results are in Table 5. Finally, the linearity 
of the results in Table 1 implies a consistency in the 
results. For example, if in the case where 0=5 and 
r/n=.5 a linear fit to the values of E(T) is calculated 
for n = 10, 20, 40 the extrapolated value of E(T) for 
n = 00 is .0401, which is the same value found using the 
methods of Chernoff et al. (1967). Such extrapolated 
values, for E(T) and nVar(T), using other values of 0 
and r/n are similarly close.
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The following computations were done to find the 
exact moments of T when 0=1. As pointed out in Section 
2 we have M_,p(t) = E[(x)"t]/E[(x)"t], To find ECCx^)^] 
we have [£.j^x^+(n-r)xr]/0 is distributed as a gamma 
random variable with scale parameter 1 and shape param­
eter r (Mann et al. 1974). Since 0=1 it follows that, 
with y = nx ,

E[nt(xr)t] = Ety1"]

= f V +r” 1e-y/r(I.)dy.
) n

Thus, E[(xri)] = r(t+r)/n TCr).
To find E[(x )"t] we note that r

ECCx^)1'] = E[exp(t log x^)]

= [n!/(n-r)!] exp[(n-r+1)(-x +t (log x^/n)]

’ Hr-l(xr;t)dxr ’

where



H , (x ; t) = r-1 r
x rx„ r-1 r
0

II exp[-x. +t(log x.)/n] }dxn • • • dx 
0 i=l 1 1 ± r-

Using the methods of Engelhardt (1975b) we set

H(x;t)
fx
exp[-u+t(log u)/n]du
0

and, taking successive integrations, we have

Hr-l(xr'’t} = tH(xr,;t)]r'1/(r-l)!. 

Subsequently

E[(xr)t] K r ° ° exp[(n-r+l)(-x +t(log x)/n)[H(x;t)] 
0 P

r-1dx

where K=n!/(n-r)!(r-1)!.
To find the expected value and variance of T we 

take the first and second derivatives of M î(t) with 
respect to t and then set t = 0. Using M ^(t) =
E[(x^)t]/E[(x^)^] and setting A = 3E[(xr)t]/3t, B = 
9E[ (xr)t]/9t, C = 32E[(xri)t]/3t2, D = 3 2E[ (x^) 1 ] / 3t2 
we find, when A, B, C, D are evaluated at t=0, E(T) = 
B-A and Var(T) = C-D+B2-A2.

Taking the above indicated derivatives and 
evaluating A, B, C, D at t=0 we have the following
formulas:
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A = K, 1
fln , /n ^n-r r-1, log X (1-u) u du+K^
0 U

1
(l-u)n~rur~^I-^(Xu)du,

and

C log2X (l-u)n-r ° u

+ Kr

+ K,

4 0iog xu(i_u)

f1(l-u)n
J n

-r r-3 u

/ -i xn-r r- 2 (1-u) u

r-1u du

n-r r-2T ,, x , u I,(X )du 1 u

Cll(Xu)]2du 

I2(Xu)du,

where Xu = -log(l-u), K-̂  = Cn-r+l]nP(l) , - nP(2),
K3 = [n-r+l]2P(l), = 2[n-r+l]P(2) , K& = P(3), and
Kc = P(2) such that P(i) = (n-1)!/n(n-r)!(r-i)I. The6

functions

I^Cu)
■u
log s exp(-s)ds

0

and

I2 Cu) f u  2log s exp(-s)ds
Jo

can be evaluated as follows: I^(Xu > = u log( ̂-u )+Q (
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and I_(X ) = uClogQ )]2 + 2 log(X )Q(X )+2R(X ) where 2 u  ° u x u u

Q U u> = J
1=1

and

00 * • oR(X ) = T (-1)1 ^ . V i  -i! . 
u i=l u

Then for B and D we have,

B = i{j(r)-log n

and

D = (r) + [(log n)-ip(r) ]2 ,

where i|K*) and are the digamma and trigamma
functions, respectively, and can be evaluated by the 
following:

and

— 1ijKn+1) = -Y+ l k (n>l) ,
k=l '

^(1)(n+l) = C(2)- 7 1/i2,
i = l
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where y is Euler's constant and £(•) is the Reimann 
zeta function. From Abramowitz and Stegun (1970) we 
find y = .5772156649 and C(2) = i-  ̂ = tt̂ /6. From
these formulas for A, B, C, and D the exact expected 
value and the exact variance for T, when 0=1, can be 
obtained.
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1. Moments for the Approximation

___________8 E(T)____________  _________ n 0 2 Var(T)
n 0 r/n

.3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0
.5 .131 .258 .385 .515 .583 .155 .310 .460 .608 .683

1.0 .105 .214 .330 .456 .527 .121 .247 .377 .516 .594
1.5 .0929 .195 .308 .434 .503 .104 .216 .338 .477 .551
2.0 .0856 .184 .296 .422 .490 .0932 .198 .318 .456 .528
3.0 .0777 .172 .281 .405 .477 .0776 .179 .295 .431 .504
5.0 .0705 .160 .266 .394 .467 .0658 .155 .265 .405 .483
10.0 . 0640 .151 .257 .384 .458 .0549 .141 .251 .383 .467
20.0 .0610 .147 .252 .378 .454 .0496 .130 .234 .365 .456

.5 .161 .285 .409 .538 .610 .196 .345 .488 .633 .708
1.0 .130 .239 .354 .480 .552 .150 .274 .403 .542 .619
1.5 .114 .218 .330 .456 .528 .125 .241 .365 .497 .578
2.0 .106 .206 .314 .442 .516 .112 .218 .338 .472 .556
3.0 .0966 .192 .303 .429 .504 .0963 .194 .313 .450 .529
5.0 .0885 .181 .289 .417 .492 .0815 .173 .288 .425 .508
10.0 .0808 .170 .278 .407 .483 .0698 .157 .267 .408 .492
20.0 .0762 .165 .272 .402 .480 .0624 .148 .259 .399 .484
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1. Moments for the Approximation, Continued

___________ 9 E(T)____________ ________ n Q2 Var(T)
n 0 ____________________r/n___________________

.3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0
.5 .177 .300 .424 .552 .623 .210 .360 .503 .643 .720

1.0 .142 .251 .366 .492 .564 .164 .287 .416 .554 .632
1.5 .126 .228 .341 .467 .540 .141 .254 .378 .513 .590
2.0 .116 .216 .328 .454 .528 .122 .227 .346 .488 .568
3.0 .106 .203 .312 .441 .516 .107 .206 .324 .460 .543
5.0 .0970 .190 .300 .428 .505 .0905 .187 .303 .440 .520
10.0 .0892 .180 .289 .419 .495 .0763 .165 .278 .417 .503
20.0 .0848 .174 .284 .414 .492 .0696 .156 .268 .408 .496

.5 .192 .315 .437 .564 .635 .231 .375 .518 .658 .733
1.0 .154 .263 .378 .504 .577 .178 .301 .429 .567 .645
1.5 .137 .240 .353 .480 .554 .150 .263 .387 .524 .603
2.0 .127 .226 .338 .466 .540 .134 .241 .362 .500 .580
3.0 .116 .213 .324 .453 .528 .115 .217 .335 .473 .555
5.0 .106 .201 .311 .440 .515 .0988 .195 .310 .450 .533
10.0 .0976 .190 .300 .430 .508 .0838 .175 .290 .431 .516
20.0 .0922 .183 .294 .426 .504 .0752 .163 .280 .424 .508
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2. Comparison of Exact and Approximate Percentage Points of W = 2n6T 
r/n = .3 r/n = .7

n 0 a a
.01 .05 o 1—1 « .50 • CO o .95 .99 .01 .05 .10 .50 .90 .95 .99

10 .5 .005 .033 .076 .502 .902 .950 .989 .009 .045 .092 .502 .901 .951 .988
1.0 .008 .041 .089 .496 .902 .951 .990 .011 .050 .098 .502 .901 .951 .990
2.0 .008 .046 .095 .491 .896 .951 .990 .011 .048 .096 .492 .900 .952 .990
5.0 .009 .050 .100 .498 .896 .949 .991 .014 .054 .105 .496 .900 .950 .990

20 .5 .010 .045 .094 .504 .901 .950 .989 .008 .048 .097 .502 .901 .950 .990
1.0 .012 .049 .097 .503 .902 .951 .990 .010 .047 .096 .502 .901 .950 .989
2.0 .016 .058 .104 .492 .901 .949 .991 .011 .053 .106 .500 .901 .951 .990
5.0 .018 .062 .109 .497 .902 .952 .991 .012 .053 .103 .497 .990 .950 .990

40 .5 .009 .047 .095 .508 .902 .948 .989 .010 .046 .099 .506 .901 .949 .990
1.0 .011 .046 .096 .494 .899 .949 .990 .011 .049 .101 .501 .896 .948 .990
2.0 .011 .052 .103 .499 .901 .951 .989 .009 .051 .100 .493 .898 .950 .988
5.0 .013 .056 .105 .502 .900 .951 .991 .011 .054 .105 .498 .899 .950 .990
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3. Comparison of Power Based on T and on 'the Neyman-Pearson Ratio (R)
H: 6 = 1 versus K: 0 = 2 H: 0 = 2 versus K: 0 = 1

n a r/n
.3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0

10 .01 T .026 .046 .071 .11 .13 .13 .20 .26 .32 .35
R .026 .050 .073 .11 .13 .13 .20 .26 .32 .35

.05 T .12 .19 .27 .35 .40 .27 .38 .45 .52 .55
R .12 .19 .27 .35 .40 .27 .38 .45 .52 .55

.10 T .23 .35 .44 .54 .57 .37 .48 .56 .63 .66
R .23 .34 .44 .53 .57 .37 .48 .56 .63 .66

20 .01 T .067 .13 .22 .31 .36 .23 .37 .47 .56 .60
R .066 .14 .22 .31 .36 .23 .37 .47 .56 .60

.05 T .25 .40 .53 .64 .70 .43 .57 .67 .75 .79
R .25 .40 .53 .65 .70 .43 .57 .67 .75 .79

.10 T .41 .58 .71 .80 .84 .54 .68 .76 .83 .86
R .42 .59 .71 .80 .84 .55 .68 .76 .83 .86
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*4. Full Sample Comparison for Moments of T
E(T) n Var(T)

6 ______  n
10 20 40 10 20 40

.5 M.C. 1.169 1.217 1.245 2.73 2.83 2.87
Exact 1.166 1.220 1.245 2.72 2.83 2.88

1.0 M.C. .529 .549 .565 .604 .614 .636
Exact .527 .552 .564 .594 .619 .632

1.5 M.C. .336 .352 .360 .244 .256 .263
Exact .335 .352 .360 .245 .257 .262

2.0 M.C. .24-7 .257 .264 .134 .138 .141
Exact .245 .258 .264 .132 .139 .142

3.0 M.C. .159 .167 .172 .0563 .0588 .0596
Exact .159 .168 .172 .0560 .0588 .0603

5.0 M.C. .0933 .0981 .101 .0193 .0202 .0209
Exact .0934 .0983 .101 .0193 .0203 .0208

10.0 M.C. .0458 .0483 .0496 .00466 .00491 .00504
Exact .0453 .0483 .0495 .00467 .00492 .00503

20.0 M.C. .0227 .0239 .0246 .00112 .00121 .00124
Exact .0227 .0240 .0246 .00114 .00121 .00124
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5. Exponential Comparison for Moments of T
E(T) n Var(T)

n r/n
.3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0

10 M.C. .105 .215 .331 .457 .529 .122 .249 .383 .521 .604
Exact .105 .214 .330 .456 .527 .121 .247 .377 .516 .594

20 M.C. .129 .238 .352 .478 .549 .149 .272 .403 .541 .614
Exact .130 .239 .354 .480 .552 .150 .274 .403 .542 .619

40 M.C. .142 .251 .366 .493 .565 .162 .286 .411 .554 .636
Exact .142 .251 .366 .492 .564 .164 .287 .416 .554 .632
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ABSTRACT

The Cramer-Rao lower bounds for the variances of 
unbiased estimators based on censored data are given. 
Convenient techniques of evaluation are then derived 
for these lower bounds. Examples are given to illus­
trate these techniques. Small-sample comparisons are 
made between the resulting lower bounds, the variances 
of the best linear unbiased estimators, and the vari­
ances of unbiased estimators which are based on the 
maximum likelihood estimators.

KEY WORDS: Cramer-Rao lower bound; Censored sampling; 
Nuisance parameters.
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1. INTRODUCTION

Let Y^,***,Y be a random sample from a one-
parameter distribution having density function f(y;0),
where 0 belongs to a subset of the real line. Let
T = t(Y,,***,Y ) be an unbiased estimator of T(0).1 n
Under certain regularity conditions (see e.g. Wijsman 
1973)

var.(T) > CT*(0)]2/nEQ[(9log f(Y;0)/30)2] (1.1)

where the right-hand side of equation (1.1) is the 
well-known Cramer-Rao lower bound (CRLB) for the vari­
ance of unbiased estimators of T(0) (Cramer 1951).
When a CRLB exists it is divided by the variance of T 
to measure the efficiency of T. For density functions 
depending on more than one parameter a generalization 
of the CRLB with nuisance parameters is available (see 
e.g. Lehmann 1949 or Wasan 1970), again under the 
assumption that all n observations of the random sample 
are available.

Suppose the first r out of n order statistics, 
X^<***<X , are available. This situation, known as 
type II censoring from above, is commonly encountered 
in life testing and reliability studies. Under these 
conditions various authors have measured the
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efficiency of unbiased estimators with respect to two 
basic norms, depending on the sample size n. Such 
efficiencies have typically been based on comparisons 
with the variance of the best linear unbiased estimator 
(BLUE) for small sample sizes (n < 20) and the variance 
of the asymptotic maximum-likelihood estimator (MLE) 
for large sample sizes (see e.g. Gupta 1952, Sarhan 
and Greenberg 1955 and 1957, Saw 1959, Saleh 1966, 
Engelhardt and Bain 1974, and Engelhardt 1975a). In 
this paper we are interested in establishing a conven­
ient numerical method of finding the CRLB, both with 
and without nuisance parameters, for unbiased estima­
tors of T(6) with censored data. This would be more 
appropriate than the BLUE variance when the estimator 
is not a linear function of order statistics and 
preferable to the asymptotic variance of the MLE for 
small samples.

Harter and Moore (1968a) found, for the type II 
asymptotic distribution of smallest values having 
distribution function

F(x;v,K) = 1 - expC-(x/v)-^], x < 0, v < 0, K > 0,

the CRLB for the variance of unbiased estimators of v, 
given K, to be v /rK , where only the first r observa­
tions are available. Harter and Moore (1969) also



44

found, for the Pareto distribution having distribution 
function

F(x;X,L) = 1- (x-X)- ,̂ x 1 + X, L > 0,

the CRLB for the variance of unbiased estimators for 
L, given X, to be L /r. Govindarajulu (1968) gives 
lower bounds, in the censored case, for unbiased esti­
mators of the location and scale parameters a and 3? 
when the other is unknown, for the two-parameter 
distributions having distribution functions of the 
form F[(x-a)/6], These bounds, as presented by 
Govindarajulu and discussed in Section 3 of this paper, 
are difficult to numerically evaluate. Also in the 
censored case, Cramer-Rao type bounds have been derived 
by Mann (1969) for the mean squared error of regular 
invariant estimators for parametric functions of loca­
tion and scale parameters.

In this article we derive CRLB's for unbiased 
estimators of T(0), both with and without nuisance 
parameters, in Section 3. These bounds are based on 
a simple set of integrals that are obtained through 
a moment generating function technique discussed in 
Section 2. Finally the CRLB of the location and scale 
parameters, with and without the other being known,
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for the type I extreme-value distribution of smallest 
values and the normal distributions are found and ta­
bled for sample sizes n = 10,20,30,40,50,60 and 
censoring levels r/n = .3,.4,.5,.6,.7,.8,.9 and the 
full sample case. For sample sizes n = 10,20 these 
are then compared to the variances of the associated 
BLUE's and the variances of unbiased estimators which 
are based on the MLE's. Bounds for the full sample 
case and asymptotic variances of the MLE's have been 
included for the sake of comparison.

To derive the CRLB for censored data we will need 
the following two lemmas.

Lemma 1: Let X^<•••<Xn denote the order statis­
tics for a random sample of size n from a distribution 
whose density function is f(x) and whose cumulative 
distribution is F(x). When g(x), h(x), and k(x) are 
measurable functions such that the joint moment 
generating function of ^ “^gCX^),h(Xr), and Ij=r+ik X̂ĵ  
exists, then

2. DERIVATIONS

.oo
M (a,b,c) = C



46

r-1.{exp[b h(x) ]f (x) [G(x,g,a) ‘L[H(x,k,c) ]n-r}dx,

where C. . = n !/[(r-i)!(n-r+j)!] , i > 3

G(x,g,a) = rxexp[a g(u)]f(u)du,

and

H(x,k,c) = 

Proof: Denote H

exp[c k(u)]f(u)du,
x

ij:ig(xi),h(xr ) , ^ =r,+1kcxj)
(a,b,c)

by M(a,b,c), then
r-1 n

M(a,b,c) = E{exp[a £ g(X. ) + b h(X ) + c £ k(X.)]}
i = l 1 j =r+l 3

= n!
f X r+1 n

* — CO v  — oo

exp[b h(x )] R {f(x.)
r j =r+l 3

exp[c k(Xj )] }f (xr)Gr)_1(xr,g,a)dxr - • *dxn ,

where
r X

Gr-lCxr ’g ’a)
rx2 r-1

II {f (x. )exp[a g(x.) ] }
-oo i = l  1 1

dx., • • • dx -i • x r-1

Using the methods of Engelhardt (19 75b) we integrate 
successively and have

Gr-l(xr ’g ’a) = C
x
rexp[a g(u)]f(u)du]r-^/(r-1)!j
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= [GCx^jgja)]r-1/(r-1)!.

Changing the order of integration it follows that

J.oo expCb h(xr )]f(xr>)[G(xr>,g,a)]r_1
- o n

Hr-l(xr ’k ’c)dxr ’

where

Hr-l(xr’k ’c) = f
oo c00 n

II f(x.)exp[c k(x.)]
x^ ,j=r+l -1 3r n-lJ •

• dx„•••dx ,n . n r+1

Applying the same methods of integration (Engelhardt 
1975a) we have

Hr_1(xr ,k,c) = [ exp[c k(u)]f(u)du]n-r/(n-r)!
• x

= [H(xr ,k,c)]n-r/(n-r)!,

OO

the result then follows.
Before proceeding to Lemma 2 we note that 

G(x,g,0) = F(x) and H(x,k,0) = 1 - F(x).
Lemma 2: For the functions g(x), h(x), and k(x), 

under the assumptions of Lemma 1, we have the follow­
ing expected values:
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(i)
r-l

E[ I g(X.)] = C, i = l x '
f(x)[F(x)]’UJ -oo

r-2

• [l-F(x) ]n_r'l1(g,x)dx,

r-l «
(ii) E[( l g(X.)r] = C 

i=l 1 3,0 f(x)CF(x)] r-3

• [l-F(x)]n-r[I1(g,x)]^dx
roo

+ ^2 0 f(x)CF(x)]r

• [l-F(x)]n-rI2(g,x)dx,

r-2-o o

(iii) E[h(X ) l g(X_.)] = C9 J  h(x)f (x)[F(x) ]i* • _ -i -i- Z. • U 11 = 1  5 3 - o o

• [l-F(x)]n-rI1(g,x)dx,

where I,(g,x) = f*mg(u)f(u)du and I9(g,x) = /* [g(u>]‘I
f(u)du

Proof: Denote M
^i = ig(Xi)>h(Xr )’^=r+lk(Xj)

(a,b,

by M(a,b,c). Then
,oo

3M(a,b,c)/3a = C, n {exp[b hCx)]f(x)(r-l)
± , U J -oo

• [G(x,g ,a) ]r’-2[H(x,k,c) ]n-r
rx g(u)exp[a g(u)]f(u)du]}dx.

Setting a = b = c = 0 result (i) follows.

2

c)
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For (ii) we have

92M(a,b,c)/9a2 C2 , 0 {exp[b h(x)]f(x)(r-2)

• [G(x,g,a)]r-3[H(x,k,c)]n V

fx ?• [I g(u)exp[a g(u)]f(u)du] }dx
;  — CO

r°° o+ C2 0 {exp[b h(x)]f(x)[G(x,g,a)]r’ U j —OO
[H(x,k,c) ]n-:r[

x
(g(u))7exp[a g(u)]

• f(u)du]}dx.

Setting a = b = c = 0 the result follows.
Taking the partial of 3M(a,b,c)/9a with respect 

to b we have
 ̂ f00

32M(a,b,c)/3b9a = C2  ̂ {h(x)exp[b h(x)]f(x)

• [G(x,g,a)]r-2[H(x,k,c)]n-r

fx• [ g(u)exp[a g(u)]f(u)du]}dx.
J  —  OO

Again setting a = b = c = 0 result (iii) follows. 
Other expected values, such as E[£^f_^g(X^ 
can be found similarly.
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3. CRAMER-RAO LOWER BOUNDS

Let f(x;0) be a one-parameter density function and
let Xn<***<X be the r smallest order statistics of a 1 r
random sample of size n. Let T = t(X,.•••.X ) be anr 1 r
unbiased estimator of T(0) and set f(x^,•••,x ;0) =
[n!/(n-r) ! (x^;0 ) [1-F(xr ;0 ) ]n-r, the joint density
function of the first r order statistics. We make the 
following assumptions:

(i) 0 lies in an open interval £2 of the real line,
(ii) 3f(x;0)/90 and 9F(x;0)/90 exists for all 0 in £2.

(iii) /••*/f(x,,•••,x ;0)dx^*•«dxr can be differenti­
ated under the integral signs.

(iv) /•••/T f(x, .••♦,x ;0)dx,***dx can be differen- j j r i5 ’ r 1 r
tiated under the integral signs.

(v) E0{[91og f(X19•••,X ;0)/90]2} > 0 for every 0
in £2.

These assumptions are similar to those of the complete 
sample case except for the difference in the joint 
density function. If T , f(x^,•••,xr ;0), and 0 meet 
the above regularity conditions then a proof similar 
to the proof of the full sample case of the CRLB (see 
e.g. Lehmann 1949 or Wasan 1970) yields the following
theorem.
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Theorem 1: Under the above assumptions
1 o 9Var[Tp] > [T (0)]Z/E([Slog f (Xx , • • • ,Xr ; 0)/ 3©[T ) . (3.1)

The following theorem gives a convenient evalua­
tion of the denominator in equation (3.1).

Theorem 2: E([31og f(X^,•••,X^;0)/30] ) is equal
to

0 oo
C3 of f(x;0)[F(x;0)]r"3[l-F(x;0)]n"r[I1(g,x)]2dx’ J —00

r00 o+ C2 J  f(x;0)[F(x;0)]r"2[l-F(x;0)]n_rI2(g,x)dx' ' — m
r-2,+ 2C2 q I f (x;0) [F(x;0) l1- ^[1-F(x;0) ]n ^(xJl^fgjX:)dx

+ C1,0 f(x;0)[F(x;0)]r~1[l-F(x;0)]n r[h(x)]2dx,

where

h(x) = 3[log f(x;0) + (n-r)log(1-F(x;0))]/30,

and where I^(g,x) and I2(g»x) are defined in Lemma 2 
if the function g is given by

g(u) = 3[log f(u;0)]/30.

Proof: Replacing f(X^,•••,Xr ;0) with the joint
density function we have
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E ([3 log f(X,,...,X ;0)/30] ) = E{[ £ 31og f(X.;0)/90
r i = l 1

+ 3log f(Xr ;0)/30 + (n-r)3log(l-F(Xr;0))/30]2}
r-i

= E [ l g(X.) + h(X )]2} 
i = l 1

r-1 9 r-1 9
= E [ y g(X.)r + 2E[h(X ) y g(X,)] + E[h(X )] . 

i=l 1 r i=l 1 r
Using the density function of the rth order statistic,
fr (x;0) = C-j gf (x;0)[F(x;0) ]r-‘''[l-F(x;0)]n r , and Lemma
2 the result follows.

We shall now extend this one-parameter case of the
CRLB to the case with nuisance parameters. That is,
let f(x;0 ,•••,0m ) be a multi-parameter density function
and let T = t(Xn,***,X ) be an unbiased estimator of 0,, r 1 r 1
based on the first r order statistics. We want to 
establish a convenient numerical method of finding the 
CRLB for the variances of unbiased estimators of 0^, 
when the other parameters are unknown. If T , 
f(x19•••,xr ;01 ,•••,0m), and 0^ (i=l,*»*,m) meet assump­
tions (i),***,(v) for the one-parameter CRLB for cen­
sored data, where differentiation is with respect to 
any 0^(i = l,***,m) and if 9log f(xx ,•••,xr ; , • • • , 0m )/
90^ (i=l,***,m) are linearly independent, then a 
similar proof as in the full sample case of the CRLB 
with nuisance parameters (see e.g. Lehmann 1949 or
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Wasan 1970) yields the following theorem. We note that 
the above assumptions are essentially those for the 
full sample case except for the difference in the joint 
density function.

Theorem 3: If P = [p^j ] is the symmetric m x m  
matrix where

Pi3 = EUaiog f(x1 ,---,xr 30l5 l 5

[3log f(X1,--•,Xr ;01’ 1’ e )/ae.]} (3.2 ) m nj
then

var(T^) >_ cofactor of p_^/|p|.

To evaluate equation (3.2) set

g^(x) = 91og f(x;0 1

and

h^(x) = 9(log f(x;0 1> * *0™ > m

+ (n-r)log[l-F(x)0^ , • • • 59m )])/90£

then

31og f(x1,•••,xr;01,•••,em)/3ei1 ’ 1’

and equation (3.2) becomes
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r-1 r-1

where

E1 = E{[l'gi(Xm )][T g 5 ( X n)]}5
m=l n=l J

r-1
E2 = E{h.(X )[ l g.(Xm )]},

J m=l

E 3 = E{hi (Xr ) [ j ' g j (Xn )]},

E4 = E{hi(Xr )hj (Xr )}.

It should be noted that if i = j then p.. is the 
denominator of equation (2.1), which is evaluated by 
Theorem 2.

Theorem 4: Element p.. of matrix P in Theorem 313
is equal to

C2 ,0
f CO

(x)f(x)[F(x)]r 2Cl-F(x)]n_rI1 (g^,x)dx

+ C, ,0 h.(x)f(x)[F(x)]r“2l
•  — CO

[l-F(x) ]n~r I^(g^ ,x)dx

+ C1,0 h^(x)hj(x)f(x)[F(x)] r-1 [1-F(x)]n rdx

+ C2,1 gi (x)g.(x)f(x)[F(x)]r_2[l-F(x)]n-r+1dx
• 00



55

+ C
3 , 1 J

g^(x)f(x)[F(x)]r_3[l-F(x)]n-r+1I1 (g-,x)dx

+ C 3 ^ g.(x)f(x)[F(x)]r_3[l-F(x)]n_r+1I1 (gi ,x)dx
3 *  — GO ^

+ c4,lJ_ f(x)[F(x) ]r-1+[l-F(x) ]n-r+1I1(g^,x)I1(g^ ,x)dx

• oo (X
+ C 3 f(x)[F(x)]r-3[l-F(x)]n"r+1[

 ̂ .00 •
g ^ y ^ -  (y)f (y)dy]dx.

Proof: To evaluate E^ we denote the moment generat­
ing function M 1 (a,b) by M(a,b) and

Jm=lgi(Xm 5’Jn=lgj(Xn ) 
using a technique similar to the one used in Lemmas 1
and 2 we have

M(a,b) = [n!/(n-r+1)!] exp[a gi (xr _1)

+ b Si(xr-l)]f(xr-l)[1_F(xr-l)]
n-r+1

• K „(x -,,g.,g.,a,b)dxr-2 r-1 i i r-1

where

Kr-2(xr-l’gi ’gi ,a’b) =
xr-1 rx_ r-2

II {f(x-, )exp 
-«> k=l

[a gi(xk )+b gj (xk )]}dx1 - * *dxr_2

Using the methods of Engelhardt (1975b) we integrate 
successively and have



56

Kr-2(xr-l’gi,gj,a,b) = [K(xr-l’gi ,gj>a>b]r~2/(r-2)!,

where

f xK(x ,g . ,g. ,a,b) = r~ x  (y)exp[a g . (y)+b g_, (y) ]dy.
I - X  X  J 3 -ca X  J

Thus,

M(a,b) = C2 expCa g^(x)+b g. (x) ]
5 _00 J

n-r+1, r-2• f(x)[1-F(x)] “ [K(x,g^,g.,a,b)] dx.

Taking the partial with respect to a we have

M(a,b)/3a = C2  ̂ g.(x)exp[ag^(x)+b g.(x)]
5 _oo

• f(x)Cl-F(x)]n-r+1[K(x,g£,g.,a,b)]r 2dx

+ C0 n expCa g . (x)+b g. (x) ]f(x)
Z 9 ± J _oo 1

• [l-F(x)]n-r+1(r-2)[K(x,gisgj,a,b)]r-3

[Ki (x,gi5g.,a,b)]dx,

where

K. f x(x,giSg. ,a,b) = j  gp(y)exp[a gi(y)+b gj (y) ]f (y)dy.

Taking the second partial with respect to b we have

32M(a,b)/3b3a = C0 , g.(x)g.(x)exp[ag.(x)+b g-(x)]z 5 x J _OQ 1 3 x J
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. f(x)[l-F(x)]n_r+1[K(x,gi,gj,a ,b)]r-2dx 

+ C0 , [ g. (x)expCa g. (x)+b g. (x)]f Cx)oo 1 1 J
• [ l - F ( x ) ] n_r+1 ( r - 2 ) [K ( x ,g ^ ,g j ,a ,b ) ] r  3

• [K j (x ,g i ,g j,a ,b ) ]d x

+ C3,1 g. (x )exp [a  g .(x )+ b  g . ( x ) ] f ( x )  
, 3  1 3

• [ l - F ( x ) ] n" r’+1 [K (x ,g i ,g j  ,a ,b ) ]r-3

• [Ki ‘ (x ,g i 5g j,a ,b ) ]d x

+ C„ , [ expta g. (x)+b g. (x) ] f  (x ) [ l - F ( x )  ] n r+ ^ d -oo 1  3
• ( r - 3 ) [K (x ,g ^ ,g j ,a ,b ) ] r-l+

• [Kj (x,gi ,g^,a,b)][Ki (Xjg^jgj,a,b)]dx

+ C0 , f exp[ag. (x)+b g.(x)]f(x)]l-F(x)]n V +  ̂°>-Lj_oo 1 3
• [K (x ,g ^ ,g j, a ,b ) ] 

f x

r -3

• { g£<y)gj (y )exp [a  gi (y)+b g j (y) ] 

f(y )d y }d x .

S e ttin g  a = b = 0 the e va lu a tio n  o f E-̂  fo llo w s .
The eva lu a tion  o f and Eg fo llo w s  d ir e c t ly  from 

Lemma 2 and E^ is  seen to  be the expecta tion  o f  a 
fu n c tio n  o f  the r th  o rder s t a t is t i c .
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The above theorems, as illustrated in Section 4, 
give a convenient numerical method of evaluating the 
CRLB, with and without nuisance parameters. If we 
restrict ourselves to the two-parameter cumulative 
distribution function of the form F[(x-y)/cxD, that is, 
y and a are location and scale parameters, respectively, 
then under similar regularity conditions Govindarajulu 
(1968) has developed CRLB’s for unbiased estimators of 
y and a, with or without the other parameter known. 
However, expected values similar to those of equation 
(3.2) of this paper are needed in Govindarajulu's lower 
bound but a convenient evaluation scheme is not pro­
vided. The above theorems of this article extend the 
results of Govindarajulu and provide a numerical scheme 
of evaluation.

4. EXAMPLES

To illustrate Theorems 2 and 4 we shall evaluate 
the CRLB, with and without nuisance parameters, for 
unbiased estimators of the parameters in the normal 
distribution and the type I extreme-value distribution 
of smallest values.

Let the density function of the normal distribu­
tion be denoted by
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f(x;y,a) = (2ir02)-^ 2exp[-(x-y)2/0 2!l,
-oo < X  < °° , -oo < y < a> , 0 > 0.

To evaluate the CRLB for unbiased estimators of a with 
y known, denoted by oc|y , we have, from Theorem 2,

f xI-ĵ Cgjx) = 3f(y;y,0 )/9ady
J — OO

= -(x-y)f(x;y,0)/0 ,

I2(g,x) 9[3f(y;y,0)/30] f(y;y,0)dy
— 00

2F(x;y,0)/02 - (x-y)3f(x;y,0)/04 

- (x-y)f(x;y,0)/02,

and

h(x) = -I/0 + (x-y)2/02 + (n-r)(x-y)f(x;y,0)

/ [1-F(x;y,0)]0 .

The integrals in Theorem 2 were numerically evaluated 
and applied to Theorem 1, with the results being shown 
in Table 6. All numerical integrations in this paper 
were done on an IBM 370/58/68 in double precision using 
the package routine DCADRE from International 
Mathematical and Statistical Libraries (1977), DCADRE 
uses a cautious adaptive Romberg extrapolation.
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To evaluate the CRLB for unbiased estimators of y 
with o known, denoted by yc|a, we have

1-,/gsX)
rX

3f(y ;y,a)/3ydy
— oo

= -f(x;y,a),

I2(g,x) fx 2[9f (y-,y ,a)/8y ] /f(y;y,a)dy
♦ —oo

2 2 F(x;y,a)/a - (x-y)f(x;y ,a)/c ,

and

h(x) = (x-y)/a^ + (n-r)f(x;y,a)/Cl-F(x;y,a)].

After the numerical integrations of Theorem 2 were 
evaluated, Theorem 1 was applied and the resulting 
CRLB’s are shown in Table 7.

For the CRLB for unbiased estimators of y with a 
unknown, denoted by yc , or for unbiased estimators of 
a with y unknown, denoted by cr̂ , we only need the off 
diagonal element of the matrix P of Theorem 3. The 
diagonal elements of P are just the denominators of 
the CRLB without nuisance parameters. To evaluate the 
element p^2 °f p we note that in Theorem 4 I^Cg-^x), 
Il(g2,x), h^(x), and h2(x) are those in the CRLB with­
out nuisance parameters and that g^(x) and g2(x) are
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direct evaluations of partial derivatives. Then with

x 2 3g1(y)g2<y)f(y>U,a)dy = -(x-y) f(x;y,a) / 0
. — 00

- f(x;y,a)/a

the integrals of Theorem 4 are numerically evaluated
and applied to Theorem 3. The CRLB's for unbiased
estimators of y and a, with the other unknown, are
found in Tables 8 and 9, respectively. We also note

2 ,that the CRLB's for unbiased estimators of a , with or
without knowing y, can be found by multiplying those

2of unbiased estimators of a by 4a . The full sample 
case in Tables 6, 7, 8, and 9 are well-known results 
and the asymptotic values are the variances of the 
asymptotic MLE's and are tabled by Harter and Moore 
(1966).

For the next example we consider the type I 
extreme-value distribution of smallest values, having 
distribution function

F(x;3,0) = 1 - exp{-exp[(x-8)/©3}»

-CO < x < 00, -00 < 3 < 00, 0 > 0.

Applying Theorem 2 to derive the CRLB for unbiased 
estimators of 0 with 6 known, denoted by 0c |6, we have
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rX
I1 (g,x) = 9f(y;3sB)/36dy

•OO

= -(x-3)f(x;g,0)/6 ,

and

I2 (g,x) =
x
-o

[3f(y;3j0)/3Q]Z/fCy;3>0)dy

= F(x;3 ,e)/02 + (x-$)2f(x;3,0)/03

- (x-3)2exp[(x-3)/0]f(x;3 ,0)/0^

+ Jn(x),

h(x) = -1 /0 - (x-3)/02 + (n-r+1)(x-3)exp[(x-3)/0]/02,

where
2 |-exp[ (x-3)/0] 2

Jn(x) = 0~ utlog u] exp[-u]du.
> 01

Letting w = 1 - exp{-exp[(x-3)/0]} a change of variable 
was made and the resulting integrals of Theorem 2 were 
numerically integrated and applied to Theorem 1, the 
results are in Table 10.

To evaluate the CRLB for unbiased estimators of 3 
with 0 known, denoted by 3 |0, we have

I1 (g,x) =
rx

f(y;6,0)/33dy

-f(x;B,0),
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I2 (g,x) [3f(y;3,e)/93] /f(y;3,e)dy

F(x;B,0)/02 - exp[(x-3)/0]fCx;3,0)/6,
> -00

and

h(x) = -1/0 + (n-r+l)exp[(x-3)/0]/0*

In this situation the integrals of Theorem 2 can be 
integrated by parts and, after like terms are col­
lected, only the integral

Cr/0 2)C1,0
,oo

f(x;3,0)[F(x;3,0)
J  — 00

]r-1[l-F(x;3 5 0)]n-rdx

= (r/02)C1 Q[(r-1)!(n-r)!/n!]

remains. Thus the CRLB for unbiased estimators of 3j
2when 0 is known, is 0 /r.

To find the CRLB for unbiased estimators of 3 with 
0 unknown, denoted by 3C> or for unbiased estimators 
of 0 with 3 unknown, denoted by 0c , we need the off 
diagonal element of matrix P from Theorem 3. For the 
element °f P we note that I^(g,x),I^(g2 , h^(x),
and h2 <x) of Theorem H are those of the CRLB without 
nuisance parameters and that g-̂ (x) and g2(x) are 
direct evaluations of partial derivatives. With
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f X 9g1(y)g2^y>f(y;3,e)dy = F(x;g,e)/e - (x-3)
• -a>

• exp[(x-3)/0]f(x;3,9)/9^

+ J2 Cx) ,

where

J2(x)
•exp[ (x- 3)/ 0] 
• 0

[log u]exp[-u]du,

the integrals of Theorem 4 are numerically evaluated 
and applied to Theorem 3. The CRLB's for unbiased 
estimators of 3 and 0, with the other unknown, are 
found in Tables 11 and 12, respectively. The asymptotic 
values in Tables 10, 11, and 12 are the variances of 
the asymptotic MLE's and are tabled by Harter and Moore 
(1968b). The full sample cases in Tables 10, 11, and 
12 are derived by Chan and Kabir (1969) and are 
evaluated by

0c | 3 = 02/n[(iT2/6) + (1-y )2], 

0 = 02/n[TT2/6],

and

Bc = 02[l+6(l-y)2/TT2]/n,

where y is Euler's constant.
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Tables 13 and 14 compare the CRLB's for unbiased 
estimators of the parameters in the normal distribution 
and the type I extreme-value distribution of smallest 
values to the variances of the associated BLUE's and 
the variances of unbiased estimators which are based 
on the MLE’s. The headings of Tables 13 and 14 are 
defined by:

s = CRLB for unbiased estimators of s with t c
unknown,

s = variance of the unbiased estimator of s based v
on the MLE with t unknown,

* . s = variance of the BLUE of s with t unknown, v
s It = CRLB for unbiased estimators of s with t c 1

known,
s |t = variance of the unbiased estimator of s based v 1

on the MLE with t known,
where s and t are suitable replaced by the parameters 
y, o, B s and 0.

The unbiased estimator of y , with a unknown, based 
on the MLE is denoted by y and is found by setting

y = y - aE[(y-y)/a]/E[a/a]

and the unbiased estimator of a, with y unknown, based 
on the MLE is denoted by a and is found by setting
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a - a/E[a/al,

where y and a denote the MLE’s when the other parameter 
is unknown. Likewise, the unbiased estimators of y 
and a, when the other parameter is known, are denoted 
by y|a and a|y, respectively, and are found by 
setting

y | cr = (y|a) - E[(y|a)-y]

and

a|y = (a|y)/E[(a|y)/a],

where y | o and cr | y denote the MLE’s when the other 
parameter is known.

In a similar manner unbiased estimators of $ 
and 9, with and without the other parameter known, 
based on the MLE’s are found by setting

~  A  A  A  A6 = 3 -  eE[(3-3)/0]/E[e/e],

3 |0 = (3|0 ) - E[(3|0)-3], 

e = e/ECe/0],

and

9 |3 = (0|3)/E[(0|3)/0] ,
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A  A  . A  - #where 3, B|0» 0> and 0|$ denote the appropriate 
MLE's.

Harter and Moore (1966 and 1968b) obtained 
Monte-Carlo results for the expected values and 
variances of y, y|cr, a, a|y, 3, 3]0, 0, and 0|3, 
and the covariances of y with a and 6 with 0. These 
results were for sample sizes n = 10,20 and censoring 
levels r/n = .2,.3,.4,.5,.6,.7,.8,.9 and the full 
sample case. Harter and Moore also tabled the exact 
variances of the BLUE's that are in Tables 13 and 14. 
The Monte-Carlo results were used to find the variances 
of the unbiased estimators based on the MLE's. Some 
Monte-Carlo error is apparent since the variance of the 
unbiased estimators based on the MLE is less than the 
CRLB for some censored and full sample cases.

In the above examples the joint moment generating 
function of £^f~^g(X^), h(X^), and £j_r+1k(Xj) exists. 
For examples where this joint moment generating func­
tion does not exist but where E{[ ”^g(X^)] },
E{[h(Xr )]2}, and E{[£?_r+1k(Xj)]2} are all finite, 
then a characteristic function approach could be used 
to derive the indicated CRLB’s. This approach is quite 
similar to that used with the joint moment generating 
function.
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6.
r\

Coefficients of cr/n for oJy (Normal Distribution)

10 20 30 40 50 60 00

.3 1.1053 1.1174 1.1220 1.1259 1.1278 1.1292 1.1364

.4 1.0413 1.0614 1.0692 1.0733 1.0759 1.0777 1.0868

.5 .9575 .9770 .9842 .9880 .9903 .9919 1.0000

.6 .8604 .8756 .8812 .8841 .8858 .8870 .8930

.7 .7603 .7707 .7744 .7763 .7775 .7783 .7823

.8 .6649 .6711 .6733 .6744 .6751 .6756 .6779

.9 .5780 .5809 .5820 .5825 .5829 .5831 .5843
1.0 .5000 .5000 .5000 .5000 .5000 .5000 .5000
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27. Coefficients of a /n for yc|a (Normal Distribution)

r/n n
10 20 30 40 50 60 00

.3 1.5974 1.5621 1.5503 1.5444 1.5408 1.5385 1.5266

.4 1.3816 1.3605 1.3534 1.3499 1.3478 1.3464 1.3393

.5 1.2492 1.2356 1.2311 1.2288 1.2275 1.2266 1.2220

.6 1.1605 1.1515 1.1485 1.1470 1.1461 1.1455 1.1425

.7 1.0981 1.0922 1.0902 1.0892 1.0886 1.0882 1.0862

.8 1.0532 1.0495 1.0483 1.0476 1.0472 1.0470 1.0457

.9 1.0212 1.0193 1.0186 1.0182 1.0180 1.0179 1.0172
1.0 1.0000 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000
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8 . Coefficients of cr/n for yc (Normal Distribution)

r/n n
10 20 30 40 50 60 00

.3 2.8625 2.9308 2.9579 2.9724 2.9814 2.9875 3.0199

.4 1.9671 1.9774 1.9815 1.9837 1.9851 1.9860 1.9909

.5 1.5252 1.5211 1.5197 1.5191 1.5187 1.5184 1.5171

.6 1.2861 1.2795 1.2773 1.2761 1.2754 1.2750 1.2727

.7 1.1498 1.1441 1.1422 1.1412 1.1406 1.1402 1.1383

.8 1.0702 1.0664 1.0650 1.0644 1.0640 1.0637 1.0623

.9 1.0243 1.0223 1.0216 1.0212 1.0210 1.0208 1.0201
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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9. Coefficients of a2/n for or (Normal Distribution)

r/n n
10 20 30 40 50 60 00

.3 1.9807 2.0964 2.1424 2.1670 2.1823 2.1927 2.2480

.4 1.4825 1.5427 1.5654 1.5773 1.5847 1.5896 1.6155

.5 1.1691 1.2027 1.2150 1.2214 1.2253 1.2279 1.2415

.6 .9536 .9730 .9800 .9836 .9858 .9872 .9948

.7 .7961 .8073 .8114 .8134 .8146 .8155 .8197

.8 .6756 .6818 .6841 .6852 .6859 .6863 .6887

.9 .5797 .5826 .5837 .5842 .5846 .5848 .5859
1.0 .5000 .5000 .5000 .5000 .5000 .5000 .5000
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10. Coefficients of 0z/n for 0C |$ (Type I Extreme-Value Distribution)

r/n n
10 20 30 40 50 60 00

.3 1.4336 1.4258 1.4238 1.4230 1.4225 1.4222 1.4211

.4 1.3736 1.3914 1.3983 1.4021 1.4044 1.4059 1.4141

.5 1.2961 1.3284 1.3406 1.3470 1.3509 1.3536 1.3673

. 6 1.1825 1.2191 1.2328 1.2399 1.2443 1.2473 1.2627

.7 1.0367 1.0692 1.0814 1.0877 1.0916 1.0943 1.1080

.8 .8737 .8976 .9065 .9112 .9141 .9161 .9263

.9 .7089 .7226 .7280 .7308 .7326 .7337 .7400
1.0 . 5483 .5483 .5483 ,5483 .5483 .5483 .5483
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11 Coefficients of 0 /n for 0C (Type I Extreme-Value Distribution)

r/n n
10 20 30 40 50 60 00

.3 5.7712 6.3515 6.5951 6.7291 6.8139 6.8723 7.1904

.4 3.4588 3.5735 3.7433 3.7871 3.8145 3.8332 3.9330

.5 2.3459 2.4180 2.4462 2.4612 2.4705 2.4768 2.5102

.6 1.7602 1.7831 1.7920 1.7967 1.7996 1.8016 1.8120

.7 1.4370 1.4414 1.4431 1.4441 1.4447 1.4451 1.4473

.8 1.2559 1.2542 1.2536 1.2534 1.2532 1.2531 1.2526

.9 1.1567 1.1544 1.1535 1.1531 1.1528 1.1526 1.1517
1.0 1.1087 1.1087 1.1087 1.1087 1.1087 1.1087 1.1087
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12. Coefficients of 0^/n for 0C (Type I Extreme-Value Distribution)

r/n n
10 20 30 40 50 60 00

.3 2.4821 2.7167 2.8170 2.8726 2.9078 2.9322 3.0655

.4 1.9004 2.0380 2.0937 2.1239 2.1427 2.1557 2.2247

.5 1.5203 1.6061 1.6397 1.6576 1.6687 1.6763 1.7162

.6 1.2489 1.3043 1.3255 1.3367 1.3436 1.3483 1.3728

.7 1.0428 1.0788 1.0924 1.0995 1.1039 1.1069 1.1224

.8 .8778 .9005 .9092 .9137 .9165 .9184 .9282

.9 .7380 .7508 .7557 .7584 .7600 .7612 .7670
1.0 .6079 .6079 .6079 .6079 .6079 .6079 .6079
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13. Precision Comparisons of MLE and BLUE Estimators
to the CRLB (Normal Distribution with a = 1)

n r/n yc pv
*

v V PCIQ Pvla ac 5v
*a

V °c>
10 .3 .286 .420 .417 .160 .160 .198 . 356 .354 .111 .121

.4 .197 .229 .237 .138 .138 .148 .213 .225 .104 .114

.5 .153 .161 .166 .125 .124 .117 .154 .161 .096 .101

.6 .129 .130 .134 .116 .116 .095 .116 .124 .086 .088

.7 .115 .116 .117 .110 .109 .080 .101 .099 .076 .082

.8 .107 .104 .107 .105 .103 .068 .083 .081 .066 .071

.9 .102 .101 .102 .102 .101 .058 .067 .068 .058 .059
1.0 .100 .100 .100 .100 .100 .050 .057 .058 .050 .050

20 .3 .147 .170 .175 .078 .074 .105 .138 .139 .056 .060
.4 .099 .103 .108 .068 .064 .077 .095 .094 .053 .055
.5 .076 .076 .079 .062 .059 .060 .069 .070 .049 .049
.6 .064 .062 .065 .058 .055 .049 .052 .055 .044 .043
.7 .057 .054 .058 .055 .052 .040 .043 .045 .039 .037
.8 .053 .050 .053 .052 .049 .034 .035 .037 .034 .032
.9 .051 .048 .051 .051 .048 .029 .029 .032 .029 .028

1.0 .050 .048 .050 .050 .048 .025 .024 .027 .025 .022
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14. Precision Comparisons of MLE and BLUE Estimators to
the CELB (Type I Extreme-Value Distribution with 0= 1)

n r/n K *
K 5c|e CD 6

C
0

V

*
0

V
80IB 0  | e

V 1

10 .3 .577 1.238 1.204 .333 .392 .248 .456 .461 .143 .143
.4 .346 .570 .559 .250 .269 .190 .302 .298 .137 .136
.5 .235 .322 .321 .200 .217 .152 .208 .215 .130 .124
. 6 .176 .221 .214 .167 .182 .125 .163 .166 .118 .114
.7 .144 .160 .162 .143 .151 .104 .127 .132 .104 .099
.8 .126 .133 .134 .125 .131 .088 .104 .107 .087 .085
.9 .116 .118 .120 .111 .116 .074 .083 .088 .071 .068

1.0 .111 .110 .113 .100 .104 .061 .067 .072 .055 .055

20 .3 .318 .465 .456 .167 .186 .136 .193 .184 .071 .076
.4 .179 .236 .232 .125 .136 .102 .133 .127 .070 .074
.5 .121 .143 .141 .100 .107 .080 .098 .096 .066 .070
.6 .089 .098 .098 .083 .087 .065 .080 .075 .061 .063
.7 .072 .076 .076 .071 .074 .054 .063 .061 .053 .056
.8 .063 .065 .065 .063 .065 .045 .052 .050 .045 .048
.9 .058 .059 .059 .056 .058 .038 .043 .041 .036 .039

1 . 0 .055 .055 .056 .050 .050 .030 .035 .033 .027 .030
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